content
stringlengths
255
17.2k
<s> import argparse import sys import os import subprocess INSTALL = 'install' LINUXINSTALL = 'linuxinstall' FE_MIGRATE = 'migrateappfe' LAUNCH_KAFKA = 'launchkafkaconsumer' RUN_LOCAL_MLAC_PIPELINE = 'runpipelinelocal' BUILD_MLAC_CONTAINER = 'buildmlaccontainerlocal' CONVERT_MODEL = 'convertmodel' START_MLFLOW = 'mlflow' COMMON_SERVICE = 'service' TRAINING = 'training' TRAINING_AWS = 'trainingonaws' TRAINING_DISTRIBUTED = 'distributedtraining' START_APPF = 'appfe' ONLINE_TRAINING = 'onlinetraining' TEXT_SUMMARIZATION = 'textsummarization' GENERATE_MLAC = 'generatemlac' AWS_TRAINING = 'awstraining' LLAMA_7B_TUNING = 'llama7btuning' LLM_PROMPT = 'llmprompt' LLM_TUNING = 'llmtuning' LLM_PUBLISH = 'llmpublish' LLM_BENCHMARKING = 'llmbenchmarking' TELEMETRY_PUSH = 'pushtelemetry' def aion_aws_training(confFile): from hyperscalers.aion_aws_training import awsTraining status = awsTraining(confFile) print(status) def aion_training(confFile): from bin.aion_pipeline import aion_train_model status = aion_train_model(confFile) print(status) def aion_awstraining(config_file): from hyperscalers import aws_instance print(config_file) aws_instance.training(config_file) def aion_generatemlac(ConfFile): from bin.aion_mlac import generate_mlac_code status = generate_mlac_code(ConfFile) print(status) def aion_textsummarization(confFile): from bin.aion_text_summarizer import aion_textsummary status = aion_textsummary(confFile) def aion_oltraining(confFile): from bin.aion_online_pipeline import aion_ot_train_model status = aion_ot_train_model(confFile) print(status) def do_telemetry_sync(): from appbe.telemetry import SyncTelemetry SyncTelemetry() def aion_llm_publish(cloudconfig,instanceid,hypervisor,model,usecaseid,region,image): from llm.llm_inference import LLM_publish LLM_publish(cloudconfig,instanceid,hypervisor,model,usecaseid,region,image) def aion_migratefe(operation): import os import sys os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'appfe.ux.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc argi=[] argi.append(os.path.abspath(__file__)) argi.append(operation) execute_from_command_line(argi) def aion_appfe(url,port): #manage_location = os.path.join(os.path.dirname(os.path.abspath(__file__)),'manage.py') #subprocess.check_call([sys.executable,manage_location, "runserver","%s:%s"%(url,port)]) import os import sys os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'appfe.ux.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc argi=[] argi.append(os.path.abspath(__file__)) argi.append('runaion') argi.append("%s:%s"%(url,port)) execute_from_command_line(argi) def aion_linux_install(version): from install import linux_dependencies linux_dependencies.process(version) def aion_install(version): from install import dependencies dependencies.process(version) def aion_service(ip,port,username,password): from bin.aion_service import start_server start_server(ip,port,username,password) def aion_distributedLearning(confFile): from distributed_learning import learning learning.training(confFile) def aion_launchkafkaconsumer(): from mlops import kafka_consumer kafka_consumer.launch_kafka_consumer() def aion_start_mlflow(): from appbe.dataPath import DEPLOY_LOCATION import platform import shutil from os.path import expanduser mlflowpath = os.path.normpath(os.path.join(os.path.dirname(__file__),'..','..','..','Scripts','mlflow.exe')) print(mlflowpath) home = expanduser("~") if platform.system() == 'Windows': DEPLOY_LOCATION = os.path.join(DEPLOY_LOCATION,'mlruns') outputStr = subprocess.Popen([sys.executable, mlflowpath,"ui", "--backend-store-uri","file:///"+DEPLOY_LOCATION]) else: DEPLOY_LOCATION = os.path.join(DEPLOY_LOCATION,'mlruns') subprocess.check_call(['mlflow',"ui","-h","0.0.0.0","--backend-store-uri","file:///"+DEPLOY_LOCATION]) def aion_model_conversion(config_file): from conversions import model_convertions model_convertions.convert(config_file) def aion_model_buildMLaCContainer(config): from mlops import build_container build_container.local_docker_build(config) def aion_model_runpipelinelocal(config): from mlops import local_pipeline local_pipeline.run_pipeline(config) def aion_llm_tuning(config): from llm.llm_tuning import run run(config) def aion_llm_prompt(cloudconfig,instanceid,prompt): from llm.aws_instance_api import LLM_predict LLM_predict(cloudconfig,instanceid,prompt) def llm_bench_marking(hypervisor,instanceid,model,usecaseid,eval): print(eval) from llm.bench_marking import bench_mark bench_mark(hypervisor,instanceid,model,usecaseid,eval) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-c', '--configPath', help='Config File Path') parser.add_argument('-i', '--instanceid', help='instanceid') parser.add_argument('-hv', '--hypervisor', help='hypervisor') parser.add_argument('-md', '--model', help='model') parser.add_argument('-uc', '--usecase', help='usecase') parser.add_argument('-cc', '--cloudConfigPath', help='Cloud Config File Path') parser.add_argument('-m', '--module', help='MODULE=TRAINING, APPFE, ONLINETRAINING,DISTRIBUTEDTRAINING') parser.add_argument('-ip', '--ipaddress', help='URL applicable only for APPFE method ') parser.add_argument('-p', '--port', help='APP Front End Port applicable only for APPFE method ') parser.add_argument('-ac', '--appfecommand', help='APP Front End Command ') parser.add_argument('-un','--username', help="USERNAME") parser.add_argument('-passw','--password', help="PASSWORD") parser.add_argument('-j', '--jsoninput', help='JSON Input') parser.add_argument('-v', '--version', help='Installer Version') parser.add_argument('-pf', '--prompt', help='Prompt File') parser.add_argument('-r', '--region', help='REGION NAME') parser.add_argument('-im', '--image', help='IMAGE NAME') parser.add_argument('-e', '--eval', help='evaluation for code or doc', default='doc') args = parser.parse_args() if args.module.lower() == TRAINING: aion_training(args.configPath) elif args.module.lower() == TRAINING_AWS: aion_awstraining(args.configPath) elif args.module.lower() == TRAINING_DISTRIBUTED: aion_distributedLearning(args.configPath) elif args.module.lower() == START_APPF: aion_appfe(args.ipaddress,args.port) elif args.module.lower() == ONLINE_TRAINING: aion_oltraining(args.configPath) elif args.module.lower() == TEXT_SUMMARIZATION: aion_textsummarization(args.configPath) elif args.module.lower() == GENERATE_MLAC: aion_generatemlac(args.configPath) elif args.module.lower() == COMMON_SERVICE: aion_service(args.ipaddress,args.port,args.username,args.password) elif args.module.lower() == START_MLFLOW: aion_mlflow() elif args.module.lower() == CONVERT_MODEL: aion_model_conversion(args.configPath) elif args.module.lower() == BUILD_MLAC_CONTAINER: aion_model_buildMLaCContainer(args.jsoninput) elif args.module.lower() == RUN_LOCAL_MLAC_PIPELINE: aion_model_runpipelinelocal(args.jsoninput) elif args.module.lower() == LAUNCH_KAFKA: aion_launchkafkaconsumer() elif args.module.lower() == INSTALL: aion_install(args.version) elif args.module.lower() == LINUXINSTALL: aion_linux_install(args.version) elif args.module.lower() == FE_MIGRATE: aion_migratefe('makemigrations') aion_migratefe('migrate') elif args.module.lower() == AWS_TRAINING: aion_aws_training(args.configPath) elif args.module.lower() == LLAMA_7B_TUNING: aion_llm_tuning(args.configPath) elif args.module.lower() == LLM_TUNING: aion_llm_tuning(args.configPath) elif args.module.lower() == LLM_PROMPT: aion_llm_prompt(args.cloudConfigPath,args.instanceid,args.prompt) elif args.module.lower() == LLM_PUBLISH: aion_llm_publish(args.cloudConfigPath,args.instanceid,args.hypervisor,args.model,args.usecase,args.region,args.image) elif args.module.lower() == LLM_BENCHMARKING: llm_bench_marking(args.hypervisor,args.instanceid,args.model,args.usecase, args.eval) elif args.module.lower() == TELEMETRY_PUSH: do_telemetry_sync()<s> import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__)))) from .bin.aion_pipeline import aion_train_model <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import sys import json import datetime, time, timeit import argparse import logging logging.getLogger('tensorflow').disabled = True import math import shutil import re from datetime import datetime as dt import warnings from config_manager.pipeline_config import AionConfigManager import pandas as pd import numpy as np import sklearn import string from records import pushrecords import logging from pathlib import Path from pytz import timezone from config_manager.config_gen import code_configure import joblib from sklearn.model_selection import train_test_split from config_manager.check_config import config_validate from utils.file_ops import save_csv_compressed,save_csv,save_chromadb LOG_FILE_NAME = 'model_training_logs.log' if 'AION' in sys.modules: try: from appbe.app_config import DEBUG_ENABLED except: DEBUG_ENABLED = False else: DEBUG_ENABLED = True def getversion(): configFolder = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','config') version = 'NA' for file in os.listdir(configFolder): if file.endswith(".var"): version = file.rsplit('.', 1) version = version[0] break return version AION_VERSION = getversion() def pushRecordForTraining(): try: status,msg = pushrecords.enterRecord(AION_VERSION) except Exception as e: print("Exception", e) status = False msg = str(e) return status,msg def mlflowSetPath(path,experimentname): import mlflow url = "file:" + str(Path(path).parent.parent) + "/mlruns" mlflow.set_tracking_uri(url) mlflow.set_experiment(str(experimentname)) def set_log_handler( basic, mode='w'): deploy_loc = Path(basic.get('deployLocation')) log_file_parent = deploy_loc/basic['modelName']/basic['modelVersion']/'log' log_file_parent.mkdir(parents=True, exist_ok=True) log_file = log_file_parent/LOG_FILE_NAME filehandler = logging.FileHandler(log_file, mode,'utf-8') formatter = logging.Formatter('%(message)s') filehandler.setFormatter(formatter) log = logging.getLogger('eion') log.propagate = False for hdlr in
log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): log.removeHandler(hdlr) log.addHandler(filehandler) log.setLevel(logging.INFO) return log class server(): def __init__(self): self.response = None self.features=[] self.mFeatures=[] self.emptyFeatures=[] self.textFeatures=[] self.vectorizerFeatures=[] self.wordToNumericFeatures=[] self.profilerAction = [] self.targetType = '' self.matrix1='{' self.matrix2='{' self.matrix='{' self.trainmatrix='{' self.numericalFeatures=[] self.nonNumericFeatures=[] self.similarGroups=[] self.dfcols=0 self.dfrows=0 self.method = 'NA' self.pandasNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] self.modelSelTopFeatures=[] self.topFeatures=[] self.allFeatures=[] def startScriptExecution(self, config_obj, codeConfigure, log): oldStdout = sys.stdout model_training_details = '' model_tried='' learner_type = '' topics = {} pred_filename = '' numericContinuousFeatures='' discreteFeatures='' sessonal_freq = '' additional_regressors = '' threshold=-1 targetColumn = '' numericalFeatures ='' nonNumericFeatures='' categoricalFeatures='' dataFolderLocation = '' featureReduction = 'False' original_data_file = '' normalizer_pickle_file = '' pcaModel_pickle_file = '' bpca_features= [] apca_features = [] lag_order = 1 profiled_data_file = '' trained_data_file = '' predicted_data_file='' dictDiffCount={} cleaning_kwargs = {} grouperbyjson = '' rowfilterexpression='' featureEngineeringSelector = 'false' conversion_method = '' params={} loss_matrix='binary_crossentropy' optimizer='Nadam' numericToLabel_json='[]' preprocessing_pipe='' firstDocFeature = '' secondDocFeature = '' padding_length = 30 pipe = None scalertransformationFile=None column_merge_flag = False merge_columns = [] score = 0 profilerObj = None imageconfig='' labelMaps={} featureDataShape=[] normFeatures = [] preprocess_out_columns = [] preprocess_pipe = None label_encoder = None unpreprocessed_columns = [] import pickle iterName,iterVersion,dataLocation,deployLocation,delimiter,textqualifier = config_obj.getAIONLocationSettings() inlierLabels=config_obj.getEionInliers() scoreParam = config_obj.getScoringCreteria() noofforecasts = config_obj.getNumberofForecasts() datetimeFeature,indexFeature,modelFeatures=config_obj.getFeatures() filter_expression = config_obj.getFilterExpression() refined_filter_expression = "" sa_images = [] model_tried = '' deploy_config = {} iterName = iterName.replace(" ", "_") deployFolder = deployLocation usecaseLocation,deployLocation,dataFolderLocation,imageFolderLocation,original_data_file,profiled_data_file,trained_data_file,predicted_data_file,logFileName,outputjsonFile,reduction_data_file = config_obj.createDeploymentFolders(deployFolder,iterName,iterVersion) outputLocation=deployLocation mlflowSetPath(deployLocation,iterName+'_'+iterVersion) # mlflowSetPath shut down the logger, so set again set_log_handler( config_obj.basic, mode='a') xtrain=pd.DataFrame() xtest=pd.DataFrame() log.info('Status:-|... AION Training Configuration started') startTime = timeit.default_timer() try: output = {'bestModel': '', 'bestScore': 0, 'bestParams': {}} problem_type,targetFeature,profiler_status,selector_status,learner_status,deeplearner_status,timeseriesStatus,textsummarizationStatus,survival_analysis_status,textSimilarityStatus,inputDriftStatus,outputDriftStatus,recommenderStatus,visualizationstatus,deploy_status,associationRuleStatus,imageClassificationStatus,forecastingStatus, objectDetectionStatus,stateTransitionStatus, similarityIdentificationStatus,contextualSearchStatus,anomalyDetectionStatus = config_obj.getModulesDetails() status, error_id, msg = config_obj.validate_config() if not status: if error_id == 'fasttext': raise ValueError(msg) VideoProcessing = False if(problem_type.lower() in ['classification','regression']): if(targetFeature == ''): output = {"status":"FAIL","message":"Target Feature is Must for Classification and Regression Problem Type"} return output from transformations.dataReader import dataReader objData = dataReader() DataIsFolder = False folderdetails = config_obj.getFolderSettings() if os.path.isfile(dataLocation): log.info('Status:-|... AION Loading Data') dataFrame = objData.csvTodf(dataLocation,delimiter,textqualifier) status,msg = save_csv_compressed(dataFrame,original_data_file) if not status: log.info('CSV File Error: '+str(msg)) elif os.path.isdir(dataLocation): if problem_type.lower() == 'summarization': from document_summarizer import summarize keywords, pretrained_type, embedding_sz = summarize.get_params() dataFrame = summarize.to_dataframe(dataLocation,keywords, deploy_loc, pretrained_type, embedding_sz) problem_type = 'classification' targetFeature = 'label' scoreParam = 'Accuracy' elif folderdetails['fileType'].lower() == 'document': dataFrame, error = objData.documentsTodf(dataLocation, folderdetails['labelDataFile']) if error: log.info(error) elif folderdetails['fileType'].lower() == 'object': testPercentage = config_obj.getAIONTestTrainPercentage() #Unnati intermediateLocation = os.path.join(deployLocation,'intermediate') os.mkdir(intermediateLocation) AugEnabled,keepAugImages,operations,augConf = config_obj.getEionImageAugmentationConfiguration() dataFrame, n_class = objData.createTFRecord(dataLocation, intermediateLocation, folderdetails['labelDataFile'], testPercentage,AugEnabled,keepAugImages,operations, "objectdetection",augConf) #Unnati DataIsFolder = True else: datafilelocation = os.path.join(dataLocation,folderdetails['labelDataFile']) dataFrame = objData.csvTodf(datafilelocation,delimiter,textqualifier) DataIsFolder = True if textSimilarityStatus or similarityIdentificationStatus or contextualSearchStatus: similaritydf = dataFrame filter = config_obj.getfilter() if filter != 'NA': dataFrame,rowfilterexpression = objData.rowsfilter(filter,dataFrame) timegrouper = config_obj.gettimegrouper() grouping = config_obj.getgrouper() if grouping != 'NA': dataFrame,grouperbyjson = objData.grouping(grouping,dataFrame) elif timegrouper != 'NA': dataFrame,grouperbyjson = objData.timeGrouping(timegrouper,dataFrame) if timeseriesStatus or anomalyDetectionStatus: from utils.validate_inputs import dataGarbageValue status,msg = dataGarbageValue(dataFrame,datetimeFeature) if status.lower() == 'error': raise ValueError(msg) if not DataIsFolder: if timeseriesStatus: if(modelFeatures != 'NA' and datetimeFeature != ''): if datetimeFeature: if isinstance(datetimeFeature, list): #to handle if time series having multiple time column unpreprocessed_columns = unpreprocessed_columns + datetimeFeature else: unpreprocessed_columns = unpreprocessed_columns + datetimeFeature.split(',') if datetimeFeature not in modelFeatures: modelFeatures = modelFeatures+','+datetimeFeature dataFrame = objData.removeFeatures(dataFrame,'NA',indexFeature,modelFeatures,targetFeature) elif survival_analysis_status or anomalyDetectionStatus: if(modelFeatures != 'NA'): if datetimeFeature != 'NA' and datetimeFeature != '': unpreprocessed_columns = unpreprocessed_columns + datetimeFeature.split(',') if datetimeFeature not in modelFeatures: modelFeatures = modelFeatures+','+datetimeFeature dataFrame = objData.removeFeatures(dataFrame,'NA',indexFeature,modelFeatures,targetFeature) else: dataFrame = objData.removeFeatures(dataFrame,datetimeFeature,indexFeature,modelFeatures,targetFeature) log.info('\\n-------> First Ten Rows of Input Data: ') log.info(dataFrame.head(10)) self.dfrows=dataFrame.shape[0] self.dfcols=dataFrame.shape[1] log.info('\\n-------> Rows: '+str(self.dfrows)) log.info('\\n-------> Columns: '+str(self.dfcols)) topFeatures=[] profilerObj = None normalizer=None dataLoadTime = timeit.default_timer() - startTime log.info('-------> COMPUTING: Total dataLoadTime time(sec) :'+str(dataLoadTime)) if timeseriesStatus: if datetimeFeature != 'NA' and datetimeFeature != '': preproces_config = config_obj.basic.get('preprocessing',{}).get('timeSeriesForecasting',{}) if preproces_config: from transformations.preprocess import timeSeries as ts_preprocess preprocess_obj = ts_preprocess( preproces_config,datetimeFeature, log) dataFrame = preprocess_obj.run( dataFrame) log.info('-------> Input dataFrame(5 Rows) after preprocessing: ') log.info(dataFrame.head(5)) deploy_config['preprocess'] = {} deploy_config['preprocess']['code'] = preprocess_obj.get_code() if profiler_status: log.info('\\n================== Data Profiler has started ==================') log.info('Status:-|... AION feature transformation started') from transformations.dataProfiler import profiler as dataProfiler dp_mlstart = time.time() profilerJson = config_obj.getEionProfilerConfigurarion() log.info('-------> Input dataFrame(5 Rows): ') log.info(dataFrame.head(5)) log.info('-------> DataFrame Shape (Row,Columns): '+str(dataFrame.shape)) testPercentage = config_obj.getAIONTestTrainPercentage() #Unnati if DataIsFolder: if folderdetails['type'].lower() != 'objectdetection': profilerObj = dataProfiler(dataFrame) topFeatures,VideoProcessing,tfrecord_directory = profilerObj.folderPreprocessing(dataLocation,folderdetails,deployLocation) elif textSimilarityStatus: firstDocFeature = config_obj.getFirstDocumentFeature() secondDocFeature = config_obj.getSecondDocumentFeature() profilerObj = dataProfiler(dataFrame,targetFeature, data_path=dataFolderLocation) dataFrame,pipe,targetColumn,topFeatures = profilerObj.textSimilarityStartProfiler(firstDocFeature,secondDocFeature) elif recommenderStatus: profilerObj = dataProfiler(dataFrame) dataFrame = profilerObj.recommenderStartProfiler(modelFeatures) else: if deeplearner_status or learner_status: if (problem_type.lower() != 'clustering') and (problem_type.lower() != 'topicmodelling'): if targetFeature != '': try: biasingDetail = config_obj.getDebiasingDetail() if len(biasingDetail) > 0: if biasingDetail['FeatureName'] != 'None': protected_feature = biasingDetail['FeatureName'] privileged_className = biasingDetail['ClassName'] target_feature = biasingDetail['TargetFeature'] algorithm = biasingDetail['Algorithm'] from debiasing.DebiasingManager import DebiasingManager mgrObj = DebiasingManager() log.info('Status:-|... Debiasing transformation started') transf_dataFrame = mgrObj.Bias_Mitigate(dataFrame, protected_feature, privileged_className, target_feature, algorithm) log.info('Status:-|... Debiasing transformation completed') dataFrame = transf_dataFrame except Exception as e: print(e) pass # ---------------------------------------------- ---------------------------------------------- targetData = dataFrame[targetFeature] featureData = dataFrame[dataFrame.columns.difference([targetFeature])] testPercentage = config_obj.getAIONTestTrainPercentage() #Unnati xtrain,ytrain,xtest,ytest = self.split_into_train_test_data(featureData,targetData,testPercentage,log,problem_type.lower()) xtrain.reset_index(drop=True,inplace=True) ytrain.reset_index(drop=True,inplace=True) xtest.reset_index(drop=True,inplace=True) ytest.reset_index(drop=True,inplace=True) dataFrame = xtrain dataFrame[targetFeature] = ytrain encode_target_problems = ['classification','anomalyDetection', 'timeSeriesAnomalyDetection'] #task 11997 if problem_type == 'survivalAnalysis' and dataFrame[targetFeature].nunique() > 1: encode_target_problems.append('survivalAnalysis') if timeseriesStatus: #task 12627 calling data profiler without target feature specified separately (i.e) profiling is done for model features along with target features profilerObj = dataProfiler(dataFrame, config=profilerJson, keep_unprocessed = unpreprocessed_columns.copy(), data_path=dataFolderLocation) else: profilerObj = dataProfiler(dataFrame, target=targetFeature, encode_target= problem_type in encode_target_problems, config=profilerJson, keep_unprocessed = unpreprocessed_columns.copy(), data_path=dataFolderLocation) #task 12627 dataFrame
, preprocess_pipe, label_encoder = profilerObj.transform() preprocess_out_columns = dataFrame.columns.tolist() if not timeseriesStatus: #task 12627 preprocess_out_columns goes as output_columns in target folder script/input_profiler.py, It should contain the target feature also as it is what is used for forecasting if targetFeature in preprocess_out_columns: preprocess_out_columns.remove(targetFeature) for x in unpreprocessed_columns: preprocess_out_columns.remove(x) if label_encoder: joblib.dump(label_encoder, Path(deployLocation)/'model'/'label_encoder.pkl') labelMaps = dict(zip(label_encoder.classes_, label_encoder.transform(label_encoder.classes_))) codeConfigure.update_config('train_features',list(profilerObj.train_features_type.keys())) codeConfigure.update_config('text_features',profilerObj.text_feature) self.textFeatures = profilerObj.text_feature deploy_config['profiler'] = {} deploy_config['profiler']['input_features'] = list(profilerObj.train_features_type.keys()) deploy_config['profiler']['output_features'] = preprocess_out_columns deploy_config['profiler']['input_features_type'] = profilerObj.train_features_type deploy_config['profiler']['word2num_features'] = profilerObj.wordToNumericFeatures deploy_config['profiler']['unpreprocessed_columns'] = unpreprocessed_columns deploy_config['profiler']['force_numeric_conv'] = profilerObj.force_numeric_conv if self.textFeatures: deploy_config['profiler']['conversion_method'] = config_obj.get_conversion_method() if anomalyDetectionStatus and datetimeFeature != 'NA' and datetimeFeature != '': if unpreprocessed_columns: dataFrame.set_index( unpreprocessed_columns[0], inplace=True) log.info('-------> Data Frame Post Data Profiling(5 Rows): ') log.info(dataFrame.head(5)) if not xtest.empty: if targetFeature != '': non_null_index = ytest.notna() ytest = ytest[non_null_index] xtest = xtest[non_null_index] if profilerObj.force_numeric_conv: xtest[ profilerObj.force_numeric_conv] = xtest[profilerObj.force_numeric_conv].apply(pd.to_numeric,errors='coerce') xtest.astype(profilerObj.train_features_type) if unpreprocessed_columns: xtest_unprocessed = xtest[unpreprocessed_columns] xtest = preprocess_pipe.transform(xtest) if not isinstance(xtest, np.ndarray): xtest = xtest.toarray() xtest = pd.DataFrame(xtest, columns=preprocess_out_columns) if unpreprocessed_columns: xtest[unpreprocessed_columns] = xtest_unprocessed if survival_analysis_status: xtest.astype({x:'float' for x in unpreprocessed_columns}) xtrain.astype({x:'float' for x in unpreprocessed_columns}) #task 11997 removed setting datetime column as index of dataframe code as it is already done before if label_encoder: ytest = label_encoder.transform(ytest) if preprocess_pipe: if self.textFeatures: from text.textProfiler import reset_pretrained_model reset_pretrained_model(preprocess_pipe) # pickle is not possible for fasttext model ( binary) joblib.dump(preprocess_pipe, Path(deployLocation)/'model'/'preprocess_pipe.pkl') self.features=topFeatures if targetColumn in topFeatures: topFeatures.remove(targetColumn) self.topFeatures=topFeatures if normalizer != None: normalizer_file_path = os.path.join(deployLocation,'model','normalizer_pipe.sav') normalizer_pickle_file = 'normalizer_pipe.sav' pickle.dump(normalizer, open(normalizer_file_path,'wb')) log.info('Status:-|... AION feature transformation completed') dp_mlexecutionTime=time.time() - dp_mlstart log.info('-------> COMPUTING: Total Data Profiling Execution Time '+str(dp_mlexecutionTime)) log.info('================== Data Profiling completed ==================\\n') else: datacolumns=list(dataFrame.columns) if targetFeature in datacolumns: datacolumns.remove(targetFeature) if not timeseriesStatus and not anomalyDetectionStatus and not inputDriftStatus and not outputDriftStatus and not imageClassificationStatus and not associationRuleStatus and not objectDetectionStatus and not stateTransitionStatus and not textsummarizationStatus: self.textFeatures,self.vectorizerFeatures,pipe,column_merge_flag,merge_columns = profilerObj.checkForTextClassification(dataFrame) self.topFeatures =datacolumns if(pipe is not None): preprocessing_pipe = 'pppipe'+iterName+'_'+iterVersion+'.sav' ppfilename = os.path.join(deployLocation,'model','pppipe'+iterName+'_'+iterVersion+'.sav') pickle.dump(pipe, open(ppfilename, 'wb')) status, msg = save_csv_compressed(dataFrame,profiled_data_file) if not status: log.info('CSV File Error: ' + str(msg)) if selector_status: log.info("\\n================== Feature Selector has started ==================") log.info("Status:-|... AION feature engineering started") fs_mlstart = time.time() selectorJson = config_obj.getEionSelectorConfiguration() if self.textFeatures: config_obj.updateFeatureSelection(selectorJson, codeConfigure, self.textFeatures) log.info("-------> For vectorizer 'feature selection' is disabled and all the features will be used for training") from feature_engineering.featureSelector import featureSelector selectorObj = featureSelector() dataFrame,targetColumn,self.topFeatures,self.modelSelTopFeatures,self.allFeatures,self.targetType,self.similarGroups,numericContinuousFeatures,discreteFeatures,nonNumericFeatures,categoricalFeatures,pcaModel,bpca_features,apca_features,featureEngineeringSelector = selectorObj.startSelector(dataFrame, selectorJson,self.textFeatures,targetFeature,problem_type) if(str(pcaModel) != 'None'): featureReduction = 'True' status, msg = save_csv(dataFrame,reduction_data_file) if not status: log.info('CSV File Error: ' + str(msg)) pcaFileName = os.path.join(deployLocation,'model','pca'+iterName+'_'+iterVersion+'.sav') pcaModel_pickle_file = 'pca'+iterName+'_'+iterVersion+'.sav' pickle.dump(pcaModel, open(pcaFileName, 'wb')) if not xtest.empty: xtest = pd.DataFrame(pcaModel.transform(xtest),columns= apca_features) if targetColumn in self.topFeatures: self.topFeatures.remove(targetColumn) fs_mlexecutionTime=time.time() - fs_mlstart log.info('-------> COMPUTING: Total Feature Selection Execution Time '+str(fs_mlexecutionTime)) log.info('================== Feature Selection completed ==================\\n') log.info("Status:-|... AION feature engineering completed") if deeplearner_status or learner_status: log.info('Status:-|... AION training started') ldp_mlstart = time.time() balancingMethod = config_obj.getAIONDataBalancingMethod() from learner.machinelearning import machinelearning mlobj = machinelearning() modelType = problem_type.lower() targetColumn = targetFeature if modelType == "na": if self.targetType == 'categorical': modelType = 'classification' elif self.targetType == 'continuous': modelType = 'regression' else: modelType='clustering' datacolumns=list(dataFrame.columns) if targetColumn in datacolumns: datacolumns.remove(targetColumn) features =datacolumns featureData = dataFrame[features] if(modelType == 'clustering') or (modelType == 'topicmodelling'): xtrain = featureData ytrain = pd.DataFrame() xtest = featureData ytest = pd.DataFrame() elif (targetColumn!=''): xtrain = dataFrame[features] ytrain = dataFrame[targetColumn] else: pass categoryCountList = [] if modelType == 'classification': if(mlobj.checkForClassBalancing(ytrain) >= 1): xtrain,ytrain = mlobj.ExecuteClassBalancing(xtrain,ytrain,balancingMethod) valueCount=targetData.value_counts() categoryCountList=valueCount.tolist() ldp_mlexecutionTime=time.time() - ldp_mlstart log.info('-------> COMPUTING: Total Learner data preparation Execution Time '+str(ldp_mlexecutionTime)) if learner_status: base_model_score=0 log.info('\\n================== ML Started ==================') log.info('-------> Memory Usage by DataFrame During Learner Status '+str(dataFrame.memory_usage(deep=True).sum())) mlstart = time.time() log.info('-------> Target Problem Type:'+ self.targetType) learner_type = 'ML' learnerJson = config_obj.getEionLearnerConfiguration() from learner.machinelearning import machinelearning mlobj = machinelearning() anomalyDetectionStatus = False anomalyMethod =config_obj.getEionanomalyModels() if modelType.lower() == "anomalydetection" or modelType.lower() == "timeseriesanomalydetection": #task 11997 anomalyDetectionStatus = True if anomalyDetectionStatus == True : datacolumns=list(dataFrame.columns) if targetColumn in datacolumns: datacolumns.remove(targetColumn) if datetimeFeature in datacolumns: datacolumns.remove(datetimeFeature) self.features = datacolumns from learner.anomalyDetector import anomalyDetector anomalyDetectorObj=anomalyDetector() model_type ="anomaly_detection" saved_model = model_type+'_'+iterName+'_'+iterVersion+'.sav' if problem_type.lower() == "timeseriesanomalydetection": #task 11997 anomalyconfig = config_obj.getAIONTSAnomalyDetectionConfiguration() modelType = "TimeSeriesAnomalyDetection" else: anomalyconfig = config_obj.getAIONAnomalyDetectionConfiguration() testPercentage = config_obj.getAIONTestTrainPercentage() ##Multivariate feature based anomaly detection status from gui (true/false) mv_featurebased_selection = config_obj.getMVFeaturebasedAD() mv_featurebased_ad_status=str(mv_featurebased_selection['uniVariate']) model,estimator,matrix,trainmatrix,score,labelMaps=anomalyDetectorObj.startanomalydetector(dataFrame,targetColumn,labelMaps,inlierLabels,learnerJson,model_type,saved_model,anomalyMethod,deployLocation,predicted_data_file,testPercentage,anomalyconfig,datetimeFeature,mv_featurebased_ad_status) #Unnati score = 'NA' if(self.matrix != '{'): self.matrix += ',' self.matrix += matrix if(self.trainmatrix != '{'): self.trainmatrix += ',' self.trainmatrix += trainmatrix scoreParam = 'NA' scoredetails = f'{{"Model":"{model}","Score":"{score}"}}' if model_tried != '': model_tried += ',' model_tried += scoredetails model = anomalyMethod else: log.info('-------> Target Problem Type:'+ self.targetType) log.info('-------> Target Model Type:'+ modelType) if(modelType == 'regression'): allowedmatrix = ['mse','r2','rmse','mae'] if(scoreParam.lower() not in allowedmatrix): scoreParam = 'mse' if(modelType == 'classification'): allowedmatrix = ['accuracy','recall','f1_score','precision','roc_auc'] if(scoreParam.lower() not in allowedmatrix): scoreParam = 'accuracy' scoreParam = scoreParam.lower() codeConfigure.update_config('scoring_criteria',scoreParam) modelParams,modelList = config_obj.getEionLearnerModelParams(modelType) status,model_type,model,saved_model,matrix,trainmatrix,featureDataShape,model_tried,score,filename,self.features,threshold,pscore,rscore,self.method,loaded_model,xtrain1,ytrain1,xtest1,ytest1,topics,params=mlobj.startLearning(learnerJson,modelType,modelParams,modelList,scoreParam,targetColumn,dataFrame,xtrain,ytrain,xtest,ytest,categoryCountList,self.topFeatures,self.modelSelTopFeatures,self.allFeatures,self.targetType,deployLocation,iterName,iterVersion,trained_data_file,predicted_data_file,labelMaps,'MB',codeConfigure,featureEngineeringSelector,config_obj.getModelEvaluationConfig(),imageFolderLocation) #Getting model,data for ensemble calculation e_model=loaded_model base_model_score=score if(self.matrix != '{'): self.matrix += ',' if(self.trainmatrix != '{'): self.trainmatrix += ',' self.trainmatrix += trainmatrix self.matrix += matrix mlexecutionTime=time.time() - mlstart log.info('-------> Total ML Execution Time '+str(mlexecutionTime)) log.info('================== ML Completed ==================\\n') if deeplearner_status: learner_type = 'DL' log.info('Status:- |... AION DL training started') from dlearning.deeplearning import deeplearning dlobj = deeplearning() from learner.machinelearning import machinelearning mlobj = machinelearning() log.info('\\n================== DL Started ==================') dlstart
= time.time() deeplearnerJson = config_obj.getEionDeepLearnerConfiguration() targetColumn = targetFeature method = deeplearnerJson['optimizationMethod'] optimizationHyperParameter = deeplearn
_inv[:, targetColIndx] predout = predout.reshape(len(pred_1d),1) #y_future.append(predout) col = targetFeature.split(",") pred = pd.DataFrame(index=range(0,len(predout)),columns=col) for i in range(0, len(predout)): pred.iloc[i] = predout[i] predictions = pred log.info("-------> Predictions") log.info(predictions) forecast_output = predictions.to_json(orient='records') elif (model.lower() == 'mlp' or model.lower() == 'lstm'): sfeatures.remove(datetimeFeature) self.features = sfeatures if len(sfeatures) == 1: xt = xtrain[self.features].values else: xt = xtrain[self.features].values with open(scalertransformationFile, 'rb') as f: loaded_scaler_model = pickle.load(f) f.close() xt = xt.astype('float32') xt = loaded_scaler_model.transform(xt) pred_data = xt y_future = [] for i in range(no_of_prediction): pdata = pred_data[-lag_order:] if model.lower() == 'mlp': pdata = pdata.reshape((1,lag_order)) else: pdata = pdata.reshape((1,lag_order, len(sfeatures))) if (len(sfeatures) > 1): pred = loaded_model.predict(pdata) predout = loaded_scaler_model.inverse_transform(pred) y_future.append(predout) pred_data=np.append(pred_data,pred,axis=0) else: pred = loaded_model.predict(pdata) predout = loaded_scaler_model.inverse_transform(pred) y_future.append(predout.flatten()[-1]) pred_data = np.append(pred_data,pred) col = targetFeature.split(",") pred = pd.DataFrame(index=range(0,len(y_future)),columns=col) for i in range(0, len(y_future)): pred.iloc[i] = y_future[i] predictions = pred log.info("-------> Predictions") log.info(predictions) forecast_output = predictions.to_json(orient='records') else: pass log.info('Status:-|... AION TimeSeries Forecasting completed') #task 11997 log.info("------ Forecast Prediction End -------------\\n") log.info('================ Time Series Forecasting Completed ================\\n') #task 11997 if recommenderStatus: log.info('\\n================ Recommender Started ================ ') log.info('Status:-|... AION Recommender started') learner_type = 'RecommenderSystem' model_type = 'RecommenderSystem' modelType = model_type model = model_type targetColumn='' datacolumns=list(dataFrame.columns) self.features=datacolumns svd_params = config_obj.getEionRecommenderConfiguration() from recommender.item_rating import recommendersystem recommendersystemObj = recommendersystem(modelFeatures,svd_params) testPercentage = config_obj.getAIONTestTrainPercentage() #Unnati saved_model,rmatrix,score,trainingperformancematrix,model_tried = recommendersystemObj.recommender_model(dataFrame,outputLocation) scoreParam = 'NA' #Task 11190 log.info('Status:-|... AION Recommender completed') log.info('================ Recommender Completed ================\\n') if textsummarizationStatus: log.info('\\n================ text Summarization Started ================ ') log.info('Status:-|... AION text Summarization started') modelType = 'textsummarization' model_type = 'textsummarization' learner_type = 'Text Summarization' modelName='TextSummarization' from sklearn.preprocessing import LabelEncoder from sklearn.ensemble import RandomForestClassifier from scipy import spatial model = model_type dataLocationTS,deployLocationTS,KeyWordsTS,pathForKeywordFileTS = config_obj.getEionTextSummarizationConfig() #print("dataLocationTS",dataLocationTS) #print("deployLocationTS",deployLocationTS) #print("KeyWordsTS",KeyWordsTS) #print("pathForKeywordFileTS",pathForKeywordFileTS) #PreTrained Model Download starts------------------------- from appbe.dataPath import DATA_DIR preTrainedModellocation = Path(DATA_DIR)/'PreTrainedModels'/'TextSummarization' preTrainedModellocation = Path(DATA_DIR)/'PreTrainedModels'/'TextSummarization' models = {'glove':{50:'glove.6B.50d.w2vformat.txt'}} supported_models = [x for y in models.values() for x in y.values()] modelsPath = Path(DATA_DIR)/'PreTrainedModels'/'TextSummarization' Path(modelsPath).mkdir(parents=True, exist_ok=True) p = Path(modelsPath).glob('**/*') modelsDownloaded = [x.name for x in p if x.name in supported_models] selected_model="glove.6B.50d.w2vformat.txt" if selected_model not in modelsDownloaded: print("Model not in folder, downloading") import urllib.request location = Path(modelsPath) local_file_path = location/f"glove.6B.50d.w2vformat.txt" urllib.request.urlretrieve(f'https://aion-pretrained-models.s3.ap-south-1.amazonaws.com/text/glove.6B.50d.w2vformat.txt', local_file_path) from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6") model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6") tokenizer.save_pretrained(preTrainedModellocation) model.save_pretrained(preTrainedModellocation) #PreTrained Model Download ends----------------------- deployLocationData=deployLocation+"\\\\data\\\\" modelLocation=Path(DATA_DIR)/'PreTrainedModels'/'TextSummarization'/'glove.6B.50d.w2vformat.txt' KeyWordsTS=KeyWordsTS.replace(",", " ") noOfKeyword = len(KeyWordsTS.split()) keywords = KeyWordsTS.split() embeddings = {} word = '' with open(modelLocation, 'r', encoding="utf8") as f: header = f.readline() header = header.split(' ') vocab_size = int(header[0]) embed_size = int(header[1]) for i in range(vocab_size): data = f.readline().strip().split(' ') word = data[0] embeddings[word] = [float(x) for x in data[1:]] readData=pd.read_csv(pathForKeywordFileTS,encoding='utf-8',encoding_errors= 'replace') for i in range(noOfKeyword): terms=(sorted(embeddings.keys(), key=lambda word: spatial.distance.euclidean(embeddings[word], embeddings[keywords[i]])) )[1:6] readData = readData.append({'Keyword': keywords[i]}, ignore_index=True) for j in range(len(terms)): readData = readData.append({'Keyword': terms[j]}, ignore_index=True) deployLocationDataKwDbFile=deployLocationData+"keywordDataBase.csv" readData.to_csv(deployLocationDataKwDbFile,encoding='utf-8',index=False) datalocation_path=dataLocationTS path=Path(datalocation_path) fileList=os.listdir(path) textExtraction = pd.DataFrame() textExtraction['Sentences']="" rowIndex=0 for i in range(len(fileList)): fileName=str(datalocation_path)+"\\\\"+str(fileList[i]) if fileName.endswith(".pdf"): print("\\n files ",fileList[i]) from pypdf import PdfReader reader = PdfReader(fileName) number_of_pages = len(reader.pages) text="" textOutputForFile="" OrgTextOutputForFile="" for i in range(number_of_pages) : page = reader.pages[i] text1 = page.extract_text() text=text+text1 import nltk tokens = nltk.sent_tokenize(text) for sentence in tokens: sentence=sentence.replace("\\n", " ") if (len(sentence.split()) < 4 ) or (len(str(sentence.split(',')).split()) < 8)or (any(chr.isdigit() for chr in sentence)) : continue textExtraction.at[rowIndex,'Sentences']=str(sentence.strip()) rowIndex=rowIndex+1 if fileName.endswith(".txt"): print("\\n txt files",fileList[i]) data=[] with open(fileName, "r",encoding="utf-8") as f: data.append(f.read()) str1 = "" for ele in data: str1 += ele sentences=str1.split(".") count=0 for sentence in sentences: count += 1 textExtraction.at[rowIndex+i,'Sentences']=str(sentence.strip()) rowIndex=rowIndex+1 df=textExtraction #print("textExtraction",textExtraction) deployLocationDataPreProcessData=deployLocationData+"preprocesseddata.csv" save_csv_compressed(deployLocationDataPreProcessData, df, encoding='utf-8') df['Label']=0 kw=pd.read_csv(deployLocationDataKwDbFile,encoding='utf-8',encoding_errors= 'replace') Keyword_list = kw['Keyword'].tolist() for i in df.index: for x in Keyword_list: if (str(df["Sentences"][i])).find(x) != -1: df['Label'][i]=1 break deployLocationDataPostProcessData=deployLocationData+"postprocesseddata.csv" #df.to_csv(deployLocationDataPostProcessData,encoding='utf-8') save_csv_compressed(deployLocationDataPostProcessData, df, encoding='utf-8') labelledData=df train_df=labelledData labelencoder = LabelEncoder() train_df['Sentences'] = labelencoder.fit_transform(train_df['Sentences']) X = train_df.drop('Label',axis=1) y = train_df['Label'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) Classifier = RandomForestClassifier(n_estimators = 10, random_state = 42) modelTs=Classifier.fit(X, y) import pickle deployLocationTS=deployLocation+"\\\\model\\\\"+iterName+'_'+iterVersion+'.sav' deployLocationTS2=deployLocation+"\\\\model\\\\"+"classificationModel.sav" pickle.dump(modelTs, open(deployLocationTS, 'wb')) pickle.dump(modelTs, open(deployLocationTS2, 'wb')) print("\\n trainModel Ends") saved_model = 'textsummarization_'+iterName+'_'+iterVersion log.info('Status:-|... AION text summarization completed') model = learner_type log.info('================ text summarization Completed ================\\n') if survival_analysis_status: sa_method = config_obj.getEionanomalyModels() labeldict = {} log.info('\\n================ SurvivalAnalysis Started ================ ') log.info('Status:-|... AION SurvivalAnalysis started') log.info('\\n================ SurvivalAnalysis DataFrame ================ ') log.info(dataFrame) from survival import survival_analysis from learner.machinelearning import machinelearning sa_obj = survival_analysis.SurvivalAnalysis(dataFrame, preprocess_pipe, sa_method, targetFeature, datetimeFeature, filter_expression, profilerObj.train_features_type) if sa_obj != None: predict_json = sa_obj.learn() if sa_method.lower() in ['kaplanmeierfitter','kaplanmeier','kaplan-meier','kaplan meier','kaplan','km','kmf']: predicted = sa_obj.models[0].predict(dataFrame[datetimeFeature]) status, msg = save_csv(predicted,predicted_data_file) if not status: log.info('CSV File Error: ' + str(msg)) self.features = [datetimeFeature] elif sa_method.lower() in ['coxphfitter','coxregression','cox-regression','cox regression','coxproportionalhazard','coxph','cox','cph']: predicted = sa_obj.models[0].predict_cumulative_hazard(dataFrame) datacolumns = list(dataFrame.columns) targetColumn = targetFeature if targetColumn in datacolumns: datacolumns.remove(targetColumn) self.features = datacolumns score = sa_obj.score scoreParam = 'Concordance_Index' status,msg = save_csv(predicted,predicted_data_file) if not status: log.info('CSV File Error: ' + str(msg)) model = sa_method modelType = "SurvivalAnalysis" model_type = "SurvivalAnalysis" modelName = sa_method i = 1 for mdl in sa_obj.models: saved_model = "%s_%s_%s_%d.sav"%(model_type,sa_method,iterVersion,i) pickle.dump(mdl, open(os.path.join(deployLocation,'model',saved_model), 'wb')), i+=1 p = 1 for plot in sa_obj.plots: img_name = "%s_%d.png"%(sa_method,p) img_location = os.path.join(imageFolderLocation,img_name
) plot.savefig(img_location,bbox_inches='tight') sa_images.append(img_location) p+=1 log.info('Status:-|... AION SurvivalAnalysis completed') log.info('\\n================ SurvivalAnalysis Completed ================ ') if visualizationstatus: visualizationJson = config_obj.getEionVisualizationConfiguration() log.info('\\n================== Visualization Recommendation Started ==================') visualizer_mlstart = time.time() from visualization.visualization import Visualization visualizationObj = Visualization(iterName,iterVersion,dataFrame,visualizationJson,datetimeFeature,deployLocation,dataFolderLocation,numericContinuousFeatures,discreteFeatures,categoricalFeatures,self.features,targetFeature,model_type,original_data_file,profiled_data_file,trained_data_file,predicted_data_file,labelMaps,self.vectorizerFeatures,self.textFeatures,self.numericalFeatures,self.nonNumericFeatures,self.emptyFeatures,self.dfrows,self.dfcols,saved_model,scoreParam,learner_type,model,featureReduction,reduction_data_file) visualizationObj.visualizationrecommandsystem() visualizer_mlexecutionTime=time.time() - visualizer_mlstart log.info('-------> COMPUTING: Total Visualizer Execution Time '+str(visualizer_mlexecutionTime)) log.info('================== Visualization Recommendation Started ==================\\n') if similarityIdentificationStatus or contextualSearchStatus: datacolumns=list(dataFrame.columns) features = modelFeatures.split(",") if indexFeature != '' and indexFeature != 'NA': iFeature = indexFeature.split(",") for ifea in iFeature: if ifea not in features: features.append(ifea) for x in features: dataFrame[x] = similaritydf[x] #get vectordb(chromadb) status selected if similarityIdentificationStatus: learner_type = 'similarityIdentification' else: learner_type = 'contextualSearch' vecDBCosSearchStatus = config_obj.getVectorDBCosSearchStatus(learner_type) if vecDBCosSearchStatus: status, msg = save_chromadb(dataFrame, config_obj, trained_data_file, modelFeatures) if not status: log.info('Vector DB File Error: '+str(msg)) else: status, msg = save_csv(dataFrame,trained_data_file) if not status: log.info('CSV File Error: '+str(msg)) self.features = datacolumns model_type = config_obj.getAlgoName(problem_type) model = model_type #bug 12833 model_tried = '{"Model":"'+model_type+'","FeatureEngineering":"NA","Score":"NA","ModelUncertainty":"NA"}' modelType = learner_type saved_model = learner_type score = 'NA' if deploy_status: if str(model) != 'None': log.info('\\n================== Deployment Started ==================') log.info('Status:-|... AION Creating Prediction Service Start') deployer_mlstart = time.time() deployJson = config_obj.getEionDeployerConfiguration() deploy_name = iterName+'_'+iterVersion from prediction_package.model_deploy import DeploymentManager if textsummarizationStatus : deploy = DeploymentManager() deploy.deployTSum(deployLocation,preTrainedModellocation) codeConfigure.save_config(deployLocation) deployer_mlexecutionTime=time.time() - deployer_mlstart log.info('-------> COMPUTING: Total Deployer Execution Time '+str(deployer_mlexecutionTime)) log.info('Status:-|... AION Deployer completed') log.info('================== Deployment Completed ==================') else: deploy = DeploymentManager() deploy.deploy_model(deploy_name,deployJson,learner_type,model_type,model,scoreParam,saved_model,deployLocation,self.features,self.profilerAction,dataLocation,labelMaps,column_merge_flag,self.textFeatures,self.numericalFeatures,self.nonNumericFeatures,preprocessing_pipe,numericToLabel_json,threshold,loss_matrix,optimizer,firstDocFeature,secondDocFeature,padding_length,trained_data_file,dictDiffCount,targetFeature,normalizer_pickle_file,normFeatures,pcaModel_pickle_file,bpca_features,apca_features,self.method,deployFolder,iterName,iterVersion,self.wordToNumericFeatures,imageconfig,sessonal_freq,additional_regressors,grouperbyjson,rowfilterexpression,xtrain,profiled_data_file,conversion_method,modelFeatures,indexFeature,lag_order,scalertransformationFile,noofforecasts,preprocess_pipe,preprocess_out_columns, label_encoder,datetimeFeature,usecaseLocation,deploy_config) codeConfigure.update_config('deploy_path',os.path.join(deployLocation,'publish')) codeConfigure.save_config(deployLocation) deployer_mlexecutionTime=time.time() - deployer_mlstart log.info('-------> COMPUTING: Total Deployer Execution Time '+str(deployer_mlexecutionTime)) log.info('Status:-|... AION Creating Prediction Service completed') log.info('================== Deployment Completed ==================') if not outputDriftStatus and not inputDriftStatus: from transformations.dataProfiler import set_features self.features = set_features(self.features,profilerObj) self.matrix += '}' self.trainmatrix += '}' print(model_tried) model_tried = eval('['+model_tried+']') matrix = eval(self.matrix) trainmatrix = eval(self.trainmatrix) deployPath = deployLocation.replace(os.sep, '/') if survival_analysis_status: output_json = {"status":"SUCCESS","data":{"ModelType":modelType,"deployLocation":deployPath,"BestModel":model,"BestScore":str(score),"ScoreType":str(scoreParam).upper(),"matrix":matrix,"survivalProbability":json.loads(predict_json),"featuresused":str(self.features),"targetFeature":str(targetColumn),"EvaluatedModels":model_tried,"imageLocation":str(sa_images),"LogFile":logFileName}} elif not timeseriesStatus: try: json.dumps(params) output_json = {"status":"SUCCESS","data":{"ModelType":modelType,"deployLocation":deployPath,"BestModel":model,"BestScore":str(score),"ScoreType":str(scoreParam).upper(),"matrix":matrix,"trainmatrix":trainmatrix,"featuresused":str(self.features),"targetFeature":str(targetColumn),"params":params,"EvaluatedModels":model_tried,"LogFile":logFileName}} except: output_json = {"status":"SUCCESS","data":{"ModelType":modelType,"deployLocation":deployPath,"BestModel":model,"BestScore":str(score),"ScoreType":str(scoreParam).upper(),"matrix":matrix,"trainmatrix":trainmatrix,"featuresused":str(self.features),"targetFeature":str(targetColumn),"params":"","EvaluatedModels":model_tried,"LogFile":logFileName}} else: if config_obj.summarize: modelType = 'Summarization' output_json = {"status":"SUCCESS","data":{"ModelType":modelType,"deployLocation":deployPath,"BestModel":model,"BestScore":str(score),"ScoreType":str(scoreParam).upper(),"matrix":matrix,"featuresused":str(self.features),"targetFeature":str(targetColumn),"EvaluatedModels":model_tried,'forecasts':json.loads(forecast_output),"LogFile":logFileName}} if bool(topics) == True: output_json['topics'] = topics with open(outputjsonFile, 'w',encoding='utf-8') as f: json.dump(output_json, f) f.close() output_json = json.dumps(output_json) log.info('\\n------------- Summary ------------') log.info('------->No of rows & columns in data:('+str(self.dfrows)+','+str(self.dfcols)+')') log.info('------->No of missing Features :'+str(len(self.mFeatures))) log.info('------->Missing Features:'+str(self.mFeatures)) log.info('------->Text Features:'+str(self.textFeatures)) log.info('------->No of Nonnumeric Features :'+str(len(self.nonNumericFeatures))) log.info('------->Non-Numeric Features :' +str(self.nonNumericFeatures)) if threshold == -1: log.info('------->Threshold: NA') else: log.info('------->Threshold: '+str(threshold)) log.info('------->Label Maps of Target Feature for classification :'+str(labelMaps)) for i in range(0,len(self.similarGroups)): log.info('------->Similar Groups '+str(i+1)+' '+str(self.similarGroups[i])) if((learner_type != 'TS') & (learner_type != 'AR')): log.info('------->No of columns and rows used for Modeling :'+str(featureDataShape)) log.info('------->Features Used for Modeling:'+str(self.features)) log.info('------->Target Feature: '+str(targetColumn)) log.info('------->Best Model Score :'+str(score)) log.info('------->Best Parameters:'+str(params)) log.info('------->Type of Model :'+str(modelType)) log.info('------->Best Model :'+str(model)) log.info('------------- Summary ------------\\n') log.info('Status:-|... AION Model Training Successfully Done') except Exception as inst: log.info('server code execution failed !....'+str(inst)) log.error(inst, exc_info = True) output_json = {"status":"FAIL","message":str(inst).strip('"'),"LogFile":logFileName} output_json = json.dumps(output_json) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) executionTime = timeit.default_timer() - startTime log.info('\\nTotal execution time(sec) :'+str(executionTime)) log.info('\\n------------- Output JSON ------------') log.info('aion_learner_status:'+str(output_json)) log.info('------------- Output JSON ------------\\n') for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): hdlr.close() log.removeHandler(hdlr) return output_json def split_into_train_test_data(self,featureData,targetData,testPercentage,log,modelType='classification'): #Unnati log.info('\\n-------------- Test Train Split ----------------') if testPercentage == 0 or testPercentage == 100: #Unnati xtrain=featureData ytrain=targetData xtest=pd.DataFrame() ytest=pd.DataFrame() else: testSize= testPercentage/100 #Unnati if modelType == 'regression': log.info('-------> Split Type: Random Split') xtrain,xtest,ytrain,ytest=train_test_split(featureData,targetData,test_size=testSize,shuffle=True,random_state=42) else: try: log.info('-------> Split Type: Stratify Split') xtrain,xtest,ytrain,ytest=train_test_split(featureData,targetData,stratify=targetData,test_size=testSize,random_state=42) except Exception as ValueError: count_unique = targetData.value_counts() feature_with_single_count = count_unique[ count_unique == 1].index.tolist() error = f"The least populated class in {feature_with_single_count} has only 1 member, which is too few. The minimum number of groups for any class cannot be less than 2" raise Exception(error) from ValueError except: log.info('-------> Split Type: Random Split') xtrain,xtest,ytrain,ytest=train_test_split(featureData,targetData,test_size=testSize,shuffle=True,random_state=42) log.info('Status:- !... Train / test split done: '+str(100-testPercentage)+'% train,'+str(testPercentage)+'% test') #Unnati log.info('-------> Train Data Shape: '+str(xtrain.shape)+' ---------->') log.info('-------> Test Data Shape: '+str(xtest.shape)+' ---------->') log.info('-------------- Test Train Split End ----------------\\n') return(xtrain,ytrain,xtest,ytest) def aion_train_model(arg): warnings.filterwarnings('ignore') config_path = Path( arg) with open( config_path, 'r') as f: config = json.load( f) log = set_log_handler(config['basic']) log.info('************* Version - v'+AION_VERSION+' *************** \\n') msg = '-------> Execution Start Time: '+ datetime.datetime.now(timezone("Asia/Kolkata")).strftime('%Y-%m-%d %H:%M:%S' + ' IST') log.info(msg) try: config_validate(arg) valid, msg = pushRecordForTraining() if valid: serverObj = server() configObj = AionConfigManager() codeConfigure = code_configure() codeConfigure.create_config(config) readConfistatus,msg = configObj.readConfigurationFile(config) if(readConfistatus == False): raise ValueError( msg) output = serverObj.startScriptExecution(configObj, codeConfigure, log) else: output = {"status":"LicenseVerificationFailed","message":str(msg).strip('"')} output = json.dumps(output) print( f"\\naion_learner_status:{output}\\n") log.info( f"\\naion_learner_status:{output}\\n") except Exception as inst: output = {"status":"FAIL","message":str(inst).strip('"')} output = json.dumps(output) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) print(f"\\naion_learner_status:{output}\\n") log.info( f"\\naion_learner_
status:{output}\\n") return output if __name__ == "__main__": aion_train_model( sys.argv[1]) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import platform import shutil import subprocess import sys import glob import json def publish(data): if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) model = jsonData['modelName'] version = jsonData['modelVersion'] deployFolder = jsonData['deployLocation'] model = model.replace(" ", "_") deployedPath = os.path.join(deployFolder,model+'_'+version) deployedPath = os.path.join(deployedPath,'WHEELfile') whlfilename='na' if os.path.isdir(deployedPath): for file in os.listdir(deployedPath): if file.endswith(".whl"): whlfilename = os.path.join(deployedPath,file) if whlfilename != 'na': subprocess.check_call([sys.executable, "-m", "pip", "uninstall","-y",model]) subprocess.check_call([sys.executable, "-m", "pip", "install", whlfilename]) status,pid,ip,port = check_service_running(jsonData['modelName'],jsonData['serviceFolder']) if status == 'Running': service_stop(json.dumps(jsonData)) service_start(json.dumps(jsonData)) output_json = {'status':"SUCCESS"} output_json = json.dumps(output_json) else: output_json = {'status':'Error','Msg':'Installation Package not Found'} output_json = json.dumps(output_json) return(output_json) def check_service_running(model,serviceFolder): model = model.replace(" ", "_") filename = model+'_service.py' modelservicefile = os.path.join(serviceFolder,filename) status = 'File Not Exist' ip = '' port = '' pid = '' if os.path.exists(modelservicefile): status = 'File Exist' import psutil for proc in psutil.process_iter(): pinfo = proc.as_dict(attrs=['pid', 'name', 'cmdline','connections']) if 'python' in pinfo['name']: if filename in pinfo['cmdline'][1]: status = 'Running' pid = pinfo['pid'] for x in pinfo['connections']: ip = x.laddr.ip port = x.laddr.port return(status,pid,ip,port) def service_stop(data): if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) status,pid,ip,port = check_service_running(jsonData['modelName'],jsonData['serviceFolder']) if status == 'Running': import psutil p = psutil.Process(int(pid)) p.terminate() time.sleep(2) output_json = {'status':'SUCCESS'} output_json = json.dumps(output_json) return(output_json) def service_start(data): if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) model = jsonData['modelName'] version = jsonData['modelVersion'] ip = jsonData['ip'] port = jsonData['port'] deployFolder = jsonData['deployLocation'] serviceFolder = jsonData['serviceFolder'] model = model.replace(" ", "_") deployLocation = os.path.join(deployFolder,model+'_'+version) org_service_file = os.path.abspath(os.path.join(os.path.dirname(__file__),'model_service.py')) filename = model+'_service.py' modelservicefile = os.path.join(serviceFolder,filename) status = 'File Not Exist' if os.path.exists(modelservicefile): status = 'File Exist' r = ([line.split() for line in subprocess.check_output("tasklist").splitlines()]) for i in range(len(r)): if filename in r[i]: status = 'Running' if status == 'File Not Exist': shutil.copy(org_service_file,modelservicefile) with open(modelservicefile, 'r+') as file: content = file.read() file.seek(0, 0) line = 'from '+model+' import aion_performance' file.write(line+"\\n") line = 'from '+model+' import aion_drift' file.write(line+ "\\n") line = 'from '+model+' import featureslist' file.write(line+ "\\n") line = 'from '+model+' import aion_prediction' file.write(line+ "\\n") file.write(content) file.close() status = 'File Exist' if status == 'File Exist': status,pid,ipold,portold = check_service_running(jsonData['modelName'],jsonData['serviceFolder']) if status != 'Running': command = "python "+modelservicefile+' '+str(port)+' '+str(ip) os.system('start cmd /c "'+command+'"') time.sleep(2) status = 'Running' output_json = {'status':'SUCCESS','Msg':status} output_json = json.dumps(output_json) return(output_json) if __name__ == "__main__": aion_publish(sys.argv[1]) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import logging logging.getLogger('tensorflow').disabled = True #from autogluon.tabular import TabularDataset, TabularPredictor #from autogluon.core.utils.utils import setup_outputdir #from autogluon.core.utils.loaders import load_pkl #from autogluon.core.utils.savers import save_pkl import datetime, time, timeit from datetime import datetime as dt import os.path import json import io import shutil import sys #from Gluon_MultilabelPredictor import MultilabelPredictor class MultilabelPredictor(): """ Tabular Predictor for predicting multiple columns in table. Creates multiple TabularPredictor objects which you can also use individually. You can access the TabularPredictor for a particular label via: `multilabel_predictor.get_predictor(label_i)` Parameters ---------- labels : List[str] The ith element of this list is the column (i.e. `label`) predicted by the ith TabularPredictor stored in this object. path : str Path to directory where models and intermediate outputs should be saved. If unspecified, a time-stamped folder called "AutogluonModels/ag-[TIMESTAMP]" will be created in the working directory to store all models. Note: To call `fit()` twice and save all results of each fit, you must specify different `path` locations or don't specify `path` at all. Otherwise files from first `fit()` will be overwritten by second `fit()`. Caution: when predicting many labels, this directory may grow large as it needs to store many TabularPredictors. problem_types : List[str] The ith element is the `problem_type` for the ith TabularPredictor stored in this object. eval_metrics : List[str] The ith element is the `eval_metric` for the ith TabularPredictor stored in this object. consider_labels_correlation : bool Whether the predictions of multiple labels should account for label correlations or predict each label independently of the others. If True, the ordering of `labels` may affect resulting accuracy as each label is predicted conditional on the previous labels appearing earlier in this list (i.e. in an auto-regressive fashion). Set to False if during inference you may want to individually use just the ith TabularPredictor without predicting all the other labels. kwargs : Arguments passed into the initialization of each TabularPredictor. """ multi_predictor_file = 'multilabel_predictor.pkl' def __init__(self, labels, path, problem_types=None, eval_metrics=None, consider_labels_correlation=True, **kwargs): if len(labels) < 2: raise ValueError("MultilabelPredictor is only intended for predicting MULTIPLE labels (columns), use TabularPredictor for predicting one label (column).") self.path = setup_outputdir(path, warn_if_exist=False) self.labels = labels #print(self.labels) self.consider_labels_correlation = consider_labels_correlation self.predictors = {} # key = label, value = TabularPredictor or str path to the TabularPredictor for this label if eval_metrics is None: self.eval_metrics = {} else: self.eval_metrics = {labels[i] : eval_metrics[i] for i in range(len(labels))} problem_type = None eval_metric = None for i in range(len(labels)): label = labels[i] path_i = self.path + "Predictor_" + label if problem_types is not None: problem_type = problem_types[i] if eval_metrics is not None: eval_metric = self.eval_metrics[i] self.predictors[label] = TabularPredictor(label=label, problem_type=problem_type, eval_metric=eval_metric, path=path_i, **kwargs) def fit(self, train_data, tuning_data=None, **kwargs): """ Fits a separate TabularPredictor to predict each of the labels. Parameters ---------- train_data, tuning_data : str or autogluon.tabular.TabularDataset or pd.DataFrame See documentation for `TabularPredictor.fit()`. kwargs : Arguments passed into the `fit()` call for each TabularPredictor. """ if isinstance(train_data, str): train_data = TabularDataset(train_data) if tuning_data is not None and isinstance(tuning_data, str): tuning_data = TabularDataset(tuning_data) train_data_og = train_data.copy() if tuning_data is not None: tuning_data_og = tuning_data.copy() save_metrics = len(self.eval_metrics) == 0 for i in range(len(self.labels)): label = self.labels[i] predictor = self.get_predictor(label) if not self.consider_labels_correlation: labels_to_drop = [l for l in self.labels if l!=label] else: labels_to_drop = [self.labels[j] for j in range(i+1,len(self.labels))] train_data = train_data_og.drop(labels_to_drop, axis=1) if tuning_data is not None: tuning_data = tuning_data_og.drop(labels_to_drop, axis=1) print(f"Fitting TabularPredictor for label: {label} ...") predictor.fit(train_data=train_data, tuning_data=tuning_data, **kwargs) self.predictors[label] = predictor.path if save_metrics: self.eval_metrics[label] = predictor.eval_metric self.save() def eval_metrics(self): return(self.eval_metrics) def predict(self, data, **kwargs): """ Returns DataFrame with label columns containing predictions for each label. Parameters ---------- data : str or autogluon.tabular.TabularDataset or pd.DataFrame Data to make predictions for. If label columns are present in this data, they will be ignored. See documentation for `TabularPredictor.predict()`. kwargs : Arguments passed into the predict() call for each TabularPredictor. """ return self._predict(data, as_proba=False, **kwargs) def predict_proba(self, data, **kwargs): """ Returns dict where each key is a label and the corresponding value is the `predict_proba()` output for just that label. Parameters ---------- data : str or autogluon.tabular.TabularDataset or pd.DataFrame Data to make predictions for. See documentation for `TabularPredictor.predict()` and `TabularPredictor.predict_proba()`. kwargs : Arguments passed into the `predict_proba()` call for each TabularPredictor (also passed into a `predict()` call). """ return self._predict(data, as_proba=True, **kwargs) def evaluate(self, data, **kwargs): """ Returns dict where each key is a label and the corresponding value is the `evaluate()` output for just that label. Parameters ---------- data : str or autogluon.tabular.TabularDataset or pd.DataFrame Data to evalate predictions of all labels for, must contain all labels as columns. See documentation for `TabularPredictor.evaluate()`. kwargs : Arguments passed into the `evaluate()` call for each TabularPredictor (also passed into the `predict()` call). """ data = self._get_data(data) eval_dict = {} for label in self.labels: print(f"Evaluating TabularPredictor for label: {label} ...") predictor = self.get_predictor(label) eval_dict[label] = predictor.evaluate(data, **kwargs) if self.consider_labels_correlation: data[label] = predictor.predict(data, **kwargs) return eval_dict def save(self): """ Save MultilabelPredictor to disk. """ for label in self.labels: if not isinstance(self.predictors[label], str): self.predictors[label] = self.predictors[label].path save_pkl.save(path=self.path+self.multi_predictor_file, object=self) print(f"MultilabelPredictor saved to disk. Load with: MultilabelPredictor.load('{self.path
}')") @classmethod def load(cls, path): """ Load MultilabelPredictor from disk `path` previously specified when creating this MultilabelPredictor. """ path = os.path.expanduser(path) if path[-1] != os.path.sep: path = path + os.path.sep return load_pkl.load(path=path+cls.multi_predictor_file) def get_predictor(self, label): """ Returns TabularPredictor which is used to predict this label. """ predictor = self.predictors[label] if isinstance(predictor, str): return TabularPredictor.load(path=predictor) return predictor def _get_data(self, data): if isinstance(data, str): return TabularDataset(data) return data.copy() def _predict(self, data, as_proba=False, **kwargs): data = self._get_data(data) if as_proba: predproba_dict = {} for label in self.labels: print(f"Predicting with TabularPredictor for label: {label} ...") predictor = self.get_predictor(label) if as_proba: predproba_dict[label] = predictor.predict_proba(data, as_multiclass=True, **kwargs) data[label] = predictor.predict(data, **kwargs) if not as_proba: return data[self.labels] else: return predproba_dict def aion_train_gluon(arg): configFile = arg with open(configFile, 'rb') as cfile: data = json.load(cfile) cfile.close() rootElement = data['basic'] modelname = rootElement['modelName'] version = rootElement['modelVersion'] dataLocation = rootElement['dataLocation'] deployFolder = rootElement['deployLocation'] analysisType = rootElement['analysisType'] testPercentage = data['advance']['testPercentage'] deployLocation = os.path.join(deployFolder,modelname+'_'+version) try: os.makedirs(deployLocation) except OSError as e: shutil.rmtree(deployLocation) os.makedirs(deployLocation) logLocation = os.path.join(deployLocation,'log') try: os.makedirs(logLocation) except OSError as e: pass etcLocation = os.path.join(deployLocation,'etc') try: os.makedirs(etcLocation) except OSError as e: pass logFileName=os.path.join(deployLocation,'log','model_training_logs.log') filehandler = logging.FileHandler(logFileName, 'w','utf-8') formatter = logging.Formatter('%(message)s') filehandler.setFormatter(formatter) log = logging.getLogger('eion') log.propagate = False for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): log.removeHandler(hdlr) log.addHandler(filehandler) log.setLevel(logging.INFO) log.info('************* Version - v1.2.0 *************** \\n') msg = '-------> Execution Start Time: '+ dt.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S') log.info(msg) dataLabels = rootElement['targetFeature'].split(',') # Create and Write the config file used in Prediction # ----------------------------------------------------------------------------# tdata = TabularDataset(dataLocation) #train_data = tdata train_data = tdata.sample(frac = 0.8) test_data = tdata.drop(train_data.index) if rootElement['trainingFeatures'] != '': trainingFeatures = rootElement['trainingFeatures'].split(',') else: trainingFeatures = list(train_data.columns) features = trainingFeatures for x in dataLabels: if x not in features: features.append(x) indexFeature = rootElement['indexFeature'] if indexFeature != '': indexFeature = indexFeature.split(',') for x in indexFeature: if x in features: features.remove(x) dateTimeFeature = rootElement['dateTimeFeature'] if dateTimeFeature != '': dateTimeFeature = dateTimeFeature.split(',') for x in dateTimeFeature: if x in features: features.remove(x) train_data = train_data[features] test_data = test_data[features] configJsonFile = {"targetFeature":dataLabels,"features":",".join([feature for feature in features])} configJsonFilePath = os.path.join(deployLocation,'etc','predictionConfig.json') if len(dataLabels) == 1 and analysisType['multiLabelPrediction'] == "False": dataLabels = rootElement['targetFeature'] with io.open(configJsonFilePath, 'w', encoding='utf8') as outfile: str_ = json.dumps(configJsonFile, ensure_ascii=False) outfile.write(str_) # ----------------------------------------------------------------------------# if analysisType['multiLabelPrediction'] == "True": # Copy and Write the Predictiion script file into deployment location # ----------------------------------------------------------------------------# srcFile = os.path.join(os.path.dirname(__file__),'gluon','AION_Gluon_MultiLabelPrediction.py') dstFile = os.path.join(deployLocation,'aion_predict.py') shutil.copy(srcFile,dstFile) # ----------------------------------------------------------------------------# labels = dataLabels # which columns to predict based on the others #problem_types = dataProblem_types # type of each prediction problem save_path = os.path.join(deployLocation,'ModelPath') # specifies folder to store trained models time_limit = 5 # how many seconds to train the TabularPredictor for each label log.info('Status:-|... AION Gluon Start') try: if len(labels) < 2: log.info('Status:-|... AION Evaluation Error: Target should be multiple column') # ----------------------------------------------------------------------------# output = {'status':'FAIL','message':'Number of target variable should be 2 or more than 2'} else: multi_predictor = MultilabelPredictor(labels=labels, path=save_path) multi_predictor.fit(train_data, time_limit=time_limit) log.info('Status:-|... AION Gluon Stop') log.info('Status:-|... AION Evaluation Start') trainevaluations = multi_predictor.evaluate(train_data) testevaluations = multi_predictor.evaluate(test_data) best_model = {} for label in labels: predictor_class = multi_predictor.get_predictor(label) predictor_class.get_model_best() best_model[label] = predictor_class.get_model_best() log.info('Status:-|... AION Evaluation Stop') # ----------------------------------------------------------------------------# output = {'status':'SUCCESS','data':{'ModelType':'MultiLabelPrediction','EvaluatedModels':'','featuresused':'','BestModel':'AutoGluon','BestScore': '0', 'ScoreType': 'ACCURACY','deployLocation':deployLocation,'matrix':trainevaluations,'testmatrix':testevaluations,'BestModel':best_model, 'LogFile':logFileName}} except Exception as inst: log.info('Status:-|... AION Gluon Error') output = {"status":"FAIL","message":str(inst).strip('"')} if analysisType['multiModalLearning'] == "True": from autogluon.core.utils.utils import get_cpu_count, get_gpu_count from autogluon.text import TextPredictor # check the system and then set the equivelent flag # ----------------------------------------------------------------------------# os.environ["AUTOGLUON_TEXT_TRAIN_WITHOUT_GPU"] = "0" if get_gpu_count() == 0: os.environ["AUTOGLUON_TEXT_TRAIN_WITHOUT_GPU"] = "1" # ----------------------------------------------------------------------------# # Copy and Write the Predictiion script file into deployment location # ----------------------------------------------------------------------------# srcFile = os.path.join(os.path.dirname(__file__),'gluon','AION_Gluon_MultiModalPrediction.py') dstFile = os.path.join(deployLocation,'aion_predict.py') shutil.copy(srcFile,dstFile) time_limit = None # set to larger value in your applications save_path = os.path.join(deployLocation,'text_prediction') predictor = TextPredictor(label=dataLabels, path=save_path) predictor.fit(train_data, time_limit=time_limit) log.info('Status:-|... AION Gluon Stop') log.info('Status:-|... AION Evaluation Start') trainevaluations = predictor.evaluate(train_data) log.info('Status:-|... AION Evaluation Stop') # ----------------------------------------------------------------------------# output = {'status':'SUCCESS','data':{'ModelType':'MultiModelLearning','EvaluatedModels':'','featuresused':'','BestModel':'AutoGluon','BestScore': '0', 'ScoreType': 'SCORE','deployLocation':deployLocation,'matrix':trainevaluations,'LogFile':logFileName}} output = json.dumps(output) print("\\n") print("aion_learner_status:",output) print("\\n") log.info('\\n------------- Output JSON ------------') log.info('-------> Output :'+str(output)) log.info('------------- Output JSON ------------\\n') for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): hdlr.close() log.removeHandler(hdlr) return(output) if __name__ == "__main__": aion_train_gluon(sys.argv[1])<s> import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__)))) <s> #from BaseHTTPServer import BaseHTTPRequestHandler,HTTPServer from http.server import BaseHTTPRequestHandler,HTTPServer #from SocketServer import ThreadingMixIn from socketserver import ThreadingMixIn from functools import partial from http.server import SimpleHTTPRequestHandler, test import base64 from appbe.dataPath import DEPLOY_LOCATION ''' from augustus.core.ModelLoader import ModelLoader from augustus.strict import modelLoader ''' import pandas as pd import os,sys from os.path import expanduser import platform import numpy as np import configparser import threading import subprocess import argparse from functools import partial import re import cgi from datetime import datetime import json import sys from datetime import datetime user_records = {} class LocalModelData(object): models = {} class HTTPRequestHandler(BaseHTTPRequestHandler): def __init__(self, *args, **kwargs): username = kwargs.pop("username") password = kwargs.pop("password") self._auth = base64.b64encode(f"{username}:{password}".encode()).decode() super().__init__(*args) def do_HEAD(self): self.send_response(200) self.send_header("Content-type", "text/html") self.end_headers() def do_AUTHHEAD(self): self.send_response(401) self.send_header("WWW-Authenticate", 'Basic realm="Test"') self.send_header("Content-type", "text/html") self.end_headers() def do_POST(self): print("PYTHON ######## REQUEST ####### STARTED") if None != re.search('/AION/', self.path): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) if ctype == 'application/json': if self.headers.get("Authorization") == None: self.do_AUTHHEAD() resp = "Authentication Failed: Auth Header Not Present" resp=resp.encode() self.wfile.write(resp) elif self.headers.get("Authorization") == "Basic " + self._auth: length = int(self.headers.get('content-length')) #data = cgi.parse_qs(self.rfile.read(length), keep_blank_values=1) data = self.rfile.read(length) #print(data) #keyList = list(data.keys()) #print(keyList[0]) model = self.path.split('/')[-2] operation = self.path.split('/')[-1] home = expanduser("~") #data = json.loads(data) dataStr = data model_path = os.path.join(DEPLOY_LOCATION,model) isdir = os.path.isdir(model_path) if isdir: if operation.lower() == 'predict': predict_path = os.path.join(model_path,'aion_predict.py') outputStr = subprocess.check_output([sys.executable,predict_path,dataStr]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() resp = outputStr elif operation.lower() == 'spredict': try: predict_path = os.path.join(model_path,'aion_spredict.py') print(predict_path) outputStr = subprocess.check_output([sys.executable,predict_path,dataStr]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() resp = outputStr except Exception as e: print(e) elif operation.lower() == 'features': predict_path = os.path.join(model_path,'featureslist.py') outputStr = subprocess.check_output([sys
.executable,predict_path,dataStr]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() resp = outputStr elif operation.lower() == 'explain': predict_path = os.path.join(model_path,'explainable_ai.py') outputStr = subprocess.check_output([sys.executable,predict_path,'local',dataStr]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'aion_ai_explanation:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() elif operation.lower() == 'monitoring': predict_path = os.path.join(model_path,'aion_ipdrift.py') outputStr = subprocess.check_output([sys.executable,predict_path,dataStr]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'drift:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() elif operation.lower() == 'performance': predict_path = os.path.join(model_path,'aion_opdrift.py') outputStr = subprocess.check_output([sys.executable,predict_path,dataStr]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'drift:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() elif operation.lower() == 'pattern_anomaly_predict': data = json.loads(data) anomaly = False remarks = '' clusterid = -1 configfilename = os.path.join(model_path,'datadetails.json') filename = os.path.join(model_path,'clickstream.json') clusterfilename = os.path.join(model_path,'stateClustering.csv') probfilename = os.path.join(model_path,'stateTransitionProbability.csv') dfclus = pd.read_csv(clusterfilename) dfprod = pd.read_csv(probfilename) f = open(configfilename, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) activity = configSettingsJson['activity'] sessionid = configSettingsJson['sessionid'] f = open(filename, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) groupswitching = configSettingsJson['groupswitching'] page_threshold = configSettingsJson['transitionprobability'] chain_count = configSettingsJson['transitionsequence'] chain_probability = configSettingsJson['sequencethreshold'] currentactivity = data[activity] if bool(user_records): sessionid = data[sessionid] if sessionid != user_records['SessionID']: user_records['SessionID'] = sessionid prevactivity = '' user_records['probarry'] = [] user_records['prevclusterid'] = -1 user_records['NoOfClusterHopping'] = 0 user_records['pageclicks'] = 1 else: prevactivity = user_records['Activity'] user_records['Activity'] = currentactivity pageswitch = True if prevactivity == currentactivity or prevactivity == '': probability = 0 pageswitch = False remarks = '' else: user_records['pageclicks'] += 1 df1 = dfprod[(dfprod['State'] == prevactivity) & (dfprod['NextState'] == currentactivity)] if df1.empty: remarks = 'Anomaly Detected - User in unusual state' anomaly = True clusterid = -1 probability = 0 user_records['probarry'].append(probability) n=int(chain_count) num_list = user_records['probarry'][-n:] avg = sum(num_list)/len(num_list) for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] else: probability = df1['Probability'].iloc[0] user_records['probarry'].append(probability) n=int(chain_count) num_list = user_records['probarry'][-n:] davg = sum(num_list)/len(num_list) for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] remarks = '' if user_records['prevclusterid'] != -1: if probability == 0 and user_records['prevclusterid'] != clusterid: user_records['NoOfClusterHopping'] = user_records['NoOfClusterHopping']+1 if user_records['pageclicks'] == 1: remarks = 'Anomaly Detected - Frequent Cluster Hopping' anomaly = True else: remarks = 'Cluster Hopping Detected' user_records['pageclicks'] = 0 if user_records['NoOfClusterHopping'] > int(groupswitching) and anomaly == False: remarks = 'Anomaly Detected - Multiple Cluster Hopping' anomaly = True elif probability == 0: remarks = 'Anomaly Detected - Unusual State Transition Detected' anomaly = True elif probability <= float(page_threshold): remarks = 'Anomaly Detected - In-frequent State Transition Detected' anomaly = True else: if pageswitch == True: if probability == 0: remarks = 'Anomaly Detected - Unusual State Transition Detected' anomaly = True elif probability <= float(page_threshold): remarks = 'Anomaly Detected - In-frequent State Transition Detected' anomaly = True else: remarks = '' if davg < float(chain_probability): if anomaly == False: remarks = 'Anomaly Detected - In-frequent Pattern Detected' anomaly = True else: user_records['SessionID'] = data[sessionid] user_records['Activity'] = data[activity] user_records['probability'] = 0 user_records['probarry'] = [] user_records['chainprobability'] = 0 user_records['prevclusterid'] = -1 user_records['NoOfClusterHopping'] = 0 user_records['pageclicks'] = 1 for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] user_records['prevclusterid'] = clusterid outputStr = '{"status":"SUCCESS","data":{"Anomaly":"'+str(anomaly)+'","Remarks":"'+str(remarks)+'"}}' elif operation.lower() == 'pattern_anomaly_settings': data = json.loads(data) groupswitching = data['groupswitching'] transitionprobability = data['transitionprobability'] transitionsequence = data['transitionsequence'] sequencethreshold = data['sequencethreshold'] filename = os.path.join(model_path,'clickstream.json') data = {} data['groupswitching'] = groupswitching data['transitionprobability'] = transitionprobability data['transitionsequence'] = transitionsequence data['sequencethreshold'] = sequencethreshold updatedConfig = json.dumps(data) with open(filename, "w") as fpWrite: fpWrite.write(updatedConfig) fpWrite.close() outputStr = '{"Status":"SUCCESS"}' else: outputStr = "{'Status':'Error','Msg':'Operation not supported'}" else: outputStr = "{'Status':'Error','Msg':'Model Not Present'}" resp = outputStr resp=resp+"\\n" resp=resp.encode() self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() self.wfile.write(resp) else: self.do_AUTHHEAD() self.wfile.write(self.headers.get("Authorization").encode()) resp = "Authentication Failed" resp=resp.encode() self.wfile.write(resp) else: print("python ==> else1") self.send_response(403) self.send_header('Content-Type', 'application/json') self.end_headers() print("PYTHON ######## REQUEST ####### ENDED") return def getModelFeatures(self,modelSignature): datajson = {'Body':'Gives the list of features'} home = expanduser("~") if platform.system() == 'Windows': predict_path = os.path.join(home,'AppData','Local','HCLT','AION','target',modelSignature,'featureslist.py') else: predict_path = os.path.join(home,'HCLT','AION','target',modelSignature,'featureslist.py') if(os.path.isfile(predict_path)): outputStr = subprocess.check_output([sys.executable,predict_path]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'features:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() displaymsg = outputStr #displaymsg = json.dumps(displaymsg) return(True,displaymsg) else: displaymsg = "{'status':'ERROR','msg':'Unable to fetch featuers'}" return(False,displaymsg) def getFeatures(self,modelSignature): datajson = {'Body':'Gives the list of features'} urltext = '/AION/UseCase_Version/features' if modelSignature != '': status,
displaymsg = self.getModelFeatures(modelSignature) if status: urltext = '/AION/'+modelSignature+'/features' else: displaymsg = json.dumps(datajson) else: displaymsg = json.dumps(datajson) msg=""" URL:{url} RequestType: POST Content-Type=application/json Output: {displaymsg}. """.format(url=urltext,displaymsg=displaymsg) return(msg) def features_help(self,modelSignature): home = expanduser("~") if platform.system() == 'Windows': display_path = os.path.join(home,'AppData','Local','HCLT','AION','target',modelSignature,'display.json') else: display_path = os.path.join(home,'HCLT','AION','target',modelSignature,'display.json') #display_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'target',model,'display.json') datajson = {'Body':'Data Should be in JSON Format'} if(os.path.isfile(display_path)): with open(display_path) as file: config = json.load(file) file.close() datajson={} for feature in config['numericalFeatures']: if feature != config['targetFeature']: datajson[feature] = 'Numeric Value' for feature in config['nonNumericFeatures']: if feature != config['targetFeature']: datajson[feature] = 'Category Value' for feature in config['textFeatures']: if feature != config['targetFeature']: datajson[feature] = 'Category Value' displaymsg = json.dumps(datajson) return(displaymsg) def predict_help(self,modelSignature): if modelSignature != '': displaymsg = self.features_help(modelSignature) urltext = '/AION/'+modelSignature+'/predict' else: datajson = {'Body':'Data Should be in JSON Format'} displaymsg = json.dumps(datajson) urltext = '/AION/UseCase_Version/predict' msg=""" URL:{url} RequestType: POST Content-Type=application/json Body: {displaymsg} Output: prediction,probability(if Applicable),remarks corresponding to each row. """.format(url=urltext,displaymsg=displaymsg) return(msg) def performance_help(self,modelSignature): if modelSignature != '': urltext = '/AION/'+modelSignature+'/performance' else: urltext = '/AION/UseCase_Version/performance' datajson = {"trainingDataLocation":"Reference Data File Path","currentDataLocation":"Latest Data File Path"} displaymsg = json.dumps(datajson) msg=""" URL:{url} RequestType: POST Content-Type=application/json Body: {displaymsg} Output: HTML File Path.""".format(url=urltext,displaymsg=displaymsg) return(msg) def monitoring_help(self,modelSignature): if modelSignature != '': urltext = '/AION/'+modelSignature+'/monitoring' else: urltext = '/AION/UseCase_Version/monitoring' datajson = {"trainingDataLocation":"Reference Data File Path","currentDataLocation":"Latest Data File Path"} displaymsg = json.dumps(datajson) msg=""" URL:{url} RequestType: POST Content-Type=application/json Body: {displaymsg} Output: Affected Columns. HTML File Path.""".format(url=urltext,displaymsg=displaymsg) return(msg) def explain_help(self,modelSignature): if modelSignature != '': displaymsg = self.features_help(modelSignature) urltext = '/AION/'+modelSignature+'/explain' else: datajson = {'Body':'Data Should be in JSON Format'} displaymsg = json.dumps(datajson) urltext = '/AION/UseCase_Version/explain' msg=""" URL:{url} RequestType: POST Content-Type=application/json Body: {displaymsg} Output: anchor (Local Explanation),prediction,forceplot,multidecisionplot.""".format(url=urltext,displaymsg=displaymsg) return(msg) def help_text(self,modelSignature): predict_help = self.predict_help(modelSignature) explain_help = self.explain_help(modelSignature) features_help = self.getFeatures(modelSignature) monitoring_help = self.monitoring_help(modelSignature) performance_help = self.performance_help(modelSignature) msg=""" Following URL: Prediction {predict_help} Local Explaination {explain_help} Features {features_help} Monitoring {monitoring_help} Performance {performance_help} """.format(predict_help=predict_help,explain_help=explain_help,features_help=features_help,monitoring_help=monitoring_help,performance_help=performance_help) return msg def do_GET(self): print("PYTHON ######## REQUEST ####### STARTED") if None != re.search('/AION/', self.path): self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() helplist = self.path.split('/')[-1] print(helplist) if helplist.lower() == 'help': model = self.path.split('/')[-2] if model.lower() == 'aion': model ='' msg = self.help_text(model) elif helplist.lower() == 'predict': model = self.path.split('/')[-2] if model.lower() == 'aion': model ='' msg = self.predict_help(model) elif helplist.lower() == 'explain': model = self.path.split('/')[-2] if model.lower() == 'aion': model ='' msg = self.explain_help(model) elif helplist.lower() == 'monitoring': model = self.path.split('/')[-2] if model.lower() == 'aion': model ='' msg = self.monitoring_help(model) elif helplist.lower() == 'performance': model = self.path.split('/')[-2] if model.lower() == 'aion': model ='' msg = self.performance_help(model) elif helplist.lower() == 'features': model = self.path.split('/')[-2] if model.lower() == 'aion': model ='' status,msg = self.getModelFeatures(model) else: model = self.path.split('/')[-2] if model.lower() == 'aion': model =helplist msg = self.help_text(model) self.wfile.write(msg.encode()) else: self.send_response(403) self.send_header('Content-Type', 'application/json') self.end_headers() return class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): allow_reuse_address = True def shutdown(self): self.socket.close() HTTPServer.shutdown(self) class SimpleHttpServer(): def __init__(self, ip, port,username,password): handler_class = partial(HTTPRequestHandler,username=username,password=password,) self.server = ThreadedHTTPServer((ip,port), handler_class) def start(self): self.server_thread = threading.Thread(target=self.server.serve_forever) self.server_thread.daemon = True self.server_thread.start() def waitForThread(self): self.server_thread.join() def stop(self): self.server.shutdown() self.waitForThread() def start_server(ip,port,username,password): server = SimpleHttpServer(ip,int(port),username,password) print('HTTP Server Running...........') server.start() server.waitForThread() <s> """ /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ import os from pathlib import Path os.chdir(Path(__file__).parent) import json import shutil from mlac.timeseries import app as ts_app from mlac.ml import app as ml_app import traceback def create_test_file(config): code_file = 'aionCode.py' text = """ from pathlib import Path import subprocess import sys import json import argparse def run_pipeline(data_path): print('Data Location:', data_path) cwd = Path(__file__).parent monitor_file = str(cwd/'ModelMonitoring'/'{code_file}') load_file = str(cwd/'DataIngestion'/'{code_file}') transformer_file = str(cwd/'DataTransformation'/'{code_file}') selector_file = str(cwd/'FeatureEngineering'/'{code_file}') train_folder = cwd register_file = str(cwd/'ModelRegistry'/'{code_file}') deploy_file = str(cwd/'ModelServing'/'{code_file}') print('Running modelMonitoring') cmd = [sys.executable, monitor_file, '-i', data_path] result = subprocess.check_output(cmd) result = result.decode('utf-8') print(result) result = json.loads(result[result.find('{search}'):]) if result['Status'] == 'Failure': exit() print('Running dataIngestion') cmd = [sys.executable, load_file] result = subprocess.check_output(cmd) result = result.decode('utf-8') print(result) result = json.loads(result[result.find('{search}'):]) if result['Status'] == 'Failure': exit() print('Running DataTransformation') cmd = [sys.executable, transformer_file] result = subprocess.check_output(cmd) result = result.decode('utf-8') print(result) result = json.loads(result[result.find('{search}'):]) if result['Status'] == 'Failure': exit() print('Running FeatureEngineering') cmd = [sys.executable, selector_file] result = subprocess.check_output(cmd) result = result.decode('utf-8') print(result) result = json.loads(result[result.find('{search}'):]) if result['Status'] == 'Failure': exit() train_models = [f for f in train_folder.iterdir() if 'ModelTraining' in f.name] for model in train_models: print('Running',model.name) cmd = [sys.executable, str(model/'{code_file}')] train_result = subprocess.check_output(cmd) train_result = train_result.decode('utf-8') print(train_result) print('Running ModelRegistry') cmd = [sys.executable, register_file] result = subprocess.check_output(cmd) result = result.decode('utf-8') print(result) result = json.loads(result[result.find('{search}'):]) if result['Status'] == 'Failure': exit() print('Running ModelServing') cmd = [sys.executable, deploy_file] result = subprocess.check_output(cmd) result = result.decode('utf-8') print(result) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-i', '--inputPath', help='path of the input data') args = parser.parse_args() if args.inputPath: filename = args.inputPath else: filename = r"{filename}" try: print(run_pipeline(filename)) except Exception as e: print(e) """.format(filename=config['dataLocation'],search='{"Status":',code_file=code_file) deploy_path = Path(config["deploy_path"])/'MLaC' deploy_path.mkdir(parents=True, exist_ok=True) py_file = deploy_path/"run_pipeline.py" with open(py_file, "w") as f: f.write(text) def is_module_in_req_file(mod, folder): status = False if (Path(folder)/'requirements.txt').is_file(): with open(folder/'requirements.txt', 'r') as f: status = mod in f.read() return status def copy_local_modules(config): deploy_path = Path(config["deploy_path"]) local_modules_location = config.get("local_modules_location", None) if local_modules_location: folder_loc = local_modules_location else: folder_loc = Path(__file__).parent/'local_modules' if not folder_loc.exists(): folder_loc = None if folder_loc: file = folder_loc/'config.json' if file.exists(): with open(file, 'r') as f: data = json.load(f) for key, values in data.items(): local_module = folder_loc/key if local_module.exists(): for folder in values: target_folder = Path(deploy_path)/'MLaC'/folder if target_folder.is_dir(): if is_module_in_req_file(key, target_folder): shutil.copy(local_module,
target_folder) def validate(config): error = '' if 'error' in config.keys(): error = config['error'] return error def generate_mlac_code(config): with open(config, 'r') as f: config = json.load(f) error = validate(config) if error: raise ValueError(error) if config['problem_type'] in ['classification','regression']: return generate_mlac_ML_code(config) elif config['problem_type'].lower() == 'timeseriesforecasting': #task 11997 return generate_mlac_TS_code(config) def generate_mlac_ML_code(config): try: ml_app.run_loader(config) ml_app.run_transformer(config) ml_app.run_selector(config) ml_app.run_trainer(config) ml_app.run_register(config) ml_app.run_deploy(config) ml_app.run_drift_analysis(config) copy_local_modules(config) create_test_file(config) status = {'Status':'SUCCESS','MLaC_Location':str(Path(config["deploy_path"])/'MLaC')} except Exception as Inst: status = {'Status':'Failure','msg':str(Inst)} traceback.print_exc() status = json.dumps(status) return(status) def generate_mlac_TS_code(config): try: ts_app.run_loader(config) ts_app.run_transformer(config) ts_app.run_selector(config) ts_app.run_trainer(config) ts_app.run_register(config) ts_app.run_deploy(config) ts_app.run_drift_analysis(config) create_test_file(config) status = {'Status':'SUCCESS','MLaC_Location':str(Path(config["deploy_path"])/'MLaC')} except Exception as Inst: status = {'Status':'Failure','msg':str(Inst)} traceback.print_exc() status = json.dumps(status) return(status)<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import joblib import time import pandas as pd import numpy as np import argparse import json import os import pathlib from pathlib import Path from uncertainties.uq_main import aionUQ import os from datetime import datetime from os.path import expanduser import platform import logging class run_uq: def __init__(self,modelfeatures,modelFile,csvFile,target): self.modelfeatures=modelfeatures self.modelFile=modelFile self.csvFile=csvFile self.target=target ##UQ classification fn def getUQclassification(self,model,ProblemName,Params): df = pd.read_csv(self.csvFile) # # object_cols = [col for col, col_type in df.dtypes.iteritems() if col_type == 'object'] -- Fix for python 3.8.11 update (in 2.9.0.8) object_cols = [col for col, col_type in zip(df.columns,df.dtypes) if col_type == 'object'] df = df.drop(object_cols, axis=1) df = df.dropna(axis=1) df = df.reset_index(drop=True) modelfeatures = self.modelfeatures #tar = args.target # target = df[tar] y=df[self.target].values y = y.flatten() X = df.drop(self.target, axis=1) try: uqObj=aionUQ(df,X,y,ProblemName,Params,model,modelfeatures,self.target) accuracy,uq_ece,output_jsonobject=uqObj.uqMain_BBMClassification() except Exception as e: print("uq error",e) # print("UQ Classification: \\n",output_jsonobject) # print(accuracy,uq_ece,output_jsonobject,model_confidence_per,model_uncertaitny_per) #print(output_jsonobject) return accuracy,uq_ece,output_jsonobject ##UQ regression fn def getUQregression(self,model,ProblemName,Params): df = pd.read_csv(self.csvFile) modelfeatures = self.modelfeatures dfp = df[modelfeatures] tar = self.target target = df[tar] uqObj=aionUQ(df,dfp,target,ProblemName,Params,model,modelfeatures,tar) total_picp_percentage,total_Uncertainty_percentage,uq_medium,uq_best,scoringCriteria,uq_jsonobject=uqObj.uqMain_BBMRegression() return total_picp_percentage,total_Uncertainty_percentage,uq_medium,uq_best,scoringCriteria,uq_jsonobject def uqMain(self,model): #print("inside uq main.\\n") reg_status="" class_status="" algorithm_status="" try: model=model if Path(self.modelFile).is_file(): ProblemName = model.__class__.__name__ if ProblemName in ['LogisticRegression','SGDClassifier','SVC','DecisionTreeClassifier','RandomForestClassifier','GaussianNB','KNeighborsClassifier','GradientBoostingClassifier']: Problemtype = 'Classification' elif ProblemName in ['LinearRegression','Lasso','Ridge','DecisionTreeRegressor','RandomForestRegressor']: Problemtype = 'Regression' else: Problemtype = "None" if Problemtype.lower() == 'classification': try: Params = model.get_params() accuracy,uq_ece,output = self.getUQclassification(model,ProblemName,Params) class_status="SUCCESS" #print(output) except Exception as e: print(e) class_status="FAILED" output = {'Problem':'None','msg':str(e)} output = json.dumps(output) elif Problemtype.lower() == 'regression' : try: Params = model.get_params() total_picp_percentage,total_Uncertainty_percentage,uq_medium,uq_best,scoringCriteria,output = self.getUQregression(model,ProblemName,Params) #print(uq_jsonobject) reg_status="SUCCESS" except Exception as e: output = {'Problem':'None','msg':str(e)} output = json.dumps(output) reg_status="FAILED" else: try: output={} output['Problem']="None" output['msg']="Uncertainty Quantification not supported for this algorithm." output = json.dumps(output) algorithm_status="FAILED" except: algorithm_status="FAILED" except Exception as e: print(e) reg_status="FAILED" class_status="FAILED" algorithm_status="FAILED" output = {'Problem':'None','msg':str(e)} output = json.dumps(output) return class_status,reg_status,algorithm_status,output def aion_uq(modelFile,dataFile,features,targetfeatures): try: from appbe.dataPath import DEPLOY_LOCATION uqLogLocation = os.path.join(DEPLOY_LOCATION,'logs') try: os.makedirs(uqLogLocation) except OSError as e: if (os.path.exists(uqLogLocation)): pass else: raise OSError('uqLogLocation error.') filename_uq = 'uqlog_'+str(int(time.time())) filename_uq=filename_uq+'.log' filepath = os.path.join(uqLogLocation, filename_uq) print(filepath) logging.basicConfig(filename=filepath, format='%(message)s',filemode='w') log = logging.getLogger('aionUQ') log.setLevel(logging.INFO) log.info('************* Version - v1.7.0 *************** \\n') if isinstance(features, list): modelfeatures = features else: if ',' in features: modelfeatures = [x.strip() for x in features.split(',')] else: modelfeatures = features.split(',') model = joblib.load(modelFile) uqobj = run_uq(modelfeatures,modelFile,dataFile,targetfeatures) class_status,reg_status,algorithm_status,output=uqobj.uqMain(model) if (class_status.lower() == 'failed'): log.info('uq classifiction failed./n') elif (class_status.lower() == 'success'): log.info('uq classifiction success./n') else: log.info('uq classifiction not used../n') if (reg_status.lower() == 'failed'): log.info('uq regression failed./n') elif (reg_status.lower() == 'success'): log.info('uq regression success./n') else: log.info('uq regression not used./n') if (algorithm_status.lower() == 'failed'): log.info('Problem type issue, UQ only support classification and regression. May be selected algorithm not supported by Uncertainty Quantification currently./n') except Exception as e: log.info('uq test failed.n'+str(e)) #print(e) output = {'Problem':'None','msg':str(e)} output = json.dumps(output) return(output) #Sagemaker main fn call if __name__=='__main__': try: parser = argparse.ArgumentParser() parser.add_argument('savFile') parser.add_argument('csvFile') parser.add_argument('features') parser.add_argument('target') args = parser.parse_args() home = expanduser("~") if platform.system() == 'Windows': uqLogLocation = os.path.join(home,'AppData','Local','HCLT','AION','uqLogs') else: uqLogLocation = os.path.join(home,'HCLT','AION','uqLogs') try: os.makedirs(uqLogLocation) except OSError as e: if (os.path.exists(uqLogLocation)): pass else: raise OSError('uqLogLocation error.') # self.sagemakerLogLocation=str(sagemakerLogLocation) filename_uq = 'uqlog_'+str(int(time.time())) filename_uq=filename_uq+'.log' # filename = 'mlopsLog_'+Time() filepath = os.path.join(uqLogLocation, filename_uq) logging.basicConfig(filename=filepath, format='%(message)s',filemode='w') log = logging.getLogger('aionUQ') log.setLevel(logging.DEBUG) if ',' in args.features: args.features = [x.strip() for x in args.features.split(',')] else: args.features = args.features.split(',') modelFile = args.savFile modelfeatures = args.features csvFile = args.csvFile target=args.target model = joblib.load(args.savFile) ##Main uq function call uqobj = run_uq(modelfeatures,modelFile,csvFile,target) class_status,reg_status,algorithm_status,output=uqobj.uqMain(model) if (class_status.lower() == 'failed'): log.info('uq classifiction failed./n') elif (class_status.lower() == 'success'): log.info('uq classifiction success./n') else: log.info('uq classifiction not used../n') if (reg_status.lower() == 'failed'): log.info('uq regression failed./n') elif (reg_status.lower() == 'success'): log.info('uq regression success./n') else: log.info('uq regression not used./n') if (algorithm_status.lower() == 'failed'): msg = 'Uncertainty Quantification not supported for this algorithm' log.info('Algorithm not supported by Uncertainty Quantification./n') output = {'Problem':'None','msg':str(msg)} output = json.dumps(output) except Exception as e: log.info('uq test failed.n'+str(e)) output = {'Problem':'None','msg':str(e)} output = json.dumps(output) #print(e) print(output)<s> import json import logging import os import shutil import time import sys from sys import platform from distutils.util import strtobool from config_manager.pipeline_config import AionConfigManager from summarizer import Summarizer # Base class for EION configuration Manager which read the needed f params from eion.json, initialize the parameterlist, read the respective params, store in variables and return back to caller function or external modules. class AionTextManager: def __init__(self): self.log = logging.getLogger('eion') self.data = '' self.problemType = '' self.basic = [] self.advance=[] def readTextfile(self,dataPath): #dataPath=self.[baisc][] file = open(dataPath, "r") data = file.read() return data #print(data) def generateSummary(self,data,algo,stype): bert_model = Summarizer() if stype == "large": bert_summary = ''.join(bert_model(data, min_length=300)) return(bert_summary) elif stype == "medium": bert_summary = ''.join(bert_model(data, min_length=150)) return(bert_summary) elif stype == "small": bert_summary = ''.join(bert_model(data, min_length=60)) return(bert_summary) def aion_textsummary(arg): Obj = AionTextManager() configObj = AionConfigManager() readConfistatus,msg = configObj.readConfigurationFile(arg) dataPath = configObj.getTextlocation() text_data = Obj.readTextfile(data
Path) getAlgo, getMethod = configObj.getTextSummarize() summarize = Obj.generateSummary(text_data, getAlgo, getMethod) output = {'status':'Success','summary':summarize} output_json = json.dumps(output) return(output_json) if __name__ == "__main__": aion_textsummary(sys.argv[1]) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import sys import json import datetime, time, timeit import logging logging.getLogger('tensorflow').disabled = True import shutil import warnings from config_manager.online_pipeline_config import OTAionConfigManager from records import pushrecords import logging import mlflow from pathlib import Path from pytz import timezone def pushRecordForOnlineTraining(): try: from appbe.pages import getversion status,msg = pushrecords.enterRecord(AION_VERSION) except Exception as e: print("Exception", e) status = False msg = str(e) return status,msg def mlflowSetPath(path,experimentname): import mlflow url = "file:" + str(Path(path).parent.parent) + "/mlruns" mlflow.set_tracking_uri(url) mlflow.set_experiment(str(experimentname)) class server(): def __init__(self): self.response = None self.dfNumCols=0 self.dfNumRows=0 self.features=[] self.mFeatures=[] self.emptyFeatures=[] self.vectorizerFeatures=[] self.wordToNumericFeatures=[] self.profilerAction = [] self.targetType = '' self.matrix1='{' self.matrix2='{' self.matrix='{' self.trainmatrix='{' self.numericalFeatures=[] self.nonNumericFeatures=[] self.similarGroups=[] self.method = 'NA' self.pandasNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] self.modelSelTopFeatures=[] self.topFeatures=[] self.allFeatures=[] def startScriptExecution(self, config_obj): rowfilterexpression = '' grouperbyjson = '' model_tried='' learner_type = '' topics = {} numericContinuousFeatures='' discreteFeatures='' threshold=-1 targetColumn = '' categoricalFeatures='' dataFolderLocation = '' original_data_file = '' profiled_data_file = '' trained_data_file = '' predicted_data_file='' featureReduction = 'False' reduction_data_file='' params={} score = 0 labelMaps={} featureDataShape=[] self.riverModels = [] self.riverAlgoNames = ['Online Logistic Regression', 'Online Softmax Regression', 'Online Decision Tree Classifier', 'Online KNN Classifier', 'Online Linear Regression', 'Online Bayesian Linear Regression', 'Online Decision Tree Regressor','Online KNN Regressor'] #ConfigSettings iterName,iterVersion,dataLocation,deployLocation,delimiter,textqualifier = config_obj.getAIONLocationSettings() scoreParam = config_obj.getScoringCreteria() datetimeFeature,indexFeature,modelFeatures=config_obj.getFeatures() iterName = iterName.replace(" ", "_") deployLocation,dataFolderLocation,original_data_file,profiled_data_file,trained_data_file,predicted_data_file,logFileName,outputjsonFile = config_obj.createDeploymentFolders(deployLocation,iterName,iterVersion) #Mlflow mlflowSetPath(deployLocation,iterName+'_'+iterVersion) #Logger filehandler = logging.FileHandler(logFileName, 'w','utf-8') formatter = logging.Formatter('%(message)s') filehandler.setFormatter(formatter) log = logging.getLogger('eion') log.propagate = False for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): log.removeHandler(hdlr) log.addHandler(filehandler) log.setLevel(logging.INFO) log.info('************* Version - v2.2.5 *************** \\n') msg = '-------> Execution Start Time: '+ datetime.datetime.now(timezone("Asia/Kolkata")).strftime('%Y-%m-%d %H:%M:%S' + ' IST') log.info(msg) startTime = timeit.default_timer() try: output = {'bestModel': '', 'bestScore': 0, 'bestParams': {}} #ConfigSetting problemType,targetFeature,profilerStatus,selectorStatus,learnerStatus,visualizationstatus,deployStatus = config_obj.getModulesDetails() selectorStatus = False if(problemType.lower() in ['classification','regression']): if(targetFeature == ''): output = {"status":"FAIL","message":"Target Feature is Must for Classification and Regression Problem Type"} return output #DataReading from transformations.dataReader import dataReader objData = dataReader() if os.path.isfile(dataLocation): dataFrame = objData.csvTodf(dataLocation,delimiter,textqualifier) dataFrame.rename(columns=lambda x:x.strip(), inplace=True) #FilterDataframe filter = config_obj.getfilter() if filter != 'NA': dataFrame,rowfilterexpression = objData.rowsfilter(filter,dataFrame) #GroupDataframe timegrouper = config_obj.gettimegrouper() grouping = config_obj.getgrouper() if grouping != 'NA': dataFrame,grouperbyjson = objData.grouping(grouping,dataFrame) elif timegrouper != 'NA': dataFrame,grouperbyjson = objData.timeGrouping(timegrouper,dataFrame) #KeepOnlyModelFtrs dataFrame = objData.removeFeatures(dataFrame,datetimeFeature,indexFeature,modelFeatures,targetFeature) log.info('\\n-------> First Ten Rows of Input Data: ') log.info(dataFrame.head(10)) self.dfNumRows=dataFrame.shape[0] self.dfNumCols=dataFrame.shape[1] dataLoadTime = timeit.default_timer() - startTime log.info('-------> COMPUTING: Total dataLoadTime time(sec) :'+str(dataLoadTime)) if profilerStatus: log.info('\\n================== Data Profiler has started ==================') log.info('Status:-|... AION feature transformation started') dp_mlstart = time.time() profilerJson = config_obj.getEionProfilerConfigurarion() log.info('-------> Input dataFrame(5 Rows): ') log.info(dataFrame.head(5)) log.info('-------> DataFrame Shape (Row,Columns): '+str(dataFrame.shape)) from incremental.incProfiler import incProfiler incProfilerObj = incProfiler() dataFrame,targetColumn,self.mFeatures,self.numericalFeatures,self.nonNumericFeatures,labelMaps,self.configDict,self.textFeatures,self.emptyFeatures,self.wordToNumericFeatures = incProfilerObj.startIncProfiler(dataFrame,profilerJson,targetFeature,deployLocation,problemType) self.features = self.configDict['allFtrs'] log.info('-------> Data Frame Post Data Profiling(5 Rows): ') log.info(dataFrame.head(5)) log.info('Status:-|... AION feature transformation completed') dp_mlexecutionTime=time.time() - dp_mlstart log.info('-------> COMPUTING: Total Data Profiling Execution Time '+str(dp_mlexecutionTime)) log.info('================== Data Profiling completed ==================\\n') dataFrame.to_csv(profiled_data_file,index=False) selectorStatus = False if learnerStatus: log.info('Status:-|... AION Learner data preparation started') ldp_mlstart = time.time() testPercentage = config_obj.getAIONTestTrainPercentage() balancingMethod = config_obj.getAIONDataBalancingMethod() from learner.machinelearning import machinelearning mlobj = machinelearning() modelType = problemType.lower() targetColumn = targetFeature if modelType == "na": if self.targetType == 'categorical': modelType = 'classification' elif self.targetType == 'continuous': modelType = 'regression' datacolumns=list(dataFrame.columns) if targetColumn in datacolumns: datacolumns.remove(targetColumn) features =datacolumns featureData = dataFrame[features] if targetColumn != '': targetData = dataFrame[targetColumn] xtrain,ytrain,xtest,ytest = mlobj.split_into_train_test_data(featureData,targetData,testPercentage,modelType) categoryCountList = [] if modelType == 'classification': if(mlobj.checkForClassBalancing(ytrain) >= 1): xtrain,ytrain = mlobj.ExecuteClassBalancing(xtrain,ytrain,balancingMethod) valueCount=targetData.value_counts() categoryCountList=valueCount.tolist() ldp_mlexecutionTime=time.time() - ldp_mlstart log.info('-------> COMPUTING: Total Learner data preparation Execution Time '+str(ldp_mlexecutionTime)) log.info('Status:-|... AION Learner data preparation completed') if learnerStatus: log.info('\\n================== ML Started ==================') log.info('Status:-|... AION training started') log.info('-------> Memory Usage by DataFrame During Learner Status '+str(dataFrame.memory_usage(deep=True).sum())) mlstart = time.time() log.info('-------> Target Problem Type:'+ self.targetType) learner_type = 'ML' learnerJson = config_obj.getEionLearnerConfiguration() log.info('-------> Target Model Type:'+ modelType) modelParams,modelList = config_obj.getEionLearnerModelParams(modelType) if(modelType == 'regression'): allowedmatrix = ['mse','r2','rmse','mae'] if(scoreParam.lower() not in allowedmatrix): scoreParam = 'mse' if(modelType == 'classification'): allowedmatrix = ['accuracy','recall','f1_score','precision','roc_auc'] if(scoreParam.lower() not in allowedmatrix): scoreParam = 'accuracy' scoreParam = scoreParam.lower() from incremental.incMachineLearning import incMachineLearning incMlObj = incMachineLearning(mlobj) self.configDict['riverModel'] = False status,model_type,model,saved_model,matrix,trainmatrix,featureDataShape,model_tried,score,filename,self.features,threshold,pscore,rscore,self.method,loaded_model,xtrain1,ytrain1,xtest1,ytest1,topics,params=incMlObj.startLearning(learnerJson,modelType,modelParams,modelList,scoreParam,self.features,targetColumn,dataFrame,xtrain,ytrain,xtest,ytest,categoryCountList,self.targetType,deployLocation,iterName,iterVersion,trained_data_file,predicted_data_file,labelMaps) if model in self.riverAlgoNames: self.configDict['riverModel'] = True if(self.matrix != '{'): self.matrix += ',' if(self.trainmatrix != '{'): self.trainmatrix += ',' self.trainmatrix += trainmatrix self.matrix += matrix mlexecutionTime=time.time() - mlstart log.info('-------> Total ML Execution Time '+str(mlexecutionTime)) log.info('Status:-|... AION training completed') log.info('================== ML Completed ==================\\n') if visualizationstatus: visualizationJson = config_obj.getEionVisualizationConfiguration() log.info('Status:-|... AION Visualizer started') visualizer_mlstart = time.time() from visualization.visualization import Visualization visualizationObj = Visualization(iterName,iterVersion,dataFrame,visualizationJson,datetimeFeature,deployLocation,dataFolderLocation,numericContinuousFeatures,discreteFeatures,categoricalFeatures,self.features,targetFeature,model_type,original_data_file,profiled_data_file,trained_data_file,predicted_data_file,labelMaps,self.vectorizerFeatures,self.textFeatures,self.numericalFeatures,self.nonNumericFeatures,self.emptyFeatures,self.dfNum
Rows,self.dfNumCols,saved_model,scoreParam,learner_type,model,featureReduction,reduction_data_file) visualizationObj.visualizationrecommandsystem() visualizer_mlexecutionTime=time.time() - visualizer_mlstart log.info('-------> COMPUTING: Total Visualizer Execution Time '+str(visualizer_mlexecutionTime)) log.info('Status:-|... AION Visualizer completed') try: os.remove(os.path.join(deployLocation,'aion_xai.py')) except: pass if deployStatus: if str(model) != 'None': log.info('\\n================== Deployment Started ==================') log.info('Status:-|... AION Deployer started') deployPath = deployLocation deployer_mlstart = time.time() src = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','utilities','useCaseFiles') shutil.copy2(os.path.join(src,'incBatchLearning.py'),deployPath) os.rename(os.path.join(deployPath,'incBatchLearning.py'),os.path.join(deployPath,'aion_inclearning.py')) shutil.copy2(os.path.join(src,'incBatchPrediction.py'),deployPath) os.rename(os.path.join(deployPath,'incBatchPrediction.py'),os.path.join(deployPath,'aion_predict.py')) self.configDict['modelName'] = str(model) self.configDict['modelParams'] = params self.configDict['problemType'] = problemType.lower() self.configDict['score'] = score self.configDict['metricList'] = [] self.configDict['metricList'].append(score) self.configDict['trainRowsList'] = [] self.configDict['trainRowsList'].append(featureDataShape[0]) self.configDict['scoreParam'] = scoreParam self.configDict['partialFit'] = 0 with open(os.path.join(deployLocation,'production', 'Config.json'), 'w', encoding='utf8') as f: json.dump(self.configDict, f, ensure_ascii=False) deployer_mlexecutionTime=time.time() - deployer_mlstart log.info('-------> COMPUTING: Total Deployer Execution Time '+str(deployer_mlexecutionTime)) log.info('Status:-|... AION Batch Deployment completed') log.info('================== Deployment Completed ==================') # self.features = profilerObj.set_features(self.features,self.textFeatures,self.vectorizerFeatures) self.matrix += '}' self.trainmatrix += '}' matrix = eval(self.matrix) trainmatrix = eval(self.trainmatrix) model_tried = eval('['+model_tried+']') try: json.dumps(params) output_json = {"status":"SUCCESS","data":{"ModelType":modelType,"deployLocation":deployPath,"BestModel":model,"BestScore":str(score),"ScoreType":str(scoreParam).upper(),"matrix":matrix,"trainmatrix":trainmatrix,"featuresused":str(self.features),"targetFeature":str(targetColumn),"params":params,"EvaluatedModels":model_tried,"LogFile":logFileName}} except: output_json = {"status":"SUCCESS","data":{"ModelType":modelType,"deployLocation":deployPath,"BestModel":model,"BestScore":str(score),"ScoreType":str(scoreParam).upper(),"matrix":matrix,"trainmatrix":trainmatrix,"featuresused":str(self.features),"targetFeature":str(targetColumn),"params":"","EvaluatedModels":model_tried,"LogFile":logFileName}} print(output_json) if bool(topics) == True: output_json['topics'] = topics with open(outputjsonFile, 'w') as f: json.dump(output_json, f) output_json = json.dumps(output_json) log.info('\\n------------- Summary ------------') log.info('------->No of rows & columns in data:('+str(self.dfNumRows)+','+str(self.dfNumCols)+')') log.info('------->No of missing Features :'+str(len(self.mFeatures))) log.info('------->Missing Features:'+str(self.mFeatures)) log.info('------->Text Features:'+str(self.textFeatures)) log.info('------->No of Nonnumeric Features :'+str(len(self.nonNumericFeatures))) log.info('------->Non-Numeric Features :' +str(self.nonNumericFeatures)) if threshold == -1: log.info('------->Threshold: NA') else: log.info('------->Threshold: '+str(threshold)) log.info('------->Label Maps of Target Feature for classification :'+str(labelMaps)) if((learner_type != 'TS') & (learner_type != 'AR')): log.info('------->No of columns and rows used for Modeling :'+str(featureDataShape)) log.info('------->Features Used for Modeling:'+str(self.features)) log.info('------->Target Feature: '+str(targetColumn)) log.info('------->Best Model Score :'+str(score)) log.info('------->Best Parameters:'+str(params)) log.info('------->Type of Model :'+str(modelType)) log.info('------->Best Model :'+str(model)) log.info('------------- Summary ------------\\n') except Exception as inst: log.info('server code execution failed !....'+str(inst)) output_json = {"status":"FAIL","message":str(inst).strip('"')} output_json = json.dumps(output_json) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) executionTime = timeit.default_timer() - startTime log.info('\\nTotal execution time(sec) :'+str(executionTime)) log.info('\\n------------- Output JSON ------------') log.info('-------> Output :'+str(output_json)) log.info('------------- Output JSON ------------\\n') for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): hdlr.close() log.removeHandler(hdlr) return output_json def aion_ot_train_model(arg): warnings.filterwarnings('ignore') try: valid, msg = pushRecordForOnlineTraining() if valid: serverObj = server() configObj = OTAionConfigManager() jsonPath = arg readConfistatus,msg = configObj.readConfigurationFile(jsonPath) if(readConfistatus == False): output = {"status":"FAIL","message":str(msg).strip('"')} output = json.dumps(output) print("\\n") print("aion_learner_status:",output) print("\\n") return output output = serverObj.startScriptExecution(configObj) else: output = {"status":"LicenseVerificationFailed","message":str(msg).strip('"')} output = json.dumps(output) print("\\n") print("aion_learner_status:",output) print("\\n") return output except Exception as inst: output = {"status":"FAIL","message":str(inst).strip('"')} output = json.dumps(output) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) print("\\n") print("aion_learner_status:",output) print("\\n") return output if __name__ == "__main__": aion_ot_train_model(sys.argv[1]) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import joblib import time from pandas import json_normalize import pandas as pd import numpy as np import argparse import json import os import pathlib from pathlib import Path from sagemaker.aionMlopsService import aionMlopsService import logging import os.path from os.path import expanduser import platform,sys from pathlib import Path from sklearn.model_selection import train_test_split def getAWSConfiguration(mlops_params,log): awsId=mlops_params['awsSagemaker']['awsID'] if ((not awsId) or (awsId is None)): awsId="" log.info('awsId error. ') awsAccesskeyid=mlops_params['awsSagemaker']['accesskeyID'] if ((not awsAccesskeyid) or (awsAccesskeyid is None)): awsAccesskeyid="" log.info('awsAccesskeyid error. ') awsSecretaccesskey=mlops_params['awsSagemaker']['secretAccesskey'] if ((not awsSecretaccesskey) or (awsSecretaccesskey is None)): awsSecretaccesskey="" log.info('awsSecretaccesskey error. ') awsSessiontoken=mlops_params['awsSagemaker']['sessionToken'] if ((not awsSessiontoken) or (awsSessiontoken is None)): awsSessiontoken="" log.info('awsSessiontoken error. ') awsRegion=mlops_params['awsSagemaker']['region'] if ((not awsRegion) or (awsRegion is None)): awsRegion="" log.info('awsRegion error. ') IAMSagemakerRoleArn=mlops_params['awsSagemaker']['IAMSagemakerRoleArn'] if ((not IAMSagemakerRoleArn) or (IAMSagemakerRoleArn is None)): IAMSagemakerRoleArn="" log.info('IAMSagemakerRoleArn error. ') return awsId,awsAccesskeyid,awsSecretaccesskey,awsSessiontoken,awsRegion,IAMSagemakerRoleArn def getMlflowParams(mlops_params,log): modelInput = mlops_params['modelInput'] data = mlops_params['data'] mlflowtosagemakerDeploy=mlops_params['sagemakerDeploy'] if ((not mlflowtosagemakerDeploy) or (mlflowtosagemakerDeploy is None)): mlflowtosagemakerDeploy="True" mlflowtosagemakerPushOnly=mlops_params['deployExistingModel']['status'] if ((not mlflowtosagemakerPushOnly) or (mlflowtosagemakerPushOnly is None)): mlflowtosagemakerPushOnly="False" mlflowtosagemakerPushImageName=mlops_params['deployExistingModel']['dockerImageName'] if ((not mlflowtosagemakerPushImageName) or (mlflowtosagemakerPushImageName is None)): mlflowtosagemakerPushImageName="mlops_image" mlflowtosagemakerdeployModeluri=mlops_params['deployExistingModel']['deployModeluri'] if ((not mlflowtosagemakerdeployModeluri) or (mlflowtosagemakerdeployModeluri is None)): mlflowtosagemakerdeployModeluri="None" log.info('mlflowtosagemakerdeployModeluri error. ') cloudInfrastructure = mlops_params['modelOutput']['cloudInfrastructure'] if ((not cloudInfrastructure) or (cloudInfrastructure is None)): cloudInfrastructure="Sagemaker" endpointName=mlops_params['endpointName'] if ((not endpointName) or (endpointName is None)): sagemakerAppName="aion-demo-app" log.info('endpointName not given, setting default one. ') experimentName=str(endpointName) mlflowContainerName=str(endpointName) return modelInput,data,mlflowtosagemakerDeploy,mlflowtosagemakerPushOnly,mlflowtosagemakerPushImageName,mlflowtosagemakerdeployModeluri,cloudInfrastructure,endpointName,experimentName,mlflowContainerName def getPredictionParams(mlops_params,log): predictStatus=mlops_params['prediction']['status'] if ((not predictStatus) or (predictStatus is None)): predictStatus="False" modelInput = mlops_params['modelInput'] data = mlops_params['data'] if (predictStatus == "True" or predictStatus.lower()== "true"): if ((not modelInput) or (modelInput is None)): log.info('prediction model input error.Please check given model file or its path for prediction ') if ((not data) or (data is None)): log.info('prediction data input error.Please check given data file or its path for prediction ') targetFeature=mlops_params['prediction']['target'] return predictStatus,targetFeature def sagemakerPrediction(mlopsobj,data,log): df = json_normalize(data) model=None predictionStatus=False try: endpointPrediction=mlopsobj.predict_sm_app_endpoint(df) if (endpointPrediction is None): log.info('Sagemaker endpoint application prediction Issue.') outputjson = {"status":"Error","msg":"Sagemaker endpoint application prediction Issue"} outputjson = json.dumps(outputjson) #print("predictions: "+str(outputjson)) predictionStatus=False else: log.info("sagemaker end point Prediction: \\n"+str(endpointPrediction)) df['prediction'] = endpointPred
iction outputjson = df.to_json(orient='records') outputjson = {"status":"SUCCESS","data":json.loads(outputjson)} outputjson = json.dumps(outputjson) #print("predictions: "+str(outputjson)) predictionStatus=True except Exception as e: #log.info("sagemaker end point Prediction error: \\n") outputjson = {"status":"Error","msg":str(e)} outputjson=None predictionStatus=False return outputjson,predictionStatus ## Main aion sagemaker fn call def sagemaker_exec(mlops_params,log): #mlops_params = json.loads(config) mlops_params=mlops_params modelInput,data,mlflowtosagemakerDeploy,mlflowtosagemakerPushOnly,mlflowtosagemakerPushImageName,mlflowtosagemakerdeployModeluri,cloudInfrastructure,endpointName,experimentName,mlflowContainerName = getMlflowParams(mlops_params,log) mlflowModelname=None awsId,awsAccesskeyid,awsSecretaccesskey,awsSessiontoken,awsRegion,IAMSagemakerRoleArn = getAWSConfiguration(mlops_params,log) predictStatus,targetFeature = getPredictionParams(mlops_params,log) sagemakerDeployOption='create' deleteAwsecrRepository='False' sagemakerAppName=str(endpointName) ecrRepositoryName='aion-ecr-repo' #aws ecr model app_name should contain only [[a-zA-Z0-9-]], again rechecking here. import re if sagemakerAppName: pattern = re.compile("[A-Za-z0-9-]+") # if found match (entire string matches pattern) if pattern.fullmatch(sagemakerAppName) is not None: #print("Found match: ") pass else: log.info('wrong sagemaker Application Name, Nmae should contains only [A-Za-z0-9-] .') app_name = 'aion-demo-app' else: app_name = 'aion-demo-app' #Following 3 aws parameter values are now hard coded , because currently we are not using. If aion using the options, please make sure to get the values from GUI . sagemakerDeployOption="create" deleteAwsecrRepository="False" ecrRepositoryName="aion_test_repo" log.info('mlops parameter check done.') # predictionStatus=False deploystatus = 'SUCCESS' try: log.info('cloudInfrastructure: '+str(cloudInfrastructure)) if(cloudInfrastructure.lower() == "sagemaker"): ## sagemaker app prediction call if (predictStatus.lower() == "true"): # df = json_normalize(data) model=None mlopsobj = aionMlopsService(model,mlflowtosagemakerDeploy,mlflowtosagemakerPushOnly,mlflowtosagemakerPushImageName,mlflowtosagemakerdeployModeluri,experimentName,mlflowModelname,awsAccesskeyid,awsSecretaccesskey,awsSessiontoken,mlflowContainerName,awsRegion,awsId,IAMSagemakerRoleArn,sagemakerAppName,sagemakerDeployOption,deleteAwsecrRepository,ecrRepositoryName) outputjson,predictionStatus = sagemakerPrediction(mlopsobj,data,log) print("predictions: "+str(outputjson)) predictionStatus=predictionStatus return(outputjson) else: if Path(modelInput).is_file(): msg = '' model = joblib.load(modelInput) ProblemName = model.__class__.__name__ mlflowModelname=str(ProblemName) log.info('aion mlops Model name: '+str(mlflowModelname)) df=None mlopsobj = aionMlopsService(model,mlflowtosagemakerDeploy,mlflowtosagemakerPushOnly,mlflowtosagemakerPushImageName,mlflowtosagemakerdeployModeluri,experimentName,mlflowModelname,awsAccesskeyid,awsSecretaccesskey,awsSessiontoken,mlflowContainerName,awsRegion,awsId,IAMSagemakerRoleArn,sagemakerAppName,sagemakerDeployOption,deleteAwsecrRepository,ecrRepositoryName) mlflow2sm_status,localhost_container_status=mlopsobj.mlflow2sagemaker_deploy() log.info('mlflow2sm_status: '+str(mlflow2sm_status)) log.info('localhost_container_status: '+str(localhost_container_status)) # Checking deploy status if (mlflowtosagemakerPushOnly.lower() == "true" ): if (mlflow2sm_status.lower() == "success"): deploystatus = 'SUCCESS' msg = 'Endpoint succesfully deployed in sagemaker' log.info('Endpoint succesfully deployed in sagemaker (Push eisting model container).\\n ') elif(mlflow2sm_status.lower() == "failed"): deploystatus = 'ERROR' msg = 'Endpoint failed to deploy in sagemaker' log.info('Endpoint failed to deploy in sagemaker. (Push eisting model container).\\n ') else: pass elif(mlflowtosagemakerDeploy.lower() == "true"): if (mlflow2sm_status.lower() == "success"): deploystatus='SUCCESS' msg = 'Endpoint succesfully deployed in sagemaker' log.info('Endpoint succesfully deployed in sagemaker') elif(mlflow2sm_status.lower() == "failed"): deploystatus = 'ERROR' msg = 'Endpoint failed to deploy in sagemaker' log.info('Endpoint failed to deploy in sagemaker.\\n ') elif (mlflow2sm_status.lower() == "Notdeployed"): deploystatus= 'ERROR' msg = 'Sagemaker compatible container created' log.info('sagemaker endpoint not deployed, check aws connection and credentials. \\n') elif (mlflowtosagemakerDeploy.lower() == "false"): if(localhost_container_status.lower() == "success"): deploystatus = 'SUCCESS' msg = 'Localhost mlops docker created successfully' log.info('Localhost mlops docker created successfully. \\n') elif(localhost_container_status.lower() == "failed"): deploystatus = 'ERROR' msg = 'Localhost mlops docker created failed' log.info('Localhost mlops docker creation failed. \\n') elif (localhost_container_status.lower() == "Notdeployed"): deploystatus= 'ERROR' log.info('Localhost mlops docker not deployed, check local docker status. \\n') else: pass else: pass else: deploystatus = 'ERROR' msg = 'Model Path not Found' print('Error: Model Path not Found') outputjson = {"status":str(deploystatus),"data":str(msg)} outputjson = json.dumps(outputjson) print("predictions: "+str(outputjson)) return(outputjson) except Exception as inst: outputjson = {"status":str(deploystatus),"data":str(msg)} outputjson = json.dumps(outputjson) print("predictions: "+str(outputjson)) return(outputjson) def aion_sagemaker(config): try: mlops_params = config print(mlops_params) from appbe.dataPath import LOG_LOCATION sagemakerLogLocation = LOG_LOCATION try: os.makedirs(sagemakerLogLocation) except OSError as e: if (os.path.exists(sagemakerLogLocation)): pass else: raise OSError('sagemakerLogLocation error.') filename_mlops = 'mlopslog_'+str(int(time.time())) filename_mlops=filename_mlops+'.log' filepath = os.path.join(sagemakerLogLocation, filename_mlops) logging.basicConfig(filename=filepath, format='%(message)s',filemode='w') log = logging.getLogger('aionMLOps') log.setLevel(logging.DEBUG) output = sagemaker_exec(mlops_params,log) return output except Exception as inst: print(inst) deploystatus = 'ERROR' output = {"status":str(deploystatus),"data":str(inst)} output = json.dumps(output) print("predictions: "+str(output)) return(output) #Sagemaker main fn call if __name__=='__main__': json_config = str(sys.argv[1]) output = aion_sagemaker(json.loads(json_config)) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import requests import json import os from datetime import datetime import socket import getmac def telemetry_data(operation,Usecase,data): now = datetime.now() ID = datetime.timestamp(now) record_date = now.strftime("%y-%m-%d %H:%M:%S") try: user = os.getlogin() except: user = 'NA' computername = socket.getfqdn() macaddress = getmac.get_mac_address() item = {} item['ID'] = str(int(ID)) item['record_date'] = record_date item['UseCase'] = Usecase item['user'] = str(user) item['operation'] = operation item['remarks'] = data item['hostname'] = computername item['macaddress'] = macaddress url = 'https://l5m119j6v9.execute-api.ap-south-1.amazonaws.com/default/aion_telemetry' record = {} record['TableName'] = 'AION_OPERATION' record['Item'] = item record = json.dumps(record) try: response = requests.post(url, data=record,headers={"x-api-key":"Obzt8ijfOT3dgBYma9JCt1tE3W6tzHaV8rVuQdMK","Content-Type":"application/json",}) check_telemetry_file() except Exception as inst: filename = os.path.join(os.path.dirname(os.path.abspath(__file__)),'telemetry.txt') f=open(filename, "a+") f.write(record+'\\n') f.close() def check_telemetry_file(): file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'telemetry.txt') if(os.path.isfile(file_path)): f = open(file_path, 'r') file_content = f.read() f.close() matched_lines = file_content.split('\\n') write_lines = [] url = 'https://l5m119j6v9.execute-api.ap-south-1.amazonaws.com/default/aion_telemetry' for record in matched_lines: try: response = requests.post(url, data=record,headers={"x-api-key":"Obzt8ijfOT3dgBYma9JCt1tE3W6tzHaV8rVuQdMK","Content-Type":"application/json",}) except: write_lines.append(record) f = open(file_path, "a") f.seek(0) f.truncate() for record in write_lines: f.write(record+'\\n') f.close() return True else: return True<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import sys import json import datetime,time,timeit import itertools #Sci-Tools imports import numpy as np import pandas as pd import math from statsmodels.tsa.stattools import adfuller from scipy.stats.stats import pearsonr from numpy import cumsum, log, polyfit, sqrt, std, subtract from numpy.random import randn from sklearn.metrics import normalized_mutual_info_score from sklearn.feature_selection import mutual_info_regression import logging #SDP1 class import from feature_engineering.featureImportance import featureImp from feature_engineering.featureReducer import featureReducer from sklearn.linear_model import Lasso, LogisticRegression from sklearn.feature_selection import SelectFromModel from sklearn.ensemble import ExtraTreesClassifier from sklearn.decomposition import PCA from sklearn.decomposition import TruncatedSVD from sklearn.decomposition import FactorAnalysis from sklearn.decomposition import FastICA from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.preprocessing import MinMaxScaler from sklearn.feature_selection import RFE def ranking(ranks, names, order=1): minmax = MinMaxScaler() ranks = minmax.fit_transform(order*np.array([ranks]).T).T[0] ranks = map(lambda x: round(x,2), ranks) return dict(zip(names, ranks)) # noinspection PyPep8Naming class featureSelector(): def __init__(self): self.pandasNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] self.log = logging.getLogger('eion') def startSelector(self,df,conf_json,textFeatures,targetFeature,problem_type): try: categoricalMaxLabel = int(conf_json['categoryMaxLabel']) pca='None' pcaReducerStatus = conf_json['featureEngineering']['PCA'] svdReducerStatus = conf_json['featureEngineering']['SVD'] factorReducerStatus = conf_json['featureEngineering']['FactorAnalysis'] icaReducerStatus = conf_json['featureEngineering']['ICA'] nfeatures=float(conf_json['featureEngineering']['numberofComponents']) statisticalConfig = conf_json['statisticalConfig']
corrThresholdInput = float(statisticalConfig.get('correlationThresholdFeatures',0.50)) corrThresholdTarget = float(statisticalConfig.get('correlationThresholdTarget',0.85)) pValThresholdInput = float(statisticalConfig.get('pValueThresholdFeatures',0.05)) pValThresholdTarget = float(statisticalConfig.get('pValueThresholdTarget',0.04)) varThreshold = float(statisticalConfig.get('varianceThreshold',0.01)) allFeaturesSelector = conf_json['featureSelection']['allFeatures'] correlationSelector = conf_json['featureSelection']['statisticalBased'] modelSelector = conf_json['featureSelection']['modelBased'] featureSelectionMethod = conf_json['selectionMethod']['featureSelection'] featureEngineeringSelector = conf_json['selectionMethod']['featureEngineering'] if featureSelectionMethod == 'True': featureEngineeringSelector = 'False' # if feature engineering is true then we check weather PCA is true or svd is true. By default we will run PCA if featureEngineeringSelector == 'True': if pcaReducerStatus == 'True': svdReducerStatus = 'False' factorReducerStatus=='False' icaReducerStatus == 'False' elif svdReducerStatus == 'True': pcaReducerStatus = 'False' factorReducerStatus=='False' icaReducerStatus == 'False' elif factorReducerStatus=='True': pcaReducerStatus=='False' svdReducerStatus=='False' icaReducerStatus=='False' elif icaReducerStatus=='True': pcaReducerStatus=="False" svdReducerStatus=="False" factorReducerStatus=="False" else: pcaReducerStatus = 'True' if featureSelectionMethod == 'False' and featureEngineeringSelector == 'False': featureSelectionMethod = 'True' if featureSelectionMethod == 'True': if modelSelector == 'False' and correlationSelector == 'False' and allFeaturesSelector == 'False': modelSelector = 'True' reductionMethod = 'na' bpca_features = [] #nfeatures = 0 if 'maxClasses' in conf_json: maxclasses = int(conf_json['maxClasses']) else: maxClasses = 20 target = targetFeature self.log.info('-------> Feature: '+str(target)) dataFrame = df pThresholdInput=pValThresholdInput pThresholdTarget=pValThresholdTarget cThresholdInput=corrThresholdInput cThresholdTarget=corrThresholdTarget numericDiscreteFeatures=[] similarGruops=[] numericContinuousFeatures=[] categoricalFeatures=[] nonNumericFeatures=[] apca_features = [] dTypesDic={} dataColumns = list(dataFrame.columns) features_list = list(dataFrame.columns) modelselectedFeatures=[] topFeatures=[] allFeatures=[] targetType="" # just to make sure feature engineering is false #print(svdReducerStatus) if featureEngineeringSelector.lower() == 'false' and correlationSelector.lower() == "true" and len(textFeatures) <= 0: reducerObj=featureReducer() self.log.info(featureReducer.__doc__) self.log.info('Status:- |... Feature reduction started') updatedNumericFeatures,updatedFeatures,similarGruops=reducerObj.startReducer(dataFrame,dataColumns,target,varThreshold) if len(updatedFeatures) <= 1: self.log.info('=======================================================') self.log.info('Most of the features are of low variance. Use Model based feature engineering for better result') self.log.info('=======================================================') raise Exception('Most of the features are of low variance. Use Model based feature engineering for better result') dataFrame=dataFrame[updatedFeatures] dataColumns=list(dataFrame.columns) self.log.info('Status:- |... Feature reduction completed') elif (pcaReducerStatus.lower() == "true" or svdReducerStatus.lower() == 'true' or factorReducerStatus.lower() == 'true' or icaReducerStatus.lower()=='true') and featureEngineeringSelector.lower() == 'true': # check is PCA or SVD is true pcaColumns=[] #print(svdReducerStatus.lower()) if target != "": dataColumns.remove(target) targetArray=df[target].values targetArray.shape = (len(targetArray), 1) if pcaReducerStatus.lower() == "true": if nfeatures == 0: pca = PCA(n_components='mle',svd_solver = 'full') elif nfeatures < 1: pca = PCA(n_components=nfeatures,svd_solver = 'full') else: pca = PCA(n_components=int(nfeatures)) pca.fit(df[dataColumns]) bpca_features = dataColumns.copy() pcaArray=pca.transform(df[dataColumns]) method = 'PCA' elif svdReducerStatus.lower() == 'true': if nfeatures < 2: nfeatures = 2 pca = TruncatedSVD(n_components=int(nfeatures), n_iter=7, random_state=42) pca.fit(df[dataColumns]) bpca_features = dataColumns.copy() pcaArray=pca.transform(df[dataColumns]) method = 'SVD' elif factorReducerStatus.lower()=='true': if int(nfeatures) == 0: pca=FactorAnalysis() else: pca=FactorAnalysis(n_components=int(nfeatures)) pca.fit(df[dataColumns]) bpca_features = dataColumns.copy() pcaArray=pca.transform(df[dataColumns]) method = 'FactorAnalysis' elif icaReducerStatus.lower()=='true': if int(nfeatures) == 0: pca=FastICA() else: pca=FastICA(n_components=int(nfeatures)) pca.fit(df[dataColumns]) bpca_features = dataColumns.copy() pcaArray=pca.transform(df[dataColumns]) method = 'IndependentComponentAnalysis' pcaDF=pd.DataFrame(pcaArray) #print(pcaDF) for i in range(len(pcaDF.columns)): pcaColumns.append(method+str(i)) topFeatures=pcaColumns apca_features= pcaColumns.copy() if target != '': pcaColumns.append(target) scaledDf = pd.DataFrame(np.hstack((pcaArray, targetArray)),columns=pcaColumns) else: scaledDf = pd.DataFrame(pcaArray,columns=pcaColumns) self.log.info("<--- dataframe after dimensionality reduction using "+method) self.log.info(scaledDf.head()) dataFrame=scaledDf dataColumns=list(dataFrame.columns) self.log.info('Status:- |... Feature reduction started') self.log.info('Status:- |... '+method+' done') self.log.info('Status:- |... Feature reduction completed') self.numofCols = dataFrame.shape[1] self.numOfRows = dataFrame.shape[0] dataFDtypes=[] for i in dataColumns: dataType=dataFrame[i].dtypes dataFDtypes.append(tuple([i,str(dataType)])) #Categoring datatypes for item in dataFDtypes: dTypesDic[item[0]] = item[1] if item[0] != target: if item[1] in ['int16', 'int32', 'int64'] : numericDiscreteFeatures.append(item[0]) elif item[1] in ['float16', 'float32', 'float64']: numericContinuousFeatures.append(item[0]) else: nonNumericFeatures.append(item[0]) self.numOfRows = dataFrame.shape[0] ''' cFRatio = 0.01 if(self.numOfRows < 1000): cFRatio = 0.2 elif(self.numOfRows < 10000): cFRatio = 0.1 elif(self.numOfRows < 100000): cFRatio = 0.01 ''' for i in numericDiscreteFeatures: nUnique=len(dataFrame[i].unique().tolist()) nRows=self.numOfRows if nUnique <= categoricalMaxLabel: categoricalFeatures.append(i) for i in numericContinuousFeatures: nUnique=len(dataFrame[i].unique().tolist()) nRows=self.numOfRows if nUnique <= categoricalMaxLabel: categoricalFeatures.append(i) discreteFeatures=list(set(numericDiscreteFeatures)-set(categoricalFeatures)) numericContinuousFeatures=list(set(numericContinuousFeatures)-set(categoricalFeatures)) self.log.info('-------> Numerical continuous features :'+(str(numericContinuousFeatures))[:500]) self.log.info('-------> Numerical discrete features :'+(str(discreteFeatures))[:500]) self.log.info('-------> Non numerical features :'+(str(nonNumericFeatures))[:500]) self.log.info('-------> Categorical Features :'+(str(categoricalFeatures))[:500]) if target !="" and featureEngineeringSelector.lower() == "false" and correlationSelector.lower() == "true": self.log.info('\\n------- Feature Based Correlation Analysis Start ------') start = time.time() featureImpObj = featureImp() topFeatures,targetType= featureImpObj.FFImpNew(dataFrame,numericContinuousFeatures,discreteFeatures,nonNumericFeatures,categoricalFeatures,dTypesDic,target,pThresholdInput,pThresholdTarget,cThresholdInput,cThresholdTarget,categoricalMaxLabel,problem_type,maxClasses) #topFeatures,targetType= featureImpObj.FFImp(dataFrame,numericContinuousFeatures,discreteFeatures,nonNumericFeatures,categoricalFeatures,dTypesDic,target,pThreshold,cThreshold,categoricalMaxLabel,problem_type,maxClasses) self.log.info('-------> Highly Correlated Features Using Correlation Techniques'+(str(topFeatures))[:500]) executionTime=time.time() - start self.log.info('-------> Time Taken: '+str(executionTime)) self.log.info('Status:- |... Correlation based feature selection done: '+str(len(topFeatures))+' out of '+str(len(dataColumns))+' selected') self.log.info('------- Feature Based Correlation Analysis End ------>\\n') if targetType == '': if problem_type.lower() == 'classification': targetType = 'categorical' if problem_type.lower() == 'regression': targetType = 'continuous' if target !="" and featureEngineeringSelector.lower() == "false" and modelSelector.lower() == "true": self.log.info('\\n------- Model Based Correlation Analysis Start -------') start = time.time() updatedFeatures = dataColumns updatedFeatures.remove(target) #targetType = problem_type.lower() modelselectedFeatures=[] if targetType == 'categorical': try: xtrain=dataFrame[updatedFeatures] ytrain=dataFrame[target] etc = ExtraTreesClassifier(n_estimators=100) etc.fit(xtrain, ytrain) rfe = RFE(etc, n_features_to_select=1, verbose =0 ) rfe.fit(xtrain, ytrain) # total list of features ranks = {} ranks["RFE_LR"] = ranking(list(map(float, rfe.ranking_)), dataColumns, order=-1) for item in ranks["RFE_LR"]: if ranks["RFE_LR"][item]>0.30: #threshold as 30% modelselectedFeatures.append(item) modelselectedFeatures = list(modelselectedFe
atures) self.log.info('-------> Highly Correlated Features Using Treeclassifier + RFE: '+(str(modelselectedFeatures))[:500]) except Exception as e: self.log.info('---------------->'+str(e)) selector = SelectFromModel(ExtraTreesClassifier()) xtrain=dataFrame[updatedFeatures] ytrain=dataFrame[target] selector.fit(xtrain,ytrain) modelselectedFeatures = xtrain.columns[(selector.get_support())].tolist() self.log.info('-------> Highly Correlated Features Using Treeclassifier: '+(str(modelselectedFeatures))[:500]) else: try: xtrain=dataFrame[updatedFeatures] ytrain=dataFrame[target] ls = Lasso() ls.fit(xtrain, ytrain) rfe = RFE(ls, n_features_to_select=1, verbose = 0 ) rfe.fit(xtrain, ytrain) # total list of features ranks = {} ranks["RFE_LR"] = ranking(list(map(float, rfe.ranking_)), dataColumns, order=-1) for item in ranks["RFE_LR"]: if ranks["RFE_LR"][item]>0.30: #threshold as 30% modelselectedFeatures.append(item) modelselectedFeatures = list(modelselectedFeatures) self.log.info('-------> Highly Correlated Features Using LASSO + RFE: '+(str(modelselectedFeatures))[:500]) except Exception as e: self.log.info('---------------->'+str(e)) selector = SelectFromModel(Lasso()) xtrain=dataFrame[updatedFeatures] ytrain=dataFrame[target] selector.fit(xtrain,ytrain) modelselectedFeatures = xtrain.columns[(selector.get_support())].tolist() self.log.info('-------> Highly Correlated Features Using LASSO: '+(str(modelselectedFeatures))[:500]) executionTime=time.time() - start self.log.info('-------> Time Taken: '+str(executionTime)) self.log.info('Status:- |... Model based feature selection done: '+str(len(modelselectedFeatures))+' out of '+str(len(dataColumns))+' selected') self.log.info('--------- Model Based Correlation Analysis End -----\\n') if target !="" and featureEngineeringSelector.lower() == "false" and allFeaturesSelector.lower() == "true": allFeatures = features_list if target != '': allFeatures.remove(target) #print(allFeatures) if len(topFeatures) == 0 and len(modelselectedFeatures) == 0 and len(allFeatures) == 0: allFeatures = features_list return dataFrame,target,topFeatures,modelselectedFeatures,allFeatures,targetType,similarGruops,numericContinuousFeatures,discreteFeatures,nonNumericFeatures,categoricalFeatures,pca,bpca_features,apca_features,featureEngineeringSelector except Exception as inst: self.log.info('Feature selector failed: '+str(inst)) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import sys import json import datetime,time,timeit import itertools #Sci-Tools imports import numpy as np import pandas as pd import math from statsmodels.tsa.stattools import adfuller from scipy.stats.stats import pearsonr from numpy import cumsum, log, polyfit, sqrt, std, subtract from numpy.random import randn #SDP1 class import from feature_engineering.featureImportance import featureImp from sklearn.feature_selection import VarianceThreshold import logging class featureReducer(): def __init__(self): self.pandasNumericDtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] self.log = logging.getLogger('eion') def startReducer(self,df,data_columns,target,var_threshold): self.log.info('\\n---------- Feature Reducer Start ----------') dataframe = df columns=data_columns target = target corrThreshold=1.0 categoricalFeatures=[] nonNumericFeatures=[] constFeatures=[] qconstantColumns=[] DtypesDic={} numericFeatures=[] nonNumericalFeatures=[] similarFeatureGroups=[] try: dataFDtypes=self.dataFramecolType(dataframe) for item in dataFDtypes: DtypesDic[item[0]] = item[1] if item[1] in self.pandasNumericDtypes: numericFeatures.append(item[0]) else: nonNumericFeatures.append(item[0]) #Checking for constant data features for col in columns: try: distCount = len(dataframe[col].unique()) if(distCount == 1): constFeatures.append(col) except Exception as inst: self.log.info('Unique Testing Fail for Col '+str(col)) numericalDataCols,nonNumericalDataCols = [],[] #Removing constant data features if(len(constFeatures) != 0): self.log.info( '-------> Constant Features: '+str(constFeatures)) numericalDataCols = list(set(numericFeatures) - set(constFeatures)) nonNumericalDataCols = list(set(nonNumericFeatures) - set(constFeatures)) else: numericalDataCols = list(set(numericFeatures)) nonNumericalDataCols = list(set(nonNumericFeatures)) if(len(numericalDataCols) > 1): if var_threshold !=0: qconstantFilter = VarianceThreshold(threshold=var_threshold) tempDf=df[numericalDataCols] qconstantFilter.fit(tempDf) qconstantColumns = [column for column in numericalDataCols if column not in tempDf.columns[qconstantFilter.get_support()]] if(len(qconstantColumns) != 0): if target != '' and target in qconstantColumns: qconstantColumns.remove(target) self.log.info( '-------> Low Variant Features: '+str(qconstantColumns)) self.log.info('Status:- |... Low variance feature treatment done: '+str(len(qconstantColumns))+' low variance features found') numericalDataCols = list(set(numericalDataCols) - set(qconstantColumns)) else: self.log.info('Status:- |... Low variance feature treatment done: Found zero or 1 numeric feature') #Minimum of two columns required for data integration if(len(numericalDataCols) > 1): numColPairs = list(itertools.product(numericalDataCols, numericalDataCols)) noDupList = [] for item in numColPairs: if(item[0] != item[1]): noDupList.append(item) numColPairs = noDupList tempArray = [] for item in numColPairs: tempCorr = np.abs(dataframe[item[0]].corr(dataframe[item[1]])) if(tempCorr > corrThreshold): tempArray.append(item[0]) tempArray = np.unique(tempArray) nonsimilarNumericalCols = list(set(numericalDataCols) - set(tempArray)) ''' Notes: tempArray: List of all similar/equal data features nonsimilarNumericalCols: List of all non-correlatable data features ''' #Grouping similar/equal features groupedFeatures = [] if(len(numericalDataCols) != len(nonsimilarNumericalCols)): #self.log.info( '-------> Similar/Equal Features: Not Any') #Correlation dictionary corrDic = {} for feature in tempArray: temp = [] for col in tempArray: tempCorr = np.abs(dataframe[feature].corr(dataframe[col])) temp.append(tempCorr) corrDic[feature] = temp #Similar correlation dataframe corrDF = pd.DataFrame(corrDic,index = tempArray) corrDF.loc[:,:] = np.tril(corrDF, k=-1) alreadyIn = set() similarFeatures = [] for col in corrDF: perfectCorr = corrDF[col][corrDF[col] > corrThreshold].index.tolist() if perfectCorr and col not in alreadyIn: alreadyIn.update(set(perfectCorr)) perfectCorr.append(col) similarFeatures.append(perfectCorr) self.log.info( '-------> No Similar/Equal Features: '+str(len(similarFeatures))) for i in range(0,len(similarFeatures)): similarFeatureGroups.append(similarFeatures[i]) #self.log.info((str(i+1)+' '+str(similarFeatures[i]))) self.log.info('-------> Similar/Equal Features: '+str(similarFeatureGroups)) self.log.info('-------> Non Similar Features :'+str(nonsimilarNumericalCols)) updatedSimFeatures = [] for items in similarFeatures: if(target != '' and target in items): for p in items: updatedSimFeatures.append(p) else: updatedSimFeatures.append(items[0]) newTempFeatures = list(set(updatedSimFeatures + nonsimilarNumericalCols)) updatedNumFeatures = newTempFeatures #self.log.info( '\\n <--- Merged similar/equal features into one ---> ') updatedFeatures = list(set(newTempFeatures + nonNumericalDataCols)) self.log.info('Status:- |... Similar feature treatment done: '+str(len(similarFeatures))+' similar features found') else: updatedNumFeatures = numericalDataCols updatedFeatures = list(set(columns) - set(constFeatures)-set(qconstantColumns)) self.log.info( '-------> Similar/Equal Features: Not Any') self.log.info('Status:- |... Similar feature treatment done: No similar features found') else: updatedNumFeatures = numericalDataCols updatedFeatures = list(set(columns) - set(constFeatures)-set(qconstantColumns)) self.log.info( '\\n-----> Need minimum of two numerical features for data integration.') self.log.info('Status:- |... Similar feature treatment done: Found zero or 1 numeric feature') self.log.info('---------- Feature Reducer End ----------\\n') return updatedNumFeatures,updatedFeatures,similarFeatureGroups except Exception as inst: self.log.info("feature Reducer failed "+str(inst)) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) return [],[] def dataFramecolType(self,dataFrame): dataFDtypes=[] try: dataColumns=list(dataFrame.columns) for i in dataColumns: dataType=dataFrame[i].dtypes dataFDtypes.append(tuple([i,str(dataType)])) return dataFDtypes except: self.log.info("error in dataFramecolyType") return dataFDtypes <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s>
''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' #System imports import os import sys import json import datetime,time,timeit import itertools #Sci-Tools imports import numpy as np import pandas as pd import math from sklearn.metrics import normalized_mutual_info_score from sklearn.feature_selection import f_regression,mutual_info_regression from sklearn.feature_selection import chi2,f_classif,mutual_info_classif import scipy.stats from scipy.stats import pearsonr, spearmanr, pointbiserialr, f_oneway, kendalltau, chi2_contingency import statsmodels.api as sm import statsmodels.formula.api as smf import logging def getHigherSignificanceColName(featureDict, colname1, colname2): if featureDict[colname1]<featureDict[colname2]: return colname2 else: return colname1 class featureImp(): def __init__(self): self.dTypesDic = {} self.featureImpDic={} self.indexedDic = {} self.log = logging.getLogger('eion') def FFImpNew(self,df,contFeatures,discreteFeatures,nonNumericFeatures,categoricalFeatures,dTypesDic,target,pValThInput,pValThTarget,corrThInput,corrThTarget,categoricalMaxLabel,problem_type,maxClasses): try: dataframe = df contiFeatures= contFeatures quantFeatures=discreteFeatures+contiFeatures categoricalFeatures=categoricalFeatures targetData=dataframe[target] nUnique=len(targetData.unique().tolist()) if nUnique <= categoricalMaxLabel: targetType="categorical" else: targetType="continuous" if problem_type.lower() == 'classification' and targetType == 'continuous': targetType = 'categorical' self.log.info( '-------> Change Target Type to Categorial as user defined') if problem_type.lower() == 'regression' and targetType == 'categorical': targetType = 'continuous' self.log.info( '-------> Change Target Type to Continuous as user defined') self.log.info( '-------> Target Type: '+str(targetType)) impFeatures=[] catFeature = [] numFeature = [] catFeatureXYcat = [] numFeatureXYcat = [] catFeatureXYnum= [] numFeatureXYnum = [] dropFeatureCat= [] dropFeatureNum = [] featureDict = {} if targetType =="categorical": if len(categoricalFeatures) !=0: # input vs target # chi-square for col in categoricalFeatures: contingency = pd.crosstab(dataframe[col], targetData) stat, p, dof, expected = chi2_contingency(contingency) if p <= pValThTarget: catFeatureXYcat.append(col) # categorical feature xy when target is cat featureDict[col] = p #input vs input # chi_square if len(catFeatureXYcat) != 0: length = len(catFeatureXYcat) for i in range(length): for j in range(i+1, length): contingency = pd.crosstab(dataframe[catFeatureXYcat[i]], dataframe[catFeatureXYcat[j]]) stat, p, dof, expected = chi2_contingency(contingency) if p > pValThInput: highSignificanceColName = getHigherSignificanceColName(featureDict, catFeatureXYcat[i], catFeatureXYcat[j]) dropFeatureCat.append(highSignificanceColName) break catFeature = list(set(catFeatureXYcat) - set(dropFeatureCat)) featureDict.clear() dropFeatureCat.clear() if len(quantFeatures) !=0: # input vs target # one way anova for col in quantFeatures: CategoryGroupLists = dataframe.groupby(target)[col].apply(list) AnovaResults = f_oneway(*CategoryGroupLists) if AnovaResults[1] <= pValThTarget: numFeatureXYcat.append(col) #numeric feature xy when target is cat featureDict[col] = AnovaResults[1] #input vs input # preason/spearman/ols # numeric feature xx when target is cat if len(numFeatureXYcat) != 0: df_xx = dataframe[numFeatureXYcat] rows, cols = df_xx.shape flds = list(df_xx.columns) corr_pearson = df_xx.corr(method='pearson').values corr_spearman = df_xx.corr(method='spearman').values for i in range(cols): for j in range(i+1, cols): if corr_pearson[i,j] > -corrThInput and corr_pearson[i,j] < corrThInput: if corr_spearman[i,j] > -corrThInput and corr_spearman[i,j] < corrThInput: #f = "'"+flds[i]+"'"+' ~ '+"'"+flds[j]+"'" #reg = smf.ols(formula=f, data=dataframe).fit() tmpdf = pd.DataFrame({'x':dataframe[flds[j]], 'y':dataframe[flds[i]]}) reg = smf.ols('y~x', data=tmpdf).fit() if len(reg.pvalues) > 1 and reg.pvalues[1] > pValThInput: highSignificanceColName = getHigherSignificanceColName(featureDict, flds[i], flds[j]) dropFeatureNum.append(highSignificanceColName) break else: highSignificanceColName = getHigherSignificanceColName(featureDict, flds[i], flds[j]) dropFeatureNum.append(highSignificanceColName) break else: highSignificanceColName = getHigherSignificanceColName(featureDict, flds[i], flds[j]) dropFeatureNum.append(highSignificanceColName) break numFeature = list(set(numFeatureXYcat) - set(dropFeatureNum)) dropFeatureNum.clear() featureDict.clear() impFeatures = numFeature+catFeature hCorrFeatures=list(set((impFeatures))) else: # targetType =="continuous": if len(categoricalFeatures) !=0: # input vs target # Anova for col in categoricalFeatures: #f = target+' ~ C('+col+')' #model = smf.ols(f, data=dataframe).fit() #table = sm.stats.anova_lm(model, typ=2) tmpdf = pd.DataFrame({'x':dataframe[col], 'y':dataframe[target]}) model = smf.ols('y~x', data=tmpdf).fit() table = sm.stats.anova_lm(model, typ=2) if table['PR(>F)'][0] <= pValThTarget: catFeatureXYnum.append(col) #categorical feature xy when target is numeric featureDict[col]=table['PR(>F)'][0] #input vs input # chi_square if len(catFeatureXYnum) != 0: length = len(catFeatureXYnum) for i in range(length): for j in range(i+1, length): contingency = pd.crosstab(dataframe[catFeatureXYnum[i]], dataframe[catFeatureXYnum[j]]) stat, p, dof, expected = chi2_contingency(contingency) if p > pValThInput: highSignificanceColName = getHigherSignificanceColName(featureDict, catFeatureXYnum[i], catFeatureXYnum[j]) dropFeatureCat.append(highSignificanceColName) break catFeature = list(set(catFeatureXYnum) - set(dropFeatureCat)) dropFeatureCat.clear() featureDict.clear() if len(quantFeatures) !=0: # input vs target # preason/spearman/ols for col in quantFeatures: pearson_corr = pearsonr(dataframe[col], targetData) coef = round(pearson_corr[0],5) p_value = round(pearson_corr[1],5) if coef > -corrThTarget and coef < corrThTarget: spearman_corr = spearmanr(dataframe[col], targetData) coef = round(spearman_corr[0],5) p_value = round(spearman_corr[1],5) if coef > -corrThTarget and coef < corrThTarget: #f = target+' ~ '+col #reg = smf.ols(formula=f, data=dataframe).fit() tmpdf = pd.DataFrame({'x':dataframe[col], 'y':dataframe[target]}) reg = smf.ols('y~x', data=tmpdf).fit() if len(reg.pvalues) > 1 and reg.pvalues[1] <= pValThTarget: numFeatureXYnum.append(col) # numeric feature xx when target is numeric featureDict[col]=reg.pvalues[1] else: numFeatureXYnum.append(col) featureDict[col]=p_value else: numFeatureXYnum.append(col) featureDict[col]=p_value #input vs input # preason/spearman/ols if len(numFeatureXYnum) != 0: df_xx = dataframe[numFeatureXYnum] rows, cols = df_xx.shape flds = list(df_xx.columns) corr_pearson = df_xx.corr(method='pearson').values corr_spearman = df_xx.corr(method='spearman').values for i in range(cols): for j in range(i+1, cols): if corr_pearson[i,j] > -corrThInput and corr_pearson[i,j] < corrThInput: if corr_spearman[i,j] > -corrThInput and corr_spearman[i,j] < corrThInput: #f = flds[i]+' ~ '+flds[j] #reg = smf.ols(formula=f, data=dataframe).fit() tmpdf = pd.DataFrame({'x':dataframe[flds[j]], 'y':dataframe[flds[i]]}) reg = smf.ols('y~x', data=tmpdf).fit() if len(reg.pvalues) > 1 and reg.pvalues[1] > pValThInput: highSignificanceColName = getHigherSignificanceColName(featureDict, flds[i], flds[j]) dropFeatureNum.append(highSignificanceColName) break
else: highSignificanceColName = getHigherSignificanceColName(featureDict, flds[i], flds[j]) dropFeatureNum.append(highSignificanceColName) break else: highSignificanceColName = getHigherSignificanceColName(featureDict, flds[i], flds[j]) dropFeatureNum.append(highSignificanceColName) break numFeature = list(set(numFeatureXYnum) - set(dropFeatureNum)) featureDict.clear() dropFeatureNum.clear() impFeatures = numFeature+catFeature hCorrFeatures=list(set(impFeatures)) return hCorrFeatures,targetType except Exception as inst: self.log.info( '\\n--> Failed calculating feature importance '+str(inst)) hCorrFeatures=[] targetType='' exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) self.log.info('\\n--> Taking all the features as highest correlation features') hCorrFeatures = list(dataframe.columns) return hCorrFeatures,targetType def FFImp(self,df,contFeatures,discreteFeatures,nonNumericFeatures,categoricalFeatures,dTypesDic,target,pValTh,corrTh,categoricalMaxLabel,problem_type,maxClasses): ''' Input: dataframe, numeric continuous features, numeric discrete features Output: feature importance dictionary ''' try: dataframe =df contiFeatures= contFeatures discreteFeatures = discreteFeatures nonNumeric = nonNumericFeatures categoricalFeatures=categoricalFeatures self.dTypesDic = dTypesDic numericFeatures = contiFeatures + discreteFeatures+categoricalFeatures quantFeatures=discreteFeatures+contiFeatures scorrDict={} fScoreDict={} pcorrDict={} miDict={} targetData=dataframe[target] data=dataframe[numericFeatures] nUnique=len(targetData.unique().tolist()) nRows=targetData.shape[0] ''' print("\\n ===> nUnique :") print(nUnique) print("\\n ===> nRows :") print(nRows) print("\\n ===> cFRatio :") print(cFRatio) print("\\n ===> nUnique/nRows :") ''' #calratio = nUnique self.log.info( '-------> Target Column Unique Stats: '+str(nUnique)+' nRows: '+str(nRows)+' Unique:'+str(nUnique)) #sys.exit() if nUnique <= categoricalMaxLabel: targetType="categorical" else: targetType="continuous" if problem_type.lower() == 'classification' and targetType == 'continuous': targetType = 'categorical' self.log.info( '-------> Change Target Type to Categorial as user defined') if problem_type.lower() == 'regression' and targetType == 'categorical': targetType = 'continuous' self.log.info( '-------> Change Target Type to Continuous as user defined') self.log.info( '-------> Target Type: '+str(targetType)) impFeatures=[] featureImpDict={} if targetType =="categorical": try: if len(categoricalFeatures) !=0: categoricalData=dataframe[categoricalFeatures] chiSqCategorical=chi2(categoricalData,targetData)[1] corrSeries=pd.Series(chiSqCategorical, index=categoricalFeatures) impFeatures.append(corrSeries[corrSeries<pValTh].index.tolist()) corrDict=corrSeries.to_dict() featureImpDict['chiSquaretestPValue']=corrDict except Exception as inst: self.log.info("Found negative values in categorical variables "+str(inst)) if len(quantFeatures) !=0: try: quantData=dataframe[quantFeatures] fclassScore=f_classif(quantData,targetData)[1] miClassScore=mutual_info_classif(quantData,targetData) fClassSeries=pd.Series(fclassScore,index=quantFeatures) miClassSeries=pd.Series(miClassScore,index=quantFeatures) impFeatures.append(fClassSeries[fClassSeries<pValTh].index.tolist()) impFeatures.append(miClassSeries[miClassSeries>corrTh].index.tolist()) featureImpDict['anovaPValue']=fClassSeries.to_dict() featureImpDict['MIScore']=miClassSeries.to_dict() except MemoryError as inst: self.log.info( '-------> MemoryError in feature selection. '+str(inst)) pearsonScore=dataframe.corr() targetPScore=abs(pearsonScore[target]) impFeatures.append(targetPScore[targetPScore<pValTh].index.tolist()) featureImpDict['pearsonCoff']=targetPScore.to_dict() hCorrFeatures=list(set(sum(impFeatures, []))) else: if len(quantFeatures) !=0: try: quantData =dataframe[quantFeatures] fregScore=f_regression(quantData,targetData)[1] miregScore=mutual_info_regression(quantData,targetData) fregSeries=pd.Series(fregScore,index=quantFeatures) miregSeries=pd.Series(miregScore,index=quantFeatures) impFeatures.append(fregSeries[fregSeries<pValTh].index.tolist()) impFeatures.append(miregSeries[miregSeries>corrTh].index.tolist()) featureImpDict['anovaPValue']=fregSeries.to_dict() featureImpDict['MIScore']=miregSeries.to_dict() except MemoryError as inst: self.log.info( '-------> MemoryError in feature selection. '+str(inst)) pearsonScore=dataframe.corr() targetPScore=abs(pearsonScore[target]) impFeatures.append(targetPScore[targetPScore<pValTh].index.tolist()) featureImpDict['pearsonCoff']=targetPScore.to_dict() hCorrFeatures=list(set(sum(impFeatures, []))) return hCorrFeatures,targetType except Exception as inst: self.log.info( '\\n--> Failed calculating feature importance '+str(inst)) hCorrFeatures=[] targetType='' exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) return hCorrFeatures,targetType ''' Importance degree Computes set of relational parameters pearson correlation, mutual information ''' def importanceDegree(self,dataframe,feature1,feature2): try: tempList = [] #Parameter 1: pearson correlation pcorr = self.pearsonCoff(dataframe,feature1,feature2) tempList.append(pcorr) #Parameter 2: mutual information #Testing mi = self.mutualInfo(dataframe,feature1,feature2,self.dTypesDic) tempList.append(mi) #return the highest parameter return np.max(tempList) except: return 0.0 ''' Compute pearson correlation ''' def pearsonCoff(self,dataframe,feature1,feature2): try: value=dataframe[feature1].corr(dataframe[feature2]) return np.abs(value) except: return 0.0 ''' Compute mutual information ''' def mutualInfo(self,dataframe,feature1,feature2,typeDic): try: numType = {'int64': 'discrete','int32' : 'discrete','int16' : 'discrete','float16' : 'continuous','float32' : 'continuous','float64' : 'continuous'} featureType1 = numType[typeDic[feature1]] featureType2 = numType[typeDic[feature2]] bufferList1=dataframe[feature1].values.tolist() bufferList2=dataframe[feature2].values.tolist() #Case 1: Only if both are discrete if(featureType1 == 'discrete' and featureType2 == 'discrete'): tempResult = discreteMI(bufferList1,bufferList2) return np.mean(tempResult) #Case 2: If one of the features is continuous elif(featureType1 == 'continuous' and featureType2 == 'discrete'): tempResult = self.categoricalMI(bufferList1,bufferList2) return np.mean(tempResult) else: tempResult = self.continuousMI(bufferList1,bufferList2) return np.mean(tempResult) except: return 0.0 def continuousMI(self,bufferList1,bufferList2): mi = 0.0 #Using mutual info regression from feature selection mi = mutual_info_regression(self.vec(bufferList1),bufferList2) return mi def categoricalMI(self,bufferList1,bufferList2): mi = 0.0 #Using mutual info classification from feature selection mi = mutual_info_classif(self.vec(bufferList1),bufferList2) return mi def discreteMI(self,bufferList1,bufferList2): mi = 0.0 #Using scikit normalized mutual information function mi = normalized_mutual_info_score(bufferList1,bufferList2) return mi def vec(self,x): return [[i] for i in x] <s> import pandas as pd import numpy as np from appbe.eda import ux_eda from sklearn.preprocessing import LabelEncoder import json import matplotlib.pyplot as plt import os import mpld3 import subprocess import os import sys import re import json import pandas as pd from appbe.eda import ux_eda from aif360.datasets import StandardDataset from aif360.metrics import ClassificationMetric from aif360.datasets import BinaryLabelDataset def get_metrics(request): dataFile = os.path.join(request.session['deploypath'], "data", "preprocesseddata.csv.gz") predictionScriptPath = os.path.join(request.session['deploypath'], 'aion_predict.py') displaypath = os.path.join(request.session['deploypath'], "etc", "display.json") f = open(displaypath, "r") configSettings = f.read() f.close() configSettings = json.loads(configSettings) Target_feature = configSettings['targetFeature'] outputStr = subprocess.check_output([sys.executable, predictionScriptPath, dataFile]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)', str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() predict_dict = json.loads(outputStr) df = pd.read_csv(dataFile) df_p = pd.DataFrame.from_dict(predict_dict['data']) d3_url = request.GET.get('d3_url') mpld3_url = request.GET.get('mpld3_url') df_temp = request.GET.get('feature') global metricvalue metricvalue = request.GET.get('metricvalue') Protected_feature = df_temp df_p = df_p.drop(columns=[Target_feature, 'remarks', 'probability']) df_p.rename(columns={'prediction': Target_feature}, inplace=True) eda_obj = ux_eda(dataFile, optimize=1) features,dateFeature,seqFeature,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature,catfeatures = eda_obj.getFeatures() features_to_Encode = features categorical_names = {} encoders = {} for feature in features_to_Encode: le = LabelEncoder() le.fit(df[feature]) df[feature] = le.transform(df[feature]) le.fit(df_p[feature]) df_p[feature] = le.transform(df_p[feature]) categorical_names[feature] = le.classes_ encoders[feature]
= le new_list = [item for item in categorical_names[Protected_feature] if not(pd.isnull(item)) == True] claas_size = len(new_list) if claas_size > 10: return 'HeavyFeature' metrics = fair_metrics(categorical_names
satype.lower() == 'first': S = Si['S1'] else: S = Si['ST'] return S except Exception as e: print('Error in calculating Si for Regression: ', str(e)) raise ValueError(str(e)) def plotSi(self, S, saType): try: import matplotlib.pyplot as plt if saType.lower() == 'first': title, label = 'Sensitivity Analysis', 'First order' else: title, label = 'Sensitivity Analysis', 'Total order' x = np.arange(len(self.problem['names'])) width = 0.35 fig, ax = plt.subplots() ax.bar(x - width / 2, S, width, label=label) ax.set_xticks(x) ax.set_xlabel('Features') ax.set_ylabel('Sensitivity Indices') ax.set_title(title) ax.set_xticklabels(self.problem['names'], rotation=45, ha="right") ax.legend() plt.tight_layout() image = io.BytesIO() plt.savefig(image, format='png') image.seek(0) string = base64.b64encode(image.read()) SAimage = 'data:image/png;base64,' + urllib.parse.quote(string) except Exception as e: print(e) SAimage = '' return SAimage def checkModelType(modelName): isML= False isDL = False if modelName in ["Neural Network", "Convolutional Neural Network (1D)", "Recurrent Neural Network","Recurrent Neural Network (GRU)", "Recurrent Neural Network (LSTM)", "Neural Architecture Search", "Deep Q Network", "Dueling Deep Q Network"]: isDL = True elif modelName in ["Linear Regression","Lasso","Ridge","Logistic Regression", "Naive Bayes", "Decision Tree", "Random Forest", "Support Vector Machine", "K Nearest Neighbors", "Gradient Boosting", "Extreme Gradient Boosting (XGBoost)", "Light Gradient Boosting (LightGBM)", "Categorical Boosting (CatBoost)","Bagging (Ensemble)"]: isML = True return isML,isDL def startSA(request): try: displaypath = os.path.join(request.session['deploypath'], "etc", "display.json") if not os.path.exists(displaypath): raise Exception('Config file not found.') with open(displaypath) as file: config = json.load(file) probelmType = config['problemType'] if probelmType.lower() not in ['classification','regression']: raise Exception(f"Probolem Type: {probelmType} not supported") isML,isDL = checkModelType(config['modelname']) sample_size = 1024 if isML: model = joblib.load(os.path.join(request.session['deploypath'], 'model', config['saved_model'])) sample_size = 2048 if isDL: from tensorflow.keras.models import load_model model = load_model(os.path.join(request.session['deploypath'], 'model', config['saved_model'])) sample_size = 512 target = config['targetFeature'] featureName = config['modelFeatures'] dataPath = os.path.join(request.session['deploypath'], 'data', 'postprocesseddata.csv.gz') if not os.path.exists(dataPath): raise Exception('Data file not found.') from utils.file_ops import read_df_compressed read_status,dataFrame = read_df_compressed(dataPath) obj = sensitivityAnalysis(model, probelmType, dataFrame, target, featureName) obj.preprocess() obj.generate_samples(sample_size) submitType = str(request.GET.get('satype')) saType = 'first' if submitType == 'first' else 'total' if probelmType.lower() == 'classification': SA_values = obj.calSiClass(saType,isML,isDL) else: SA_values = obj.calSiReg(saType,isML,isDL) if SA_values.size and saType: graph = obj.plotSi(SA_values, saType) if graph: outputJson = {'Status': "Success", "graph": graph} else: outputJson = {'Status': "Error", "graph": '','reason':'Error in Plotting Graph'} else: outputJson = {'Status': "Error", "graph": '','reason':'Error in calculating Si values'} output_json = json.dumps(outputJson) return output_json except Exception as e: print(str(e)) raise ValueError(str(e)) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> import joblib import pandas as pd import sys import math import time import pandas as pd import numpy as np from sklearn.metrics import confusion_matrix from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score from sklearn.metrics import r2_score,mean_absolute_error,mean_squared_error from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix from sklearn.svm import SVC from sklearn.linear_model import LinearRegression import argparse import json def mltesting(modelfile,datafile,features,target): model = joblib.load(modelfile) ProblemName = model.__class__.__name__ if ProblemName in ['LogisticRegression','SGDClassifier','SVC','DecissionTreeClassifier','RandomForestClassifier','GaussianNB','KNeighborsClassifier','DecisionTreeClassifier','GradientBoostingClassifier','XGBClassifier','LGBMClassifier','CatBoostClassifier']: Problemtype = 'Classification' elif ProblemName in ['LinearRegression','Lasso','Ridge','DecisionTreeRegressor','RandomForestRegressor','GradientBoostingRegressor','XGBRegressor','LGBMRegressor','CatBoostRegressor']: Problemtype = 'Regression' else: Problemtype = 'Unknown' if Problemtype == 'Classification': Params = model.get_params() try: df = pd.read_csv(datafile,encoding='utf-8',skipinitialspace = True) if ProblemName == 'LogisticRegression' or ProblemName == 'DecisionTreeClassifier' or ProblemName == 'RandomForestClassifier' or ProblemName == 'GaussianNB' or ProblemName == 'KNeighborsClassifier' or ProblemName == 'GradientBoostingClassifier' or ProblemName == 'SVC': features = model.feature_names_in_ elif ProblemName == 'XGBClassifier': features = model.get_booster().feature_names elif ProblemName == 'LGBMClassifier': features = model.feature_name_ elif ProblemName == 'CatBoostClassifier': features = model.feature_names_ modelfeatures = features dfp = df[modelfeatures] tar = target target = df[tar] predic = model.predict(dfp) output = {} matrixconfusion = pd.DataFrame(confusion_matrix(predic,target)) matrixconfusion = matrixconfusion.to_json(orient='index') classificationreport = pd.DataFrame(classification_report(target,predic,output_dict=True)).transpose() classificationreport = round(classificationreport,2) classificationreport = classificationreport.to_json(orient='index') output["Precision"] = "%.2f" % precision_score(target, predic,average='weighted') output["Recall"] = "%.2f" % recall_score(target, predic,average='weighted') output["Accuracy"] = "%.2f" % accuracy_score(target, predic) output["ProblemName"] = ProblemName output["Status"] = "Success" output["Params"] = Params output["Problemtype"] = Problemtype output["Confusionmatrix"] = matrixconfusion output["classificationreport"] = classificationreport # import statistics # timearray = [] # for i in range(0,5): # start = time.time() # predic1 = model.predict(dfp.head(1)) # end = time.time() # timetaken = (round((end - start) * 1000,2),'Seconds') # timearray.append(timetaken) # print(timearray) start = time.time() for i in range(0,5): predic1 = model.predict(dfp.head(1)) end = time.time() timetaken = (round((end - start) * 1000,2),'Seconds') # print(timetaken) start1 = time.time() for i in range(0,5): predic2 = model.predict(dfp.head(10)) end1 = time.time() timetaken1 = (round((end1 - start1) * 1000,2) ,'Seconds') # print(timetaken1) start2 = time.time() for i in range(0,5): predic3 = model.predict(dfp.head(100)) end2 = time.time() timetaken2 = (round((end2 - start2) * 1000,2) ,'Seconds') # print(timetaken2) output["onerecord"] = timetaken output["tenrecords"] = timetaken1 output["hundrecords"] = timetaken2 print(json.dumps(output)) except Exception as e: output = {} output['Problemtype']='Classification' output['Status']= "Fail" output["ProblemName"] = ProblemName output["Msg"] = 'Detected Model : {} \\\\n Problem Type : Classification \\\\n Error : {}'.format(ProblemName, str(e).replace('"','//"').replace('\\n', '\\\\n')) print(output["Msg"]) print(json.dumps(output)) elif Problemtype == 'Regression': Params = model.get_params() try: df = pd.read_csv(datafile,encoding='utf-8',skipinitialspace = True) if ProblemName == 'LinearRegression' or ProblemName == 'Lasso' or ProblemName == 'Ridge' or ProblemName == 'DecisionTreeRegressor' or ProblemName == 'RandomForestRegressor' or ProblemName == 'GaussianNB' or ProblemName == 'KNeighborsRegressor' or ProblemName == 'GradientBoostingRegressor': features = model.feature_names_in_ elif ProblemName == 'XGBRegressor': features = model.get_booster().feature_names elif ProblemName == 'LGBMRegressor': features = model.feature_name_ elif ProblemName == 'CatBoostRegressor': features = model.feature_names_ modelfeatures = features dfp = df[modelfeatures] tar = target target = df[tar] predict = model.predict(dfp) mse = mean_squared_error(target, predict) mae = mean_absolute_error(target, predict) rmse = math.sqrt(mse) r2 = r2_score(target,predict,multioutput='variance_weighted') output = {} output["MSE"] = "%.2f" % mean_squared_error(target, predict) output["MAE"] = "%.2f" % mean_absolute_error(target, predict) output["RMSE"] = "%.2f" % math.sqrt(mse) output["R2"] = "%.2f" %r2_score(target,predict,multioutput='variance_weighted') output["ProblemName"] = ProblemName output["Problemtype"] = Problemtype output["Params"] = Params output['Status']='Success' start = time.time() predic1 = model.predict(dfp.head(1)) end = time.time() timetaken = (round((end - start) * 1000,2) ,'Seconds') # print(timetaken) start1 = time.time() predic2 = model.predict(dfp.head(10)) end1 = time.time() timetaken1 = (round((end1 - start1) * 1000,2),'Seconds') # print(timetaken1) start2 = time.time() predic3 = model.predict(dfp.head(100)) end2 = time.time() timetaken2 = (round((end2 - start2) * 1000,2) ,'Seconds') # print(timetaken2) output["onerecord"] = timetaken output["tenrecords"] = timetaken1 output["hundrecords"] = timetaken2 print(json.dumps(output)) except Exception as e: output = {} output['Problemtype']='Regression' output['Status']='Fail' output["ProblemName"] = ProblemName output["Msg"] = 'Detected Model : {} \\\\n Problem Type : Regression \\\\n Error : {}'.format(ProblemName, str(e).replace('"','//"').replace('\\n', '\\\\n')) print(json.dumps(output)) else: output = {} output['Problemtype']='Unknown' output['Status']='Fail' output['Params'] = '' output["ProblemName"] = ProblemName output["Msg"] = 'Detected Model : {} \\\\n Error : {}'.format(ProblemName, 'Model not supported') print(json.dumps(output)) return(json.dumps(output)) def baseline_testing(modelFile,csvFile,features,target): features = [x.strip() for x in features.split(',')] return mltesting(modelFile,csvFile,features,target)<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Techn
ologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import warnings import numpy as np import pandas as pd import sklearn.metrics as metrics from collections import defaultdict from sklearn.metrics import confusion_matrix import re import shutil import scipy.stats as st import json import os,sys import glob import logging from utils.file_ops import read_df_compressed class Visualization(): def __init__(self,usecasename,version,dataframe,visualizationJson,dateTimeColumn,deployPath,dataFolderLocation,numericContinuousFeatures,discreteFeatures,categoricalFeatures,modelFeatures,targetFeature,modeltype,original_data_file,profiled_data_file,trained_data_file,predicted_data_file,labelMaps,vectorizerFeatures,textFeatures,numericalFeatures,nonNumericFeatures,emptyFeatures,nrows,ncols,saved_model,scoreParam,learner_type,modelname,featureReduction,reduction_data_file): self.dataframe = dataframe self.displayjson = {} self.visualizationJson = visualizationJson self.dateTimeColumn = dateTimeColumn self.deployPath = deployPath #shutil.copy2(os.path.join(os.path.dirname(os.path.abspath(__file__)),'aion_portal.py'),self.deployPath) if learner_type == 'ML' and modelname != 'Neural Architecture Search': if(os.path.isfile(os.path.join(self.deployPath,'explainable_ai.py'))): os.remove(os.path.join(self.deployPath,'explainable_ai.py')) shutil.copy2(os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','utilities','xai','explainable_ai.py'),self.deployPath) # os.rename(os.path.join(self.deployPath,'explainable_ai.py'),os.path.join(self.deployPath,'aion_xai.py')) try: os.rename(os.path.join(self.deployPath,'explainable_ai.py'),os.path.join(self.deployPath,'aion_xai.py')) except FileExistsError: os.remove(os.path.join(self.deployPath,'aion_xai.py')) os.rename(os.path.join(self.deployPath,'explainable_ai.py'),os.path.join(self.deployPath,'aion_xai.py')) elif learner_type == 'DL' or modelname == 'Neural Architecture Search': if(os.path.isfile(os.path.join(self.deployPath,'explainable_ai.py'))): os.remove(os.path.join(self.deployPath,'explainable_ai.py')) shutil.copy2(os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','utilities','xai','explainabledl_ai.py'),self.deployPath) # os.rename(os.path.join(self.deployPath,'explainabledl_ai.py'),os.path.join(self.deployPath,'aion_xai.py')) try: os.rename(os.path.join(self.deployPath,'explainabledl_ai.py'),os.path.join(self.deployPath,'aion_xai.py')) except FileExistsError: os.remove(os.path.join(self.deployPath,'aion_xai.py')) os.rename(os.path.join(self.deployPath,'explainabledl_ai.py'),os.path.join(self.deployPath,'aion_xai.py')) self.jsondeployPath = deployPath #self.deployPath = self.deployPath+'visualization/' self.dataFolderLocation = dataFolderLocation self.vectorizerFeatures = vectorizerFeatures self.textFeatures = textFeatures self.emptyFeatures = emptyFeatures ''' try: os.makedirs(self.deployPath) except OSError as e: print("\\nFolder Already Exists") ''' self.numericContinuousFeatures = numericContinuousFeatures self.discreteFeatures = discreteFeatures self.categoricalFeatures = categoricalFeatures self.modelFeatures = modelFeatures self.modeltype = modeltype self.targetFeature = targetFeature self.displayjson['usecasename'] = str(usecasename) self.displayjson['version'] = str(version) self.displayjson['problemType'] = str(self.modeltype) self.displayjson['targetFeature'] = self.targetFeature self.displayjson['numericalFeatures'] = numericalFeatures self.displayjson['nonNumericFeatures'] = nonNumericFeatures self.displayjson['modelFeatures'] = self.modelFeatures self.displayjson['textFeatures'] = self.textFeatures self.displayjson['emptyFeatures'] = self.emptyFeatures self.displayjson['modelname']= str(modelname) self.displayjson['preprocessedData'] = str(original_data_file) self.displayjson['nrows'] = str(nrows) self.displayjson['ncols'] = str(ncols) self.displayjson['saved_model'] = str(saved_model) self.displayjson['scoreParam'] = str(scoreParam) self.displayjson['labelMaps'] = eval(str(labelMaps)) self.original_data_file = original_data_file self.displayjson['featureReduction'] = featureReduction if featureReduction == 'True': self.displayjson['reduction_data_file'] = reduction_data_file else: self.displayjson['reduction_data_file'] = '' self.pred_filename = predicted_data_file self.profiled_data_file = profiled_data_file self.displayjson['predictedData'] = predicted_data_file self.displayjson['postprocessedData'] = profiled_data_file #self.trained_data_file = trained_data_file #self.displayjson['trainingData'] = trained_data_file #self.displayjson['categorialFeatures']=categoricalFeatures #self.displayjson['discreteFeatures']=discreteFeatures #self.displayjson['continuousFeatures']=numericContinuousFeatures #y = json.dumps(self.displayjson) #print(y) self.labelMaps = labelMaps self.log = logging.getLogger('eion') def visualizationrecommandsystem(self): try: import tensorflow.keras.utils as kutils datasetid = self.visualizationJson['datasetid'] self.log.info('\\n================== Data Profiling Details==================') datacolumns=list(self.dataframe.columns) self.log.info('================== Data Profiling Details End ==================\\n') self.log.info('================== Features Correlation Details ==================\\n') self.log.info('\\n================== Model Performance Analysis ==================') if os.path.exists(self.pred_filename): try: status,df=read_df_compressed(self.pred_filename) if self.modeltype == 'Classification' or self.modeltype == 'ImageClassification' or self.modeltype == 'anomaly_detection': y_actual = df['actual'].values y_predict = df['predict'].values y_actual = kutils.to_categorical(y_actual) y_predict = kutils.to_categorical(y_predict) classes = df.actual.unique() n_classes = y_actual.shape[1] self.log.info('-------> ROC AUC CURVE') roc_curve_dict = [] for i in classes: try: classname = i if str(self.labelMaps) != '{}': inv_map = {v: k for k, v in self.labelMaps.items()} classname = inv_map[i] fpr, tpr, threshold = metrics.roc_curve(y_actual[:,i],y_predict[:,i]) roc_auc = metrics.auc(fpr, tpr) class_roc_auc_curve = {} class_roc_auc_curve['class'] = str(classname) fprstring = ','.join(str(v) for v in fpr) tprstring = ','.join(str(v) for v in tpr) class_roc_auc_curve['FP'] = str(fprstring) class_roc_auc_curve['TP'] = str(tprstring) roc_curve_dict.append(class_roc_auc_curve) self.log.info('----------> Class: '+str(classname)) self.log.info('------------> ROC_AUC: '+str(roc_auc)) self.log.info('------------> False Positive Rate (x Points): '+str(fpr)) self.log.info('------------> True Positive Rate (y Points): '+str(tpr)) except: pass self.displayjson['ROC_AUC_CURVE'] = roc_curve_dict self.log.info('-------> Precision Recall CURVE') precision_recall_curve_dict = [] for i in range(n_classes): try: lr_precision, lr_recall, threshold = metrics.precision_recall_curve(y_actual[:,i],y_predict[:,i]) classname = i if str(self.labelMaps) != '{}': inv_map = {v: k for k, v in self.labelMaps.items()} classname = inv_map[i] roc_auc = metrics.auc(lr_recall,lr_precision) class_precision_recall_curve = {} class_precision_recall_curve['class'] = str(classname) Precisionstring = ','.join(str(round(v,2)) for v in lr_precision) Recallstring = ','.join(str(round(v,2)) for v in lr_recall) class_precision_recall_curve['Precision'] = str(Precisionstring) class_precision_recall_curve['Recall'] = str(Recallstring) precision_recall_curve_dict.append(class_precision_recall_curve) except: pass self.log.info('----------> Class: '+str(classname)) self.log.info('------------> ROC_AUC: '+str(roc_auc)) self.log.info('------------> Recall (x Points): '+str(lr_precision)) self.log.info('------------> Precision (y Points): '+str(lr_recall)) self.displayjson['PRECISION_RECALL_CURVE'] = precision_recall_curve_dict status,predictdataFrame=read_df_compressed(self.displayjson['predictedData']) except Exception as e: self.log.info('================== Error in Calculation ROC_AUC/Recall Precision Curve '+str(e)) self.log.info('================== Model Performance Analysis End ==================\\n') self.log.info('\\n================== For Descriptive Analysis of Model Features ==================') outputfile = os.path.join(self.jsondeployPath,'etc','display.json') with open(outputfile, 'w') as fp: json.dump(self.displayjson, fp) self.log.info('================== For Descriptive Analysis of Model Features End ==================\\n') except Exception as inst: self.log.info('Visualization Failed !....'+str(inst)) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) def drawlinechart(self,xcolumn,ycolumn,deploy_path,datasetid): title = 'aion_visualization_'+xcolumn+"_"+ycolumn+"_linechart" yaxisname = 'Average '+ycolumn datasetindex = datasetid visulizationjson = '[{"_id": "543234","_type": "visualization","_source": {"title": "'+title+'",' visulizationjson = visulizationjson+'"visState": "{\\\\"title\\\\":\\\\"'+title+'\\\\",' visulizationjson = visulizationjson+'\\\\"type\\\\":\\\\"line\\\\",\\\\"params\\\\":{\\\\"type\\\\":\\\\"line\\\\",\\\\"grid\\\\":{\\\\"categoryLines\\\\":false,\\\\"style\\\\":{\\\\"color\\\\":\\\\"#eee\\\\"}},\\\\"categoryAxes\\\\":[{\\\\"id\\\\":\\\\"CategoryAxis-1\\\\",\\\\"type\\\\":\\\\"category\\\\",\\\\"position\\\\":\\\\"bottom\\\\",\\\\"show\\\\":true,\\\\"style\\\\":{},\\\\"scale\\\\":{\\\\"type\\\\":\\\\"linear\\\\"},\\\\"labels\\\\":{\\\\"show\\\\":true,\\\\"truncate\\\\":100},\\\\"title\\\\":{}}],\\\\"valueAxes\\\\":[{\\\\"id\\\\":\\\\"ValueAxis-1\\\\",\\\\"name\\\\":\\\\"LeftAxis-1\\\\",\\\\"type\\\\":\\\\"value\\\\",\\\\"position\\\\":\\\\"left\\\\",\\\\"
show\\\\":true,\\\\"style\\\\":{},\\\\"scale\\\\":{\\\\"type\\\\":\\\\"linear\\\\",\\\\"mode\\\\":\\\\"normal\\\\"},\\\\"labels\\\\":{\\\\"show\\\\":true,\\\\"rotate\\\\":0,\\\\"filter\\\\":false,\\\\"truncate\\\\":100},\\\\"title\\\\":' visulizationjson = visulizationjson+'{\\\\"text\\\\":\\\\"'+yaxisname+'\\\\"}}],\\\\"seriesParams\\\\":[{\\\\"show\\\\":\\\\"true\\\\",\\\\"type\\\\":\\\\"line\\\\",\\\\"mode\\\\":\\\\"normal\\\\",\\\\"data\\\\":' visulizationjson = visulizationjson+'{\\\\"label\\\\":\\\\"'+yaxisname+'\\\\",\\\\"id\\\\":\\\\"1\\\\"},\\\\"valueAxis\\\\":\\\\"ValueAxis-1\\\\",\\\\"drawLinesBetweenPoints\\\\":true,\\\\"showCircles\\\\":true}],\\\\"addTooltip\\\\":true,\\\\"addLegend\\\\":true,\\\\"legendPosition\\\\":\\\\"right\\\\",\\\\"times\\\\":[],\\\\"addTimeMarker\\\\":false},\\\\"aggs\\\\":[{\\\\"id\\\\":\\\\"1\\\\",\\\\"enabled\\\\":true,\\\\"type\\\\":\\\\"avg\\\\",\\\\"schema\\\\":\\\\"metric\\\\",\\\\"params\\\\":{\\\\"field\\\\":\\\\"'+str(ycolumn)+'\\\\"}},{\\\\"id\\\\":\\\\"2\\\\",\\\\"enabled\\\\":true,\\\\"type\\\\":\\\\"terms\\\\",\\\\"schema\\\\":\\\\"segment\\\\",\\\\"params\\\\":{\\\\"field\\\\":\\\\"'+xcolumn+'\\\\",\\\\"size\\\\":100,\\\\"order\\\\":\\\\"desc\\\\",\\\\"orderBy\\\\":\\\\"1\\\\",\\\\"otherBucket\\\\":false,\\\\"otherBucketLabel\\\\":\\\\"Other\\\\",\\\\"missingBucket\\\\":false,\\\\"missingBucketLabel\\\\":\\\\"Missing\\\\"}}]}","uiStateJSON": "{}", "description": "","version": 1,"kibanaSavedObjectMeta": {"searchSourceJSON": "{\\\\"index\\\\":\\\\"'+datasetindex+'\\\\",\\\\"query\\\\":{\\\\"query\\\\":\\\\"\\\\",\\\\"language\\\\":\\\\"lucene\\\\"},\\\\"filter\\\\":[]}"}},"_migrationVersion": {"visualization": "6.7.2"}}]' filename = deploy_path+title+'.json' f = open(filename, "w") f.write(str(visulizationjson)) f.close() def drawbarchart(self,xcolumn,ycolumn,deploy_path,datasetid): title = 'aion_visualization_'+xcolumn+"_"+ycolumn+"_barchart" yaxisname = 'Average '+ycolumn datasetindex = datasetid visulizationjson = '[{"_id": "123456","_type": "visualization","_source": {"title":"'+title+'",' visulizationjson = visulizationjson+'"visState": "{\\\\"title\\\\":\\\\"'+title+'\\\\",' visulizationjson = visulizationjson+'\\\\"type\\\\":\\\\"histogram\\\\",\\\\"params\\\\":{\\\\"addLegend\\\\":true,\\\\"addTimeMarker\\\\":false,\\\\"addTooltip\\\\":true,\\\\"categoryAxes\\\\":[{\\\\"id\\\\":\\\\"CategoryAxis-1\\\\",\\\\"labels\\\\":{\\\\"show\\\\":true,\\\\"truncate\\\\":100},\\\\"position\\\\":\\\\"bottom\\\\",\\\\"scale\\\\":{\\\\"type\\\\":\\\\"linear\\\\"},\\\\"show\\\\":true,\\\\"style\\\\":{},\\\\"title\\\\":{},\\\\"type\\\\":\\\\"category\\\\"}],\\\\"grid\\\\":{\\\\"categoryLines\\\\":false,\\\\"style\\\\":{\\\\"color\\\\":\\\\"#eee\\\\"}},\\\\"legendPosition\\\\":\\\\"right\\\\",\\\\"seriesParams\\\\":[{\\\\"data\\\\":{\\\\"id\\\\":\\\\"1\\\\",' visulizationjson = visulizationjson+'\\\\"label\\\\":\\\\"'+yaxisname+'\\\\"},' visulizationjson = visulizationjson+'\\\\"drawLinesBetweenPoints\\\\":true,\\\\"mode\\\\":\\\\"stacked\\\\",\\\\"show\\\\":\\\\"true\\\\",\\\\"showCircles\\\\":true,\\\\"type\\\\":\\\\"histogram\\\\",\\\\"valueAxis\\\\":\\\\"ValueAxis-1\\\\"}],\\\\"times\\\\":[],\\\\"type\\\\":\\\\"histogram\\\\",\\\\"valueAxes\\\\":[{\\\\"id\\\\":\\\\"ValueAxis-1\\\\",\\\\"labels\\\\":{\\\\"filter\\\\":false,\\\\"rotate\\\\":0,\\\\"show\\\\":true,\\\\"truncate\\\\":100},\\\\"name\\\\":\\\\"LeftAxis-1\\\\",\\\\"position\\\\":\\\\"left\\\\",\\\\"scale\\\\":{\\\\"mode\\\\":\\\\"normal\\\\",\\\\"type\\\\":\\\\"linear\\\\"},\\\\"show\\\\":true,\\\\"style\\\\":{},\\\\"title\\\\":' visulizationjson = visulizationjson+'{\\\\"text\\\\":\\\\"'+yaxisname+'\\\\"},' visulizationjson = visulizationjson+'\\\\"type\\\\":\\\\"value\\\\"}]},\\\\"aggs\\\\":[{\\\\"id\\\\":\\\\"1\\\\",\\\\"enabled\\\\":true,\\\\"type\\\\":\\\\"avg\\\\",\\\\"schema\\\\":\\\\"metric\\\\",\\\\"params\\\\":{\\\\"field\\\\":\\\\"'+str(xcolumn)+'\\\\"}},{\\\\"id\\\\":\\\\"2\\\\",\\\\"enabled\\\\":true,\\\\"type\\\\":\\\\"terms\\\\",\\\\"schema\\\\":\\\\"segment\\\\",\\\\"params\\\\":{\\\\"field\\\\":\\\\"'+ycolumn+'\\\\",\\\\"size\\\\":100,\\\\"order\\\\":\\\\"asc\\\\",\\\\"orderBy\\\\":\\\\"1\\\\",\\\\"otherBucket\\\\":false,\\\\"otherBucketLabel\\\\":\\\\"Other\\\\",\\\\"missingBucket\\\\":false,\\\\"missingBucketLabel\\\\":\\\\"Missing\\\\"}}]}","uiStateJSON":"{}","description": "","version": 1,"kibanaSavedObjectMeta": {' visulizationjson = visulizationjson+'"searchSourceJSON": "{\\\\"index\\\\":\\\\"'+datasetindex+'\\\\",\\\\"query\\\\":{\\\\"language\\\\":\\\\"lucene\\\\",\\\\"query\\\\":\\\\"\\\\"},\\\\"filter\\\\":[]}"}},"_migrationVersion":{"visualization": "6.7.2"}}]' filename = deploy_path+title+'.json' f = open(filename, "w") f.write(str(visulizationjson)) f.close() def drawpiechart(self,xcolumn,deploy_path,datasetid): title = 'aion_visualization_'+xcolumn+"_piechart" datasetindex = datasetid visulizationjson = '[{"_id": "123456","_type": "visualization","_source": {"title":"'+title+'",' visulizationjson = visulizationjson+'"visState": "{\\\\"title\\\\":\\\\"'+title+'\\\\",' visulizationjson = visulizationjson+'\\\\"type\\\\":\\\\"pie\\\\",\\\\"params\\\\":{\\\\"type\\\\":\\\\"pie\\\\",\\\\"addTooltip\\\\":true,\\\\"addLegend\\\\":true,\\\\"legendPosition\\\\":\\\\"right\\\\",\\\\"isDonut\\\\":true,\\\\"labels\\\\":{\\\\"show\\\\":false,\\\\"values\\\\":true,\\\\"last_level\\\\":true,\\\\"truncate\\\\":100}},\\\\"aggs\\\\":[{\\\\"id\\\\":\\\\"1\\\\",\\\\"enabled\\\\":true,\\\\"type\\\\":\\\\"count\\\\",\\\\"schema\\\\":\\\\"metric\\\\",\\\\"params\\\\":{}},{\\\\"id\\\\":\\\\"2\\\\",\\\\"enabled\\\\":true,\\\\"type\\\\":\\\\"terms\\\\",\\\\"schema\\\\":\\\\"segment\\\\",\\\\"params\\\\":{\\\\"field\\\\":\\\\"'+xcolumn+'\\\\",\\\\"size\\\\":100,\\\\"order\\\\":\\\\"asc\\\\",\\\\"orderBy\\\\":\\\\"1\\\\",\\\\"otherBucket\\\\":false,\\\\"otherBucketLabel\\\\":\\\\"Other\\\\",\\\\"missingBucket\\\\":false,\\\\"missingBucketLabel\\\\":\\\\"Missing\\\\"}}]}",' visulizationjson = visulizationjson+'"uiStateJSON": "{}","description": "","version": 1,"kibanaSavedObjectMeta": {"searchSourceJSON":"{\\\\"index\\\\":\\\\"'+datasetid+'\\\\",\\\\"query\\\\":{\\\\"query\\\\":\\\\"\\\\",\\\\"language\\\\":\\\\"lucene\\\\"},\\\\"filter\\\\":[]}"}},"_migrationVersion": {"visualization": "6.7.2"}}]' filename = deploy_path+title+'.json' f = open(filename, "w") f.write(str(visulizationjson)) f.close() def get_confusion_matrix(self,df): setOfyTrue = set(df['actual']) unqClassLst = list(setOfyTrue) if(str(self.labelMaps) != '{}'): inv_mapping_dict = {v: k for k, v in self.labelMaps.items()} unqClassLst2 = (pd.Series(unqClassLst)).map(inv_mapping_dict) unqClassLst2 = list(unqClassLst2) else: unqClassLst2 = unqClassLst indexName = [] columnName = [] for item in unqClassLst2: indexName.append("act:"+str(item)) columnName.append("pre:"+str(item)) result = pd.DataFrame(confusion_matrix(df['actual'], df['predict'], labels = unqClassLst),index = indexName, columns = columnName) resultjson = result.to_json(orient='index') return(resultjson) def DistributionFinder(self,data): try: distributionName ="" sse =0.0 KStestStatic=0.0 dataType="" if(data.dtype == "float64"): dataType ="Continuous" elif(data.dtype =="int" or data.dtype =="int64"): dataType="Discrete" if(dataType == "Discrete"): distributions= [st.bernoulli,st.binom,st.geom,st.nbinom,st.poisson] index, counts = np.unique(abs(data.astype(int)),return_counts=True) if(len(index)>=2): best_sse = np.inf y1=[] total=sum(counts) mean=float(sum(index*counts))/total variance=float((sum(index**2*counts) -total*mean**2))/(total-1) dispersion=mean/float(variance) theta=1/float(dispersion) r=mean*(float(theta)/1-theta) for j in counts: y1.append(float(j)/total) pmf1=st.bernoulli.pmf(index,mean) pmf2=st.binom.pmf(index,len(index),p=mean/len(index)) pmf3=st.geom.pmf(index,1/float(1+mean)) pmf4=st.nbinom.pmf(index,mean,r) pmf5=st.poisson.pmf(index,mean) sse1 = np.sum(np.power(y1 - pmf1, 2.0)) sse2 = np.sum(np.power(y1 - pmf2, 2.0)) sse3 = np.sum(np.power(y1 - pmf3, 2.0)) sse4 = np.sum(np.power(y1 - pmf4, 2.0)) sse5 = np.sum(np.power(y1- pmf5, 2.0)) sselist=[sse1,sse2,sse3,sse4,sse5] for i in range(0,len(sselist)): if best_sse > sselist[i] > 0: best_distribution = distributions[i].name best_sse = sselist[i] elif (len(index) == 1): best_distribution = "Constant Data-No Distribution" best_sse = 0.0 distributionName =best_distribution sse=best_sse elif(dataType == "Continuous"): distributions = [st.uniform,st.expon,st.weibull_max,st.weibull_min,st.chi,st.norm,st.lognorm,st.t,st.gamma,st.beta] best_distribution = st.norm.name best_sse = np.inf datamin=data.min() datamax=data.max() nrange=datamax-datamin y, x = np.histogram(data.astype(float), bins='auto', density=True) x = (x + np.roll(x, -1))[:-1] / 2.0 for distribution in distributions: with warnings.catch_warnings(): warnings.filterwarnings('ignore') params = distribution.fit(data.astype(float)) # Separate parts of parameters arg = params[:-2] loc = params[-2] scale = params[-1] # Calculate fitted PDF and error with fit in distribution pdf = distribution.pdf(x, loc=loc, scale=scale, *arg) sse = np.sum(np.power(y - pdf, 2.0)) if(best_sse >sse > 0): best_distribution = distribution.name best_sse = sse distributionName =best_distribution sse=best_sse except: response = str(sys.exc_info()[0]) message='Job has Failed'+response print(message) return distributionName,sse <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited
unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import pandas as pd import matplotlib.pyplot as plt from lifelines import KaplanMeierFitter, CoxPHFitter from lifelines.utils import datetimes_to_durations import logging import numpy as np import re import sys import os class SurvivalAnalysis(object): def __init__(self, df, pipe, method, event_column, duration_column, filterExpression, train_features_type,start=None, end=None): pd.options.display.width = 30 self.df = df self.pipe = pipe self.train_features_type = train_features_type self.filterExpression = filterExpression self.covariateExpression = filterExpression self.method = method self.event_column = event_column if start is not None and end is not None: self.df['duration'], _ = datetimes_to_durations(start, end) self.duration_column = 'duration' else: self.duration_column = duration_column self.models = [] self.score = 0 self.log = logging.getLogger('eion') self.plots = [] def transform_filter_expression(self, covariate, covariate_input): ''' Filter expression given by user will be encoded if it is categorical and if it is a numerical feature that is normalised in data profiler, in filter expression feature also it will be converted to normalised value ''' cols = list(self.df.columns) if self.duration_column in cols: cols.remove(self.duration_column) if self.event_column in cols: cols.remove(self.event_column) df_filter = pd.DataFrame([{covariate:covariate_input}], columns=cols) df_filter[covariate] = df_filter[covariate].astype(self.train_features_type[covariate]) df_transform_array = self.pipe.transform(df_filter) df_transform = pd.DataFrame(df_transform_array, columns=cols) return df_transform[covariate].iloc[0] def learn(self): self.log.info('\\n---------- SurvivalAnalysis learner has started ----------') self.log.info('\\n---------- SurvivalAnalysis learner method is "%s" ----------' % self.method) if self.method.lower() in ['kaplanmeierfitter', 'kaplanmeier', 'kaplan-meier', 'kaplan meier', 'kaplan', 'km', 'kmf']: self.log.info('\\n---------- SurvivalAnalysis learner method "%s" has started ----------' % self.method) kmf = KaplanMeierFitter() T = self.df[self.duration_column] E = self.df[self.event_column] self.log.info('\\n T : \\n%s' % str(T)) self.log.info('\\n E : \\n%s' % str(E)) K = kmf.fit(T, E) kmf_sf = K.survival_function_ kmf_sf_json = self.survival_probability_to_json(kmf_sf) self.models.append(K) if isinstance(self.filterExpression, str): df_f, df_n, refined_filter_expression = self.parse_filterExpression() kmf1 = KaplanMeierFitter() kmf2 = KaplanMeierFitter() self.log.info( '\\n---------- SurvivalAnalysis learner "%s" fitting for filter expression has started----------' % self.method) T1 = df_f[self.duration_column] E1 = df_f[self.event_column] T2 = df_n[self.duration_column] E2 = df_n[self.event_column] kmf1.fit(T1, E1) fig, ax = plt.subplots(1, 1) ax = kmf1.plot_survival_function(ax=ax, label='%s' % refined_filter_expression) self.log.info( '\\n---------- SurvivalAnalysis learner "%s" fitting for filter expression has ended----------' % self.method) plt.title("KM Survival Functions - Filter vs Negation") self.log.info( '\\n---------- SurvivalAnalysis learner "%s" fitting for negation has started----------' % self.method) kmf2.fit(T2, E2) ax = kmf2.plot_survival_function(ax=ax, label='~%s' % refined_filter_expression) self.log.info( '\\n---------- SurvivalAnalysis learner "%s" fitting for negation has ended----------' % self.method) self.models.extend([kmf1, kmf2]) kmf1_sf = kmf1.survival_function_ kmf2_sf = kmf2.survival_function_ kmf1_sf_json = self.survival_probability_to_json(kmf1_sf) self.plots.append(fig) self.log.info('\\n---------- SurvivalAnalysis learner method "%s" has ended ----------' % self.method) self.log.info('\\n---------- SurvivalAnalysis learner has ended ----------') self.log.info('Status:- |... Algorithm applied: KaplanMeierFitter') return kmf1_sf_json else: fig, ax = plt.subplots(1, 1) ax = kmf_sf.plot(ax=ax) plt.title("KM Survival Functions") self.plots.append(fig) self.log.info('\\n---------- SurvivalAnalysis learner method "%s" has ended ----------' % self.method) self.log.info('\\n---------- SurvivalAnalysis learner has ended ----------') self.log.info('Status:- |... Algorithm applied: KaplanMeierFitter') return kmf_sf_json elif self.method.lower() in ['coxphfitter', 'coxregression', 'cox-regression', 'cox regression', 'coxproportionalhazard', 'coxph', 'cox', 'cph']: self.log.info('\\n---------- SurvivalAnalysis learner method "%s" has started ----------' % self.method) cph = CoxPHFitter(penalizer=0.1) self.df = self.drop_constant_features(self.df) C = cph.fit(self.df, self.duration_column, self.event_column) self.models.append(C) cph_sf = C.baseline_survival_ self.score = C.score(self.df, scoring_method="concordance_index") self.log.info( '\\n---------- SurvivalAnalysis learner "%s" score is "%s"----------' % (self.method, str(self.score))) cph_sf_json = self.survival_probability_to_json(cph_sf) if isinstance(self.covariateExpression, str): covariate, covariate_inputs, covariate_values = self.parse_covariateExpression() fig, (ax1, ax2) = plt.subplots(1, 2) fig.tight_layout() ax1 = C.plot(ax=ax1, hazard_ratios=True) self.log.info('\\n Summary : \\n%s' % str(C.summary)) ax1.set_title("COX hazard ratio") ax2 = C.plot_partial_effects_on_outcome(covariate, covariate_values, ax=ax2) mylabels = [covariate + '=' + str(x) for x in covariate_inputs] mylabels.append('baseline') ax2.legend(labels=mylabels) ax2.set_title("Covariate Plot") self.plots.append(fig) else: fig = plt.figure() ax1 = C.plot(hazard_ratios=True) self.log.info('\\n Summary : \\n%s' % str(C.summary)) plt.title("COX hazard ratio") self.plots.append(fig) self.log.info('\\n---------- SurvivalAnalysis learner method "%s" has ended ----------' % self.method) self.log.info('\\n---------- SurvivalAnalysis learner has ended ----------') self.log.info('Status:- |... Algorithm applied: CoxPHFitter') return cph_sf_json def parse_filterExpression(self): import operator self.log.info('\\n---------- Filter Expression parsing has started ----------') self.log.info('Filter Expression provided : %s' % self.filterExpression) self.log.info('Shape before filter : %s' % str(self.df.shape)) f = self.filterExpression.split('&') f = list(filter(None, f)) if len(f) == 1: p = '[<>=!]=?' op = re.findall(p, self.filterExpression)[0] covariate, covariate_input = [x.strip().strip('\\'').strip('\\"') for x in self.filterExpression.split(op)] refined_filter_expression = covariate + op + covariate_input self.log.info('Final refined filter : %s' % refined_filter_expression) ops = {"==": operator.eq, ">": operator.gt, "<": operator.lt, ">=": operator.ge, "<=": operator.le, "!=": operator.ne} try: fv = self.transform_filter_expression(covariate, covariate_input) df_f = self.df[ops[op](self.df[covariate], fv)] self.log.info('Shape after filter : %s' % str(df_f.shape)) df_n = self.df[~self.df[covariate].isin(df_f[covariate])] self.log.info('Shape of negation : %s' % str(df_n.shape)) self.log.info('---------- Filter Expression has ended ----------') return df_f, df_n, refined_filter_expression except Exception: self.log.info('\\n-----> Filter Expression parsing encountered error!!!') exc_type, exc_obj, exc_tb = sys.exc_info() if exc_type == IndexError or ValueError or KeyError: self.log.info('----->Given filter expression '+ self.filterExpression +' is invalid') self.log.info('Valid examples are "A>100", "B==category1", "C>=10 && C<=20" etc..') fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname) + ' ' + str(exc_tb.tb_lineno)) raise Exception(str(exc_type)+str(exc_obj)) else: full_f = [] try: for filterExpression in f: p = '[<>=!]=?' op = re.findall(p, filterExpression)[0] covariate, covariate_input = [x.strip().strip('\\'').strip('\\"') for x in filterExpression.split(op)] full_f.append(covariate + op + covariate_input) ops = {"==": operator.eq, ">": operator.gt, "<": operator.lt, ">=": operator.ge, "<=": operator.le, "!=": operator.ne} fv = self.transform_filter_expression(covariate, covariate_input) df_f = self.df[ops[op](self.df[covariate], fv)] df_n = self.df[~self.df[covariate].isin(df_f[covariate])] refined_filter_expression = " & ".join(full_f) self.log.info('Final refined filter : %s' % refined_filter_expression) self.log.info('Shape after filter : %s' % str(df_f.shape)) self.log.info('Shape of negation : %s' % str(df_n.shape)) self.log.info('---------- Filter Expression has ended ----------') return df_f, df_n, refined_filter_expression # except (IndexError, ValueError, KeyError): except Exception: self.log.info('\\n-----> Filter Expression parsing encountered error!!!') exc_type, exc_obj, exc_tb = sys.exc_info() if exc_type == IndexError or ValueError or KeyError: self.log.info('----->Given filter expression '+ self.filterExpression +' is invalid') self.log.info('Valid examples are "A>100", "B==category1", "C>=10 && C<=20" etc..') fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname) + ' ' + str(exc_tb.tb_lineno)) raise Exception(str(exc_type)+str(exc_obj)) def parse_covariateExpression(self): self.log.info('\\n---------- Covariate Expression parsing has started ----------') self.log.info('\\n Covariate Expression provided : %s' % self.covariateExpression) import ast p = '[=:]' try: op = re.findall(p, self.covariateExpression)[0] covariate, covariate_inputs = [x.strip().strip('\\'').strip('\\"') for x in self.covariateExpression.split(op)] covariate_inputs = ast.literal_eval(covariate_inputs) covariate_values = [self.transform_filter_expression(covariate, x) for x in covariate_inputs] self.log.info('\\n---------- Covariate Expression parsing has ended ----------') return covariate, covariate_inputs, covariate_values except Exception: self.log.info('\\n-----> Covariate Expression parsing encountered error!!!') exc_type, exc_obj, exc_tb = sys.exc_info() if exc_type == IndexError or ValueError or KeyError: self.log.info('----->Given covariate expression '+ self.filterExpression +' is invalid') self.log.info("\\n Valid examples are A=['Yes','No'] or B=[100,500,1000]") fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname) + ' ' + str(exc_tb.tb_lineno)) raise Exception(str(exc_type)+str(exc_obj)) def
survival_probability_to_json(self, sf): ''' sf = Survival function i.e. KaplanMeierFitter.survival_function_ or CoxPHFitter.baseline_survival_ returns json of survival probabilities ''' sf = sf[sf.columns[0]].apply(lambda x: "%4.2f" % (x * 100)) self.log.info('\\n Survival probabilities : \\n%s' % str(sf)) sf = sf.reset_index() sf = sf.sort_values(sf.columns[0]) sf_json = sf.to_json(orient='records') self.log.info('\\n Survival probability json : \\n%s' % str(sf_json)) return sf_json def drop_constant_features(self, df): dropped = [] for col in df.columns: if (len(df[col].unique()) == 1) and (col not in [self.duration_column, self.event_column]): df.drop(col, inplace=True, axis=1) dropped.append(col) if len(dropped) != 0: self.log.info('\\n Dropping constant features %s' % str(col)) self.log.info('\\n After dropping constant features : \\n%s' % str(df)) return df def predict(self): if self.method == 'KaplanMeierFitter': return self.model.predict(self.test[self.duration_column]) elif self.method == 'CoxPHFitter': res = [] for idx, row in self.test.iterrows(): res.append( self.model.predict_survival_function(self.test, times=row[self.model.duration_col])[idx].values[0]) return pd.DataFrame(res) <s><s> import os import traceback import sys print("before function process") def process(version): print("inside fun process") currentDirectory = os.path.dirname(os.path.abspath(__file__)) print(currentDirectory) try: from os.path import expanduser import platform import subprocess import sys import demoji try: print('Downloading NLTK additional packages...') import nltk nltk.download('punkt') nltk.download('wordnet') nltk.download('stopwords') nltk.download('averaged_perceptron_tagger') except Exception as e: print('NLTK Error: '+str(e)) pass from appbe.dataPath import DATA_DIR import shutil import importlib license_path = DATA_DIR if os.path.isdir(license_path) == False: os.makedirs(license_path) import warnings warnings.filterwarnings("ignore") LicenseFolder = os.path.join(license_path,'License') if os.path.isdir(LicenseFolder) == False: os.makedirs(LicenseFolder) sqlite_path = os.path.join(license_path,'sqlite') if os.path.isdir(sqlite_path) == False: os.makedirs(sqlite_path) pretrainedModel_path = os.path.join(license_path,'PreTrainedModels') if os.path.isdir(pretrainedModel_path) == False: os.makedirs(pretrainedModel_path) config_path = os.path.join(license_path,'config') if os.path.isdir(config_path) == False: os.makedirs(config_path) target_path = os.path.join(license_path,'target') if os.path.isdir(target_path) == False: os.makedirs(target_path) data_path = os.path.join(license_path,'storage') if os.path.isdir(data_path) == False: os.makedirs(data_path) log_path = os.path.join(license_path,'logs') if os.path.isdir(log_path) == False: os.makedirs(log_path) configFolder = os.path.join(currentDirectory,'..','config') for file in os.listdir(configFolder): if file.endswith(".var"): os.remove(os.path.join(configFolder,file)) versionfile = os.path.join(configFolder,str(version)+'.var') with open(versionfile, 'w') as fp: pass manage_path = os.path.join(currentDirectory,'..','aion.py') print('Setting up Django Environment for AION User Interface') proc = subprocess.Popen([sys.executable, manage_path, "-m","migrateappfe"],stdout=subprocess.PIPE, stderr=subprocess.PIPE) (stdout, stderr) = proc.communicate() if proc.returncode != 0: err_string = stderr.decode('utf8') import re result = re.search("No module named '(.*)'", err_string) if 'ModuleNotFoundError' in err_string: print('\\n"{}" module is missing. The dependencies of AION were not installed properly. Uninstall and reinstall AION'.format(result.group(1))) else: print('\\nThe dependencies of AION were not installed properly. Uninstall and reinstall AION') raise Exception(err_string) else: print('AION User Interface successfully set') print('--------------AION Installed Successfully--------------') except Exception as e: print(e) f = open(os.path.join(currentDirectory, 'workspace_error_logs.txt'), "w") f.write(str(traceback.format_exc())) f.close() pass if __name__ == "__main__": process(sys.argv[1])<s> import os import traceback def process(version): currentDirectory = os.path.dirname(os.path.abspath(__file__)) try: import win32com.client from os.path import expanduser import platform import subprocess import sys import demoji try: print('Downloading NLTK additional packages...') import nltk nltk.download('punkt') nltk.download('wordnet') nltk.download('stopwords') nltk.download('averaged_perceptron_tagger') except Exception as e: print('NLTK Error: '+str(e)) pass from appbe.dataPath import DATA_DIR from win32com.shell import shell, shellcon import shutil import importlib license_path = DATA_DIR if os.path.isdir(license_path) == False: os.makedirs(license_path) import warnings warnings.filterwarnings("ignore") LicenseFolder = os.path.join(license_path,'License') if os.path.isdir(LicenseFolder) == False: os.makedirs(LicenseFolder) sqlite_path = os.path.join(license_path,'sqlite') if os.path.isdir(sqlite_path) == False: os.makedirs(sqlite_path) pretrainedModel_path = os.path.join(license_path,'PreTrainedModels') if os.path.isdir(pretrainedModel_path) == False: os.makedirs(pretrainedModel_path) config_path = os.path.join(license_path,'config') if os.path.isdir(config_path) == False: os.makedirs(config_path) target_path = os.path.join(license_path,'target') if os.path.isdir(target_path) == False: os.makedirs(target_path) data_path = os.path.join(license_path,'storage') if os.path.isdir(data_path) == False: os.makedirs(data_path) log_path = os.path.join(license_path,'logs') if os.path.isdir(log_path) == False: os.makedirs(log_path) configFolder = os.path.join(currentDirectory,'..','config') for file in os.listdir(configFolder): if file.endswith(".var"): os.remove(os.path.join(configFolder,file)) versionfile = os.path.join(configFolder,str(version)+'.var') with open(versionfile, 'w') as fp: pass manage_path = os.path.join(currentDirectory,'..','aion.py') print('Setting up Django Environment for AION User Interface') proc = subprocess.Popen([sys.executable, manage_path, "-m","migrateappfe"],stdout=subprocess.PIPE, stderr=subprocess.PIPE) (stdout, stderr) = proc.communicate() if proc.returncode != 0: err_string = stderr.decode('utf8') import re result = re.search("No module named '(.*)'", err_string) if 'ModuleNotFoundError' in err_string: print('\\n"{}" module is missing. The dependencies of AION were not installed properly. Uninstall and reinstall AION'.format(result.group(1))) else: print('\\nThe dependencies of AION were not installed properly. Uninstall and reinstall AION') raise Exception(err_string) else: print('AION User Interface successfully set') desktop = shell.SHGetFolderPath (0, shellcon.CSIDL_DESKTOP, 0, 0) #desktop = os.path.expanduser('~/Desktop') path = os.path.join(desktop, 'Explorer {0}.lnk'.format(version)) target = os.path.normpath(os.path.join(currentDirectory,'..', 'sbin', 'AION_Explorer.bat')) icon = os.path.join(currentDirectory,'icons','aion.ico') shell = win32com.client.Dispatch("WScript.Shell") shortcut = shell.CreateShortCut(path) shortcut.Targetpath = '"'+target+'"' shortcut.WorkingDirectory = currentDirectory #shortcut.WorkingDirectory = os.path.dirname(__file__) shortcut.IconLocation = icon shortcut.WindowStyle = 1 # 7 - Minimized, 3 - Maximized, 1 - Normal shortcut.save() path = os.path.join(desktop, 'Shell {0}.lnk'.format(version)) target = os.path.normpath(os.path.join(currentDirectory,'..','sbin', 'AION_Shell.bat')) icon = os.path.join(currentDirectory,'icons','aion_shell.ico') shell = win32com.client.Dispatch("WScript.Shell") shortcut = shell.CreateShortCut(path) shortcut.Targetpath = '"'+target+'"' shortcut.WorkingDirectory = currentDirectory #shortcut.WorkingDirectory = os.path.dirname(__file__) shortcut.IconLocation = icon shortcut.WindowStyle = 1 # 7 - Minimized, 3 - Maximized, 1 - Normal shortcut.save() print('--------------AION Installed Successfully--------------') except Exception as e: print(e) f = open(os.path.join(currentDirectory, 'workspace_error_logs.txt'), "w") f.write(str(traceback.format_exc())) f.close() pass <s><s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> import warnings import sys warnings.simplefilter(action='ignore', category=FutureWarning) import xgboost as xgb import dask.array as da import shutil import dask.distributed import dask.dataframe as dd import dask_ml import logging from sklearn.metrics import accuracy_score, recall_score, \\ roc_auc_score, precision_score, f1_score, \\ mean_squared_error, mean_absolute_error, \\ r2_score, classification_report, confusion_matrix, \\ mean_absolute_percentage_error import lightgbm as lgb import re from sklearn.pipeline import Pipeline from sklearn.base import BaseEstimator, TransformerMixin from dask_ml.impute import SimpleImputer from dask_ml.compose import ColumnTransformer from dask_ml.decomposition import TruncatedSVD, PCA from dask_ml.preprocessing import StandardScaler, \\ MinMaxScaler, \\ OneHotEncoder, LabelEncoder from dask_ml.wrappers import ParallelPostFit import numpy as np import json import time from sklearn.ensemble import IsolationForest import joblib import pickle as pkl import os predict_config={} dask.config.set({"distributed.workers.memory.terminate": 0.99}) dask.config.set({"array.chunk-size": "128 MiB"}) dask.config.set({"distributed.admin.tick.limit": "3h"}) # dask.config.set({"distributed.workers.memory.pause": 0.9}) class MinImputer(BaseEstimator, TransformerMixin): def fit(self, X, y=None): return self def transform(self, X, y=None): # to_fillna = ['public_meeting', 'scheme_management', 'permit'] # X[to_fillna] = X[to_fillna].fillna(value='NaN') # X[to_fillna] = X[to_fillna].astype(str) X = X.fillna(value=X.min()) # X = X.astype(str) return X class MaxImputer(BaseEstimator, TransformerMixin): def fit(self, X, y=None): return self def transform(self, X, y=None): X = X.fillna(value=X.max()) return X class DropImputer(BaseEstimator, TransformerMixin): def fit(self, X, y=None): return self def transform(self, X, y=None): X = X.dropna() return X class ModeCategoricalImputer(BaseEstimator, TransformerMixin): def fit(self, X, y=None): return self def transform(self, X, y=None): X = X.fillna(value=X.mode()) return X class IsoForestOutlierExtractor(TransformerMixin): def fit(self, X, y=None): return self def transform(self, X, y): lcf = IsolationForest() with joblib.parallel_backend('dask'): lcf.fit(X) y_pred_train = lcf.predict(X) y_pred_train = y_pred_train == 1 return X def load_config_json(json_file): with open(json_file
, 'r') as j: contents = json.loads(j.read()) return contents def load_data_dask(data_file, npartitions=500): big_df = dd.read_csv(data_file, # sep=r'\\s*,\\s*', assume_missing=True, parse_dates=True, infer_datetime_format=True, sample=1000000, # dtype={'caliper': 'object', # 'timestamp': 'object'}, # dtype='object', na_values=['-','?'] ) big_df = big_df.repartition(npartitions) return big_df def get_dask_eda(df_dask): descr = df_dask.describe().compute() corr = df_dask.corr().compute() return descr, corr def normalization(config): scaler = config["advance"] \\ ["profiler"]["normalization"] scaler_method = None if scaler["minMax"] == "True": scaler_method = MinMaxScaler() if scaler["standardScaler"] == "True": scaler_method = StandardScaler() return scaler_method def categorical_encoding(config): encoder = config["advance"]["profiler"] \\ ["categoryEncoding"] encoder_method = None if encoder["OneHotEncoding"] == "True": encoder_method = OneHotEncoder() # OneHotEncoder(handle_unknown='ignore', sparse=False) if encoder["LabelEncoding"] == "True": encoder_method = LabelEncoder() return encoder_method def numeric_feature_imputing(config): imputer_numeric_method = None imputer_numeric = config["advance"] \\ ["profiler"]["numericalFillMethod"] if imputer_numeric["Median"] == "True": print("Median Simple Imputer") imputer_numeric_method = SimpleImputer(strategy='median') if imputer_numeric["Mean"] == "True": print("Mean Simple Imputer") imputer_numeric_method = SimpleImputer(strategy='mean') if imputer_numeric["Min"] == "True": print("Min Simple Imputer") imputer_numeric_method = MinImputer() if imputer_numeric["Max"] == "True": print("Max Simple Imputer") imputer_numeric_method = MaxImputer() if imputer_numeric["Zero"] == "True": print("Zero Simple Imputer") imputer_numeric_method = SimpleImputer(strategy='constant', fill_value=0) # if imputer_numeric["Drop"] == "True": # print("Median Simple Imputer") # imputer_numeric_method = DropImputer() return imputer_numeric_method def categorical_feature_imputing(config): imputer_categorical_method = None imputer_categorical = config["advance"] \\ ["profiler"]["categoricalFillMethod"] if imputer_categorical["MostFrequent"] == "True": imputer_categorical_method = SimpleImputer(strategy='most_frequent') if imputer_categorical["Mode"] == "True": imputer_categorical_method = ModeCategoricalImputer() if imputer_categorical["Zero"] == "True": imputer_categorical_method = SimpleImputer(strategy='constant', fill_value=0) return imputer_categorical_method def preprocessing_pipeline(config, X_train): print("Start preprocessing") scaler_method = normalization(config) encoding_method = categorical_encoding(config) imputer_numeric_method = numeric_feature_imputing(config) imputer_categorical_method = categorical_feature_imputing(config) numeric_pipeline = Pipeline(steps=[ ('impute', imputer_numeric_method), ('scale', scaler_method) ]) categorical_pipeline = Pipeline(steps=[ ('impute', imputer_categorical_method), ('encoding', encoding_method) ]) numerical_features = X_train._get_numeric_data().columns.values.tolist() categorical_features = list(set(X_train.columns) - set(X_train._get_numeric_data().columns)) print("numerical_features: ", numerical_features) print("categorical_features: ", categorical_features) full_processor = ColumnTransformer(transformers=[ ('number', numeric_pipeline, numerical_features), # ('category', categorical_pipeline, categorical_features) ]) return full_processor def full_pipeline(X_train, X_test, config): full_processor = preprocessing_pipeline(config, X_train) reduce_dim = config["advance"] \\ ["selector"]["featureEngineering"] feature_reduce = None if reduce_dim["SVD"] == "True": feature_reduce = TruncatedSVD(n_components=3) if reduce_dim["PCA"] == "True": feature_reduce = PCA(n_components=3) X_train = full_processor.fit_transform(X_train) # joblib.dump(full_processor, 'full_processor_pipeline.pkl') deploy_location = config["basic"]["modelLocation"] profiler_file = os.path.join(deploy_location,'model','profiler.pkl') selector_file = os.path.join(deploy_location,'model','selector.pkl') save_pkl(full_processor, profiler_file) X_test = full_processor.transform(X_test) predict_config['profilerLocation'] = 'profiler.pkl' if feature_reduce != None: X_train = feature_reduce.fit_transform(X_train.to_dask_array(lengths=True)) save_pkl(feature_reduce, selector_file) predict_config['selectorLocation'] = 'selector.pkl' # joblib.dump(feature_reduce, 'feature_reduce_pipeline.pkl') X_test = feature_reduce.transform(X_test.to_dask_array(lengths=True)) X_train = dd.from_dask_array(X_train) X_test = dd.from_dask_array(X_test) else: predict_config['selectorLocation'] = '' return X_train, X_test def train_xgb_classification(client, X_train, y_train, X_test, config): print("Training XGBoost classification") model_hyperparams = config["advance"] \\ ["distributedlearner_config"] \\ ["modelParams"] \\ ["classifierModelParams"] \\ ["Distributed Extreme Gradient Boosting (XGBoost)"] dask_model = xgb.dask.DaskXGBClassifier( tree_method=model_hyperparams["tree_method"], n_estimators=int(model_hyperparams["n_estimators"]), max_depth=int(model_hyperparams["max_depth"]), gamma=float(model_hyperparams["gamma"]), min_child_weight=float(model_hyperparams["min_child_weight"]), subsample=float(model_hyperparams["subsample"]), colsample_bytree=float(model_hyperparams["colsample_bytree"]), learning_rate=float(model_hyperparams["learning_rate"]), reg_alpha=float(model_hyperparams["reg_alpha"]), reg_lambda=float(model_hyperparams["reg_lambda"]), random_state=int(model_hyperparams["random_state"]), verbosity=3) dask_model.client = client X_train, X_test = full_pipeline(X_train, X_test, config) dask_model.fit(X_train, y_train) save_model(config, dask_model) save_config(config) return dask_model, X_train, X_test def train_xgb_regression(client, X_train, y_train, X_test, config): model_hyperparams = config["advance"] \\ ["distributedlearner_config"] \\ ["modelParams"] \\ ["regressorModelParams"] \\ ["Distributed Extreme Gradient Boosting (XGBoost)"] print("Training XGBoost regression") dask_model = xgb.dask.DaskXGBRegressor( tree_method=model_hyperparams["tree_method"], n_estimators=int(model_hyperparams["n_estimators"]), max_depth=int(model_hyperparams["max_depth"]), gamma=float(model_hyperparams["gamma"]), min_child_weight=float(model_hyperparams["min_child_weight"]), subsample=float(model_hyperparams["subsample"]), colsample_bytree=float(model_hyperparams["colsample_bytree"]), learning_rate=float(model_hyperparams["learning_rate"]), reg_alpha=float(model_hyperparams["reg_alpha"]), reg_lambda=float(model_hyperparams["reg_lambda"]), random_state=int(model_hyperparams["random_state"]), verbosity=3) dask_model.client = client X_train, X_test = full_pipeline(X_train, X_test, config) dask_model.fit(X_train, y_train) # dask_model.fit(X_train, y_train, eval_set=[(X_test, y_test)]) save_model(config, dask_model) save_config(config) return dask_model, X_train, X_test def train_lgbm_regression(client, X_train, y_train, X_test, config): print("Training lightGBM regression") model_hyperparams = config["advance"] \\ ["distributedlearner_config"] \\ ["modelParams"] \\ ["regressorModelParams"] \\ ["Distributed Light Gradient Boosting (LightGBM)"] dask_model = lgb.DaskLGBMRegressor( client=client, n_estimators=int(model_hyperparams["n_estimators"]), num_leaves=int(model_hyperparams["num_leaves"]), max_depth =int(model_hyperparams["max_depth"]), learning_rate=float(model_hyperparams["learning_rate"]), min_child_samples=int(model_hyperparams["min_child_samples"]), reg_alpha=int(model_hyperparams["reg_alpha"]), subsample=float(model_hyperparams["subsample"]), reg_lambda=int(model_hyperparams["reg_lambda"]), colsample_bytree=float(model_hyperparams["colsample_bytree"]), n_jobs=4, verbosity=3) X_train, X_test = full_pipeline(X_train, X_test, config) # print("before X_train.shape, y_train.shape", # X_train.shape, # y_train.shape) # indices = dask_findiforestOutlier(X_train) # print("X_train type: ", type(X_train)) # print("y_train type: ", type(y_train)) # X_train, y_train = X_train.iloc[indices, :], \\ # y_train.iloc[indices] # print("after X_train.shape, y_train.shape", # X_train.shape, # y_train.shape) dask_model.fit(X_train, y_train) # dask_model.fit(X_train, y_train, # # eval_set=[(X_test,y_test), # # (X_train,y_train)], # verbose=20,eval_metric='l2') save_model(config, dask_model) save_config(config) return dask_model, X_train, X_test def train_lgbm_classification(client, X_train, y_train, X_test, config): print("Training lightGBM classification") model_hyperparams = config["advance"] \\ ["distributedlearner_config"] \\ ["modelParams"] \\ ["classifierModelParams"] \\ ["Distributed Light Gradient Boosting (LightGBM)"] dask_model = lgb.DaskLGBMClassifier( client=client, num_leaves=int(model_hyperparams["num_leaves"]), learning_rate=float(model_hyperparams["learning_rate"]), feature_fraction=float(model_hyperparams["feature_fraction"]), bagging_fraction=float(model_hyperparams["bagging_fraction"]), bagging_freq=int(model_hyperparams["bagging_freq"]), max_depth=int(model_hyperparams["max_depth"]), min_data_in_leaf=int(model_hyperparams["min_data_in_leaf"]), n_estimators=int(model_hyperparams["n_estimators"]), verbosity=3) X_train, X_test = full_pipeline(X_train, X_test, config) dask_model.fit(X_train, y_train) # dask_model.fit(X_train, y_train, # eval_set=[(X_test,y_test), # (X_train,y_train)], # verbose=20,eval_metric='logloss') save_model(config, dask_model) save_config(config) return dask_model, X_train, X_test def evaluate_model_classification(model, config, X_test, y_test, class_names): metrics = config["basic"]["scoringCriteria"]["classification"] y_test = y_test.to_dask_array().compute() log = logging.getLogger('eion') X_test = X_test.to_dask_array(lengths=True) y_pred = model.predict(X_test) if metrics["Accuracy"] == "True": # ParallelPostFit(estimator=model, scoring='accuracy') # score = model.score(X_test, y_test) * 100.0 score = accuracy_score(y_test, y_pred) * 100.0 type = 'Accuracy' log.info('Status:-|... Accuracy Score '+str(score)) if metrics["Recall"] == "True": score = recall_score(y_test, y_pred) type = 'Recall' log.info('Status:-|... Recall Score '+str(score)) if metrics["Precision"] == "True": score = precision_score(y_test, y_pred) type = 'Precision' log.info('Status:-|... Precision Score '+str(score)) if metrics["F1_Score"] == "True": score = f1_score(y_test, y_pred)
type = 'F1' log.info('Status:-|... F1 Score '+str(score)) y_pred_prob = model.predict_proba(X_test) if len(class_names) == 2: roc_auc = roc_auc_score(y_test, y_pred) else: roc_auc = roc_auc_score(y_test, y_pred_prob, multi_class='ovr') if metrics["ROC_AUC"] == "True": score = roc_auc type = 'ROC_AUC' log.info('Status:-|... ROC AUC Score '+str(score)) class_report = classification_report(y_test, y_pred, output_dict=True, target_names=class_names) conf_matrix = confusion_matrix(y_test, y_pred) return type, score, class_report, conf_matrix, roc_auc def evaluate_model_regression(model, config, X_test, y_test): metrics = config["basic"]["scoringCriteria"]["regression"] y_pred = model.predict(X_test).compute() y_test = y_test.to_dask_array().compute() X_test = X_test.to_dask_array(lengths=True) log = logging.getLogger('eion') mse = mean_squared_error(y_test, y_pred) rmse = mean_squared_error(y_test, y_pred, squared=False) norm_rmse = rmse * 100 / (y_test.max() - y_test.min()) mape = mean_absolute_percentage_error(y_test, y_pred) r2 = r2_score(y_test, y_pred) mae = mean_absolute_error(y_test, y_pred) if metrics["Mean Squared Error"] == "True": type = 'Mean Squared Error' score = mse log.info('Status:-|... Mean Squared Error '+str(score)) if metrics["Root Mean Squared Error"] == "True": type = 'Root Mean Squared Error' score = rmse log.info('Status:-|... Root Mean Square Error '+str(score)) if metrics["R-Squared"] == "True": type = 'R-Squared' score = r2 log.info('Status:-|... R Squared Error '+str(score)) if metrics["Mean Absolute Error"] == "True": type = 'Mean Absolute Error' score = mae log.info('Status:-|... Mean Absolute Error '+str(score)) return type, score, mse, rmse, norm_rmse, r2, mae, mape def save_config(config): deploy_location = config["basic"]["modelLocation"] saved_model_file = os.path.join(deploy_location,'etc','config.json') print(predict_config) with open (saved_model_file,'w') as f: json.dump(predict_config, f) f.close() def save_model(config, model): model_name = config["basic"]["modelName"] model_version = config["basic"]["modelVersion"] analysis_type = config["basic"]["analysisType"] deploy_location = config["basic"]["modelLocation"] if analysis_type["classification"] == "True": problem_type = "classification" if analysis_type["regression"] == "True": problem_type = "regression" print("model_name", model_name) print("model_version", model_version) print("problem_type", problem_type) print("deploy_location", deploy_location) file_name = problem_type + '_' + model_version + ".sav" saved_model = os.path.join(deploy_location,'model',file_name) print("Save trained model to directory: ", save_model) with open (saved_model,'wb') as f: pkl.dump(model,f) f.close() predict_config['modelLocation'] = file_name def save_pkl(model, filename): with open(filename, 'wb') as f: pkl.dump(model, f, protocol=pkl.HIGHEST_PROTOCOL) def dask_findiforestOutlier(X): print("Outlier removal with Isolation Forest...") isolation_forest = IsolationForest(n_estimators=100) with joblib.parallel_backend('dask'): isolation_forest.fit(X) y_pred_train = isolation_forest.fit_predict(X) mask_isoForest = y_pred_train != -1 return mask_isoForest def training(configFile): start_time = time.time() config = load_config_json(configFile) data_dir = config["basic"]["dataLocation"] n_workers = int(config["advance"] ["distributedlearner_config"] ["n_workers"]) npartitions = int(config["advance"] ["distributedlearner_config"] ["npartitions"]) threads_per_worker = int(config["advance"] ["distributedlearner_config"] ["threads_per_worker"]) predict_config['modelName'] = config["basic"]["modelName"] predict_config['modelVersion'] = config["basic"]["modelVersion"] predict_config['targetFeature'] = config["basic"]["targetFeature"] predict_config['trainingFeatures'] = config["basic"]["trainingFeatures"] predict_config['dataLocation'] = config["basic"]["dataLocation"] predict_config['n_workers'] = n_workers predict_config['npartitions'] = npartitions predict_config['threads_per_worker'] = threads_per_worker if config['basic']['analysisType']["classification"] == "True": problemType = "classification" oProblemType = "Distributed Classification" if config['basic']['analysisType']["regression"] == "True": problemType = "regression" oProblemType = "Distributed Regression" predict_config['analysisType'] = problemType predict_config['scoringCriteria'] = '' target_feature = config["basic"]["targetFeature"] training_features = config["basic"]["trainingFeatures"] deploy_location = config["basic"]["deployLocation"] is_xgb_class = config["basic"] \\ ["algorithms"]["classification"] \\ ["Distributed Extreme Gradient Boosting (XGBoost)"] is_lgbm_class = config["basic"] \\ ["algorithms"]["classification"] \\ ["Distributed Light Gradient Boosting (LightGBM)"] is_xgb_regress = config["basic"] \\ ["algorithms"]["regression"] \\ ["Distributed Extreme Gradient Boosting (XGBoost)"] is_lgbm_regress = config["basic"] \\ ["algorithms"]["regression"] \\ ["Distributed Light Gradient Boosting (LightGBM)"] if is_xgb_class=="True" or is_xgb_regress=="True": algorithm = "Distributed Extreme Gradient Boosting (XGBoost)" predict_config['algorithm'] = algorithm if is_lgbm_class=="True" or is_lgbm_regress=="True": algorithm = "Distributed Light Gradient Boosting (LightGBM)" predict_config['algorithm'] = algorithm cluster = dask.distributed.LocalCluster(n_workers=n_workers, threads_per_worker=threads_per_worker, # dashboard_address="127.0.0.1:8787" ) client = dask.distributed.Client(cluster) df_dask = load_data_dask(data_dir, npartitions=npartitions) deployFolder = config["basic"]["deployLocation"] modelName = config["basic"]["modelName"] modelName = modelName.replace(" ", "_") modelVersion = config["basic"]["modelVersion"] modelLocation = os.path.join(deployFolder,modelName) os.makedirs(modelLocation,exist_ok = True) deployLocation = os.path.join(modelLocation,modelVersion) predict_config['deployLocation'] = deployLocation try: os.makedirs(deployLocation) except OSError as e: shutil.rmtree(deployLocation) time.sleep(2) os.makedirs(deployLocation) modelFolderLocation = os.path.join(deployLocation,'model') try: os.makedirs(modelFolderLocation) except OSError as e: print("\\nModel Folder Already Exists") etcFolderLocation = os.path.join(deployLocation,'etc') try: os.makedirs(etcFolderLocation) except OSError as e: print("\\ETC Folder Already Exists") logFolderLocation = os.path.join(deployLocation,'log') try: os.makedirs(logFolderLocation) except OSError as e: print("\\nLog Folder Already Exists") logFileName=os.path.join(logFolderLocation,'model_training_logs.log') outputjsonFile=os.path.join(deployLocation,'etc','output.json') filehandler = logging.FileHandler(logFileName, 'w','utf-8') formatter = logging.Formatter('%(message)s') filehandler.setFormatter(formatter) log = logging.getLogger('eion') log.propagate = False for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): log.removeHandler(hdlr) log.addHandler(filehandler) log.setLevel(logging.INFO) log.info('Status:-|... Distributed Learning Started') config['basic']['modelLocation'] = deployLocation # Get input for EDA # descr, corr = get_dask_eda(df_dask=df_dask) #print(descr) # print(corr) #print(df_dask.columns) #print("target feature", target_feature) df_dask = df_dask.dropna(subset=[target_feature]) if is_xgb_class == "True" or is_lgbm_class == "True": df_dask = df_dask.categorize(columns=[target_feature]) df_dask[target_feature] = df_dask[target_feature].astype('category') df_dask[target_feature] = df_dask[target_feature].cat.as_known() label_mapping = dict(enumerate(df_dask[target_feature].cat.categories)) df_dask[target_feature] = df_dask[target_feature].cat.codes label_mapping_file =os.path.join(deployLocation,'etc','label_mapping.json') with open(label_mapping_file, 'w') as f: json.dump(label_mapping, f) if config["advance"]["profiler"]["removeDuplicate"] == "True": df_dask = df_dask.drop_duplicates() # Need to dropna for case of categoricalFillMethod # if config["advance"]["profiler"]["numericalFillMethod"]["Drop"] == "True": # df_dask = df_dask.dropna() trainingFeatures = config["basic"]["trainingFeatures"].split(',') if target_feature not in trainingFeatures: trainingFeatures.append(target_feature) df_dask = df_dask[trainingFeatures] y = df_dask[target_feature] X = df_dask.drop(target_feature, axis=1) print("after X.shape, y.shape", X.shape, y.shape) X_train, X_test, y_train, y_test = dask_ml.model_selection.train_test_split(X, y, test_size=0.2, random_state=0) trainingFeatures = config["basic"]["trainingFeatures"].split(',') outputJson = None conf_matrix_dict = {} train_conf_matrix_dict = {} try: if is_xgb_class == "True": modelName = 'Distributed Extreme Gradient Boosting (XGBoost)' dask_model, X_train, X_test = train_xgb_classification(client, X_train, y_train, X_test, config) class_names = list(label_mapping.values()) _, _, train_class_report, train_conf_matrix, train_roc_auc = evaluate_model_classification(dask_model, config, X_train, y_train, class_names) scoringCreteria,score, class_report, conf_matrix, roc_auc = evaluate_model_classification(dask_model, config, X_test, y_test, class_names) for i in range(len(conf_matrix)): conf_matrix_dict_1 = {} for j in range(len(conf_matrix[i])): conf_matrix_dict_1['pre:' + str(class_names[j])] = int(conf_matrix[i][j]) conf_matrix_dict['act:'+ str(class_names[i])] = conf_matrix_dict_1 for i in range(len(train_conf_matrix)): train_conf_matrix_dict_1 = {} for j in range(len(train_conf_matrix[i])): train_conf_matrix_dict_1['pre:' + str(class_names[j])] = int(train_conf_matrix[i][j]) train_conf_matrix_dict['act:'+ str(class_names[i])] = train_conf_matrix_dict_1 # print(roc_auc) outputJson = {'status':'SUCCESS','data':{'ModelType':oProblemType,\\ 'deployLocation':deployLocation,'BestModel':modelName,'BestScore':score,'ScoreType':scoringCreteria,\\ 'matrix':{'ConfusionMatrix':conf_matrix_dict,'ClassificationReport':class_report,'ROC_AUC_SCORE':roc_auc},\\ 'trainmatrix':{'ConfusionMatrix':train_conf_matrix_dict,'ClassificationReport':train_class_report,'ROC_AUC_SCORE':train_roc_auc},\\ 'featuresused':trainingFeatures,'targetFeature':target_feature,'EvaluatedModels':[{'Model':modelName,'Score':score}], 'LogFile':logFileName}} if is_lgbm_class == "True": modelName = 'Distributed Light Gradient Boosting (LightGBM)' dask_model, X_train, X_test = train_lgbm_classification(client, X_train, y_train, X_test, config) class_names = list(label_mapping.values()) _, _, train_class_report, train_conf_matrix, train_roc_auc = evaluate_model_classification(dask_model, config, X_train, y_train, class_names) scoringCreteria,score, class_report, conf_matrix, roc_auc = evaluate_model_classification(dask_model, config, X_test, y_test, class_names) for i in range(len(conf_matrix)): conf_matrix_dict_1 = {} for j in range
(len(conf_matrix[i])): conf_matrix_dict_1['pre:' + str(class_names[j])] = int(conf_matrix[i][j]) conf_matrix_dict['act:'+ str(class_names[i])] = conf_matrix_dict_1 for i in range(len(train_conf_matrix)): train_conf_matrix_dict_1 = {} for j in range(len(train_conf_matrix[i])): train_conf_matrix_dict_1['pre:' + str(class_names[j])] = int(train_conf_matrix[i][j]) train_conf_matrix_dict['act:'+ str(class_names[i])] = train_conf_matrix_dict_1 outputJson = {'status':'SUCCESS','data':{'ModelType':oProblemType,\\ 'deployLocation':deployLocation,'BestModel':modelName,'BestScore':score,'ScoreType':scoringCreteria,\\ 'matrix':{'ConfusionMatrix':conf_matrix_dict,'ClassificationReport':class_report,'ROC_AUC_SCORE':roc_auc},\\ 'trainmatrix':{'ConfusionMatrix':train_conf_matrix_dict,'ClassificationReport':train_class_report,'ROC_AUC_SCORE':train_roc_auc},\\ 'featuresused':trainingFeatures,'targetFeature':target_feature,'EvaluatedModels':[{'Model':modelName,'Score':score}], 'LogFile':logFileName}} if is_xgb_regress == "True": modelName = 'Distributed Extreme Gradient Boosting (XGBoost)' dask_model, X_train, X_test = train_xgb_regression(client, X_train, y_train, X_test, config) _, _, train_mse, train_rmse, train_norm_rmse, train_r2, train_mae, train_mape = evaluate_model_regression(dask_model, config, X_train, y_train) scoringCreteria, score, mse, rmse, norm_rmse, r2, mae, mape = evaluate_model_regression(dask_model, config, X_test, y_test) outputJson = {'status':'SUCCESS','data':{'ModelType':oProblemType,\\ 'deployLocation':deployLocation,'BestModel':modelName,'BestScore':score,'ScoreType':scoringCreteria,\\ 'matrix':{'MAE':mae,'R2Score':r2,'MSE':mse,'MAPE':mape,'RMSE':rmse,'Normalised RMSE(%)':norm_rmse}, \\ 'trainmatrix':{'MAE':train_mae,'R2Score':train_r2,'MSE':train_mse,'MAPE':train_mape,'RMSE':train_rmse,'Normalised RMSE(%)':train_norm_rmse}, \\ 'featuresused':trainingFeatures,'targetFeature':target_feature,'EvaluatedModels':[{'Model':modelName,'Score':score}], 'LogFile':logFileName}} if is_lgbm_regress == "True": modelName = 'Distributed Light Gradient Boosting (LightGBM)' dask_model, X_train, X_test = train_lgbm_regression(client, X_train, y_train, X_test, config) _, _, train_mse, train_rmse, train_norm_rmse, train_r2, train_mae, train_mape = evaluate_model_regression(dask_model, config, X_train, y_train) scoringCreteria, score, mse, rmse, norm_rmse, r2, mae, mape = evaluate_model_regression(dask_model, config, X_test, y_test) outputJson = {'status':'SUCCESS','data':{'ModelType':oProblemType,\\ 'deployLocation':deployLocation,'BestModel':modelName,'BestScore':score,'ScoreType':scoringCreteria,\\ 'matrix':{'MAE':mae,'R2Score':r2,'MSE':mse,'MAPE':mape,'RMSE':rmse,'Normalised RMSE(%)':norm_rmse}, \\ 'trainmatrix':{'MAE':train_mae,'R2Score':train_r2,'MSE':train_mse,'MAPE':train_mape,'RMSE':train_rmse,'Normalised RMSE(%)':train_norm_rmse}, \\ 'featuresused':trainingFeatures,'targetFeature':target_feature,'EvaluatedModels':[{'Model':modelName,'Score':score}], 'LogFile':logFileName}} src = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','utilities','dl_aion_predict.py') shutil.copy2(src,deployLocation) os.rename(os.path.join(deployLocation,'dl_aion_predict.py'),os.path.join(deployLocation,'aion_predict.py')) except Exception as e: outputJson = {"status":"FAIL","message":str(e)} print(e) client.close() cluster.close() log.info('Status:-|... Distributed Learning Completed') with open(outputjsonFile, 'w') as f: json.dump(outputJson, f) f.close() output_json = json.dumps(outputJson) log.info('aion_learner_status:'+str(output_json)) for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): hdlr.close() log.removeHandler(hdlr) print("\\n") print("aion_learner_status:",output_json) print("\\n") end_time = time.time() print("--- %s processing time (sec) ---" % (end_time - start_time)) <s><s> import autograd import autograd.numpy as np import scipy.optimize from autograd import grad from autograd.scipy.special import logsumexp from sklearn.cluster import KMeans class HMM: """ A Hidden Markov Model with Gaussian observations with unknown means and known precisions. """ def __init__(self, X, config_dict=None): self.N, self.T, self.D = X.shape self.K = config_dict['K'] # number of HMM states self.I = np.eye(self.K) self.Precision = np.zeros([self.D, self.D, self.K]) self.X = X if config_dict['precision'] is None: for k in np.arange(self.K): self.Precision[:, :, k] = np.eye(self.D) else: self.Precision = config_dict['precision'] self.dParams_dWeights = None self.alphaT = None # Store the final beliefs. self.beta1 = None # store the first timestep beliefs from the beta recursion. self.forward_trellis = {} # stores \\alpha self.backward_trellis = {} # stores \\beta def initialize_params(self, seed=1234): np.random.seed(seed) param_dict = {} A = np.random.randn(self.K, self.K) # use k-means to initialize the mean parameters X = self.X.reshape([-1, self.D]) kmeans = KMeans(n_clusters=self.K, random_state=seed, n_init=15).fit(X) labels = kmeans.labels_ _, counts = np.unique(labels, return_counts=True) pi = counts phi = kmeans.cluster_centers_ param_dict['A'] = np.exp(A) param_dict['pi0'] = pi param_dict['phi'] = phi return self.pack_params(param_dict) def unpack_params(self, params): param_dict = dict() K = self.K # For unpacking simplex parameters: have packed them as # log(pi[:-1]) - log(pi[-1]). unnorm_A = np.exp(np.append(params[:K**2-K].reshape(K, K-1), np.zeros((K, 1)), axis=1) ) Z = np.sum(unnorm_A[:, :-1], axis=1) unnorm_A /= Z[:, np.newaxis] norm_A = unnorm_A / unnorm_A.sum(axis=1, keepdims=True) param_dict['A'] = norm_A unnorm_pi = np.exp(np.append(params[K**2-K:K**2-1], 0.0)) Z = np.sum(unnorm_pi[:-1]) unnorm_pi /= Z param_dict['pi0'] = unnorm_pi / unnorm_pi.sum() param_dict['phi'] = params[K**2-K+K-1:].reshape(self.D, K) return param_dict def weighted_alpha_recursion(self, xseq, pi, phi, Sigma, A, wseq, store_belief=False): """ Computes the weighted marginal probability of the sequence xseq given parameters; weights wseq turn on or off the emissions p(x_t | z_t) (weighting scheme B) :param xseq: T * D :param pi: K * 1 :param phi: D * K :param wseq: T * 1 :param A: :return: """ ll = self.log_obs_lik(xseq[:, :, np.newaxis], phi[np.newaxis, :, :], Sigma) alpha = np.log(pi.ravel()) + wseq[0] * ll[0] if wseq[0] == 0: self.forward_trellis[0] = alpha[:, np.newaxis] for t in np.arange(1, self.T): alpha = logsumexp(alpha[:, np.newaxis] + np.log(A), axis=0) + wseq[t] * ll[t] if wseq[t] == 0: # store the trellis, would be used to compute the posterior z_t | x_1...x_t-1, x_t+1, ...x_T self.forward_trellis[t] = alpha[:, np.newaxis] if store_belief: # store the final belief self.alphaT = alpha return logsumexp(alpha) def weighted_beta_recursion(self, xseq, pi, phi, Sigma, A, wseq, store_belief=False): """ Runs beta recursion; weights wseq turn on or off the emissions p(x_t | z_t) (weighting scheme B) :param xseq: T * D :param pi: K * 1 :param phi: D * K :param wseq: T * 1 :param A: :return: """ ll = self.log_obs_lik(xseq[:, :, np.newaxis], phi[np.newaxis, :, :], Sigma) beta = np.zeros_like(pi.ravel()) # log(\\beta) of all ones. max_t = ll.shape[0] if wseq[max_t - 1] == 0: # store the trellis, would be used to compute the posterior z_t | x_1...x_t-1, x_t+1, ...x_T self.backward_trellis[max_t - 1] = beta[:, np.newaxis] for i in np.arange(1, max_t): t = max_t - i - 1 beta = logsumexp((beta + wseq[t + 1] * ll[t + 1])[np.newaxis, :] + np.log(A), axis=1) if wseq[t] == 0: # store the trellis, would be used to compute the posterior z_t | x_1...x_t-1, x_t+1, ...x_T self.backward_trellis[t] = beta[:, np.newaxis] # account for the init prob beta = (beta + wseq[0] * ll[0]) + np.log(pi.ravel()) if store_belief: # store the final belief self.beta1 = beta return logsumexp(beta) def weighted_loss(self, params, weights): """ For LOOCV / IF computation within a single sequence. Uses weighted alpha recursion :param params: :param weights: :return: """ param_dict = self.unpack_params(params) logp = self.get_prior_contrib(param_dict) logp = logp + self.weighted_alpha_recursion(self.X[0], param_dict['pi0'], param_dict['phi'], self.Precision, param_dict['A'], weights) return -logp def loss_at_missing_timesteps(self, weights, params): """ :param weights: zeroed out weights indicate missing values :param params: packed parameters :return: """ # empty forward and backward trellis self.clear_trellis() param_dict = self.unpack_params(params) # populate forward and backward trellis lpx = self.weighted_alpha_recursion(self.X[0], param_dict['pi0'], param_dict['phi'], self.Precision, param_dict['A'], weights, store_belief=True ) lpx_alt = self.weighted_beta_recursion(self.X[0], param_dict['pi0'], param_dict['phi'], self.Precision, param_dict['A'], weights, store_belief=True) assert np.allclose(lpx, lpx_alt) # sanity check test_ll = [] # compute loo likelihood ll = self.log_obs_lik(self.X[0][:, :, np.newaxis], param_dict['phi'], self.Precision) # compute posterior p(z_t | x_1,...t-1, t+1,...T) \\forall missing t tsteps = [] for t in self.forward_trellis.keys(): lpz_given_x = self.forward_trellis[t] + self.backward_trellis[t] - lpx test_ll.append(logsumexp(ll[t] + lpz_given_x.ravel())) tsteps.append(t) # empty forward and backward trellis self.clear_trellis() return -np.array(test_ll) def fit(self, weights, init_params=None, num_random_restarts=1, verbose=False, maxiter=None): if maxiter: options_dict = {'disp': verbose, 'gtol': 1e-10, 'maxiter': maxiter} else: options_dict = {'disp': verbose, 'gtol': 1e-10} # Define a function that returns gradients of training loss using Autograd. training_loss_fun =
lambda params: self.weighted_loss(params, weights) training_gradient_fun = grad(training_loss_fun, 0) if init_params is None: init_params = self.initialize_params() if verbose: print("Initial loss: ", training_loss_fun(init_params)) res = scipy.optimize.minimize(fun=training_loss_fun, jac=training_gradient_fun, x0=init_params, tol=1e-10, options=options_dict) if verbose: print('grad norm =', np.linalg.norm(res.jac)) return res.x def clear_trellis(self): self.forward_trellis = {} self.backward_trellis = {} #### Required for IJ computation ### def compute_hessian(self, params_one, weights_one): return autograd.hessian(self.weighted_loss, argnum=0)(params_one, weights_one) def compute_jacobian(self, params_one, weights_one): return autograd.jacobian(autograd.jacobian(self.weighted_loss, argnum=0), argnum=1)\\ (params_one, weights_one).squeeze() ################################################### @staticmethod def log_obs_lik(x, phi, Sigma): """ :param x: T*D*1 :param phi: 1*D*K :param Sigma: D*D*K --- precision matrices per state :return: ll """ centered_x = x - phi ll = -0.5 * np.einsum('tdk, tdk, ddk -> tk', centered_x, centered_x, Sigma ) return ll @staticmethod def pack_params(params_dict): param_list = [(np.log(params_dict['A'][:, :-1]) - np.log(params_dict['A'][:, -1])[:, np.newaxis]).ravel(), np.log(params_dict['pi0'][:-1]) - np.log(params_dict['pi0'][-1]), params_dict['phi'].ravel()] return np.concatenate(param_list) @staticmethod def get_prior_contrib(param_dict): logp = 0.0 # Prior logp += -0.5 * (np.linalg.norm(param_dict['phi'], axis=0) ** 2).sum() logp += (1.1 - 1) * np.log(param_dict['A']).sum() logp += (1.1 - 1) * np.log(param_dict['pi0']).sum() return logp @staticmethod def get_indices_in_held_out_fold(T, pct_to_drop, contiguous=False): """ :param T: length of the sequence :param pct_to_drop: % of T in the held out fold :param contiguous: if True generate a block of indices to drop else generate indices by iid sampling :return: o (the set of indices in the fold) """ if contiguous: l = np.floor(pct_to_drop / 100. * T) anchor = np.random.choice(np.arange(l + 1, T)) o = np.arange(anchor - l, anchor).astype(int) else: # i.i.d LWCV o = np.random.choice(T - 2, size=np.int(pct_to_drop / 100. * T), replace=False) + 1 return o @staticmethod def synthetic_hmm_data(K, T, D, sigma0=None, seed=1234, varainces_of_mean=1.0, diagonal_upweight=False): """ :param K: Number of HMM states :param T: length of the sequence """ N = 1 # For structured IJ we will remove data / time steps from a single sequence np.random.seed(seed) if sigma0 is None: sigma0 = np.eye(D) A = np.random.dirichlet(alpha=np.ones(K), size=K) if diagonal_upweight: A = A + 3 * np.eye(K) # add 3 to the diagonal and renormalize to encourage self transitions A = A / A.sum(axis=1) pi0 = np.random.dirichlet(alpha=np.ones(K)) mus = np.random.normal(size=(K, D), scale=np.sqrt(varainces_of_mean)) zs = np.empty((N, T), dtype=np.int) X = np.empty((N, T, D)) for n in range(N): zs[n, 0] = int(np.random.choice(np.arange(K), p=pi0)) X[n, 0] = np.random.multivariate_normal(mean=mus[zs[n, 0]], cov=sigma0) for t in range(1, T): zs[n, t] = int(np.random.choice(np.arange(K), p=A[zs[n, t - 1], :])) X[n, t] = np.random.multivariate_normal(mean=mus[zs[n, t]], cov=sigma0) return {'X': X, 'state_assignments': zs, 'A': A, 'initial_state_assignment': pi0, 'means': mus} <s><s> from builtins import range import autograd.numpy as np def adam(grad, x, callback=None, num_iters=100, step_size=0.001, b1=0.9, b2=0.999, eps=10**-8, polyak=False): """Adapted from autograd.misc.optimizers""" m = np.zeros(len(x)) v = np.zeros(len(x)) for i in range(num_iters): g = grad(x, i) if callback: callback(x, i, g, polyak) m = (1 - b1) * g + b1 * m # First moment estimate. v = (1 - b2) * (g**2) + b2 * v # Second moment estimate. mhat = m / (1 - b1**(i + 1)) # Bias correction. vhat = v / (1 - b2**(i + 1)) x = x - step_size*mhat/(np.sqrt(vhat) + eps) return x<s> import matplotlib.pyplot as plt import numpy as np import numpy.random as npr import torch as torch def make_data_gap(seed, data_count=100): import GPy npr.seed(0) x = np.hstack([np.linspace(-5, -2, int(data_count/2)), np.linspace(2, 5, int(data_count/2))]) x = x[:, np.newaxis] k = GPy.kern.RBF(input_dim=1, variance=1., lengthscale=1.) K = k.K(x) L = np.linalg.cholesky(K + 1e-5 * np.eye(data_count)) # draw a noise free random function from a GP eps = np.random.randn(data_count) f = L @ eps # use a homoskedastic Gaussian noise model N(f(x)_i, \\sigma^2). \\sigma^2 = 0.1 eps_noise = np.sqrt(0.1) * np.random.randn(data_count) y = f + eps_noise y = y[:, np.newaxis] plt.plot(x, f, 'ko', ms=2) plt.plot(x, y, 'ro') plt.title("GP generated Data") plt.pause(1) return torch.FloatTensor(x), torch.FloatTensor(y), torch.FloatTensor(x), torch.FloatTensor(y) def make_data_sine(seed, data_count=450): # fix the random seed np.random.seed(seed) noise_var = 0.1 X = np.linspace(-4, 4, data_count) y = 1*np.sin(X) + np.sqrt(noise_var)*npr.randn(data_count) train_count = int (0.2 * data_count) idx = npr.permutation(range(data_count)) X_train = X[idx[:train_count], np.newaxis ] X_test = X[ idx[train_count:], np.newaxis ] y_train = y[ idx[:train_count] ] y_test = y[ idx[train_count:] ] mu = np.mean(X_train, 0) std = np.std(X_train, 0) X_train = (X_train - mu) / std X_test = (X_test - mu) / std mu = np.mean(y_train, 0) std = np.std(y_train, 0) # mu = 0 # std = 1 y_train = (y_train - mu) / std y_test = (y_test -mu) / std train_stats = dict() train_stats['mu'] = torch.FloatTensor([mu]) train_stats['sigma'] = torch.FloatTensor([std]) return torch.FloatTensor(X_train), torch.FloatTensor(y_train), torch.FloatTensor(X_test), torch.FloatTensor(y_test),\\ train_stats<s> import autograd import autograd.numpy as np import numpy.random as npr import scipy.optimize sigmoid = lambda x: 0.5 * (np.tanh(x / 2.) + 1) get_num_train = lambda inputs: inputs.shape[0] logistic_predictions = lambda params, inputs: sigmoid(np.dot(inputs, params)) class LogisticRegression: def __init__(self): self.params = None def set_parameters(self, params): self.params = params def predict(self, X): if self.params is not None: # Outputs probability of a label being true according to logistic model return np.atleast_2d(sigmoid(np.dot(X, self.params))).T else: raise RuntimeError("Params need to be fit before predictions can be made.") def loss(self, params, weights, inputs, targets): # Training loss is the negative log-likelihood of the training labels. preds = logistic_predictions(params, inputs) label_probabilities = preds * targets + (1 - preds) * (1 - targets) return -np.sum(weights * np.log(label_probabilities + 1e-16)) def fit(self, weights, init_params, inputs, targets, verbose=True): training_loss_fun = lambda params: self.loss(params, weights, inputs, targets) # Define a function that returns gradients of training loss using Autograd. training_gradient_fun = autograd.grad(training_loss_fun, 0) # optimize params if verbose: print("Initial loss:", self.loss(init_params, weights, inputs, targets)) # opt_params = sgd(training_gradient_fun, params, hyper=1, num_iters=5000, step_size=0.1) res = scipy.optimize.minimize(fun=training_loss_fun, jac=training_gradient_fun, x0=init_params, tol=1e-10, options={'disp': verbose}) opt_params = res.x if verbose: print("Trained loss:", self.loss(opt_params, weights, inputs, targets)) self.params = opt_params return opt_params def get_test_acc(self, params, test_targets, test_inputs): preds = np.round(self.predict(test_inputs).T).astype(np.int) err = np.abs(test_targets - preds).sum() return 1 - err/ test_targets.shape[1] #### Required for IJ computation ### def compute_hessian(self, params_one, weights_one, inputs, targets): return autograd.hessian(self.loss, argnum=0)(params_one, weights_one, inputs, targets) def compute_jacobian(self, params_one, weights_one, inputs, targets): return autograd.jacobian(autograd.jacobian(self.loss, argnum=0), argnum=1)\\ (params_one, weights_one, inputs, targets).squeeze() ################################################### @staticmethod def synthetic_lr_data(N=10000, D=10): x = 1. * npr.randn(N, D) x_test = 1. * npr.randn(int(0.3 * N), D) w = npr.randn(D, 1) y = sigmoid((x @ w)).ravel() y = npr.binomial(n=1, p=y) # corrupt labels y_test = sigmoid(x_test @ w).ravel() # y_test = np.round(y_test) y_test = npr.binomial(n=1, p=y_test) return x, np.atleast_2d(y), x_test, np.atleast_2d(y_test) <s> import abc import sys # Ensure compatibility with Python 2/3 if sys.version_info >= (3, 4): ABC = abc.ABC else: ABC = abc.ABCMeta(str('ABC'), (), {}) from copy import deepcopy import numpy as np import numpy.random as npr def make_batches(n_data, batch_size): return [slice(i, min(i+batch_size, n_data)) for i in range(0, n_data, batch_size)] def generate_regression_data(seed, data_count=500): """ Generate data from a noisy sine wave. :param seed: random number seed :param data_count: number of data points. :return: """ np.random.seed(seed) noise_var = 0.1 x = np.linspace(-4, 4, data_count) y = 1*np.sin(x) + np.sqrt(noise_var)*npr.randn(data_count) train_count = int (0.2 * data_count) idx = npr.permutation(range(data_count)) x_train = x[idx[:train_count], np.newaxis ] x_test = x[ idx[train_count:], np.newaxis ] y_train = y[ idx[:train_count] ] y_test = y[ idx[train_count:] ] mu = np.mean(x_train, 0) std = np.std(x_train, 0) x_train = (
x_train - mu) / std x_test = (x_test - mu) / std mu = np.mean(y_train, 0) std = np.std(y_train, 0) y_train = (y_train - mu) / std train_stats = dict() train_stats['mu'] = mu train_stats['sigma'] = std return x_train, y_train, x_test, y_test, train_stats def form_D_for_auucc(yhat, zhatl, zhatu): # a handy routine to format data as needed by the UCC fit() method D = np.zeros([yhat.shape[0], 3]) D[:, 0] = yhat.squeeze() D[:, 1] = zhatl.squeeze() D[:, 2] = zhatu.squeeze() return D def fitted_ucc_w_nullref(y_true, y_pred_mean, y_pred_lower, y_pred_upper): """ Instantiates an UCC object for the target predictor plus a 'null' (constant band) reference :param y_pred_lower: :param y_pred_mean: :param y_pred_upper: :param y_true: :return: ucc object fitted for two systems: target + null reference """ # form matrix for ucc: X_for_ucc = form_D_for_auucc(y_pred_mean.squeeze(), y_pred_mean.squeeze() - y_pred_lower.squeeze(), y_pred_upper.squeeze() - y_pred_mean.squeeze()) # form matrix for a 'null' system (constant band) X_null = deepcopy(X_for_ucc) X_null[:,1:] = np.std(y_pred_mean) # can be set to any other constant (no effect on AUUCC) # create an instance of ucc and fit data from uq360.metrics.uncertainty_characteristics_curve import UncertaintyCharacteristicsCurve as ucc u = ucc() u.fit([X_for_ucc, X_null], y_true.squeeze()) return u def make_sklearn_compatible_scorer(task_type, metric, greater_is_better=True, **kwargs): """ Args: task_type: (str) regression or classification. metric: (str): choice of metric can be one of these - [aurrrc, ece, auroc, nll, brier, accuracy] for classification and ["rmse", "nll", "auucc_gain", "picp", "mpiw", "r2"] for regression. greater_is_better: is False the scores are negated before returning. **kwargs: additional arguments specific to some metrics. Returns: sklearn compatible scorer function. """ from uq360.metrics.classification_metrics import compute_classification_metrics from uq360.metrics.regression_metrics import compute_regression_metrics def sklearn_compatible_score(model, X, y_true): """ Args: model: The model being scored. Currently uq360 and sklearn models are supported. X: Input features. y_true: ground truth values for the target. Returns: Computed score of the model. """ from uq360.algorithms.builtinuq import BuiltinUQ from uq360.algorithms.posthocuq import PostHocUQ if isinstance(model, BuiltinUQ) or isinstance(model, PostHocUQ): # uq360 models if task_type == "classification": score = compute_classification_metrics( y_true=y_true, y_prob=model.predict(X).y_prob, option=metric, **kwargs )[metric] elif task_type == "regression": y_mean, y_lower, y_upper = model.predict(X) score = compute_regression_metrics( y_true=y_true, y_mean=y_mean, y_lower=y_lower, y_upper=y_upper, option=metric, **kwargs )[metric] else: raise NotImplementedError else: # sklearn models if task_type == "classification": score = compute_classification_metrics( y_true=y_true, y_prob=model.predict_proba(X), option=metric, **kwargs )[metric] else: if metric in ["rmse", "r2"]: score = compute_regression_metrics( y_true=y_true, y_mean=model.predict(X), y_lower=None, y_upper=None, option=metric, **kwargs )[metric] else: raise NotImplementedError("{} is not supported for sklearn regression models".format(metric)) if not greater_is_better: score = -score return score return sklearn_compatible_score class DummySklearnEstimator(ABC): def __init__(self, num_classes, base_model_prediction_fn): self.base_model_prediction_fn = base_model_prediction_fn self.classes_ = [i for i in range(num_classes)] def fit(self): pass def predict_proba(self, X): return self.base_model_prediction_fn(X) <s> # Adapted from https://github.com/Trusted-AI/AIX360/blob/master/aix360/datasets/meps_dataset.py # Utilization target is kept as a continuous target. import os import pandas as pd def default_preprocessing(df): """ 1.Create a new column, RACE that is 'White' if RACEV2X = 1 and HISPANX = 2 i.e. non Hispanic White and 'non-White' otherwise 2. Restrict to Panel 19 3. RENAME all columns that are PANEL/ROUND SPECIFIC 4. Drop rows based on certain values of individual features that correspond to missing/unknown - generally < -1 5. Compute UTILIZATION. """ def race(row): if ((row['HISPANX'] == 2) and (row['RACEV2X'] == 1)): #non-Hispanic Whites are marked as WHITE; all others as NON-WHITE return 'White' return 'Non-White' df['RACEV2X'] = df.apply(lambda row: race(row), axis=1) df = df.rename(columns = {'RACEV2X' : 'RACE'}) df = df[df['PANEL'] == 19] # RENAME COLUMNS df = df.rename(columns = {'FTSTU53X' : 'FTSTU', 'ACTDTY53' : 'ACTDTY', 'HONRDC53' : 'HONRDC', 'RTHLTH53' : 'RTHLTH', 'MNHLTH53' : 'MNHLTH', 'CHBRON53' : 'CHBRON', 'JTPAIN53' : 'JTPAIN', 'PREGNT53' : 'PREGNT', 'WLKLIM53' : 'WLKLIM', 'ACTLIM53' : 'ACTLIM', 'SOCLIM53' : 'SOCLIM', 'COGLIM53' : 'COGLIM', 'EMPST53' : 'EMPST', 'REGION53' : 'REGION', 'MARRY53X' : 'MARRY', 'AGE53X' : 'AGE', 'POVCAT15' : 'POVCAT', 'INSCOV15' : 'INSCOV'}) df = df[df['REGION'] >= 0] # remove values -1 df = df[df['AGE'] >= 0] # remove values -1 df = df[df['MARRY'] >= 0] # remove values -1, -7, -8, -9 df = df[df['ASTHDX'] >= 0] # remove values -1, -7, -8, -9 df = df[(df[['FTSTU','ACTDTY','HONRDC','RTHLTH','MNHLTH','HIBPDX','CHDDX','ANGIDX','EDUCYR','HIDEG', 'MIDX','OHRTDX','STRKDX','EMPHDX','CHBRON','CHOLDX','CANCERDX','DIABDX', 'JTPAIN','ARTHDX','ARTHTYPE','ASTHDX','ADHDADDX','PREGNT','WLKLIM', 'ACTLIM','SOCLIM','COGLIM','DFHEAR42','DFSEE42','ADSMOK42', 'PHQ242','EMPST','POVCAT','INSCOV']] >= -1).all(1)] #for all other categorical features, remove values < -1 def utilization(row): return row['OBTOTV15'] + row['OPTOTV15'] + row['ERTOT15'] + row['IPNGTD15'] + row['HHTOTD15'] df['TOTEXP15'] = df.apply(lambda row: utilization(row), axis=1) df = df.rename(columns = {'TOTEXP15' : 'UTILIZATION'}) df = df[['REGION','AGE','SEX','RACE','MARRY', 'FTSTU','ACTDTY','HONRDC','RTHLTH','MNHLTH','HIBPDX','CHDDX','ANGIDX', 'MIDX','OHRTDX','STRKDX','EMPHDX','CHBRON','CHOLDX','CANCERDX','DIABDX', 'JTPAIN','ARTHDX','ARTHTYPE','ASTHDX','ADHDADDX','PREGNT','WLKLIM', 'ACTLIM','SOCLIM','COGLIM','DFHEAR42','DFSEE42','ADSMOK42','PCS42', 'MCS42','K6SUM42','PHQ242','EMPST','POVCAT','INSCOV','UTILIZATION','PERWT15F']] return df class MEPSDataset(): """ The Medical Expenditure Panel Survey (MEPS) [#]_ data consists of large scale surveys of families and individuals, medical providers, and employers, and collects data on health services used, costs & frequency of services, demographics, health status and conditions, etc., of the respondents. This specific dataset contains MEPS survey data for calendar year 2015 obtained in rounds 3, 4, and 5 of Panel 19, and rounds 1, 2, and 3 of Panel 20. See :file:`uq360/datasets/data/meps_data/README.md` for more details on the dataset and instructions on downloading/processing the data. References: .. [#] `Medical Expenditure Panel Survey data <https://meps.ahrq.gov/mepsweb/>`_ """ def __init__(self, custom_preprocessing=default_preprocessing, dirpath=None): self._dirpath = dirpath if not self._dirpath: self._dirpath = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data', 'meps_data') self._filepath = os.path.join(self._dirpath, 'h181.csv') try: df = pd.read_csv(self._filepath, sep=',', na_values=[]) except IOError as err: print("IOError: {}".format(err)) print("To use this class, please place the heloc_dataset.csv:") print("file, as-is, in the folder:") print("\\n\\t{}\\n".format(os.path.abspath(os.path.join( os.path.abspath(__file__), 'data', 'meps_data')))) import sys sys.exit(1) if custom_preprocessing: self._data = custom_preprocessing(df) def data(self): return self._data<s> from .meps_dataset import MEPSDataset <s><s> import abc import sys # Ensure compatibility with Python 2/3 if sys.version_info >= (3, 4): ABC = abc.ABC else: ABC = abc.ABCMeta(str('ABC'), (), {}) class BuiltinUQ(ABC): """ BuiltinUQ is the base class for any algorithm that has UQ built into it. """ def __init__(self, *argv, **kwargs): """ Initialize a BuiltinUQ object. """ @abc.abstractmethod def fit(self, *argv, **kwargs): """ Learn the UQ related parameters.. """ raise NotImplementedError @abc.abstractmethod def predict(self, *argv, **kwargs): """ Method to obtain the predicitve uncertainty, this can return the total, epistemic and/or aleatoric uncertainty in the predictions. """ raise NotImplementedError def set_params(self, **parameters): for parameter, value in parameters.items(): setattr(self, parameter, value) return self <s><s> import abc import sys # Ensure compatibility with Python 2/3 if sys.version_info >= (3, 4): ABC = abc.ABC else: ABC = abc.ABCMeta(str('ABC'), (), {}) class PostHocUQ(ABC): """ PostHocUQ is the base class for any algorithm that quantifies uncertainty of a pre-trained model. """ def __init__(self, *argv, **kwargs): """ Initialize a BuiltinUQ object. """ @abc.abstractmethod def _process_pretrained_model(self, *argv, **kwargs): """ Method to process the pretrained model that requires UQ. """ raise NotImplementedError @abc.abstractmethod def predict(self, *argv, **kwargs): """ Method to obtain the predicitve uncertainty, this can return the total, epistemic and/or aleatoric uncertainty in the predictions. """ raise NotImplementedError def set_params(self, **parameters): for parameter, value in parameters.items(): setattr(self, parameter, value) return self def get_params(self): """ This method should not take any arguments and returns a dict of the __init__ parameters. """ raise NotImplementedError <s> from collections import namedtuple import numpy as np import torch from scipy.stats import norm from torch.utils.data import DataLoader from torch.utils.data import TensorDataset from uq360.algorithms.builtinuq import BuiltinUQ from uq360.models.heteroscedastic_mlp import GaussianNoiseMLPNet as _MLPNet np.random.seed(42) torch.manual_seed(42) class HeteroscedasticReg
ression(BuiltinUQ): """ Wrapper for heteroscedastic regression. We learn to predict targets given features, assuming that the targets are noisy and that the amount of noise varies between data points. https://en.wikipedia.org/wiki/Heteroscedasticity """ def __init__(self, model_type=None, model=None, config=None, device=None, verbose=True): """ Args: model_type: The base model architecture. Currently supported values are [mlp]. mlp modeltype learns a multi-layer perceptron with a heteroscedastic Gaussian likelihood. Both the mean and variance of the Gaussian are functions of the data point ->git N(y_n | mlp_mu(x_n), mlp_var(x_n)) model: (optional) The prediction model. Currently support pytorch models that returns mean and log variance. config: dictionary containing the config parameters for the model. device: device used for pytorch models ignored otherwise. verbose: if True, print statements with the progress are enabled. """ super(HeteroscedasticRegression).__init__() self.config = config self.device = device self.verbose = verbose if model_type == "mlp": self.model_type = model_type self.model = _MLPNet( num_features=self.config["num_features"], num_outputs=self.config["num_outputs"], num_hidden=self.config["num_hidden"], ) elif model_type == "custom": self.model_type = model_type self.model = model else: raise NotImplementedError def get_params(self, deep=True): return {"model_type": self.model_type, "config": self.config, "model": self.model, "device": self.device, "verbose": self.verbose} def _loss(self, y_true, y_pred_mu, y_pred_log_var): return torch.mean(0.5 * torch.exp(-y_pred_log_var) * torch.abs(y_true - y_pred_mu) ** 2 + 0.5 * y_pred_log_var) def fit(self, X, y): """ Fit the Heteroscedastic Regression model. Args: X: array-like of shape (n_samples, n_features). Features vectors of the training data. y: array-like of shape (n_samples,) or (n_samples, n_targets) Target values Returns: self """ X = torch.from_numpy(X).float().to(self.device) y = torch.from_numpy(y).float().to(self.device) dataset_loader = DataLoader( TensorDataset(X,y), batch_size=self.config["batch_size"] ) optimizer = torch.optim.Adam(self.model.parameters(), lr=self.config["lr"]) for epoch in range(self.config["num_epochs"]): avg_loss = 0.0 for batch_x, batch_y in dataset_loader: self.model.train() batch_y_pred_mu, batch_y_pred_log_var = self.model(batch_x) loss = self.model.loss(batch_y, batch_y_pred_mu, batch_y_pred_log_var) optimizer.zero_grad() loss.backward() optimizer.step() avg_loss += loss.item()/len(dataset_loader) if self.verbose: print("Epoch: {}, loss = {}".format(epoch, avg_loss)) return self def predict(self, X, return_dists=False): """ Obtain predictions for the test points. In addition to the mean and lower/upper bounds, also returns epistemic uncertainty (return_epistemic=True) and full predictive distribution (return_dists=True). Args: X: array-like of shape (n_samples, n_features). Features vectors of the test points. return_dists: If True, the predictive distribution for each instance using scipy distributions is returned. Returns: namedtuple: A namedtupe that holds y_mean: ndarray of shape (n_samples, [n_output_dims]) Mean of predictive distribution of the test points. y_lower: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of predictive distribution of the test points. y_upper: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of predictive distribution of the test points. dists: list of predictive distribution as `scipy.stats` objects with length n_samples. Only returned when `return_dists` is True. """ self.model.eval() X = torch.from_numpy(X).float().to(self.device) dataset_loader = DataLoader( X, batch_size=self.config["batch_size"] ) y_mean_list = [] y_log_var_list = [] for batch_x in dataset_loader: batch_y_pred_mu, batch_y_pred_log_var = self.model(batch_x) y_mean_list.append(batch_y_pred_mu.data.cpu().numpy()) y_log_var_list.append(batch_y_pred_log_var.data.cpu().numpy()) y_mean = np.concatenate(y_mean_list) y_log_var = np.concatenate(y_log_var_list) y_std = np.sqrt(np.exp(y_log_var)) y_lower = y_mean - 2.0*y_std y_upper = y_mean + 2.0*y_std Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper']) res = Result(y_mean, y_lower, y_upper) if return_dists: dists = [norm(loc=y_mean[i], scale=y_std[i]) for i in range(y_mean.shape[0])] Result = namedtuple('res', Result._fields + ('y_dists',)) res = Result(*res, y_dists=dists) return res <s> from .heteroscedastic_regression import HeteroscedasticRegression<s> from collections import namedtuple import numpy as np import torch import torch.nn.functional as F from scipy.stats import norm from torch.utils.data import DataLoader from torch.utils.data import TensorDataset from uq360.algorithms.builtinuq import BuiltinUQ np.random.seed(42) torch.manual_seed(42) class _MLPNet_Main(torch.nn.Module): def __init__(self, num_features, num_outputs, num_hidden): super(_MLPNet_Main, self).__init__() self.fc = torch.nn.Linear(num_features, num_hidden) self.fc_mu = torch.nn.Linear(num_hidden, num_outputs) self.fc_log_var = torch.nn.Linear(num_hidden, num_outputs) def forward(self, x): x = F.relu(self.fc(x)) mu = self.fc_mu(x) log_var = self.fc_log_var(x) return mu, log_var class _MLPNet_Aux(torch.nn.Module): def __init__(self, num_features, num_outputs, num_hidden): super(_MLPNet_Aux, self).__init__() self.fc = torch.nn.Linear(num_features, num_hidden) self.fc_log_var = torch.nn.Linear(num_hidden, num_outputs) def forward(self, x): x = F.relu(self.fc(x)) log_var = self.fc_log_var(x) return log_var class AuxiliaryIntervalPredictor(BuiltinUQ): """ Auxiliary Interval Predictor [1]_ uses an auxiliary model to encourage calibration of the main model. References: .. [1] Thiagarajan, J. J., Venkatesh, B., Sattigeri, P., & Bremer, P. T. (2020, April). Building calibrated deep models via uncertainty matching with auxiliary interval predictors. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 6005-6012). https://arxiv.org/abs/1909.04079 """ def __init__(self, model_type=None, main_model=None, aux_model=None, config=None, device=None, verbose=True): """ Args: model_type: The model type used to build the main model and the auxiliary model. Currently supported values are [mlp, custom]. `mlp` modeltype learns a mlp neural network using pytorch framework. For `custom` the user provide `main_model` and `aux_model`. main_model: (optional) The main prediction model. Currently support pytorch models that return mean and log variance. aux_model: (optional) The auxiliary prediction model. Currently support pytorch models that return calibrated log variance. config: dictionary containing the config parameters for the model. device: device used for pytorch models ignored otherwise. verbose: if True, print statements with the progress are enabled. """ super(AuxiliaryIntervalPredictor).__init__() self.config = config self.device = device self.verbose = verbose if model_type == "mlp": self.model_type = model_type self.main_model = _MLPNet_Main( num_features=self.config["num_features"], num_outputs=self.config["num_outputs"], num_hidden=self.config["num_hidden"], ) self.aux_model = _MLPNet_Aux( num_features=self.config["num_features"], num_outputs=self.config["num_outputs"], num_hidden=self.config["num_hidden"], ) elif model_type == "custom": self.model_type = model_type self.main_model = main_model self.aux_model = aux_model else: raise NotImplementedError def get_params(self, deep=True): return {"model_type": self.model_type, "config": self.config, "main_model": self.main_model, "aux_model": self.aux_model, "device": self.device, "verbose": self.verbose} def _main_model_loss(self, y_true, y_pred_mu, y_pred_log_var, y_pred_log_var_aux): r = torch.abs(y_true - y_pred_mu) # + 0.5 * y_pred_log_var + loss = torch.mean(0.5 * torch.exp(-y_pred_log_var) * r ** 2) + \\ self.config["lambda_match"] * torch.mean(torch.abs(torch.exp(0.5 * y_pred_log_var) - torch.exp(0.5 * y_pred_log_var_aux))) return loss def _aux_model_loss(self, y_true, y_pred_mu, y_pred_log_var_aux): deltal = deltau = 2.0 * torch.exp(0.5 * y_pred_log_var_aux) upper = y_pred_mu + deltau lower = y_pred_mu - deltal width = upper - lower r = torch.abs(y_true - y_pred_mu) emce = torch.mean(torch.sigmoid((y_true - lower) * (upper - y_true) * 100000)) loss_emce = torch.abs(self.config["calibration_alpha"]-emce) loss_noise = torch.mean(torch.abs(0.5 * width - r)) loss_sharpness = torch.mean(torch.abs(upper - y_true)) + torch.mean(torch.abs(lower - y_true)) #print(emce) return loss_emce + self.config["lambda_noise"] * loss_noise + self.config["lambda_sharpness"] * loss_sharpness def fit(self, X, y): """ Fit the Auxiliary Interval Predictor model. Args: X: array-like of shape (n_samples, n_features). Features vectors of the training data. y: array-like of shape (n_samples,) or (n_samples, n_targets) Target values Returns: self """ X = torch.from_numpy(X).float().to(self.device) y = torch.from_numpy(y).float().to(self.device) dataset_loader = DataLoader( TensorDataset(X,y), batch_size=self.config["batch_size"] ) optimizer_main_model = torch.optim.Adam(self.main_model.parameters(), lr=self.config["lr"]) optimizer_aux_model = torch.optim.Adam(self.aux_model.parameters(), lr=self.config["lr"]) for it in range(self.config["num_outer_iters"]): # Train the main model for epoch in range(self.config["num_main_iters"]): avg_mean_model_loss = 0.0 for batch_x, batch_y in dataset_loader: self.main_model.train() self.aux_model.eval() batch_y_pred_log_var_aux = self.aux_model(batch_x) batch_y_pred_mu, batch_y_pred_log_var = self.main_model(batch_x) main_loss = self._main_model_loss(batch_y, batch_y_pred_mu, batch_y_pred_log_var, batch_y_pred_log_var_aux) optimizer_main_model.zero_grad() main_loss.backward() optimizer_main_model.step() avg_mean_model_loss += main_loss.item()/len(dataset_loader) if self.verbose: print("Iter: {}, Epoch: {}, main_model_loss = {}".format(it, epoch, avg_mean_model_loss)) # Train the auxiliary model for epoch in range(self.config["num_aux_iters"]): avg_aux_model_loss = 0.0 for batch_x, batch_y in dataset_loader: self.aux_model.train() self.main_model.eval() batch_y_pred_log_var_aux = self.aux_model(batch_x) batch_y_pred_mu, batch_y_pred_log_var = self.main_model(batch_x) aux_loss = self._aux_model_loss(batch_y, batch_y_pred_mu, batch_y_pred_log_var_aux) optimizer_aux_model.zero_grad() aux
_loss.backward() optimizer_aux_model.step() avg_aux_model_loss += aux_loss.item() / len(dataset_loader) if self.verbose: print("Iter: {}, Epoch: {}, aux_model_loss = {}".format(it, epoch, avg_aux_model_loss)) return self def predict(self, X, return_dists=False): """ Obtain predictions for the test points. In addition to the mean and lower/upper bounds, also returns full predictive distribution (return_dists=True). Args: X: array-like of shape (n_samples, n_features). Features vectors of the test points. return_dists: If True, the predictive distribution for each instance using scipy distributions is returned. Returns: namedtuple: A namedtupe that holds y_mean: ndarray of shape (n_samples, [n_output_dims]) Mean of predictive distribution of the test points. y_lower: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of predictive distribution of the test points. y_upper: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of predictive distribution of the test points. dists: list of predictive distribution as `scipy.stats` objects with length n_samples. Only returned when `return_dists` is True. """ self.main_model.eval() X = torch.from_numpy(X).float().to(self.device) dataset_loader = DataLoader( X, batch_size=self.config["batch_size"] ) y_mean_list = [] y_log_var_list = [] for batch_x in dataset_loader: batch_y_pred_mu, batch_y_pred_log_var = self.main_model(batch_x) y_mean_list.append(batch_y_pred_mu.data.cpu().numpy()) y_log_var_list.append(batch_y_pred_log_var.data.cpu().numpy()) y_mean = np.concatenate(y_mean_list) y_log_var = np.concatenate(y_log_var_list) y_std = np.sqrt(np.exp(y_log_var)) y_lower = y_mean - 2.0*y_std y_upper = y_mean + 2.0*y_std Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper']) res = Result(y_mean, y_lower, y_upper) if return_dists: dists = [norm(loc=y_mean[i], scale=y_std[i]) for i in range(y_mean.shape[0])] Result = namedtuple('res', Result._fields + ('y_dists',)) res = Result(*res, y_dists=dists) return res <s> from .auxiliary_interval_predictor import AuxiliaryIntervalPredictor <s> from .infinitesimal_jackknife import InfinitesimalJackknife <s> from collections import namedtuple import numpy as np from uq360.algorithms.posthocuq import PostHocUQ class InfinitesimalJackknife(PostHocUQ): """ Performs a first order Taylor series expansion around MLE / MAP fit. Requires the model being probed to be twice differentiable. """ def __init__(self, params, gradients, hessian, config): """ Initialize IJ. Args: params: MLE / MAP fit around which uncertainty is sought. d*1 gradients: Per data point gradients, estimated at the MLE / MAP fit. d*n hessian: Hessian evaluated at the MLE / MAP fit. d*d """ super(InfinitesimalJackknife).__init__() self.params_one = params self.gradients = gradients self.hessian = hessian self.d, self.n = gradients.shape self.dParams_dWeights = -np.linalg.solve(self.hessian, self.gradients) self.approx_dParams_dWeights = -np.linalg.solve(np.diag(np.diag(self.hessian)), self.gradients) self.w_one = np.ones([self.n]) self.config = config def get_params(self, deep=True): return {"params": self.params, "config": self.config, "gradients": self.gradients, "hessian": self.hessian} def _process_pretrained_model(self, *argv, **kwargs): pass def get_parameter_uncertainty(self): if (self.config['resampling_strategy'] == "jackknife") or (self.config['resampling_strategy'] == "jackknife+"): w_query = np.ones_like(self.w_one) resampled_params = np.zeros([self.n, self.d]) for i in np.arange(self.n): w_query[i] = 0 resampled_params[i] = self.ij(w_query) w_query[i] = 1 return np.cov(resampled_params), resampled_params elif self.config['resampling_strategy'] == "bootstrap": pass else: raise NotImplementedError("Only jackknife, jackknife+, and bootstrap resampling strategies are supported") def predict(self, X, model): """ Args: X: array-like of shape (n_samples, n_features). Features vectors of the test points. model: model object, must implement a set_parameters function Returns: namedtuple: A namedtupe that holds y_mean: ndarray of shape (n_samples, [n_output_dims]) Mean of predictive distribution of the test points. y_lower: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of predictive distribution of the test points. y_upper: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of predictive distribution of the test points. """ n, _ = X.shape y_all = model.predict(X) _, d_out = y_all.shape params_cov, params = self.get_parameter_uncertainty() if d_out > 1: print("Quantiles are computed independently for each dimension. May not be accurate.") y = np.zeros([params.shape[0], n, d_out]) for i in np.arange(params.shape[0]): model.set_parameters(params[i]) y[i] = model.predict(X) y_lower = np.quantile(y, q=0.5 * self.config['alpha'], axis=0) y_upper = np.quantile(y, q=(1. - 0.5 * self.config['alpha']), axis=0) y_mean = y.mean(axis=0) Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper']) res = Result(y_mean, y_lower, y_upper) return res def ij(self, w_query): """ Args: w_query: A n*1 vector to query parameters at. Return: new parameters at w_query """ assert w_query.shape[0] == self.n return self.params_one + self.dParams_dWeights @ (w_query-self.w_one).T def approx_ij(self, w_query): """ Args: w_query: A n*1 vector to query parameters at. Return: new parameters at w_query """ assert w_query.shape[0] == self.n return self.params_one + self.approx_dParams_dWeights @ (w_query-self.w_one).T<s> import copy from collections import namedtuple import numpy as np import torch import torch.nn.functional as F from torch.utils.data import DataLoader import torch.utils.data as data_utils from scipy.stats import norm from sklearn.preprocessing import StandardScaler from uq360.algorithms.builtinuq import BuiltinUQ from uq360.models.bayesian_neural_networks.bnn_models import horseshoe_mlp, bayesian_mlp class BnnRegression(BuiltinUQ): """ Variationally trained BNNs with Gaussian and Horseshoe [6]_ priors for regression. References: .. [6] Ghosh, Soumya, Jiayu Yao, and Finale Doshi-Velez. "Structured variational learning of Bayesian neural networks with horseshoe priors." International Conference on Machine Learning. PMLR, 2018. """ def __init__(self, config, prior="Gaussian"): """ Args: config: a dictionary specifying network and learning hyperparameters. prior: BNN priors specified as a string. Supported priors are Gaussian, Hshoe, RegHshoe """ super(BnnRegression, self).__init__() self.config = config if prior == "Gaussian": self.net = bayesian_mlp.BayesianRegressionNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'], num_nodes=config['num_nodes'], num_layers=config['num_layers']) self.config['use_reg_hshoe'] = None elif prior == "Hshoe": self.net = horseshoe_mlp.HshoeRegressionNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'], num_nodes=config['num_nodes'], num_layers=config['num_layers'], hshoe_scale=config['hshoe_scale']) self.config['use_reg_hshoe'] = False elif prior == "RegHshoe": self.net = horseshoe_mlp.HshoeRegressionNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'], num_nodes=config['num_nodes'], num_layers=config['num_layers'], hshoe_scale=config['hshoe_scale'], use_reg_hshoe=config['use_reg_hshoe']) self.config['use_reg_hshoe'] = True else: raise NotImplementedError("'prior' must be a string. It can be one of Gaussian, Hshoe, RegHshoe") def get_params(self, deep=True): return {"prior": self.prior, "config": self.config} def fit(self, X, y): """ Fit the BNN regression model. Args: X: array-like of shape (n_samples, n_features). Features vectors of the training data. y: array-like of shape (n_samples,) or (n_samples, n_targets) Target values Returns: self """ torch.manual_seed(1234) optimizer = torch.optim.Adam(self.net.parameters(), lr=self.config['step_size']) neg_elbo = torch.zeros([self.config['num_epochs'], 1]) params_store = {} for epoch in range(self.config['num_epochs']): loss = self.net.neg_elbo(num_batches=1, x=X, y=y.float().unsqueeze(dim=1)) / X.shape[0] optimizer.zero_grad() loss.backward() optimizer.step() if hasattr(self.net, 'fixed_point_updates'): # for hshoe or regularized hshoe nets self.net.fixed_point_updates() neg_elbo[epoch] = loss.item() if (epoch + 1) % 10 == 0: # print ((net.noise_layer.bhat/net.noise_layer.ahat).data.numpy()[0]) print('Epoch[{}/{}], neg elbo: {:.6f}, noise var: {:.6f}' .format(epoch + 1, self.config['num_epochs'], neg_elbo[epoch].item() / X.shape[0], self.net.get_noise_var())) params_store[epoch] = copy.deepcopy(self.net.state_dict()) # for small nets we can just store all. best_model_id = neg_elbo.argmin() # loss_val_store.argmin() # self.net.load_state_dict(params_store[best_model_id.item()]) return self def predict(self, X, mc_samples=100, return_dists=False, return_epistemic=True, return_epistemic_dists=False): """ Obtain predictions for the test points. In addition to the mean and lower/upper bounds, also returns epistemic uncertainty (return_epistemic=True) and full predictive distribution (return_dists=True). Args: X: array-like of shape (n_samples, n_features). Features vectors of the test points. mc_samples: Number of Monte-Carlo samples. return_dists: If True, the predictive distribution for each instance using scipy distributions is returned. return_epistemic: if True, the epistemic upper and lower bounds are returned. return_epistemic_dists: If True, the epistemic distribution for each instance using scipy distributions is returned. Returns: namedtuple: A namedtupe that holds y_mean: ndarray of shape (n_samples, [n_output_dims]) Mean of predictive distribution of the test points. y_lower: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of predictive distribution of the test points. y_upper: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of predictive distribution of the test points. y_lower_epistemic: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of epistemic component of the predictive distribution of the test points. Only returned when `return_epistemic` is True. y_upper_epistemic: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of epistemic component of the predictive distribution of the test points. Only returned when `return_epistemic` is True. dists: list of predictive distribution as `scipy.stats` objects with length n_samples. Only returned when `return_dists` is True. """ epistemic_out = np.zeros([mc_samples, X.shape[0]]) total_out = np.zeros([mc_samples, X.shape[0]]) for s in np.arange(mc_samples): pred = self.net(X).data.numpy().ravel() epistemic_out[s] = pred total_out[s] = pred + np.sqrt(self.net.get_noise_var()) * np.random.randn(pred.shape[0]) y
_total_std = np.std(total_out, axis=0) y_epi_std = np.std(epistemic_out, axis=0) y_mean = np.mean(total_out, axis=0) y_lower = y_mean - 2 * y_total_std y_upper = y_mean + 2 * y_total_std y_epi_lower = y_mean - 2 * y_epi_std y_epi_upper = y_mean + 2 * y_epi_std Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper']) res = Result(y_mean, y_lower, y_upper) if return_epistemic: Result = namedtuple('res', Result._fields + ('lower_epistemic', 'upper_epistemic',)) res = Result(*res, lower_epistemic=y_epi_lower, upper_epistemic=y_epi_upper) if return_dists: dists = [norm(loc=y_mean[i], scale=y_total_std[i]) for i in range(y_mean.shape[0])] Result = namedtuple('res', Result._fields + ('y_dists',)) res = Result(*res, y_dists=dists) if return_epistemic_dists: epi_dists = [norm(loc=y_mean[i], scale=y_epi_std[i]) for i in range(y_mean.shape[0])] Result = namedtuple('res', Result._fields + ('y_epistemic_dists',)) res = Result(*res, y_epistemic_dists=epi_dists) return res class BnnClassification(BuiltinUQ): """ Variationally trained BNNs with Gaussian and Horseshoe [6]_ priors for classification. """ def __init__(self, config, prior="Gaussian", device=None): """ Args: config: a dictionary specifying network and learning hyperparameters. prior: BNN priors specified as a string. Supported priors are Gaussian, Hshoe, RegHshoe """ super(BnnClassification, self).__init__() self.config = config self.device = device if prior == "Gaussian": self.net = bayesian_mlp.BayesianClassificationNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'], num_nodes=config['num_nodes'], num_layers=config['num_layers']) self.config['use_reg_hshoe'] = None elif prior == "Hshoe": self.net = horseshoe_mlp.HshoeClassificationNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'], num_nodes=config['num_nodes'], num_layers=config['num_layers'], hshoe_scale=config['hshoe_scale']) self.config['use_reg_hshoe'] = False elif prior == "RegHshoe": self.net = horseshoe_mlp.HshoeClassificationNet(ip_dim=config['ip_dim'], op_dim=config['op_dim'], num_nodes=config['num_nodes'], num_layers=config['num_layers'], hshoe_scale=config['hshoe_scale'], use_reg_hshoe=config['use_reg_hshoe']) self.config['use_reg_hshoe'] = True else: raise NotImplementedError("'prior' must be a string. It can be one of Gaussian, Hshoe, RegHshoe") if "batch_size" not in self.config: self.config["batch_size"] = 50 self.net = self.net.to(device) def get_params(self, deep=True): return {"prior": self.prior, "config": self.config, "device": self.device} def fit(self, X=None, y=None, train_loader=None): """ Fits BNN regression model. Args: X: array-like of shape (n_samples, n_features) or (n_samples, n_classes). Features vectors of the training data or the probability scores from the base model. Ignored if train_loader is not None. y: array-like of shape (n_samples,) or (n_samples, n_targets) Target values Ignored if train_loader is not None. train_loader: pytorch train_loader object. Returns: self """ if train_loader is None: train = data_utils.TensorDataset(torch.Tensor(X), torch.Tensor(y.values).long()) train_loader = data_utils.DataLoader(train, batch_size=self.config['batch_size'], shuffle=True) torch.manual_seed(1234) optimizer = torch.optim.Adam(self.net.parameters(), lr=self.config['step_size']) neg_elbo = torch.zeros([self.config['num_epochs'], 1]) params_store = {} for epoch in range(self.config['num_epochs']): avg_loss = 0.0 for batch_x, batch_y in train_loader: loss = self.net.neg_elbo(num_batches=len(train_loader), x=batch_x, y=batch_y) / batch_x.size(0) optimizer.zero_grad() loss.backward() optimizer.step() if hasattr(self.net, 'fixed_point_updates'): # for hshoe or regularized hshoe nets self.net.fixed_point_updates() avg_loss += loss.item() neg_elbo[epoch] = avg_loss / len(train_loader) if (epoch + 1) % 10 == 0: # print ((net.noise_layer.bhat/net.noise_layer.ahat).data.numpy()[0]) print('Epoch[{}/{}], neg elbo: {:.6f}' .format(epoch + 1, self.config['num_epochs'], neg_elbo[epoch].item())) params_store[epoch] = copy.deepcopy(self.net.state_dict()) # for small nets we can just store all. best_model_id = neg_elbo.argmin() # loss_val_store.argmin() # self.net.load_state_dict(params_store[best_model_id.item()]) return self def predict(self, X, mc_samples=100): """ Obtain calibrated predictions for the test points. Args: X: array-like of shape (n_samples, n_features) or (n_samples, n_classes). Features vectors of the training data or the probability scores from the base model. mc_samples: Number of Monte-Carlo samples. Returns: namedtuple: A namedtupe that holds y_pred: ndarray of shape (n_samples,) Predicted labels of the test points. y_prob: ndarray of shape (n_samples, n_classes) Predicted probability scores of the classes. y_prob_var: ndarray of shape (n_samples,) Variance of the prediction on the test points. y_prob_samples: ndarray of shape (mc_samples, n_samples, n_classes) Samples from the predictive distribution. """ X = torch.Tensor(X) y_prob_samples = [F.softmax(self.net(X), dim=1).detach().numpy() for _ in np.arange(mc_samples)] y_prob_samples_stacked = np.stack(y_prob_samples) prob_mean = np.mean(y_prob_samples_stacked, 0) prob_var = np.std(y_prob_samples_stacked, 0) ** 2 if len(np.shape(prob_mean)) == 1: y_pred_labels = prob_mean > 0.5 else: y_pred_labels = np.argmax(prob_mean, axis=1) Result = namedtuple('res', ['y_pred', 'y_prob', 'y_prob_var', 'y_prob_samples']) res = Result(y_pred_labels, prob_mean, prob_var, y_prob_samples) return res <s><s> import inspect from collections import namedtuple import numpy as np from sklearn.ensemble import GradientBoostingClassifier from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.exceptions import NotFittedError from uq360.algorithms.posthocuq import PostHocUQ class BlackboxMetamodelClassification(PostHocUQ): """ Extracts confidence scores from black-box classification models using a meta-model [4]_ . References: .. [4] Chen, Tongfei, et al. "Confidence scoring using whitebox meta-models with linear classifier probes." The 22nd International Conference on Artificial Intelligence and Statistics. PMLR, 2019. """ def _create_named_model(self, mdltype, config): """ Instantiates a model by name passed in 'mdltype'. Args: mdltype: string with name (must be supported) config: dict with args passed in the instantiation call Returns: mdl instance """ assert (isinstance(mdltype, str)) if mdltype == 'lr': mdl = LogisticRegression(**config) elif mdltype == 'gbm': mdl = GradientBoostingClassifier(**config) else: raise NotImplementedError("ERROR: Requested model type unknown: \\"%s\\"" % mdltype) return mdl def _get_model_instance(self, model, config): """ Returns an instance of a model based on (a) a desired name or (b) passed in class, or (c) passed in instance. :param model: string, class, or instance. Class and instance must have certain methods callable. :param config: dict with args passed in during the instantiation :return: model instance """ assert (model is not None and config is not None) if isinstance(model, str): # 'model' is a name, create it mdl = self._create_named_model(model, config) elif inspect.isclass(model): # 'model' is a class, instantiate it mdl = model(**config) else: # 'model' is an instance, register it mdl = model if not all([hasattr(mdl, key) and callable(getattr(mdl, key)) for key in self.callable_keys]): raise ValueError("ERROR: Passed model/method failed the interface test. Methods required: %s" % ','.join(self.callable_keys)) return mdl def __init__(self, base_model=None, meta_model=None, base_config=None, meta_config=None, random_seed=42): """ :param base_model: Base model. Can be: (1) None (default mdl will be set up), (2) Named model (e.g., logistic regression 'lr' or gradient boosting machine 'gbm'), (3) Base model class declaration (e.g., sklearn.linear_model.LogisticRegression). Will instantiate. (4) Model instance (instantiated outside). Will be re-used. Must have certain callable methods. Note: user-supplied classes and models must have certain callable methods ('predict', 'fit') and be capable of raising NotFittedError. :param meta_model: Meta model. Same values possible as with 'base_model' :param base_config: None or a params dict to be passed to 'base_model' at instantiation :param meta_config: None or a params dict to be passed to 'meta_model' at instantiation :param random_seed: seed used in the various pipeline steps """ super(BlackboxMetamodelClassification).__init__() self.random_seed = random_seed self.callable_keys = ['predict', 'fit'] # required methods - must be present in models passed in self.base_model_default = 'gbm' self.meta_model_default = 'lr' self.base_config_default = {'n_estimators': 300, 'max_depth': 10, 'learning_rate': 0.001, 'min_samples_leaf': 10, 'min_samples_split': 10, 'random_state': self.random_seed} self.meta_config_default = {'penalty': 'l1', 'C': 1, 'solver': 'liblinear', 'random_state': self.random_seed} self.base_config = base_config if base_config is not None else self.base_config_default self.meta_config = meta_config if meta_config is not None else self.meta_config_default self.base_model = None self.meta_model = None self.base_model = self._get_model_instance(base_model if base_model is not None else self.base_model_default, self.base_config) self.meta_model = self._get_model_instance(meta_model if meta_model is not None else self.meta_model_default, self.meta_config) def get_params(self, deep=True): return {"base_model": self.base_model, "meta_model": self.meta_model, "base_config": self.base_config, "meta_config": self.meta_config, "random_seed": self.random_seed} def _process_pretrained_model(self, X, y_hat_proba): """ Given the original input features and the base output probabilities, generate input features to train a meta model. Current implementation copies all input features and appends. :param X: numpy [nsamples, dim] :param y_hat_proba: [nsamples, nclasses] :return: array with new features [nsamples, newdim] """ assert (len(y_hat_proba.shape) == 2) assert (X.shape[0] == y_hat_proba.shape[0]) # sort the probs sample by sample faux1 = np.sort(y_hat_proba, axis=-1) # add delta between top and second candidate faux2 = np.expand_dims(faux1[:, -1] - faux1[:, -2], axis=-1) return np.hstack([X, faux1, faux2]) def fit(self, X, y, meta_fraction=0.2, randomize_samples=True, base_is_prefitted=False, meta_train_data=(None, None)): """ Fit base and meta models. :param X: input to the base model, array-like of shape (n_samples, n_features). Features vectors of the training data. :param y: ground truth for the base model, array-like of shape (n_samples,) :param meta_fraction: float in [0,1] - a fractional size of the partition carved out to train the meta model (complement will be used to train the base model) :param randomize_samples: use shuffling when creating partitions
:param base_is_prefitted: Setting True will skip fitting the base model (useful for base models that have been instantiated outside/by the user and are already fitted. :param meta_train_data: User supplied data to train the meta model. Note that this option should only be used with 'base_is_prefitted'==True. Pass a tuple meta_train_data=(X_meta, y_meta) to activate. Note that (X,y,meta_fraction, randomize_samples) will be ignored in this mode. :return: self """ X = np.asarray(X) y = np.asarray(y) assert (len(meta_train_data) == 2) if meta_train_data[0] is None: X_base, X_meta, y_base, y_meta = train_test_split(X, y, shuffle=randomize_samples, test_size=meta_fraction, random_state=self.random_seed) else: if not base_is_prefitted: raise ValueError("ERROR: fit(): base model must be pre-fitted to use the 'meta_train_data' option") X_base = y_base = None X_meta = meta_train_data[0] y_meta = meta_train_data[1] # fit the base model if not base_is_prefitted: self.base_model.fit(X_base, y_base) # get input for the meta model from the base try: y_hat_meta_proba = self.base_model.predict_proba(X_meta) # determine correct-incorrect outcome - these are targets for the meta model trainer # y_hat_meta_targets = np.asarray((y_meta == np.argmax(y_hat_meta_proba, axis=-1)), dtype=np.int) -- Fix for python 3.8.11 update (in 2.9.0.8) y_hat_meta_targets = np.asarray((y_meta == np.argmax(y_hat_meta_proba, axis=-1)), dtype=int) except NotFittedError as e: raise RuntimeError("ERROR: fit(): The base model appears not pre-fitted (%s)" % repr(e)) # get input features for meta training X_meta_in = self._process_pretrained_model(X_meta, y_hat_meta_proba) # train meta model to predict 'correct' vs. 'incorrect' of the base self.meta_model.fit(X_meta_in, y_hat_meta_targets) return self def predict(self, X): """ Generate a base prediction along with uncertainty/confidence for data X. :param X: array-like of shape (n_samples, n_features). Features vectors of the test points. :return: namedtuple: A namedtuple that holds y_pred: ndarray of shape (n_samples,) Predicted labels of the test points. y_score: ndarray of shape (n_samples,) Confidence score the test points. """ y_hat_proba = self.base_model.predict_proba(X) y_hat = np.argmax(y_hat_proba, axis=-1) X_meta_in = self._process_pretrained_model(X, y_hat_proba) z_hat = self.meta_model.predict_proba(X_meta_in) index_of_class_1 = np.where(self.meta_model.classes_ == 1)[0][0] # class 1 corresponds to probab of positive/correct outcome Result = namedtuple('res', ['y_pred', 'y_score']) res = Result(y_hat, z_hat[:, index_of_class_1]) return res <s> from .blackbox_metamodel_regression import BlackboxMetamodelRegression from .blackbox_metamodel_classification import BlackboxMetamodelClassification <s> import inspect from collections import namedtuple import numpy as np from sklearn.ensemble import GradientBoostingRegressor from sklearn.model_selection import train_test_split from sklearn.exceptions import NotFittedError from uq360.algorithms.posthocuq import PostHocUQ class BlackboxMetamodelRegression(PostHocUQ): """ Extracts confidence scores from black-box regression models using a meta-model [2]_ . References: .. [2] Chen, Tongfei, et al. Confidence scoring using whitebox meta-models with linear classifier probes. The 22nd International Conference on Artificial Intelligence and Statistics. PMLR, 2019. """ def _create_named_model(self, mdltype, config): """ Instantiates a model by name passed in 'mdltype' :param mdltype: string with name (must be supprted) :param config: dict with args passed in the instantiation call :return: mdl instance """ assert (isinstance(mdltype, str)) if mdltype == 'gbr': mdl = GradientBoostingRegressor(**config) else: raise NotImplementedError("ERROR: Requested model type unknown: \\"%s\\"" % mdltype) return mdl def _get_model_instance(self, model, config): """ Returns an instance of a model based on (a) a desired name or (b) passed in class, or (c) passed in instance :param model: string, class, or instance. Class and instance must have certain methods callable. :param config: dict with args passed in during the instantiation :return: model instance """ assert (model is not None and config is not None) if isinstance(model, str): # 'model' is a name, create it mdl = self._create_named_model(model, config) elif inspect.isclass(model): # 'model' is a class, instantiate it mdl = model(**config) else: # 'model' is an instance, register it mdl = model if not all([hasattr(mdl, key) and callable(getattr(mdl, key)) for key in self.callable_keys]): raise ValueError("ERROR: Passed model/method failed the interface test. Methods required: %s" % ','.join(self.callable_keys)) return mdl def __init__(self, base_model=None, meta_model=None, base_config=None, meta_config=None, random_seed=42): """ :param base_model: Base model. Can be: (1) None (default mdl will be set up), (2) Named model (e.g., 'gbr'), (3) Base model class declaration (e.g., sklearn.linear_model.LinearRegressor). Will instantiate. (4) Model instance (instantiated outside). Will be re-used. Must have required callable methods. Note: user-supplied classes and models must have certain callable methods ('predict', 'fit') and be capable of raising NotFittedError. :param meta_model: Meta model. Same values possible as with 'base_model' :param base_config: None or a params dict to be passed to 'base_model' at instantiation :param meta_config: None or a params dict to be passed to 'meta_model' at instantiation :param random_seed: seed used in the various pipeline steps """ super(BlackboxMetamodelRegression).__init__() self.random_seed = random_seed self.callable_keys = ['predict', 'fit'] # required methods - must be present in models passed in self.base_model_default = 'gbr' self.meta_model_default = 'gbr' self.base_config_default = {'loss': 'ls', 'n_estimators': 300, 'max_depth': 10, 'learning_rate': 0.001, 'min_samples_leaf': 10, 'min_samples_split': 10, 'random_state': self.random_seed} self.meta_config_default = {'loss': 'quantile', 'alpha': 0.95, 'n_estimators': 300, 'max_depth': 10, 'learning_rate': 0.001, 'min_samples_leaf': 10, 'min_samples_split': 10, 'random_state': self.random_seed} self.base_config = base_config if base_config is not None else self.base_config_default self.meta_config = meta_config if meta_config is not None else self.meta_config_default self.base_model = None self.meta_model = None self.base_model = self._get_model_instance(base_model if base_model is not None else self.base_model_default, self.base_config) self.meta_model = self._get_model_instance(meta_model if meta_model is not None else self.meta_model_default, self.meta_config) def get_params(self, deep=True): return {"base_model": self.base_model, "meta_model": self.meta_model, "base_config": self.base_config, "meta_config": self.meta_config, "random_seed": self.random_seed} def fit(self, X, y, meta_fraction=0.2, randomize_samples=True, base_is_prefitted=False, meta_train_data=(None, None)): """ Fit base and meta models. :param X: input to the base model :param y: ground truth for the base model :param meta_fraction: float in [0,1] - a fractional size of the partition carved out to train the meta model (complement will be used to train the base model) :param randomize_samples: use shuffling when creating partitions :param base_is_prefitted: Setting True will skip fitting the base model (useful for base models that have been instantiated outside/by the user and are already fitted. :param meta_train_data: User supplied data to train the meta model. Note that this option should only be used with 'base_is_prefitted'==True. Pass a tuple meta_train_data=(X_meta, y_meta) to activate. Note that (X,y,meta_fraction, randomize_samples) will be ignored in this mode. :return: self """ X = np.asarray(X) y = np.asarray(y) assert(len(meta_train_data)==2) if meta_train_data[0] is None: X_base, X_meta, y_base, y_meta = train_test_split(X, y, shuffle=randomize_samples, test_size=meta_fraction, random_state=self.random_seed) else: if not base_is_prefitted: raise ValueError("ERROR: fit(): base model must be pre-fitted to use the 'meta_train_data' option") X_base = y_base = None X_meta = meta_train_data[0] y_meta = meta_train_data[1] # fit the base model if not base_is_prefitted: self.base_model.fit(X_base, y_base) # get input for the meta model from the base try: y_hat_meta = self.base_model.predict(X_meta) except NotFittedError as e: raise RuntimeError("ERROR: fit(): The base model appears not pre-fitted (%s)" % repr(e)) # used base input and output as meta input X_meta_in = self._process_pretrained_model(X_meta, y_hat_meta) # train meta model to predict abs diff self.meta_model.fit(X_meta_in, np.abs(y_hat_meta - y_meta)) return self def _process_pretrained_model(self, X, y_hat): """ Given the original input features and the base output probabilities, generate input features to train a meta model. Current implementation copies all input features and appends. :param X: numpy [nsamples, dim] :param y_hat: [nsamples,] :return: array with new features [nsamples, newdim] """ y_hat_meta_prime = np.expand_dims(y_hat, -1) if len(y_hat.shape) < 2 else y_hat X_meta_in = np.hstack([X, y_hat_meta_prime]) return X_meta_in def predict(self, X): """ Generate prediction and uncertainty bounds for data X. :param X: input features :return: namedtuple: A namedtuple that holds y_mean: ndarray of shape (n_samples, [n_output_dims]) Mean of predictive distribution of the test points. y_lower: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of predictive distribution of the test points. y_upper: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of predictive distribution of the test points. """ y_hat = self.base_model.predict(X) y_hat_prime = np.expand_dims(y_hat, -1) if len(y_hat.shape) < 2 else y_hat X_meta_in = np.hstack([X, y_hat_prime]) z_hat = self.meta_model.predict(X_meta_in) Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper']) res = Result(y_hat, y_hat - z_hat, y_hat + z_hat) return res <s> from .quantile_regression import QuantileRegression <s> from collections import namedtuple from sklearn.ensemble import GradientBoostingRegressor from uq360.algorithms.builtinuq import BuiltinUQ class QuantileRegression(BuiltinUQ): """Quantile Regression uses quantile loss and learns two separate models for the upper and lower quantile to obtain the prediction intervals. """ def __init__(self, model_type="gbr", config=None): """ Args: model_type: The base model used for predicting a quantile. Currently supported values are [gbr]. gbr is sklearn GradientBoostingRegressor. config: dictionary containing the config parameters for the model. """ super(QuantileRegression).__init__() if config is not None: self.config = config else: self.config = {} if "alpha" not in self.config: self.config["alpha"] = 0.95 if model_type == "gbr": self.model_type = model_type self.model_mean = GradientBoostingRegressor( loss='ls', n_estimators=self.config["n_estimators"], max_depth=self.config["max_depth"], learning_rate=self.config["learning_rate"], min_samples_leaf=self.config["min_samples_leaf"], min_samples_split=self.config["min_samples_split"] ) self.model_upper = GradientBoostingRegressor( loss='quantile', alpha=self.config["alpha"], n_estimators=self.config["n_estimators"], max_depth=self.config["max_depth"], learning_rate=self.config["learning_rate"],
min_samples_leaf=self.config["min_samples_leaf"], min_samples_split=self.config["min_samples_split"] ) self.model_lower = GradientBoostingRegressor( loss='quantile', alpha=1.0 - self.config["alpha"], n_estimators=self.config["n_estimators"], max_depth=self.config["max_depth"], learning_rate=self.config["learning_rate"], min_samples_leaf=self.config["min_samples_leaf"], min_samples_split=self.config["min_samples_split"]) else: raise NotImplementedError def get_params(self, deep=True): return {"model_type": self.model_type, "config": self.config} def fit(self, X, y): """ Fit the Quantile Regression model. Args: X: array-like of shape (n_samples, n_features). Features vectors of the training data. y: array-like of shape (n_samples,) or (n_samples, n_targets) Target values Returns: self """ self.model_mean.fit(X, y) self.model_lower.fit(X, y) self.model_upper.fit(X, y) return self def predict(self, X): """ Obtain predictions for the test points. In addition to the mean and lower/upper bounds, also returns epistemic uncertainty (return_epistemic=True) and full predictive distribution (return_dists=True). Args: X: array-like of shape (n_samples, n_features). Features vectors of the test points. Returns: namedtuple: A namedtupe that holds y_mean: ndarray of shape (n_samples, [n_output_dims]) Mean of predictive distribution of the test points. y_lower: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of predictive distribution of the test points. y_upper: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of predictive distribution of the test points. """ y_mean = self.model_mean.predict(X) y_lower = self.model_lower.predict(X) y_upper = self.model_upper.predict(X) Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper']) res = Result(y_mean, y_lower, y_upper) return res <s> from collections import namedtuple import botorch import gpytorch import numpy as np import torch from botorch.models import SingleTaskGP from botorch.utils.transforms import normalize from gpytorch.constraints import GreaterThan from scipy.stats import norm from sklearn.preprocessing import StandardScaler from uq360.algorithms.builtinuq import BuiltinUQ np.random.seed(42) torch.manual_seed(42) class HomoscedasticGPRegression(BuiltinUQ): """ A wrapper around Botorch SingleTask Gaussian Process Regression [1]_ with homoscedastic noise. References: .. [1] https://botorch.org/api/models.html#singletaskgp """ def __init__(self, kernel=gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel()), likelihood=None, config=None): """ Args: kernel: gpytorch kernel function with default set to `RBFKernel` with output scale. likelihood: gpytorch likelihood function with default set to `GaussianLikelihood`. config: dictionary containing the config parameters for the model. """ super(HomoscedasticGPRegression).__init__() self.config = config self.kernel = kernel self.likelihood = likelihood self.model = None self.scaler = StandardScaler() self.X_bounds = None def get_params(self, deep=True): return {"kernel": self.kernel, "likelihood": self.likelihood, "config": self.config} def fit(self, X, y, **kwargs): """ Fit the GP Regression model. Additional arguments relevant for SingleTaskGP fitting can be passed to this function. Args: X: array-like of shape (n_samples, n_features). Features vectors of the training data. y: array-like of shape (n_samples,) or (n_samples, n_targets) Target values **kwargs: Additional arguments relevant for SingleTaskGP fitting. Returns: self """ y = self.scaler.fit_transform(y) X, y = torch.tensor(X), torch.tensor(y) self.X_bounds = X_bounds = torch.stack([X.min() * torch.ones(X.shape[1]), X.max() * torch.ones(X.shape[1])]) X = normalize(X, X_bounds) model_homo = SingleTaskGP(train_X=X, train_Y=y, covar_module=self.kernel, likelihood=self.likelihood, **kwargs) model_homo.likelihood.noise_covar.register_constraint("raw_noise", GreaterThan(1e-5)) model_homo_marginal_log_lik = gpytorch.mlls.ExactMarginalLogLikelihood(model_homo.likelihood, model_homo) botorch.fit.fit_gpytorch_model(model_homo_marginal_log_lik) model_homo_marginal_log_lik.eval() self.model = model_homo_marginal_log_lik self.inferred_observation_noise = self.scaler.inverse_transform(self.model.likelihood.noise.detach().numpy()[0].reshape(1,1)).squeeze() return self def predict(self, X, return_dists=False, return_epistemic=False, return_epistemic_dists=False): """ Obtain predictions for the test points. In addition to the mean and lower/upper bounds, also returns epistemic uncertainty (return_epistemic=True) and full predictive distribution (return_dists=True). Args: X: array-like of shape (n_samples, n_features). Features vectors of the test points. return_dists: If True, the predictive distribution for each instance using scipy distributions is returned. return_epistemic: if True, the epistemic upper and lower bounds are returned. return_epistemic_dists: If True, the epistemic distribution for each instance using scipy distributions is returned. Returns: namedtuple: A namedtuple that holds y_mean: ndarray of shape (n_samples, [n_output_dims]) Mean of predictive distribution of the test points. y_lower: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of predictive distribution of the test points. y_upper: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of predictive distribution of the test points. y_lower_epistemic: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of epistemic component of the predictive distribution of the test points. Only returned when `return_epistemic` is True. y_upper_epistemic: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of epistemic component of the predictive distribution of the test points. Only returned when `return_epistemic` is True. dists: list of predictive distribution as `scipy.stats` objects with length n_samples. Only returned when `return_dists` is True. """ X = torch.tensor(X) X_test_norm = normalize(X, self.X_bounds) self.model.eval() with torch.no_grad(): posterior = self.model.model.posterior(X_test_norm) y_mean = posterior.mean #y_epi_std = torch.sqrt(posterior.variance) y_lower_epistemic, y_upper_epistemic = posterior.mvn.confidence_region() predictive_posterior = self.model.model.posterior(X_test_norm, observation_noise=True) #y_std = torch.sqrt(predictive_posterior.variance) y_lower_total, y_upper_total = predictive_posterior.mvn.confidence_region() y_mean, y_lower, y_upper, y_lower_epistemic, y_upper_epistemic = self.scaler.inverse_transform(y_mean.numpy()).squeeze(), \\ self.scaler.inverse_transform(y_lower_total.numpy()).squeeze(),\\ self.scaler.inverse_transform(y_upper_total.numpy()).squeeze(),\\ self.scaler.inverse_transform(y_lower_epistemic.numpy()).squeeze(),\\ self.scaler.inverse_transform(y_upper_epistemic.numpy()).squeeze() y_epi_std = (y_upper_epistemic - y_lower_epistemic) / 4.0 y_std = (y_upper_total - y_lower_total) / 4.0 Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper']) res = Result(y_mean, y_lower, y_upper) if return_epistemic: Result = namedtuple('res', Result._fields + ('y_lower_epistemic', 'y_upper_epistemic',)) res = Result(*res, y_lower_epistemic=y_lower_epistemic, y_upper_epistemic=y_upper_epistemic) if return_dists: dists = [norm(loc=y_mean[i], scale=y_std[i]) for i in range(y_mean.shape[0])] Result = namedtuple('res', Result._fields + ('y_dists',)) res = Result(*res, y_dists=dists) if return_epistemic_dists: epi_dists = [norm(loc=y_mean[i], scale=y_epi_std[i]) for i in range(y_mean.shape[0])] Result = namedtuple('res', Result._fields + ('y_epistemic_dists',)) res = Result(*res, y_epistemic_dists=epi_dists) return res <s> from .homoscedastic_gaussian_process_regression import HomoscedasticGPRegression<s> from .ucc_recalibration import UCCRecalibration <s> from collections import namedtuple from uq360.algorithms.posthocuq import PostHocUQ from uq360.utils.misc import form_D_for_auucc from uq360.metrics.uncertainty_characteristics_curve.uncertainty_characteristics_curve import UncertaintyCharacteristicsCurve class UCCRecalibration(PostHocUQ): """ Recalibration a regression model to specified operating point using Uncertainty Characteristics Curve. """ def __init__(self, base_model): """ Args: base_model: pretrained model to be recalibrated. """ super(UCCRecalibration).__init__() self.base_model = self._process_pretrained_model(base_model) self.ucc = None def get_params(self, deep=True): return {"base_model": self.base_model} def _process_pretrained_model(self, base_model): return base_model def fit(self, X, y): """ Fit the Uncertainty Characteristics Curve. Args: X: array-like of shape (n_samples, n_features). Features vectors of the test points. y: array-like of shape (n_samples,) or (n_samples, n_targets) Target values Returns: self """ y_pred_mean, y_pred_lower, y_pred_upper = self.base_model.predict(X)[:3] bwu = y_pred_upper - y_pred_mean bwl = y_pred_mean - y_pred_lower self.ucc = UncertaintyCharacteristicsCurve() self.ucc.fit(form_D_for_auucc(y_pred_mean, bwl, bwu), y.squeeze()) return self def predict(self, X, missrate=0.05): """ Generate prediction and uncertainty bounds for data X. Args: X: array-like of shape (n_samples, n_features). Features vectors of the test points. missrate: desired missrate of the new operating point, set to 0.05 by default. Returns: namedtuple: A namedtupe that holds y_mean: ndarray of shape (n_samples, [n_output_dims]) Mean of predictive distribution of the test points. y_lower: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of predictive distribution of the test points. y_upper: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of predictive distribution of the test points. """ C = self.ucc.get_specific_operating_point(req_y_axis_value=missrate, vary_bias=False) new_scale = C['modvalue'] y_pred_mean, y_pred_lower, y_pred_upper = self.base_model.predict(X)[:3] bwu = y_pred_upper - y_pred_mean bwl = y_pred_mean - y_pred_lower if C['operation'] == 'bias': calib_y_pred_upper = y_pred_mean + (new_scale + bwu) # lower bound width calib_y_pred_lower = y_pred_mean - (new_scale + bwl) # Upper bound width else: calib_y_pred_upper = y_pred_mean + (new_scale * bwu) # lower bound width calib_y_pred_lower = y_pred_mean - (new_scale * bwl) # Upper bound width Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper']) res = Result(y_pred_mean, calib_y_pred_lower, calib_y_pred_upper) return res <s> from collections import namedtuple import numpy as np from sklearn.calibration import CalibratedClassifierCV from sklearn.preprocessing import LabelEncoder from uq360.utils.misc import DummySklearnEstimator from uq360.algorithms.posthocuq import PostHocUQ class ClassificationCalibration(PostHocUQ): """Post hoc calibration of classification models. Currently wraps `CalibratedClassifierCV` from sklearn and allows non-sklearn models to be calibrated
. """ def __init__(self, num_classes, fit_mode="features", method='isotonic', base_model_prediction_func=None): """ Args: num_classes: number of classes. fit_mode: features or probs. If probs the `fit` and `predict` operate on the base models probability scores, useful when these are precomputed. method: isotonic or sigmoid. base_model_prediction_func: the function that takes in the input features and produces base model's probability scores. This is ignored when operating in `probs` mode. """ super(ClassificationCalibration).__init__() if fit_mode == "probs": # In this case, the fit assumes that it receives the probability scores of the base model. # create a dummy estimator self.base_model = DummySklearnEstimator(num_classes, lambda x: x) else: self.base_model = DummySklearnEstimator(num_classes, base_model_prediction_func) self.method = method def get_params(self, deep=True): return {"num_classes": self.num_classes, "fit_mode": self.fit_mode, "method": self.method, "base_model_prediction_func": self.base_model_prediction_func} def _process_pretrained_model(self, base_model): return base_model def fit(self, X, y): """ Fits calibration model using the provided calibration set. Args: X: array-like of shape (n_samples, n_features) or (n_samples, n_classes). Features vectors of the training data or the probability scores from the base model. y: array-like of shape (n_samples,) or (n_samples, n_targets) Target values Returns: self """ self.base_model.label_encoder_ = LabelEncoder().fit(y) self.calib_model = CalibratedClassifierCV(base_estimator=self.base_model, cv="prefit", method=self.method) self.calib_model.fit(X, y) return self def predict(self, X): """ Obtain calibrated predictions for the test points. Args: X: array-like of shape (n_samples, n_features) or (n_samples, n_classes). Features vectors of the training data or the probability scores from the base model. Returns: namedtuple: A namedtupe that holds y_pred: ndarray of shape (n_samples,) Predicted labels of the test points. y_prob: ndarray of shape (n_samples, n_classes) Predicted probability scores of the classes. """ y_prob = self.calib_model.predict_proba(X) if len(np.shape(y_prob)) == 1: y_pred_labels = y_prob > 0.5 else: y_pred_labels = np.argmax(y_prob, axis=1) Result = namedtuple('res', ['y_pred', 'y_prob']) res = Result(y_pred_labels, y_prob) return res <s> from .classification_calibration import ClassificationCalibration <s> import numpy as np from scipy.stats import norm from sklearn.metrics import mean_squared_error, r2_score from ..utils.misc import fitted_ucc_w_nullref def picp(y_true, y_lower, y_upper): """ Prediction Interval Coverage Probability (PICP). Computes the fraction of samples for which the grounds truth lies within predicted interval. Measures the prediction interval calibration for regression. Args: y_true: Ground truth y_lower: predicted lower bound y_upper: predicted upper bound Returns: float: the fraction of samples for which the grounds truth lies within predicted interval. """ satisfies_upper_bound = y_true <= y_upper satisfies_lower_bound = y_true >= y_lower return np.mean(satisfies_upper_bound * satisfies_lower_bound) def mpiw(y_lower, y_upper): """ Mean Prediction Interval Width (MPIW). Computes the average width of the the prediction intervals. Measures the sharpness of intervals. Args: y_lower: predicted lower bound y_upper: predicted upper bound Returns: float: the average width the prediction interval across samples. """ return np.mean(np.abs(y_lower - y_upper)) def auucc_gain(y_true, y_mean, y_lower, y_upper): """ Computes the Area Under the Uncertainty Characteristics Curve (AUUCC) gain wrt to a null reference with constant band. Args: y_true: Ground truth y_mean: predicted mean y_lower: predicted lower bound y_upper: predicted upper bound Returns: float: AUUCC gain """ u = fitted_ucc_w_nullref(y_true, y_mean, y_lower, y_upper) auucc = u.get_AUUCC() assert(isinstance(auucc, list) and len(auucc) == 2), "Failed to calculate auucc gain" assert (not np.isclose(auucc[1], 0.)), "Failed to calculate auucc gain" auucc_gain = (auucc[1]-auucc[0])/auucc[0] return auucc_gain def negative_log_likelihood_Gaussian(y_true, y_mean, y_lower, y_upper): """ Computes Gaussian negative_log_likelihood assuming symmetric band around the mean. Args: y_true: Ground truth y_mean: predicted mean y_lower: predicted lower bound y_upper: predicted upper bound Returns: float: nll """ y_std = (y_upper - y_lower) / 4.0 nll = np.mean(-norm.logpdf(y_true.squeeze(), loc=y_mean.squeeze(), scale=y_std.squeeze())) return nll def compute_regression_metrics(y_true, y_mean, y_lower, y_upper, option="all", nll_fn=None): """ Computes the metrics specified in the option which can be string or a list of strings. Default option `all` computes the ["rmse", "nll", "auucc_gain", "picp", "mpiw", "r2"] metrics. Args: y_true: Ground truth y_mean: predicted mean y_lower: predicted lower bound y_upper: predicted upper bound option: string or list of string contained the name of the metrics to be computed. nll_fn: function that evaluates NLL, if None, then computes Gaussian NLL using y_mean and y_lower. Returns: dict: dictionary containing the computed metrics. """ assert y_true.shape == y_mean.shape, "y_true shape: {}, y_mean shape: {}".format(y_true.shape, y_mean.shape) assert y_true.shape == y_lower.shape, "y_true shape: {}, y_mean shape: {}".format(y_true.shape, y_lower.shape) assert y_true.shape == y_upper.shape, "y_true shape: {}, y_mean shape: {}".format(y_true.shape, y_upper.shape) results = {} if not isinstance(option, list): if option == "all": option_list = ["rmse", "nll", "auucc_gain", "picp", "mpiw", "r2"] else: option_list = [option] if "rmse" in option_list: results["rmse"] = mean_squared_error(y_true, y_mean, squared=False) if "nll" in option_list: if nll_fn is None: nll = negative_log_likelihood_Gaussian(y_true, y_mean, y_lower, y_upper) results["nll"] = nll else: results["nll"] = np.mean(nll_fn(y_true)) if "auucc_gain" in option_list: gain = auucc_gain(y_true, y_mean, y_lower, y_upper) results["auucc_gain"] = gain if "picp" in option_list: results["picp"] = picp(y_true, y_lower, y_upper) if "mpiw" in option_list: results["mpiw"] = mpiw(y_lower, y_upper) if "r2" in option_list: results["r2"] = r2_score(y_true, y_mean) return results def _check_not_tuple_of_2_elements(obj, obj_name='obj'): """Check object is not tuple or does not have 2 elements.""" if not isinstance(obj, tuple) or len(obj) != 2: raise TypeError('%s must be a tuple of 2 elements.' % obj_name) def plot_uncertainty_distribution(dist, show_quantile_dots=False, qd_sample=20, qd_bins=7, ax=None, figsize=None, dpi=None, title='Predicted Distribution', xlims=None, xlabel='Prediction', ylabel='Density', **kwargs): """ Plot the uncertainty distribution for a single distribution. Args: dist: scipy.stats._continuous_distns. A scipy distribution object. show_quantile_dots: boolean. Whether to show quantil dots on top of the density plot. qd_sample: int. Number of dots for the quantile dot plot. qd_bins: int. Number of bins for the quantile dot plot. ax: matplotlib.axes.Axes or None, optional (default=None). Target axes instance. If None, new figure and axes will be created. figsize: tuple of 2 elements or None, optional (default=None). Figure size. dpi : int or None, optional (default=None). Resolution of the figure. title : string or None, optional (default=Prediction Distribution) Axes title. If None, title is disabled. xlims : tuple of 2 elements or None, optional (default=None). Tuple passed to ``ax.xlim()``. xlabel : string or None, optional (default=Prediction) X-axis title label. If None, title is disabled. ylabel : string or None, optional (default=Density) Y-axis title label. If None, title is disabled. Returns: matplotlib.axes.Axes: ax : The plot with prediction distribution. """ import matplotlib.pyplot as plt if ax is None: if figsize is not None: _check_not_tuple_of_2_elements(figsize, 'figsize') _, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) x = np.linspace(dist.ppf(0.01), dist.ppf(0.99), 100) ax.plot(x, dist.pdf(x), **kwargs) if show_quantile_dots: from matplotlib.patches import Circle from matplotlib.collections import PatchCollection import matplotlib.ticker as ticker data = dist.rvs(size=10000) p_less_than_x = np.linspace(1 / qd_sample / 2, 1 - (1 / qd_sample / 2), qd_sample) x_ = np.percentile(data, p_less_than_x * 100) # Inverce CDF (ppf) # Create bins hist = np.histogram(x_, bins=qd_bins) bins, edges = hist radius = (edges[1] - edges[0]) / 2 ax2 = ax.twinx() patches = [] max_y = 0 for i in range(qd_bins): x_bin = (edges[i + 1] + edges[i]) / 2 y_bins = [(i + 1) * (radius * 2) for i in range(bins[i])] max_y = max(y_bins) if max(y_bins) > max_y else max_y for _, y_bin in enumerate(y_bins): circle = Circle((x_bin, y_bin), radius) patches.append(circle) p = PatchCollection(patches, alpha=0.4) ax2.add_collection(p) # Axis tweek y_scale = (max_y + radius) / max(dist.pdf(x)) ticks_y = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x_ / y_scale)) ax2.yaxis.set_major_formatter(ticks_y) ax2.set_yticklabels([]) if xlims is not None: ax2.set_xlim(left=xlims[0], right=xlims[1]) else: ax2.set_xlim([min(x_) - radius, max(x) + radius]) ax2.set_ylim([0, max_y + radius]) ax2.set_aspect(1) if title is not None: ax.set_title(title) if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) return ax def plot_picp_by_feature(x_test, y_test, y_test_pred_lower_total, y_test_pred_upper_total, num_bins=10, ax=None, figsize=None, dpi=None, xlims=None, ylims=None, xscale="linear", title=None, xlabel=None, ylabel=None): """ Plot how prediction uncertainty varies across the entire range of a feature. Args: x_test: One dimensional ndarray. Feature column of the test dataset. y_test: One dimensional ndarray. Ground truth label of the test dataset. y_test_pred_lower_total: One dimensional ndarray. Lower bound of the total uncertainty range. y_test_pred_upper_total: One dimensional ndarray. Upper bound of the total uncertainty range. num_bins: int. Number of bins used to discritize x_test into equal-sample-sized bins. ax: matplotlib.axes.Axes or None, optional (default=None). Target axes instance. If None, new figure and axes will be created. figsize: tuple of 2 elements or None, optional (default=None). Figure size. dpi : int or None, optional (default=None). Resolution of the figure. xlims : tuple of 2 elements or None, optional (default=None). Tuple passed to ``ax.xlim()``. ylims: tuple of 2 elements or None, optional (default=None). Tuple passed to ``ax.ylim()``. xscale: Passed to ``ax.set_xscale()``. title : string or None, optional Axes title. If None, title is disabled. xlabel : string or None
, optional X-axis title label. If None, title is disabled. ylabel : string or None, optional Y-axis title label. If None, title is disabled. Returns: matplotlib.axes.Axes: ax : The plot with PICP scores binned by a feature. """ from scipy.stats.mstats import mquantiles import matplotlib.pyplot as plt if ax is None: if figsize is not None: _check_not_tuple_of_2_elements(figsize, 'figsize') _, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) x_uniques_sorted = np.sort(np.unique(x_test)) num_unique = len(x_uniques_sorted) sample_bin_ids = np.searchsorted(x_uniques_sorted, x_test) if len(x_uniques_sorted) > 10: # bin the values q_bins = mquantiles(x_test, np.histogram_bin_edges([], bins=num_bins-1, range=(0.0, 1.0))[1:]) q_sample_bin_ids = np.digitize(x_test, q_bins) picps = np.array([picp(y_test[q_sample_bin_ids==bin], y_test_pred_lower_total[q_sample_bin_ids==bin], y_test_pred_upper_total[q_sample_bin_ids==bin]) for bin in range(num_bins)]) unique_sample_bin_ids = np.digitize(x_uniques_sorted, q_bins) picp_replicated = [len(x_uniques_sorted[unique_sample_bin_ids == bin]) * [picps[bin]] for bin in range(num_bins)] picp_replicated = np.array([item for sublist in picp_replicated for item in sublist]) else: picps = np.array([picp(y_test[sample_bin_ids == bin], y_test_pred_lower_total[sample_bin_ids == bin], y_test_pred_upper_total[sample_bin_ids == bin]) for bin in range(num_unique)]) picp_replicated = picps ax.plot(x_uniques_sorted, picp_replicated, label='PICP') ax.axhline(0.95, linestyle='--', label='95%') ax.set_ylabel('PICP') ax.legend(loc='best') if title is None: title = 'Test data overall PICP: {:.2f} MPIW: {:.2f}'.format( picp(y_test, y_test_pred_lower_total, y_test_pred_upper_total), mpiw(y_test_pred_lower_total, y_test_pred_upper_total)) if xlims is not None: ax.set_xlim(left=xlims[0], right=xlims[1]) if ylims is not None: ax.set_ylim(bottom=ylims[0], top=ylims[1]) ax.set_title(title) if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) if xscale is not None: ax.set_xscale(xscale) return ax def plot_uncertainty_by_feature(x_test, y_test_pred_mean, y_test_pred_lower_total, y_test_pred_upper_total, y_test_pred_lower_epistemic=None, y_test_pred_upper_epistemic=None, ax=None, figsize=None, dpi=None, xlims=None, xscale="linear", title=None, xlabel=None, ylabel=None): """ Plot how prediction uncertainty varies across the entire range of a feature. Args: x_test: one dimensional ndarray. Feature column of the test dataset. y_test_pred_mean: One dimensional ndarray. Model prediction for the test dataset. y_test_pred_lower_total: One dimensional ndarray. Lower bound of the total uncertainty range. y_test_pred_upper_total: One dimensional ndarray. Upper bound of the total uncertainty range. y_test_pred_lower_epistemic: One dimensional ndarray. Lower bound of the epistemic uncertainty range. y_test_pred_upper_epistemic: One dimensional ndarray. Upper bound of the epistemic uncertainty range. ax: matplotlib.axes.Axes or None, optional (default=None). Target axes instance. If None, new figure and axes will be created. figsize: tuple of 2 elements or None, optional (default=None). Figure size. dpi : int or None, optional (default=None). Resolution of the figure. xlims : tuple of 2 elements or None, optional (default=None). Tuple passed to ``ax.xlim()``. xscale: Passed to ``ax.set_xscale()``. title : string or None, optional Axes title. If None, title is disabled. xlabel : string or None, optional X-axis title label. If None, title is disabled. ylabel : string or None, optional Y-axis title label. If None, title is disabled. Returns: matplotlib.axes.Axes: ax : The plot with model's uncertainty binned by a feature. """ import matplotlib.pyplot as plt if ax is None: if figsize is not None: _check_not_tuple_of_2_elements(figsize, 'figsize') _, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) x_uniques_sorted = np.sort(np.unique(x_test)) y_pred_var = ((y_test_pred_upper_total - y_test_pred_lower_total) / 4.0)**2 agg_y_std = np.array([np.sqrt(np.mean(y_pred_var[x_test==x])) for x in x_uniques_sorted]) agg_y_mean = np.array([np.mean(y_test_pred_mean[x_test==x]) for x in x_uniques_sorted]) ax.plot(x_uniques_sorted, agg_y_mean, '-b', lw=2, label='mean prediction') ax.fill_between(x_uniques_sorted, agg_y_mean - 2.0 * agg_y_std, agg_y_mean + 2.0 * agg_y_std, alpha=0.3, label='total uncertainty') if y_test_pred_lower_epistemic is not None: y_pred_var_epistemic = ((y_test_pred_upper_epistemic - y_test_pred_lower_epistemic) / 4.0)**2 agg_y_std_epistemic = np.array([np.sqrt(np.mean(y_pred_var_epistemic[x_test==x])) for x in x_uniques_sorted]) ax.fill_between(x_uniques_sorted, agg_y_mean - 2.0 * agg_y_std_epistemic, agg_y_mean + 2.0 * agg_y_std_epistemic, alpha=0.3, label='model uncertainty') ax.legend(loc='best') if xlims is not None: ax.set_xlim(left=xlims[0], right=xlims[1]) if title is not None: ax.set_title(title) if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) if xscale is not None: ax.set_xscale(xscale) return ax <s> import numpy as np import pandas as pd from scipy.stats import entropy from sklearn.metrics import roc_auc_score, log_loss, accuracy_score def entropy_based_uncertainty_decomposition(y_prob_samples): """ Entropy based decomposition [2]_ of predictive uncertainty into aleatoric and epistemic components. References: .. [2] Depeweg, S., Hernandez-Lobato, J. M., Doshi-Velez, F., & Udluft, S. (2018, July). Decomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. In International Conference on Machine Learning (pp. 1184-1193). PMLR. Args: y_prob_samples: list of array-like of shape (n_samples, n_classes) containing class prediction probabilities corresponding to samples from the model posterior. Returns: tuple: - total_uncertainty: entropy of the predictive distribution. - aleatoric_uncertainty: aleatoric component of the total_uncertainty. - epistemic_uncertainty: epistemic component of the total_uncertainty. """ y_preds_samples_stacked = np.stack(y_prob_samples) preds_mean = np.mean(y_preds_samples_stacked, 0) total_uncertainty = entropy(preds_mean, axis=1) aleatoric_uncertainty = np.mean( np.concatenate([entropy(y_pred, axis=1).reshape(-1, 1) for y_pred in y_prob_samples], axis=1), axis=1) epistemic_uncertainty = total_uncertainty - aleatoric_uncertainty return total_uncertainty, aleatoric_uncertainty, epistemic_uncertainty def multiclass_brier_score(y_true, y_prob): """Brier score for multi-class. Args: y_true: array-like of shape (n_samples,) ground truth labels. y_prob: array-like of shape (n_samples, n_classes). Probability scores from the base model. Returns: float: Brier score. """ assert len(y_prob.shape) > 1, "y_prob should be array-like of shape (n_samples, n_classes)" y_target = np.zeros_like(y_prob) y_target[:, y_true] = 1.0 return np.mean(np.sum((y_target - y_prob) ** 2, axis=1)) def area_under_risk_rejection_rate_curve(y_true, y_prob, y_pred=None, selection_scores=None, risk_func=accuracy_score, attributes=None, num_bins=10, subgroup_ids=None, return_counts=False): """ Computes risk vs rejection rate curve and the area under this curve. Similar to risk-coverage curves [3]_ where coverage instead of rejection rate is used. References: .. [3] Franc, Vojtech, and Daniel Prusa. "On discriminative learning of prediction uncertainty." In International Conference on Machine Learning, pp. 1963-1971. 2019. Args: y_true: array-like of shape (n_samples,) ground truth labels. y_prob: array-like of shape (n_samples, n_classes). Probability scores from the base model. y_pred: array-like of shape (n_samples,) predicted labels. selection_scores: scores corresponding to certainty in the predicted labels. risk_func: risk function under consideration. attributes: (optional) if risk function is a fairness metric also pass the protected attribute name. num_bins: number of bins. subgroup_ids: (optional) selectively compute risk on a subgroup of the samples specified by subgroup_ids. return_counts: set to True to return counts also. Returns: float or tuple: - aurrrc (float): area under risk rejection rate curve. - rejection_rates (list): rejection rates for each bin (returned only if return_counts is True). - selection_thresholds (list): selection threshold for each bin (returned only if return_counts is True). - risks (list): risk in each bin (returned only if return_counts is True). """ if selection_scores is None: assert len(y_prob.shape) > 1, "y_prob should be array-like of shape (n_samples, n_classes)" selection_scores = y_prob[np.arange(y_prob.shape[0]), np.argmax(y_prob, axis=1)] if y_pred is None: assert len(y_prob.shape) > 1, "y_prob should be array-like of shape (n_samples, n_classes)" y_pred = np.argmax(y_prob, axis=1) order = np.argsort(selection_scores)[::-1] rejection_rates = [] selection_thresholds = [] risks = [] for bin_id in range(num_bins): samples_in_bin = len(y_true) // num_bins selection_threshold = selection_scores[order[samples_in_bin * (bin_id+1)-1]] selection_thresholds.append(selection_threshold) ids = selection_scores >= selection_threshold if sum(ids) > 0: if attributes is None: if isinstance(y_true, pd.Series): y_true_numpy = y_true.values else: y_true_numpy = y_true if subgroup_ids is None: risk_value = 1.0 - risk_func(y_true_numpy[ids], y_pred[ids]) else: if sum(subgroup_ids & ids) > 0: risk_value = 1.0 - risk_func(y_true_numpy[subgroup_ids & ids], y_pred[subgroup_ids & ids]) else: risk_value = 0.0 else: risk_value = risk_func(y_true.iloc[ids], y_pred[ids], prot_attr=attributes) else: risk_value = 0.0 risks.append(risk_value) rejection_rates.append(1.0 - 1.0 * sum(ids) / len(y_true)) aurrrc = np.nanmean(risks) if not return_counts: return aurrrc else: return aurrrc, rejection_rates, selection_thresholds, risks def expected_calibration_error(y_true, y_prob, y_pred=None, num_bins=10, return_counts=False): """ Computes the reliability curve and the expected calibration error [1]_ . References: .. [1] Chuan Guo, Geoff Pleiss, Yu Sun, Kilian Q. Weinberger; Proceedings of the 34th International Conference on Machine Learning, PMLR 70:1321-1330, 2017. Args: y_true: array-like of shape (n_samples,) ground truth labels. y
_prob: array-like of shape (n_samples, n_classes). Probability scores from the base model. y_pred: array-like of shape (n_samples,) predicted labels. num_bins: number of bins. return_counts: set to True to return counts also. Returns: float or tuple: - ece (float): expected calibration error. - confidences_in_bins: average confidence in each bin (returned only if return_counts is True). - accuracies_in_bins: accuracy in each bin (returned only if return_counts is True). - frac_samples_in_bins: fraction of samples in each bin (returned only if return_counts is True). """ assert len(y_prob.shape) > 1, "y_prob should be array-like of shape (n_samples, n_classes)" num_samples, num_classes = y_prob.shape top_scores = np.max(y_prob, axis=1) if y_pred is None: y_pred = np.argmax(y_prob, axis=1) if num_classes == 2: bins_edges = np.histogram_bin_edges([], bins=num_bins, range=(0.5, 1.0)) else: bins_edges = np.histogram_bin_edges([], bins=num_bins, range=(0.0, 1.0)) non_boundary_bin_edges = bins_edges[1:-1] bin_centers = (bins_edges[1:] + bins_edges[:-1])/2 sample_bin_ids = np.digitize(top_scores, non_boundary_bin_edges) num_samples_in_bins = np.zeros(num_bins) accuracies_in_bins = np.zeros(num_bins) confidences_in_bins = np.zeros(num_bins) for bin in range(num_bins): num_samples_in_bins[bin] = len(y_pred[sample_bin_ids == bin]) if num_samples_in_bins[bin] > 0: accuracies_in_bins[bin] = np.sum(y_true[sample_bin_ids == bin] == y_pred[sample_bin_ids == bin]) / num_samples_in_bins[bin] confidences_in_bins[bin] = np.sum(top_scores[sample_bin_ids == bin]) / num_samples_in_bins[bin] ece = np.sum( num_samples_in_bins * np.abs(accuracies_in_bins - confidences_in_bins) / num_samples ) frac_samples_in_bins = num_samples_in_bins / num_samples if not return_counts: return ece else: return ece, confidences_in_bins, accuracies_in_bins, frac_samples_in_bins, bin_centers def compute_classification_metrics(y_true, y_prob, option='all'): """ Computes the metrics specified in the option which can be string or a list of strings. Default option `all` computes the [aurrrc, ece, auroc, nll, brier, accuracy] metrics. Args: y_true: array-like of shape (n_samples,) ground truth labels. y_prob: array-like of shape (n_samples, n_classes). Probability scores from the base model. option: string or list of string contained the name of the metrics to be computed. Returns: dict: a dictionary containing the computed metrics. """ results = {} if not isinstance(option, list): if option == "all": option_list = ["aurrrc", "ece", "auroc", "nll", "brier", "accuracy"] else: option_list = [option] if "aurrrc" in option_list: results["aurrrc"] = area_under_risk_rejection_rate_curve(y_true=y_true, y_prob=y_prob) if "ece" in option_list: results["ece"] = expected_calibration_error(y_true=y_true, y_prob=y_prob) if "auroc" in option_list: results["auroc"], _ = roc_auc_score(y_true=y_true, y_score=y_prob) if "nll" in option_list: results["nll"] = log_loss(y_true=y_true, y_pred=np.argmax(y_prob, axis=1)) if "brier" in option_list: results["brier"] = multiclass_brier_score(y_true=y_true, y_prob=y_prob) if "accuracy" in option_list: results["accuracy"] = accuracy_score(y_true=y_true, y_pred=np.argmax(y_prob, axis=1)) return results def plot_reliability_diagram(y_true, y_prob, y_pred, plot_label=[""], num_bins=10): """ Plots the reliability diagram showing the calibration error for different confidence scores. Multiple curves can be plot by passing data as lists. Args: y_true: array-like or or a list of array-like of shape (n_samples,) ground truth labels. y_prob: array-like or or a list of array-like of shape (n_samples, n_classes). Probability scores from the base model. y_pred: array-like or or a list of array-like of shape (n_samples,) predicted labels. plot_label: (optional) list of names identifying each curve. num_bins: number of bins. Returns: tuple: - ece_list: ece: list containing expected calibration error for each curve. - accuracies_in_bins_list: list containing binned average accuracies for each curve. - frac_samples_in_bins_list: list containing binned sample frequencies for each curve. - confidences_in_bins_list: list containing binned average confidence for each curve. """ import matplotlib.pyplot as plt if not isinstance(y_true, list): y_true, y_prob, y_pred = [y_true], [y_prob], [y_pred] if len(plot_label) != len(y_true): raise ValueError('y_true and plot_label should be of same length.') ece_list = [] accuracies_in_bins_list = [] frac_samples_in_bins_list = [] confidences_in_bins_list = [] for idx in range(len(plot_label)): ece, confidences_in_bins, accuracies_in_bins, frac_samples_in_bins, bins = expected_calibration_error(y_true[idx], y_prob[idx], y_pred[idx], num_bins=num_bins, return_counts=True) ece_list.append(ece) accuracies_in_bins_list.append(accuracies_in_bins) frac_samples_in_bins_list.append(frac_samples_in_bins) confidences_in_bins_list.append(confidences_in_bins) fig = plt.figure(figsize=(12, 5)) plt.subplot(1, 2, 1) for idx in range(len(plot_label)): plt.plot(bins, frac_samples_in_bins_list[idx], 'o-', label=plot_label[idx]) plt.title("Confidence Histogram") plt.xlabel("Confidence") plt.ylabel("Fraction of Samples") plt.grid() plt.ylim([0.0, 1.0]) plt.legend() plt.subplot(1, 2, 2) for idx in range(len(plot_label)): plt.plot(bins, accuracies_in_bins_list[idx], 'o-', label="{} ECE = {:.2f}".format(plot_label[idx], ece_list[idx])) plt.plot(np.linspace(0, 1, 50), np.linspace(0, 1, 50), 'b.', label="Perfect Calibration") plt.title("Reliability Plot") plt.xlabel("Confidence") plt.ylabel("Accuracy") plt.grid() plt.legend() plt.show() return ece_list, accuracies_in_bins_list, frac_samples_in_bins_list, confidences_in_bins_list def plot_risk_vs_rejection_rate(y_true, y_prob, y_pred, selection_scores=None, plot_label=[""], risk_func=None, attributes=None, num_bins=10, subgroup_ids=None): """ Plots the risk vs rejection rate curve showing the risk for different rejection rates. Multiple curves can be plot by passing data as lists. Args: y_true: array-like or or a list of array-like of shape (n_samples,) ground truth labels. y_prob: array-like or or a list of array-like of shape (n_samples, n_classes). Probability scores from the base model. y_pred: array-like or or a list of array-like of shape (n_samples,) predicted labels. selection_scores: ndarray or a list of ndarray containing scores corresponding to certainty in the predicted labels. risk_func: risk function under consideration. attributes: (optional) if risk function is a fairness metric also pass the protected attribute name. num_bins: number of bins. subgroup_ids: (optional) ndarray or a list of ndarray containing subgroup_ids to selectively compute risk on a subgroup of the samples specified by subgroup_ids. Returns: tuple: - aurrrc_list: list containing the area under risk rejection rate curves. - rejection_rate_list: list containing the binned rejection rates. - selection_thresholds_list: list containing the binned selection thresholds. - risk_list: list containing the binned risks. """ import matplotlib.pyplot as plt if not isinstance(y_true, list): y_true, y_prob, y_pred, selection_scores, subgroup_ids = [y_true], [y_prob], [y_pred], [selection_scores], [subgroup_ids] if len(plot_label) != len(y_true): raise ValueError('y_true and plot_label should be of same length.') aurrrc_list = [] rejection_rate_list = [] risk_list = [] selection_thresholds_list = [] for idx in range(len(plot_label)): aursrc, rejection_rates, selection_thresholds, risks = area_under_risk_rejection_rate_curve( y_true[idx], y_prob[idx], y_pred[idx], selection_scores=selection_scores[idx], risk_func=risk_func, attributes=attributes, num_bins=num_bins, subgroup_ids=subgroup_ids[idx], return_counts=True ) aurrrc_list.append(aursrc) rejection_rate_list.append(rejection_rates) risk_list.append(risks) selection_thresholds_list.append(selection_thresholds) plt.figure(figsize=(12, 5)) plt.subplot(1, 2, 1) for idx in range(len(plot_label)): plt.plot(rejection_rate_list[idx], risk_list[idx], label="{} AURRRC={:.5f}".format(plot_label[idx], aurrrc_list[idx])) plt.legend(loc="best") plt.xlabel("Rejection Rate") if risk_func is None: ylabel = "Prediction Error Rate" else: if 'accuracy' in risk_func.__name__: ylabel = "1.0 - " + risk_func.__name__ else: ylabel = risk_func.__name__ plt.ylabel(ylabel) plt.title("Risk vs Rejection Rate Plot") plt.grid() plt.subplot(1, 2, 2) for idx in range(len(plot_label)): plt.plot(selection_thresholds_list[idx], risk_list[idx], label="{}".format(plot_label[idx])) plt.legend(loc="best") plt.xlabel("Selection Threshold") if risk_func is None: ylabel = "Prediction Error Rate" else: if 'accuracy' in risk_func.__name__: ylabel = "1.0 - " + risk_func.__name__ else: ylabel = risk_func.__name__ plt.ylabel(ylabel) plt.title("Risk vs Selection Threshold Plot") plt.grid() plt.show() return aurrrc_list, rejection_rate_list, selection_thresholds_list, risk_list <s> from .classification_metrics import expected_calibration_error, area_under_risk_rejection_rate_curve, \\ compute_classification_metrics, entropy_based_uncertainty_decomposition from .regression_metrics import picp, mpiw, compute_regression_metrics, plot_uncertainty_distribution, \\ plot_uncertainty_by_feature, plot_picp_by_feature from .uncertainty_characteristics_curve import UncertaintyCharacteristicsCurve <s> from copy import deepcopy import matplotlib.pyplot as plt import numpy as np from scipy.integrate import simps, trapz from sklearn.isotonic import IsotonicRegression DEFAULT_X_AXIS_NAME = 'excess' DEFAULT_Y_AXIS_NAME = 'missrate' class UncertaintyCharacteristicsCurve: """ Class with main functions of the Uncertainty Characteristics Curve (UCC). """ def __init__(self, normalize=True, precompute_bias_data=True): """ :param normalize: set initial axes normalization flag (can be changed via set_coordinates()) :param precompute_bias_data: if True, fit() will compute statistics necessary to generate bias-based UCCs (in addition to the scale-based ones). Skipping this precomputation may speed up the fit() call if bias-based UCC is not needed. """ self.axes_name2idx = {"missrate": 1, "bandwidth": 2, "excess": 3, "deficit": 4} self.axes_idx2descr = {1: "Missrate", 2: "Bandwidth", 3: "Excess", 4: "Deficit"} self.x_axis_idx = None self.y_axis_idx = None self.norm_x_axis = False self.norm_y_axis = False self.std_unit = None self.
normalize = normalize self.d = None self.gt = None self.lb = None self.ub = None self.precompute_bias_data = precompute_bias_data self.set_coordinates(x_axis_name=DEFAULT_X_AXIS_NAME, y_axis_name=DEFAULT_Y_AXIS_NAME, normalize=normalize) def set_coordinates(self, x_axis_name=None, y_axis_name=None, normalize=None): """ Assigns user-specified type to the axes and normalization behavior (sticky). :param x_axis_name: None-> unchanged, or name from self.axes_name2idx :param y_axis_name: ditto :param normalize: True/False will activate/deactivate norming for specified axes. Behavior for Axes_name that are None will not be changed. Value None will leave norm status unchanged. Note, axis=='missrate' will never get normalized, even with normalize == True :return: none """ normalize = self.normalize if normalize is None else normalize if x_axis_name is None and self.x_axis_idx is None: raise ValueError("ERROR(UCC): x-axis has not been defined.") if y_axis_name is None and self.y_axis_idx is None: raise ValueError("ERROR(UCC): y-axis has not been defined.") if x_axis_name is None and y_axis_name is None and normalize is not None: # just set normalization on/off for both axes and return self.norm_x_axis = False if x_axis_name == 'missrate' else normalize self.norm_y_axis = False if y_axis_name == 'missrate' else normalize return if x_axis_name is not None: self.x_axis_idx = self.axes_name2idx[x_axis_name] self.norm_x_axis = False if x_axis_name == 'missrate' else normalize if y_axis_name is not None: self.y_axis_idx = self.axes_name2idx[y_axis_name] self.norm_y_axis = False if y_axis_name == 'missrate' else normalize def set_std_unit(self, std_unit=None): """ Sets the UCC's unit to be used when displaying normalized axes. :param std_unit: if None, the unit will be calculated as stddev of the ground truth data (ValueError raised if data has not been set at this point) or set to the user-specified value. :return: """ if std_unit is None: # set it to stddev of data if self.gt is None: raise ValueError("ERROR(UCC): No data specified - cannot set stddev unit.") self.std_unit = np.std(self.gt) if np.isclose(self.std_unit, 0.): print("WARN(UCC): data-based stddev is zero - resetting axes unit to 1.") self.std_unit = 1. else: self.std_unit = float(std_unit) def fit(self, X, gt): """ Calculates internal arrays necessary for other methods (plotting, auc, cost minimization). Re-entrant. :param X: [numsamples, 3] numpy matrix, or list of numpy matrices. Col 1: predicted values Col 2: lower band (deviate) wrt predicted value (always positive) Col 3: upper band wrt predicted value (always positive) If list is provided, all methods will output corresponding metrics as lists as well! :param gt: Ground truth array (i.e.,the 'actual' values corresponding to predictions in X :return: self """ if not isinstance(X, list): X = [X] newX = [] for x in X: assert (isinstance(x, np.ndarray) and len(x.shape) == 2 and x.shape[1] == 3 and x.shape[0] == len(gt)) newX.append(self._sanitize_input(x)) self.d = [gt - x[:, 0] for x in newX] self.lb = [x[:, 1] for x in newX] self.ub = [x[:, 2] for x in newX] self.gt = gt self.set_std_unit() self.plotdata_for_scale = [] self.plotdata_for_bias = [] # precompute plotdata: for i in range(len(self.d)): self.plotdata_for_scale.append(self._calc_plotdata(self.d[i], self.lb[i], self.ub[i], vary_bias=False)) if self.precompute_bias_data: self.plotdata_for_bias.append(self._calc_plotdata(self.d[i], self.lb[i], self.ub[i], vary_bias=True)) return self def minimize_cost(self, x_axis_cost=.5, y_axis_cost=.5, augment_cost_by_normfactor=True, search=('scale', 'bias')): """ Find minima of a linear cost function for each component. Cost function C = x_axis_cost * x_axis_value + y_axis_cost * y_axis_value. A minimum can occur in the scale-based or bias-based UCC (this can be constrained by the 'search' arg). The function returns a 'recipe' how to achieve the corresponding minimum, for each component. :param x_axis_cost: weight of one unit on x_axis :param y_axis_cost: weight of one unit on y_axis :param augment_cost_by_normfactor: when False, the cost multipliers will apply as is. If True, they will be pre-normed by the corresponding axis norm (where applicable), to account for range differences between axes. :param search: list of types over which minimization is to be performed, valid elements are 'scale' and 'bias'. :return: list of dicts - one per component, or a single dict, if there is only one component. Dict keys are - 'operation': can be 'bias' (additive) or 'scale' (multiplicative), 'modvalue': value to multiply by or to add to error bars to achieve the minimum, 'new_x'/'new_y': new coordinates (operating point) with that minimum, 'cost': new cost at minimum point, 'original_cost': original cost (original operating point). """ if self.d is None: raise ValueError("ERROR(UCC): call fit() prior to using this method.") if augment_cost_by_normfactor: if self.norm_x_axis: x_axis_cost /= self.std_unit if self.norm_y_axis: y_axis_cost /= self.std_unit print("INFO(UCC): Pre-norming costs by corresp. std deviation: new x_axis_cost = %.4f, y_axis_cost = %.4f" % (x_axis_cost, y_axis_cost)) if isinstance(search, tuple): search = list(search) if not isinstance(search, list): search = [search] min_costs = [] for d in range(len(self.d)): # original OP cost m, b, e, df = self._calc_missrate_bandwidth_excess_deficit(self.d[d], self.lb[d], self.ub[d]) original_cost = x_axis_cost * [0., m, b, e, df][self.x_axis_idx] + y_axis_cost * [0., m, b, e, df][ self.y_axis_idx] plotdata = self.plotdata_for_scale[d] cost_scale, minidx_scale = self._find_min_cost_in_component(plotdata, self.x_axis_idx, self.y_axis_idx, x_axis_cost, y_axis_cost) mcf_scale_multiplier = plotdata[minidx_scale][0] mcf_scale_x = plotdata[minidx_scale][self.x_axis_idx] mcf_scale_y = plotdata[minidx_scale][self.y_axis_idx] if 'bias' in search: if not self.precompute_bias_data: raise ValueError( "ERROR(UCC): Cannot perform minimization - instantiated without bias data computation") plotdata = self.plotdata_for_bias[d] cost_bias, minidx_bias = self._find_min_cost_in_component(plotdata, self.x_axis_idx, self.y_axis_idx, x_axis_cost, y_axis_cost) mcf_bias_add = plotdata[minidx_bias][0] mcf_bias_x = plotdata[minidx_bias][self.x_axis_idx] mcf_bias_y = plotdata[minidx_bias][self.y_axis_idx] if 'bias' in search and 'scale' in search: if cost_bias < cost_scale: min_costs.append({'operation': 'bias', 'cost': cost_bias, 'modvalue': mcf_bias_add, 'new_x': mcf_bias_x, 'new_y': mcf_bias_y, 'original_cost': original_cost}) else: min_costs.append({'operation': 'scale', 'cost': cost_scale, 'modvalue': mcf_scale_multiplier, 'new_x': mcf_scale_x, 'new_y': mcf_scale_y, 'original_cost': original_cost}) elif 'scale' in search: min_costs.append({'operation': 'scale', 'cost': cost_scale, 'modvalue': mcf_scale_multiplier, 'new_x': mcf_scale_x, 'new_y': mcf_scale_y, 'original_cost': original_cost}) elif 'bias' in search: min_costs.append({'operation': 'bias', 'cost': cost_bias, 'modvalue': mcf_bias_add, 'new_x': mcf_bias_x, 'new_y': mcf_bias_y, 'original_cost': original_cost}) else: raise ValueError("(ERROR): Unknown search element (%s) requested." % ",".join(search)) if len(min_costs) < 2: return min_costs[0] else: return min_costs def get_specific_operating_point(self, req_x_axis_value=None, req_y_axis_value=None, req_critical_value=None, vary_bias=False): """ Finds corresponding operating point on the current UCC, given a point on either x or y axis. Returns a list of recipes how to achieve the point (x,y), for each component. If there is only one component, returns a single recipe dict. :param req_x_axis_value: requested x value on UCC (normalization status is taken from current display) :param req_y_axis_value: requested y value on UCC (normalization status is taken from current display) :param vary_bias: set to True when referring to bias-induced UCC (scale UCC default) :return: list of dicts (recipes), or a single dict """ if self.d is None: raise ValueError("ERROR(UCC): call fit() prior to using this method.") if np.sum([req_x_axis_value is not None, req_y_axis_value is not None, req_critical_value is not None]) != 1: raise ValueError("ERROR(UCC): exactly one axis value must be requested at a time.") if vary_bias and not self.precompute_bias_data: raise ValueError("ERROR(UCC): Cannot vary bias - instantiated without bias data computation") xnorm = self.std_unit if self.norm_x_axis else 1. ynorm = self.std_unit if self.norm_y_axis else 1. recipe = [] for dc in range(len(self.d)): plotdata = self.plotdata_for_bias[dc] if vary_bias else self.plotdata_for_scale[dc] if req_x_axis_value is not None: tgtidx = self.x_axis_idx req_value = req_x_axis_value * xnorm elif req_y_axis_value is not None: tgtidx = self.y_axis_idx req_value = req_y_axis_value * ynorm elif req_critical_value is not None: req_value = req_critical_value tgtidx = 0 # first element in plotdata is always the critical value (scale of bias) else: raise RuntimeError("Unhandled case") closestidx = np.argmin(np.asarray([np.abs(p[tgtidx] - req_value) for p in plotdata])) recipe.append({'operation': ('bias' if vary_bias else 'scale'), 'modvalue': plotdata[closestidx][0], 'new_x': plotdata[closestidx][self.x_axis_idx] / xnorm, 'new_y': plotdata[closestidx][self.y_axis_idx] / ynorm}) if len(recipe) < 2: return recipe[0] else: return recipe def _find_min_cost_in_component(self, plotdata, idx1, idx2, cost1, cost2): """ Find s minimum cost function value and corresp. position index in plotdata :param plotdata: liste of tuples :param idx1: idx of x-axis item within the tuple :param idx2: idx of y-axis item within the tuple :param cost1: cost factor for x-axis unit :param cost2: cost factor for y-axis unit :return: min cost value, index within plotdata where minimum occurs """ raw = [cost1 * i[idx1] + cost2 * i[idx2] for i in plotdata] minidx = np.argmin(raw) return raw[minidx], minidx def _sanitize_input(self, x): """ Replaces problematic values in input data (e.g, zero error bars) :param x: single matrix of input data [n, 3] :return: sanitized version of x """ if np.isclose(np.sum(x[:, 1]), 0.): raise ValueError("ERROR(UCC): Provided lower bands are all zero.") if np.isclose(np.sum(x[:, 2]), 0.): raise ValueError("ERROR(UCC): Provided upper bands are all zero.") for i in [1, 2]: if any(np.isclose(x[:, i], 0.)): print("WARN(UCC): some band values are 0. - REPLACING with positive minimum") m = np.min(x[x[:, i] > 0, i]) x = np.where(np.isclose(x, 0.), m, x) return x def _calc_avg_excess(self, d, lb, ub): """ Excess is amount an error bar overshoots actual :param d: pred-actual array :param lb: lower band :param ub: upper band :return: average excess over array
""" excess = np.zeros(d.shape) posidx = np.where(d >= 0)[0] excess[posidx] = np.where(ub[posidx] - d[posidx] < 0., 0., ub[posidx] - d[posidx]) negidx = np.where(d < 0)[0] excess[negidx] = np.where(lb[negidx] + d[negidx] < 0., 0., lb[negidx] + d[negidx]) return np.mean(excess) def _calc_avg_deficit(self, d, lb, ub): """ Deficit is error bar insufficiency: bar falls short of actual :param d: pred-actual array :param lb: lower band :param ub: upper band :return: average deficit over array """ deficit = np.zeros(d.shape) posidx = np.where(d >= 0)[0] deficit[posidx] = np.where(- ub[posidx] + d[posidx] < 0., 0., - ub[posidx] + d[posidx]) negidx = np.where(d < 0)[0] deficit[negidx] = np.where(- lb[negidx] - d[negidx] < 0., 0., - lb[negidx] - d[negidx]) return np.mean(deficit) def _calc_missrate_bandwidth_excess_deficit(self, d, lb, ub, scale=1.0, bias=0.0): """ Calculates recall at a given scale/bias, average bandwidth and average excess :param d: delta :param lb: lower band :param ub: upper band :param scale: scale * (x + bias) :param bias: :return: miss rate, average bandwidth, avg excess, avg deficit """ abslband = scale * np.where((lb + bias) < 0., 0., lb + bias) absuband = scale * np.where((ub + bias) < 0., 0., ub + bias) recall = np.sum((d >= - abslband) & (d <= absuband)) / len(d) avgbandwidth = np.mean([absuband, abslband]) avgexcess = self._calc_avg_excess(d, abslband, absuband) avgdeficit = self._calc_avg_deficit(d, abslband, absuband) return 1 - recall, avgbandwidth, avgexcess, avgdeficit def _calc_plotdata(self, d, lb, ub, vary_bias=False): """ Generates data necessary for various UCC metrics. :param d: delta (predicted - actual) vector :param ub: upper uncertainty bandwidth (above predicted) :param lb: lower uncertainty bandwidth (below predicted) - all positive (bandwidth) :param vary_bias: True will switch to additive bias instead of scale :return: list. Elements are tuples (varyvalue, missrate, bandwidth, excess, deficit) """ # step 1: collect critical scale or bias values critval = [] for i in range(len(d)): if not vary_bias: if d[i] >= 0: critval.append(d[i] / ub[i]) else: critval.append(-d[i] / lb[i]) else: if d[i] >= 0: critval.append(d[i] - ub[i]) else: critval.append(-lb[i] - d[i]) critval = sorted(critval) plotdata = [] for i in range(len(critval)): if not vary_bias: missrate, bandwidth, excess, deficit = self._calc_missrate_bandwidth_excess_deficit(d, lb, ub, scale=critval[i]) else: missrate, bandwidth, excess, deficit = self._calc_missrate_bandwidth_excess_deficit(d, lb, ub, bias=critval[i]) plotdata.append((critval[i], missrate, bandwidth, excess, deficit)) return plotdata def get_AUUCC(self, vary_bias=False, aucfct="trapz", partial_x=None, partial_y=None): """ returns approximate area under the curve on current coordinates, for each component. :param vary_bias: False == varies scale, True == varies bias :param aucfct: specifies AUC integrator (can be "trapz", "simps") :param partial_x: tuple (x_min, x_max) defining interval on x to calc a a partial AUC. The interval bounds refer to axes as visualized (ie. potentially normed) :param partial_y: tuple (y_min, y_max) defining interval on y to calc a a partial AUC. partial_x must be None. :return: list of floats with AUUCCs for each input component, or a single float, if there is only 1 component. """ if self.d is None: raise ValueError("ERROR(UCC): call fit() prior to using this method.") if vary_bias and not self.precompute_bias_data: raise ValueError("ERROR(UCC): Cannot vary bias - instantiated without bias data computation") if partial_x is not None and partial_y is not None: raise ValueError("ERROR(UCC): partial_x and partial_y can not be specified at the same time.") assert(partial_x is None or (isinstance(partial_x, tuple) and len(partial_x)==2)) assert(partial_y is None or (isinstance(partial_y, tuple) and len(partial_y)==2)) # find starting point (where the x axis value starts to actually change) rv = [] # do this for individual streams xind = self.x_axis_idx aucfct = simps if aucfct == "simps" else trapz for s in range(len(self.d)): plotdata = self.plotdata_for_bias[s] if vary_bias else self.plotdata_for_scale[s] prev = plotdata[0][xind] t = 1 cval = plotdata[t][xind] while cval == prev and t < len(plotdata) - 1: t += 1 prev = cval cval = plotdata[t][xind] startt = t - 1 # from here, it's a valid function endtt = len(plotdata) if startt >= endtt - 2: rvs = 0. # no area else: xnorm = self.std_unit if self.norm_x_axis else 1. ynorm = self.std_unit if self.norm_y_axis else 1. y=[(plotdata[i][self.y_axis_idx]) / ynorm for i in range(startt, endtt)] x=[(plotdata[i][self.x_axis_idx]) / xnorm for i in range(startt, endtt)] if partial_x is not None: from_i = self._find_closest_index(partial_x[0], x) to_i = self._find_closest_index(partial_x[1], x) + 1 elif partial_y is not None: from_i = self._find_closest_index(partial_y[0], y) to_i = self._find_closest_index(partial_y[1], y) if from_i > to_i: # y is in reverse order from_i, to_i = to_i, from_i to_i += 1 # as upper bound in array indexing else: from_i = 0 to_i = len(x) to_i = min(to_i, len(x)) if to_i < from_i: raise ValueError("ERROR(UCC): Failed to find an appropriate partial-AUC interval in the data.") if to_i - from_i < 2: raise RuntimeError("ERROR(UCC): There are too few samples (1) in the partial-AUC interval specified") rvs = aucfct(x=x[from_i:to_i], y=y[from_i:to_i]) rv.append(rvs) if len(rv) < 2: return rv[0] else: return rv @ staticmethod def _find_closest_index(value, array): """ Returns an index of the 'array' element closest in value to 'value' :param value: :param array: :return: """ return np.argmin(np.abs(np.asarray(array)-value)) def _get_single_OP(self, d, lb, ub, scale=1., bias=0.): """ Returns Operating Point for original input data, on coordinates currently set up, given a scale/bias. :param scale: :param bias: :return: single tuple (x point, y point, unit of x, unit of y) """ xnorm = self.std_unit if self.norm_x_axis else 1. ynorm = self.std_unit if self.norm_y_axis else 1. auxop = self._calc_missrate_bandwidth_excess_deficit(d, lb, ub, scale=scale, bias=bias) op = [0.] + [i for i in auxop] # mimic plotdata (first element ignored here) return (op[self.x_axis_idx] / xnorm, op[self.y_axis_idx] / ynorm, xnorm, ynorm) def get_OP(self, scale=1., bias=0.): """ Returns all Operating Points for original input data, on coordinates currently set up, given a scale/bias. :param scale: :param bias: :return: list of tuples (x point, y point, unit of x, unit of y) or a single tuple if there is only 1 component. """ if self.d is None: raise ValueError("ERROR(UCC): call fit() prior to using this method.") op = [] for dc in range(len(self.d)): op.append(self._get_single_OP(self.d[dc], self.lb[dc], self.ub[dc], scale=scale, bias=bias)) if len(op) < 2: return op[0] else: return op def plot_UCC(self, titlestr='', syslabel='model', outfn=None, vary_bias=False, markers=None, xlim=None, ylim=None, **kwargs): """ Will plot/display the UCC based on current data and coordinates. Multiple curves will be shown if there are multiple data components (via fit()) :param titlestr: Plot title string :param syslabel: list is label strings to appear in the plot legend. Can be single, if one component. :param outfn: base name of an image file to be created (will append .png before creating) :param vary_bias: True will switch to varying additive bias (default is multiplicative scale) :param markers: None or a list of marker styles to be used for each curve. List must be same or longer than number of components. Markers can be one among these ['o', 's', 'v', 'D', '+']. :param xlim: tuples or lists of specifying the range for the x axis, or None (auto) :param ylim: tuples or lists of specifying the range for the y axis, or None (auto) :param `**kwargs`: Additional arguments passed to the main plot call. :return: list of areas under the curve (or single area, if one data component) list of operating points (or single op): format of an op is tuple (xaxis value, yaxis value, xunit, yunit) """ if self.d is None: raise ValueError("ERROR(UCC): call fit() prior to using this method.") if vary_bias and not self.precompute_bias_data: raise ValueError("ERROR(UCC): Cannot vary bias - instantiated without bias data computation") if not isinstance(syslabel, list): syslabel = [syslabel] assert (len(syslabel) == len(self.d)) assert (markers is None or (isinstance(markers, list) and len(markers) >= len(self.d))) # main plot of (possibly multiple) datasets plt.figure() xnorm = self.std_unit if self.norm_x_axis else 1. ynorm = self.std_unit if self.norm_y_axis else 1. op_info = [] auucc = self.get_AUUCC(vary_bias=vary_bias) auucc = [auucc] if not isinstance(auucc, list) else auucc for s in range(len(self.d)): # original operating point x_op, y_op, x_unit, y_unit = self._get_single_OP(self.d[s], self.lb[s], self.ub[s]) op_info.append((x_op, y_op, x_unit, y_unit)) # display chart plotdata = self.plotdata_for_scale[s] if not vary_bias else self.plotdata_for_bias[s] axisX_data = [i[self.x_axis_idx] / xnorm for i in plotdata] axisY_data = [i[self.y_axis_idx] / ynorm for i in plotdata] marker = None if markers is not None: marker = markers[s] p = plt.plot(axisX_data, axisY_data, label=syslabel[s] + (" (AUC=%.3f)" % auucc[s]), marker=marker, **kwargs) if s + 1 == len(self.d): oplab = 'OP' else: oplab = None plt.plot(x_op, y_op, marker='o', color=p[0].get_color(), label=oplab, markerfacecolor='w', markeredgewidth=1.5, markeredgecolor=p[0].get_color()) axisX_label = self.axes_idx2descr[self.x_axis_idx] axisY_label = self.axes_idx2descr[self.y_axis_idx] axisX_units = "(raw)" if np.isclose(xnorm, 1.0) else "[in std deviations]" axisY_units = "(raw)" if np.isclose(ynorm, 1.0) else "[in std deviations]" axisX_label += ' ' + axisX_units axisY_label += ' ' + axisY_units if ylim is not None: plt.ylim(ylim) if xlim is not None: plt.xlim(xlim) plt.xlabel(axisX_label) plt.ylabel(axisY_label) plt.legend() plt.title(titlestr) plt.grid() if outfn is None: plt.show() else: plt.savefig(outfn) if len(auucc) < 2: auucc = auucc[0] op_info = op_info[0] return auucc, op_info <s> from .uncertainty_characteristics_curve import UncertaintyCharacteristicsCurve <s> import torch import torch.nn.functional as F from uq3
60.models.noise_models.heteroscedastic_noise_models import GaussianNoise class GaussianNoiseMLPNet(torch.nn.Module): def __init__(self, num_features, num_outputs, num_hidden): super(GaussianNoiseMLPNet, self).__init__() self.fc = torch.nn.Linear(num_features, num_hidden) self.fc_mu = torch.nn.Linear(num_hidden, num_outputs) self.fc_log_var = torch.nn.Linear(num_hidden, num_outputs) self.noise_layer = GaussianNoise() def forward(self, x): x = F.relu(self.fc(x)) mu = self.fc_mu(x) log_var = self.fc_log_var(x) return mu, log_var def loss(self, y_true=None, mu_pred=None, log_var_pred=None): return self.noise_layer.loss(y_true, mu_pred, log_var_pred, reduce_mean=True)<s><s><s> """ Contains implementations of various utilities used by Horseshoe Bayesian layers """ import numpy as np import torch from torch.nn import Parameter td = torch.distributions gammaln = torch.lgamma def diag_gaussian_entropy(log_std, D): return 0.5 * D * (1.0 + torch.log(2 * np.pi)) + torch.sum(log_std) def inv_gamma_entropy(a, b): return torch.sum(a + torch.log(b) + torch.lgamma(a) - (1 + a) * torch.digamma(a)) def log_normal_entropy(log_std, mu, D): return torch.sum(log_std + mu + 0.5) + (D / 2) * np.log(2 * np.pi) class InvGammaHalfCauchyLayer(torch.nn.Module): """ Uses the inverse Gamma parameterization of the half-Cauchy distribution. a ~ C^+(0, b) <==> a^2 ~ IGamma(0.5, 1/lambda), lambda ~ IGamma(0.5, 1/b^2), where lambda is an auxiliary latent variable. Uses a factorized variational approximation q(ln a^2)q(lambda) = N(mu, sigma^2) IGamma(ahat, bhat). This layer places a half Cauchy prior on the scales of each output node of the layer. """ def __init__(self, out_features, b): """ :param out_fatures: number of output nodes in the layer. :param b: scale of the half Cauchy """ super(InvGammaHalfCauchyLayer, self).__init__() self.b = b self.out_features = out_features # variational parameters for q(ln a^2) self.mu = Parameter(torch.FloatTensor(out_features)) self.log_sigma = Parameter(torch.FloatTensor(out_features)) # self.log_sigma = torch.FloatTensor(out_features) # variational parameters for q(lambda). These will be updated via fixed point updates, hence not parameters. self.ahat = torch.FloatTensor([1.]) # The posterior parameter is always 1. self.bhat = torch.ones(out_features) * (1.0 / self.b ** 2) self.const = torch.FloatTensor([0.5]) self.initialize_from_prior() def initialize_from_prior(self): """ Initializes variational parameters by sampling from the prior. """ # sample from half cauchy and log to initialize the mean of the log normal sample = np.abs(self.b * (np.random.randn(self.out_features) / np.random.randn(self.out_features))) self.mu.data = torch.FloatTensor(np.log(sample)) self.log_sigma.data = torch.FloatTensor(np.random.randn(self.out_features) - 10.) def expectation_wrt_prior(self): """ Computes E[ln p(a^2 | lambda)] + E[ln p(lambda)] """ expected_a_given_lambda = -gammaln(self.const) - 0.5 * (torch.log(self.bhat) - torch.digamma(self.ahat)) + ( -0.5 - 1.) * self.mu - torch.exp(-self.mu + 0.5 * self.log_sigma.exp() ** 2) * (self.ahat / self.bhat) expected_lambda = -gammaln(self.const) - 2 * 0.5 * np.log(self.b) + (-self.const - 1.) * ( torch.log(self.bhat) - torch.digamma(self.ahat)) - (1. / self.b ** 2) * (self.ahat / self.bhat) return torch.sum(expected_a_given_lambda) + torch.sum(expected_lambda) def entropy(self): """ Computes entropy of q(ln a^2) and q(lambda) """ return self.entropy_lambda() + self.entropy_a2() def entropy_lambda(self): return inv_gamma_entropy(self.ahat, self.bhat) def entropy_a2(self): return log_normal_entropy(self.log_sigma, self.mu, self.out_features) def kl(self): """ Computes KL(q(ln(a^2)q(lambda) || IG(a^2 | 0.5, 1/lambda) IG(lambda | 0.5, 1/b^2)) """ return -self.expectation_wrt_prior() - self.entropy() def fixed_point_updates(self): # update lambda moments self.bhat = torch.exp(-self.mu + 0.5 * self.log_sigma.exp() ** 2) + (1. / self.b ** 2) class InvGammaLayer(torch.nn.Module): """ Approximates the posterior of c^2 with prior IGamma(c^2 | a , b) using a log Normal approximation q(ln c^2) = N(mu, sigma^2) """ def __init__(self, a, b, out_features=1): super(InvGammaLayer, self).__init__() self.a = torch.FloatTensor([a]) self.b = torch.FloatTensor([b]) # variational parameters for q(ln c^2) self.mu = Parameter(torch.FloatTensor(out_features)) self.log_sigma = Parameter(torch.FloatTensor(out_features)) self.out_features = out_features self.initialize_from_prior() def initialize_from_prior(self): """ Initializes variational parameters by sampling from the prior. """ self.mu.data = torch.log(self.b / (self.a + 1) * torch.ones(self.out_features)) # initialize at the mode self.log_sigma.data = torch.FloatTensor(np.random.randn(self.out_features) - 10.) def expectation_wrt_prior(self): """ Computes E[ln p(c^2 | a, b)] """ # return self.c_a * np.log(self.c_b) - gammaln(self.c_a) + ( # - self.c_a - 1) * c_mu - self.c_b * Ecinv return self.a * torch.log(self.b) - gammaln(self.a) + (- self.a - 1) \\ * self.mu - self.b * torch.exp(-self.mu + 0.5 * self.log_sigma.exp() ** 2) def entropy(self): return log_normal_entropy(self.log_sigma, self.mu, 1) def kl(self): """ Computes KL(q(ln(c^2) || IG(c^2 | a, b)) """ return -self.expectation_wrt_prior().sum() - self.entropy() <s> """ Contains implementations of various Bayesian layers """ import numpy as np import torch import torch.nn.functional as F from torch.nn import Parameter from uq360.models.bayesian_neural_networks.layer_utils import InvGammaHalfCauchyLayer, InvGammaLayer td = torch.distributions def reparam(mu, logvar, do_sample=True, mc_samples=1): if do_sample: std = torch.exp(0.5 * logvar) eps = torch.FloatTensor(std.size()).normal_() sample = mu + eps * std for _ in np.arange(1, mc_samples): sample += mu + eps * std return sample / mc_samples else: return mu class BayesianLinearLayer(torch.nn.Module): """ Affine layer with N(0, v/H) or N(0, user specified v) priors on weights and fully factorized variational Gaussian approximation """ def __init__(self, in_features, out_features, cuda=False, init_weight=None, init_bias=None, prior_stdv=None): super(BayesianLinearLayer, self).__init__() self.cuda = cuda self.in_features = in_features self.out_features = out_features # weight mean params self.weights = Parameter(torch.Tensor(out_features, in_features)) self.bias = Parameter(torch.Tensor(out_features)) # weight variance params self.weights_logvar = Parameter(torch.Tensor(out_features, in_features)) self.bias_logvar = Parameter(torch.Tensor(out_features)) # numerical stability self.fudge_factor = 1e-8 if not prior_stdv: # We will use a N(0, 1/num_inputs) prior over weights self.prior_stdv = torch.FloatTensor([1. / np.sqrt(self.weights.size(1))]) else: self.prior_stdv = torch.FloatTensor([prior_stdv]) # self.prior_stdv = torch.Tensor([1. / np.sqrt(1e+3)]) self.prior_mean = torch.FloatTensor([0.]) # for Bias use a prior of N(0, 1) self.prior_bias_stdv = torch.FloatTensor([1.]) self.prior_bias_mean = torch.FloatTensor([0.]) # init params either random or with pretrained net self.init_parameters(init_weight, init_bias) def init_parameters(self, init_weight, init_bias): # init means if init_weight is not None: self.weights.data = torch.Tensor(init_weight) else: self.weights.data.normal_(0, np.float(self.prior_stdv.numpy()[0])) if init_bias is not None: self.bias.data = torch.Tensor(init_bias) else: self.bias.data.normal_(0, 1) # init variances self.weights_logvar.data.normal_(-9, 1e-2) self.bias_logvar.data.normal_(-9, 1e-2) def forward(self, x, do_sample=True, scale_variances=False): # local reparameterization trick mu_activations = F.linear(x, self.weights, self.bias) var_activations = F.linear(x.pow(2), self.weights_logvar.exp(), self.bias_logvar.exp()) if scale_variances: activ = reparam(mu_activations, var_activations.log() - np.log(self.in_features), do_sample=do_sample) else: activ = reparam(mu_activations, var_activations.log(), do_sample=do_sample) return activ def kl(self): """ KL divergence (q(W) || p(W)) :return: """ weights_logvar = self.weights_logvar kld_weights = self.prior_stdv.log() - weights_logvar.mul(0.5) + \\ (weights_logvar.exp() + (self.weights.pow(2) - self.prior_mean)) / ( 2 * self.prior_stdv.pow(2)) - 0.5 kld_bias = self.prior_bias_stdv.log() - self.bias_logvar.mul(0.5) + \\ (self.bias_logvar.exp() + (self.bias.pow(2) - self.prior_bias_mean)) / ( 2 * self.prior_bias_stdv.pow(2)) \\ - 0.5 return kld_weights.sum() + kld_bias.sum() class HorseshoeLayer(BayesianLinearLayer): """ Uses non-centered parametrization. w_k = v*tau_k*beta_k where k indexes an output unit and w_k and beta_k are vectors of all weights incident into the unit """ def __init__(self, in_features, out_features, cuda=False, scale=1.): super(HorseshoeLayer, self).__init__(in_features, out_features) self.cuda = cuda self.in_features = in_features self.out_features = out_features self.nodescales = InvGammaHalfCauchyLayer(out_features=out_features, b=1.) self.layerscale = InvGammaHalfCauchyLayer(out_features=1, b=scale) # prior on beta is N(0, I) when employing non centered parameterization self.prior_stdv = torch.Tensor([1]) self.prior_mean = torch.Tensor([0.]) def forward(self, x, do_sample=True, debug=False, eps_scale=None, eps_w=None): # At a particular unit k, preactivation_sample = scale_sample * pre_activation_sample # sample scales scale_mean = 0.5 * (self.nodescales.mu + self.layerscale.mu) scale_var = 0.25 * (self.nodescales.log_sigma.exp() ** 2 + self.layerscale.log_sigma.exp() ** 2) scale_sample = reparam(scale_mean, scale_var.log(), do_sample=do_sample).exp() # sample preactivations mu_activations = F.linear(x, self.weights, self.bias) var_activations = F.linear(x.pow(2), self.weights_logvar.exp(), self.bias_logvar.exp()) activ_sample = reparam(mu_activations, var_activations.log(), do_sample=do_sample)
return scale_sample * activ_sample def kl(self): return super(HorseshoeLayer, self).kl() + self.nodescales.kl() + self.layerscale.kl() def fixed_point_updates(self): self.nodescales.fixed_point_updates() self.layerscale.fixed_point_updates() class RegularizedHorseshoeLayer(HorseshoeLayer): """ Uses the regularized Horseshoe distribution. The regularized Horseshoe soft thresholds the tails of the Horseshoe. For all weights w_k incident upon node k in the layer we have: w_k ~ N(0, (tau_k * v)^2 I) N(0, c^2 I), c^2 ~ InverseGamma(c_a, b). c^2 controls the scale of the thresholding. As c^2 -> infinity, the regularized Horseshoe -> Horseshoe. """ def __init__(self, in_features, out_features, cuda=False, scale=1., c_a=2., c_b=6.): super(RegularizedHorseshoeLayer, self).__init__(in_features, out_features, cuda=cuda, scale=scale) self.c = InvGammaLayer(a=c_a, b=c_b) def forward(self, x, do_sample=True, **kwargs): # At a particular unit k, preactivation_sample = scale_sample * pre_activation_sample # sample regularized scales scale_mean = self.nodescales.mu + self.layerscale.mu scale_var = self.nodescales.log_sigma.exp() ** 2 + self.layerscale.log_sigma.exp() ** 2 scale_sample = reparam(scale_mean, scale_var.log(), do_sample=do_sample).exp() c_sample = reparam(self.c.mu, 2 * self.c.log_sigma, do_sample=do_sample).exp() regularized_scale_sample = (c_sample * scale_sample) / (c_sample + scale_sample) # sample preactivations mu_activations = F.linear(x, self.weights, self.bias) var_activations = F.linear(x.pow(2), self.weights_logvar.exp(), self.bias_logvar.exp()) activ_sample = reparam(mu_activations, var_activations.log(), do_sample=do_sample) return torch.sqrt(regularized_scale_sample) * activ_sample def kl(self): return super(RegularizedHorseshoeLayer, self).kl() + self.c.kl() class NodeSpecificRegularizedHorseshoeLayer(RegularizedHorseshoeLayer): """ Uses the regularized Horseshoe distribution. The regularized Horseshoe soft thresholds the tails of the Horseshoe. For all weights w_k incident upon node k in the layer we have: w_k ~ N(0, (tau_k * v)^2 I) N(0, c_k^2 I), c_k^2 ~ InverseGamma(a, b). c_k^2 controls the scale of the thresholding. As c_k^2 -> infinity, the regularized Horseshoe -> Horseshoe Note that we now have a per-node c_k. """ def __init__(self, in_features, out_features, cuda=False, scale=1., c_a=2., c_b=6.): super(NodeSpecificRegularizedHorseshoeLayer, self).__init__(in_features, out_features, cuda=cuda, scale=scale) self.c = InvGammaLayer(a=c_a, b=c_b, out_features=out_features) <s> import numpy as np import torch from uq360.models.noise_models.homoscedastic_noise_models import GaussianNoiseFixedPrecision def compute_test_ll(y_test, y_pred_samples, std_y=1.): """ Computes test log likelihoods = (1 / Ntest) * \\sum_n p(y_n | x_n, D_train) :param y_test: True y :param y_pred_samples: y^s = f(x_test, w^s); w^s ~ q(w). S x Ntest, where S is the number of samples q(w) is either a trained variational posterior or an MCMC approximation to p(w | D_train) :param std_y: True std of y (assumed known) """ S, _ = y_pred_samples.shape noise = GaussianNoiseFixedPrecision(std_y=std_y) ll = noise.loss(y_pred=y_pred_samples, y_true=y_test.unsqueeze(dim=0), reduce_sum=False) ll = torch.logsumexp(ll, dim=0) - np.log(S) # mean over num samples return torch.mean(ll) # mean over test points <s> from abc import ABC import torch from torch import nn from uq360.models.bayesian_neural_networks.layers import BayesianLinearLayer from uq360.models.noise_models.homoscedastic_noise_models import GaussianNoiseGammaPrecision import numpy as np td = torch.distributions class BayesianNN(nn.Module, ABC): """ Bayesian neural network with zero mean Gaussian priors over weights. """ def __init__(self, layer=BayesianLinearLayer, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu', num_layers=1): super(BayesianNN, self).__init__() self.num_layers = num_layers if activation_type == 'relu': # activation self.activation = nn.ReLU() elif activation_type == 'tanh': self.activation = nn.Tanh() else: print("Activation Type not supported") self.fc_hidden = [] self.fc1 = layer(ip_dim, num_nodes,) for _ in np.arange(self.num_layers - 1): self.fc_hidden.append(layer(num_nodes, num_nodes, )) self.fc_out = layer(num_nodes, op_dim, ) self.noise_layer = None def forward(self, x, do_sample=True): x = self.fc1(x, do_sample=do_sample) x = self.activation(x) for layer in self.fc_hidden: x = layer(x, do_sample=do_sample) x = self.activation(x) return self.fc_out(x, do_sample=do_sample, scale_variances=True) def kl_divergence_w(self): kld = self.fc1.kl() + self.fc_out.kl() for layer in self.fc_hidden: kld += layer.kl() return kld def prior_predictive_samples(self, n_sample=100): n_eval = 1000 x = torch.linspace(-2, 2, n_eval)[:, np.newaxis] y = np.zeros([n_sample, n_eval]) for i in np.arange(n_sample): y[i] = self.forward(x).data.numpy().ravel() return x.data.numpy(), y ### get and set weights ### def get_weights(self): assert len(self.fc_hidden) == 0 # only works for one layer networks. weight_dict = {} weight_dict['layerip_means'] = torch.cat([self.fc1.weights, self.fc1.bias.unsqueeze(1)], dim=1).data.numpy() weight_dict['layerip_logvar'] = torch.cat([self.fc1.weights_logvar, self.fc1.bias_logvar.unsqueeze(1)], dim=1).data.numpy() weight_dict['layerop_means'] = torch.cat([self.fc_out.weights, self.fc_out.bias.unsqueeze(1)], dim=1).data.numpy() weight_dict['layerop_logvar'] = torch.cat([self.fc_out.weights_logvar, self.fc_out.bias_logvar.unsqueeze(1)], dim=1).data.numpy() return weight_dict def set_weights(self, weight_dict): assert len(self.fc_hidden) == 0 # only works for one layer networks. to_param = lambda x: nn.Parameter(torch.Tensor(x)) self.fc1.weights = to_param(weight_dict['layerip_means'][:, :-1]) self.fc1.weights = to_param(weight_dict['layerip_logvar'][:, :-1]) self.fc1.bias = to_param(weight_dict['layerip_means'][:, -1]) self.fc1.bias_logvar = to_param(weight_dict['layerip_logvar'][:, -1]) self.fc_out.weights = to_param(weight_dict['layerop_means'][:, :-1]) self.fc_out.weights = to_param(weight_dict['layerop_logvar'][:, :-1]) self.fc_out.bias = to_param(weight_dict['layerop_means'][:, -1]) self.fc_out.bias_logvar = to_param(weight_dict['layerop_logvar'][:, -1]) class BayesianRegressionNet(BayesianNN, ABC): """ Bayesian neural net with N(y_true | f(x, w), \\lambda^-1); \\lambda ~ Gamma(a, b) likelihoods. """ def __init__(self, layer=BayesianLinearLayer, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu', num_layers=1): super(BayesianRegressionNet, self).__init__(layer=layer, ip_dim=ip_dim, op_dim=op_dim, num_nodes=num_nodes, activation_type=activation_type, num_layers=num_layers, ) self.noise_layer = GaussianNoiseGammaPrecision(a0=6., b0=6.) def likelihood(self, x=None, y=None): out = self.forward(x) return -self.noise_layer.loss(y_pred=out, y_true=y) def neg_elbo(self, num_batches, x=None, y=None): # scale the KL terms by number of batches so that the minibatch elbo is an unbiased estiamte of the true elbo. Elik = self.likelihood(x, y) neg_elbo = (self.kl_divergence_w() + self.noise_layer.kl()) / num_batches - Elik return neg_elbo def mse(self, x, y): """ scaled rmse (scaled by 1 / std_y**2) """ E_noise_precision = 1. / self.noise_layer.get_noise_var() return (0.5 * E_noise_precision * (self.forward(x, do_sample=False) - y)**2).sum() def get_noise_var(self): return self.noise_layer.get_noise_var() class BayesianClassificationNet(BayesianNN, ABC): """ Bayesian neural net with Categorical(y_true | f(x, w)) likelihoods. Use for classification. """ def __init__(self, layer=BayesianLinearLayer, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu', num_layers=1): super(BayesianClassificationNet, self).__init__(layer=layer, ip_dim=ip_dim, op_dim=op_dim, num_nodes=num_nodes, activation_type=activation_type, num_layers=num_layers) self.noise_layer = torch.nn.CrossEntropyLoss(reduction='sum') def likelihood(self, x=None, y=None): out = self.forward(x) return -self.noise_layer(out, y) def neg_elbo(self, num_batches, x=None, y=None): # scale the KL terms by number of batches so that the minibatch elbo is an unbiased estiamte of the true elbo. Elik = self.likelihood(x, y) neg_elbo = self.kl_divergence_w() / num_batches - Elik return neg_elbo <s><s> from abc import ABC import numpy as np import torch from torch import nn from uq360.models.bayesian_neural_networks.layers import HorseshoeLayer, BayesianLinearLayer, RegularizedHorseshoeLayer from uq360.models.noise_models.homoscedastic_noise_models import GaussianNoiseGammaPrecision import numpy as np td = torch.distributions class HshoeBNN(nn.Module, ABC): """ Bayesian neural network with Horseshoe layers. """ def __init__(self, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu', num_layers=1, hshoe_scale=1e-1, use_reg_hshoe=False): if use_reg_hshoe: layer = RegularizedHorseshoeLayer else: layer = HorseshoeLayer super(HshoeBNN, self).__init__() self.num_layers = num_layers if activation_type == 'relu': # activation self.activation = nn.ReLU() elif activation_type == 'tanh': self.activation = nn.Tanh() else: print("Activation Type not supported") self.fc_hidden = [] self.fc1 = layer(ip_dim, num_nodes, scale=hshoe_scale) for _ in np.arange(self.num_layers - 1): self.fc_hidden.append(layer(num_nodes, num_nodes)) self.fc_out = BayesianLinearLayer(num_nodes, op_dim) self.noise_layer = None def forward(self, x, do_sample=True): x = self.fc1(x, do_sample=do_sample) x = self.activation(x) for layer in self.fc_hidden: x = layer(x, do_sample=do_sample) x = self.activation(x) return self.fc_out(x, do_sample=do_sample, scale_variances=True) def kl_divergence_w(self): kld = self.fc1.kl() + self.fc_out.kl() for layer in self.fc_hidden: kld += layer.kl() return kld def fixed_point_updates(self): if hasattr(self.fc1, 'fixed_point_updates'): self.fc1.fixed_point_updates() if hasattr(self.fc_out, '
fixed_point_updates'): self.fc_out.fixed_point_updates() for layer in self.fc_hidden: if hasattr(layer, 'fixed_point_updates'): layer.fixed_point_updates() def prior_predictive_samples(self, n_sample=100): n_eval = 1000 x = torch.linspace(-2, 2, n_eval)[:, np.newaxis] y = np.zeros([n_sample, n_eval]) for i in np.arange(n_sample): y[i] = self.forward(x).data.numpy().ravel() return x.data.numpy(), y ### get and set weights ### def get_weights(self): assert len(self.fc_hidden) == 0 # only works for one layer networks. weight_dict = {} weight_dict['layerip_means'] = torch.cat([self.fc1.weights, self.fc1.bias.unsqueeze(1)], dim=1).data.numpy() weight_dict['layerip_logvar'] = torch.cat([self.fc1.weights_logvar, self.fc1.bias_logvar.unsqueeze(1)], dim=1).data.numpy() weight_dict['layerop_means'] = torch.cat([self.fc_out.weights, self.fc_out.bias.unsqueeze(1)], dim=1).data.numpy() weight_dict['layerop_logvar'] = torch.cat([self.fc_out.weights_logvar, self.fc_out.bias_logvar.unsqueeze(1)], dim=1).data.numpy() return weight_dict def set_weights(self, weight_dict): assert len(self.fc_hidden) == 0 # only works for one layer networks. to_param = lambda x: nn.Parameter(torch.Tensor(x)) self.fc1.weights = to_param(weight_dict['layerip_means'][:, :-1]) self.fc1.weights = to_param(weight_dict['layerip_logvar'][:, :-1]) self.fc1.bias = to_param(weight_dict['layerip_means'][:, -1]) self.fc1.bias_logvar = to_param(weight_dict['layerip_logvar'][:, -1]) self.fc_out.weights = to_param(weight_dict['layerop_means'][:, :-1]) self.fc_out.weights = to_param(weight_dict['layerop_logvar'][:, :-1]) self.fc_out.bias = to_param(weight_dict['layerop_means'][:, -1]) self.fc_out.bias_logvar = to_param(weight_dict['layerop_logvar'][:, -1]) class HshoeRegressionNet(HshoeBNN, ABC): """ Horseshoe net with N(y_true | f(x, w), \\lambda^-1); \\lambda ~ Gamma(a, b) likelihoods. """ def __init__(self, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu', num_layers=1, hshoe_scale=1e-5, use_reg_hshoe=False): super(HshoeRegressionNet, self).__init__(ip_dim=ip_dim, op_dim=op_dim, num_nodes=num_nodes, activation_type=activation_type, num_layers=num_layers, hshoe_scale=hshoe_scale, use_reg_hshoe=use_reg_hshoe) self.noise_layer = GaussianNoiseGammaPrecision(a0=6., b0=6.) def likelihood(self, x=None, y=None): out = self.forward(x) return -self.noise_layer.loss(y_pred=out, y_true=y) def neg_elbo(self, num_batches, x=None, y=None): # scale the KL terms by number of batches so that the minibatch elbo is an unbiased estiamte of the true elbo. Elik = self.likelihood(x, y) neg_elbo = (self.kl_divergence_w() + self.noise_layer.kl()) / num_batches - Elik return neg_elbo def mse(self, x, y): """ scaled rmse (scaled by 1 / std_y**2) """ E_noise_precision = 1. / self.noise_layer.get_noise_var() return (0.5 * E_noise_precision * (self.forward(x, do_sample=False) - y)**2).sum() def get_noise_var(self): return self.noise_layer.get_noise_var() class HshoeClassificationNet(HshoeBNN, ABC): """ Horseshoe net with Categorical(y_true | f(x, w)) likelihoods. Use for classification. """ def __init__(self, ip_dim=1, op_dim=1, num_nodes=50, activation_type='relu', num_layers=1, hshoe_scale=1e-5, use_reg_hshoe=False): super(HshoeClassificationNet, self).__init__(ip_dim=ip_dim, op_dim=op_dim, num_nodes=num_nodes, activation_type=activation_type, num_layers=num_layers, hshoe_scale=hshoe_scale, use_reg_hshoe=use_reg_hshoe) self.noise_layer = torch.nn.CrossEntropyLoss(reduction='sum') def likelihood(self, x=None, y=None): out = self.forward(x) return -self.noise_layer(out, y) def neg_elbo(self, num_batches, x=None, y=None): # scale the KL terms by number of batches so that the minibatch elbo is an unbiased estiamte of the true elbo. Elik = self.likelihood(x, y) neg_elbo = (self.kl_divergence_w()) / num_batches - Elik return neg_elbo <s> import abc import sys # Ensure compatibility with Python 2/3 if sys.version_info >= (3, 4): ABC = abc.ABC else: ABC = abc.ABCMeta(str('ABC'), (), {}) class AbstractNoiseModel(ABC): """ Abstract class. All noise models inherit from here. """ def __init__(self, *argv, **kwargs): """ Initialize an AbstractNoiseModel object. """ @abc.abstractmethod def loss(self, *argv, **kwargs): """ Compute loss given predictions and groundtruth labels """ raise NotImplementedError @abc.abstractmethod def get_noise_var(self, *argv, **kwargs): """ Return the current estimate of noise variance """ raise NotImplementedError <s> import math import numpy as np import torch from scipy.special import gammaln from uq360.models.noise_models.noisemodel import AbstractNoiseModel from torch.nn import Parameter td = torch.distributions def transform(a): return torch.log(1 + torch.exp(a)) class GaussianNoise(torch.nn.Module, AbstractNoiseModel): """ N(y_true | f_\\mu(x, w), f_\\sigma^2(x, w)) """ def __init__(self, cuda=False): super(GaussianNoise, self).__init__() self.cuda = cuda self.const = torch.log(torch.FloatTensor([2 * math.pi])) def loss(self, y_true=None, mu_pred=None, log_var_pred=None, reduce_mean=True): """ computes -1 * ln N (y_true | mu_pred, softplus(log_var_pred)) :param y_true: :param mu_pred: :param log_var_pred: :return: """ var_pred = transform(log_var_pred) ll = -0.5 * self.const - 0.5 * torch.log(var_pred) - 0.5 * (1. / var_pred) * ((mu_pred - y_true) ** 2) if reduce_mean: return -ll.mean(dim=0) else: return -ll.sum(dim=0) def get_noise_var(self, log_var_pred): return transform(log_var_pred) <s><s> import math import numpy as np import torch from scipy.special import gammaln from uq360.models.noise_models.noisemodel import AbstractNoiseModel from torch.nn import Parameter td = torch.distributions def transform(a): return torch.log(1 + torch.exp(a)) class GaussianNoiseGammaPrecision(torch.nn.Module, AbstractNoiseModel): """ N(y_true | f(x, w), \\lambda^-1); \\lambda ~ Gamma(a, b). Uses a variational approximation; q(lambda) = Gamma(ahat, bhat) """ def __init__(self, a0=6, b0=6, cuda=False): super(GaussianNoiseGammaPrecision, self).__init__() self.cuda = cuda self.a0 = a0 self.b0 = b0 self.const = torch.log(torch.FloatTensor([2 * math.pi])) # variational parameters self.ahat = Parameter(torch.FloatTensor([10.])) self.bhat = Parameter(torch.FloatTensor([3.])) def loss(self, y_pred=None, y_true=None): """ computes -1 * E_q(\\lambda)[ln N (y_pred | y_true, \\lambda^-1)], where q(lambda) = Gamma(ahat, bhat) :param y_pred: :param y_true: :return: """ n = y_pred.shape[0] ahat = transform(self.ahat) bhat = transform(self.bhat) return -1 * (-0.5 * n * self.const + 0.5 * n * (torch.digamma(ahat) - torch.log(bhat)) \\ - 0.5 * (ahat/bhat) * ((y_pred - y_true) ** 2).sum()) def kl(self): ahat = transform(self.ahat) bhat = transform(self.bhat) return (ahat - self.a0) * torch.digamma(ahat) - torch.lgamma(ahat) + gammaln(self.a0) + \\ self.a0 * (torch.log(bhat) - np.log(self.b0)) + ahat * (self.b0 - bhat) / bhat def get_noise_var(self): ahat = transform(self.ahat) bhat = transform(self.bhat) return (bhat / ahat).data.numpy()[0] class GaussianNoiseFixedPrecision(torch.nn.Module, AbstractNoiseModel): """ N(y_true | f(x, w), sigma_y**2); known sigma_y """ def __init__(self, std_y=1., cuda=False): super(GaussianNoiseFixedPrecision, self).__init__() self.cuda = cuda self.const = torch.log(torch.FloatTensor([2 * math.pi])) self.sigma_y = std_y def loss(self, y_pred=None, y_true=None): """ computes -1 * ln N (y_pred | y_true, sigma_y**2) :param y_pred: :param y_true: :return: """ ll = -0.5 * self.const - np.log(self.sigma_y) - 0.5 * (1. / self.sigma_y ** 2) * ((y_pred - y_true) ** 2) return -ll.sum(dim=0) def get_noise_var(self): return self.sigma_y ** 2<s><s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import numpy as np import logging import warnings from sklearn.ensemble import VotingClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import Ridge from sklearn.preprocessing import binarize from sklearn.ensemble import VotingRegressor from sklearn.svm import SVC from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor from sklearn.tree import DecisionTreeRegressor from learner.aion_matrix import aion_matrix warnings.filterwarnings('always') class ensemble_voting(): def __init__(self,ensemble_params,scoreParam): self.ensemble_params = ensemble_params self.scoreParam=scoreParam self.final_estimator_r='' self.final_estimator_c='' self.log = logging.getLogger('eion') ''' Read the aion config "Ensemble-Voting", parse the algorithm and associated params based on enable or True status.Not used now ''' def getSelected_algs_params(self,problemType,ensembleType,ensembleConfig): from learner.parameters import parametersDefine paramObj=parametersDefine() ensClass_algs_params={} # algs_status={} for key,val in ensembleConfig.items(): for s,p in val.items(): if (s == "enable" and p == "True"): params = val['param'] params_eval = paramObj.paramDefine(params,None)
params_eval = {param_key: param_value[0] for param_key, param_value in params_eval.items()} ensClass_algs_params[key]=params_eval else: pass return ensClass_algs_params ''' To make array of voting algorithm based on user config list. Not used now, in future if needed similar line with bagging ensemble, please use this. ''' def listEnsembleClassVotingAlgs(self,ensClass_algs_params): ensembleVotingClassList=list() for key,val in ensClass_algs_params.items(): if (key == 'Logistic Regression'): lr=LogisticRegression() lr=lr.set_params(**val) ensembleVotingClassList.append(lr) elif (key == 'Support Vector Machine'): svm=SVC() svm=svm.set_params(**val) ensembleVotingClassList.append(svm) elif (key == 'Naive Bayes'): nb=GaussianNB() nb=nb.set_params(**val) ensembleVotingClassList.append(nb) elif (key == 'K Nearest Neighbors'): knn=KNeighborsClassifier() knn=knn.set_params(**val) ensembleVotingClassList.append(knn) elif (key == 'Decision Tree'): dt=DecisionTreeClassifier() dt=dt.set_params(**val) ensembleVotingClassList.append(dt) elif (key == 'Random Forest'): rf=RandomForestClassifier() rf=rf.set_params(**val) ensembleVotingClassList.append(rf) else: ## Algorithm not found in config, so forming empty alg list. If needs, make list with default alg. ensembleVotingClassList=[] pass return ensembleVotingClassList ''' To make array of voting regression algorithm based on user config list. Not used now, in future if needed similar line with bagging ensemble, please use this. ''' def listEnsembleRegVotingAlgs(self,ensReg_algs_params): ensembleVotingRegList=list() for key,val in ensReg_algs_params.items(): if (key == 'Linear Regression'): lir=LinearRegression() lir=lir.set_params(**val) ensembleVotingRegList.append(lir) elif (key == 'Decision Tree'): dtr=DecisionTreeRegressor() dtr=dtr.set_params(**val) ensembleVotingRegList.append(dtr) elif (key == 'Ridge'): ridge=Ridge() ridge=ridge.set_params(**val) ensembleVotingRegList.append(ridge) else: ## Algorithm not found in config, so forming empty alg list. If needs, make list with default alg. ensembleVotingRegList=[] return ensembleVotingRegList def ensemble_voting_classifier(self,X_train,y_train, X_test, y_test,MakeFP0,MakeFN0,modelList): #bug 12437 status='ERROR' model=None estimator=None score=None params=None threshold = -1 precisionscore =-1 recallscore = -1 objClf = aion_matrix() try: lr = LogisticRegression(solver='lbfgs',random_state=1,max_iter=200) rf = RandomForestClassifier(random_state=1) gnb = GaussianNB() svc = SVC(probability=True) #Need to keep probability=True, because cross_val_score,predict_proba fn calls knn=KNeighborsClassifier(n_neighbors=5) base_estimators = [] if 'Logistic Regression' in modelList: base_estimators.append(('LogisticRegression', lr)) self.log.info('-------- Ensemble: Logistic Regression-------') if 'Random Forest' in modelList: base_estimators.append(('RandomForestClassifier', rf)) self.log.info('-------- Ensemble: Random Forest-------') if 'Naive Bayes' in modelList: base_estimators.append(('GaussianNB', gnb)) self.log.info('-------- Ensemble: Naive Bayes-------') if 'Support Vector Machine' in modelList: self.log.info('-------- Ensemble: Support Vector Machine-------') base_estimators.append(('SVC', svc)) if 'K Nearest Neighbors' in modelList: base_estimators.append(('KNeighborsClassifier', knn)) self.log.info('-------- Ensemble: K Nearest Neighbors-------') if len(base_estimators) == 0: self.log.info('-------- Ensemble Voting is only supported for Logistic Regression, Random Forest Classifier, Naive Bayes, SVM and KNN -------') status = "UNSUPPORTED" return status, estimator,params,score,model,threshold,precisionscore,recallscore eclf1 = VotingClassifier(base_estimators, voting='soft') eclf1.fit(X_train, y_train) y_predict = eclf1.predict(X_test) score = objClf.get_score(self.scoreParam,y_test,y_predict) self.log.info('-------- Ensemble (VoteClassifier) Soft Score:'+str(score)) if MakeFP0: self.log.info('-------- Ensemble: Calculate Threshold for FP Start-------') startRange = 0.0 endRange = 1.0 stepsize = 0.01 threshold_range = np.arange(startRange,endRange,stepsize) threshold,precisionscore,recallscore = objClf.check_threshold(eclf1,X_train,y_train,threshold_range,'FP','') self.log.info('-------- Calculate Threshold for FP End-------') elif MakeFN0: self.log.info('-------- Ensemble: Calculate Threshold for FN Start-------') startRange = 1.0 endRange = 0.0 stepsize = -0.01 threshold_range = np.arange(startRange,endRange,stepsize) threshold,precisionscore,recallscore = objClf.check_threshold(eclf1,X_train,y_train,threshold_range,'FN','') self.log.info('-------- Calculate Threshold for FN End-------') if threshold != -1: predictedData = eclf1.predict_proba(X_test) predictedData = binarize(predictedData[:,1].reshape(-1, 1),threshold=threshold) #bug 12437 score = objClf.get_score(self.scoreParam,y_test,predictedData) status = 'SUCCESS' model =eclf1.__class__.__name__ estimator=eclf1 params = estimator.get_params() #bug 12437 - Removed ensemble hard voting as predict_proba in the later stages will break except Exception as Inst: #bug 12437 self.log.info('--------- Error in Ensemble Voting ---------\\n') self.log.info(str(Inst)) return status,estimator,params,score,model,threshold,precisionscore,recallscore def ensemble_voting__regressor(self,X_train,y_train, X_test, y_test,modelList): scoredetails = '' vr_predict=None vr_model=None try: lr = LinearRegression() rfr = RandomForestRegressor(n_estimators=10, random_state=1) dtr=DecisionTreeRegressor() base_estimators = [] if 'Linear Regression' in modelList: base_estimators.append(('LinearRegression', lr)) if 'Decision Tree' in modelList: base_estimators.append(('DecisionTreeRegressor', dtr)) if 'Random Forest' in modelList: base_estimators.append(('RandomForestRegressor', rfr)) if len(base_estimators) == 0: base_estimators = [('LinearRegression', lr), ('RandomForestRegressor', rfr),('DecisionTreeRegressor', dtr)] voting_reg = VotingRegressor(base_estimators) vr_model=voting_reg.fit(X_train,y_train) vr_predict=voting_reg.predict(X_test) best_vr_alg=voting_reg.__class__.__name__ self.log.info('-----------> Voting regression Model '+str(best_vr_alg)) except Exception as e: self.log.info("voting regression Exception info: \\n") self.log.info(e) aion_matrixobj = aion_matrix() score = aion_matrixobj.get_score(self.scoreParam,y_test,vr_predict) return voting_reg,voting_reg.get_params(),score,best_vr_alg <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import time import os import sys import numpy as np import pandas as pd from sklearn import model_selection from sklearn.model_selection import train_test_split, KFold, cross_val_score from sklearn.model_selection import KFold #Classification metrics lib import logging import warnings warnings.filterwarnings('always') # "error", "ignore", "always", "default", "module" or "once" from learner.aion_matrix import aion_matrix from sklearn.preprocessing import binarize class ensemble_bagging(): def __init__(self,ensemble_params,scoreParam,MakeFP0,MakeFN0): self.ensemble_params = ensemble_params self.scoreParam=scoreParam self.MakeFP0 = MakeFP0 self.MakeFN0 = MakeFN0 self.log = logging.getLogger('eion') def add_alg2dict(self,k,v): b_dict={} b_dict[k]=v return b_dict def getSelected_algs_params(self,problemType,ensembleType,ensembleConfig): from learner.parameters import parametersDefine paramObj=parametersDefine() ensClass_algs_params={} algs_status={} for key,val in ensembleConfig.items(): for s,p in val.items(): if (s == "enable" and p == "True"): params = val['param'] params_eval = paramObj.paramDefine(params,None) params_eval = {param_key: param_value[0] for param_key, param_value in params_eval.items()} ensClass_algs_params[key]=params_eval else: pass return ensClass_algs_params def listEnsembleClassBaggingAlgs(self,ensClass_algs_params): from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import BaggingClassifier, ExtraTreesClassifier, RandomForestClassifier ensembleBaggingClassList=list() for key,val in ensClass_algs_params.items(): if (key == 'Logistic Regression'): lr=LogisticRegression() lr=lr.set_params(**val) ensembleBaggingClassList.append(lr) elif (key == 'Support Vector Machine'): svm=SVC() svm=svm.set_params(**val) ensembleBaggingClassList.append(svm) elif (key == 'Naive Bayes'): nb=GaussianNB() nb=nb.set_params(**val) ensembleBaggingClassList.append(nb) elif (key == 'K Nearest Neighbors'): knn=KNeighborsClassifier() knn=knn.set_params(**val) ensembleBaggingClassList.append(knn) elif (key == 'Decision Tree'): dt=DecisionTreeClassifier() dt=dt.set_params(**val) ensembleBaggingClassList.append(dt) elif (key == 'Random Forest'): rf=RandomForestClassifier() rf=rf.set_params(**val) ensembleBaggingClassList.append(rf) else: pass return ensembleBaggingClassList def listEnsembleRegBaggingAlgs(self,ensReg_algs_params): from sklearn.linear_model import Ridge from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor from sklearn.tree import DecisionTreeRegressor ensembleBaggingRegList=list() for key,val in ensReg_algs_
params.items(): if (key == 'Linear Regression'): lir=LinearRegression() lir=lir.set_params(**val) ensembleBaggingRegList.append(lir) elif (key == 'Decision Tree'): dtr=DecisionTreeRegressor() dtr=dtr.set_params(**val) ensembleBaggingRegList.append(dtr) elif (key == 'Ridge'): ridge=Ridge() ridge=ridge.set_params(**val) ensembleBaggingRegList.append(ridge) else: ensembleBaggingRegList=[] return ensembleBaggingRegList def ensemble_bagging_classifier(self,X_train,y_train, X_test, y_test): ## New changes from sklearn.ensemble import BaggingClassifier, ExtraTreesClassifier, RandomForestClassifier ensemble_method = "Bagging_classifier" problemType='classification' ensembleType='bagging' model_dict=self.ensemble_params ensClass_algs_params = self.getSelected_algs_params(problemType,ensembleType,model_dict) ensembleBaggingList = self.listEnsembleClassBaggingAlgs(ensClass_algs_params) # clf_array = model_list clf_array=ensembleBaggingList # no. of base classifier num_trees = len(clf_array) # max_samples=float(max_samples) n_estimators = num_trees # random_state=seed bagging_mean={} bagging_std={} accuracy_basealgs_train={} accuracy_basealgs_test={} blable="" accuracy_score_test=0 kfold = model_selection.KFold(n_splits=10, random_state=None) bestScore=-0xFFFF scoredetails = '' threshold = -1 bestthreshold = -1 precisionscore =-1 bestprecisionscore=-1 recallscore = -1 bestrecallscore=-1 objClf = aion_matrix() if (ensemble_method == "Bagging_classifier"): #bagging ensemble of base classifier .e.g. KNeighborsClassifier base estimators, each built on random subsets of 40% of the samples and 50% of the features. for clf in clf_array: self.log.info('-----------> Ensemble Algorithm '+str(clf.__class__.__name__)) clf.fit(X_train, y_train) bagging_clf = BaggingClassifier(clf,n_estimators = num_trees, random_state=10) bagging_clf.fit(X_train, y_train) bagging_scores = cross_val_score(bagging_clf, X_train, y_train, cv=kfold,n_jobs=-1) #bagging_ensemble_t=bagging_clf.fit(X_train, y_train) if not X_test.empty: bag_predict=bagging_clf.predict(X_test) accuracy_score_test = objClf.get_score(self.scoreParam,y_test,bag_predict) else: accuracy_score_test = bagging_scores MakeFP0 = False MakeFN0 = False if self.MakeFP0: self.log.info('-------- Ensemble: Calculate Threshold for FP Start-------') startRange = 0.0 endRange = 1.0 stepsize = 0.01 threshold_range = np.arange(startRange,endRange,stepsize) threshold,precisionscore,recallscore = objClf.check_threshold(bagging_clf,X_train,y_train,threshold_range,'FP','') MakeFP0 = True self.log.info('-------- Calculate Threshold for FP End-------') if self.MakeFN0: self.log.info('-------- Ensemble: Calculate Threshold for FN Start-------') startRange = 1.0 endRange = 0.0 stepsize = -0.01 threshold_range = np.arange(startRange,endRange,stepsize) threshold,precisionscore,recallscore = objClf.check_threshold(bagging_clf,X_train,y_train,threshold_range,'FN','') MakeFN0 = True self.log.info('-------- Calculate Threshold for FN End-------') if threshold != -1: if not X_test.empty: predictedData = bagging_clf.predict_proba(X_test) predictedData = binarize(predictedData[:,1].reshape(-1, 1),threshold=threshold) #bug 12437 accuracy_score_test = objClf.get_score(self.scoreParam,y_test,predictedData) status,bscore,bthres,brscore,bpscore = objClf.getBestModel(MakeFP0,MakeFN0,threshold,bestthreshold,recallscore,bestrecallscore,precisionscore,bestprecisionscore,accuracy_score_test,bestScore) if status: bestScore =bscore bestModel =bagging_clf.__class__.__name__ bestEstimator=bagging_clf bestthreshold = bthres bestBaseModel = clf.__class__.__name__ bestrecallscore = brscore bestprecisionscore = bpscore else: pass best_alg_name=bestEstimator.__class__.__name__ self.log.info('-----------> Best Bagging Classifier Model '+str(bestBaseModel)) self.log.info('-----------> Best Score '+str(bestScore)) # self.log.info('-----------> Threshold '+str(bestthreshold)) #bug 12438 if bestthreshold != -1: if not X_test.empty: predictedData_test = bestEstimator.predict_proba(X_test) predictedData_test = binarize(predictedData_test[:,1].reshape(-1, 1),threshold=bestthreshold) #bug 12437 predictedData_train = bestEstimator.predict_proba(X_train) predictedData_train = binarize(predictedData_train[:,1].reshape(-1, 1),threshold=bestthreshold) #bug 12437 else: if not X_test.empty: predictedData_test = bestEstimator.predict(X_test) predictedData_train = bestEstimator.predict(X_train) return bestEstimator,bestEstimator.get_params(),bestScore,best_alg_name,bestthreshold,bestprecisionscore,bestrecallscore def ensemble_bagging__regressor(self,X_train,y_train, X_test, y_test): from sklearn.ensemble import BaggingRegressor ensemble_method='Bagging_regressor' problemType='regression' ensembleType='bagging' model_dict=self.ensemble_params ensReg_algs_params = self.getSelected_algs_params(problemType,ensembleType,model_dict) ensembleBaggingList = self.listEnsembleRegBaggingAlgs(ensReg_algs_params) scoredetails = '' aion_matrixobj = aion_matrix() reg_array = ensembleBaggingList num_trees = len(reg_array) #self.log.info(num_trees) # max_samples=float(max_samples) n_estimators = num_trees r_state=10 bestModel='' bestParams={} bestScore=-sys.float_info.max #extension of bugfix 11656 objClf = aion_matrix() for reg in reg_array: self.log.info('-----------> Ensemble Algorithm '+str(reg.__class__.__name__)) nmodel=reg.fit(X_train, y_train) model = reg.__class__.__name__ estimator = BaggingRegressor(base_estimator=reg, random_state=r_state) bagging_ensemble_t=estimator.fit(X_train, y_train) predictedData = estimator.predict(X_test) score = objClf.get_score(self.scoreParam,y_test,predictedData) if self.scoreParam == "r2": if score > bestScore: bestScore =score bestModel =model bestEstimator=estimator else: if abs(score) < bestScore or bestScore == -sys.float_info.max: #extension of bugfix 11656 bestScore =abs(score) bestModel =model bestEstimator=estimator best_alg_name=bestEstimator.__class__.__name__ self.log.info('-----------> Best Ensemble Algorithm '+str(bestModel)) return bestEstimator,bestEstimator.get_params(),bestScore,best_alg_name <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import numpy as np #Classification metrics lib import logging import warnings from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.preprocessing import binarize from sklearn.svm import SVC from sklearn.ensemble import StackingClassifier from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import StackingRegressor from sklearn.svm import LinearSVR from sklearn.linear_model import RidgeCV from sklearn.linear_model import LassoCV from learner.aion_matrix import aion_matrix warnings.filterwarnings('always') # "error", "ignore", "always", "default", "module" or "once" class ensemble_stacking(): def __init__(self,ensemble_params,scoreParam): self.ensemble_params = ensemble_params self.scoreParam=scoreParam self.final_estimator_r='' self.final_estimator_c='' self.log = logging.getLogger('eion') ## Read the aion config "Ensemble-Stacking", parse the algorithm and associated params based on enable or True status. def getSelected_algs_params(self,problemType,ensembleType,ensembleConfig): from learner.parameters import parametersDefine paramObj=parametersDefine() ensClass_algs_params={} # algs_status={} for key,val in ensembleConfig.items(): for s,p in val.items(): if (s == "enable" and p == "True"): params = val['param'] params_eval = paramObj.paramDefine(params,None) params_eval = {param_key: param_value[0] for param_key, param_value in params_eval.items()} ensClass_algs_params[key]=params_eval else: pass return ensClass_algs_params ## To make array of stacking algorithm based on user config list. Not used now, in future if needed similar line with bagging ensemble, please use this. def listEnsembleClassStackingAlgs(self,ensClass_algs_params): ensembleBaggingClassList=list() for key,val in ensClass_algs_params.items(): # print(key) if (key == 'Logistic Regression'): lr=LogisticRegression() lr=lr.set_params(**val) ensembleBaggingClassList.append(lr) elif (key == 'Support Vector Machine'): svm=SVC() svm=svm.set_params(**val) ensembleBaggingClassList.append(svm) elif (key == 'Naive Bayes'): nb=GaussianNB() nb=nb.set_params(**val) ensembleBaggingClassList.append(nb) elif (key == 'K Nearest Neighbors'): knn=KNeighborsClassifier() knn=knn.set_params(**val) ensembleBaggingClassList.append(knn) elif (key == 'Decision Tree'): dt=DecisionTreeClassifier() dt=dt.set_params(**val) ensembleBaggingClassList.append(dt) elif (key == 'Random Forest'): rf=RandomForestClassifier() rf=rf.set_params(**val) ensembleBaggingClassList.append(rf) else: ensembleBaggingClassList=[] pass return ensembleBaggingClassList ## To make array of stacking regression algorithm based on user config list. Not used now, in future if needed similar line with bagging ensemble, please use this. def listEnsembleRegStackingAlgs(self,ensReg_algs_params): ensembleBaggingRegList=list() for key,val in ensReg_algs_params.items(): if (key == 'LinearSVR'): lir=LinearSVR() lir=lir.set_params(**val) ensembleBaggingRegList.append(lir) elif (key == 'LinearRegression'): lr=LinearRegression() lr=lr.set_params(**val) ensembleBaggingRegList.append(lr) elif (key == 'LassoCV'): lcv=LassoCV() lcv=lcv.set_params(**val) ensembleBaggingRegList.append(lcv) elif (key == 'RandomForestRegressor'): rfr=RandomForestRegressor() rfr=rfr.set_params(**val) ensembleBaggingRegList.append(rfr) elif (key == 'RidgeCV'): ridge=RidgeCV() ridge=ridge.set_params(**val) ensembleBaggingRegList.append(ridge) else: ## NO algorithms found in configuration settings, instead of sending empty array,we can add any one of algorithms. ensembleBaggingRegList=[] return ensembleBaggingRegList def extract_params(self,dict): self.dict=dict for k,v in self.dict.items(): return k,v def stacking_params(self): for k,v in
self.ensemble_params.items(): try: if (k == "max_features_percentage"): max_features_percentage=float(v) elif (k == "max_samples"): max_samples=float(v) elif (k == "seed"): seed=int(v) elif (k == "final_estimator_stack_c"): final_estimator_c=str(v) elif (k == "final_estimator_stack_r"): final_estimator_r=str(v) else: self.log.info("Invalid Param in ensemble advanced configuration.\\n") except Exception as e: self.log.info("\\n Ensemble config param parsing error"+str(e)) continue return final_estimator_c,final_estimator_r,seed,max_samples,max_features_percentage def ensemble_stacking_classifier(self,X_train,y_train, X_test, y_test,MakeFP0,MakeFN0,modelList): final_estimator_c,final_estimator_r,seed,max_samples,max_features_percentage= self.stacking_params() final_estimator_c="" final_estimator=final_estimator_c scoredetails='' lr = LogisticRegression(solver='lbfgs',random_state=1,max_iter=200) rf = RandomForestClassifier(random_state=2) gnb = GaussianNB() svc = SVC(probability=True) #Need to keep probability=True, because of cross_val_score,predict_proba fn calls knn=KNeighborsClassifier(n_neighbors=5) try: if (final_estimator == 'LogisticRegression'): final_estimator_a=lr elif (final_estimator == 'RandomForestClassifier'): final_estimator_a=rf elif (final_estimator == 'GaussianNB'): final_estimator_a=gnb elif (final_estimator == 'SVC'): final_estimator_a=svc elif (final_estimator == 'KNeighborsClassifier'): final_estimator_a=knn else: final_estimator_a=lr except Exception as e: final_estimator_a=lr self.log.info("Given stacking regression final estimator algorithm issue, using default one (LogisticRegression) as final_estimator now.\\n") self.log.info(e) #stacking estimators base_estimators = [] if 'Logistic Regression' in modelList: base_estimators.append(('LogisticRegression', lr)) if 'Random Forest' in modelList: base_estimators.append(('RandomForestClassifier', rf)) if 'Naive Bayes' in modelList: base_estimators.append(('GaussianNB', gnb)) if 'Support Vector Machine' in modelList: base_estimators.append(('SVC', svc)) if 'K Nearest Neighbors' in modelList: base_estimators.append(('KNeighborsClassifier', knn)) if len(base_estimators) == 0: base_estimators = [('LogisticRegression', lr),('RandomForestClassifier', rf),('GaussianNB', gnb),('SVC', svc),('KNeighborsClassifier', knn)] stacking_c = StackingClassifier(estimators=base_estimators, final_estimator=final_estimator_a) stacking_c.fit(X_train, y_train) y_predict=stacking_c.predict(X_test) objClf = aion_matrix() accuracy_score_test = objClf.get_score(self.scoreParam,y_test,y_predict) MakeFP0 = False MakeFN0 = False threshold = -1 recallscore = -1 precisionscore =-1 if MakeFP0: self.log.info('-------- Ensemble: Calculate Threshold for FP Start-------') startRange = 0.0 endRange = 1.0 stepsize = 0.01 threshold_range = np.arange(startRange,endRange,stepsize) threshold,precisionscore,recallscore = objClf.check_threshold(stacking_c,X_train,y_train,threshold_range,'FP','') MakeFP0 = True self.log.info('-------- Calculate Threshold for FP End-------') elif MakeFN0: self.log.info('-------- Ensemble: Calculate Threshold for FN Start-------') startRange = 1.0 endRange = 0.0 stepsize = -0.01 threshold_range = np.arange(startRange,endRange,stepsize) threshold,precisionscore,recallscore = objClf.check_threshold(stacking_c,X_train,y_train,threshold_range,'FN','') MakeFN0 = True self.log.info('-------- Calculate Threshold for FN End-------') if threshold != -1: predictedData = stacking_c.predict_proba(X_test) predictedData = binarize(predictedData[:,1].reshape(-1, 1),threshold=threshold) #bug 12437 accuracy_score_test = objClf.get_score(self.scoreParam,y_test,predictedData) best_alg_stacking=stacking_c.__class__.__name__ self.log.info('-----------> Best Stacking Classifier Model '+str(best_alg_stacking)) self.log.info('-----------> Best Score '+str(accuracy_score_test)) return stacking_c,stacking_c.get_params(),accuracy_score_test,best_alg_stacking,threshold,precisionscore,recallscore def ensemble_stacking__regressor(self,X_train,y_train, X_test, y_test,modelList): final_estimator_c,final_estimator_r,seed,max_samples,max_features_percentage= self.stacking_params() final_estimator=final_estimator_r final_estimator_a=None scoredetails='' lr=LinearRegression() rcv=RidgeCV() svr=LinearSVR() lcv=LassoCV() rf=RandomForestRegressor(random_state=42) try: if (final_estimator == 'LinearRegression'): final_estimator_a=lr if (final_estimator == 'RidgeCV'): final_estimator_a=rcv elif (final_estimator == 'LinearSVR'): final_estimator_a=svr elif (final_estimator == 'LassoCV'): final_estimator_a=lcv elif (final_estimator == 'RandomForestRegressor'): final_estimator_a=rf else: #default is RidgeCV final_estimator_a=rcv except Exception as e: self.log.info("stacking regression Exception info: \\n") self.log.info(e) final_estimator_a=rcv base_estimators = [] if 'Linear Regression' in modelList: base_estimators.append(('LinearRegression', lr)) if 'Ridge' in modelList: base_estimators.append(('RidgeCV', rcv)) if 'LinearSVR' in modelList: base_estimators.append(('LinearSVR', svr)) if 'Lasso' in modelList: base_estimators.append(('LassoCV', lcv)) if 'Random Forest' in modelList: base_estimators.append(('RandomForestRegressor', rf)) if len(base_estimators) == 0: base_estimators = [('LinearRegression', lr),('RidgeCV', rcv),('LinearSVR', svr),('LassoCV', lcv),('RandomForestRegressor', rf)] self.log.info("Stacking Base Alogs :"+str(base_estimators)) self.log.info("Final Estimator :"+final_estimator) stacking_regressor = StackingRegressor(estimators=base_estimators,final_estimator=final_estimator_a) stacking_r_model=stacking_regressor.fit(X_train, y_train) stacking_rpredict=stacking_regressor.predict(X_test) best_stacking_alg=stacking_regressor.__class__.__name__ #Accuracy accuracy_score_best=stacking_regressor.score(X_test, y_test) aion_matrixobj = aion_matrix() score = aion_matrixobj.get_score(self.scoreParam,y_test,stacking_rpredict) return stacking_regressor,stacking_regressor.get_params(),score,best_stacking_alg <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import numpy as np import pandas as pd import talos from talos import Evaluate import json import sys import time import os import tensorflow.keras.utils as kutils from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense,Dropout,LSTM,GRU,SimpleRNN,Flatten,Input from sklearn.model_selection import train_test_split from tensorflow.keras.layers import Conv1D,MaxPooling1D from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold from sklearn.metrics import r2_score from sklearn.metrics import mean_absolute_error,make_scorer from sklearn.metrics import mean_squared_error import logging import tensorflow as tf import tensorflow.keras.backend as K def rmse_m(y_true, y_pred): return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1)) def r_square(y_true, y_pred): SS_res = K.sum(K.square(y_true-y_pred)) SS_tot = K.sum(K.square(y_true-K.mean(y_true))) return (1 - SS_res/(SS_tot+K.epsilon())) class DLRegressionModel: def __init__(self,modelList, modelParams, scoreParam, cvSplit, featuresData, targetData,testX,testY, method,randomMethod,roundLimit,best_feature_model): self.modelList =modelList self.modelParams =modelParams self.scoreParam = scoreParam self.cvSplit =cvSplit self.featuresData =featuresData self.targetData = targetData self.testX = testX self.testY = testY self.method =method #self.logFile = logFile self.randomMethod=randomMethod self.roundLimit=roundLimit self.log = logging.getLogger('eion') self.best_feature_model = best_feature_model def RNNRegression(self,x_train,y_train,x_val,y_val,params): tf.keras.backend.clear_session() x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1)) x_val = np.reshape(x_val, (x_val.shape[0], x_val.shape[1], 1)) model = Sequential() if params['RNNType'] == "LSTM" : if params['numRNNLayers'] > 1: model.add(LSTM(params['first_neuron'],return_sequences=True,input_shape=(x_train.shape[1],1))) for x in range(1,params['numRNNLayers']): model.add(LSTM(params['first_neuron'])) else: model.add(LSTM(params['first_neuron'],input_shape=(x_train.shape[1],1))) elif params['RNNType'] == "GRU" : if params['numRNNLayers'] > 1: model.add(GRU(params['first_neuron'],return_sequences=True,input_shape=(x_train.shape[1],1))) for x in range(1,params['numRNNLayers']): model.add(GRU(params['first_neuron'])) else: model.add(GRU(params['first_neuron'],input_shape=(x_train.shape[1],1))) elif params['RNNType'] == "SimpleRNN" : if params['numRNNLayers'] > 1: model.add(SimpleRNN(params['first_neuron'],return_sequences=True,input_shape=(x_train.shape[1],1))) for x in range(1,params['numRNNLayers']): model.add(SimpleRNN(params['first_neuron'])) else: model.add(SimpleRNN(params['first_neuron'],input_shape=(x_train.shape[1],1))) talos.utils.hidden_layers(model, params, 1) model.add(Dense(1,activation=params['activation'])) model.compile(loss=params['losses'],optimizer=params['optimizer'],metrics=['mae','mse',rmse_m,r_square]) out = model.fit(x_train, y_train, validation_data=(x_val, y_val), batch_size=params['batch_size'], epochs=params['epochs'],verbose=0,shuffle=True) return out, model def SNNRegression(self,x_train,y_train,x_val,y_val,params): tf.keras.backend.clear_session() model = Sequential() model.add(Dense(params['first_neuron'],input_dim=x_train.shape[1],activation=params['activation'])) talos.utils.hidden_layers(model, params, 1) model.add(Dense(1, activation=params['activation'])) model.compile(loss=
params['losses'], optimizer=params['optimizer'], metrics=['mae','mse',rmse_m,r_square]) out = model.fit(x=x_train, y=y_train, validation_data=(x_val, y_val), epochs=params['epochs'], batch_size=params['batch_size'], verbose=0) return out, model def CNNRegression(self,x_train,y_train,x_val,y_val,params): tf.keras.backend.clear_session() x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1)) self.log.info(x_train.shape) x_val = np.reshape(x_val, (x_val.shape[0], x_val.shape[1], 1)) model = Sequential() self.log.info(params['kernel_size']) model.add(Conv1D(filters=params['first_neuron'], kernel_size=int(params['kernel_size']), activation=params['activation'], input_shape=(x_train.shape[1],1)) ) if params['numConvLayers'] > 1: for x in range(1,params['numConvLayers']): if params['MaxPool'] == "True": model.add(MaxPooling1D(pool_size=2)) model.add(Conv1D(filters=8, kernel_size=int(params['kernel_size']), activation=params['activation'])) talos.utils.hidden_layers(model, params, 1) model.add(Flatten()) model.add(Dense(1)) model.compile(loss=params['losses'],optimizer=params['optimizer'],metrics=['mae','mse',rmse_m,r_square]) out = model.fit(x_train, y_train, validation_data=(x_val, y_val), batch_size=params['batch_size'], epochs=params['epochs'],verbose=0,shuffle=True) return out, model def TalosScan(self,modelObj): try: #dataPath = pd.read_csv(self.dataLocation) #X = dataPath.drop(self.targetData, axis=1) X = self.featuresData x = X.values loss_matrix = 'mean_absolute_error' optimizer='Nadam' Y= self.targetData y = Y.values XSNN = X.values X1 = np.expand_dims(X, axis=2) scoredetails = '' kf = KFold(n_splits = self.cvSplit) for train_index, test_index in kf.split(X): X_train, X_test = x[train_index], x[test_index] y_train, y_test = y[train_index], y[test_index] data = self.modelParams models = data.keys() lstart = time.time() scoreSNN = [] scoreRNN = [] scoreCNN = [] scoreRNNGRU = [] scoreRNNLSTM = [] best_paramsSNN = {} best_paramsRNN = {} best_paramsRNNGRU = {} best_paramsRNNLSTM = {} best_paramsCNN = {} if "Neural Network"in self.modelList: self.log.info("-------> Model Name: Neural Network") start = time.time() data = self.modelParams["Neural Network"] p = {"activation":data["activation"].split(","), "optimizer":data["optimizer"].split(","), "losses":data["losses"].split(","), "first_neuron":[int(n) for n in data["first_layer"].split(",")], "shapes": data["shapes"].split(","), "hidden_layers":[int(n) for n in data["hidden_layers"].split(",")], "dropout": [float(n) for n in data["dropout"].split(",")], "lr": [float(n) for n in data["learning_rate"].split(",")], "batch_size": [int(n) for n in data["batch_size"].split(",")], "epochs": [int(n) for n in data["epochs"].split(",")]} scan_object = talos.Scan(x=X_train,y=y_train,x_val = X_test,y_val = y_test,model = modelObj.SNNRegression,experiment_name='SNN',params=p,round_limit=self.roundLimit,random_method=self.randomMethod) matrix_type = 'val_loss' if self.scoreParam.lower() == 'rmse': matrix_type = 'val_rmse_m' elif(self.scoreParam.lower() == 'r2'): matrix_type = 'val_r_square' elif(self.scoreParam.lower() == 'mae'): matrix_type = 'val_mae' elif(self.scoreParam.lower() == 'mse'): matrix_type = 'val_mse' analyze_objectSNN = talos.Analyze(scan_object) highValAccSNN = analyze_objectSNN.low(matrix_type) dfSNN = analyze_objectSNN.data newdfSNN = dfSNN.loc[dfSNN[matrix_type] == highValAccSNN] best_paramsSNN["activation"] = list(newdfSNN["activation"])[0] best_paramsSNN["optimizer"] = list(newdfSNN["optimizer"])[0] best_paramsSNN["losses"] = list(newdfSNN["losses"])[0] best_paramsSNN["first_layer"] = list(newdfSNN["first_neuron"])[0] best_paramsSNN["shapes"] = list(newdfSNN["shapes"])[0] best_paramsSNN["hidden_layers"] = list(newdfSNN["hidden_layers"])[0] best_paramsSNN["dropout"] = list(newdfSNN["dropout"])[0] best_paramsSNN["batch_size"] = list(newdfSNN["batch_size"])[0] best_paramsSNN["epochs"] = list(newdfSNN["epochs"])[0] best_paramsSNN["lr"] = list(newdfSNN["lr"])[0] best_modelSNN = scan_object.best_model(metric=matrix_type, asc=True) loss_matrix = best_paramsSNN["losses"] optimizer = best_paramsSNN["optimizer"] batchsize = best_paramsSNN["batch_size"] if self.scoreParam == 'rmse': best_modelSNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[rmse_m]) elif self.scoreParam == 'r2': best_modelSNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[r_square]) elif self.scoreParam == 'mae': best_modelSNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=['mae']) else: best_modelSNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=['mse']) scoreSNN = best_modelSNN.evaluate(XSNN,Y, batch_size=batchsize) self.log.info("----------> Score Matrix: "+str(best_modelSNN.metrics_names)) self.log.info("----------> Score: "+str(scoreSNN)) self.log.info("----------> Model Params: "+str(best_paramsSNN)) executionTime=time.time() - start self.log.info('----------> SNN Execution Time: '+str(executionTime)+'\\n') XSNN = self.testX.values predictedData = best_modelSNN.predict(XSNN) if self.scoreParam.lower() == 'mse': score = mean_squared_error(self.testY,predictedData) elif self.scoreParam.lower() == 'rmse': score=mean_squared_error(self.testY,predictedData,squared=False) elif self.scoreParam.lower() == 'mae': score=mean_absolute_error(self.testY,predictedData) elif self.scoreParam.lower() == 'r2': score=r2_score(self.testY,predictedData) else: score = scoreSNN[1] self.log.info("----------> Testing Score: "+str(score)) scoreSNN[1] = score if(scoredetails != ''): scoredetails += ',' scoredetails += '{"Model":"Neural Network","FeatureEngineering":"'+str(self.best_feature_model)+'","Score":'+str(scoreSNN[1])+'}' self.log.info('Status:- |... DL Algorithm applied: Neural Network') self.log.info('Status:- |... Score after hyperparameter tuning: '+str(round(score,2))) if "Recurrent Neural Network"in self.modelList: self.log.info("-------> Model Name: Recurrent Neural Network") start = time.time() data = self.modelParams["Recurrent Neural Network"] p = {"RNNType":["SimpleRNN"], "numRNNLayers":[int(n) for n in data["numRNNLayers"].split(",")], "activation":data["activation"].split(","), "optimizer":data["optimizer"].split(","), "losses":data["losses"].split(","), "first_neuron":[int(n) for n in data["first_layer"].split(",")], "shapes": data["shapes"].split(","), "hidden_layers":[int(n) for n in data["hidden_layers"].split(",")], "dropout": [float(n) for n in data["dropout"].split(",")], "lr": [float(n) for n in data["learning_rate"].split(",")], "batch_size": [int(n) for n in data["batch_size"].split(",")], "epochs": [int(n) for n in data["epochs"].split(",")]} scan_object = talos.Scan(x=X_train,y=y_train,x_val = X_test,y_val = y_test,model = modelObj.RNNRegression,experiment_name='RNN',params=p,round_limit=self.roundLimit,random_method=self.randomMethod) matrix_type = 'val_loss' if self.scoreParam.lower() == 'rmse': matrix_type = 'val_rmse_m' elif(self.scoreParam.lower() == 'r2'): matrix_type = 'val_r_square' elif(self.scoreParam.lower() == 'mae'): matrix_type = 'val_mae' elif(self.scoreParam.lower() == 'mse'): matrix_type = 'val_mse' analyze_objectRNN = talos.Analyze(scan_object) highValAccRNN = analyze_objectRNN.low(matrix_type) dfRNN = analyze_objectRNN.data newdfRNN = dfRNN.loc[dfRNN[matrix_type] == highValAccRNN] best_paramsRNN["RNNType"] = "SimpleRNN" best_paramsRNN["numRNNLayers"] = list(newdfRNN["numRNNLayers"])[0] best_paramsRNN["activation"] = list(newdfRNN["activation"])[0] best_paramsRNN["optimizer"] = list(newdfRNN["optimizer"])[0] best_paramsRNN["losses"] = list(newdfRNN["losses"])[0] best_paramsRNN["first_layer"] = list(newdfRNN["first_neuron"])[0] best_paramsRNN["shapes"] = list(newdfRNN["shapes"])[0] best_paramsRNN["hidden_layers"] = list(newdfRNN["hidden_layers"])[0] best_paramsRNN["dropout"] = list(newdfRNN["dropout"])[0] best_paramsRNN["batch_size"] = list(newdfRNN["batch_size"])[0] best_paramsRNN["epochs"] = list(newdfRNN["epochs"])[0] best_paramsRNN["lr"] = list(newdfRNN["lr"])[0] best_modelRNN = scan_object.best_model(metric=matrix_type, asc=True) loss_matrix = best_paramsRNN["losses"] optimizer = best_paramsRNN["optimizer"] batchsize = best_paramsRNN["batch_size"] if self.scoreParam == 'rmse': best_modelRNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[rmse_m]) elif self.scoreParam == 'r2': best_modelRNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[
r_square]) elif self.scoreParam == 'mae': best_modelRNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=['mae']) else: best_modelRNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=['mse']) scoreRNN = best_modelRNN.evaluate(X1,Y, batch_size=batchsize) self.log.info("----------> Score Matrix: "+str(best_modelRNN.metrics_names)) self.log.info("----------> Score: "+str(scoreRNN)) self.log.info("----------> Model Params: "+str(best_paramsRNN)) executionTime=time.time() - start self.log.info('----------> RNN Execution Time: '+str(executionTime)+'\\n') XSNN = np.expand_dims(self.testX, axis=2) predictedData = best_modelRNN.predict(XSNN) if self.scoreParam.lower() == 'mse': score = mean_squared_error(self.testY,predictedData) elif self.scoreParam.lower() == 'rmse': score=mean_squared_error(self.testY,predictedData,squared=False) elif self.scoreParam.lower() == 'mae': score=mean_absolute_error(self.testY,predictedData) elif self.scoreParam.lower() == 'r2': score=r2_score(self.testY,predictedData) else: score = scoreRNN[1] self.log.info("----------> Testing Score: "+str(score)) scoreRNN[1] = score if(scoredetails != ''): scoredetails += ',' scoredetails += '{"Model":"Recurrent Neural Network","FeatureEngineering":"'+str(self.best_feature_model)+'","Score":'+str(scoreRNN[1])+'}' self.log.info('Status:- |... DL Algorithm applied: Recurrent Neural Network') self.log.info('Status:- |... Score after hyperparameter tuning: '+str(round(score,2))) if "Recurrent Neural Network (GRU)"in self.modelList: self.log.info("-------> Model Name: Recurrent Neural Network (GRU)") start = time.time() data = self.modelParams["Recurrent Neural Network (GRU)"] p = {"RNNType":["GRU"], "numRNNLayers":[int(n) for n in data["numRNNLayers"].split(",")], "activation":data["activation"].split(","), "optimizer":data["optimizer"].split(","), "losses":data["losses"].split(","), "first_neuron":[int(n) for n in data["first_layer"].split(",")], "shapes": data["shapes"].split(","), "hidden_layers":[int(n) for n in data["hidden_layers"].split(",")], "dropout": [float(n) for n in data["dropout"].split(",")], "lr": [float(n) for n in data["learning_rate"].split(",")], "batch_size": [int(n) for n in data["batch_size"].split(",")], "epochs": [int(n) for n in data["epochs"].split(",")]} scan_object = talos.Scan(x=X_train,y=y_train,x_val = X_test,y_val = y_test,model = modelObj.RNNRegression,experiment_name='RNNGRU',params=p,round_limit=self.roundLimit,random_method=self.randomMethod) matrix_type = 'val_loss' if self.scoreParam.lower() == 'rmse': matrix_type = 'val_rmse_m' elif(self.scoreParam.lower() == 'r2'): matrix_type = 'val_r_square' elif(self.scoreParam.lower() == 'mae'): matrix_type = 'val_mae' elif(self.scoreParam.lower() == 'mse'): matrix_type = 'val_mse' analyze_objectRNNGRU = talos.Analyze(scan_object) highValAccRNNGRU = analyze_objectRNNGRU.low(matrix_type) dfRNNGRU = analyze_objectRNNGRU.data newdfRNNGRU = dfRNNGRU.loc[dfRNNGRU[matrix_type] == highValAccRNNGRU] best_paramsRNNGRU["RNNType"] = "GRU" best_paramsRNNGRU["numRNNLayers"] = list(newdfRNNGRU["numRNNLayers"])[0] best_paramsRNNGRU["activation"] = list(newdfRNNGRU["activation"])[0] best_paramsRNNGRU["optimizer"] = list(newdfRNNGRU["optimizer"])[0] best_paramsRNNGRU["losses"] = list(newdfRNNGRU["losses"])[0] best_paramsRNNGRU["first_layer"] = list(newdfRNNGRU["first_neuron"])[0] best_paramsRNNGRU["shapes"] = list(newdfRNNGRU["shapes"])[0] best_paramsRNNGRU["hidden_layers"] = list(newdfRNNGRU["hidden_layers"])[0] best_paramsRNNGRU["dropout"] = list(newdfRNNGRU["dropout"])[0] best_paramsRNNGRU["batch_size"] = list(newdfRNNGRU["batch_size"])[0] best_paramsRNNGRU["epochs"] = list(newdfRNNGRU["epochs"])[0] best_paramsRNNGRU["lr"] = list(newdfRNNGRU["lr"])[0] best_modelRNNGRU = scan_object.best_model(metric=matrix_type, asc=True) loss_matrix = best_paramsRNNGRU["losses"] optimizer = best_paramsRNNGRU["optimizer"] batchsize = best_paramsRNNGRU["batch_size"] if self.scoreParam == 'rmse': best_modelRNNGRU.compile(loss=loss_matrix,optimizer=optimizer, metrics=[rmse_m]) elif self.scoreParam == 'r2': best_modelRNNGRU.compile(loss=loss_matrix,optimizer=optimizer, metrics=[r_square]) elif self.scoreParam == 'mae': best_modelRNNGRU.compile(loss=loss_matrix,optimizer=optimizer, metrics=['mae']) else: best_modelRNNGRU.compile(loss=loss_matrix,optimizer=optimizer, metrics=['mse']) scoreRNNGRU = best_modelRNNGRU.evaluate(X1,Y, batch_size=batchsize) self.log.info("----------> Score Matrix: "+str(best_modelRNNGRU.metrics_names)) self.log.info("----------> Score: "+str(scoreRNNGRU)) self.log.info("----------> Model Params: "+str(best_paramsRNNGRU)) executionTime=time.time() - start self.log.info('----------> RNN Execution Time: '+str(executionTime)+'\\n') XSNN = np.expand_dims(self.testX, axis=2) predictedData = best_modelRNNGRU.predict(XSNN) if self.scoreParam.lower() == 'mse': score = mean_squared_error(self.testY,predictedData) elif self.scoreParam.lower() == 'rmse': score=mean_squared_error(self.testY,predictedData,squared=False) elif self.scoreParam.lower() == 'mae': score=mean_absolute_error(self.testY,predictedData) elif self.scoreParam.lower() == 'r2': score=r2_score(self.testY,predictedData) else: score = scoreRNNGRU[1] self.log.info("----------> Testing Score: "+str(score)) scoreRNNGRU[1] = score if(scoredetails != ''): scoredetails += ',' scoredetails += '{"Model":"Recurrent Neural Network (GRU)","FeatureEngineering":"'+str(self.best_feature_model)+'","Score":'+str(scoreRNNGRU[1])+'}' self.log.info('Status:- |... DL Algorithm applied: Recurrent Neural Network (GRU)') self.log.info('Status:- |... Score after hyperparameter tuning: '+str(round(score,2))) if "Recurrent Neural Network (LSTM)"in self.modelList: self.log.info("-------> Model Name: Recurrent Neural Network (LSTM)") start = time.time() data = self.modelParams["Recurrent Neural Network (LSTM)"] p = {"RNNType":["LSTM"], "numRNNLayers":[int(n) for n in data["numRNNLayers"].split(",")], "activation":data["activation"].split(","), "optimizer":data["optimizer"].split(","), "losses":data["losses"].split(","), "first_neuron":[int(n) for n in data["first_layer"].split(",")], "shapes": data["shapes"].split(","), "hidden_layers":[int(n) for n in data["hidden_layers"].split(",")], "dropout": [float(n) for n in data["dropout"].split(",")], "lr": [float(n) for n in data["learning_rate"].split(",")], "batch_size": [int(n) for n in data["batch_size"].split(",")], "epochs": [int(n) for n in data["epochs"].split(",")]} scan_object = talos.Scan(x=X_train,y=y_train,x_val = X_test,y_val = y_test,model = modelObj.RNNRegression,experiment_name='RNNLSTM',params=p,round_limit=self.roundLimit,random_method=self.randomMethod) matrix_type = 'val_loss' if self.scoreParam.lower() == 'rmse': matrix_type = 'val_rmse_m' elif(self.scoreParam.lower() == 'r2'): matrix_type = 'val_r_square' elif(self.scoreParam.lower() == 'mae'): matrix_type = 'val_mae' elif(self.scoreParam.lower() == 'mse'): matrix_type = 'val_mse' analyze_objectRNNLSTM = talos.Analyze(scan_object) highValAccRNNLSTM = analyze_objectRNNLSTM.low(matrix_type) dfRNNLSTM = analyze_objectRNNLSTM.data newdfRNNLSTM = dfRNNLSTM.loc[dfRNNLSTM[matrix_type] == highValAccRNNLSTM] best_paramsRNNLSTM["RNNType"] = "GRU" best_paramsRNNLSTM["numRNNLayers"] = list(newdfRNNLSTM["numRNNLayers"])[0] best_paramsRNNLSTM["activation"] = list(newdfRNNLSTM["activation"])[0] best_paramsRNNLSTM["optimizer"] = list(newdfRNNLSTM["optimizer"])[0] best_paramsRNNLSTM["losses"] = list(newdfRNNLSTM["losses"])[0] best_paramsRNNLSTM["first_layer"] = list(newdfRNNLSTM["first_neuron"])[0] best_paramsRNNLSTM["shapes"] = list(newdfRNNLSTM["shapes"])[0] best_paramsRNNLSTM["hidden_layers"] = list(newdfRNNLSTM["hidden_layers"])[0] best_paramsRNNLSTM["dropout"] = list(newdfRNNLSTM["dropout"])[0] best_paramsRNNLSTM["batch_size"] = list(newdfRNNLSTM["batch_size"])[0] best_paramsRNNLSTM["epochs"] = list(newdfRNNLSTM["epochs"])[0] best_paramsRNNLSTM["lr"] = list(newdfRNNLSTM["lr"])[0] best_modelRNNLSTM = scan_object.best_model(metric=matrix_type, asc=True) loss_matrix = best_paramsRNNLSTM["losses"] optimizer = best_paramsRNNLSTM["optimizer"] batchsize = best_paramsRNNLSTM["batch_size"] if self.scoreParam == 'rmse': best_modelRNNLSTM.compile(loss=loss_matrix,optimizer=optimizer, metrics=[rmse_m]) elif self.scoreParam == 'r2': best_modelRNNLSTM.compile(loss=loss
_matrix,optimizer=optimizer, metrics=[r_square]) elif self.scoreParam == 'mae': best_modelRNNLSTM.compile(loss=loss_matrix,optimizer=optimizer, metrics=['mae']) else: best_modelRNNLSTM.compile(loss=loss_matrix,optimizer=optimizer, metrics=['mse']) scoreRNNLSTM = best_modelRNNLSTM.evaluate(X1,Y, batch_size=batchsize) self.log.info("----------> Score Matrix: "+str(best_modelRNNLSTM.metrics_names)) self.log.info("----------> Score: "+str(scoreRNNLSTM)) self.log.info("----------> Model Params: "+str(best_paramsRNNLSTM)) executionTime=time.time() - start self.log.info('----------> RNN Execution Time: '+str(executionTime)+'\\n') XSNN = np.expand_dims(self.testX, axis=2) predictedData = best_modelRNNLSTM.predict(XSNN) if self.scoreParam.lower() == 'mse': score = mean_squared_error(self.testY,predictedData) elif self.scoreParam.lower() == 'rmse': score=mean_squared_error(self.testY,predictedData,squared=False) elif self.scoreParam.lower() == 'mae': score=mean_absolute_error(self.testY,predictedData) elif self.scoreParam.lower() == 'r2': score=r2_score(self.testY,predictedData) else: score = scoreRNNLSTM[1] self.log.info("----------> Testing Score: "+str(score)) scoreRNNLSTM[1] = score if(scoredetails != ''): scoredetails += ',' scoredetails += '{"Model":"Recurrent Neural Network (LSTM)","FeatureEngineering":"'+str(self.best_feature_model)+'","Score":'+str(scoreRNNLSTM[1])+'}' self.log.info('Status:- |... DL Algorithm applied: Recurrent Neural Network (LSTM)') self.log.info('Status:- |... Score after hyperparameter tuning: '+str(round(score,2))) if "Convolutional Neural Network (1D)"in self.modelList: self.log.info("-------> Model Name: CNN") start = time.time() data = self.modelParams["Convolutional Neural Network (1D)"] p = {"activation":data["activation"].split(","), "kernel_size":data["kernel_size"].split(","), "numConvLayers":[int(n) for n in data["numConvLayers"].split(",")], "MaxPool":data["activation"].split(","), "optimizer":data["optimizer"].split(","), "losses":data["losses"].split(","), "first_neuron":[int(n) for n in data["first_layer"].split(",")], "shapes": data["shapes"].split(","), "hidden_layers":[int(n) for n in data["hidden_layers"].split(",")], "dropout": [float(n) for n in data["dropout"].split(",")], "lr": [float(n) for n in data["learning_rate"].split(",")], "batch_size": [int(n) for n in data["batch_size"].split(",")], "epochs": [int(n) for n in data["epochs"].split(",")]} scan_object = talos.Scan(x=X_train,y=y_train, x_val = X_test, y_val = y_test, model = modelObj.CNNRegression,experiment_name='CNN', params=p,round_limit=self.roundLimit,random_method=self.randomMethod) matrix_type = 'val_loss' if self.scoreParam.lower() == 'rmse': matrix_type = 'val_rmse_m' elif(self.scoreParam.lower() == 'r2'): matrix_type = 'val_r_square' elif(self.scoreParam.lower() == 'mae'): matrix_type = 'val_mae' elif(self.scoreParam.lower() == 'mse'): matrix_type = 'val_mse' analyze_objectCNN = talos.Analyze(scan_object) highValAccCNN = analyze_objectCNN.low(matrix_type) dfCNN = analyze_objectCNN.data newdfCNN = dfCNN.loc[dfCNN[matrix_type] == highValAccCNN] best_paramsCNN["numConvLayers"] = list(newdfCNN["numConvLayers"])[0] best_paramsCNN["MaxPool"] = list(newdfCNN["MaxPool"])[0] best_paramsCNN["activation"] = list(newdfCNN["activation"])[0] best_paramsCNN["optimizer"] = list(newdfCNN["optimizer"])[0] best_paramsCNN["losses"] = list(newdfCNN["losses"])[0] best_paramsCNN["first_layer"] = list(newdfCNN["first_neuron"])[0] best_paramsCNN["shapes"] = list(newdfCNN["shapes"])[0] best_paramsCNN["hidden_layers"] = list(newdfCNN["hidden_layers"])[0] best_paramsCNN["dropout"] = list(newdfCNN["dropout"])[0] best_paramsCNN["batch_size"] = list(newdfCNN["batch_size"])[0] best_paramsCNN["epochs"] = list(newdfCNN["epochs"])[0] best_paramsCNN["lr"] = list(newdfCNN["lr"])[0] best_modelCNN = scan_object.best_model(metric=matrix_type, asc=True) loss_matrix = best_paramsCNN["losses"] optimizer = best_paramsCNN["optimizer"] batchsize = best_paramsCNN["batch_size"] if self.scoreParam == 'rmse': best_modelCNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[rmse_m]) elif self.scoreParam == 'r2': best_modelCNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[r_square]) elif self.scoreParam == 'mae': best_modelCNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=['mae']) else: best_modelCNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=['mse']) scoreCNN = best_modelCNN.evaluate(X1,Y, batch_size=batchsize) self.log.info("----------> Score Matrix: "+str(best_modelCNN.metrics_names)) self.log.info("----------> Score: "+str(scoreCNN)) self.log.info("----------> Model Params: "+str(best_paramsCNN)) executionTime=time.time() - start self.log.info('----------> CNN Execution Time: '+str(executionTime)+'\\n') XSNN = np.expand_dims(self.testX, axis=2) predictedData = best_modelCNN.predict(XSNN) if self.scoreParam.lower() == 'mse': score = mean_squared_error(self.testY,predictedData) elif self.scoreParam.lower() == 'rmse': score=mean_squared_error(self.testY,predictedData,squared=False) elif self.scoreParam.lower() == 'mae': score=mean_absolute_error(self.testY,predictedData) elif self.scoreParam.lower() == 'r2': score=r2_score(self.testY,predictedData) else: score = scoreCNN[1] self.log.info("----------> Testing Score: "+str(score)) scoreCNN[1] = score if(scoredetails != ''): scoredetails += ',' scoredetails += '{"Model":"CNN","FeatureEngineering":"'+str(self.best_feature_model)+'","Score":'+str(scoreCNN[1])+'}' self.log.info('Status:- |... DL Algorithm applied: CNN') self.log.info('Status:- |... Score after hyperparameter tuning: '+str(round(score,2))) modelScore = [] if len(scoreSNN) != 0: modelScore.append(scoreSNN[1]) if len(scoreRNN) != 0: modelScore.append(scoreRNN[1]) if len(scoreRNNGRU) != 0: modelScore.append(scoreRNNGRU[1]) if len(scoreRNNLSTM) != 0: modelScore.append(scoreRNNLSTM[1]) if len(scoreCNN) != 0: modelScore.append(scoreCNN[1]) selectedModel = "" best_model = "" if self.scoreParam == "r2": if len(scoreSNN) != 0 and max(modelScore) == scoreSNN[1]: selectedModel = "Neural Network" best_model = best_modelSNN best_params = best_paramsSNN elif len(scoreRNN) != 0 and max(modelScore) == scoreRNN[1]: selectedModel = "Recurrent Neural Network" best_model = best_modelRNN best_params = best_paramsRNN elif len(scoreRNNGRU) != 0 and max(modelScore) == scoreRNNGRU[1]: selectedModel = "Recurrent Neural Network (GRU)" best_model = best_modelRNNGRU best_params = best_paramsRNNGRU elif len(scoreRNNLSTM) != 0 and max(modelScore) == scoreRNNLSTM[1]: selectedModel = "Recurrent Neural Network (LSTM)" best_model = best_modelRNNLSTM best_params = best_paramsRNNLSTM elif len(scoreCNN) != 0 and max(modelScore) == scoreCNN[1]: selectedModel = "Convolutional Neural Network (1D)" best_model = best_modelCNN best_params = best_paramsCNN modelScore = max(modelScore) else: if len(scoreSNN) != 0 and min(modelScore) == scoreSNN[1]: selectedModel = "Neural Network" best_model = best_modelSNN best_params = best_paramsSNN elif len(scoreRNN) != 0 and min(modelScore) == scoreRNN[1]: selectedModel = "Recurrent Neural Network" best_model = best_modelRNN best_params = best_paramsRNN elif len(scoreRNNGRU) != 0 and min(modelScore) == scoreRNNGRU[1]: selectedModel = "Recurrent Neural Network (GRU)" best_model = best_modelRNNGRU best_params = best_paramsRNNGRU elif len(scoreRNNLSTM) != 0 and min(modelScore) == scoreRNNLSTM[1]: selectedModel = "Recurrent Neural Network (LSTM)" best_model = best_modelRNNLSTM best_params = best_paramsRNNLSTM elif len(scoreCNN) != 0 and min(modelScore) == scoreCNN[1]: selectedModel = "Convolutional Neural Network (1D)" best_model = best_modelCNN best_params = best_paramsCNN modelScore = min(modelScore) executionTime=time.time() - lstart self.log.info("-------> Total Execution Time(sec):"+str(executionTime)) self.log.info('Status:- |... Best Algorithm selected: '+str(selectedModel)+' '+str(round(modelScore,2))) return selectedModel,modelScore,best_model,best_params,X1,XSNN,scoredetails,loss_matrix,optimizer except Exception as inst: self.log.info( '\\n-----> regressionModel failed!!!.'+str(inst)) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Techn
ologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import logging import numpy as np import pandas as pd from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.metrics import roc_curve, auc from sklearn.metrics import roc_auc_score from sklearn.preprocessing import LabelBinarizer from imblearn.over_sampling import RandomOverSampler,SMOTE from imblearn.under_sampling import RandomUnderSampler from imblearn.under_sampling import TomekLinks from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score from sklearn.metrics import mean_absolute_error,make_scorer from sklearn.metrics import mean_squared_error from sklearn.metrics import log_loss import tensorflow as tf from tensorflow.keras import backend as K from tensorflow.keras.models import load_model from dlearning.Classification import DLClassificationModel from dlearning.Regression import DLRegressionModel from learner.machinelearning import machinelearning from sklearn.metrics import matthews_corrcoef, brier_score_loss import os def recall_m(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) recall = true_positives / (possible_positives + K.epsilon()) return recall def precision_m(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + K.epsilon()) return precision def f1_m(y_true, y_pred): precision = precision_m(y_true, y_pred) recall = recall_m(y_true, y_pred) return 2*((precision*recall)/(precision+recall+K.epsilon())) def rmse_m(y_true, y_pred): return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1)) def r_square(y_true, y_pred): SS_res = K.sum(K.square(y_true-y_pred)) SS_tot = K.sum(K.square(y_true-K.mean(y_true))) return (1 - SS_res/(SS_tot+K.epsilon())) class deeplearning(object): def __init__(self): self.log = logging.getLogger('eion') def getDLPredictionData(self,model_dl,hist_reloaded,X): if model_dl == "Neural Network": XSNN = X.values predictedData = hist_reloaded.predict(XSNN) else: X1 = np.expand_dims(X, axis=2) predictedData = hist_reloaded.predict(X1) return(predictedData) def getPredictionData(self,model_dl,hist_reloaded,X): if model_dl == "Neural Network": XSNN = X.values #predictedData = hist_reloaded.predict_classes(XSNN) predict_x=hist_reloaded.predict(XSNN) predictedData=np.argmax(predict_x,axis=1) else: X1 = np.expand_dims(X, axis=2) #predictedData = hist_reloaded.predict_classes(X1) predict_x=hist_reloaded.predict(X1) predictedData=np.argmax(predict_x,axis=1) return(predictedData, predict_x) def LoadDL_Regression_Model(self,filename_dl,scoreParam,loss_matrix,optimizer): if(scoreParam.lower() == 'rmse'): hist_reloaded = load_model(filename_dl,custom_objects={"rmse": rmse_m},compile=False) hist_reloaded.compile(loss=loss_matrix,optimizer=optimizer, metrics=[rmse_m]) elif(scoreParam.lower() == 'r2'): hist_reloaded = load_model(filename_dl,custom_objects={"r2": r_square},compile=False) hist_reloaded.compile(loss=loss_matrix,optimizer=optimizer, metrics=[r_square]) else: hist_reloaded = load_model(filename_dl) return(hist_reloaded) def startLearning(self,model_type,modelList, modelParams, scoreParam, cvSplit, xtrain,ytrain,xtest,ytest,method,randomMethod,roundLimit,labelMaps,df_test,deployLocation,modelName,modelVersion,best_feature_model): mlobj = machinelearning() if model_type == 'Classification': self.log.info('\\n------ Training DL: Classification ----') objClf = DLClassificationModel(modelList, modelParams, scoreParam, cvSplit, xtrain,ytrain,xtest,ytest,method,randomMethod,roundLimit,best_feature_model) dftrain = xtrain.copy() dftrain['Target'] = ytrain model_dl,score_dl,best_model_dl,params_dl,X1,XSNN,model_tried_dl,loss_matrix,optimizer = objClf.TalosScan(objClf) self.log.info('------ Training DL: Classification End----\\n') saved_model_dl = 'dl_'+modelName+'_'+modelVersion+'.sav' filename_dl = os.path.join(deployLocation,'model',saved_model_dl) best_model_dl.save(filename_dl) hist_reloaded = self.LoadDL_Classification_Model(filename_dl,scoreParam,loss_matrix,optimizer) self.log.info('\\n--------- Performance Matrix with Train Data ---------') predictedData, prob = self.getPredictionData(model_dl,hist_reloaded,xtrain) trainingperformancematrix = mlobj.getClassificationPerformaceMatrix(ytrain, predictedData, prob,labelMaps) self.log.info('\\n--------- Performance Matrix with Train Data End ---------') predictedData, prob = self.getPredictionData(model_dl,hist_reloaded,xtest) df_test['predict'] = predictedData self.log.info('\\n--------- Performance Matrix with Test Data ---------') performancematrix = mlobj.getClassificationPerformaceMatrix(ytest, predictedData, prob,labelMaps) self.log.info('\\n--------- Performance Matrix with Test Data End ---------') return(model_dl,score_dl,best_model_dl,params_dl,X1,XSNN,model_tried_dl,loss_matrix,optimizer,saved_model_dl,filename_dl,dftrain,df_test,performancematrix,trainingperformancematrix) else: objReg = DLRegressionModel(modelList, modelParams, scoreParam, cvSplit, xtrain,ytrain,xtest,ytest,method,randomMethod,roundLimit,best_feature_model) dftrain = xtrain.copy() dftrain['Target'] = ytrain model_dl,score_dl,best_model_dl,params_dl,X1,XSNN,model_tried_dl,loss_matrix,optimizer = objReg.TalosScan(objReg) self.log.info('------ Training DL: Regression End----\\n') self.log.info('\\n------- Best DL Model and its parameters -------------') self.log.info('-------> Best Model: '+str(model_dl)) self.log.info('-------> Best Score: '+str(score_dl)) self.log.info('-------> Best Params: '+str(params_dl)) self.log.info('------- Best DL Model and its parameters End-------------\\n') saved_model_dl = 'dl_'+modelName+'_'+modelVersion+'.sav' filename_dl = os.path.join(deployLocation,'model',saved_model_dl) best_model_dl.save(filename_dl) hist_reloaded=self.LoadDL_Regression_Model(filename_dl,scoreParam,loss_matrix,optimizer) predictedData = self.getDLPredictionData(model_dl,hist_reloaded,xtrain) self.log.info('\\n--------- Performance Matrix with Train Data ---------') trainingperformancematrix = mlobj.get_regression_matrix(ytrain, predictedData) self.log.info('--------- Performance Matrix with Train Data End---------\\n') predictedData = self.getDLPredictionData(model_dl,hist_reloaded,xtest) df_test['predict'] = predictedData self.log.info('\\n--------- Performance Matrix with Test Data ---------') performancematrix = mlobj.get_regression_matrix(ytest, predictedData) self.log.info('--------- Performance Matrix with Test Data End---------\\n') return(model_dl,score_dl,best_model_dl,params_dl,X1,XSNN,model_tried_dl,loss_matrix,optimizer,saved_model_dl,filename_dl,dftrain,df_test,performancematrix,trainingperformancematrix) def LoadDL_Classification_Model(self,filename_dl,scoreParam,loss_matrix,optimizer): if(scoreParam.lower() == 'recall'): hist_reloaded = load_model(filename_dl,custom_objects={"recall": recall_m},compile=False) hist_reloaded.compile(loss=loss_matrix,optimizer=optimizer, metrics=[recall_m]) elif(scoreParam.lower() == 'precision'): hist_reloaded = load_model(filename_dl,custom_objects={"precision": precision_m},compile=False) hist_reloaded.compile(loss=loss_matrix,optimizer=optimizer, metrics=[precision_m]) elif(scoreParam.lower() == 'roc_auc'): hist_reloaded = load_model(filename_dl,compile=False) hist_reloaded.compile(loss=loss_matrix,optimizer=optimizer, metrics=[tf.keras.metrics.AUC()]) elif(scoreParam.lower() == 'f1_score'): hist_reloaded = load_model(filename_dl,custom_objects={"f1_score": f1_m},compile=False) hist_reloaded.compile(loss=loss_matrix,optimizer=optimizer, metrics=[f1_m]) else: hist_reloaded = load_model(filename_dl) return(hist_reloaded) def getClassificationPerformaceMatrix(self,le_trainY,predictedData,prob,labelMaps): setOfyTrue = set(le_trainY) unqClassLst = list(setOfyTrue) if(str(labelMaps) != '{}'): inv_mapping_dict = {v: k for k, v in labelMaps.items()} unqClassLst2 = (pd.Series(unqClassLst)).map(inv_mapping_dict) unqClassLst2 = list(unqClassLst2) else: unqClassLst2 = unqClassLst indexName = [] columnName = [] for item in unqClassLst2: indexName.append("true:"+str(item)) columnName.append(str(item)) matrixconfusion = pd.DataFrame(confusion_matrix(le_trainY,predictedData, labels = unqClassLst),index = indexName, columns = columnName) self.log.info('\\n <--- Confusion Matrix --->') self.log.info(matrixconfusion) classificationreport = pd.DataFrame(classification_report(le_trainY, predictedData, output_dict=True)) self.log.info('\\n <--- Classification Report --->') self.log.info(classificationreport) lb = LabelBinarizer() lb.fit(le_trainY) transformTarget= lb.transform(le_trainY) if transformTarget.shape[-1] == 1: transformTarget = le_trainY prob = np.delete( prob, 0, 1) rocaucscore = roc_auc_score(transformTarget,prob,average="macro") brier_score = None mcc_score = matthews_corrcoef(le_trainY,predictedData) if len(unqClassLst) > 2: brier_score = np.mean(np.sum(np.square(prob - transformTarget), axis=1)) else: brier_score = brier_score_loss(transformTarget,prob) self.log.info('-------> ROC AUC SCORE :'+str(rocaucscore)) self.log.info(f'-------> Matthews correlation coefficient SCORE : {mcc_score}') self.log.info(f'-------> BRIER SCORE : {brier_score}') matrixconfusion = matrixconfusion.to_json(orient='index') classificationreport = classificationreport.to_json(orient='index') matrix = f'"ConfusionMatrix": {matrixconfusion},"ClassificationReport": {classificationreport},"ROC_AUC_SCORE": {rocaucscore},"MCC_SCORE": {mcc_score},"BRIER_SCORE": {brier_score}' return(matrix) def split_into_train_test_data(self,featureData,targetData,cvSplit,testPercentage,modelType='classification'): ''' if cvSplit == None: ''' testSize=testPercentage/100 if modelType == 'regression': xtrain,xtest,ytrain,ytest=train_test_split(featureData,targetData,test_size=testSize,shuffle=True) else: try: xtrain,xtest,ytrain,ytest=train_test_split(featureData,targetData,stratify=targetData,test_size=testSize,shuffle=True) except: xtrain,xtest,ytrain,ytest=train_test_split(featureData,targetData,test_size=testSize,shuffle=True) self.log.info('\\n<-------------- Test Train Split -------------
--->\\n') self.log.info('\\n<-------- Train Data Shape '+str(xtrain.shape)+' ---------->\\n') self.log.info('\\n<-------- Test Data Shape '+str(xtest.shape)+' ---------->\\n') ''' else: xtrain=featureData ytrain=targetData xtest=featureDa
Conv1D(filters=params['first_neuron'], kernel_size=(3), activation=params['activation'], input_shape=(x_train.shape[1],1),padding='same') ) if params['numConvLayers'] > 1: for x in range(1,params['numConvLayers']): if params['MaxPool'] == "True": model.add(MaxPooling1D(pool_size=2,padding='same')) model.add(Conv1D(filters=8, kernel_size=3, activation=params['activation'],padding='same')) talos.utils.hidden_layers(model, params, x_train.shape[1]) model.add(MaxPooling1D(pool_size=2,padding='same')) model.add(Flatten()) model.add(Dense(y_train.shape[1],activation=params['last_activation'])) model.compile(loss=params['losses'],optimizer=params['optimizer'],metrics=['acc',f1_m,precision_m,recall_m,tf.keras.metrics.AUC()]) out = model.fit(x_train, y_train, validation_data=(x_val, y_val), batch_size=params['batch_size'], epochs=params['epochs'],verbose=0,shuffle=True) return out, model def TalosScan(self,modelObj): try: #dataPath = pd.read_csv(self.dataLocation) #X = dataPath.drop(self.targetData, axis=1) loss_matrix='binary_crossentropy' optimizer='Nadam' X = self.featuresData x = X.values Y = self.targetData scoredetails = '' #Y= dataPath[self.targetData] y = Y.values y = kutils.to_categorical(y) XSNN = X.values X1 = np.expand_dims(X, axis=2) kf = KFold(n_splits = self.cvSplit) for train_index, test_index in kf.split(X): X_train, X_test = x[train_index], x[test_index] y_train, y_test = y[train_index], y[test_index] data = self.modelParams models = data.keys() start = time.time() scoreSNN = [] scoreRNN = [] scoreCNN = [] scoreRNNGRU = [] scoreRNNLSTM = [] best_paramsSNN = {} best_paramsRNN = {} best_paramsRNNGRU = {} best_paramsRNNLSTM = {} best_paramsCNN = {} if "Neural Network"in self.modelList: self.log.info("-------> Model Name: Neural Network") start = time.time() data = self.modelParams["Neural Network"] p = {"activation":data["activation"].split(","), "last_activation":data["last_activation"].split(","), "optimizer":data["optimizer"].split(","), "losses":data["losses"].split(","), "first_neuron":[int(n) for n in data["first_layer"].split(",")], "shapes": data["shapes"].split(","), "hidden_layers":[int(n) for n in data["hidden_layers"].split(",")], "dropout": [float(n) for n in data["dropout"].split(",")], "lr": [float(n) for n in data["learning_rate"].split(",")], "batch_size": [int(n) for n in data["batch_size"].split(",")], "epochs": [int(n) for n in data["epochs"].split(",")] } param_combinations = int(np.prod([len(x.split(',')) for x in p])) round_limit = self.roundLimit if not self.roundLimit else min(self.roundLimit, param_combinations) scan_object = talos.Scan(x=X_train, y=y_train, x_val = X_test, y_val = y_test, model = modelObj.SNNClassification, experiment_name='SNN', params=p, round_limit=round_limit, random_method=self.randomMethod ) matrix_type = 'val_acc' if self.scoreParam.lower() == 'accuracy': matrix_type = 'val_acc' elif(self.scoreParam.lower() == 'roc_auc'): matrix_type = 'val_auc' elif(self.scoreParam.lower() == 'recall'): matrix_type = 'val_recall_m' elif(self.scoreParam.lower() == 'precision'): matrix_type = 'val_precision_m' elif(self.scoreParam.lower() == 'f1_score'): matrix_type = 'val_f1_m' analyze_objectSNN = talos.Analyze(scan_object) highValAccSNN = analyze_objectSNN.high(matrix_type) dfSNN = analyze_objectSNN.data #pd.set_option('display.max_columns',20) #print(dfSNN) #pd.reset_option('display.max_columns') newdfSNN = dfSNN.loc[dfSNN[matrix_type] == highValAccSNN] if(len(newdfSNN) > 1): lowLoss = analyze_objectSNN.low('val_loss') newdfSNN = newdfSNN.loc[newdfSNN['val_loss'] == lowLoss] best_paramsSNN["activation"] = list(newdfSNN["activation"])[0] best_paramsSNN["optimizer"] = list(newdfSNN["optimizer"])[0] best_paramsSNN["losses"] = list(newdfSNN["losses"])[0] best_paramsSNN["first_layer"] = list(newdfSNN["first_neuron"])[0] best_paramsSNN["shapes"] = list(newdfSNN["shapes"])[0] best_paramsSNN["hidden_layers"] = list(newdfSNN["hidden_layers"])[0] best_paramsSNN["dropout"] = list(newdfSNN["dropout"])[0] best_paramsSNN["batch_size"] = list(newdfSNN["batch_size"])[0] best_paramsSNN["epochs"] = list(newdfSNN["epochs"])[0] best_paramsSNN["lr"] = list(newdfSNN["lr"])[0] best_paramsSNN["last_activation"] = list(newdfSNN["last_activation"])[0] best_modelSNN = scan_object.best_model(metric=matrix_type) try: if(len(best_paramsSNN["losses"]) == 0): loss_matrix = 'binary_crossentropy' else: loss_matrix = best_paramsSNN["losses"] if(len(best_paramsSNN["optimizer"]) == 0): optimizer = 'Nadam' else: optimizer = best_paramsSNN["optimizer"] if best_paramsSNN["batch_size"] == 0: batchsize = 32 else: batchsize = best_paramsSNN["batch_size"] except: loss_matrix = 'binary_crossentropy' optimizer = 'Nadam' batchsize = 32 if self.scoreParam == 'accuracy': best_modelSNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=['accuracy']) elif self.scoreParam == 'roc_auc': best_modelSNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[tf.keras.metrics.AUC()]) elif self.scoreParam == 'recall': best_modelSNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[recall_m]) elif self.scoreParam == 'precision': best_modelSNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[precision_m]) elif self.scoreParam == 'f1_score': best_modelSNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[f1_m]) scoreSNN = best_modelSNN.evaluate(XSNN,y, batch_size=batchsize) self.log.info("----------> Score Matrix: "+str(best_modelSNN.metrics_names)) self.log.info("----------> Score: "+str(scoreSNN)) self.log.info("----------> Model Params: "+str(best_paramsSNN)) executionTime=time.time() - start XSNN = self.testX.values #predict_x=best_modelSNN.predict(XSNN) predictedData=np.argmax(best_modelSNN.predict(XSNN),axis=1) #predictedData = best_modelSNN.predict_classes(XSNN) #print(predictedData) #predictedData = best_modelSNN.predict(self.testX) if 'accuracy' in str(self.scoreParam): score = accuracy_score(self.testY,predictedData) elif 'recall' in str(self.scoreParam): score = recall_score(self.testY,predictedData, average='macro') elif 'precision' in str(self.scoreParam): score = precision_score(self.testY,predictedData,average='macro') elif 'f1_score' in str(self.scoreParam): score = f1_score(self.testY,predictedData, average='macro') elif 'roc_auc' in str(self.scoreParam): score = roc_auc_score(self.testY,predictedData,average="macro") score = round((score*100),2) self.log.info("----------> Testing Score: "+str(score)) self.log.info('----------> Total Execution: '+str(executionTime)+'\\n') scoreSNN[1] = score if(scoredetails != ''): scoredetails += ',' scoredetails += '{"Model":"Neural Network","FeatureEngineering":"'+str(self.best_feature_model)+'","Score":'+str(scoreSNN[1])+'}' self.log.info('Status:- |... DL Algorithm applied: Neural Network') self.log.info('Status:- |... Score after hyperparameter tuning: '+str(round(score,2))) if "Recurrent Neural Network"in self.modelList: self.log.info("-------> Model Name: Recurrent Neural Network") start = time.time() data = self.modelParams["Recurrent Neural Network"] p = {"RNNType":["SimpleRNN"], "numRNNLayers":[int(n) for n in data["numRNNLayers"].split(",")], "activation":data["activation"].split(","), "last_activation":data["last_activation"].split(","), "optimizer":data["optimizer"].split(","), "losses":data["losses"].split(","), "first_neuron":[int(n) for n in data["first_layer"].split(",")], "shapes": data["shapes"].split(","), "hidden_layers":[int(n) for n in data["hidden_layers"].split(",")], "dropout": [float(n) for n in data["dropout"].split(",")], "lr": [float(n) for n in data["learning_rate"].split(",")], "batch_size": [int(n) for n in data["batch_size"].split(",")], "epochs": [int(n) for n in data["epochs"].split(",")]} param_combinations = int(np.prod([len(x.split(',')) for x in p])) round_limit = self.roundLimit if not self.roundLimit else min(self.roundLimit, param_combinations) scan_object = talos.Scan(x=X_train, y=y_train, x_val = X_test, y_val = y_test, model = modelObj.RNNClassification, experiment_name='RNN', params=p, round_limit=round_limit, random_method=self.randomMethod ) matrix_type = 'val_acc' if self.scoreParam.lower() == 'accuracy': matrix_type = 'val_acc' elif(self.scoreParam.lower() == 'roc_auc'): matrix_type = 'val_auc' elif(self.scoreParam.lower() == 'recall'): matrix_type = 'val_recall_m' elif(self.score
Param.lower() == 'precision'): matrix_type = 'val_precision_m' elif(self.scoreParam.lower() == 'f1_score'): matrix_type = 'val_f1_m' analyze_objectRNN = talos.Analyze(scan_object) highValAccRNN = analyze_objectRNN.high(matrix_type) dfRNN = analyze_objectRNN.data newdfRNN = dfRNN.loc[dfRNN[matrix_type] == highValAccRNN] if(len(newdfRNN) > 1): lowLoss = analyze_objectRNN.low('val_loss') newdfRNN = newdfRNN.loc[newdfRNN['val_loss'] == lowLoss] best_paramsRNN["RNNType"] = list(newdfRNN["RNNType"])[0] best_paramsRNN["numRNNLayers"] = list(newdfRNN["numRNNLayers"])[0] best_paramsRNN["activation"] = list(newdfRNN["activation"])[0] best_paramsRNN["optimizer"] = list(newdfRNN["optimizer"])[0] best_paramsRNN["losses"] = list(newdfRNN["losses"])[0] best_paramsRNN["first_layer"] = list(newdfRNN["first_neuron"])[0] best_paramsRNN["shapes"] = list(newdfRNN["shapes"])[0] best_paramsRNN["hidden_layers"] = list(newdfRNN["hidden_layers"])[0] best_paramsRNN["dropout"] = list(newdfRNN["dropout"])[0] best_paramsRNN["batch_size"] = list(newdfRNN["batch_size"])[0] best_paramsRNN["epochs"] = list(newdfRNN["epochs"])[0] best_paramsRNN["lr"] = list(newdfRNN["lr"])[0] best_paramsRNN["last_activation"] = list(newdfRNN["last_activation"])[0] best_modelRNN = scan_object.best_model(metric=matrix_type, asc=False) try: if(len(best_paramsRNN["losses"]) == 0): loss_matrix = 'binary_crossentropy' else: loss_matrix = best_paramsRNN["losses"][0] if(len(best_paramsRNN["optimizer"]) == 0): optimizer = 'Nadam' else: optimizer = best_paramsRNN["optimizer"][0] if(best_paramsRNN["batch_size"] == 0): batchsize = 32 else: batchsize = best_paramsRNN["batch_size"][0] except: loss_matrix = 'binary_crossentropy' optimizer = 'Nadam' batchsize = 32 if self.scoreParam == 'accuracy': best_modelRNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=['accuracy']) elif self.scoreParam == 'recall': best_modelRNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[recall_m]) elif self.scoreParam == 'roc_auc': best_modelRNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[tf.keras.metrics.AUC()]) elif self.scoreParam == 'precision': best_modelRNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[precision_m]) elif self.scoreParam == 'f1_score': best_modelRNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[f1_m]) self.log.info("----------> Score Matrix: "+str(best_modelRNN.metrics_names)) scoreRNN = best_modelRNN.evaluate(X1,y, batch_size=batchsize) self.log.info("----------> Score: "+str(scoreRNN)) self.log.info("----------> Model Params: "+str(best_paramsRNN)) executionTime=time.time() - start self.log.info('----------> Total Execution: '+str(executionTime)+'\\n') XSNN = np.expand_dims(self.testX, axis=2) #predictedData = best_modelRNN.predict_classes(XSNN) predictedData=np.argmax(best_modelRNN.predict(XSNN),axis=1) #predictedData = best_modelSNN.predict(self.testX) if 'accuracy' in str(self.scoreParam): score = accuracy_score(self.testY,predictedData) elif 'recall' in str(self.scoreParam): score = recall_score(self.testY,predictedData, average='macro') elif 'precision' in str(self.scoreParam): score = precision_score(self.testY,predictedData,average='macro') elif 'f1_score' in str(self.scoreParam): score = f1_score(self.testY,predictedData, average='macro') elif 'roc_auc' in str(self.scoreParam): score = roc_auc_score(self.testY,predictedData,average="macro") score = round((score*100),2) self.log.info("----------> Testing Score: "+str(score)) scoreRNN[1] = score if(scoredetails != ''): scoredetails += ',' scoredetails += '{"Model":"Recurrent Neural Network","FeatureEngineering":"'+str(self.best_feature_model)+'","Score":'+str(scoreRNN[1])+'}' self.log.info('Status:- |... DL Algorithm applied: Recurrent Neural Network') self.log.info('Status:- |... Score after hyperparameter tuning: '+str(round(score,2))) if "Recurrent Neural Network (GRU)"in self.modelList: self.log.info("-------> Model Name: Recurrent Neural Network (GRU)") start = time.time() data = self.modelParams["Recurrent Neural Network (GRU)"] print(data) p = {"RNNType":["GRU"], "numRNNLayers":[int(n) for n in data["numRNNLayers"].split(",")], "activation":data["activation"].split(","), "last_activation":data["last_activation"].split(","), "optimizer":data["optimizer"].split(","), "losses":data["losses"].split(","), "first_neuron":[int(n) for n in data["first_layer"].split(",")], "shapes": data["shapes"].split(","), "hidden_layers":[int(n) for n in data["hidden_layers"].split(",")], "dropout": [float(n) for n in data["dropout"].split(",")], "lr": [float(n) for n in data["learning_rate"].split(",")], "batch_size": [int(n) for n in data["batch_size"].split(",")], "epochs": [int(n) for n in data["epochs"].split(",")]} param_combinations = int(np.prod([len(x.split(',')) for x in p])) round_limit = self.roundLimit if not self.roundLimit else min(self.roundLimit, param_combinations) scan_object = talos.Scan(x=X_train, y=y_train, x_val = X_test, y_val = y_test, model = modelObj.RNNClassification, experiment_name='RNN', params=p, round_limit=round_limit, random_method=self.randomMethod ) matrix_type = 'val_acc' if self.scoreParam.lower() == 'accuracy': matrix_type = 'val_acc' elif(self.scoreParam.lower() == 'roc_auc'): matrix_type = 'val_auc' elif(self.scoreParam.lower() == 'recall'): matrix_type = 'val_recall_m' elif(self.scoreParam.lower() == 'precision'): matrix_type = 'val_precision_m' elif(self.scoreParam.lower() == 'f1_score'): matrix_type = 'val_f1_m' analyze_objectRNNGRU = talos.Analyze(scan_object) highValAccRNNGRU = analyze_objectRNNGRU.high(matrix_type) dfRNNGRU = analyze_objectRNNGRU.data newdfRNNGRU = dfRNNGRU.loc[dfRNNGRU[matrix_type] == highValAccRNNGRU] if(len(newdfRNNGRU) > 1): lowLoss = analyze_objectRNNGRU.low('val_loss') newdfRNNGRU = newdfRNNGRU.loc[newdfRNNGRU['val_loss'] == lowLoss] best_paramsRNNGRU["RNNType"] = "GRU" best_paramsRNNGRU["numRNNLayers"] = list(newdfRNNGRU["numRNNLayers"])[0] best_paramsRNNGRU["activation"] = list(newdfRNNGRU["activation"])[0] best_paramsRNNGRU["optimizer"] = list(newdfRNNGRU["optimizer"])[0] best_paramsRNNGRU["losses"] = list(newdfRNNGRU["losses"])[0] best_paramsRNNGRU["first_layer"] = list(newdfRNNGRU["first_neuron"])[0] best_paramsRNNGRU["shapes"] = list(newdfRNNGRU["shapes"])[0] best_paramsRNNGRU["hidden_layers"] = list(newdfRNNGRU["hidden_layers"])[0] best_paramsRNNGRU["dropout"] = list(newdfRNNGRU["dropout"])[0] best_paramsRNNGRU["batch_size"] = list(newdfRNNGRU["batch_size"])[0] best_paramsRNNGRU["epochs"] = list(newdfRNNGRU["epochs"])[0] best_paramsRNNGRU["lr"] = list(newdfRNNGRU["lr"])[0] best_paramsRNNGRU["last_activation"] = list(newdfRNNGRU["last_activation"])[0] best_modelRNNGRU = scan_object.best_model(metric=matrix_type, asc=False) try: if(len(best_paramsRNNGRU["losses"]) == 0): loss_matrix = 'binary_crossentropy' else: loss_matrix = best_paramsRNNGRU["losses"][0] if(len(best_paramsRNNGRU["optimizer"]) == 0): optimizer = 'Nadam' else: optimizer = best_paramsRNNGRU["optimizer"][0] if(best_paramsRNNGRU["batch_size"]== 0): batchsize = 32 else: batchsize = best_paramsRNNGRU["batch_size"][0] except: loss_matrix = 'binary_crossentropy' optimizer = 'Nadam' batchsize = 32 if self.scoreParam == 'accuracy': best_modelRNNGRU.compile(loss=loss_matrix,optimizer=optimizer, metrics=['accuracy']) elif self.scoreParam == 'recall': best_modelRNNGRU.compile(loss=loss_matrix,optimizer=optimizer, metrics=[recall_m]) elif self.scoreParam == 'roc_auc': best_modelRNNGRU.compile(loss=loss_matrix,optimizer=optimizer, metrics=[tf.keras.metrics.AUC()]) elif self.scoreParam == 'precision': best_modelRNNGRU.compile(loss=loss_matrix,optimizer=optimizer, metrics=[precision_m]) elif self.scoreParam == 'f1_score': best_modelRNNGRU.compile(loss=loss_matrix,optimizer=optimizer, metrics=[f1_m]) self.log.info("----------> Score Matrix: "+str(best_modelRNNGRU.metrics_names)) scoreRNNGRU = best_modelRNNGRU.evaluate(X1,y, batch_size=batchsize) self.log.info("----------> Score: "+str(scoreRNNGRU)) self.log.info("----------> Model Params: "+str(best_paramsRNNGRU)) executionTime=time.time() - start self.log.info('----------> Total Execution: '+str(executionTime)+'\\n') XSNN =
np.expand_dims(self.testX, axis=2) #predictedData = best_modelRNNGRU.predict_classes(XSNN) predictedData=np.argmax(best_modelRNNGRU.predict(XSNN),axis=1) #predictedData = best_modelSNN.predict(self.testX) if 'accuracy' in str(self.scoreParam): score = accuracy_score(self.testY,predictedData) elif 'recall' in str(self.scoreParam): score = recall_score(self.testY,predictedData, average='macro') elif 'precision' in str(self.scoreParam): score = precision_score(self.testY,predictedData,average='macro') elif 'f1_score' in str(self.scoreParam): score = f1_score(self.testY,predictedData, average='macro') elif 'roc_auc' in str(self.scoreParam): score = roc_auc_score(self.testY,predictedData,average="macro") score = round((score*100),2) self.log.info("----------> Testing Score: "+str(score)) scoreRNNGRU[1] = score if(scoredetails != ''): scoredetails += ',' scoredetails += '{"Model":"Recurrent Neural Network (GRU)","FeatureEngineering":"'+str(self.best_feature_model)+'","Score":'+str(scoreRNNGRU[1])+'}' self.log.info('Status:- |... DL Algorithm applied: Recurrent Neural Network (GRU)') self.log.info('Status:- |... Score after hyperparameter tuning: '+str(round(score,2))) if "Recurrent Neural Network (LSTM)"in self.modelList: self.log.info("-------> Model Name: Recurrent Neural Network (LSTM)") start = time.time() data = self.modelParams["Recurrent Neural Network (LSTM)"] p = {"RNNType":["LSTM"], "numRNNLayers":[int(n) for n in data["numRNNLayers"].split(",")], "activation":data["activation"].split(","), "last_activation":data["last_activation"].split(","), "optimizer":data["optimizer"].split(","), "losses":data["losses"].split(","), "first_neuron":[int(n) for n in data["first_layer"].split(",")], "shapes": data["shapes"].split(","), "hidden_layers":[int(n) for n in data["hidden_layers"].split(",")], "dropout": [float(n) for n in data["dropout"].split(",")], "lr": [float(n) for n in data["learning_rate"].split(",")], "batch_size": [int(n) for n in data["batch_size"].split(",")], "epochs": [int(n) for n in data["epochs"].split(",")]} param_combinations = int(np.prod([len(x.split(',')) for x in p])) round_limit = self.roundLimit if not self.roundLimit else min(self.roundLimit, param_combinations) scan_object = talos.Scan(x=X_train, y=y_train, x_val = X_test, y_val = y_test, model = modelObj.RNNClassification, experiment_name='RNN', params=p, round_limit=round_limit, random_method=self.randomMethod ) matrix_type = 'val_acc' if self.scoreParam.lower() == 'accuracy': matrix_type = 'val_acc' elif(self.scoreParam.lower() == 'roc_auc'): matrix_type = 'val_auc' elif(self.scoreParam.lower() == 'recall'): matrix_type = 'val_recall_m' elif(self.scoreParam.lower() == 'precision'): matrix_type = 'val_precision_m' elif(self.scoreParam.lower() == 'f1_score'): matrix_type = 'val_f1_m' analyze_objectRNNLSTM = talos.Analyze(scan_object) highValAccRNNLSTM = analyze_objectRNNLSTM.high(matrix_type) dfRNNLSTM = analyze_objectRNNLSTM.data newdfRNNLSTM = dfRNNLSTM.loc[dfRNNLSTM[matrix_type] == highValAccRNNLSTM] if(len(newdfRNNLSTM) > 1): lowLoss = analyze_objectRNNLSTM.low('val_loss') newdfRNNLSTM = newdfRNNLSTM.loc[newdfRNNLSTM['val_loss'] == lowLoss] best_paramsRNNLSTM["RNNType"] = "LSTM" best_paramsRNNLSTM["numRNNLayers"] = list(newdfRNNLSTM["numRNNLayers"])[0] best_paramsRNNLSTM["activation"] = list(newdfRNNLSTM["activation"])[0] best_paramsRNNLSTM["optimizer"] = list(newdfRNNLSTM["optimizer"])[0] best_paramsRNNLSTM["losses"] = list(newdfRNNLSTM["losses"])[0] best_paramsRNNLSTM["first_layer"] = list(newdfRNNLSTM["first_neuron"])[0] best_paramsRNNLSTM["shapes"] = list(newdfRNNLSTM["shapes"])[0] best_paramsRNNLSTM["hidden_layers"] = list(newdfRNNLSTM["hidden_layers"])[0] best_paramsRNNLSTM["dropout"] = list(newdfRNNLSTM["dropout"])[0] best_paramsRNNLSTM["batch_size"] = list(newdfRNNLSTM["batch_size"])[0] best_paramsRNNLSTM["epochs"] = list(newdfRNNLSTM["epochs"])[0] best_paramsRNNLSTM["lr"] = list(newdfRNNLSTM["lr"])[0] best_paramsRNNLSTM["last_activation"] = list(newdfRNNLSTM["last_activation"])[0] best_modelRNNLSTM = scan_object.best_model(metric=matrix_type, asc=False) try: if(len(best_paramsRNNLSTM["losses"]) == 0): loss_matrix = 'binary_crossentropy' else: loss_matrix = best_paramsRNNLSTM["losses"][0] if(len(best_paramsRNNLSTM["optimizer"]) == 0): optimizer = 'Nadam' else: optimizer = best_paramsRNNLSTM["optimizer"][0] if(best_paramsRNNLSTM["batch_size"] == 0): batchsize = 32 else: batchsize = best_paramsRNNLSTM["batch_size"][0] except: loss_matrix = 'binary_crossentropy' optimizer = 'Nadam' batchsize = 32 if self.scoreParam == 'accuracy': best_modelRNNLSTM.compile(loss=loss_matrix,optimizer=optimizer, metrics=['accuracy']) elif self.scoreParam == 'recall': best_modelRNNLSTM.compile(loss=loss_matrix,optimizer=optimizer, metrics=[recall_m]) elif self.scoreParam == 'roc_auc': best_modelRNNLSTM.compile(loss=loss_matrix,optimizer=optimizer, metrics=[tf.keras.metrics.AUC()]) elif self.scoreParam == 'precision': best_modelRNNLSTM.compile(loss=loss_matrix,optimizer=optimizer, metrics=[precision_m]) elif self.scoreParam == 'f1_score': best_modelRNNLSTM.compile(loss=loss_matrix,optimizer=optimizer, metrics=[f1_m]) self.log.info("----------> Score Matrix: "+str(best_modelRNNLSTM.metrics_names)) scoreRNNLSTM = best_modelRNNLSTM.evaluate(X1,y, batch_size=batchsize) self.log.info("----------> Score: "+str(scoreRNNLSTM)) self.log.info("----------> Model Params: "+str(best_paramsRNNLSTM)) executionTime=time.time() - start self.log.info('----------> Total Execution: '+str(executionTime)+'\\n') XSNN = np.expand_dims(self.testX, axis=2) #predictedData = best_modelRNNLSTM.predict_classes(XSNN) predictedData=np.argmax(best_modelRNNLSTM.predict(XSNN),axis=1) #predictedData = best_modelSNN.predict(self.testX) if 'accuracy' in str(self.scoreParam): score = accuracy_score(self.testY,predictedData) elif 'recall' in str(self.scoreParam): score = recall_score(self.testY,predictedData, average='macro') elif 'precision' in str(self.scoreParam): score = precision_score(self.testY,predictedData,average='macro') elif 'f1_score' in str(self.scoreParam): score = f1_score(self.testY,predictedData, average='macro') elif 'roc_auc' in str(self.scoreParam): score = roc_auc_score(self.testY,predictedData,average="macro") score = round((score*100),2) self.log.info("----------> Testing Score: "+str(score)) scoreRNNLSTM[1] = score if(scoredetails != ''): scoredetails += ',' scoredetails += '{"Model":"Recurrent Neural Network (LSTM)","FeatureEngineering":"'+str(self.best_feature_model)+'","Score":'+str(scoreRNNLSTM[1])+'}' self.log.info('Status:- |... DL Algorithm applied: Recurrent Neural Network (LSTM)') self.log.info('Status:- |... Score after hyperparameter tuning: '+str(round(score,2))) if "Convolutional Neural Network (1D)"in self.modelList: self.log.info("-------> Model Name: CNN") start = time.time() data = self.modelParams["Convolutional Neural Network (1D)"] p = {"activation":data["activation"].split(","), "last_activation":data["last_activation"].split(","), "numConvLayers":[int(n) for n in data["numConvLayers"].split(",")], "MaxPool":data["activation"].split(","), "optimizer":data["optimizer"].split(","), "losses":data["losses"].split(","), "first_neuron":[int(n) for n in data["first_layer"].split(",")], "shapes": data["shapes"].split(","), "hidden_layers":[int(n) for n in data["hidden_layers"].split(",")], "dropout": [float(n) for n in data["dropout"].split(",")], "lr": [float(n) for n in data["learning_rate"].split(",")], "batch_size": [int(n) for n in data["batch_size"].split(",")], "epochs": [int(n) for n in data["epochs"].split(",")]} param_combinations = int(np.prod([len(x.split(',')) for x in p])) round_limit = self.roundLimit if not self.roundLimit else min(self.roundLimit, param_combinations) scan_object = talos.Scan(x=X_train, y=y_train, x_val = X_test, y_val = y_test, model = modelObj.CNNClassification, experiment_name='CNN', params=p, round_limit=round_limit, random_method=self.randomMethod ) matrix_type = 'val_acc' if self.scoreParam.lower() == 'accuracy': matrix_type = 'val_acc' elif(self.scoreParam.lower() == 'roc_auc'): matrix_type = 'val_auc' elif(self.scoreParam.lower() == 'recall'): matrix_type = 'val_recall_m' elif(self.scoreParam.lower() == 'precision'): matrix_type = 'val_precision_m' elif(self
.scoreParam.lower() == 'f1_score'): matrix_type = 'val_f1_m' analyze_objectCNN = talos.Analyze(scan_object) highValAccCNN = analyze_objectCNN.high(matrix_type) dfCNN = analyze_objectCNN.data newdfCNN = dfCNN.loc[dfCNN[matrix_type] == highValAccCNN] if(len(newdfCNN) > 1): lowLoss = analyze_objectCNN.low('val_loss') newdfCNN = newdfCNN.loc[newdfCNN['val_loss'] == lowLoss] best_paramsCNN["numConvLayers"] = list(newdfCNN["numConvLayers"]) best_paramsCNN["MaxPool"] = list(newdfCNN["MaxPool"]) best_paramsCNN["activation"] = list(newdfCNN["activation"]) best_paramsCNN["optimizer"] = list(newdfCNN["optimizer"]) best_paramsCNN["losses"] = list(newdfCNN["losses"]) best_paramsCNN["first_layer"] = list(newdfCNN["first_neuron"]) best_paramsCNN["shapes"] = list(newdfCNN["shapes"]) best_paramsCNN["hidden_layers"] = list(newdfCNN["hidden_layers"]) best_paramsCNN["dropout"] = list(newdfCNN["dropout"]) best_paramsCNN["batch_size"] = list(newdfCNN["batch_size"]) best_paramsCNN["epochs"] = list(newdfCNN["epochs"]) best_paramsCNN["lr"] = list(newdfCNN["lr"]) best_paramsCNN["last_activation"] = list(newdfCNN["last_activation"])[0] best_modelCNN = scan_object.best_model(metric='val_acc', asc=True) try: if(len(best_paramsCNN["losses"]) == 0): loss_matrix = 'binary_crossentropy' else: loss_matrix = best_paramsCNN["losses"][0] if(len(best_paramsCNN["optimizer"]) == 0): optimizer = 'Nadam' else: optimizer = best_paramsCNN["optimizer"][0] if(best_paramsCNN["batch_size"] == 0): batchsize = 32 else: batchsize = best_paramsCNN["batch_size"][0] except: loss_matrix = 'binary_crossentropy' optimizer = 'Nadam' batchsize = 32 if self.scoreParam == 'accuracy': best_modelCNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=['accuracy']) elif self.scoreParam == 'recall': best_modelCNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[recall_m]) elif self.scoreParam == 'precision': best_modelCNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[precision_m]) elif self.scoreParam == 'roc_auc': best_modelCNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[tf.keras.metrics.AUC()]) elif self.scoreParam == 'f1_score': best_modelCNN.compile(loss=loss_matrix,optimizer=optimizer, metrics=[f1_m]) self.log.info("----------> Score Matrix: "+str(best_modelCNN.metrics_names)) scoreCNN = best_modelCNN.evaluate(X1,y, batch_size=batchsize) self.log.info("----------> Score: "+str(scoreCNN)) self.log.info("----------> Model Params: "+str(best_paramsCNN)) executionTime=time.time() - start self.log.info('----------> Total Execution: '+str(executionTime)+'\\n') XSNN = np.expand_dims(self.testX, axis=2) #predictedData = best_modelCNN.predict_classes(XSNN) predictedData=np.argmax(best_modelCNN.predict(XSNN),axis=1) #predictedData = best_modelSNN.predict(self.testX) if 'accuracy' in str(self.scoreParam): score = accuracy_score(self.testY,predictedData) elif 'recall' in str(self.scoreParam): score = recall_score(self.testY,predictedData, average='macro') elif 'precision' in str(self.scoreParam): score = precision_score(self.testY,predictedData,average='macro') elif 'f1_score' in str(self.scoreParam): score = f1_score(self.testY,predictedData, average='macro') elif 'roc_auc' in str(self.scoreParam): score = roc_auc_score(self.testY,predictedData,average="macro") score = round((score*100),2) self.log.info("----------> Testing Score: "+str(score)) scoreCNN[1] = score if(scoredetails != ''): scoredetails += ',' scoredetails += '{"Model":"Convolutional Neural Network (1D)","FeatureEngineering":"'+str(self.best_feature_model)+'","Score":'+str(scoreCNN[1])+'}' self.log.info('Status:- |... DL Algorithm applied: Convolutional Neural Network (1D)') self.log.info('Status:- |... Score after hyperparameter tuning: '+str(round(score,2))) modelScore = [] if len(scoreSNN) != 0: modelScore.append(scoreSNN[1]) if len(scoreRNN) != 0: modelScore.append(scoreRNN[1]) if len(scoreRNNGRU) != 0: modelScore.append(scoreRNNGRU[1]) if len(scoreRNNLSTM) != 0: modelScore.append(scoreRNNLSTM[1]) if len(scoreCNN) != 0: modelScore.append(scoreCNN[1]) selectedModel = "" best_params="" if len(scoreSNN) != 0 and max(modelScore) == scoreSNN[1]: selectedModel = "Neural Network" best_model = best_modelSNN best_params = best_paramsSNN elif len(scoreRNN) != 0 and max(modelScore) == scoreRNN[1]: selectedModel = "Recurrent Neural Network" best_model = best_modelRNN best_params = best_paramsRNN elif len(scoreRNNGRU) != 0 and max(modelScore) == scoreRNNGRU[1]: selectedModel = "Recurrent Neural Network (GRU)" best_model = best_modelRNNGRU best_params = best_paramsRNNGRU elif len(scoreRNNLSTM) != 0 and max(modelScore) == scoreRNNLSTM[1]: selectedModel = "Recurrent Neural Network (LSTM)" best_model = best_modelRNNLSTM best_params = best_paramsRNNLSTM elif len(scoreCNN) != 0 and max(modelScore) == scoreCNN[1]: selectedModel = "Convolutional Neural Network (1D)" best_model = best_modelCNN best_params = best_paramsCNN modelScore = max(modelScore) executionTime=time.time() - start self.log.info("-------> ExecutionTime(sec) :"+str(executionTime)+'\\n') self.log.info('Status:- |... Best Algorithm selected: '+str(selectedModel)+' '+str(round(modelScore,2))) self.log.info('-------> Best Params: '+str(best_params)) return selectedModel,modelScore,best_model,best_params,X1,XSNN,scoredetails,loss_matrix,optimizer except Exception as inst: self.log.info( '\\n-----> classificationModel failed!!!.'+str(inst)) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno))<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import pandas as pd import numpy as np from mlxtend.frequent_patterns import apriori, association_rules from mlxtend.preprocessing import TransactionEncoder import matplotlib.pyplot as plt import json import logging import os,sys def hot_encode(x): if(int(x)<= 0): return 0 if(int(x)>= 1): return 1 class associationrules: def __init__(self,dataframe,association_rule_conf,modelparam,invoiceNoFeature,itemFeature): self.minSupport = modelparam['minSupport'] self.metric = modelparam['metric'] self.minThreshold = modelparam['minThreshold'] self.data = dataframe self.invoiceNoFeature = invoiceNoFeature self.itemFeature = itemFeature self.log = logging.getLogger('eion') def apply_associationRules(self,outputLocation): self.data= self.data[[self.itemFeature,self.invoiceNoFeature]] self.data[self.itemFeature] = self.data[self.itemFeature].str.strip() self.data.dropna(axis = 0, subset =[self.invoiceNoFeature], inplace = True) self.data[self.invoiceNoFeature] = self.data[self.invoiceNoFeature].astype('str') self.data = self.data.groupby([self.invoiceNoFeature,self.itemFeature]).size() self.data=self.data.unstack().reset_index().fillna('0').set_index(self.invoiceNoFeature) self.data = self.data.applymap(hot_encode) ohe_df = self.data ''' print(self.data) sys.exit() items = [] for col in list(self.data): ucols = self.data[col].dropna().unique() #print('ucols :',ucols) if len(ucols) > 0: items = items + list(set(ucols) - set(items)) #items = self.data.apply(lambda col: col.unique()) #print(items) #items = (self.data[self.masterColumn].unique()) #print(items) self.log.info("-------> Total Unique Items: "+str(len(items))) encoded_vals = [] for index, row in self.data.iterrows(): labels = {} uncommons = list(set(items) - set(row)) commons = list(set(items).intersection(row)) for uc in uncommons: labels[uc] = 0 for com in commons: labels[com] = 1 encoded_vals.append(labels) ohe_df = pd.DataFrame(encoded_vals) #print(ohe_df) ''' freq_items = apriori(ohe_df, min_support=self.minSupport, use_colnames=True) self.log.info('Status:- |... AssociationRule Algorithm applied: Apriori') if not freq_items.empty: self.log.info("\\n------------ Frequent Item Set --------------- ") self.log.info(freq_items) save_freq_items = pd.DataFrame() save_freq_items["itemsets"] = freq_items["itemsets"].apply(lambda x: ', '.join(list(x))).astype("unicode") outputfile = os.path.join(outputLocation,'frequentItems.csv') save_freq_items.to_csv(outputfile) self.log.info('-------> FreqentItems File Name:'+outputfile) rules = association_rules(freq_items, metric=self.metric, min_threshold=self.minThreshold) if not rules.empty: #rules = rules.sort_values(['confidence', 'lift'], ascending =[False, False]) self.log.info("\\n------------ Rules --------------- ") for index, row in rules.iterrows(): self.log.info("------->Rule: "+ str(row['antecedents']) + "
-> " + str(row['consequents'])) self.log.info("---------->Support: "+ str(row['support'])) self.log.info("---------->Confidence: "+ str(row['confidence'])) self.log.info("---------->Lift: "+ str(row['lift'])) #rules['antecedents'] = lis
try: start_time = time.time() objConvUtility=model_converter(model_path,output_path,input_format,output_format,input_shape) objConvUtility.convert() end_time = time.time() log.info(f"Time required for conversion: {end_time - start_time} sec") log.info(f'\\nConverting {input_format} to {output_format} Successful') output['Convert'] = "Success" except Exception as e: output['Convert'] = "Error" log.info('Error: ' + str(e)) log.error(e, exc_info=True) if 'not supported' in str(e): output['sub error'] = "Not supported" output = json.dumps(output) log.info(f'Output: {output}') return output def convert(config_file): with open(config_file, 'r') as f: config = json.load(f) model_path = config['advance']['aionConversionUtility']['modelpath'] output_path = config['advance']['aionConversionUtility']['deployedlocation'] input_format = get_true_option(config['advance']['aionConversionUtility']['inputModelType'],'').lower() output_format = get_true_option(config['advance']['aionConversionUtility']['outputModelType'],'').lower() if input_format=="keras": input_shape = int(config['advance']['aionConversionUtility']['inputShape']) if input_format!="keras": input_shape = config['advance']['aionConversionUtility']['numberoffeatures'] input_shape = int(input_shape) if input_shape else 0 #input_shape = int(config['advance']['aionConversionUtility']['numberoffeatures']) output = run(model_path, output_path, input_format, output_format, input_shape) print(output)<s> class aionRunTimeUtility: # def __init__(self): # print("AI.ON ConversionUtility function init...") def executeOnRuntime(self,inputModelName,inputDataSet): # print("AI.ON ConversionUtility function starts...") RuntimeType = inputModelName.rsplit('.', 1)[1] inputDataType = inputDataSet.rsplit('.', 1)[1] if((RuntimeType == 'ONNX' or RuntimeType == 'onnx') and (inputDataType.lower()=='json')): # print("Inference through ONNX Runtime started [ML]") import pandas import json with open(inputDataSet) as datafile: data = json.load(datafile) dataframe = pandas.DataFrame(data,index=[0]) import numpy import onnxruntime as rt sess = rt.InferenceSession(inputModelName) input_name = sess.get_inputs()[0].name label_name = sess.get_outputs()[0].name inputsize=sess.get_inputs()[0].shape first_n_column = dataframe.iloc[: , :inputsize[1]] dataset = first_n_column.values if(inputsize[1]!=len(dataframe.columns)): print("Error : Input Data size does not match") return 0 pred_onx = sess.run([label_name], {input_name: dataset.astype(numpy.float32)[0:1]})[0] # for i in range(0, 1): #print("ONNX Runtime Prediction [csv]: ",pred_onx) output = numpy.squeeze(pred_onx) predictions = numpy.squeeze(output) prediction = numpy.argmax(predictions) return(prediction) # print("Inference through ONNX modelcompleted ") if((RuntimeType == 'ONNX' or RuntimeType == 'onnx') and (inputDataType!='json')): import numpy as np import onnxruntime as rt from tensorflow.keras.preprocessing import image sess = rt.InferenceSession(inputModelName) input_name = sess.get_inputs()[0].name label_name = sess.get_outputs()[0].name inputsize=sess.get_inputs()[0].shape img = image.load_img(inputDataSet, target_size=(inputsize[1], inputsize[2])) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) pred_onx = sess.run([label_name], {input_name: x.astype(np.float32)[0:1]})[0] output = np.squeeze(pred_onx) predictions = np.squeeze(output) return(pred_onx) if((RuntimeType == 'TFLITE' or RuntimeType == 'tflite')and (inputDataType=='json')): import numpy as np import tensorflow as tf import pandas from numpy import asarray interpreter = tf.lite.Interpreter(model_path=inputModelName) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() input_shape = input_details[0]['shape'] import pandas import json with open(inputDataSet) as datafile: data = json.load(datafile) dataframe = pandas.DataFrame(data,index=[0]) dataset = dataframe.values XYZ = dataset[:,0:input_shape[1]].astype(float) input_data = asarray(XYZ[0]).reshape((1, input_shape[1])) for i in range(0, 1): input_data = asarray(XYZ[i]).reshape((1,input_shape[1])) interpreter.set_tensor(input_details[0]['index'], input_data.astype(np.float32)[0:1]) interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) predictions = np.squeeze(output_data) prediction = np.argmax(predictions) return(prediction) if((RuntimeType == 'TFLITE' or RuntimeType == 'tflite') and (inputDataType!='json')): import numpy as np from tensorflow.keras.preprocessing import image import os import tensorflow as tf import pandas from numpy import asarray interpreter = tf.lite.Interpreter(model_path=inputModelName) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() input_shape = input_details[0]['shape'] img = image.load_img(inputDataSet, target_size=(input_shape[1], input_shape[2])) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) interpreter.set_tensor(input_details[0]['index'], x.astype(np.float32)[0:1]) interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) predictions = np.squeeze(output_data) prediction = np.argmax(predictions) return(prediction) def runTimeTesting(inputModelName,inputDataSet): objRunTimeUtility=aionRunTimeUtility() return(objRunTimeUtility.executeOnRuntime(inputModelName,inputDataSet)) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> import pandas import numpy import sys import onnxruntime as rt def onnx_runtime_validation(modelfile,datafile): dataframe = pandas.read_csv(datafile) df = dataframe.head(8) dataset = df.values sess = rt.InferenceSession(modelfile) input_name = sess.get_inputs()[0].name label_name = sess.get_outputs()[0].name inputsize=sess.get_inputs()[0].shape XYZ = dataset[:,0:inputsize[1]].astype(float) pred_onx = sess.run([label_name], {input_name: XYZ.astype(numpy.float32)[0:8]})[0] print("Prediction of AION generated/converted model on ONNX runtime for 8 sets of data") for i in range(0, 8): output = numpy.squeeze(pred_onx[i]) predictions = numpy.squeeze(output) prediction = numpy.argmax(predictions) df['predictions'] = predictions result = df.to_json(orient="records") return(result) if __name__ == "__main__": output = onnx_runtime_validation(sys.argv[1],sys.argv[2]) print("predictions:",output) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import numpy as np import pandas as pd from nltk.tokenize import word_tokenize # Private function def unitvec(vec): return vec / np.linalg.norm(vec) def __word_average(vectors, sent, vector_size,key_to_index): """ Compute average word vector for a single doc/sentence. """ try: mean = [] for word in sent: index = key_to_index.get( word, None) if index != None: mean.append( vectors[index] ) if len(mean): return unitvec(np.array(mean).mean(axis=0)) return np.zeros(vector_size) except: raise # Private function def __word_average_list(vectors, docs, embed_size,key_to_index): """ Compute average word vector for multiple docs, where docs had been tokenized. """ try: return np.vstack([__word_average(vectors, sent, embed_size,key_to_index) for sent in docs]) except: raise def load_pretrained(path): df = pd.read_csv(path, index_col=0,sep=' ',quotechar = ' ' , header=None, skiprows=1,encoding_errors= 'replace') return len(df.columns), df def get_model( df:pd.DataFrame): index_to_key = {k:v for k,v in enumerate(df.index)} key_to_index = {v:k for k,v in enumerate(df.index)} df = df.to_numpy() return df, index_to_key, key_to_index def extractFeatureUsingPreTrainedModel(inputCorpus, pretrainedModelPath=None, loaded_model=False,key_to_index={}, embed_size=300): """ Extract feature vector from input Corpus using pretrained Vector model(word2vec,fasttext, glove(converted to word2vec format) """ try: if inputCorpus is None: return None else: if not pretrainedModelPath and ((isinstance(loaded_model, pd.DataFrame) and loaded_model.empty) or (not isinstance(loaded_model, pd.DataFrame) and not loaded_model)): inputCorpusWordVectors = None else: if (isinstance(loaded_model, pd.DataFrame) and not loaded_model.empty) or loaded_model: pretrainedModel = loaded_model else: embed_size, pretrainedModel = load_pretrained(pretrainedModelPath) pretrainedModel, index_to_key,key_to_index = get_model( pretrainedModel) if len(pretrainedModel): input_docs_tokens_list = [word_tokenize(inputDoc) for inputDoc in inputCorpus] inputCorpusWordVectors = __word_average_list(pretrainedModel, input_docs_tokens_list,embed_size,key_to_index) else: inputCorpusWordVectors = None return inputCorpusWordVectors except: raise <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__)))) #from .eda import ExploreTextData <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import pandas as pd import logging import numpy as np import sys from pathlib import Path import nltk from nltk.tokenize import sent_tokenize from nltk import pos_tag from nltk import ngrams from nltk.corpus import wordnet from nltk import RegexpParser from textblob import TextBlob import spacy from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.base import BaseEstimator, TransformerMixin
import urllib.request import zipfile import os from os.path import expanduser import platform from text import TextCleaning as text_cleaner from text.Embedding import extractFeatureUsingPreTrainedModel logEnabled = False spacy_nlp = None def ExtractFeatureCountVectors(ngram_range=(1, 1), max_df=1.0, min_df=1, max_features=None, binary=False): vectorizer = CountVectorizer(ngram_range = ngram_range, max_df = max_df, \\ min_df = min_df, max_features = max_features, binary = binary) return vectorizer def ExtractFeatureTfIdfVectors(ngram_range=(1, 1), max_df=1.0, min_df=1, max_features=None, binary=False, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): vectorizer = TfidfVectorizer(ngram_range = ngram_range, max_df = max_df, \\ min_df = min_df, max_features = max_features, \\ binary = binary, norm = norm, use_idf = use_idf, \\ smooth_idf = smooth_idf, sublinear_tf = sublinear_tf) return vectorizer def GetPOSTags( inputText, getPOSTags_Lib='nltk'): global spacy_nlp tokens_postag_list = [] if (inputText == ""): __Log("debug", "{} function: Input text is not provided".format(sys._getframe().f_code.co_name)) else: if getPOSTags_Lib == 'spacy': if spacy_nlp == None: spacy_nlp = spacy.load('en_core_web_sm') doc = spacy_nlp(inputText) for token in doc: tokens_postag_list.append((token.text, token.tag_)) elif getPOSTags_Lib == 'textblob': doc = TextBlob(inputText) tokens_postag_list = doc.tags else: tokensList = WordTokenize(inputText) tokens_postag_list = pos_tag(tokensList) return tokens_postag_list def GetNGrams( inputText, ngramRange=(1,1)): ngramslist = [] for n in range(ngramRange[0],ngramRange[1]+1): nwordgrams = ngrams(inputText.split(), n) ngramslist.extend([' '.join(grams) for grams in nwordgrams]) return ngramslist def NamedEntityRecognition( inputText): global spacy_nlp neResultList = [] if (inputText == ""): __Log("debug", "{} function: Input text is not provided".format(sys._getframe().f_code.co_name)) else: if spacy_nlp == None: spacy_nlp = spacy.load('en_core_web_sm') doc = spacy_nlp(inputText) neResultList = [(X.text, X.label_) for X in doc.ents] return neResultList def KeywordsExtraction( inputText, ratio=0.2, words = None, scores=False, pos_filter=('NN', 'JJ'), lemmatize=False): keywordsList = [] if (inputText == ""): __Log("debug", "{} function: Input text is not provided".format(sys._getframe().f_code.co_name)) else: keywordsList = keywords(inputText, ratio = ratio, words = words, split=True, scores=scores, pos_filter=pos_filter, lemmatize=lemmatize) return keywordsList def __get_nodes(parent): nounList = [] verbList = [] for node in parent: if type(node) is nltk.Tree: if node.label() == "NP": subList = [] for item in node.leaves(): subList.append(item[0]) nounList.append((" ".join(subList))) elif node.label() == "VP": subList = [] for item in node.leaves(): subList.append(item[0]) verbList.append((" ".join(subList))) #verbList.append(node.leaves()[0][0]) __get_nodes(node) result = {'NP': nounList, 'VP': verbList} return result def ShallowParsing( inputText, lib='spacy'): tags = GetPOSTags(inputText, getPOSTags_Lib=lib) chunk_regex = r""" NBAR: {<DT>?<NN.*|JJ.*>*<NN.*>+} # Nouns and Adjectives, terminated with Nouns VBAR: {<RB.?>*<VB.?>*<TO>?<JJ>*<VB.?>+<VB>?} # Verbs and Verb Phrases NP: {<NBAR>} {<NBAR><IN><NBAR>} # Above, connected with in/of/etc... VP: {<VBAR>} {<VBAR><IN><VBAR>} # Above, connected with in/of/etc... """ rp = RegexpParser(chunk_regex) t = rp.parse(tags) return __get_nodes(t) def SyntacticAndEntityParsing(inputCorpus, featuresList=['POSTags','NGrams','NamedEntityRecognition','KeywordsExtraction','ShallowParsing'], posTagsLib='nltk', ngramRange=(1,1), ke_ratio=0.2, ke_words = None, ke_scores=False, ke_pos_filter=('NN', 'JJ'), ke_lemmatize=False): columnsList = ['Input'] columnsList.extend(featuresList) df = pd.DataFrame(columns=columnsList) df['Input'] = inputCorpus for feature in featuresList: if feature == 'POSTags': df[feature] = inputCorpus.apply(lambda x: GetPOSTags(x, posTagsLib)) if feature == 'NGrams': df[feature] = inputCorpus.apply(lambda x: GetNGrams(x, ngramRange)) if feature == 'NamedEntityRecognition': df[feature] = inputCorpus.apply(lambda x: NamedEntityRecognition(x)) if feature == 'KeywordsExtraction': df[feature] = inputCorpus.apply(lambda x: KeywordsExtraction(x, ratio=ke_ratio, words=ke_words, scores=ke_scores, pos_filter=ke_pos_filter, lemmatize=ke_lemmatize)) if feature == 'ShallowParsing': df[feature] = inputCorpus.apply(lambda x: ShallowParsing(x, lib=posTagsLib)) return df def __Log( logType="info", text=None): if logType.lower() == "exception": logging.exception( text) elif logEnabled: if logType.lower() == "info": logging.info( text) elif logType.lower() == "debug": logging.debug( text) def SentenceTokenize( inputText): return text_cleaner.WordTokenize(inputText) def WordTokenize( inputText, tokenizationLib = 'nltk'): return text_cleaner.WordTokenize(inputText, tokenizationLib) def Lemmatize( inputTokensList, lemmatizationLib = 'nltk'): return text_cleaner.Lemmatize(inputTokensList, lemmatizationLib) def Stemmize( inputTokensList): return text_cleaner.Stemmize(inputTokensList) def ToLowercase( inputText): resultText = "" if inputText is not None and inputText != "": resultText = inputText.lower() return resultText def ToUppercase( inputText): resultText = "" if inputText is not None and inputText != '': resultText = inputText.upper() return resultText def RemoveNoise( inputText, removeNoise_fHtmlDecode = True, removeNoise_fRemoveHyperLinks = True, removeNoise_fRemoveMentions = True, removeNoise_fRemoveHashtags = True, removeNoise_RemoveOrReplaceEmoji = 'remove', removeNoise_fUnicodeToAscii = True, removeNoise_fRemoveNonAscii = True): return text_cleaner.RemoveNoise(inputText, removeNoise_fHtmlDecode, removeNoise_fRemoveHyperLinks, removeNoise_fRemoveMentions, removeNoise_fRemoveHashtags, removeNoise_RemoveOrReplaceEmoji, removeNoise_fUnicodeToAscii, removeNoise_fRemoveNonAscii) def RemoveStopwords( inputTokensList, stopwordsRemovalLib='nltk', stopwordsList = None, extend_or_replace='extend'): return text_cleaner.RemoveStopwords(inputTokensList, stopwordsRemovalLib, stopwordsList, extend_or_replace) def RemoveNumericTokens( inputText, removeNumeric_fIncludeSpecialCharacters=True): return text_cleaner.RemoveNumericTokens(inputText, removeNumeric_fIncludeSpecialCharacters) def RemovePunctuation( inputText, fRemovePuncWithinTokens=False): return text_cleaner.RemovePunctuation(inputText, fRemovePuncWithinTokens) def CorrectSpelling( inputTokensList): return text_cleaner.CorrectSpelling(inputTokensList) def ReplaceAcronym( inputTokensList, acrDict=None): return text_cleaner.ReplaceAcronym(inputTokensList, acrDict) def ExpandContractions( inputText, expandContractions_googleNewsWordVectorPath=None): return text_cleaner.ExpandContractions(inputText, expandContractions_googleNewsWordVectorPath) def get_pretrained_model_path(): try: from appbe.dataPath import DATA_DIR modelsPath = Path(DATA_DIR)/'PreTrainedModels'/'TextProcessing' except: modelsPath = Path('aion')/'PreTrainedModels'/'TextProcessing' if not modelsPath.exists(): modelsPath.mkdir(parents=True, exist_ok=True) return modelsPath def checkAndDownloadPretrainedModel(preTrainedModel, embedding_size=300): models = {'glove':{50:'glove.6B.50d.w2vformat.txt',100:'glove.6B.100d.w2vformat.txt',200:'glove.6B.200d.w2vformat.txt',300:'glove.6B.300d.w2vformat.txt'}, 'fasttext':{300:'wiki-news-300d-1M.vec'}} supported_models = [x for y in models.values() for x in y.values()] embedding_sizes = {x:y.keys() for x,y in models.items()} preTrainedModel = preTrainedModel.lower() if preTrainedModel not in models.keys(): raise ValueError(f'model not supported: {preTrainedModel}') if embedding_size not in embedding_sizes[preTrainedModel]: raise ValueError(f"Embedding size '{embedding_size}' not supported for {preTrainedModel}") selected_model = models[preTrainedModel][embedding_size] modelsPath = get_pretrained_model_path() p = modelsPath.glob('**/*') modelsDownloaded = [x.name for x in p if x.name in supported_models] if selected_model not in modelsDownloaded: if preTrainedModel == "glove": try: local_file_path = modelsPath/f"glove.6B.{embedding_size}d.w2vformat.txt" file_test, header_test = urllib.request.urlretrieve(f'https://aion-pretrained-models.s3.ap-south-1.amazonaws.com/text/glove.6B.{embedding_size}d.w2vformat.txt', local_file_path) except Exception as e: raise ValueError("Error: unable to download glove pretrained model, please try again or download it manually and placed it at {}. ".format(modelsPath)+str(e)) elif preTrainedModel == "fasttext": try: local_file_path = modelsPath/"wiki-news-300d-1M.vec.zip" url = 'https://aion-pretrained-models.s3.ap-south-1.amazonaws.com/text/wiki-news-300d-1M.vec.zip' file_test, header_test = urllib.request.urlretrieve(url, local_file_path) with zipfile.ZipFile(local_file_path) as zip_ref: zip_ref.extractall(modelsPath) Path(local_file_path).unlink() except Exception as e: raise ValueError("Error: unable to download fastText pretrained model, please try again or download it manually and placed it at {}. ".format(location)+str(e)) return modelsPath/selected_model def load_pretrained(path): embeddings = {} word = '' with open(path, 'r', encoding="utf8") as f: header = f.readline() header = header.split(' ') vocab_size = int(header[0]) embed_size = int(header[1]) for i in range(vocab_size): data = f.readline().strip().split(' ') word = data[0] embeddings[word] = [float(x) for x in data[1:]] return embeddings class TextProcessing(BaseEstimator, TransformerMixin): def __init__(self, functionSequence = ['RemoveNoise','ExpandContractions','Normalize','ReplaceAcronym', 'CorrectSpelling','RemoveStopwords','RemovePunctuation','RemoveNumericTokens'], fRemoveNoise = True, fExpandContractions = False, fNormalize = True, fReplaceAcronym = False, fCorrectSpelling = False, fRemoveStopwords = True, fRemovePunctuation = True, fRemoveNumericTokens = True, removeNoise_fHtmlDecode = True, removeNoise_fRemoveHyperLinks = True, removeNoise_fRemoveMentions = True, removeNoise_fRemoveHashtags = True, removeNoise_RemoveOrReplaceEmoji = 'remove', removeNoise_fUnicodeToAscii = True, removeNoise_fRemoveNonAscii = True, tokenizationLib='nltk', normalizationMethod = 'Lemmatization', lemmatizationLib = 'nltk', acronymDict = None, stopwordsRemovalLib = 'nltk', stopwordsList = None, extend_or_replace_
stopwordslist = 'extend', removeNumeric_fIncludeSpecialCharacters = True, fRemovePuncWithinTokens = False, data_path = None ): global logEnabled #logEnabled = EnableLogging self.functionSequence = functionSequence self.fRemoveNoise = fRemoveNoise self.fExpandContractions = fExpandContractions self.fNormalize = fNormalize self.fReplaceAcronym = fReplaceAcronym self.fCorrectSpelling = fCorrectSpelling self.fRemoveStopwords = fRemoveStopwords self.fRemovePunctuation = fRemovePunctuation self.fRemoveNumericTokens = fRemoveNumericTokens self.removeNoise_fHtmlDecode = removeNoise_fHtmlDecode self.removeNoise_fRemoveHyperLinks = removeNoise_fRemoveHyperLinks self.removeNoise_fRemoveMentions = removeNoise_fRemoveMentions self.removeNoise_fRemoveHashtags = removeNoise_fRemoveHashtags self.removeNoise_RemoveOrReplaceEmoji = removeNoise_RemoveOrReplaceEmoji self.removeNoise_fUnicodeToAscii = removeNoise_fUnicodeToAscii self.removeNoise_fRemoveNonAscii = removeNoise_fRemoveNonAscii self.tokenizationLib = tokenizationLib self.normalizationMethod = normalizationMethod self.lemmatizationLib = lemmatizationLib self.acronymDict = acronymDict self.stopwordsRemovalLib = stopwordsRemovalLib self.stopwordsList = stopwordsList self.extend_or_replace_stopwordslist = extend_or_replace_stopwordslist self.removeNumeric_fIncludeSpecialCharacters = removeNumeric_fIncludeSpecialCharacters self.fRemovePuncWithinTokens = fRemovePuncWithinTokens self.data_path = data_path self.fit_and_transformed_ = False def fit(self, x, y=None): return self def transform(self, x): x = map(lambda inputText: text_cleaner.cleanText(inputText, functionSequence = self.functionSequence, fRemoveNoise = self.fRemoveNoise, fExpandContractions = self.fExpandContractions, fNormalize = self.fNormalize, fReplaceAcronym = self.fReplaceAcronym, fCorrectSpelling = self.fCorrectSpelling, fRemoveStopwords = self.fRemoveStopwords, fRemovePunctuation = self.fRemovePunctuation, fRemoveNumericTokens = self.fRemoveNumericTokens, removeNoise_fHtmlDecode = self.removeNoise_fHtmlDecode, removeNoise_fRemoveHyperLinks = self.removeNoise_fRemoveHyperLinks, removeNoise_fRemoveMentions = self.removeNoise_fRemoveMentions , removeNoise_fRemoveHashtags = self.removeNoise_fRemoveHashtags, removeNoise_RemoveOrReplaceEmoji = self.removeNoise_RemoveOrReplaceEmoji, removeNoise_fUnicodeToAscii = self.removeNoise_fUnicodeToAscii, removeNoise_fRemoveNonAscii = self.removeNoise_fRemoveNonAscii, tokenizationLib = self.tokenizationLib, normalizationMethod = self.normalizationMethod, lemmatizationLib = self.lemmatizationLib, acronymDict = self.acronymDict, stopwordsRemovalLib = self.stopwordsRemovalLib, stopwordsList = self.stopwordsList, extend_or_replace_stopwordslist = self.extend_or_replace_stopwordslist, removeNumeric_fIncludeSpecialCharacters = self.removeNumeric_fIncludeSpecialCharacters, fRemovePuncWithinTokens = self.fRemovePuncWithinTokens), x) x = pd.Series(list(x)) if hasattr(self, 'fit_and_transformed_') and not self.fit_and_transformed_: self.fit_and_transformed_ = True if self.data_path and Path(self.data_path).exists(): x.to_csv(Path(self.data_path)/'text_cleaned.csv', index=False) return x def get_feature_names_out(self): return ['tokenize'] class wordEmbedding(BaseEstimator, TransformerMixin): def __init__(self, preTrainedModel, embeddingSize=300,external_model=None,external_model_type='binary'): self.number_of_features = 0 self.embeddingSize = embeddingSize self.preTrainedModel = preTrainedModel.lower() self.external_model=external_model self.external_model_type = external_model_type if self.preTrainedModel == "glove": self.preTrainedModelpath = f'glove.6B.{self.embeddingSize}d.w2vformat.txt' self.binary = False elif self.preTrainedModel == "fasttext": self.preTrainedModelpath = 'wiki-news-300d-1M.vec' self.binary = False else: raise ValueError(f'Model ({self.preTrainedModel}) not supported') def fit(self, x, y=None): return self def transform(self, x): if ((isinstance(self.external_model, pd.DataFrame) and not self.external_model.empty) or (not isinstance(self.external_model, pd.DataFrame) and self.external_model)): if self.preTrainedModel == "fasttext" and self.external_model_type == 'binary': print('Transforming using external binary') extracted = np.vstack([self.external_model.get_sentence_vector( sentense) for sentense in x]) else: print('Transforming using external vector') extracted = extractFeatureUsingPreTrainedModel(x, pretrainedModelPath=None, loaded_model=self.external_model, embed_size=300) else: print('Transforming using Vector') models_path = checkAndDownloadPretrainedModel(self.preTrainedModel, self.embeddingSize) extracted = extractFeatureUsingPreTrainedModel(x, models_path) self.number_of_features = extracted.shape[1] return extracted def get_feature_names_out(self): return [str(x) for x in range(self.number_of_features)] def get_feature_names(self): return self.get_feature_names_out() def getProcessedPOSTaggedData(pos_tagged_data): def get_wordnet_post(tag): if tag.startswith('V'): return wordnet.VERB elif tag.startswith('J'): return wordnet.ADJ elif tag.startswith('R'): return wordnet.ADV else: return wordnet.NOUN def process_pos_tagged_data(text): processed_text = [f"{t[0]}_{get_wordnet_post(t[1])}" for t in text] processed_text = " ".join(processed_text) return processed_text processed_pos_tagged_data = pos_tagged_data.apply(process_pos_tagged_data) return processed_pos_tagged_data class PosTagging(BaseEstimator, TransformerMixin): def __init__(self, posTagsLib, data_path): self.posTagsLib = posTagsLib self.fit_and_transformed_ = False self.data_path = data_path def fit(self, x, y=None): return self def transform(self, x): parsing_output = SyntacticAndEntityParsing(x, featuresList=['POSTags'], posTagsLib=self.posTagsLib) output = getProcessedPOSTaggedData(parsing_output['POSTags']) if not self.fit_and_transformed_: self.fit_and_transformed_ = True if self.data_path and Path(self.data_path).exists(): output.to_csv(Path(self.data_path)/'pos_tagged.csv', index=False) return output <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import re import string import sys import demoji #demoji.download_codes() import nltk import spacy from nltk.corpus import stopwords from bs4 import BeautifulSoup from text_unidecode import unidecode from textblob import TextBlob from spellchecker import SpellChecker from nltk import pos_tag from nltk.tokenize import word_tokenize from nltk.corpus import wordnet from nltk.stem.wordnet import WordNetLemmatizer from nltk.stem.porter import PorterStemmer from spacy.lang.en import English from collections import defaultdict import contractions spacy_nlp = None def WordTokenize( inputText, tokenizationLib = 'nltk'): tokenList = [] if inputText is not None and inputText != "": tokenizationLib = tokenizationLib.lower() if tokenizationLib == 'nltk': tokenList = word_tokenize(inputText) elif tokenizationLib == 'textblob': tbObj = TextBlob(inputText) tokenList = tbObj.words elif tokenizationLib == 'spacy': nlp = English() nlpDoc = nlp(inputText) for token in nlpDoc: tokenList.append(token.text) elif tokenizationLib == 'keras': from tensorflow.keras.preprocessing.text import text_to_word_sequence tokenList = text_to_word_sequence(inputText) else: tokenList = word_tokenize(inputText) return tokenList def SentenceTokenize( inputText): sentenceList = [] if inputText is not None and inputText != "": sentenceList = sent_tokenize(inputText) return sentenceList def Lemmatize(inputTokensList, lemmatizationLib = 'nltk'): global spacy_nlp lemmatized_list= [] lemmatizationLib = lemmatizationLib.lower() if (inputTokensList is not None) and (len(inputTokensList)!=0): if (lemmatizationLib == 'textblob'): inputText = " ".join(inputTokensList) sent = TextBlob(inputText) tag_dict = {"J": 'a', "N": 'n', "V": 'v', "R": 'r'} words_and_tags = [(w, tag_dict.get(pos[0], 'n')) for w, pos in sent.tags] lemmatized_list = [wd.lemmatize(tag) for wd, tag in words_and_tags] if (lemmatizationLib == 'spacy'): inputText = " ".join(inputTokensList) if spacy_nlp == None: spacy_nlp = spacy.load('en_core_web_sm') doc = spacy_nlp(inputText) for token in doc: if token.text != token.lemma_: if token.lemma_ != "-PRON-": lemmatized_list.append(token.lemma_) else: lemmatized_list.append(token.text) else: lemmatized_list.append(token.text) else: tag_map = defaultdict(lambda : wordnet.NOUN) tag_map['J'] = wordnet.ADJ tag_map['V'] = wordnet.VERB tag_map['R'] = wordnet.ADV wnLemmatizer = WordNetLemmatizer() token_tags = pos_tag(inputTokensList) lemmatized_list = [wnLemmatizer.lemmatize(token, tag_map[tag[0]]) for token, tag in token_tags] return lemmatized_list def Stemmize(inputTokensList): stemmedTokensList= [] if (inputTokensList is not None) and (len(inputTokensList)!=0): porterStemmer = PorterStemmer() stemmedTokensList = [porterStemmer.stem(token) for token in inputTokensList] return stemmedTokensList def ToLowercase(inputText): resultText = "" if inputText is not None and inputText != "": resultText = inputText.lower() return resultText def ToUppercase(inputText): resultText = "" if inputText is not None and inputText != '': resultText = inputText.upper() return resultText def RemoveNoise(inputText, removeNoise_fHtmlDecode = True, removeNoise_fRemoveHyperLinks = True, removeNoise_fRemoveMentions = True, removeNoise_fRemoveHashtags = True, removeNoise_RemoveOrReplaceEmoji = 'remove', removeNoise_fUnicodeToAscii = True, removeNoise_fRemoveNonAscii = True): if inputText is not None and inputText != "": if removeNoise_fHtmlDecode == True: inputText = BeautifulSoup(inputText, "html.parser").text if removeNoise_fRemoveHyperLinks == True: inputText = re.sub(r'https?:\\/\\/\\S*', '', inputText, flags=re.MULTILINE) if removeNoise_fRemoveMentions == True: inputText = re.sub('[@]+\\S+','', inputText) if removeNoise_fRemoveHashtags == True: inputText = re.sub('[#]+\\S+','', inputText) if removeNoise_RemoveOrReplaceEmoji == 'remove': inputText = demoji.replace(inputText, "") elif removeNoise_RemoveOrReplaceEmoji == 'replace': inputText = demoji.replace_with_desc(inputText, " ") if removeNoise_fUnicodeToAscii == True: inputText = unidecode(inputText) if removeNoise_fRemoveNonAscii == True: inputText= re.sub(r'[^\\x00-\\x7F]+',' ', inputText) inputText = re.sub(r'\\s+', ' ', inputText) inputText = inputText.strip() return inputText def RemoveStopwords(inputTokensList, stopwordsRemovalLib='nltk', stopwordsList = None, extend_or_replace='extend'): resultTokensList = [] if (inputTokensList is not None) and (len(inputTokensList)!=0): stopwordsRemovalLib= stopwordsRemovalLib.lower() if stopwordsRemovalLib == 'spacy': nlp = English() stopwordRemovalList = nlp.Defaults.stop_words else: stopwordRemovalList = set(stopwords.words('english')) if extend_or_replace == 'replace': if stopwordsList is not None: stopwordRemovalList = set(stopwordsList)
else: if stopwordsList: stopwordRemovalList = stopwordRemovalList.union(set(stopwordsList)) resultTokensList = [word for word in inputTokensList if word not in stopwordRemovalList] return resultTokensList def RemoveNumericTokens(inputText, removeNumeric_fIncludeSpecialCharacters=True): resultText = "" if inputText is not None and inputText != "": if removeNumeric_fIncludeSpecialCharacters == True: #Remove tokens having numbers and punctuations resultText = re.sub(r'\\b\\d+[^a-zA-Z]*\\d*\\b',' ', inputText) else: #Remove only numeric tokens resultText = re.sub(r'\\b\\d+\\b','', inputText) # convert consecutive whitespaces to single space in the results resultText = re.sub(r'\\s+', ' ', resultText) return resultText def RemovePunctuation(inputText, fRemovePuncWithinTokens=False): resultText = "" if inputText is not None and len(inputText) != 0: if fRemovePuncWithinTokens == True: resultText = inputText.translate(str.maketrans("","", string.punctuation)) else: punctuationList = list(string.punctuation) tokensList = WordTokenize(inputText) resultTokensList = [word for word in tokensList if word not in punctuationList] resultText = " ".join(resultTokensList) resultText = re.sub(r'\\s+', ' ', resultText) return resultText def CorrectSpelling(inputTokensList): correctedTokensList = [] if (inputTokensList is not None) and (len(inputTokensList)!=0): spell = SpellChecker() for word in inputTokensList: word = word.lower() if word not in spell: word = spell.correction(word) if word: correctedTokensList.append(word) return correctedTokensList def ReplaceAcronym(inputTokensList, acrDict=None): resultTokensList = [] if (inputTokensList is not None) and (len(inputTokensList)!=0): if ((acrDict is not None) and (len(acrDict) != 0)): acrDictLowercase = dict((key.lower(), value.lower()) for key, value in acrDict.items()) resultTokensList = [acrDictLowercase.get(token.lower(), token.lower()) for token in inputTokensList] else: resultTokensList = inputTokensList return resultTokensList def ExpandContractions(inputText): resultText = "" if inputText != '': resultText = contractions.fix(inputText) return resultText def cleanText( inputText, functionSequence = ['RemoveNoise','ExpandContractions','Normalize','ReplaceAcronym', 'CorrectSpelling','RemoveStopwords','RemovePunctuation','RemoveNumericTokens'], fRemoveNoise = True, fExpandContractions = False, fNormalize = True, fReplaceAcronym = False, fCorrectSpelling = False, fRemoveStopwords = True, fRemovePunctuation = True, fRemoveNumericTokens = True, removeNoise_fHtmlDecode = True, removeNoise_fRemoveHyperLinks = True, removeNoise_fRemoveMentions = True, removeNoise_fRemoveHashtags = True, removeNoise_RemoveOrReplaceEmoji = 'remove', removeNoise_fUnicodeToAscii = True, removeNoise_fRemoveNonAscii = True, tokenizationLib='nltk', normalizationMethod = 'Lemmatization', lemmatizationLib = 'nltk', acronymDict = None, stopwordsRemovalLib = 'nltk', stopwordsList = None, extend_or_replace_stopwordslist = 'extend', removeNumeric_fIncludeSpecialCharacters = True, fRemovePuncWithinTokens = False ): if inputText is not None and inputText != "": for function in functionSequence: if function == 'RemoveNoise': if (fRemoveNoise == True): inputText = RemoveNoise(inputText, removeNoise_fHtmlDecode, removeNoise_fRemoveHyperLinks, removeNoise_fRemoveMentions, removeNoise_fRemoveHashtags, removeNoise_RemoveOrReplaceEmoji, removeNoise_fUnicodeToAscii, removeNoise_fRemoveNonAscii) if function == 'ExpandContractions': if (fExpandContractions == True): inputText = ExpandContractions(inputText) if function == 'Normalize': if (fNormalize == True): inputTokens = WordTokenize(inputText, tokenizationLib) if (normalizationMethod == 'Stemming'): inputTokens = Stemmize(inputTokens) else: inputTokens = Lemmatize(inputTokens, lemmatizationLib) inputText = " ".join(inputTokens) if function == 'ReplaceAcronym': if fReplaceAcronym == True and (acronymDict is not None) and acronymDict != 'None': inputText = ToLowercase(inputText) inputTokens = WordTokenize(inputText, tokenizationLib) inputTokens= ReplaceAcronym(inputTokens, acronymDict) inputText = " ".join(inputTokens) if function == 'CorrectSpelling': if (fCorrectSpelling == True): try: inputTokens = WordTokenize(inputText, tokenizationLib) inputTokens = CorrectSpelling(inputTokens) inputText = " ".join(inputTokens) except Exception as e: print(e) pass if function == 'RemoveStopwords': if (fRemoveStopwords == True): inputText = ToLowercase(inputText) inputTokens = WordTokenize(inputText, tokenizationLib) inputTokens = RemoveStopwords(inputTokens, stopwordsRemovalLib, stopwordsList, extend_or_replace_stopwordslist) inputText = " ".join(inputTokens) if function == 'RemovePunctuation': if (fRemovePunctuation == True): inputText = RemovePunctuation(inputText, fRemovePuncWithinTokens) if function == 'RemoveNumericTokens': if (fRemoveNumericTokens == True): inputText = RemoveNumericTokens(inputText, removeNumeric_fIncludeSpecialCharacters) inputText = ToLowercase(inputText) return inputText <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import openai import tiktoken import numpy as np import pandas as pd from pathlib import Path from openai.embeddings_utils import get_embedding from sklearn.base import BaseEstimator, TransformerMixin class embedding(BaseEstimator, TransformerMixin): def __init__(self, embedding_engine='Text-Embedding', embedding_ctx_size=8191, encoding_method='cl100k_base'): self.embedding_engine = embedding_engine self.embedding_ctx_size = embedding_ctx_size self.encoding_method = encoding_method self.number_of_features = 1536 def fit(self,X,y=None): return self def transform(self, X): setup_openai() X = map(lambda text: self.len_safe_get_embedding( text), X) return list(X) def split_large_text(self, large_text): encoding = tiktoken.get_encoding( self.encoding_method) tokenized_text = encoding.encode(large_text) chunks = [] current_chunk = [] current_length = 0 for token in tokenized_text: current_chunk.append(token) current_length += 1 if current_length >= self.embedding_ctx_size: chunks.append(encoding.decode(current_chunk).rstrip(' .,;')) current_chunk = [] current_length = 0 if current_chunk: chunks.append(encoding.decode(current_chunk).rstrip(' .,;')) return chunks def len_safe_get_embedding(self, text): chunk_embeddings = [] chunk_lens = [] for chunk in self.split_large_text(text): chunk_embeddings.append( get_embedding(chunk, engine=self.embedding_engine)) chunk_lens.append(len(chunk)) chunk_embeddings = np.average(chunk_embeddings, axis=0, weights=None) chunk_embeddings = chunk_embeddings / np.linalg.norm(chunk_embeddings) # normalizes length to 1 chunk_embeddings = chunk_embeddings.tolist() return chunk_embeddings def get_feature_names_out(self): return [str(x) for x in range(self.number_of_features)] def get_feature_names(self): return self.get_feature_names_out() """ Open AI initialization has to be done separately as follows: 1. During training read the parameters from user a. from config b. SQLite database c. From Json file """ class setup_openai(): def __init__( self, config=None): param_keys = ['api_type','api_key','api_base','api_version'] if isinstance(config, dict): valid_params = {x:y for x,y in config.items() if x in param_keys} self._update_params(valid_params) elif self._is_sqlite(): self._update_params( self._get_cred_from_sqlite()) elif ((Path(__file__).parent.parent/'etc')/'openai.json').exists(): with open(((Path(__file__).parent.parent/'etc')/'openai.json'), 'r') as f: import json params = json.load(f) valid_params = {x:y for x,y in params.items() if x in param_keys} self._update_params(valid_params) else: raise ValueError('Open AI credentials are not provided.') def _is_sqlite(self): try: from AION.appbe.sqliteUtility import sqlite_db from AION.appbe.dataPath import DATA_DIR db_dir = Path(DATA_DIR)/'sqlite' db_file = 'config.db' if (db_dir/db_file).exists(): sqlite_obj = sqlite_db(db_dir,db_file) if sqlite_obj.table_exists('openai'): return True return False except: return False def _get_cred_from_sqlite(self): from AION.appbe.sqliteUtility import sqlite_db from AION.appbe.dataPath import DATA_DIR db_dir = Path(DATA_DIR)/'sqlite' db_file = 'config.db' sqlite_obj = sqlite_db(db_dir,db_file) data = sqlite_obj.read_data('openai')[0] param_keys = ['api_type','api_key','api_base','api_version'] return dict((x,y) for x,y in zip(param_keys,data)) def _update_params(self, valid_params): for key, value in valid_params.items(): if key == 'api_type': openai.api_type = value elif key == 'api_key': openai.api_key = value elif key == 'api_base': openai.api_base = value elif key == 'api_version': openai.api_version = value <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import logging from distutils.util import strtobool import numpy as np import pandas as pd from text import TextProcessing from sklearn.preprocessing import FunctionTransformer from sklearn.base import BaseEstimator, TransformerMixin from pathlib import Path external_model = None external_model_type = None def get_one_true_option(d, default_value): if isinstance(d, dict): for k,v in d.items(): if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True): return k return default_value class textProfiler(): def __init__(self): self.log = logging.getLogger('eion') self.embedder = None self.bert_embedder_size = 0 def textCleaning(self, textCorpus): textProcessor = TextProcessing.TextProcessing() textCorpus = textProcessor.transform(textCorpus) return(textCorpus) def sentense_encode(self, item): return self.model.encode(item,show_progress_bar=False) def get_embedding_size(self, model, config): if model in config.keys(): config = config[model] else: config = {} model = model.lower() if model == 'glove': size_map = {'default': 100, '50d': 50, '100d':100, '200d': 200, '300d':300} size_enabled = get_one_true_option(config, 'default') return size_map[size_enabled] elif model == 'fasttext': size_map = {'default': 300} size_enabled = get_one_true_option(config, 'default') return size_map[size_enabled] elif model == 'latentsemanticanalysis': size_map = {'default': 100, '50d': 50
, '100d':100, '200d': 200, '300d':300,'500d':500,'700d':700,'1000d':1000} size_enabled = get_one_true_option(config, 'default') return size_map[size_enabled] elif model in ['tf_idf', 'countvectors']: return int(config.get('maxFeatures', 2000)) else: # for word2vec return 300 def cleaner(self, conf_json, pipeList, data_path=None): cleaning_kwargs = {} textCleaning = conf_json.get('textCleaning') self.log.info("Text Preprocessing config: ",textCleaning) cleaning_kwargs['fRemoveNoise'] = strtobool(textCleaning.get('removeNoise', 'True')) cleaning_kwargs['fNormalize'] = strtobool(textCleaning.get('normalize', 'True')) cleaning_kwargs['fReplaceAcronym'] = strtobool(textCleaning.get('replaceAcronym', 'False')) cleaning_kwargs['fCorrectSpelling'] = strtobool(textCleaning.get('correctSpelling', 'False')) cleaning_kwargs['fRemoveStopwords'] = strtobool(textCleaning.get('removeStopwords', 'True')) cleaning_kwargs['fRemovePunctuation'] = strtobool(textCleaning.get('removePunctuation', 'True')) cleaning_kwargs['fRemoveNumericTokens'] = strtobool(textCleaning.get('removeNumericTokens', 'True')) cleaning_kwargs['normalizationMethod'] = get_one_true_option(textCleaning.get('normalizeMethod'), 'lemmatization').capitalize() removeNoiseConfig = textCleaning.get('removeNoiseConfig') if type(removeNoiseConfig) is dict: cleaning_kwargs['removeNoise_fHtmlDecode'] = strtobool(removeNoiseConfig.get('decodeHTML', 'True')) cleaning_kwargs['removeNoise_fRemoveHyperLinks'] = strtobool(removeNoiseConfig.get('removeHyperLinks', 'True')) cleaning_kwargs['removeNoise_fRemoveMentions'] = strtobool(removeNoiseConfig.get('removeMentions', 'True')) cleaning_kwargs['removeNoise_fRemoveHashtags'] = strtobool(removeNoiseConfig.get('removeHashtags', 'True')) cleaning_kwargs['removeNoise_RemoveOrReplaceEmoji'] = 'remove' if strtobool(removeNoiseConfig.get('removeEmoji', 'True')) else 'replace' cleaning_kwargs['removeNoise_fUnicodeToAscii'] = strtobool(removeNoiseConfig.get('unicodeToAscii', 'True')) cleaning_kwargs['removeNoise_fRemoveNonAscii'] = strtobool(removeNoiseConfig.get('removeNonAscii', 'True')) acronymConfig = textCleaning.get('acronymConfig') if type(acronymConfig) is dict: cleaning_kwargs['acronymDict'] = acronymConfig.get('acronymDict', None) stopWordsConfig = textCleaning.get('stopWordsConfig') if type(stopWordsConfig) is dict: cleaning_kwargs['stopwordsList'] = stopWordsConfig.get('stopwordsList', '[]') if isinstance(cleaning_kwargs['stopwordsList'], str): if cleaning_kwargs['stopwordsList'] != '[]': cleaning_kwargs['stopwordsList'] = cleaning_kwargs['stopwordsList'][1:-1].split(',') else: cleaning_kwargs['stopwordsList'] = [] cleaning_kwargs['extend_or_replace_stopwordslist'] = 'replace' if strtobool(stopWordsConfig.get('replace', 'True')) else 'extend' removeNumericConfig = textCleaning.get('removeNumericConfig') if type(removeNumericConfig) is dict: cleaning_kwargs['removeNumeric_fIncludeSpecialCharacters'] = strtobool(removeNumericConfig.get('removeNumeric_IncludeSpecialCharacters', 'True')) removePunctuationConfig = textCleaning.get('removePunctuationConfig') if type(removePunctuationConfig) is dict: cleaning_kwargs['fRemovePuncWithinTokens'] = strtobool(removePunctuationConfig.get('removePuncWithinTokens', 'False')) cleaning_kwargs['fExpandContractions'] = strtobool(textCleaning.get('expandContractions', 'False')) libConfig = textCleaning.get('libConfig') if type(libConfig) is dict: cleaning_kwargs['tokenizationLib'] = get_one_true_option(libConfig.get('tokenizationLib'), 'nltk') cleaning_kwargs['lemmatizationLib'] = get_one_true_option(libConfig.get('lemmatizationLib'), 'nltk') cleaning_kwargs['stopwordsRemovalLib'] = get_one_true_option(libConfig.get('stopwordsRemovalLib'), 'nltk') if data_path: cleaning_kwargs['data_path'] = data_path textProcessor = TextProcessing.TextProcessing(**cleaning_kwargs) pipeList.append(("TextProcessing",textProcessor)) textFeatureExtraction = conf_json.get('textFeatureExtraction') if strtobool(textFeatureExtraction.get('pos_tags', 'False')): pos_tags_lib = get_one_true_option(textFeatureExtraction.get('pos_tags_lib'), 'nltk') posTagger = TextProcessing.PosTagging( pos_tags_lib, data_path) pipeList.append(("posTagger",posTagger)) return pipeList def embedding(self, conf_json, pipeList): ngram_min = 1 ngram_max = 1 textFeatureExtraction = conf_json.get('textFeatureExtraction') if strtobool(textFeatureExtraction.get('n_grams', 'False')): n_grams_config = textFeatureExtraction.get("n_grams_config") ngram_min = int(n_grams_config.get('min_n', 1)) ngram_max = int(n_grams_config.get('max_n', 1)) if (ngram_min < 1) or ngram_min > ngram_max: ngram_min = 1 ngram_max = 1 invalidNgramWarning = 'WARNING : invalid ngram config.\\nUsing the default values min_n={}, max_n={}'.format(ngram_min, ngram_max) self.log.info(invalidNgramWarning) ngram_range_tuple = (ngram_min, ngram_max) textConversionMethod = conf_json.get('textConversionMethod') conversion_method = get_one_true_option(textConversionMethod, None) embedding_size_config = conf_json.get('embeddingSize', {}) embedding_size = self.get_embedding_size(conversion_method, embedding_size_config) if conversion_method.lower() == "countvectors": vectorizer = TextProcessing.ExtractFeatureCountVectors( ngram_range=ngram_range_tuple,max_features=embedding_size) pipeList.append(("vectorizer",vectorizer)) self.log.info('----------> Conversion Method: CountVectors') elif conversion_method.lower() in ["fasttext","glove"]: embedding_method = conversion_method wordEmbeddingVecotrizer = TextProcessing.wordEmbedding(embedding_method, embedding_size) pipeList.append(("vectorizer",wordEmbeddingVecotrizer)) self.log.info('----------> Conversion Method: '+str(conversion_method)) elif conversion_method.lower() == "openai": from text.openai_embedding import embedding as openai_embedder vectorizer = openai_embedder() pipeList.append(("vectorizer",vectorizer)) self.log.info('----------> Conversion Method: '+str(conversion_method)) elif conversion_method.lower() == "sentencetransformer_distilroberta": from sentence_transformers import SentenceTransformer embedding_pretrained = {'model':'sentence-transformers/msmarco-distilroberta-base-v2','size': 768} self.bert_embedder_size = embedding_pretrained['size'] self.model = SentenceTransformer(embedding_pretrained['model']) self.embedder = FunctionTransformer(self.sentense_encode, feature_names_out = self.sentence_transformer_output) pipeList.append(("vectorizer",self.embedder)) self.log.info('----------> Conversion Method: SentenceTransformer using msmarco_distilroberta') elif conversion_method.lower() == "sentencetransformer_minilm": from sentence_transformers import SentenceTransformer embedding_pretrained = {'model':'sentence-transformers/all-MiniLM-L6-v2','size': 384} self.bert_embedder_size = embedding_pretrained['size'] self.model = SentenceTransformer(embedding_pretrained['model']) self.embedder = FunctionTransformer(self.sentense_encode, feature_names_out = self.sentence_transformer_output) pipeList.append(("vectorizer",self.embedder)) self.log.info('----------> Conversion Method: SentenceTransformer using MiniLM-L6-v2') elif conversion_method.lower() == "sentencetransformer_mpnet": from sentence_transformers import SentenceTransformer embedding_pretrained = {'model':'sentence-transformers/all-mpnet-base-v2','size': 768} self.bert_embedder_size = embedding_pretrained['size'] self.model = SentenceTransformer(embedding_pretrained['model']) self.embedder = FunctionTransformer(self.sentense_encode, feature_names_out = self.sentence_transformer_output) pipeList.append(("vectorizer",self.embedder)) self.log.info('----------> Conversion Method: SentenceTransformer using mpnet-base-v2') elif conversion_method.lower() == 'latentsemanticanalysis': vectorizer = TextProcessing.ExtractFeatureTfIdfVectors(ngram_range=ngram_range_tuple) pipeList.append(("vectorizer",vectorizer)) self.log.info('----------> Conversion Method: latentsemanticanalysis') elif conversion_method.lower() == 'tf_idf': vectorizer = TextProcessing.ExtractFeatureTfIdfVectors(ngram_range=ngram_range_tuple,max_features=embedding_size) pipeList.append(("vectorizer",vectorizer)) self.log.info('----------> Conversion Method: TF_IDF') else: df1 = pd.DataFrame() #df1['tokenize'] = textCorpus self.log.info('----------> Conversion Method: '+str(conversion_method)) return pipeList def sentence_transformer_output(self, transformer, names=None): return [str(x) for x in range(self.bert_embedder_size)] class textCombine(TransformerMixin): def __init__(self): pass def fit(self, X, y=None): return self def transform(self, X): if X.shape[1] > 1: return np.array([" ".join(i) for i in X]) else: if isinstance(X, np.ndarray): return np.ndarray.flatten(X) else: return X def get_pretrained_model_path(): try: from appbe.dataPath import DATA_DIR modelsPath = Path(DATA_DIR)/'PreTrainedModels'/'TextProcessing' except: modelsPath = Path('aion')/'PreTrainedModels'/'TextProcessing' if not modelsPath.exists(): modelsPath.mkdir(parents=True, exist_ok=True) return modelsPath def set_pretrained_model(pipe): from text.Embedding import load_pretrained import importlib.util global external_model global external_model_type params = pipe.get_params() model_name = params.get('text_process__vectorizer__preTrainedModel', None) if model_name and model_name.lower() in ['fasttext','glove'] and not external_model: if model_name == 'fasttext' and importlib.util.find_spec('fasttext'): import fasttext import fasttext.util cwd = os.getcwd() os.chdir(get_pretrained_model_path()) fasttext.util.download_model('en', if_exists='ignore') external_model = fasttext.load_model('cc.en.300.bin') os.chdir(cwd) external_model_type = 'binary' print('loaded fasttext binary') else: model_path = TextProcessing.checkAndDownloadPretrainedModel(model_name) embed_size, external_model = load_pretrained(model_path) external_model_type = 'vector' print(f'loaded {model_name} vector') pipe.set_params(text_process__vectorizer__external_model = external_model) pipe.set_params(text_process__vectorizer__external_model_type = external_model_type) def reset_pretrained_model(pipe, clear_mem=True): global external_model global external_model_type params = pipe.get_params() is_external_model = params.get('text_process__vectorizer__external_model', None) if (isinstance(is_external_model, pd.DataFrame) and not is_external_model.empty) or is_external_model: pipe.set_params(text_process__vectorizer__external_model = None) pipe.set_params(text_process__vectorizer__external_model_type = None) if clear_mem: external_model = None def release_pretrained_model(): global external_model global external_model_type external_model = None external_model_type = None <s> '''
* * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import sys import logging from collections import Counter import spacy import numpy as np import pandas as pd import nltk from nltk.corpus import stopwords from nltk import pos_tag from nltk.tokenize import word_tokenize from nltk.stem.wordnet import WordNetLemmatizer from textblob import TextBlob from sklearn.feature_extraction.text import CountVectorizer ''' nltk.download("punkt") nltk.download("wordnet") ''' stopWords = stopwords.words("english") class ExploreTextData: def __init__(self, logEnabled=False): self.logEnabled = logEnabled def __Log(self, logType="info", text=None): if logType.lower() == "exception": logging.exception( text) elif self.logEnabled: if logType.lower() == "info": logging.info( text) elif logType.lower() == "debug": logging.debug( text) def Describe(self, inputCorpus): """ Generate descriptive statistics for length of documents. Parameters ---------- inputCorpus: sequence of input documents where each document consists of paragraphs or sentences Returns ------- dict Summary statistics of the Series or Dataframe provided. """ try: self.__Log("info", "Start of {} function".format(sys._getframe().f_code.co_name)) stat = {} word_count = self.DocumentWordCount(inputCorpus) stat['count'] = float(len(word_count)) stat['mean'] = float(word_count.mean()) stat['std'] = float(word_count.std()) stat['max'] = float(word_count.max()) stat['min'] = float(word_count.min()) return pd.DataFrame.from_dict(stat, orient='index') except: self.__Log("exception", sys.exc_info()) raise def DocumentLength(self, inputCorpus): """ Calculate the length of each document in corpus Parameters ---------- inputCorpus: sequence of input documents where each document consists of paragraphs or sentences Returns ------- pandas.Series of {int} series of length of documents """ try: self.__Log("info", "Start of {} function".format(sys._getframe().f_code.co_name)) return inputCorpus.str.len() except: self.__Log("exception", sys.exc_info()) raise def DocumentWordCount(self, inputCorpus): """ Calculate the number of words in each document in corpus Parameters ---------- inputCorpus: sequence of input documents where each document consists of paragraphs or sentences Returns ------- pandas.Series of {int} series of number of words in documents """ try: self.__Log("info", "Start of {} function".format(sys._getframe().f_code.co_name)) return inputCorpus.str.split().map(lambda x: len(x)) except: self.__Log("exception", sys.exc_info()) raise def AverageWordLength(self, inputCorpus): """ Calculate the average length of words in each document in corpus Parameters ---------- inputCorpus: sequence of input documents where each document consists of paragraphs or sentences Returns ------- pandas.Series of {double} series of average length of words in documents """ try: self.__Log("info", "Start of {} function".format(sys._getframe().f_code.co_name)) return inputCorpus.str.split()\\ .apply(lambda x: [len(i) for i in x])\\ .map(lambda x: np.mean(x)) except: self.__Log("exception", sys.exc_info()) raise def StopWordsCount(self, inputCorpus): """ Calculate the number of stopwords in each document in corpus Parameters ---------- inputCorpus: sequence of input documents where each document consists of paragraphs or sentences Returns ------- pandas.Series of {int} series of count of stopwords in documents """ try: self.__Log("info", "Start of {} function".format(sys._getframe().f_code.co_name)) stopWordsCount = [] inputCorpus = list(inputCorpus) for doc in inputCorpus: count = 0 for word in doc.split(): if word in stopWords: count += 1 stopWordsCount.append(count) return pd.Series(stopWordsCount) except: self.__Log("exception", sys.exc_info()) raise def MostCommonWords(self, inputCorpus, num_of_words=40): """ get the most common words in corpus Parameters ---------- inputCorpus: sequence of input documents where each document consists of paragraphs or sentences Returns ------- Pandas.DataFrame{string, int} Dataframe with columns "most_common_words" and "freq" """ try: self.__Log("info", "Start of {} function".format(sys._getframe().f_code.co_name)) new = inputCorpus.str.split() new = new.values.tolist() corpus = [word for i in new for word in i if word not in stopWords] counter = Counter(corpus) most = counter.most_common() x, y = [], [] for word, count in most[: num_of_words + 1]: x.append(word) y.append(count) return pd.DataFrame([x, y],index=['most_common_words', 'freq']).T except: self.__Log("exception", sys.exc_info()) raise def NullCount(self, inputCorpus): """ Calculate the number of null entries in corpus Parameters ---------- inputCorpus: sequence of input documents where each document consists of paragraphs or sentences Returns ------- int count of null entries in corpus """ try: self.__Log("info", "Start of {} function".format(sys._getframe().f_code.co_name)) return pd.Series(inputCorpus.isnull().sum()) except: self.__Log("exception", sys.exc_info()) raise def TopNgram(self, inputCorpus, ngram, num_of_words=10): """ Get the top words from the ngrams Parameters ---------- inputCorpus: sequence of input documents where each document consists of paragraphs or sentences ngram: int ngram required num_of_words:int, optional numbers of words to be returned Returns ------- Pandas.DataFrame{string, int} Dataframe with columns "ngram_words" and "freq" """ try: self.__Log("info", "Start of {} function".format(sys._getframe().f_code.co_name)) words = [] for doc in inputCorpus: word = [w for w in word_tokenize(doc) if (w not in stopWords)] words.append(" ".join(word)) vec = CountVectorizer(ngram_range=(ngram, ngram)).fit(words) bag_of_words = vec.transform(inputCorpus) sum_words = bag_of_words.sum(axis=0) words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()] words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True)[:num_of_words] words = [] frequency = [] for word, freq in words_freq: words.append(word) frequency.append(freq) return pd.DataFrame([words, frequency],index=['ngram_words', 'freq']).T except: self.__Log("exception", sys.exc_info()) raise def Polarity(self, inputCorpus): """ Get the polarity of the text Parameters ---------- inputCorpus: sequence of input documents where each document consists of paragraphs or sentences Returns ------- pandas.Series {double} series of calculated polarity of the documents """ try: self.__Log("info", "Start of {} function".format(sys._getframe().f_code.co_name)) return inputCorpus.apply(lambda x: TextBlob(x).sentiment.polarity) except: self.__Log("exception", sys.exc_info()) raise def ReadabilityScore(self, inputCorpus): """ Get the Readability Score of the text Parameters ---------- inputCorpus: sequence of input documents where each document consists of paragraphs or sentences Returns ------- pandas.Series {double} series of calculated Readability Score of the documents """ import textstat try: self.__Log("info", "Start of {} function".format(sys._getframe().f_code.co_name)) if isinstance(inputCorpus, pd.Series): return pd.Series([textstat.flesch_reading_ease(text) for text in inputCorpus]) else: return [textstat.flesch_reading_ease(inputCorpus)] except: self.__Log("exception", sys.exc_info()) raise def TagEntityCount(self, inputCorpus): """ Calculate the frequency of each entity present in documents Parameters ---------- inputCorpus: sequence of input documents where each document consists of paragraphs or sentences Returns ------- Pandas.DataFrame{string, int} Dataframe with columns "entity" and "freq" """ def ner(text): doc = nlp(text) return [X.label_ for X in doc.ents] try: self.__Log("info", "Start of {} function".format(sys._getframe().f_code.co_name)) nlp = spacy.load("en_core_web_sm") ent = inputCorpus.apply(lambda x: ner(x)) ent = [x for sub in ent for x in sub] counter = Counter(ent) count = counter.most_common() x, y = map(list, zip(*count)) return pd.DataFrame([x, y],index=['entity', 'freq']).T except: self.__Log("exception", sys.exc_info()) raise def MostCommonTokenPerEntity(self, inputCorpus, entity="GPE"): """ Get the frequency of most common words corresponding to the specified entity in documents Parameters ---------- inputCorpus: sequence of input documents where each document consists of paragraphs or sentences entity: string, optional name of the entity corresponding to which words are counted Returns ------- Pandas.DataFrame{string, int} Dataframe with columns "token" and "freq" """ def ner(text, ent): doc = nlp(text) return [X.text for X in doc.ents if X.label_ == ent] try: self.__Log("info", "Start of {} function".format(sys._getframe().f_code.co_name)) nlp = spacy.load("en_core_web_sm") gpe = inputCorpus.apply(lambda x: ner(x, entity.upper())) gpe = [i for x in gpe for i in x] counter = Counter(gpe) x, y = map(list, zip(*counter.most_common(10))) return pd.DataFrame([x, y],index=['token', 'freq']).T except: self.__Log("exception", sys.exc_info()) raise def MostCommonPosTag(self, inputCorpus): """ Get the frequency of most common POS tag present in documents Parameters ---------- inputCorpus: sequence of input documents where each document consists of paragraphs or sentences Returns ------- Pandas.DataFrame{string, int} Dataframe with columns "postag" and "freq" """ def pos(text): pos = pos_tag(word_tokenize(text)) pos = list(map(list, zip(*pos)))[1] return pos try: self.__Log("info", "Start of {} function".format(sys._getframe().f_code.co_name)) tags = inputCorpus.apply(lambda x: pos(x)) tags = [x for l in tags for x in l] counter = Counter(tags) x, y = list(map(list, zip(*counter.most_common(7)))) return pd.DataFrame([x, y],index=['postag', 'freq']).T except: self.__Log("exception", sys.exc_info()) raise def MostCommonWordsInPOSTag(self, inputCorpus, tag="NN"): """ Get the frequency of most common words related to specified POS tag present in documents Parameters ---------- inputCorpus: sequence of input documents where each document consists of paragraphs or sentences tag: string, optional POS tag corresponding to which words frequency will be calculated Returns ------- Pandas.DataFrame{string, int} Dataframe with columns "words" and "freq" """ def get_POSTag(text, tag): adj = [] pos = pos_tag(word_tokenize(text)) for word, tg in pos: if tg == tag: adj.append(word) return adj try: self.__Log("info", "Start of {} function".format(sys._getframe().f_code.co_name)) words = inputCorpus.apply(lambda x: get_POSTag(x, tag.upper())) words = [x for l in words for x in l] counter = Counter(words) x = [] y = [] if len(counter): x, y = list(map(list, zip(*counter.most_common(7)))) return pd.DataFrame([x, y],index=['words', 'freq']).T except: self.__Log("exception", sys.exc_info()) raise def __preprocessData(self, inputCorpus): """ Prepare the data for topic modelling """ try: self.__Log("info", "Start of {} function".format(sys._getframe().f_code.co_name)) corpus = [] lem = WordNetLemmatizer() for doc in inputCorpus: words = [w for w in word_tokenize(doc) if (w not in stopWords)] words = [lem.lemmatize(w) for w in words if len(w) > 2] corpus.append(words) return corpus except: self.__Log("exception", sys.exc_info()) raise<s> import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__))))
from .cat_type_str import cat_to_str __version__ = "1.0"<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import pandas as pd class cat_to_str: def __init__(self): pass def convert(self, x): return pd.DataFrame(x).astype(str) <s> import pandas as pd def dataGarbageValue(dataFrame,datetimeFeature): if datetimeFeature == '' or datetimeFeature.lower() == 'na': return 'Success','' try: features = datetimeFeature.split(',') for dtfeature in features: dataFrame[dtfeature] = pd.to_datetime(dataFrame[dtfeature],errors='coerce') if pd.isnull(dataFrame[dtfeature]).sum() > 0: return 'Error',dtfeature+' feature have some garbage values' except Exception as e: print(e) return 'Error', 'Datetime features validation error' return 'Success',''<s> import os from pathlib import Path import pandas as pd import numpy as np import json def listToStringWithDelimiter(s, vectorDBFeatureDelimitInDoc): #lenght sLen = len(s) # initialize an empty string str1 = "" # traverse in the string for i in range(0, sLen-1): str1 +=str(s[i])+vectorDBFeatureDelimitInDoc str1 +=str(s[sLen-1]) # return string return str1 def save_csv(df, fileLocation, encoding=None): #import pdb;pdb.set_trace(); try: parent_dir = Path(fileLocation).parent parent_dir.mkdir(parents=True, exist_ok=True) if encoding: df.to_csv(fileLocation, encoding=encoding, index=False,) else: df.to_csv(fileLocation, index=False) return True, '' except Exception as e: print(e) return False, str(e) def save_csv_compressed(df, fileLocation, encoding=None): try: parent_dir = Path(fileLocation).parent parent_dir.mkdir(parents=True, exist_ok=True) if encoding: df.to_csv(fileLocation, encoding=encoding, index=False, compression='gzip') else: df.to_csv(fileLocation, index=False, compression='gzip') return True, '' except Exception as e: print(e) return False, str(e) def read_df(fileLocation,encoding=None, nrows=None): parent_dir = Path(fileLocation).parent if parent_dir.exists(): try: if encoding and nrows: df = pd.read_csv(fileLocation, encoding=encoding,nrows=nrows,encoding_errors= 'replace') elif encoding: df = pd.read_csv(fileLocation, encoding=encoding,encoding_errors= 'replace') elif nrows: df = pd.read_csv(fileLocation, nrows=nrows) return True, df except Exception as e: df = pd.read_csv(fileLocation, encoding="utf-8",encoding_errors= 'replace') print(e) return True,df else: print("parent fails") def read_df_compressed(fileLocation, encoding=None, nrows=None): parent_dir = Path(fileLocation).parent if parent_dir.exists(): try: if encoding: df = pd.read_csv(fileLocation, encoding=encoding, compression="gzip",encoding_errors= 'replace') if nrows: df = pd.read_csv(fileLocation, nrows=nrows, compression="gzip") else: df = pd.read_csv(fileLocation, encoding="utf-8", compression="gzip",encoding_errors= 'replace') return True, df except Exception as e: df = pd.read_csv(fileLocation, encoding="utf-8",encoding_errors= 'replace') print(e) return True,df else: print("parent fails") def save_chromadb(df, config_obj, fileLocation, modelFeatures): import chromadb #from chromadb.config import Settings try: parent_dir = Path(fileLocation).parent parent_dir.mkdir(parents=True, exist_ok=True) vectorDBFeatureDelimitInDoc = config_obj.getVectorDBFeatureDelimitInDoc() persist_directory = os.path.dirname(os.path.abspath(fileLocation)) # client = chromadb.Client( # Settings( # persist_directory=persist_directory, # chroma_db_impl="duckdb+parquet", # ) # ) client = chromadb.PersistentClient(path=persist_directory) # Create a new chroma collection collection_name = os.path.basename(fileLocation).split('/')[-1] collection_name = collection_name.replace('.csv', '') collection_name = collection_name + 'VecDB' collection = client.create_collection( name=collection_name, metadata={"hnsw:space": "cosine"} ) features = modelFeatures.split(",") dftxt = pd.concat([df.pop(x) for x in features], axis=1) stepSize = 500 for i in range(0, len(df),stepSize): start = i end = i+ stepSize dfembdary = df.iloc[start:end].to_numpy() dftxtary = dftxt.iloc[start:end].to_numpy() idxary = df.iloc[start:end].index.values #convert to string idxary = [str(x) for x in idxary] dftxtary = [listToStringWithDelimiter(x.tolist(), vectorDBFeatureDelimitInDoc) for x in dftxtary] collection.add( embeddings=dfembdary.tolist(), ids=idxary, documents= dftxtary ) client.persist() return True, '' except Exception as e: return False, str(e) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> import joblib import pandas as pd import sys import math import time import pandas as pd import numpy as np from sklearn.metrics import confusion_matrix from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score from sklearn.metrics import r2_score,mean_absolute_error,mean_squared_error from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix from sklearn.svm import SVC from sklearn.linear_model import LinearRegression import argparse import json def mltesting(modelfile,datafile,features,target): model = joblib.load(modelfile) ProblemName = model.__class__.__name__ if ProblemName in ['LogisticRegression','SGDClassifier','SVC','DecissionTreeClassifier','RandomForestClassifier','GaussianNB','KNeighborsClassifier','DecisionTreeClassifier','GradientBoostingClassifier','XGBClassifier','LGBMClassifier','CatBoostClassifier']: Problemtype = 'Classification' elif ProblemName in ['LinearRegression','Lasso','Ridge','DecisionTreeRegressor','RandomForestRegressor','GradientBoostingRegressor','XGBRegressor','LGBMRegressor','CatBoostRegressor']: Problemtype = 'Regression' else: Problemtype = 'Unknown' if Problemtype == 'Classification': Params = model.get_params() try: df = pd.read_csv(datafile,encoding='utf-8',skipinitialspace = True) if ProblemName == 'LogisticRegression' or ProblemName == 'DecisionTreeClassifier' or ProblemName == 'RandomForestClassifier' or ProblemName == 'GaussianNB' or ProblemName == 'KNeighborsClassifier' or ProblemName == 'GradientBoostingClassifier' or ProblemName == 'SVC': features = model.feature_names_in_ elif ProblemName == 'XGBClassifier': features = model.get_booster().feature_names elif ProblemName == 'LGBMClassifier': features = model.feature_name_ elif ProblemName == 'CatBoostClassifier': features = model.feature_names_ modelfeatures = features dfp = df[modelfeatures] tar = target target = df[tar] predic = model.predict(dfp) output = {} matrixconfusion = pd.DataFrame(confusion_matrix(predic,target)) matrixconfusion = matrixconfusion.to_json(orient='index') classificationreport = pd.DataFrame(classification_report(target,predic,output_dict=True)).transpose() classificationreport = round(classificationreport,2) classificationreport = classificationreport.to_json(orient='index') output["Precision"] = "%.2f" % precision_score(target, predic,average='weighted') output["Recall"] = "%.2f" % recall_score(target, predic,average='weighted') output["Accuracy"] = "%.2f" % accuracy_score(target, predic) output["ProblemName"] = ProblemName output["Status"] = "Success" output["Params"] = Params output["Problemtype"] = Problemtype output["Confusionmatrix"] = matrixconfusion output["classificationreport"] = classificationreport # import statistics # timearray = [] # for i in range(0,5): # start = time.time() # predic1 = model.predict(dfp.head(1)) # end = time.time() # timetaken = (round((end - start) * 1000,2),'Seconds') # timearray.append(timetaken) # print(timearray) start = time.time() for i in range(0,5): predic1 = model.predict(dfp.head(1)) end = time.time() timetaken = (round((end - start) * 1000,2),'Seconds') # print(timetaken) start1 = time.time() for i in range(0,5): predic2 = model.predict(dfp.head(10)) end1 = time.time() timetaken1 = (round((end1 - start1) * 1000,2) ,'Seconds') # print(timetaken1) start2 = time.time() for i in range(0,5): predic3 = model.predict(dfp.head(100)) end2 = time.time() timetaken2 = (round((end2 - start2) * 1000,2) ,'Seconds') # print(timetaken2) output["onerecord"] = timetaken output["tenrecords"] = timetaken1 output["hundrecords"] = timetaken2 print(json.dumps(output)) except Exception as e: output = {} output['Problemtype']='Classification' output['Status']= "Fail" output["ProblemName"] = ProblemName output["Msg"] = 'Detected Model : {} \\\\n Problem Type : Classification \\\\n Error : {}'.format(ProblemName, str(e).replace('"','//"').replace('\\n', '\\\\n')) print(output["Msg"]) print(json.dumps(output)) elif Problemtype == 'Regression': Params = model.get_params() try: df = pd.read_csv(datafile,encoding='utf-8',skipinitialspace = True) if ProblemName == 'LinearRegression' or ProblemName == 'Lasso' or ProblemName == 'Ridge' or ProblemName == 'DecisionTreeRegressor' or ProblemName == 'RandomForestRegressor' or ProblemName == 'GaussianNB' or ProblemName == 'KNeighborsRegressor' or ProblemName == 'GradientBoostingRegressor': features = model.feature_names_in_ elif ProblemName == 'XGBRegressor': features = model.get_booster().feature_names elif ProblemName == 'LGBMRegressor': features = model.feature_name_ elif ProblemName == 'CatBoostRegressor': features = model.feature_names_ modelfeatures = features dfp = df[modelfeatures] tar = target target = df[tar] predict = model.predict(dfp) mse = mean_squared_error(target, predict) mae = mean_absolute_error(target, predict) rmse = math.sqrt(mse) r2 = r2_score(target,predict,multioutput='variance_weighted') output = {} output["MSE"] = "%.2f" % mean_squared_error(target, predict) output["MAE"] = "%.2f" % mean_absolute_error(target, predict) output["RMSE"] = "%.2f" % math.sqrt(mse) output["R2"] = "%.2f" %r2_score(target,predict,multioutput='variance_weighted') output["ProblemName"] = ProblemName output["Problemtype"] = Problemtype output["Params"] = Params output['Status']='Success' start = time.time() predic1 = model.predict(dfp.head(1)) end = time.time() timetaken = (round((end - start) * 1000,2) ,'Seconds') # print(timetaken) start1 = time.time() predic2 = model.predict(dfp.head(10)) end1 = time.time() timetaken1 = (round((end1 - start1) * 1000,2),'Seconds') # print(timetaken1) start2 = time.time() predic3 = model.predict(dfp.head(100)) end2 = time.time() timetaken2 = (round((end2 - start2) * 1000,2) ,'Seconds') # print(timetaken2) output["onerecord"] = timetaken output["tenrecords"] = timetaken1 output["hundrecords"] = timetaken2 print(json.dumps(output)) except Exception as e: output = {} output['Problemtype']='Regression
' output['Status']='Fail' output["ProblemName"] = ProblemName output["Msg"] = 'Detected Model : {} \\\\n Problem Type : Regression \\\\n Error : {}'.format(ProblemName, str(e).replace('"','//"').replace('\\n', '\\\\n')) print(json.dumps(output)) else: output = {} output['Problemtype']='Unknown' output['Status']='Fail' output['Params'] = '' output["ProblemName"] = ProblemName output["Msg"] = 'Detected Model : {} \\\\n Error : {}'.format(ProblemName, 'Model not supported') print(json.dumps(output)) return(json.dumps(output)) def baseline_testing(modelFile,csvFile,features,target): features = [x.strip() for x in features.split(',')] return mltesting(modelFile,csvFile,features,target)<s><s><s><s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' from importlib.metadata import version import sys import os def requirementfile(deploy_path,model,textFeatures,learner_type): print('hola', model) modules = ['pandas','numpy','alibi','matplotlib','joblib','shap','ipython','category_encoders','scikit-learn','word2number','flask_restful','evidently','Flask-Cors'] requires = '' for mod in modules: requires += f"{mod}=={version(mod)}\\n" if len(textFeatures) > 0: tmodules = ['spacy','nltk','textblob','demoji','beautifulsoup4','text-unidecode','pyspellchecker','contractions','protobuf'] for mod in tmodules: requires += f"{mod}=={version(mod)}\\n" if model == 'Extreme Gradient Boosting (XGBoost)': mmodules = ['xgboost'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" if model == 'Light Gradient Boosting (LightGBM)': mmodules = ['lightgbm'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" if model == 'Categorical Boosting (CatBoost)': mmodules = ['catboost'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" if model.lower() == 'arima': mmodules = ['pmdarima'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" if model.lower() == 'fbprophet': mmodules = ['prophet'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" if model.lower() == 'lstm' or model.lower() == 'mlp' or learner_type =='DL': mmodules = ['tensorflow'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" if model.lower() in ['cox', 'kaplanmeierfitter']: #bug 12833 mmodules = ['lifelines'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" if model.lower() == 'sentencetransformer': #bug 12833 mmodules = ['sentence_transformers'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" filename = os.path.join(deploy_path,'requirements.txt') f = open(filename, "wb") f.write(str(requires).encode('utf8')) f.close() <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import platform import json import shutil import logging import sys from AionConfigManager import AionConfigManager from sklearn.externals import joblib class edgeformats: def __init__(self,deploy_path): self.deploy_path = deploy_path self.edge_deploy_path = os.path.join(deploy_path,"edge") os.mkdir(self.edge_deploy_path) def converttoedgedeployment(self,saved_model,edge_format,xtrain,model_type,iterName,iterVersion,features,profiled_data_file): if edge_format == 'onnx': from skl2onnx import convert_sklearn from skl2onnx.common.data_types import FloatTensorType xtrain = xtrain[features] initial_type = [('float_input', FloatTensorType([None, xtrain.shape[1]]))] filename = os.path.join(self.deploy_path,saved_model) loaded_model = joblib.load(filename) onx = convert_sklearn(loaded_model, initial_types=initial_type) onnx_filename = os.path.join(self.edge_deploy_path, model_type + '_' + iterName + '_' + iterVersion + '.onnx') with open(onnx_filename, "wb") as f: f.write(onx.SerializeToString()) self.createedgeruntimeFile(onnx_filename,profiled_data_file,features) def createedgeruntimeFile(self,onnx_filename,datafilepath,features): runtimefilecontent = '' runtimefilecontent += 'import pandas' runtimefilecontent += '\\n' runtimefilecontent += 'import numpy' runtimefilecontent += '\\n' runtimefilecontent += 'import sys' runtimefilecontent += '\\n' runtimefilecontent += 'import onnxruntime as rt' runtimefilecontent += '\\n' runtimefilecontent += 'def onnx_runtime_validation():' runtimefilecontent += '\\n' runtimefilecontent += ' modelfile = r"'+str(onnx_filename)+'"' runtimefilecontent += '\\n' runtimefilecontent += ' datafile = r"'+str(datafilepath)+'"' runtimefilecontent += '\\n' runtimefilecontent += ' dataframe = pandas.read_csv(datafile)' runtimefilecontent += '\\n' runtimefilecontent += ' dataframe = dataframe['+str(features)+']' runtimefilecontent += '\\n' runtimefilecontent += ' df = dataframe.head(8)' runtimefilecontent += '\\n' runtimefilecontent += ' dataset = df.values' runtimefilecontent += '\\n' runtimefilecontent += ' sess = rt.InferenceSession(modelfile)' runtimefilecontent += '\\n' runtimefilecontent += ' input_name = sess.get_inputs()[0].name' runtimefilecontent += '\\n' runtimefilecontent += ' label_name = sess.get_outputs()[0].name' runtimefilecontent += '\\n' runtimefilecontent += ' inputsize=sess.get_inputs()[0].shape' runtimefilecontent += '\\n' runtimefilecontent += ' XYZ = dataset[:,0:inputsize[1]].astype(float)' runtimefilecontent += '\\n' runtimefilecontent += ' pred_onx = sess.run([label_name], {input_name: XYZ.astype(numpy.float32)[0:8]})[0]' runtimefilecontent += '\\n' runtimefilecontent += ' df[\\'predictions\\'] = pred_onx' runtimefilecontent += '\\n' runtimefilecontent += ' result = df.to_json(orient="records")' runtimefilecontent += '\\n' runtimefilecontent += ' return(result)' runtimefilecontent += '\\n' runtimefilecontent += 'if __name__ == "__main__":' runtimefilecontent += '\\n' runtimefilecontent += ' output = onnx_runtime_validation()' runtimefilecontent += '\\n' runtimefilecontent += ' print("predictions:",output)' filename = os.path.join(self.edge_deploy_path,'onnxvalidation.py') f = open(filename, "w") f.write(str(runtimefilecontent)) f.close() <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import platform import json import shutil import logging class outputFormatter: def __init__(self): self.log = logging.getLogger('eion') self.log.info('========> Inside Output Formatter') def crate_output_format_file(self,deploy_path,learner_type,modelType,model,output_label,threshold,trained_data_file,dictDiffCount,targetFeature,features,datetimeFeature): self.output_formatfile = 'import json' self.output_formatfile += '\\n' self.output_formatfile += 'import numpy as np' self.output_formatfile += '\\n' self.output_formatfile += 'import pandas as pd' self.output_formatfile += '\\n' self.output_formatfile += 'import os' self.output_formatfile += '\\n' self.output_formatfile += 'from pathlib import Path' self.output_formatfile += '\\n' if((model.lower() in ['autoencoder','dbscan']) and modelType.lower()=="anomaly_detection"): self.output_formatfile += 'from script.aion_granularity import aion_gettimegranularity' self.output_formatfile += '\\n' self.output_formatfile += 'class output_format(object):' self.output_formatfile += '\\n' if(model == 'VAR'): self.output_formatfile += ' def invertTransformation(self,predictions):' self.output_formatfile += '\\n' self.output_formatfile += ' datasetdf = pd.read_csv(os.path.join(os.path.dirname(os.path.abspath(__file__)),"..","data","trainingdata.csv"))' self.output_formatfile += '\\n' self.output_formatfile += ' dictDiffCount = '+str(dictDiffCount) self.output_formatfile += '\\n' self.output_formatfile += ' targetFeature = "'+str(targetFeature)+'"' self.output_formatfile += '\\n' self.output_formatfile += ' columns = targetFeature.split(",")' self.output_formatfile += '\\n' self.output_formatfile += ' pred = pd.DataFrame(index=range(0,len(predictions)),columns=columns)' self.output_formatfile += '\\n' self.output_formatfile += ' for j in range(0,len(columns)):' self.output_formatfile += '\\n' self.output_formatfile += ' for i in range(0, len(predictions)):' self.output_formatfile += '\\n' self.output_formatfile += ' pred.iloc[i][j] = round(predictions[i][j],2)' self.output_formatfile += '\\n' self.output_formatfile += ' prediction = pred' self.output_formatfile += '\\n' self.output_formatfile += ' for col in columns:' self.output_formatfile += '\\n' self.output_formatfile += ' if col in dictDiffCount:' self.output_formatfile += '\\n' self.output_formatfile += ' if dictDiffCount[col]==2:' self.output_formatfile += '\\n' self.output_formatfile += ' prediction[col] = (datasetdf[col].iloc[-1]-datasetdf[col].iloc[-2]) + prediction[col].cumsum()' self.output_formatfile += '\\n' self.output_formatfile += ' prediction[col] = datasetdf[col].iloc[-1] + prediction[col].cumsum()' self.output_formatfile += '\\n' self.output_formatfile += ' prediction = pred' self.output_formatfile += '\\n' self.output_formatfile += ' return(prediction)' self.output_formatfile += '\\n' self.log.info("op:modelType: \\n"+str(modelType)) if((model.lower() in ['autoencoder','dbscan']) and modelType.lower()=="anomaly_detection"): # if modelType == 'anomaly_detection': self.output_formatfile += ' def find_point_subsequence_anomalies(self,datetime_column,dataframe=None):' self.output_formatfile += '\\n' self.output_formatfile += ' try:' self.output_formatfile += '\\n' self.output_formatfile += ' dataframe[datetime_column] = pd.to_datetime(dataframe[datetime_column]) ' self.output_formatfile += '\\n' self.output_formatfile += ' aion_gettimegranularity_obj=aion_gettimegranularity(dataframe,datetime_column) ' self.output_formatfile += '\\n' self.output_formatfile += ' anomaly_info_df=aion_gettimegranularity_obj.get_granularity() ' self.output_formatfile += '\\n' self.output_formatfile += ' except Exception as e:' self.output_formatfile += '\\n' self.output_formatfile += ' print(f"find_point_subsequence_anomalies,: aion_gettimegranularity err msg:{e} ")\\n' self.output_formatfile += ' return anomaly_info_df' self.output_formatfile += '\\n' if((model.lower() in ['autoencoder','dbscan']) and modelType.lower()=="anomaly_detection"): if (datetimeFeature!='' and datetimeFeature!='NA'): self.output_formatfile += ' def apply_output_format(self,df,modeloutput,datetimeFeature):' self.output_formatfile += '\\n' else: self.output_formatfile += ' def apply_output_format(self,df,modeloutput):' self.output_formatfile += '\\n' else: self.output_formatfile += ' def apply_output_format(self,df,modeloutput):' self.output_formatfile += '\\n' if modelType.lower() == 'classification': self.output_formatfile += ' modeloutput =
round(modeloutput,2)' self.output_formatfile += '\\n' if(learner_type == 'ImageClassification'): if(str(output_label) != '{}'): inv_mapping_dict = {v: k for k, v in output_label.items()} self.output_formatfile += ' le_dict = '+ str(inv_mapping_dict) self.output_formatfile += '\\n' self.output_formatfile += ' predictions = []' self.output_formatfile += '\\n' self.output_formatfile += ' for x in modeloutput:' self.output_formatfile += '\\n' self.output_formatfile += ' x = le_dict[x]' self.output_formatfile += '\\n' self.output_formatfile += ' predictions.append(x)' self.output_formatfile += '\\n' else: self.output_formatfile += ' predictions=modeloutput' self.output_formatfile += '\\n' self.output_formatfile += ' df[\\'prediction\\'] = predictions' self.output_formatfile += '\\n' self.output_formatfile += ' outputjson = df.to_json(orient=\\'records\\')' self.output_formatfile += '\\n' self.output_formatfile += ' outputjson = {"status":"SUCCESS","data":json.loads(outputjson)}' self.output_formatfile += '\\n' elif(learner_type == 'Text Similarity'): self.output_formatfile += ' df[\\'prediction\\'] = np.where(modeloutput > '+str(threshold)+',1,0)' self.output_formatfile += '\\n' self.output_formatfile += ' df[\\'probability\\'] = modeloutput' self.output_formatfile += '\\n' self.output_formatfile += ' outputjson = df.to_json(orient=\\'records\\',double_precision=2)' self.output_formatfile += '\\n' self.output_formatfile += ' outputjson = {"status":"SUCCESS","data":json.loads(outputjson)}' self.output_formatfile += '\\n' elif(learner_type == 'TS'): if(model == 'VAR'): self.output_formatfile += ' modeloutput = self.invertTransformation(modeloutput)' self.output_formatfile += '\\n' self.output_formatfile += ' modeloutput = modeloutput.to_json(orient=\\'records\\',double_precision=2)' self.output_formatfile += '\\n' self.output_formatfile += ' outputjson = {"status":"SUCCESS","data":json.loads(modeloutput)}' elif(model.lower() == 'fbprophet'): self.output_formatfile += ' modeloutput = modeloutput.to_json(orient=\\'records\\')' self.output_formatfile += '\\n' self.output_formatfile += ' outputjson = {"status":"SUCCESS","data":json.loads(modeloutput)}' elif((model.lower() == 'lstm' or model.lower() == 'mlp') and len(features) >= 1): self.output_formatfile += ' modeloutput = modeloutput.round(2)\\n' self.output_formatfile += ' modeloutput = modeloutput.to_json(orient=\\'records\\')\\n' self.output_formatfile += ' outputjson = {"status":"SUCCESS","data":json.loads(modeloutput)}\\n' else: self.output_formatfile += ' modeloutput = modeloutput.round(2)' self.output_formatfile += '\\n' self.output_formatfile += ' modeloutput = json.dumps(modeloutput.tolist())' self.output_formatfile += '\\n' self.output_formatfile += ' outputjson = {"status":"SUCCESS","data":eval(modeloutput)}' self.output_formatfile += '\\n' elif(learner_type in ['RecommenderSystem','similarityIdentification','contextualSearch']): self.output_formatfile += '\\n' self.output_formatfile += ' df[\\'prediction\\'] = modeloutput' self.output_formatfile += '\\n' self.output_formatfile += ' outputjson = df.to_json(orient=\\'records\\',double_precision=2)' self.output_formatfile += '\\n' self.output_formatfile += ' outputjson = {"status":"SUCCESS","data":json.loads(outputjson)}' self.output_formatfile += '\\n' else: if(modelType == 'Classification' or modelType == 'TLClassification' or modelType == 'anomaly_detection'): if(modelType == 'Classification' or modelType == 'TLClassification' or modelType == 'anomaly_detection'): if(str(output_label) != '{}'): inv_mapping_dict = {v: k for k, v in output_label.items()} self.output_formatfile += ' le_dict = '+ str(inv_mapping_dict) self.output_formatfile += '\\n' ''' if(model in ['SGDClassifier']): self.output_formatfile += ' modeloutput = modeloutput.replace({"predict_class": le_dict})' else: self.output_formatfile += ' modeloutput = modeloutput.rename(columns=le_dict)' ''' if modelType != 'anomaly_detection': self.output_formatfile += ' modeloutput = modeloutput.rename(columns=le_dict)' self.output_formatfile += '\\n' if(threshold != -1): ''' if(model in ['SGDClassifier']): self.output_formatfile += ' df[\\'prediction\\'] = np.where(modeloutput[\\'probability\\'] > '+str(threshold)+',1,0)' self.output_formatfile += '\\n' self.output_formatfile += ' df[\\'probability\\'] = modeloutput[\\'probability\\']' self.output_formatfile += '\\n' self.output_formatfile += ' df[\\'remarks\\'] = ""' self.output_formatfile += '\\n' else: self.output_formatfile += ' predictedData = modeloutput.iloc[:,1]' self.output_formatfile += '\\n' self.output_formatfile += ' df[\\'prediction\\'] = np.where(predictedData > '+str(threshold)+',modeloutput.columns[1],modeloutput.columns[0])' self.output_formatfile += '\\n' self.output_formatfile += ' df[\\'probability\\'] = np.where(df[\\'prediction\\'] == modeloutput.columns[1],modeloutput.iloc[:,1],modeloutput.iloc[:,0])' self.output_formatfile += '\\n' self.output_formatfile += ' df[\\'remarks\\'] = modeloutput.apply(lambda x: x.to_json(double_precision=2), axis=1)' self.output_formatfile += '\\n' ''' self.output_formatfile += ' predictedData = modeloutput.iloc[:,1]' self.output_formatfile += '\\n' self.output_formatfile += ' df[\\'prediction\\'] = np.where(predictedData > '+str(threshold)+',modeloutput.columns[1],modeloutput.columns[0])' self.output_formatfile += '\\n' self.output_formatfile += ' df[\\'probability\\'] = np.where(df[\\'prediction\\'] == modeloutput.columns[1],modeloutput.iloc[:,1],modeloutput.iloc[:,0])' self.output_formatfile += '\\n' self.output_formatfile += ' df[\\'remarks\\'] = modeloutput.apply(lambda x: x.to_json(double_precision=2), axis=1)' self.output_formatfile += '\\n' else: ''' if(model in ['SGDClassifier']): self.output_formatfile += ' df[\\'prediction\\'] = modeloutput[\\'predict_class\\']' self.output_formatfile += '\\n' self.output_formatfile += ' df[\\'probability\\'] = ""' self.output_formatfile += '\\n' self.output_formatfile += ' df[\\'remarks\\'] = "NA"' self.output_formatfile += '\\n' else: self.output_formatfile += ' df[\\'prediction\\'] = modeloutput.idxmax(axis=1)' self.output_formatfile += '\\n' self.output_formatfile += ' df[\\'probability\\'] = modeloutput.max(axis=1)' self.output_formatfile += '\\n' self.output_formatfile += ' df[\\'remarks\\'] = modeloutput.apply(lambda x: x.to_json(double_precision=2), axis=1)' self.output_formatfile += '\\n' ''' if modelType == 'anomaly_detection': # if (model.lower()=='autoencoder'): if model.lower() in ['autoencoder']: if (datetimeFeature != '' and datetimeFeature.lower() != 'na'): self.output_formatfile += ' df[modeloutput.columns] = modeloutput\\n' self.output_formatfile += ' anomaly_df=df[df[\\'anomaly\\'] == True]\\n' self.output_formatfile += ' anomaly_prediction_df=self.find_point_subsequence_anomalies(datetimeFeature,anomaly_df)\\n' self.output_formatfile += ' new_dir = str(Path(__file__).parent.parent/\\'data\\')\\n' self.output_formatfile += ' anomaly_prediction_df.to_csv(f"{new_dir}/anomaly_data.csv")\\n' self.output_formatfile += ' try:\\n' self.output_formatfile += ' anomaly_prediction_df[datetimeFeature]=pd.to_datetime(anomaly_prediction_df[datetimeFeature])\\n' self.output_formatfile += ' df[datetimeFeature]=pd.to_datetime(df[datetimeFeature])\\n' self.output_formatfile += ' anomaly_prediction_df.drop("Time_diff",axis=1,inplace=True)\\n' self.output_formatfile += ' except:\\n' self.output_formatfile += ' pass\\n' self.output_formatfile += ' try:\\n' self.output_formatfile += ' df_out = pd.merge(df, anomaly_prediction_df, on=df.columns.values.tolist(), how=\\'left\\')\\n' self.output_formatfile += ' df_out[\\'anomaly\\'].replace([\\'None\\', \\'NaN\\', np.nan], "Normal", inplace=True)\\n' self.output_formatfile += ' df_out[\\'anomalyType\\'].replace([\\'None\\', \\'NaN\\', np.nan], "Normal", inplace=True)\\n' self.output_formatfile += ' df_out.to_csv(f"{new_dir}/overall_ad_output.csv") \\n' self.output_formatfile += ' df_out[datetimeFeature]=df_out[datetimeFeature].astype(str) \\n' self.output_formatfile += ' df_out.drop("time_diff",axis=1,inplace=True)\\n' self.output_formatfile += ' except Exception as e:\\n' self.output_formatfile += ' print("anomaly data updated issue",e)\\n' self.output_formatfile += ' df_out[datetimeFeature]=df_out[datetimeFeature].astype(str)\\n' self.output_formatfile += ' df=df_out \\n' else: self.output_formatfile += ' df[modeloutput.columns] = modeloutput\\n' elif (model.lower()=='dbscan'): if (datetimeFeature != '' and datetimeFeature.lower() != 'na'): self.output_formatfile += ' df[\\'anomaly\\'] = modeloutput[\\'cluster\\']== -1\\n' self.output_formatfile += ' anomaly_df=df[df[\\'anomaly\\'] == True]\\n' self.output_formatfile += ' anomaly_prediction_df=self.find_point_subsequence_anomalies(datetimeFeature,anomaly_df)\\n' self.output_formatfile += ' new_dir = str(Path(__file__).parent.parent/\\'data\\')\\n' self.output_formatfile += ' try:\\n' self.output_formatfile += ' anomaly_prediction_df[datetimeFeature]=pd.to_datetime(anomaly_prediction_df[datetimeFeature])\\n' self.output_formatfile += ' df[datetimeFeature]=pd.to_datetime(df[datetimeFeature])\\n' self.output_formatfile += ' except:\\n' self.output_formatfile += ' pass\\n' self.output_formatfile += ' try:\\n' self.output_formatfile += ' df_out = pd.merge(df, anomaly_prediction_df, on=df.columns.values.tolist(), how=\\'left\\')\\n' self.output_formatfile += ' df_out[\\'anomaly\\'].replace([\\'None\\', \\'NaN\\', np.nan], "Normal", inplace=True)\\n' self.output_formatfile += ' df_out.to_csv(f"{new_dir}/overall_ad_output.csv") \\n' self.output_formatfile += ' df_out[datetimeFeature]=df_out[datetimeFeature].astype(str)\\n' self.output_formatfile += ' except Exception as e:\\n' self.output_formatfile += ' print("anomaly data updated.")\\n' self.output_formatfile += ' df_out[datetimeFeature]=df_out[datetimeFeature].astype(str)\\n' self.output_formatfile += ' df=df_out \\n' else: self.output_formatfile += ' df[\\'anomaly\\'] = modeloutput[\\'cluster\\']== -1\\n' self.output_formatfile += ' df.sort_values(by=[\\'anomaly\\'], ascending=False, inplace=True)\\n' else: self.output_formatfile += ' df[\\'prediction\\'] = modeloutput' self.output_formatfile += '\\n' else: self.output_formatfile += ' df[\\'prediction\\'] = modeloutput.idxmax(axis=1)' self.output_formatfile += '\\n' if learner_type != 'DL': self.output_formatfile += ' df[\\'probability\\'] = modeloutput.max(axis=1).round(2)' self.output_formatfile += '\\n' self.output_formatfile += ' df[\\'remarks\\'] = modeloutput.apply(lambda x: x.to_json(double_precision=2), axis=1)' self.output_formatfile += '\\n' else:
if model == 'COX': self.output_formatfile += '\\n' self.output_formatfile += ' modeloutput[0] = modeloutput[0].round(2)' self.output_formatfile += '\\n' #self.output_formatfile += ' modeloutput = modeloutput[0].to_json(orient=\\'records\\',double_precision=2)' #self.output_formatfile += '\\n' self.output_formatfile += ' df[\\'prediction\\'] = modeloutput' self.output_formatfile += '\\n' else: self.output_formatfile += ' df[\\'prediction\\'] = modeloutput[0]' if(learner_type == 'objectDetection'): self.output_formatfile += '\\n' self.output_formatfile += ' df[\\'prediction\\'] = df[\\'prediction\\']' else: self.output_formatfile += '\\n' self.output_formatfile += ' df[\\'prediction\\'] = df[\\'prediction\\'].round(2)' self.output_formatfile += '\\n' self.output_formatfile += ' outputjson = df.to_json(orient=\\'records\\',double_precision=2)' self.output_formatfile += '\\n' self.output_formatfile += ' outputjson = {"status":"SUCCESS","data":json.loads(outputjson)}' self.output_formatfile += '\\n' self.output_formatfile += ' return(json.dumps(outputjson))' filename = os.path.join(deploy_path,'script','output_format.py') #print(deploy_path) f = open(filename, "wb") self.log.info('-------> Output Mapping File Location :'+filename) f.write(str(self.output_formatfile).encode('utf8')) f.close()<s> #task 11190: Item based Recommender system---Usnish import os def generate_recommender_code(deployPath): code = """ import pandas as pd import numpy as np import os ITEMID = 'itemId' DATA_FOLDER = 'data' USER_ITEM_MATRIX = 'user_item_matrix.csv' ITEM_SIMILARITY_MATRIX = 'item_similarity_matrix.csv' RATING = 'rating' SIMILARITY_SCORE = 'similarity_score' class collaborative_filter(object): def __init__(self): self.matrix = pd.read_csv(os.path.join(os.path.dirname(__file__), '..', DATA_FOLDER, USER_ITEM_MATRIX),index_col=0) self.matrix.index.name = ITEMID self.item_similarity_cosine = pd.read_csv(os.path.join(os.path.dirname(__file__), '..', DATA_FOLDER, ITEM_SIMILARITY_MATRIX)) self.item_similarity_cosine.index.name = ITEMID self.item_similarity_cosine.columns.name = ITEMID def item_based_rec(self,picked_userid, number_of_recommendations,number_of_similar_items=5): import operator if not isinstance(picked_userid,str): picked_userid = str(picked_userid) if picked_userid not in self.matrix.columns: raise KeyError("UserID Does Not Exist") # Movies that the target user has not watched try: picked_userid_unwatched = pd.DataFrame(self.matrix[picked_userid].isna()).reset_index() picked_userid_unwatched = picked_userid_unwatched[picked_userid_unwatched[picked_userid] == True][ITEMID].values.tolist() # Movies that the target user has watched picked_userid_watched = pd.DataFrame(self.matrix[picked_userid].dropna(axis=0, how='all') \\ .sort_values(ascending=False)) \\ .reset_index() \\ .rename(columns={picked_userid: 'rating'}) # Dictionary to save the unwatched movie and predicted rating pair rating_prediction = {} # Loop through unwatched movies for picked_movie in picked_userid_unwatched: if not isinstance(picked_movie,str): picked_movie = str(picked_movie) # Calculate the similarity score of the picked movie with other movies try: picked_movie_similarity_score = self.item_similarity_cosine[[picked_movie]].reset_index().rename( columns={picked_movie: SIMILARITY_SCORE}) # Rank the similarities between the picked user watched movie and the picked unwatched movie. picked_userid_watched_similarity = pd.merge(left=picked_userid_watched, right=picked_movie_similarity_score, on=ITEMID, how='inner') \\ .sort_values(SIMILARITY_SCORE, ascending=False)[ :number_of_similar_items] # Calculate the predicted rating using weighted average of similarity scores and the ratings from picked user try: predicted_rating = round(np.average(picked_userid_watched_similarity[RATING],weights=picked_userid_watched_similarity[SIMILARITY_SCORE]), 6) except Exception as e: predicted_rating = 0 # Save the predicted rating in the dictionary rating_prediction[picked_movie] = predicted_rating except Exception as e: rating_prediction[picked_movie] = 0 # Return the top recommended movies return sorted(rating_prediction.items(), key=operator.itemgetter(1), reverse=True)[:number_of_recommendations] except Exception as e: print(e) raise KeyError(str(e)) def predict(self,X): predictions = [] for index,row in X.iterrows(): score = self.item_based_rec(int(row["uid"]),int(row["numberOfRecommendation"])) df = pd.DataFrame(score,columns=['ItemId','Ratings']) predictions.append(df) return predictions""" filename = os.path.join(deployPath, 'script', 'item_recommendation.py') # print(deploy_path) f = open(filename, "wb") f.write(str(code).encode('utf8')) f.close() <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import json from pathlib import Path from AION.prediction_package.imports import importModule from AION.prediction_package import utility from AION.prediction_package.utility import TAB_CHAR from importlib.metadata import version """ This file provide the functionality which is common for most of the problem types deployment. """ def main_code(): return """ class predict(): def __init__(self): self.profiler = inputprofiler() self.selector = selector() self.trainer = trainer() self.formatter = output_format() def run(self, data): try: df = self._parse_data(data) raw_df = df.copy() df = self.profiler.run(df) df = self.selector.run(df) df = self.trainer.run(df) output = self.formatter.run(raw_df, df) print("predictions:",output) return (output) except Exception as e: output = {"status":"FAIL","message":str(e).strip('"')} print("predictions:",json.dumps(output)) return (json.dumps(output)) def _parse_data(self, data): file_path = Path(data) if file_path.suffix == ".tsv": df = pd.read_csv(data,encoding='utf-8',sep='\\\\t',skipinitialspace = True,na_values=['-','?']) elif file_path.suffix in [".csv", ".dat"]: df=pd.read_csv(data,encoding='utf-8',skipinitialspace = True,na_values=['-','?']) elif file_path.suffix in [".gz"] and file_path.stem.endswith('.csv'): df=pd.read_csv(data,encoding='utf-8',skipinitialspace = True,na_values=['-','?']) elif file_path.suffix == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) df = pd.json_normalize(jsonData) else: jsonData = json.loads(data) df = pd.json_normalize(jsonData) return df import sys if __name__ == "__main__": output = predict().run(sys.argv[1]) """ def profiler_code(params, indent=0): """ This will create the profiler file based on the config file. separated file is created as profiler is required for input drift also. """ imported_modules = [ {'module': 'json', 'mod_from': None, 'mod_as': None}, {'module': 'scipy', 'mod_from': None, 'mod_as': None}, {'module': 'joblib', 'mod_from': None, 'mod_as': None}, {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'}, {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'}, {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None} ] importer = importModule() utility.import_modules(importer, imported_modules) code = """ class inputprofiler(): """ init_code = """ def __init__(self): """ if params.get('text_features'): imported_modules.append({'module':'importlib.util'}) init_code += """ # preprocessing preprocess_path = Path(__file__).parent.parent/'model'/'preprocess_pipe.pkl' if not preprocess_path.exists(): raise ValueError(f'Preprocess model file not found: {preprocess_path}') self.profiler = joblib.load(preprocess_path) """ run_code = """ def run(self,df): df = df.replace(r'^\\s*$', np.NaN, regex=True) """ if params.get('input_features_type'): imported_modules.append({'module':'dtype','mod_from':'numpy'}) run_code += f""" df = df.astype({params.get('input_features_type')}) """ if params.get('word2num_features'): imported_modules.append({'module':'w2n','mod_from':'word2number'}) run_code += f""" def s2n(value): try: x=eval(value) return x except: try: return w2n.word_to_num(value) except: return np.nan df[{params['word2num_features']}] = df[{params['word2num_features']}].apply(lambda x: s2n(x))""" if params.get('unpreprocessed_columns'): run_code += f""" unpreprocessed_data = df['{params['unpreprocessed_columns'][0]}'] df.drop(['{params['unpreprocessed_columns'][0]}'], axis=1,inplace=True) """ if params.get('force_numeric_conv'): run_code += f""" df[{params['force_numeric_conv']}] = df[{params['force_numeric_conv']}].apply(pd.to_numeric,errors='coerce')""" if params.get('conversion_method','').lower() == 'glove': code_text, modules = __profiler_glove_code(params) imported_modules.extend( modules) init_code += code_text elif params.get('conversion_method','').lower() == 'fasttext': init_code += __profiler_fasttext_code(params) run_code += __profiler_main_code(params) if params.get('unpreprocessed_columns'): run_code += f""" df['{params.get('unpreprocessed_columns')[0]}'] = unpreprocessed_data """ utility.import_modules(importer, imported_modules) import_code = importer.getCode() return import_code + code + init_code + run_code def __profiler_glove_code(params, indent=2): modules = [] modules.append({'module':'load_pretrained','mod_from':'text.Embedding'}) modules.append({'module':'TextProcessing','mod_from':'text'}) code = """ model_path = TextProcessing.checkAndDownloadPretrainedModel('glove') embed_size, pretrained_model = load_pretrained(model_path) self.profiler.set_params(text_process__vectorizer__external_model = pretrained_model) """ return code.replace('\\n', '\\n'+(indent * TAB_CHAR)), modules def __profiler_fasttext_code(params, indent=2): code = """ def get_pretrained_model_path(): try: from AION.appbe.dataPath import DATA_DIR modelsPath = Path(DATA_DIR)/'PreTrainedModels'/'TextProcessing' except: modelsPath = Path('aion')/'PreTrainedModels'/'TextProcessing' if not modelsPath.exists(): modelsPath.mkdir(parents=True, exist_ok=True) return modelsPath if not importlib.util.find_spec('fasttext'): raise ValueError('fastText not installed') else: import os import fasttext import fasttext.util cwd = os.getcwd() os.chdir(get_pretrained_model_path()) fasttext.util.download_model('en', if_exists='ignore') pretrained_model = fasttext.load_model('cc.en.300.bin') os.chdir(cwd) self.profiler.set_params(text_process__vectorizer__external_model = pretrained_model) self.profiler.set_params(text_process__vectorizer__external_model_type = 'binary') """ return code.replace('\\n', '\\n'+(indent * TAB_CHAR)) def __profiler_main_code(params, indent=2): code = f""" df = self.profiler.transform(df) columns = {
params['output_features']} if isinstance(df, scipy.sparse.spmatrix): df = pd.DataFrame(df.toarray(), columns=columns) else: df = pd.DataFrame(df, columns=columns) return df """ return code.replace('\\n', '\\n'+(indent * TAB_CHAR)) def feature_selector_code( params, indent=0): modules = [ {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'} ] code = """ class selector(): # this class def __init__(self): pass def run(self, df):""" code +=f""" return df[{params['output_features']}] """ return code, modules def feature_reducer_code( params, indent=0): modules = [ {'module': 'joblib', 'mod_from': None, 'mod_as': None}, {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'}, {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None} ] code = f""" class selector(): def __init__(self): reducer_file = (Path(__file__).parent/"model")/"{params['reducer_file']}" if not reducer_file.exists(): raise ValueError(f'Failed to load Feature Engineering model file: {{reducer_file}}') self.model = joblib.load(reducer_file) def run(self, df): reducer_input = {params['input_features']} reducer_output = {params['output_features']} df = self.model.transform(df[reducer_input]) return pd.DataFrame(df,columns=reducer_output) """ if indent: code = code.replace('\\n', '\\n'+(indent * TAB_CHAR)) return code, modules def create_feature_list(config=None, target_feature=None, deploy_path=None): featurelist = [] if 'profiler' in config: if 'input_features_type' in config['profiler']: input_features = config['profiler']['input_features_type'] for x in input_features: featurelt={} featurelt['feature'] = x if x == target_feature: featurelt['Type'] = 'Target' else: if input_features[x] in ['int','int64','float','float64']: featurelt['Type'] = 'Numeric' elif input_features[x] == 'object': featurelt['Type'] = 'Text' elif input_features[x] == 'category': featurelt['Type'] = 'Category' else: featurelt['Type'] = 'Unknown' featurelist.append(featurelt) featurefile = f""" import json def getfeatures(): try: features = {featurelist} outputjson = {{"status":"SUCCESS","features":features}} output = json.dumps(outputjson) print("Features:",output) return(output) except Exception as e: output = {{"status":"FAIL","message":str(e).strip(\\'"\\')}} print("Features:",json.dumps(output)) return (json.dumps(output)) if __name__ == "__main__": output = getfeatures() """ with open( deploy_path/'featureslist.py', 'wb') as f: f.write( str(featurefile).encode('utf8')) def requirement_file(deploy_path,model,textFeatures,learner_type='ML'): modules = ['pandas','numpy','alibi','matplotlib','joblib','shap','ipython','category_encoders','scikit-learn','word2number','flask_restful','evidently','Flask-Cors'] requires = '' for mod in modules: requires += f"{mod}=={version(mod)}\\n" if len(textFeatures) > 0: tmodules = ['spacy','nltk','textblob','demoji','beautifulsoup4','text-unidecode','pyspellchecker','contractions','protobuf'] for mod in tmodules: requires += f"{mod}=={version(mod)}\\n" if model == 'Extreme Gradient Boosting (XGBoost)': mmodules = ['xgboost'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" if model == 'Light Gradient Boosting (LightGBM)': mmodules = ['lightgbm'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" if model == 'Categorical Boosting (CatBoost)': mmodules = ['catboost'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" if model.lower() == 'arima': mmodules = ['pmdarima'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" if model.lower() == 'fbprophet': mmodules = ['prophet'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" if model.lower() == 'lstm' or model.lower() == 'mlp' or learner_type =='DL': mmodules = ['tensorflow'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" if model.lower() in ['cox', 'kaplanmeierfitter']: #bug 12833 mmodules = ['lifelines'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" if model.lower() == 'sentencetransformer': #bug 12833 mmodules = ['sentence_transformers'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" with open( deploy_path/'requirements.txt', 'wb') as f: f.write(str(requires).encode('utf8')) def create_readme_file(deploy_path,modelfile,features): data = json.dumps([{x:x+'_value'} for x in features]) backslash_data = data.replace('"', '\\\\"') content = f""" ========== Files Structures ========== {modelfile} ------ Trained Model aion_prediction.py --> Python package entry point script/inputprofiler.py --> Profiling like FillNA and Category to Numeric ========== How to call the model ========== ============== From Windows Terminal ========== python aion_prediction.py "{backslash_data}" ============== From Linux Terminal ========== python aion_prediction.py "{data}" ============== Output ========== {{"status":"SUCCESS","data":[{{"Data1":"Value","prediction":"Value"}}]}} ## for single Row/Record {{"status":"SUCCESS","data":[{{"Data1":"Value","prediction":"Value"}},{{"Data1":"Value","prediction":"Value"}}]}} ## For Multiple Row/Record {{"status":"ERROR","message":"description"}} ## In Case Exception or Error """ filename = deploy_path/'readme.txt' with open(filename, 'w') as f: f.write(content) def create_util_folder(deploy_path): import tarfile ext_path = Path(__file__).parent.parent/'utilities' for x in ext_path.iterdir(): if x.suffix == '.tar': if x.name not in ['scikit_surprise-1.1.1.dist-info.tar','surprise.tar']: my_tar = tarfile.open(x) my_tar.extractall(deploy_path) my_tar.close() <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import platform import json import shutil import logging class aionPrediction: def __init__(self): self.log = logging.getLogger('eion') def create_optimus_prediction_file (self,classname,deploy_path,learner_type): self.predictionFile = 'import warnings' self.predictionFile += '\\n' self.predictionFile += 'warnings.filterwarnings("ignore")' self.predictionFile += '\\n' self.predictionFile += 'import json' self.predictionFile += '\\n' self.predictionFile += 'import os' self.predictionFile += '\\n' self.predictionFile += 'import sys' self.predictionFile += '\\n' self.predictionFile += 'import pandas as pd' self.predictionFile += '\\n' self.predictionFile += 'from pandas import json_normalize' self.predictionFile += '\\n' self.predictionFile += 'from importlib import import_module' self.predictionFile += '\\n' self.predictionFile += 'import importlib.util' self.predictionFile += '\\n' self.predictionFile += 'class prediction:' self.predictionFile += '\\n' self.predictionFile += ' def predict_from_json(self,json_data):' self.predictionFile += '\\n' self.predictionFile += ' data = json.loads(json_data)' self.predictionFile += '\\n' self.predictionFile += ' output=self.predict(data)' self.predictionFile += '\\n' self.predictionFile += ' print("predictions:",output)' self.predictionFile += '\\n' self.predictionFile += '\\n' self.predictionFile += ' def predict_from_file(self,filename):' self.predictionFile += '\\n' self.predictionFile += ' with open(filename,\\'r\\',encoding=\\'utf-8\\') as f:' self.predictionFile += '\\n' self.predictionFile += ' data = json.load(f)' self.predictionFile += '\\n' self.predictionFile += ' output=self.predict(data)' self.predictionFile += '\\n' self.predictionFile += ' print("predictions:",output)' self.predictionFile += '\\n' self.predictionFile += '\\n' self.predictionFile += ' def predict(self,json_data):' self.predictionFile += '\\n' self.predictionFile += ' try:' self.predictionFile += '\\n' #self.predictionFile += ' jsonData = json.loads(json_data)' self.predictionFile += ' jsonData=json_data' self.predictionFile += '\\n' self.predictionFile += ' model_obj = importlib.util.spec_from_file_location("module.name", os.path.dirname(os.path.abspath(__file__))+"/trained_model.py")' self.predictionFile += '\\n' self.predictionFile += ' model = importlib.util.module_from_spec(model_obj)' self.predictionFile += '\\n' self.predictionFile += ' model_obj.loader.exec_module(model)' self.predictionFile += '\\n' #if(learner_type != 'TextML'): self.predictionFile += ' profiler_obj = importlib.util.spec_from_file_location("module.name", os.path.dirname(os.path.abspath(__file__))+"/inputprofiler.py")' self.predictionFile += '\\n' self.predictionFile += ' inputprofiler = importlib.util.module_from_spec(profiler_obj)' self.predictionFile += '\\n' self.predictionFile += ' profiler_obj.loader.exec_module(inputprofiler)' self.predictionFile += '\\n' self.predictionFile += ' selector_obj = importlib.util.spec_from_file_location("module.name", os.path.dirname(os.path.abspath(__file__))+"/selector.py")' self.predictionFile += '\\n' self.predictionFile += ' selector = importlib.util.module_from_spec(selector_obj)' self.predictionFile += '\\n' self.predictionFile += ' selector_obj.loader.exec_module(selector)' self.predictionFile += '\\n' self.predictionFile += ' output_format_obj = importlib.util.spec_from_file_location("module.name", os.path.dirname(os.path.abspath(__file__))+"/output_format.py")' self.predictionFile += '\\n' self.predictionFile += ' output_format = importlib.util.module_from_spec(output_format_obj)' self.predictionFile += '\\n' self.predictionFile += ' output_format_obj.loader.exec_module(output_format)' self.predictionFile += '\\n' self.predictionFile += ' df = json_normalize(jsonData)' self.predictionFile += '\\n' self.predictionFile += ' df0 = df.copy()' self.predictionFile += '\\n' #if(learner_type != 'TextML'): self.predictionFile += ' profilerobj = inputprofiler.inputprofiler()' self.predictionFile += '\\n' self.predictionFile += ' df = profilerobj.apply_profiler(df)' self.predictionFile += '\\n' self.predictionFile += ' selectobj = selector.selector()' self.predictionFile += '\\n' self.predictionFile += ' df = selectobj.apply_selector(df)' self.predictionFile += '\\n' self.predictionFile += ' output = model.trained_model().predict(df,"")' self.predictionFile += '\\n' self.predictionFile += ' outputobj = output_format.output_format()' self.predictionFile += '\\n' self.predictionFile += ' output = outputobj.apply_output_format(df0,output)' #self.predictionFile += '\\n' #self.predictionFile += ' print(output)' self.predictionFile += '\\n' self.predictionFile += ' return output' self.predictionFile += '\\n' self.predictionFile += ' except KeyError as e:' self.predictionFile += '\\n' self.predictionFile += ' output = {"status":"FAIL","message":str(e).strip(\\'"\\')}' self.predictionFile += '\\n' self.predictionFile += ' return json.dumps(output)' self.predictionFile += '\\n' self.predictionFile += ' except Exception as e:' self.predictionFile += '\\n' self.predictionFile += ' output = {"status":"FAIL","message":str(e).strip(\\'"\\')}' self.predictionFile += '\\n' self.predictionFile += ' return json.dumps(output)' self.predictionFile += '\\n' self.prediction
File += '\\n' self.predictionFile += 'if __name__ == "__main__":' self.predictionFile += '\\n' self.predictionFile += ' predictobj = prediction()' self.predictionFile += '\\n' self.predictionFile += ' predictobj.predict_from_file(sys.argv[1])' self.predictionFile += '\\n' filename = os.path.join(deploy_path,'prediction.py') f = open(filename, "wb") f.write(str(self.predictionFile).encode('utf8')) f.close() def create_text_drift_file(self,deploy_path,features,target,model_type): #task-14549 self.predictionFile = 'import warnings' self.predictionFile += '\\n' self.predictionFile += 'warnings.filterwarnings("ignore")' self.predictionFile += '\\n' self.predictionFile += 'import json' self.predictionFile += '\\n' self.predictionFile += 'import os' self.predictionFile += '\\n' self.predictionFile += 'import sys' self.predictionFile += '\\n' self.predictionFile += 'import pandas as pd' self.predictionFile += '\\n' self.predictionFile += 'from monitoring import check_drift' self.predictionFile += '\\n' self.predictionFile += 'def drift(data):' self.predictionFile += '\\n' self.predictionFile += ' try:' self.predictionFile += '\\n' self.predictionFile += ' if os.path.splitext(data)[1] == ".json":' self.predictionFile += '\\n' self.predictionFile += ' with open(data,\\'r\\',encoding=\\'utf-8\\') as f:' self.predictionFile += '\\n' self.predictionFile += ' jsonData = json.load(f)' self.predictionFile += '\\n' self.predictionFile += ' else:' self.predictionFile += '\\n' self.predictionFile += ' jsonData = json.loads(data)' self.predictionFile += '\\n' self.predictionFile += ' jsonData[\\'features\\'] = \\''+",".join([feature for feature in features])+'\\'' self.predictionFile += '\\n' self.predictionFile += ' jsonData[\\'target\\'] = \\''+target+'\\'' self.predictionFile += '\\n' if model_type.lower() != 'timeseriesforecasting': #task 11997 self.predictionFile += ' htmlfilepath=evidently_details(jsonData)' self.predictionFile += '\\n' else: self.predictionFile += ' htmlfilepath=\\'\\'' self.predictionFile += '\\n' self.predictionFile += ' jsonData = json.dumps(jsonData)' self.predictionFile += '\\n' self.predictionFile += ' output = check_drift(jsonData)' self.predictionFile += '\\n' self.predictionFile += ' output = json.loads(output)' self.predictionFile += '\\n' self.predictionFile += ' output[\\'htmlPath\\'] = str(htmlfilepath)' self.predictionFile += '\\n' self.predictionFile += ' print("drift:", json.dumps(output))' self.predictionFile += '\\n' self.predictionFile += ' return(output)' self.predictionFile += '\\n' self.predictionFile += ' except KeyError as e:' self.predictionFile += '\\n' self.predictionFile += ' output = {"status":"FAIL","message":str(e).strip(\\'"\\')}' self.predictionFile += '\\n' self.predictionFile += ' print("drift:",json.dumps(output))' self.predictionFile += '\\n' self.predictionFile += ' return (json.dumps(output))' self.predictionFile += '\\n' self.predictionFile += ' except Exception as e:' self.predictionFile += '\\n' self.predictionFile += ' output = {"status":"FAIL","message":str(e).strip(\\'"\\')}' self.predictionFile += '\\n' self.predictionFile += ' print("drift:",json.dumps(output))' self.predictionFile += '\\n' self.predictionFile += ' return (json.dumps(output))' self.predictionFile += '\\n' if model_type.lower() != 'timeseriesforecasting': #task 11997 self.predictionFile += 'def evidently_details(deployJson):' self.predictionFile += '\\n' self.predictionFile += ' features = deployJson[\\'features\\'].split(\\',\\')' self.predictionFile += '\\n' self.predictionFile += ' target = deployJson[\\'target\\']' self.predictionFile += '\\n' self.predictionFile += """\\ try: from evidently.report import Report from evidently.metrics import TextDescriptorsDriftMetric, ColumnDriftMetric from evidently.pipeline.column_mapping import ColumnMapping from sklearn.preprocessing import LabelEncoder historicaldataFrame=pd.read_csv(deployJson['trainingDataLocation'],skipinitialspace = True,na_values=['-','?']) currentdataFrame=pd.read_csv(deployJson['currentDataLocation'],skipinitialspace = True,na_values=['-','?']) historicaldataFrame.columns = historicaldataFrame.columns.str.strip() currentdataFrame.columns = currentdataFrame.columns.str.strip() hdf = historicaldataFrame.dropna(subset=features) cdf = currentdataFrame.dropna(subset=features) hdf['Text_Features'] = hdf[features].apply("-".join, axis=1) cdf['Text_Features'] = cdf[features].apply("-".join, axis=1) hdf['target'] = historicaldataFrame[target] cdf['target'] = currentdataFrame[target] le = LabelEncoder() le.fit(hdf['target']) hdf['target'] = le.transform(hdf['target']) le.fit(cdf['target']) cdf['target'] = le.transform(cdf['target']) hd = hdf[['Text_Features', 'target']] cd = cdf[['Text_Features', 'target']] column_mapping = ColumnMapping() column_mapping.target = 'target' column_mapping.prediction = 'target' column_mapping.text_features = ['Text_Features'] column_mapping.numerical_features = [] column_mapping.categorical_features = [] performance_report = Report(metrics=[ColumnDriftMetric('target'),TextDescriptorsDriftMetric(column_name='Text_Features')]) performance_report.run(reference_data=hd, current_data=cd,column_mapping=column_mapping) report = os.path.join(os.path.dirname(os.path.abspath(__file__)),"log","My_report.html") performance_report.save_html(report) return(report) except Exception as e: print('Error: ', e) return('NA')""" self.predictionFile += '\\n' self.predictionFile += 'if __name__ == "__main__":' self.predictionFile += '\\n' self.predictionFile += ' output = drift(sys.argv[1])' filename = os.path.join(deploy_path,'aion_ipdrift.py') f = open(filename, "wb") f.write(str(self.predictionFile).encode('utf8')) f.close() def create_drift_file(self,deploy_path,features,target,model_type): self.predictionFile = 'import warnings' self.predictionFile += '\\n' self.predictionFile += 'warnings.filterwarnings("ignore")' self.predictionFile += '\\n' self.predictionFile += 'import json' self.predictionFile += '\\n' self.predictionFile += 'import os' self.predictionFile += '\\n' self.predictionFile += 'import sys' self.predictionFile += '\\n' self.predictionFile += 'import pandas as pd' self.predictionFile += '\\n' self.predictionFile += 'from monitoring import check_drift' self.predictionFile += '\\n' self.predictionFile += 'from pandas import json_normalize' self.predictionFile += '\\n' self.predictionFile += 'from script.inputprofiler import inputprofiler' self.predictionFile += '\\n' self.predictionFile += 'def drift(data):' self.predictionFile += '\\n' self.predictionFile += ' try:' self.predictionFile += '\\n' self.predictionFile += ' if os.path.splitext(data)[1] == ".json":' self.predictionFile += '\\n' self.predictionFile += ' with open(data,\\'r\\',encoding=\\'utf-8\\') as f:' self.predictionFile += '\\n' self.predictionFile += ' jsonData = json.load(f)' self.predictionFile += '\\n' self.predictionFile += ' else:' self.predictionFile += '\\n' self.predictionFile += ' jsonData = json.loads(data)' self.predictionFile += '\\n' self.predictionFile += ' jsonData[\\'features\\'] = \\''+",".join([feature for feature in features])+'\\'' self.predictionFile += '\\n' self.predictionFile += ' jsonData[\\'target\\'] = \\''+target+'\\'' self.predictionFile += '\\n' if model_type.lower() != 'timeseriesforecasting': #task 11997 self.predictionFile += ' htmlfilepath=evidently_details(jsonData)' self.predictionFile += '\\n' else: self.predictionFile += ' htmlfilepath=\\'\\'' self.predictionFile += '\\n' self.predictionFile += ' jsonData = json.dumps(jsonData)' self.predictionFile += '\\n' self.predictionFile += ' output = check_drift(jsonData)' self.predictionFile += '\\n' self.predictionFile += ' output = json.loads(output)' self.predictionFile += '\\n' self.predictionFile += ' output[\\'htmlPath\\'] = str(htmlfilepath)' self.predictionFile += '\\n' self.predictionFile += ' output = json.dumps(output)' self.predictionFile += '\\n' self.predictionFile += ' print("drift:",output)' self.predictionFile += '\\n' self.predictionFile += ' return(output)' self.predictionFile += '\\n' self.predictionFile += ' except KeyError as e:' self.predictionFile += '\\n' self.predictionFile += ' output = {"status":"FAIL","message":str(e).strip(\\'"\\')}' self.predictionFile += '\\n' self.predictionFile += ' print("drift:",json.dumps(output))' self.predictionFile += '\\n' self.predictionFile += ' return (json.dumps(output))' self.predictionFile += '\\n' self.predictionFile += ' except Exception as e:' self.predictionFile += '\\n' self.predictionFile += ' output = {"status":"FAIL","message":str(e).strip(\\'"\\')}' self.predictionFile += '\\n' self.predictionFile += ' print("drift:",json.dumps(output))' self.predictionFile += '\\n' self.predictionFile += ' return (json.dumps(output))' self.predictionFile += '\\n' if model_type.lower() != 'timeseriesforecasting': #task 11997 self.predictionFile += 'def evidently_details(deployJson):' self.predictionFile += '\\n' self.predictionFile += ' features = deployJson[\\'features\\'].split(\\',\\')' self.predictionFile += '\\n' self.predictionFile += ' target = deployJson[\\'target\\']' self.predictionFile += '\\n' self.predictionFile += """\\ try: from evidently.report import Report from evidently.metric_preset import DataDriftPreset historicaldataFrame=pd.read_csv(deployJson['trainingDataLocation'],skipinitialspace = True,na_values=['-','?']) currentdataFrame=pd.read_csv(deployJson['currentDataLocation'],skipinitialspace = True,na_values=['-','?']) historicaldataFrame.columns = historicaldataFrame.columns.str.strip() currentdataFrame.columns = currentdataFrame.columns.str.strip() profilerobj = inputprofiler() historicaldataFramep = profilerobj.run(historicaldataFrame) currentdataFramep = profilerobj.run(currentdataFrame) hdf = historicaldataFramep[features] cdf = currentdataFramep[features] hdf['target'] = historicaldataFrame[target] cdf['target'] = currentdataFrame[target] data_drift_report = Report(metrics = [DataDriftPreset()]) data_drift_report.run(reference_data=hdf,current_data=cdf,column_mapping = None) report = os.path.join(os.path.dirname(os.path.abspath(__file__)),'log','my_report.html') data_drift_report.save_html(report) return(report) except Exception as e: print('Error') return('NA')""" self.predictionFile += '\\n' self.predictionFile += 'if __name__ == "__main__":' self.predictionFile += '\\n' self.predictionFile += ' output = drift(sys.argv[1])' filename = os.path.join(deploy_path,'aion_ipdrift.py') f = open(filename, "wb") f.write(str(self.predictionFile).encode('utf8')) f.close() def create_prediction_file(self,classname,deploy_path,learner_type,grouperbyjson,rowfilterexpression,model_type,datetimeFeature): self.predictionFile = 'import warnings' self.predictionFile += '\\n' self.predictionFile += 'warnings.filterwarnings("ignore")' self.predictionFile += '\\n' self.predictionFile += 'import json' self.predictionFile += '\\n' self.predictionFile += 'import os' self.predictionFile += '\\n' self.predictionFile += 'import sys' self.predictionFile += '\\n' self.predictionFile += 'import pandas as pd' self.predictionFile += '\\n' self.predictionFile += 'from pandas import json_normalize' self.predictionFile += '\\n' if(learner_type.lower() != 'recommendersystem'): #task 11190
self.predictionFile += 'from script.selector import selector' self.predictionFile += '\\n' self.predictionFile += 'from script.inputprofiler import inputprofiler' self.predictionFile += '\\n' #self.predictionFile += 'from '+classname+' import '+classname self.predictionFile += 'from script.trained_model import trained_model' self.predictionFile += '\\n' else: self.predictionFile += 'from script.item_recommendation import collaborative_filter' self.predictionFile += '\\n' self.predictionFile += 'from script.output_format import output_format' self.predictionFile += '\\n' if (learner_type != 'RecommenderSystem'): #task 11190 self.predictionFile += 'profilerobj = inputprofiler()' self.predictionFile += '\\n' self.predictionFile += 'selectobj = selector()' self.predictionFile += '\\n' self.predictionFile += 'modelobj = trained_model()' self.predictionFile += '\\n' else: self.predictionFile += 'colabobj = collaborative_filter()' self.predictionFile += '\\n' self.predictionFile += 'outputobj = output_format()' self.predictionFile += '\\n' self.predictionFile += 'def predict(data):' self.predictionFile += '\\n' self.predictionFile += ' try:' self.predictionFile += '\\n' self.predictionFile += ' if os.path.splitext(data)[1] == ".tsv":' self.predictionFile += '\\n' self.predictionFile += ' df=pd.read_csv(data,encoding=\\'utf-8\\',sep=\\'\\\\t\\',skipinitialspace = True,na_values=[\\'-\\',\\'?\\'])' self.predictionFile += '\\n' self.predictionFile += ' elif os.path.splitext(data)[1] == ".csv":' self.predictionFile += '\\n' self.predictionFile += ' df=pd.read_csv(data,encoding=\\'utf-8\\',skipinitialspace = True,na_values=[\\'-\\',\\'?\\'])' self.predictionFile += '\\n' self.predictionFile += ' elif os.path.splitext(data)[1] == ".dat":' self.predictionFile += '\\n' self.predictionFile += ' df=pd.read_csv(data,encoding=\\'utf-8\\',skipinitialspace = True,na_values=[\\'-\\',\\'?\\'])' self.predictionFile += '\\n' self.predictionFile += ' else:' self.predictionFile += '\\n' self.predictionFile += ' if os.path.splitext(data)[1] == ".json":' self.predictionFile += '\\n' self.predictionFile += ' with open(data,\\'r\\',encoding=\\'utf-8\\') as f:' self.predictionFile += '\\n' self.predictionFile += ' jsonData = json.load(f)' self.predictionFile += '\\n' self.predictionFile += ' else:' self.predictionFile += '\\n' self.predictionFile += ' jsonData = json.loads(data)' self.predictionFile += '\\n' self.predictionFile += ' df = json_normalize(jsonData)' self.predictionFile += '\\n' self.predictionFile += ' df.rename(columns=lambda x: x.strip(), inplace=True)' self.predictionFile += '\\n' if str(rowfilterexpression) != '': self.predictionFile += ' filterexpression = "'+rowfilterexpression+'"' self.predictionFile += '\\n' self.predictionFile += ' df = df.query(filterexpression)' self.predictionFile += '\\n' #print(grouperbyjson) if str(grouperbyjson) != '': datetime = grouperbyjson['datetime'] unit = grouperbyjson['unit'] if unit == '': self.predictionFile += ' df[\\'date\\'] = pd.to_datetime(df[\\''+datetime+'\\'])' self.predictionFile += '\\n' else: self.predictionFile += ' df[\\'date\\'] = pd.to_datetime(df[\\''+datetime+'\\'],unit=\\''+unit+'\\')' self.predictionFile += '\\n' self.predictionFile += ' df = df.reset_index()' self.predictionFile += '\\n' self.predictionFile += ' df.set_index(\\'date\\',inplace=True)' self.predictionFile += '\\n' self.predictionFile += ' df = df.'+grouperbyjson['groupbystring'] self.predictionFile += '\\n' self.predictionFile += ' df.columns = df.columns.droplevel(0)' self.predictionFile += '\\n' self.predictionFile += ' df = df.reset_index()' self.predictionFile += '\\n' self.predictionFile += ' df0 = df.copy()' self.predictionFile += '\\n' if(learner_type != 'RecommenderSystem'): #task 11190 if model_type.lower() == 'anomaly_detection' and datetimeFeature != '' and datetimeFeature.lower() != 'na': self.predictionFile += ' df,datetimeFeature = profilerobj.apply_profiler(df)' self.predictionFile += '\\n' else: self.predictionFile += ' df = profilerobj.apply_profiler(df)' self.predictionFile += '\\n' self.predictionFile += ' df = selectobj.apply_selector(df)' self.predictionFile += '\\n' #self.predictionFile += ' modelobj = '+classname+'()' self.predictionFile += ' output = modelobj.predict(df,"")' self.predictionFile += '\\n' else: self.predictionFile += ' output = colabobj.predict(df)' self.predictionFile += '\\n' if model_type.lower() == 'anomaly_detection' and datetimeFeature != '' and datetimeFeature.lower() != 'na': self.predictionFile += ' output = outputobj.apply_output_format(df0,output,datetimeFeature)' self.predictionFile += '\\n' else: self.predictionFile += ' output = outputobj.apply_output_format(df0,output)' self.predictionFile += '\\n' self.predictionFile += ' print("predictions:",output)' self.predictionFile += '\\n' self.predictionFile += ' return(output)' self.predictionFile += '\\n' self.predictionFile += ' except KeyError as e:' self.predictionFile += '\\n' self.predictionFile += ' output = {"status":"FAIL","message":str(e).strip(\\'"\\')}' self.predictionFile += '\\n' self.predictionFile += ' print("predictions:",json.dumps(output))' self.predictionFile += '\\n' self.predictionFile += ' return (json.dumps(output))' self.predictionFile += '\\n' self.predictionFile += ' except Exception as e:' self.predictionFile += '\\n' self.predictionFile += ' output = {"status":"FAIL","message":str(e).strip(\\'"\\')}' self.predictionFile += '\\n' self.predictionFile += ' print("predictions:",json.dumps(output))' self.predictionFile += '\\n' self.predictionFile += ' return (json.dumps(output))' self.predictionFile += '\\n' self.predictionFile += 'if __name__ == "__main__":' self.predictionFile += '\\n' self.predictionFile += ' output = predict(sys.argv[1])' filename = os.path.join(deploy_path,'aion_predict.py') f = open(filename, "w") f.write(str(self.predictionFile)) f.close() def create_classification_text_performance_file(self,deploy_path,features,target): features = ",".join([feature for feature in features]) self.predictionFile = """\\ import pandas as pd import warnings warnings.filterwarnings("ignore") import json import os import sys from pandas import json_normalize # from evidently.dashboard import Dashboard # from evidently.tabs import ClassificationPerformanceTab from evidently.pipeline.column_mapping import ColumnMapping from aion_predict import predict from evidently.report import Report from evidently.pipeline.column_mapping import ColumnMapping from evidently.metric_preset import ClassificationPreset def odrift(data): try: """ self.predictionFile += ' features = \\''+features+'\\'' self.predictionFile += '\\n' self.predictionFile += ' target = \\''+target+'\\'' self.predictionFile += '\\n' self.predictionFile +="""\\ if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) production = predict().run(jsonData['currentDataLocation']) reference = predict().run(jsonData['trainingDataLocation']) production = json.loads(production) reference = json.loads(reference) if (production['status'] == 'SUCCESS' and reference['status'] == 'SUCCESS'): production = production['data'] production = json_normalize(production) reference = reference['data'] reference = json_normalize(reference) production['target'] = production[target] reference['target'] = reference[target] column_mapping = ColumnMapping() column_mapping.target = target column_mapping.prediction = 'prediction' column_mapping.datetime = None column_mapping.text_features = features.split(',') iris_model_performance_dashboard = Report(metrics=[ClassificationPreset()]) iris_model_performance_dashboard.run(reference_data=reference, current_data=production,column_mapping=column_mapping) report = os.path.join(os.path.dirname(os.path.abspath(__file__)),'log','performance.html') iris_model_performance_dashboard.save_html(report) metrics_output = iris_model_performance_dashboard.as_dict() output = {"status":"SUCCESS","htmlPath":report, 'drift_details':metrics_output['metrics']} print("drift:",json.dumps(output)) return (json.dumps(output)) except KeyError as e: print(e) output = {"status":"FAIL","message":str(e).strip('"')} print("drift:",json.dumps(output)) return (json.dumps(output)) except Exception as e: print(e) output = {"status":"FAIL","message":str(e).strip('"')} print("drift:",json.dumps(output)) return (json.dumps(output)) if __name__ == "__main__": output = odrift(sys.argv[1])""" filename = os.path.join(deploy_path,'aion_opdrift.py') f = open(filename, "wb") f.write(str(self.predictionFile).encode('utf8')) f.close() def create_classification_performance_file(self,deploy_path,features,target): features = ",".join([feature for feature in features]) self.predictionFile = """\\ import pandas as pd import warnings warnings.filterwarnings("ignore") import json import os import sys from pandas import json_normalize from evidently.report import Report from evidently.metric_preset import ClassificationPreset from evidently.pipeline.column_mapping import ColumnMapping from aion_predict import predict def odrift(data): try: """ self.predictionFile += ' features = \\''+features+'\\'' self.predictionFile += '\\n' self.predictionFile += ' target = \\''+target+'\\'' self.predictionFile += '\\n' self.predictionFile +="""\\ if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) production = predict().run(jsonData['currentDataLocation']) reference = predict().run(jsonData['trainingDataLocation']) production = json.loads(production) reference = json.loads(reference) if (production['status'] == 'SUCCESS' and reference['status'] == 'SUCCESS'): production = production['data'] production = json_normalize(production) reference = reference['data'] reference = json_normalize(reference) production['target'] = production[target] reference['target'] = reference[target] column_mapping = ColumnMapping() column_mapping.target = target column_mapping.prediction = 'prediction' column_mapping.datetime = None column_mapping.numerical_features = features.split(',') model_performance_dashboard = Report(metrics = [ClassificationPreset()]) model_performance_dashboard.run(reference_data =reference, current_data =production, column_mapping = column_mapping) report = os.path.join(os.path.dirname(os.path.abspath(__file__)),'log','performance.html') model_performance_dashboard.save_html(report) metrics_output = model_performance_dashboard.as_dict() output = {"status":"SUCCESS","htmlPath":report, 'drift_details':metrics_output['metrics']} print("drift:",json.dumps(output)) return (json.dumps(output)) else: output = {"status":"SUCCESS","htmlPath":'NA'} print("drift:",json.dumps(output)) return (json.dumps(output)) except KeyError as e: print(e) output = {"status":"FAIL","message":str(e).strip('"')} print("drift:",json.dumps(output)) return (json.dumps(output)) except Exception as e: print(e) output = {"status":"FAIL","message":str(e).strip('"')} print("drift:",json.dumps(output)) return (json.dumps(output)) if __name__ == "__main__": output = odrift(sys.argv[1])""" filename = os.path.join(deploy_path,'aion_opdrift.py') f = open(filename, "wb") f.write(str(self.predictionFile).encode('utf8')) f.close() def create_model_service(self,deploy_path,serviceName,problemType): filedata = """ from flask import Flask, jsonify, request from flask_restful import Resource, Api from aion_predict import predict""" if problemType.lower() == 'classification' or problemType.lower() == 'regression': filedata += """ from aion_xai import local_analysis from aion_ipdrift
import drift from aion_opdrift import odrift""" filedata += """ import json import os import pandas as pd import io import argparse from pathlib import Path from flask_cors import CORS, cross_origin app = Flask(__name__) #cross origin resource from system arguments parser = argparse.ArgumentParser() parser.add_argument('-ip', '--ipaddress', help='IP Address') parser.add_argument('-p', '--port', help='Port Number') parser.add_argument("-cors", type=str, required=False) d = vars(parser.parse_args()) modelPath = Path(__file__).parent try: with open( (modelPath/'etc')/'display.json', 'r') as f: disp_data = json.load(f) is_explainable = not disp_data.get('textFeatures') except: disp_data = {} is_explainable = True if "cors" in d.keys(): if d["cors"] != '' and d["cors"] != None: d["cors"] = [s.strip() for s in d["cors"].split(",")] #cors = CORS(app, resources={r"/AION/*": {"origins": ["http://localhost", "http://localhost:5000"]}}) cors = CORS(app, resources={r"/AION/*": {"origins": d["cors"]}}) api = Api(app) class predictapi(Resource): def get(self): features = disp_data.get('modelFeatures') if features: msg=\\""" RequestType: POST Content-Type=application/json Body: {displaymsg} \\""".format(displaymsg={ x:'Value' for x in features}) else: displaymsg='Data in JSON Format' return jsonify(displaymsg) def post(self): data = request.get_json() output = predict().run(json.dumps(data)) return jsonify(json.loads(output)) class predictfileapi(Resource): def post(self): if 'file' in request.files: file = request.files['file'] urlData = file.read() rawData = pd.read_csv(io.StringIO(urlData.decode('utf-8'))) data = rawData.to_json(orient='records') output = predict().run(data) return jsonify(json.loads(output)) else: displaymsg='File is mising' return jsonify(displaymsg) def get(self): msg=\\""" RequestType: POST Body:send file content in body\\""" return jsonify(msg) """ if problemType.lower() == 'classification' or problemType.lower() == 'regression': filedata += """ class explainapi(Resource): def get(self): features = disp_data.get('modelFeatures') if features: msg=\\""" RequestType: POST Content-Type=application/json Body: {displaymsg} \\""".format(displaymsg={ x:'Value' for x in features}) else: displaymsg='Data in JSON Format' return jsonify(displaymsg) def post(self): data = request.get_json() if is_explainable: output = local_analysis(json.dumps(data)) else: output = json.dumps({"status":"FAIL","data":"explain api is not supported when text features are used for training"}) return jsonify(json.loads(output)) class monitoringapi(Resource): def get(self): return jsonify({'trainingDataLocation':'Training File Location','currentDataLocation':'production Location'}) def post(self): data = request.get_json() output = drift(json.dumps(data)) return jsonify(json.loads(output)) class performanceapi(Resource): def get(self): return jsonify({'trainingDataLocation':'Training File Location','currentDataLocation':'production Location'}) def post(self): data = request.get_json() output = odrift(json.dumps(data)) return jsonify(json.loads(output)) """ filedata += """ api.add_resource(predictapi, '/AION/{serviceName}/predict')""".format(serviceName=serviceName) filedata += """ api.add_resource(predictfileapi, '/AION/{serviceName}/predict_file')""".format(serviceName=serviceName) if problemType.lower() == 'classification' or problemType.lower() == 'regression': filedata += """ api.add_resource(explainapi, '/AION/{serviceName}/explain') api.add_resource(monitoringapi, '/AION/{serviceName}/monitoring') api.add_resource(performanceapi, '/AION/{serviceName}/performance')""".format(serviceName=serviceName) filedata += """ if __name__ == '__main__': args = parser.parse_args() app.run(args.ipaddress,port = args.port,debug = True)""" filename = os.path.join(deploy_path,'aion_service.py') f = open(filename, "wb") f.write(str(filedata).encode('utf8')) f.close() def create_regression_performance_file(self,deploy_path,features,target): features = ",".join([feature for feature in features]) self.predictionFile = """\\ import pandas as pd import warnings warnings.filterwarnings("ignore") import json import os import sys from pandas import json_normalize from evidently.report import Report from evidently.metric_preset import RegressionPreset from evidently.pipeline.column_mapping import ColumnMapping from aion_predict import predict def odrift(data): try: """ self.predictionFile += ' features = \\''+features+'\\'' self.predictionFile += '\\n' self.predictionFile += ' target = \\''+target+'\\'' self.predictionFile += '\\n' self.predictionFile +="""\\ if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) production = predict().run(jsonData['currentDataLocation']) reference = predict().run(jsonData['trainingDataLocation']) production = json.loads(production) reference = json.loads(reference) if (production['status'] == 'SUCCESS' and reference['status'] == 'SUCCESS'): production = production['data'] production = json_normalize(production) reference = reference['data'] reference = json_normalize(reference) production['target'] = production[target] reference['target'] = reference[target] column_mapping = ColumnMapping() column_mapping.target = target column_mapping.prediction = 'prediction' column_mapping.datetime = None column_mapping.numerical_features = features.split(',') iris_model_performance_dashboard = Report(metrics=[RegressionPreset()]) iris_model_performance_dashboard.run(reference_data = reference, current_data = production, column_mapping = column_mapping) report = os.path.join(os.path.dirname(os.path.abspath(__file__)),'log','performance.html') iris_model_performance_dashboard.save_html(report) metrics_output = iris_model_performance_dashboard.as_dict() output = {"status":"SUCCESS","htmlPath":report, 'drift_details':metrics_output['metrics']} print("drift:",json.dumps(output)) return (json.dumps(output)) else: output = {"status":"SUCCESS","htmlPath":'NA'} print("drift:",json.dumps(output)) return (json.dumps(output)) except KeyError as e: print(e) output = {"status":"FAIL","message":str(e).strip('"')} print("drift:",json.dumps(output)) return (json.dumps(output)) except Exception as e: print(e) output = {"status":"FAIL","message":str(e).strip('"')} print("drift:",json.dumps(output)) return (json.dumps(output)) if __name__ == "__main__": output = odrift(sys.argv[1])""" filename = os.path.join(deploy_path,'aion_opdrift.py') f = open(filename, "wb") f.write(str(self.predictionFile).encode('utf8')) f.close() def create_regression_text_performance_file(self,deploy_path,features,target): features = ",".join([feature for feature in features]) self.predictionFile = """\\ import pandas as pd import warnings warnings.filterwarnings("ignore") import json import os import sys from pandas import json_normalize from aion_predict import predict from evidently.report import Report from evidently.pipeline.column_mapping import ColumnMapping from evidently.metric_preset import RegressionPreset def odrift(data): try: """ self.predictionFile += ' features = \\''+features+'\\'' self.predictionFile += '\\n' self.predictionFile += ' target = \\''+target+'\\'' self.predictionFile += '\\n' self.predictionFile +="""\\ if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) production = predict().run(jsonData['currentDataLocation']) reference = predict().run(jsonData['trainingDataLocation']) production = json.loads(production) reference = json.loads(reference) if (production['status'] == 'SUCCESS' and reference['status'] == 'SUCCESS'): production = production['data'] production = json_normalize(production) reference = reference['data'] reference = json_normalize(reference) production['target'] = production[target] reference['target'] = reference[target] column_mapping = ColumnMapping() column_mapping.target = target column_mapping.prediction = 'prediction' column_mapping.datetime = None column_mapping.numerical_features = features.split(',') iris_model_performance_dashboard = Report(metrics=[RegressionPreset()]) iris_model_performance_dashboard.run(reference_data=reference, current_data=production,column_mapping=column_mapping) report = os.path.join(os.path.dirname(os.path.abspath(__file__)),'log','performance.html') iris_model_performance_dashboard.save_html(report) metrics_output = iris_model_performance_dashboard.as_dict() output = {"status":"SUCCESS","htmlPath":report, 'drift_details':metrics_output['metrics']} print("drift:",json.dumps(output)) return (json.dumps(output)) else: output = {"status":"SUCCESS","htmlPath":'NA'} print("drift:",json.dumps(output)) return (json.dumps(output)) except KeyError as e: print(e) output = {"status":"FAIL","message":str(e).strip('"')} print("drift:",json.dumps(output)) return (json.dumps(output)) except Exception as e: print(e) output = {"status":"FAIL","message":str(e).strip('"')} print("drift:",json.dumps(output)) return (json.dumps(output)) if __name__ == "__main__": output = odrift(sys.argv[1])""" filename = os.path.join(deploy_path,'aion_opdrift.py') f = open(filename, "wb") f.write(str(self.predictionFile).encode('utf8')) f.close() def create_publish_service(self,datalocation,usecaseid,version,problemType): filename = os.path.join(datalocation,'aion_publish_service.py') if not os.path.exists(filename): filedata = """ import sys import json import time import sqlite3 import argparse import pandas as pd import io from pathlib import Path from datetime import datetime filename = Path(__file__).parent/'config.json' with open (filename, "r") as f: data = json.loads(f.read()) modelVersion = str(data['version']) modelPath = Path(__file__).parent/modelVersion sys.path.append(str(modelPath)) try: with open( (modelPath/'etc')/'display.json', 'r') as f: disp_data = json.load(f) is_explainable = not disp_data.get('textFeatures') except: disp_data = {} is_explainable = True from flask import Flask, jsonify, request from flask_restful import Resource, Api from flask_cors import CORS, cross_origin from flask import Response from aion_predict import predict """ if problemType.lower() == 'classification' or problemType.lower() == 'regression': filedata += """ from aion_ipdrift import drift from aion_opdrift import odrift if is_explainable: from aion_xai import local_analysis """ filedata += """ dataPath = Path(__file__).parent/'data' dataPath.mkdir(parents=True, exist_ok=True) app = Flask(__name__) #cross origin resource from system arguments parser = argparse.ArgumentParser() parser.add_argument('-ip', '--ipaddress', help='IP Address') parser.add_argument('-p', '--port', help='Port Number') parser.add_argument("-cors", type=str, required=False) d = vars(parser.parse_args()) if "cors" in d.keys(): if d["cors"] != '' and d["cors"] != None: d["cors"] = [s.strip() for s in d["cors"].split(",")] #cors = CORS(app, resources={r"/AION/*": {"origins": ["http://localhost", "http://localhost:5000"]}}) cors = CORS(app, resources={r"/AION/*": {"origins": d["cors"]}}) api = Api(app) class sqlite_db(): def __init__(self, location, database_file=None): if not isinstance(location, Path): location = Path(location) if database_file: self.database_name = database_file else: self.database_name = location.stem + '.db' db_file = str(location/self.database_name) self.conn = sqlite3.connect(db_file) self.cursor = self.conn.cursor() self.tables = [] def table_exists(self, name): if name in self.tables: return True elif name: query = f"SELECT name FROM sqlite_master WHERE type='table' AND name='{name}';" listOfTables = self.cursor.execute(query).fetchall() if len(listOfTables) > 0 : self.tables.append(name) return True return False def read(self,
table_name,condition=''): if condition == '': return pd.read_sql_query(f"SELECT * FROM {table_name}", self.conn) else: return pd.read_sql_query(f"SELECT * FROM {table_name} WHERE {condition}", self.conn) def create_table(self,name, columns, dtypes): query = f'CREATE TABLE IF NOT EXISTS {name} (' for column, data_type in zip(columns, dtypes): query += f"'{column}' TEXT," query = query[:-1] query += ');' self.conn.execute(query) return True def update(self,table_name,updates,condition): update_query = f'UPDATE {table_name} SET {updates} WHERE {condition}' self.cursor.execute(update_query) self.conn.commit() return True def write(self,data, table_name): if not self.table_exists(table_name): self.create_table(table_name, data.columns, data.dtypes) tuple_data = list(data.itertuples(index=False, name=None)) insert_query = f'INSERT INTO {table_name} VALUES(' for i in range(len(data.columns)): insert_query += '?,' insert_query = insert_query[:-1] + ')' self.cursor.executemany(insert_query, tuple_data) self.conn.commit() return True def delete(self, name): pass def close(self): self.conn.close()""" filedata += """ app = Flask(__name__) api = Api(app) class predictapi(Resource): def get(self): features = disp_data.get('modelFeatures') if features: msg=\\""" RequestType: POST Content-Type=application/json Body: {displaymsg} \\""".format(displaymsg={ x:'Value' for x in features}) else: displaymsg='Data in JSON Format' return jsonify(displaymsg) def post(self): sqlite_dbObj = sqlite_db(dataPath,'data.db') if not sqlite_dbObj.table_exists('metrices'): data = {'noOfPredictCalls':'0','noOfDriftCalls':'0',"noOfActualCalls":'0',"mid":'0'} data = pd.DataFrame(data, index=[0]) sqlite_dbObj.create_table('metrices',data.columns, data.dtypes) data = request.get_json() output = predict().run(json.dumps(data)) outputobj = json.loads(output) if outputobj['status'] == 'SUCCESS': try: df2 = pd.read_json(json.dumps(outputobj['data']), orient ='records') if not sqlite_dbObj.table_exists('prodData'): sqlite_dbObj.create_table('prodData',df2.columns, df2.dtypes) sqlite_dbObj.write(df2,'prodData') except: pass try: data = sqlite_dbObj.read('metrices') #print(data) if len(data) == 0: data = [{'mid':'0','noOfPredictCalls':'1','noOfDriftCalls':'0',"noOfActualCalls":'0'}] data = pd.read_json(json.dumps(data), orient ='records') sqlite_dbObj.write(data,'metrices') else: noofPredictCalls = int(data['noOfPredictCalls'].iloc[0])+1 sqlite_dbObj.update('metrices',"noOfPredictCalls = '"+str(noofPredictCalls)+"'","mid = 0") except Exception as e: print(e) pass return jsonify(json.loads(output)) class predictfileapi(Resource): def post(self): sqlite_dbObj = sqlite_db(dataPath,'data.db') if not sqlite_dbObj.table_exists('metrices'): data = {'noOfPredictCalls':'0','noOfDriftCalls':'0',"noOfActualCalls":'0',"mid":'0'} data = pd.DataFrame(data, index=[0]) sqlite_dbObj.create_table('metrices',data.columns, data.dtypes) if 'file' in request.files: file = request.files['file'] urlData = file.read() rawData = pd.read_csv(io.StringIO(urlData.decode('utf-8'))) data = rawData.to_json(orient='records') output = predict().run(data) outputobj = json.loads(output) if outputobj['status'] == 'SUCCESS': try: df2 = pd.read_json(json.dumps(outputobj['data']), orient ='records') if not sqlite_dbObj.table_exists('prodData'): sqlite_dbObj.create_table('prodData',df2.columns, df2.dtypes) sqlite_dbObj.write(df2,'prodData') except: pass try: data = sqlite_dbObj.read('metrices') #print(data) if len(data) == 0: data = [{'mid':'0','noOfPredictCalls':'1','noOfDriftCalls':'0',"noOfActualCalls":'0'}] data = pd.read_json(json.dumps(data), orient ='records') sqlite_dbObj.write(data,'metrices') else: noofPredictCalls = int(data['noOfPredictCalls'].iloc[0])+1 sqlite_dbObj.update('metrices',"noOfPredictCalls = '"+str(noofPredictCalls)+"'","mid = 0") except Exception as e: print(e) pass return jsonify(json.loads(output)) else: output = {'status':'error','msg':'File is missing'} return jsonify(output) """ if problemType.lower() == 'classification' or problemType.lower() == 'regression': filedata += """ class explainapi(Resource): def get(self): features = disp_data.get('modelFeatures') if features: msg=\\""" RequestType: POST Content-Type=application/json Body: {displaymsg} \\""".format(displaymsg={ x:'Value' for x in features}) else: displaymsg='Data in JSON Format' return jsonify(displaymsg) def post(self): data = request.get_json() if is_explainable: output = local_analysis(json.dumps(data)) else: output = json.dumps({"status":"FAIL","data":"explain api is not supported when text features are used for training"}) return jsonify(json.loads(output)) class monitoringapi(Resource): def get(self): return jsonify({'trainingDataLocation':'Training File Location','currentDataLocation':'production Location'}) def post(self): sqlite_dbObj = sqlite_db(dataPath,'data.db') if not sqlite_dbObj.table_exists('monitoring'): data = {'status':'No Drift','Msg':'No Input Drift Found','RecordTime':'Time','version':'1'} data = pd.DataFrame(data, index=[0]) sqlite_dbObj.create_table('monitoring',data.columns, data.dtypes) trainingDataPath = (modelPath/'data')/'preprocesseddata.csv.gz' if not sqlite_dbObj.table_exists('prodData'): return jsonify({'status':'Error','msg':'Prod data not available'}) data = sqlite_dbObj.read('prodData') filetimestamp = str(int(time.time())) dataFile = dataPath/('AION_' + filetimestamp+'.csv') data.to_csv(dataFile, index=False) data = request.get_json() data={'trainingDataLocation':trainingDataPath,'currentDataLocation':dataFile} output = drift(json.dumps(data)) outputData = json.loads(output) status = outputData['status'] if status == 'SUCCESS': Msg = str(outputData['data']) else: Msg = 'Error during drift analysis' now = datetime.now() # current date and time date_time = now.strftime("%m/%d/%Y, %H:%M:%S") data = {'status':status,'Msg':Msg,'RecordTime':date_time,'version':modelVersion} data = pd.DataFrame(data, index=[0]) sqlite_dbObj.write(data,'monitoring') return jsonify(json.loads(output))""" filedata += """ class matricesapi(Resource): def get(self): sqlite_dbObj = sqlite_db(dataPath,'data.db') if sqlite_dbObj.table_exists('metrices'): df1 = sqlite_dbObj.read('metrices') else: df1 = pd.DataFrame() #print(df1) if sqlite_dbObj.table_exists('monitoring'): df2 = sqlite_dbObj.read('monitoring') else: df2 = pd.DataFrame() msg = {'Deployed Version':str(modelVersion)} if df1.shape[0] > 0: msg.update({'noOfPredictCalls':str(df1['noOfPredictCalls'].iloc[0])}) else: msg.update({'noOfPredictCalls':'0'}) driftDetails = [] for idx in reversed(df2.index): driftd = {'version':str(df2.version[idx]),'status':str(df2.status[idx]),'recordTime':str(df2.RecordTime[idx]),'msg':str(df2.Msg[idx])} driftDetails.append(driftd) msg.update({'driftDetails':driftDetails}) return jsonify(msg) class performanceapi(Resource): def get(self): return jsonify({'trainingDataLocation':'Training File Location','currentDataLocation':'production Location'}) def post(self): sqlite_dbObj = sqlite_db(dataPath,'data.db') if not sqlite_dbObj.table_exists('monitoring'): data = {'status':'No Drift','Msg':'No Input Drift Found','RecordTime':'Time','version':'1'} data = pd.DataFrame(data, index=[0]) sqlite_dbObj.create_table('monitoring',data.columns, data.dtypes) trainingDataPath = (modelPath/'data')/'preprocesseddata.csv.gz' if not sqlite_dbObj.table_exists('prodData'): return jsonify({'status':'Error','msg':'Prod data not available'}) data = sqlite_dbObj.read('prodData') filetimestamp = str(int(time.time())) dataFile = dataPath/('AION_' + filetimestamp+'.csv') data.to_csv(dataFile, index=False) data = request.get_json() data={'trainingDataLocation':trainingDataPath,'currentDataLocation':dataFile} output = odrift(json.dumps(data)) return jsonify(json.loads(output)) """ filedata += """ api.add_resource(predictapi, '/AION/{serviceName}/predict') api.add_resource(predictfileapi, '/AION/{serviceName}/predict_file') api.add_resource(matricesapi, '/AION/{serviceName}/metrices')""".format(serviceName=usecaseid) if problemType.lower() == 'classification' or problemType.lower() == 'regression': filedata += """ api.add_resource(explainapi, '/AION/{serviceName}/explain') api.add_resource(monitoringapi, '/AION/{serviceName}/monitoring') api.add_resource(performanceapi, '/AION/{serviceName}/performance') """.format(serviceName=usecaseid) filedata += """ if __name__ == '__main__': args = parser.parse_args() app.run(args.ipaddress,port = args.port,debug = True)""" f = open(filename, "wb") f.write(str(filedata).encode('utf8')) f.close() data = {'version':version} filename = os.path.join(datalocation,'config.json') with open(filename, "w") as outfile: json.dump(data, outfile) outfile.close() <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os,sys import platform import json import shutil import logging from pathlib import Path def create_selector_file(self,deploy_path,features,pcaModel_pickle_file,bpca_features,apca_features,textFeatures,nonNumericFeatures,numericalFeatures,profiler,targetFeature, model_type,model,config=None): self.selectorfile += 'import pandas as pd' self.selectorfile += '\\n' self.selectorfile += 'import joblib' self.selectorfile += '\\n' self.selectorfile += 'import os' self.selectorfile += '\\n' self.selectorfile += 'import numpy as np' self.selectorfile += '\\n' self.selectorfile += 'class selector(object):' self.selectorfile += '\\n' self.selectorfile += ' def apply_selector(self,df):' self.selectorfile += '\\n' if pcaModel_pickle_file != '': self.selectorfile += " pcaModel = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','"+pcaModel_pickle_file+"'))" self.selectorfile += '\\n' self.selectorfile += ' bpca_features = '+str(bpca_features) self.selectorfile += '\\n' self.selectorfile += ' apca_features = '+str(apca_features) self.selectorfile += '\\n' self.selectorfile += ' df = pcaModel.transform(df[bpca_features])' self.selectorfile += '\\n' self.selectorfile += ' df = pd.DataFrame(df,columns=apca_features)' self.selectorfile += '\\n' if(len(features) != 0) and model_type != 'BM25': if model_type.lower()!='anomaly_detection' and model.lower() != 'autoencoder': self.selectorfile += ' df = df['+str(features)+']' self.selectorfile += '\\n' self.selectorfile += ' return(df)' filename = os.path.join(deploy_path,'script','selector.py') f = open(filename, "wb") self.log.info('-------> Feature Selector File Location :'+filename) f.write(str(self.selector
file).encode('utf8')) f.close() featurefile = 'import json' featurefile +='\\n' featurefile += 'def getfeatures():' featurefile +='\\n' featurefile +=' try:' featurefile +='\\n' featurelist = [] if 'profiler' in config: if 'input_features_type' in config['profiler']: inputfeatures = config['profiler']['input_features_type'] for x in inputfeatures: featurelt={} featurelt['feature'] = x print(x,inputfeatures[x]) if x == targetFeature: featurelt['Type'] = 'Target' else: if inputfeatures[x] in ['int','int64','float','float64']: featurelt['Type'] = 'Numeric' elif inputfeatures[x] == 'object': featurelt['Type'] = 'Text' elif inputfeatures[x] == 'category': featurelt['Type'] = 'Category' else: featurelt['Type'] = 'Unknown' featurelist.append(featurelt) featurefile +=' features = '+str(featurelist) featurefile +='\\n' featurefile +=' outputjson = {"status":"SUCCESS","features":features}' featurefile +='\\n' featurefile +=' output = json.dumps(outputjson)' featurefile +='\\n' featurefile +=' print("Features:",output)' featurefile +='\\n' featurefile +=' return(output)' featurefile +='\\n' featurefile +=' except Exception as e:' featurefile +='\\n' featurefile +=' output = {"status":"FAIL","message":str(e).strip(\\'"\\')}' featurefile +='\\n' featurefile +=' print("Features:",json.dumps(output))' featurefile +='\\n' featurefile +=' return (json.dumps(output))' featurefile +='\\n' featurefile +='if __name__ == "__main__":' featurefile +='\\n' featurefile +=' output = getfeatures()' filename = os.path.join(deploy_path,'featureslist.py') f = open(filename, "wb") f.write(str(featurefile).encode('utf8')) f.close() def create_init_function_for_classification(self,modelfile,classes,learner_type,scoreParam,loss_matrix,optimizer,preprocessing_pipe,modelName,model_type,imageconfig): self.modelfile += ' def __init__(self):' self.modelfile += '\\n' if (learner_type == 'ML' and model_type.lower()=='anomaly_detection' and modelName.lower()=="autoencoder"): modelfile=modelfile.replace('.sav','') self.modelfile+=" self.model = tf.keras.models.load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'))" self.modelfile += '\\n' elif(learner_type == 'TextDL' or learner_type == 'DL'): if modelName.lower() == 'googlemodelsearch': self.modelfile += ' import autokeras as ak' self.modelfile += '\\n' self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','modelsearch_rootdir','saved_model_onnx.onnx'))" self.modelfile += '\\n' else: if scoreParam == 'recall': self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'),custom_objects={'recall': recall_m},compile=False)" self.modelfile += '\\n' self.modelfile += ' self.model.compile(loss=\\''+loss_matrix+'\\',optimizer=\\''+optimizer+'\\', metrics=[recall_m])' self.modelfile += '\\n' elif scoreParam == 'precision': self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'),custom_objects={'precision': precision_m},compile=False)" self.modelfile += '\\n' self.modelfile += ' self.model.compile(loss=\\''+loss_matrix+'\\',optimizer=\\''+optimizer+'\\', metrics=[precision_m])' self.modelfile += '\\n' elif scoreParam == 'roc_auc': self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'),compile=False)" self.modelfile += '\\n' self.modelfile += ' self.model.compile(loss=\\''+loss_matrix+'\\',optimizer=\\''+optimizer+'\\', metrics=[tf.keras.metrics.AUC()])' self.modelfile += '\\n' elif scoreParam == 'f1_score': self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'),custom_objects={'f1_score': f1_m},compile=False)" self.modelfile += '\\n' self.modelfile += ' self.model.compile(loss=\\''+loss_matrix+'\\',optimizer=\\''+optimizer+'\\', metrics=[f1_m])' self.modelfile += '\\n' elif scoreParam == 'r2': self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'),custom_objects={'r2': r_square},compile=False)" self.modelfile += '\\n' self.modelfile += ' self.model.compile(loss=\\''+loss_matrix+'\\',optimizer=\\''+optimizer+'\\', metrics=[r_square])' self.modelfile += '\\n' elif scoreParam == 'rmse': self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'),custom_objects={'rmse': rmse_m},compile=False)" self.modelfile += '\\n' self.modelfile += ' self.model.compile(loss=\\''+loss_matrix+'\\',optimizer=\\''+optimizer+'\\', metrics=[rmse_m])' self.modelfile += '\\n' elif scoreParam == 'mse': self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'))" self.modelfile += '\\n' elif scoreParam == 'mae': self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'))" self.modelfile += '\\n' elif scoreParam == 'accuracy': self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'))" self.modelfile += '\\n' else: self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'))" self.modelfile += '\\n' elif(learner_type == 'Text Similarity'): self.modelfile += " self.preprocessing = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','"+preprocessing_pipe+"'))" self.modelfile += '\\n' self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'), custom_objects={'cosine_distance': cosine_distance, 'cos_dist_output_shape': cos_dist_output_shape})" self.modelfile += '\\n' elif(learner_type in ['similarityIdentification','contextualSearch']): if scoreParam == 'VectorDB Cosine': vectorfiledbname = 'trainingdataVecDB' self.modelfile += f"\\ \\n persist_directory = os.path.join(os.path.dirname(__file__),'..','data')\\ \\n client = chromadb.PersistentClient(path=persist_directory)\\ \\n self.collection_name = '{vectorfiledbname}'\\ \\n self.collection = client.get_collection(self.collection_name)\\n" else: self.modelfile += " self.train_input = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','data','trainingdata.csv'))\\n\\n" elif(learner_type == 'ImageClassification'): self.modelfile += ' self.config='+str(imageconfig) self.modelfile += '\\n' if(modelName.lower() == 'densenet'): self.modelfile += ' baseModel = tf.keras.applications.DenseNet121(weights="imagenet", include_top=False, input_tensor=Input(shape=(self.config[\\'img_width\\'],self.config[\\'img_height\\'],self.config[\\'img_channel\\'])))' else: self.modelfile += ' baseModel = tensorflow.keras.applications.InceptionV3(weights="imagenet", include_top=False, input_tensor=Input(shape=(self.config[\\'img_width\\'],self.config[\\'img_height\\'],self.config[\\'img_channel\\'])))' self.modelfile += '\\n' self.modelfile += ' headModel = baseModel.output' self.modelfile += '\\n' self.modelfile += ' headModel = Flatten(name="flatten")(headModel)' self.modelfile += '\\n' self.modelfile += ' headModel = Dense(1024, activation=\\'relu\\')(headModel)' self.modelfile += '\\n' self.modelfile += ' headModel = Dropout(0.5)(headModel)' self.modelfile += '\\n' self.modelfile += ' headModel = Dense(2, activation=\\'sigmoid\\')(headModel)' self.modelfile += '\\n' self.modelfile += ' headModel = self.model = Model(inputs=baseModel.input, outputs=headModel)' self.modelfile += '\\n' self.modelfile += ' opt = Adam(lr=self.config[\\'lr\\'])' self.modelfile += '\\n' self.modelfile += ' self.model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"])' self.modelfile += '\\n' self.modelfile += " self.model.load_weights(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'))" self.modelfile += '\\n' elif(learner_type == 'objectDetection'): self.modelfile += " self.MODEL_LOCATION = os.path.join(os.path.dirname(__file__),'..','model')\\n" self.modelfile += ' PATH_TO_CFG = self.MODEL_LOCATION+"/export/pipeline.config"\\n' self.modelfile += ' PATH_TO_CKPT = self.MODEL_LOCATION+"/export/checkpoint/"\\n' self.modelfile += ' PATH_TO_LABELS = self.MODEL_LOCATION+"/export/label_map.pbtxt"\\n' self.modelfile += ' configs = config_util.get_configs_from_pipeline_file(PATH_TO_CFG)\\n' self.modelfile += ' self.detection_model = model_builder.build(model_config=configs["model"], is_training=False)\\n' self.modelfile += ' ckpt = tf.compat.v2.train.Checkpoint(model=self.detection_model)\\n' self.modelfile += ' ckpt.restore(os.path.join(PATH_TO_CKPT, "ckpt-0")).expect_partial()\\n' self.modelfile += ' self.category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS,\\ use_display_name=True)\\n' elif learner_type == 'TS' and (modelName.lower() == 'lstm' or modelName.lower() == 'mlp'): self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'))" self.modelfile += '\\n' elif modelName.lower() == 'neural architecture search': self.modelfile += ' import autokeras as ak' self.modelfile += '\\n' self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'),custom_objects=ak.CUSTOM_OBJECTS)" self.modelfile += '\\n' else: self.modelfile += " self.model = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'))" self.modelfile += '\\n' def create_predict(self,learner_type,method,model,model_type,threshold,firstDocFeature,secondDocFeature,padding_length,optimizationmethod,sessonal_freq,additional_regressors,feature,modelFeatures,indexFeature,lag_order,scalertransformationFile,datetimeFeature,scoreParam=None): self.modelfile += ' def predict(self,X,features_names):' self.modelfile += '\\n' if (learner_type == 'ML' and model_type.lower()=='anomaly_detection' and model.lower()=="autoencoder"): self.modelfile += f" X=X[{feature}]\\n" self.modelfile += f" X = np.asarray(X).astype('float32')\\n" self.modelfile += f" reconstructed = self.model.predict(X)\\n" self.modelfile += f" predict_loss = tf.keras.losses.mae(reconstructed,X)\\n" self.modelfile += ' max_threshold = np.mean(predict_loss) + 2*np.std(predict_loss)\\n' self.modelfile += ' min_threshold = np.mean(predict_loss) - 2*np.std(predict_loss)\\n' self.modelfile += ' prediction_df = pd.DataFrame()\\n' self.modelfile += ' prediction_df["loss"] = predict_loss\\n' self.modelfile += ' prediction_df["max_threshold"] = max_threshold\\n
' self.modelfile += ' prediction_df["min_threshold"] = min_threshold\\n' self.modelfile += ' prediction_df["anomaly"] = np.where((prediction_df["loss"] > prediction_df["max_threshold"]) | (prediction_df["loss"] <= prediction_df["min_threshold"]), True, False)\\n' self.modelfile += ' return prediction_df\\n' elif(learner_type == 'RecommenderSystem'): self.modelfile += ' predictions = []' self.modelfile += '\\n' self.modelfile += ' for index,row in X.iterrows():' self.modelfile += '\\n' self.modelfile += ' score = self.model.predict(int(row["uid"]),int(row["iid"]))' self.modelfile += '\\n' self.modelfile += ' predictions.append(score.est)' self.modelfile += '\\n' self.modelfile += ' return predictions' elif(learner_type in ['similarityIdentification','contextualSearch']): tfeatures = list(modelFeatures.split(",")) if indexFeature != '' and indexFeature != 'NA': ifeatures = indexFeature.split(",") for ifes in ifeatures: if ifes not in tfeatures: tfeatures.append(ifes) if model_type == 'BM25': self.modelfile += f"\\n\\ tokenized_corpus =[doc.split(' ') for doc in self.train_input.tokenize]\\n\\ bm25 = BM25Okapi(tokenized_corpus)\\n\\ tokenized_query = [doc.split(' ') for doc in X.tokenize]\\n\\ logcnt = 5\\n\\ output = []\\n\\ for query in tokenized_query:\\n\\ doc_scores = bm25.get_scores(query)\\n\\ related_docs_indices = np.argsort(doc_scores)[::-1][:logcnt]\\n\\ x = self.train_input[{tfeatures}].loc[self.train_input.index[related_docs_indices]]\\n\\ x['Score'] = doc_scores[related_docs_indices]\\n\\ x['Score'] = round(x['Score'],2).astype(str)+'%'\\n\\ output.append(x)\\n\\ return output\\n" elif scoreParam == 'VectorDB Cosine': featuresVecDB = modelFeatures.split(",") self.modelfile += ' logcnt = 5\\n' self.modelfile += f" columns = {featuresVecDB}\\n" self.modelfile += f"\\ \\n output = []\\ \\n for rowindex, row in X.iterrows():\\ \\n queryembedding = X.iloc[rowindex:rowindex+1].to_numpy()\\ \\n results = self.collection.query(\\ \\n query_embeddings=queryembedding.tolist(),\\ \\n n_results=logcnt\\ \\n )\\ \\n x = pd.DataFrame(columns=columns)\\ \\n for i in range(0, len(results['ids'][0])):\\ \\n documentAry = results['documents'][0][i]\\ \\n documentAry = documentAry.split(' ~&~ ')\\ \\n for j in range(0, len(documentAry)):\\ \\n x.at[i,columns[j]] = documentAry[j]\\ \\n x.at[i,'Score'] = results['distances'][0][i]\\ \\n output.append(x)\\ \\n return output" else: self.modelfile += ' columns = self.train_input.columns.tolist()\\n' self.modelfile += ' logcnt = 5\\n' self.modelfile += f" train_input = self.train_input[{tfeatures}]\\n" for tf in tfeatures: self.modelfile += f" columns.remove('{tf}')\\n" self.modelfile += f"\\ \\n results = cosine_similarity(self.train_input[columns],X)\\ \\n output = []\\ \\n for i in range(results.shape[1]):\\ \\n related_docs_indices = results[:,i].argsort(axis=0)[:-(int(logcnt) + 1):-1]\\ \\n x=self.train_input[{tfeatures}].loc[self.train_input.index[related_docs_indices]]\\ \\n scores = []\\ \\n for j in range(0,logcnt):\\ \\n scores.append(str(round((results[related_docs_indices][j][i])*100))+'%')\\ \\n x['Score'] = scores\\ \\n output.append(x)\\ \\n return output" elif(learner_type == 'Text Similarity'): self.modelfile += ' X["'+firstDocFeature+'"] = X["'+firstDocFeature+'"].astype(str)' self.modelfile += '\\n' self.modelfile += ' X["'+secondDocFeature+'"] = X["'+secondDocFeature+'"].astype(str)' self.modelfile += '\\n' self.modelfile += ' test_sentence1 = self.preprocessing.texts_to_sequences(X["'+firstDocFeature+'"].values)' self.modelfile += '\\n' self.modelfile += ' test_sentence2 = self.preprocessing.texts_to_sequences(X["'+secondDocFeature+'"].values)' self.modelfile += '\\n' self.modelfile += ' test_sentence1 = pad_sequences(test_sentence1, maxlen='+str(padding_length)+', padding=\\'post\\')' self.modelfile += '\\n' self.modelfile += ' test_sentence2 = pad_sequences(test_sentence2, maxlen='+str(padding_length)+', padding=\\'post\\')' self.modelfile += '\\n' self.modelfile += ' prediction = self.model.predict([test_sentence1, test_sentence2 ])' self.modelfile += '\\n' self.modelfile += ' return(prediction)' self.modelfile += '\\n' elif(learner_type == 'ImageClassification'): self.modelfile += ' predictions = []' self.modelfile += '\\n' self.modelfile += ' for index, row in X.iterrows(): ' self.modelfile += '\\n' self.modelfile += ' img = cv2.imread(row[\\'imagepath\\'])' self.modelfile += '\\n' self.modelfile += ' img = cv2.resize(img, (self.config[\\'img_width\\'],self.config[\\'img_height\\']))' self.modelfile += '\\n' self.modelfile += ' img = image.img_to_array(img)' self.modelfile += '\\n' self.modelfile += ' img = np.expand_dims(img, axis=0)' self.modelfile += '\\n' self.modelfile += ' img = img/255' self.modelfile += '\\n' self.modelfile += ' prediction = self.model.predict(img)' self.modelfile += '\\n' self.modelfile += ' prediction = np.argmax(prediction,axis=1)' self.modelfile += '\\n' self.modelfile += ' predictions.append(prediction[0])' self.modelfile += '\\n' self.modelfile += ' return(predictions)' self.modelfile += '\\n' elif(learner_type == 'objectDetection'): self.modelfile += ' @tf.function\\n' self.modelfile += ' def detect_fn(image):\\n' self.modelfile += ' image, shapes = self.detection_model.preprocess(image)\\n' self.modelfile += ' prediction_dict = self.detection_model.predict(image, shapes)\\n' self.modelfile += ' detections = self.detection_model.postprocess(prediction_dict, shapes)\\n' self.modelfile += ' return detections\\n' self.modelfile += ' def load_image_into_numpy_array(path):\\n' self.modelfile += ' return np.array(Image.open(path))\\n' self.modelfile += ' imageLocation = []\\n' self.modelfile += ' for i, row in X.iterrows():\\n' self.modelfile += ' if ("confidance" in row) and row["confidance"] <= 1.0:\\n' self.modelfile += ' confidance = row["confidance"]\\n' self.modelfile += ' else:\\n' self.modelfile += ' confidance = 0.8\\n' self.modelfile += ' imageName = str(Path(row["imagepath"]).stem)+"_output"+str(Path(row["imagepath"]).suffix)\\n' self.modelfile += ' image_np = load_image_into_numpy_array(row["imagepath"])\\n' self.modelfile += ' input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, 0), dtype=tf.float32)\\n' self.modelfile += ' detections = detect_fn(input_tensor)\\n' self.modelfile += ' num_detections = int(detections.pop("num_detections"))\\n' self.modelfile += ' detections = {key: value[0, :num_detections].numpy()\\n\\ for key, value in detections.items()}\\n' self.modelfile += ' detections["num_detections"] = num_detections\\n' self.modelfile += ' detections["detection_classes"] = detections["detection_classes"].astype(np.int64)\\n' self.modelfile += ' label_id_offset = 1\\n' self.modelfile += ' image_np_with_detections = image_np.copy()\\n' self.modelfile += ' viz_utils.visualize_boxes_and_labels_on_image_array(\\n\\ image_np_with_detections,\\n\\ detections["detection_boxes"],\\n\\ detections["detection_classes"]+label_id_offset,\\n\\ detections["detection_scores"],\\n\\ self.category_index,\\n\\ use_normalized_coordinates=True,\\n\\ max_boxes_to_draw=200,\\n\\ min_score_thresh=confidance,\\n\\ agnostic_mode=False)\\n' self.modelfile += ' plt.figure()\\n' self.modelfile += ' plt.imsave(os.path.join(self.MODEL_LOCATION,imageName), image_np_with_detections)\\n' self.modelfile += ' imageLocation.append(os.path.join(self.MODEL_LOCATION,imageName))\\n' self.modelfile += ' plt.show()\\n' self.modelfile += ' return imageLocation\\n' else: if(learner_type == 'DL' and model != 'Neural Network'): self.modelfile += ' X = np.expand_dims(X, axis=2)' self.modelfile += '\\n' if(learner_type == 'TextDL'): self.modelfile += ' return pd.DataFrame(np.argmax(self.model.predict(X),axis=1))' self.modelfile += '\\n' elif(learner_type == 'TextML'): self.modelfile += ' return pd.DataFrame(self.model.predict_proba(X),columns=self.model.classes_)' self.modelfile += '\\n' elif(learner_type == 'DL' and model_type == 'Classification'): self.modelfile += ' X = X.astype(np.float32)' self.modelfile += '\\n' self.modelfile += ' return pd.DataFrame(np.argmax(self.model.predict(X),axis=1))' self.modelfile += '\\n' else: if(model_type == 'Classification' or model_type == 'TLClassification'): if model == 'Neural Architecture Search': self.modelfile += ' X = X.astype(np.float32)' self.modelfile += '\\n' self.modelfile += ' return pd.DataFrame(self.model.predict(X))' self.modelfile += '\\n' else: if optimizationmethod == 'genetic': self.modelfile += '\\n' self.modelfile += ' try:' self.modelfile += '\\n' self.modelfile += ' return pd.DataFrame(self.model.predict_proba(X))' self.modelfile += '\\n' self.modelfile += ' except:' self.modelfile += '\\n' self.modelfile += ' return pd.DataFrame(self.model.predict(X))' else: self.modelfile += ' X = X.astype(np.float32)' self.modelfile += '\\n' if model.lower() == 'deep q network' or model.lower() == 'dueling deep q network': self.modelfile += ' q, _ = self.model(np.array(X), step_type=constant([time_step.StepType.FIRST] * np.array(X).shape[0]), training=False)' self.modelfile += '\\n' self.modelfile += ' return pd.DataFrame(q.numpy())' else: self.modelfile += ' return pd.DataFrame(self.model.predict_proba(X), columns=self.model.classes_)' self.modelfile += '\\n' elif model_type == 'Regression' and model == 'NAS': self.modelfile += \\ """ X = X.astype(np.float32) return self.model.predict(X) """ elif(learner_type == 'TS'): if model.lower() == 'fbprophet': self.modelfile += ' sessonal_freq="'+str(sessonal_freq)+'"' self.modelfile += '\\n' self.modelfile += ' ts_prophet_future = self.model.make_future_dataframe(periods=int(X["noofforecasts"][0]),freq=sessonal_freq,include_history = False)' self.modelfile += '\\n' if (additional_regressors): self.modelfile += '\\n' self.modelfile += ' additional_regressors='
+str(additional_regressors) self.modelfile += '\\n' self.modelfile += ' ts_prophet_future[additional_regressors] = dataFrame[additional_regressors]' self.modelfile += '\\n'
cing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ from importlib.metadata import version import sys class importModule(): def __init__(self): self.importModule = {} self.stdlibModule = [] self.localModule = {} def addLocalModule(self,module, mod_from=None, mod_as=None): if module == '*': if module not in self.localModule.keys(): self.localModule[module]= [mod_from] else: self.localModule[module].append(mod_from) elif module not in self.localModule.keys(): self.localModule[module] = {'from':mod_from, 'as':mod_as} def addModule(self, module, mod_from=None, mod_as=None): if module not in self.importModule.keys(): self.importModule[module] = {'from':mod_from, 'as':mod_as} if module in sys.stdlib_module_names: self.stdlibModule.append(module) elif isinstance(self.importModule[module], list): if mod_as not in [x['as'] for x in self.importModule[module]]: self.importModule[module].append({'from':mod_from, 'as':mod_as}) elif mod_as not in [x['from'] for x in self.importModule[module]]: self.importModule[module].append({'from':mod_from, 'as':mod_as}) elif mod_as != self.importModule[module]['as']: as_list = [self.importModule[module]] as_list.append({'from':mod_from, 'as':mod_as}) self.importModule[module] = as_list elif mod_from != self.importModule[module]['from']: as_list = [self.importModule[module]] as_list.append({'from':mod_from, 'as':mod_as}) self.importModule[module] = as_list def getModules(self): return (self.importModule, self.stdlibModule) def getBaseModule(self, extra_importers=[]): modules_alias = { 'sklearn':'scikit-learn', 'genetic_selection':'sklearn-genetic', 'google': 'google-cloud-storage', 'azure':'azure-storage-file-datalake'} local_modules = {'AIX':'/app/AIX-0.1-py3-none-any.whl'} modules = [] require = "" if extra_importers: extra_importers = [importer.importModule for importer in extra_importers if isinstance(importer, importModule)] importers_module = [self.importModule] + extra_importers for importer_module in importers_module: for k,v in importer_module.items(): if v['from']: mod = v['from'].split('.')[0] else: mod = k if mod in modules_alias.keys(): mod = modules_alias[mod] modules.append(mod) modules = list(set(modules)) for mod in modules: try: if mod in local_modules.keys(): require += f"{local_modules[mod]}\\n" else: require += f"{mod}=={version(mod)}\\n" except : if mod not in sys.stdlib_module_names: raise return require def getCode(self): def to_string(k, v): mod = '' if v['from']: mod += 'from {} '.format(v['from']) mod += 'import {}'.format(k) if v['as']: mod += ' as {} '.format(v['as']) return mod modules = "" local_modules = "" std_lib_modules = "" third_party_modules = "" for k,v in self.importModule.items(): if k in self.stdlibModule: std_lib_modules = std_lib_modules + '\\n' + to_string(k, v) elif isinstance(v, dict): third_party_modules = third_party_modules + '\\n' + to_string(k, v) elif isinstance(v, list): for alias in v: third_party_modules = third_party_modules + '\\n' + to_string(k, alias) for k,v in self.localModule.items(): if k != '*': local_modules = local_modules + '\\n' + to_string(k, v) else: for mod_from in v: local_modules = local_modules + '\\n' + f'from {mod_from} import {k}' if std_lib_modules: modules = modules + "\\n#Standard Library modules" + std_lib_modules if third_party_modules: modules = modules + "\\n\\n#Third Party modules" + third_party_modules if local_modules: modules = modules + "\\n\\n#local modules" + local_modules + '\\n' return modules def copyCode(self, importer): self.importModule, self.stdlibModule = importer.getModules() <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os,sys import platform import json import shutil import logging from pathlib import Path from prediction_package import production from prediction_package import prediction_transformation as cs class DeploymentManager: def __init__(self): self.requirementfile='' self.modelfile='' self.s2i_environmentfile='' self.selectorfile='' self.profilerfile='' self.readmepackagename='' self.pythonpackage='' self.log = logging.getLogger('eion') def include_import_file(self,learner_type,method,scoreParam,model_type,model): if((learner_type == 'DL') or (learner_type == 'TextDL')): self.modelfile += 'from tensorflow.keras.models import load_model' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras import backend as K' self.modelfile += '\\n' self.modelfile += 'import tensorflow as tf' self.modelfile += '\\n' if (learner_type == 'ML' and model_type.lower()=='anomaly_detection' and model.lower() == 'autoencoder'): self.modelfile += 'import joblib' self.modelfile += '\\n' self.modelfile += 'import os' self.modelfile += '\\n' self.modelfile += 'import pandas as pd' self.modelfile += '\\n' self.modelfile += 'import numpy as np' self.modelfile += '\\n' self.modelfile += 'from pathlib import Path' self.modelfile += '\\n' self.modelfile += 'import tensorflow as tf' self.modelfile += '\\n' self.modelfile += 'from keras.models import load_model' self.modelfile += '\\n' self.modelfile += 'import warnings' self.modelfile += '\\n' self.modelfile += 'from sklearn.preprocessing import StandardScaler' self.modelfile += '\\n' self.modelfile += 'warnings.filterwarnings("ignore")' self.modelfile += '\\n' if(learner_type == 'ImageClassification'): self.modelfile += 'import os' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras.models import Sequential' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras.layers import Dense, Dropout, Flatten' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras.preprocessing import image' self.modelfile += '\\n' self.modelfile += 'import numpy as np' self.modelfile += '\\n' self.modelfile += 'import tensorflow as tf' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras.layers import Input' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras.models import Model' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras.optimizers import Adam' self.modelfile += '\\n' self.modelfile += 'import cv2' self.modelfile += '\\n' if(learner_type == 'objectDetection'): self.modelfile += 'import os\\n' self.modelfile += 'from object_detection.utils import label_map_util\\n' self.modelfile += 'from object_detection.utils import config_util\\n' self.modelfile += 'from object_detection.utils import visualization_utils as viz_utils\\n' self.modelfile += 'from object_detection.builders import model_builder\\n' self.modelfile += 'import tensorflow as tf\\n' self.modelfile += 'import numpy as np\\n' self.modelfile += 'from PIL import Image\\n' self.modelfile += 'import matplotlib.pyplot as plt\\n' self.modelfile += 'import pandas as pd\\n' self.modelfile += 'from pathlib import Path\\n' if(learner_type == 'Text Similarity'): self.modelfile += 'from tensorflow.keras.models import load_model' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras import backend as K' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras.preprocessing.sequence import pad_sequences' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras.preprocessing.text import Tokenizer' self.modelfile += '\\n' self.modelfile += 'import tensorflow as tf' self.modelfile += '\\n' if(model == 'Neural Architecture Search'): self.modelfile += 'from tensorflow.keras.models import load_model' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras import backend as K' self.modelfile += '\\n' self.modelfile += 'import tensorflow as tf' self.modelfile += '\\n' self.modelfile += 'import joblib' self.modelfile += '\\n' self.modelfile += 'import os' self.modelfile += '\\n' self.modelfile += 'import pandas as pd' self.modelfile += '\\n' self.modelfile += 'from sklearn.decomposition import LatentDirichletAllocation\\n' self.modelfile += 'import numpy as np\\n' self.modelfile += 'from pathlib import Path\\n' if model.lower() == 'deep q network' or model.lower() == 'dueling deep q network': self.modelfile += 'from tensorflow import constant' self.modelfile += '\\n' self.modelfile += 'from tf_agents.trajectories import time_step' self.modelfile += '\\n' self.requirementfile += 'tensorflow==2.5.0' if model.lower() == 'lstm' or model.lower() == 'mlp': self.modelfile += 'from tensorflow.keras.models import load_model' self.modelfile += '\\n' self.requirementfile += 'tensorflow==2.5.0' if(learner_type == 'Text Similarity'): self.modelfile += 'def cosine_distance(vests):' self.modelfile += '\\n'; self.modelfile += ' x, y = vests' self.modelfile += '\\n'; self.modelfile += ' x = K.l2_normalize(x, axis=-1)' self.modelfile += '\\n'; self.modelfile += ' y = K.l2_normalize(y, axis=-1)' self.modelfile += '\\n'; self.modelfile += ' return -K.mean(x * y, axis=-1, keepdims=True)' self.modelfile += '\\n'; self.modelfile += 'def cos_dist_output_shape(shapes):' self.modelfile += '\\n'; self.modelfile += ' shape1, shape2 = shapes' self.modelfile += '\\n'; self.modelfile += ' return (shape1[0],1)' self.modelfile += '\\n'; if(learner_type == 'TextDL' or learner_type == 'DL'): if(scoreParam.lower() == 'recall' or scoreParam.lower() == 'f1_score'): self.modelfile += 'def recall_m(y_true, y_pred):' self.modelfile += '\\n'; self.modelfile += ' true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))' self.modelfile += '\\n'; self.modelfile += ' possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))' self.modelfile += '\\n'; self.modelfile += ' recall = true_positives / (possible_positives + K.epsilon())' self.modelfile += '\\n'; self.modelfile += ' return recall' self.modelfile += '\\n'; if(scoreParam.lower() == 'precision' or scoreParam.lower() == 'f1_score'): self.modelfile += 'def precision_m(y_true, y_pred):' self.modelfile += '\\n'; self.modelfile += ' true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))' self.modelfile += '\\n'; self.modelfile += ' predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))' self.modelfile += '\\n'; self.modelfile += ' precision = true_positives / (predicted_positives + K.epsilon())' self.modelfile += '\\n'; self.modelfile += ' return precision' self.modelfile += '\\n'; if(scoreParam.lower() == 'f1_score'): self.modelfile += 'def f1_m(y_true, y_pred):' self.modelfile += '\\n'; self.modelfile += ' precision = precision_m(y_true, y_pred)' self.modelfile += '\\n'; self.modelfile += ' recall = recall_m(y_true, y_pred)' self.modelfile += '\\n';
self.modelfile += ' return 2*((precision*recall)/(precision+recall+K.epsilon()))' self.modelfile += '\\n'; if(scoreParam.lower() == 'rmse'): self.modelfile += 'def rmse_m(y_true, y_pred):' self.modelfile += '\\n'; self.modelfile += ' return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1))' self.modelfile += '\\n'; if(scoreParam.lower() =='r2'): self.modelfile += 'def r_square(y_true, y_pred):' self.modelfile += '\\n'; self.modelfile += ' SS_res = K.sum(K.square(y_true-y_pred))' self.modelfile += '\\n'; self.modelfile += ' SS_tot = K.sum(K.square(y_true-K.mean(y_true)))' self.modelfile += '\\n'; self.modelfile += ' return (1 - SS_res/(SS_tot+K.epsilon()))' self.modelfile += '\\n'; if(learner_type.lower() in ['similarityidentification','contextualsearch']): self.modelfile += 'from pathlib import Path\\n' if model_type == 'BM25': self.modelfile += 'from rank_bm25 import BM25Okapi\\n' elif scoreParam == 'VectorDB Cosine': self.modelfile += 'import chromadb\\n' else: self.modelfile += 'from sklearn.metrics.pairwise import cosine_similarity\\n' self.pythonpackage += '========== Python Packags Requires =========' self.pythonpackage += '\\n' self.pythonpackage += 'scikit-learn' self.pythonpackage += '\\n' self.pythonpackage += 'scipy' self.pythonpackage += '\\n' self.pythonpackage += 'numpy' self.pythonpackage += '\\n' if((learner_type == 'DL') or (learner_type =='TextDL')): self.modelfile += 'import numpy as np' self.modelfile += '\\n' self.requirementfile += 'scikit-learn==0.21.3' self.requirementfile += '\\n' self.requirementfile += 'scipy==1.3.3' self.requirementfile += '\\n' self.requirementfile += 'numpy==1.17.4' self.requirementfile += '\\n' if(learner_type == 'TextML'): self.requirementfile += 'spacy==2.2.3' self.requirementfile += '\\n' self.requirementfile += 'https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.2.0/en_core_web_sm-2.2.0.tar.gz' self.requirementfile += '\\n' if(learner_type == 'DL' or learner_type == 'TextDL'): self.requirementfile += 'keras==2.3.1' self.requirementfile += '\\n' self.requirementfile += 'tensorflow==2.0.0b1' self.requirementfile += '\\n' if(learner_type == 'RecommenderSystem'): self.requirementfile += 'surprise' self.requirementfile += '\\n' if(method == 'package'): self.modelfile += 'import surprise' self.modelfile += '\\n' self.modelfile += 'import statsmodels' self.modelfile += '\\n' self.requirementfile += 'statsmodels==0.10.2' self.requirementfile += '\\n' def crate_readme_file(self,deploy_path,modelfile,features,method,single_file=False): self.readme='========== Files Structures ==========' self.readme+='\\n' self.readme+=modelfile+' ------ Trained Model' self.readme+='\\n' self.readme+='aion_prediction.py --> Python package entry point' self.readme+='\\n' if not single_file: self.readme+='script/inputprofiler.py --> Profiling like FillNA and Category to Numeric' self.readme+='\\n' self.readme+='script/selector.py --> Feature Selection' self.readme+='\\n' self.readme+='script/trained_model.py --> Read the model file and call the prediction' self.readme+='\\n' self.readme+='script/output_format.py --> Output formatter file' self.readme+='\\n' self.readme+= self.pythonpackage self.readme+= '========== How to call the model ==========' self.readme+='\\n' self.readme+= '============== From Windows Terminal ==========' self.readme+='\\n' if method == 'optimus_package': self.readme += 'python aion_prediction.py filename.json' self.readme +='\\n' self.readme += '========== Embedded Methods ==========' self.readme +='\\n' self.readme += 'Function Name: predict_from_json - When input is Json Data' self.readme +='\\n' self.readme += 'Function Name: predict_from_file - When input is Json File' self.readme +='\\n' else: callpython = 'python aion_prediction.py "[{' for x in features: if(callpython != 'python prediction.py "[{'): callpython += ',' callpython += '\\\\\\"'+str(x)+'\\\\\\"'+':'+'\\\\\\"'+str(x)+'_value'+'\\\\\\"' callpython += '}]"' self.readme += callpython self.readme+='\\n' self.readme+= '============== From Linux Terminal ==========' self.readme+='\\n' callpython = 'python aion_prediction.py \\'[{' temp =callpython for x in features: if(callpython != temp): callpython += ',' callpython += '"'+str(x)+'"'+':'+'"'+str(x)+'_value'+'"' callpython += '}]\\'' self.readme += callpython self.readme+='\\n' self.readme+= '============== Output ==========' self.readme+='\\n' self.readme+= '{"status":"SUCCESS","data":[{"Data1":"Value","prediction":"Value"}]}' ## For Single Row/Record' self.readme+='\\n' self.readme+= '{"status":"SUCCESS","data":[{"Data1":"Value","prediction":"Value"},{"Data1":"Value","prediction":"Value"}]} ## For Multiple Row/Record' self.readme+='\\n' self.readme+= '{"status":"ERROR","message":"description"} ## In Case Exception or Error' self.readme+='\\n' #print(self.readme) filename = os.path.join(deploy_path,'readme.txt') self.log.info('-------> Readme File Location: '+filename) f = open(filename, "wb") f.write(str(self.readme).encode('utf8')) f.close() def create_class(self,classname): #self.modelfile += 'class '+classname+'(object):' self.modelfile += 'class trained_model(object):' self.modelfile += '\\n' def profiler_code(self,model_type,model,output_columns, features, text_feature,wordToNumericFeatures=[], deploy={},datetimeFeature=''): profiler = deploy.get('profiler',{}) if isinstance(features, str): features = features.split(',') code = f""" import scipy import joblib import numpy as np import pandas as pd from pathlib import Path """ if text_feature: code += """ import importlib.util\\n""" if wordToNumericFeatures: code += """ from word2number import w2n def s2n(value): try: x=eval(value) return x except: try: return w2n.word_to_num(value) except: return np.nan """ if 'code' in deploy.get('preprocess',{}).keys(): code += deploy['preprocess']['code'] if profiler.get('conversion_method','').lower() == 'glove': code += """ class inputprofiler(object): def __init__(self): self.model = None preprocess_path = Path(__file__).parent.parent/'model'/'preprocess_pipe.pkl' if preprocess_path.exists(): self.model = joblib.load(preprocess_path) from text.Embedding import load_pretrained from text import TextProcessing model_path = TextProcessing.checkAndDownloadPretrainedModel('glove') embed_size, loaded_model = load_pretrained(model_path) self.model.set_params(text_process__vectorizer__external_model = loaded_model) else: raise ValueError('Preprocess model not found') def apply_profiler(self,df): df = df.replace(r'^\\s*$', np.NaN, regex=True) """ elif profiler.get('conversion_method','').lower() == 'fasttext': code += """ def get_pretrained_model_path(): try: from AION.appbe.dataPath import DATA_DIR modelsPath = Path(DATA_DIR)/'PreTrainedModels'/'TextProcessing' except: modelsPath = Path('aion')/'PreTrainedModels'/'TextProcessing' if not modelsPath.exists(): modelsPath.mkdir(parents=True, exist_ok=True) return modelsPath class inputprofiler(object): def __init__(self): self.model = None preprocess_path = Path(__file__).parent.parent/'model'/'preprocess_pipe.pkl' if preprocess_path.exists(): self.model = joblib.load(preprocess_path) if not importlib.util.find_spec('fasttext'): raise ValueError('fastText not installed') else: import os import fasttext import fasttext.util cwd = os.getcwd() os.chdir(get_pretrained_model_path()) fasttext.util.download_model('en', if_exists='ignore') loaded_model = fasttext.load_model('cc.en.300.bin') os.chdir(cwd) self.model.set_params(text_process__vectorizer__external_model = loaded_model) self.model.set_params(text_process__vectorizer__external_model_type = 'binary') else: raise ValueError('Preprocess model not found') def apply_profiler(self,df): df = df.replace(r'^\\s*$', np.NaN, regex=True) """ else: code += """ class inputprofiler(object): def __init__(self): self.model = None preprocess_path = Path(__file__).parent.parent/'model'/'preprocess_pipe.pkl' if preprocess_path.exists(): self.model = joblib.load(preprocess_path) else: raise ValueError('Preprocess model not found') def apply_profiler(self,df): df = df.replace(r'^\\s*$', np.NaN, regex=True) """ if 'code' in deploy.get('preprocess',{}).keys(): code += " df = preprocess( df)\\n" if wordToNumericFeatures: code += f""" df[{wordToNumericFeatures}] = df[{wordToNumericFeatures}].apply(lambda x: s2n(x))""" if profiler.get('unpreprocessed_columns'): code += f""" unpreprocessed_data = df['{profiler['unpreprocessed_columns'][0]}'] df.drop(['{profiler['unpreprocessed_columns'][0]}'], axis=1,inplace=True) """ if profiler.get('force_numeric_conv'): code += f""" df[{profiler['force_numeric_conv']}] = df[{profiler['force_numeric_conv']}].apply(pd.to_numeric,errors='coerce') """ code += f""" if self.model: df = self.model.transform(df)""" code += f""" columns = {output_columns} if isinstance(df, scipy.sparse.spmatrix): df = pd.DataFrame(df.toarray(), columns=columns) else: df = pd.DataFrame(df, columns=columns) """ ##The below if loop for avoiding unpreprocessed column variable storing which is not used for anomaly detection if model_type.lower() == 'anomaly_detection' and datetimeFeature != '' and datetimeFeature.lower() != 'na': pass else: if profiler.get('unpreprocessed_columns'): code += f""" df['{profiler.get('unpreprocessed_columns')[0]}'] = unpreprocessed_data """ if model_type.lower() == 'anomaly_detection' and datetimeFeature != '' and datetimeFeature.lower() != 'na': ##This below set_index is wrong, because we drop datetimefeature before profiling and doing set_index. So commented now. # code += f""" # df.set_index('{datetimeFeature}', inplace=True)""" code += f""" return(df,'{datetimeFeature}')\\n""" else: code += f""" return(df)""" return code def no_profiling_code(self, features): if isinstance(features, str): features = features.split(',') return f""" import pandas as pd import numpy as np class inputprofiler(object): def apply_profiler(self,df): df = df.replace(r'^\\s*$', np.NaN, regex=True) return df[{features}] """ def create_profiler_file(self,learner_type,deploy_path,profiler,features,numericToLabel_json,column_merge_flag,text_features,preprocessing_pipe,firstDocFeature,secondDocFeature,normalizer,normFeatures,wordToNumericFeatures,conversion_method,model_type,preprocess_pipe,preprocess_out_columns, label_encoder,model, config=None,datetimeFeature=''): filename = str(Path(deploy_path)/'script'/'inputprofiler.py') if 'profiler' in config: if model_type == 'BM25': code = self.profiler_code(model_type,model,['tokenize'],features, text_features,config['profiler']['word2num_features']) elif model == 'KaplanMeierFitter': code = self.no_profiling_code(features) elif model.lower() in ['arima', 'fbprophet']: #task 12627 code = self.no_profiling_code('nooff
orecasts') else: code = self.profiler_code(model_type,model,config['profiler']['output_features'],features, text_features,config['profiler']['word2num_features'],config,datetimeFeature) if code: with open(filename,'w',encoding="utf-8") as f: f.write(code) self.log.info('-------> Profiler File Location :'+filename) return self.profilerfile += 'import pandas as pd' self.profilerfile += '\\n' self.profilerfile += 'import joblib' self.profilerfile += '\\n' self.profilerfile += 'import os' self.profilerfile += '\\n' self.profilerfile += 'from word2number import w2n' self.profilerfile += '\\n' self.profilerfile += 'import numpy as np' self.profilerfile += '\\nfrom pathlib import Path\\n' #print("1") #print(profiler) if(learner_type == 'Text Similarity' or len(text_features) > 0): self.profilerfile += 'from text import TextProcessing' self.profilerfile += '\\n' self.profilerfile += 'def textCleaning(textCorpus):' self.profilerfile += '\\n' self.profilerfile += ' textProcessor = TextProcessing.TextProcessing()' self.profilerfile += '\\n' self.profilerfile += ' textCorpus = textProcessor.transform(textCorpus)' self.profilerfile += '\\n' self.profilerfile += ' return(textCorpus)' self.profilerfile += '\\n' self.profilerfile += 'class inputprofiler(object):' self.profilerfile += '\\n' self.profilerfile += ' def s2n(self,value):' self.profilerfile += '\\n' self.profilerfile += ' try:' self.profilerfile += '\\n' self.profilerfile += ' x=eval(value)' self.profilerfile += '\\n' self.profilerfile += ' return x' self.profilerfile += '\\n' self.profilerfile += ' except:' self.profilerfile += '\\n' self.profilerfile += ' try:' self.profilerfile += '\\n' self.profilerfile += ' return w2n.word_to_num(value)' self.profilerfile += '\\n' self.profilerfile += ' except:' self.profilerfile += '\\n' self.profilerfile += ' return np.nan ' self.profilerfile += '\\n' self.profilerfile += ' def apply_profiler(self,df):' self.profilerfile += '\\n' if(len(wordToNumericFeatures) > 0): for w2nFeature in wordToNumericFeatures: if w2nFeature not in features: continue self.profilerfile += " df['"+w2nFeature+"']=df['"+w2nFeature+"'].apply(lambda x: self.s2n(x))" self.profilerfile += '\\n' self.profilerfile += " df = df.replace(r'^\\s*$', np.NaN, regex=True)" self.profilerfile += '\\n' self.profilerfile += ' try:' self.profilerfile += '\\n' self.profilerfile += ' df.dropna(how="all",axis=1,inplace=True)' self.profilerfile += '\\n' self.profilerfile += ' except:' self.profilerfile += '\\n' self.profilerfile += ' df.fillna(0)' self.profilerfile += '\\n' if model_type.lower() != 'timeseriesforecasting': #task 11997 self.profilerfile += ' preprocess_path = Path(__file__).parent.parent/"model"/"preprocess_pipe.pkl"\\n' self.profilerfile += ' if preprocess_path.exists():\\n' self.profilerfile += ' model = joblib.load(preprocess_path)\\n' if model_type.lower()=='anomaly_detection' and model.lower() == 'autoencoder': self.profilerfile += f" df[{features}] = model.transform(df[{features}])\\n" else: self.profilerfile += f" df = model.transform(df)\\n" if 'operation' in profiler: y = profiler['operation'] for action in y: feature = action['feature'] #if feature not in features: # continue operation = action['Action'] if(operation == 'Drop'): self.profilerfile += " if '"+feature+"' in df.columns:" self.profilerfile += '\\n' self.profilerfile += " df.drop(columns=['"+feature+"'],inplace = True)" self.profilerfile += '\\n' if(operation == 'FillValue'): self.profilerfile += " if '"+feature+"' in df.columns:" self.profilerfile += '\\n' fvalue = action['value'] self.profilerfile += " df['"+feature+"'] = df['"+feature+"'].fillna(value='"+fvalue+"')" self.profilerfile += '\\n' if(operation == 'Encoder'): value = action['value'] value = value.replace("\\n", "\\\\n") self.profilerfile += " if '"+feature+"' in df.columns:" self.profilerfile += '\\n' self.profilerfile += " le_dict="+str(value) self.profilerfile += '\\n' self.profilerfile += " df['"+feature+"'] = df['"+feature+"'].apply(lambda x: le_dict.get(x,-1))" self.profilerfile += '\\n' self.profilerfile += " if -1 in df['"+feature+"'].values:" self.profilerfile += '\\n' self.profilerfile += " raise Exception('Category value of "+feature+" not present in training data')" self.profilerfile += '\\n' if 'conversion' in profiler: catergoryConverton = profiler['conversion'] #print(catergoryConverton) if (catergoryConverton['categoryEncoding'].lower() in ['targetencoding','onehotencoding']) and ('features' in catergoryConverton): self.profilerfile += " encoder = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','categoryEncoder.pkl'))" self.profilerfile += '\\n' self.profilerfile += " CategoryFeatures = "+str(catergoryConverton['features']) self.profilerfile += '\\n' if catergoryConverton['categoryEncoding'].lower() == 'onehotencoding': self.profilerfile += " transformed_data = encoder.transform(df[CategoryFeatures]).toarray()" self.profilerfile += '\\n' self.profilerfile += " feature_labels = encoder.get_feature_names(CategoryFeatures)" self.profilerfile += '\\n' self.profilerfile += " transformed_data = pd.DataFrame(transformed_data,columns=feature_labels) " self.profilerfile += '\\n' else: self.profilerfile += " transformed_data = encoder.transform(df[CategoryFeatures])" self.profilerfile += '\\n' self.profilerfile += " dataColumns=list(df.columns)" self.profilerfile += '\\n' self.profilerfile += " nonNormFeatures=list(set(dataColumns) - set(CategoryFeatures))" self.profilerfile += '\\n' self.profilerfile += " dataArray=df[nonNormFeatures]" self.profilerfile += '\\n' self.profilerfile += " df = pd.concat([dataArray, transformed_data],axis=1)" self.profilerfile += '\\n' y = json.loads(numericToLabel_json) for feature_details in y: feature = feature_details['feature'] if feature not in features: continue label = feature_details['Labels'] bins = feature_details['Bins'] self.profilerfile += " if '"+feature+"' in df.columns:" self.profilerfile += '\\n' self.profilerfile += " cut_bins="+str(bins) self.profilerfile += '\\n' self.profilerfile += " cut_labels="+str(label) self.profilerfile += '\\n' self.profilerfile += " df['"+feature+"'] = pd.cut(df['"+feature+"'],bins=cut_bins,labels=cut_labels)" self.profilerfile += '\\n' self.profilerfile += " df['"+feature+"'] = df['"+feature+"'].fillna(value=0)" self.profilerfile += '\\n' if(len(text_features) > 0): if(len(text_features) > 1): self.profilerfile += ' merge_features = '+str(text_features) self.profilerfile += '\\n' self.profilerfile += ' df[\\'combined\\'] = df[merge_features].apply(lambda row: \\' \\'.join(row.values.astype(str)), axis=1)' self.profilerfile += '\\n' self.profilerfile += ' features = [\\'combined\\']' self.profilerfile += '\\n' else: self.profilerfile += " features = "+str(text_features) self.profilerfile += '\\n' if model_type == 'BM25': self.profilerfile += """\\ df_text = df[features[0]] pipe = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','{preprocessing_pipe}')) df['tokenize'] = pipe.transform(df_text)\\n""".format(preprocessing_pipe=preprocessing_pipe) elif conversion_method == 'sentenceTransformer': self.profilerfile += """\\ df_text = df[features[0]] from sentence_transformers import SentenceTransformer model = SentenceTransformer(\\'sentence-transformers/msmarco-distilroberta-base-v2\\') df_vect = model.encode(df_text) for empCol in {text_features}: df = df.drop(columns=[empCol]) if isinstance(df_vect, np.ndarray): df1 = pd.DataFrame(df_vect) else: df1 = pd.DataFrame(df_vect.toarray(),columns = pipe.named_steps[\\'vectorizer\\'].get_feature_names()) df1 = df1.add_suffix(\\'_vect\\') df = pd.concat([df, df1],axis=1)\\n""".format(preprocessing_pipe=preprocessing_pipe, text_features=text_features) else: self.profilerfile += """\\ df_text = df[features[0]] pipe = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','{preprocessing_pipe}')) df_vect=pipe.transform(df_text) for empCol in {text_features}: df = df.drop(columns=[empCol]) if isinstance(df_vect, np.ndarray): df1 = pd.DataFrame(df_vect) else: df1 = pd.DataFrame(df_vect.toarray(),columns = pipe.named_steps[\\'vectorizer\\'].get_feature_names()) df1 = df1.add_suffix(\\'_vect\\') df = pd.concat([df, df1],axis=1)\\n""".format(preprocessing_pipe=preprocessing_pipe, text_features=text_features) if(learner_type == 'Text Similarity'): self.profilerfile += ' df[\\''+firstDocFeature+'\\'] = textCleaning(df[\\''+firstDocFeature+'\\'])' self.profilerfile += '\\n' self.profilerfile += ' df[\\''+secondDocFeature+'\\'] = textCleaning(df[\\''+secondDocFeature+'\\'])' self.profilerfile += '\\n' if len(normFeatures) > 0 and normalizer != '': self.profilerfile += " normFeatures = "+str(normFeatures) self.profilerfile += '\\n' self.profilerfile += ' normalizepipe = joblib.load(os.path.join(os.path.dirname(os.path.abspath(__file__)),\\'..\\',\\'model\\',\\''+normalizer+'\\'))' self.profilerfile += '\\n' self.profilerfile += ' dataColumns=list(df.columns)' self.profilerfile += '\\n' self.profilerfile += ' nonNormFeatures=list(set(dataColumns) - set(normFeatures))' self.profilerfile += '\\n' self.profilerfile += ' dataframe=df[normFeatures]' self.profilerfile += '\\n' self.profilerfile += ' transDf = normalizepipe.transform(dataframe)' self.profilerfile += '\\n' self.profilerfile += ' nontransDF=df[nonNormFeatures].values' self.profilerfile += '\\n' self.profilerfile += ' dataColumns=normFeatures+nonNormFeatures' self.profilerfile += '\\n' self.profilerfile += ' scaledDf = pd.DataFrame(np.hstack((transDf, nontransDF)),columns=dataColumns)' self.profilerfile += '\\n' self.profilerfile += ' df=scaledDf' self.profilerfile += '\\n' else: self.profilerfile += ' df=df.dropna()\\n' self.profilerfile += ' return(df)' filename = os.path.join(deploy_path,'script','inputprofiler.py') self.log.info('-------> Profiler File Location :'+filename) f = open(filename, "w",encoding="utf-8") f.write(str(self.profilerfile)) f.close() def isEnglish(self, s): try: s.encode(encoding='utf-8').decode('ascii') except UnicodeDecodeError: return False else: return True def create_selector_file(self,deploy_path,features,pcaModel_pickle_file,bpca_features,apca_features,textFeatures,nonNumericFeatures,numericalFeatures,profiler,targetFeature, model_type,model,config
=None): cs.create_selector_file(self,deploy_path,features,pcaModel_pickle_file,bpca_features,apca_features,textFeatures,nonNumericFeatures,numericalFeatures,profiler,targetFeature, model_type,model,config) def create_init_function_for_regress
.crate_readme_file(deploy_path,saved_model,features,deployJson['method']) from prediction_package.requirements import requirementfile requirementfile(deploy_path,model,textFeatures,learner_type) os.chdir(deploy_path) textdata = False if(learner_type == 'Text Similarity' or len(textFeatures) > 0): textdata = True self.create_util_folder(deploy_path,learner_type) self.log.info('Status:- |... Model deployment completed') def deployTSum(self,deploy_path,preTrainedModellocation): def create_predict(preTrainedModellocation): text = f""" import sys import json def predict(data): try: import pandas as pd import numpy as np from pathlib import Path keywordsFile =Path(__file__).parent/'data'/'keywordDataBase.csv' outputSumFile =Path(__file__).parent/'data'/'summarizedOutput.csv' fileName=data #print("fileName---",fileName) inputDataFileFrame = pd.DataFrame() inputDataFileFrame['Sentences']="" rowIndex=0 if fileName.endswith(".pdf"): from pypdf import PdfReader reader = PdfReader(fileName) number_of_pages = len(reader.pages) text="" textOutputForFile="" OrgTextOutputForFile="" for i in range(number_of_pages) : page = reader.pages[i] text1 = page.extract_text() text=text+text1 import nltk tokens = nltk.sent_tokenize(text) for sentence in tokens: sentence=sentence.replace("\\\\n", " ") if (len(sentence.split()) < 4 ) or (len(str(sentence.split(',')).split()) < 8)or (any(chr.isdigit() for chr in sentence)) : continue inputDataFileFrame.at[rowIndex,'Sentences']=str(sentence.strip()) rowIndex=rowIndex+1 if fileName.endswith(".txt"): data=[] with open(fileName, "r",encoding="utf-8") as f: data.append(f.read()) str1 = "" for ele in data: str1 += ele sentences=str1.split(".") count=0 for sentence in sentences: count += 1 inputDataFileFrame.at[rowIndex,'Sentences']=str(sentence.strip()) rowIndex=rowIndex+1 inputDataFileFrame['LabelByKw']=0 #print(inputDataFileFrame) keywordsFileFrame=pd.read_csv(keywordsFile,encoding='utf-8') Keyword_list = keywordsFileFrame['Keyword'].tolist() for i in inputDataFileFrame.index: for x in Keyword_list: if (str(inputDataFileFrame["Sentences"][i])).lower().find(x) != -1: inputDataFileFrame['LabelByKw'][i]=1 break import pickle from sklearn.preprocessing import LabelEncoder pkl_filename='classificationModel.sav' pkl_filename =Path(__file__).parent/'model'/'classificationModel.sav' with open(pkl_filename, 'rb') as file: pickle_model = pickle.load(file) testsample=inputDataFileFrame[["Sentences"]] labelencoder = LabelEncoder() testsample["Sentences"] = labelencoder.fit_transform(testsample["Sentences"]) y_predicted = pickle_model.predict_proba(testsample) df=pd.DataFrame({{"SectionName":np.nan,"Sentences":np.nan, "Predicted_Prob":y_predicted[:,1]}}) df['LabelByModel']=df['Predicted_Prob'].apply(lambda x: 0 if x <= 0.5 else 1 ) inputDataFileFrame['LabelByModel']= df['LabelByModel'] textToSum="" for i in inputDataFileFrame.index: if (inputDataFileFrame['LabelByModel'][i] or inputDataFileFrame['LabelByKw'][i]) : textToSum=textToSum+" "+inputDataFileFrame["Sentences"][i] stdir=r"{preTrainedModellocation}" stdir = stdir.replace('\\\\\\\\', '\\\\\\\\\\\\\\\\') from transformers import AutoTokenizer, AutoModelForSeq2SeqLM modelbert = AutoModelForSeq2SeqLM.from_pretrained(stdir,local_files_only=True) tokenizer = AutoTokenizer.from_pretrained(stdir,local_files_only=True) inputs = tokenizer("summarize: " + textToSum, return_tensors="pt", max_length=512, truncation=True) outputs = modelbert.generate(inputs["input_ids"], max_length=512, min_length=140, length_penalty=2.0, num_beams=4, early_stopping=True) summarizedOutputOfSection= tokenizer.decode(outputs[0]) summarizedOutputOfSection=summarizedOutputOfSection.replace("</s> ","") summarizedOutputOfSection=summarizedOutputOfSection.replace("<s> ","") sumDatadata = [summarizedOutputOfSection] df = pd.DataFrame(sumDatadata, columns=['textSum']) df.to_csv(outputSumFile,encoding='utf-8') outputjson = {{"status":"SUCCESS","msg":"Press Download button to download summarized output","data":summarizedOutputOfSection}} print("predictions:",json.dumps(outputjson)) return (json.dumps(outputjson)) except KeyError as e: output = {{"status":"FAIL","message":str(e).strip('"')}} print("predictions:",json.dumps(output)) return (json.dumps(output)) except Exception as e: output = {{"status":"FAIL","message":str(e).strip('"')}} print("predictions:",json.dumps(output)) return (json.dumps(output)) if __name__ == "__main__": output = predict(sys.argv[1]) """ return text deploy_path = Path(deploy_path) aion_prediction = deploy_path/'aion_predict.py' with open(aion_prediction, 'w') as f: f.write(create_predict(preTrainedModellocation)) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' from pathlib import Path from AION.prediction_package.imports import importModule from AION.prediction_package.aion_prediction import aionPrediction from AION.prediction_package.utility import TAB_CHAR from AION.prediction_package import utility from AION.prediction_package import common from AION.prediction_package.base import deployer def is_supported(problem_type, algo=None): """ Return True if problem_type supported otherwise False """ supported = ['classification','regression','clustering','timeseriesforecasting','Text Similarity'] return problem_type in supported def get_deployer(problem_type, algo=None, params={}): """ Return deployer class object based on problem type Raise error if no class is associated with problem type """ params['problem_type'] = problem_type if problem_type == 'classification': return classification( params) elif problem_type == 'regression': return regression( params) elif problem_type == 'clustering': return clustering( params) elif problem_type == 'timeseriesforecasting': from AION.prediction_package.time_series import forecasting return forecasting.get_deployer( params) elif problem_type == 'Text Similarity': return textSimilarity( params) else: raise ValueError('deployment is not supported') class classification( deployer): def __init__(self, params={}): super().__init__( params) self.feature_reducer = False if not self.name: self.name = 'classification' def create_idrift(self): obj = aionPrediction() if self.params['features']['text_feat']: obj.create_text_drift_file(self.deploy_path,self.params['features']['text_feat'],self.params['features']['target_feat'],self.name) else: obj.create_drift_file(self.deploy_path,self.params['features']['input_feat'],self.params['features']['target_feat'],self.name) def create_odrift(self): obj = aionPrediction() if self.params['features']['text_feat']: obj.create_classification_text_performance_file(self.deploy_path,self.params['features']['text_feat'],self.params['features']['target_feat']) else: obj.create_classification_performance_file(self.deploy_path,self.params['features']['input_feat'],self.params['features']['target_feat']) def training_code( self): self.importer.addModule(module='pandas',mod_as='pd') code = f""" class trainer(): """ init_code, run_code = self._get_train_code() return code + init_code + run_code def _get_train_code(self): init_code = f""" def __init__( self): model_file = (Path(__file__).parent/"model")/"{self.params['training']['model_file']}" if not model_file.exists(): raise ValueError(f'Trained model file not found: {{model_file}}')""" run_code = f""" def run(self, df):\\ """ if self.params['training']['algo'] in ['Neural Network']: self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models') init_code += f""" self.model = load_model(model_file) """ run_code += """ df = df.astype(np.float32) return pd.DataFrame(np.argmax(self.model.predict(df),axis=1)) """ elif self.params['training']['algo'] in ['Neural Architecture Search']: self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models') self.importer.addModule(module='autokeras',mod_as='ak') init_code += f""" self.model = load_model(model_file,custom_objects=ak.CUSTOM_OBJECTS) """ run_code += """ df = df.astype(np.float32) return pd.DataFrame(self.model.predict(df)) """ elif self.params['training']['algo'] in ['Deep Q Network','Dueling Deep Q Network']: self.importer.addModule('joblib') self.importer.addModule(module='numpy',mod_as='np') self.importer.addModule(module='constant',mod_from='tensorflow') self.importer.addModule(module='time_step',mod_from='tf_agents.trajectories') init_code += f""" self.model = joblib.load(model_file) """ run_code += """ df = df.astype(np.float32) q, _ = self.model(np.array(df), step_type=constant([time_step.StepType.FIRST] * np.array(df).shape[0]), training=False) return pd.DataFrame(q.numpy()) """ elif self.params['training']['algo'] in ['Convolutional Neural Network (1D)','Recurrent Neural Network','Recurrent Neural Network (GRU)','Recurrent Neural Network (LSTM)']: self.importer.addModule(module='numpy',mod_as='np') self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models') init_code += f""" self.model = load_model(model_file) """ run_code += """ df = np.expand_dims(df, axis=2) df = df.astype(np.float32) return pd.DataFrame(np.argmax(self.model.predict(df),axis=1)) """ else: self.importer.addModule(module='joblib') self.importer.addModule(module='numpy',mod_as='np') init_code += f""" self.model = joblib.load(model_file) """ run_code += """ df = df.astype(np.float32) return pd.DataFrame(self.model.predict_proba(df), columns=self.model.classes_) """ return init_code, run_code def formatter_code(self): self.importer.addModule('json') self.importer.addModule('joblib') self.importer.addModule('pandas', mod_as='pd') return """ class output_format(): def __init__(self): pass def run(self, raw_df, output): output = round(output,2) encoder_file = (Path(__file__).parent/"model")/"label_encoder.pkl" if encoder_file.exists(): encoder = joblib.load(encoder_file) output.rename(columns=dict(zip(output.columns, encoder.inverse_transform(list(output.columns)))), inplace=True) raw_df['prediction'] = output.idxmax(axis=1) raw_df['probability'] = output.max(axis=1).round(2) raw_df['remarks'] = output.apply(lambda x: x.to_json(double_precision=2), axis=1) outputjson = raw_df.to_json(orient='records',double_precision=5) outputjson = {"status":"SUCCESS","data":json.loads(outputjson)} return(json.dumps(outputjson)) """ class regression( deployer): def __init__(self, params={}): super().__init__( params) self.feature_reducer = False if not self.name: self.name = 'regression' def create_idrift(self): obj = aionPrediction() if self.params['features']['text_feat']: obj.create_text_drift_file(self.deploy_path,self.params['features']['text_feat'],self.params['features']['target_feat'],self.name) else: obj.create_drift_file(self.deploy_path,self.params['features']['input_feat'],self.params['features']['target_feat'],self.name) def create_odrift(self): obj = aionPrediction() if self.params['features']['text_feat']: obj.create_regression_text_performance_file(self.deploy_path,self.params['features
']['text_feat'],self.params['features']['target_feat']) else: obj.create_regression_performance_file(self.deploy_path,self.params['features']['input_feat'],self.params['features']['target_feat']) def training_code( self): self.importer.addModule(module='pandas',mod_as='pd') code = f""" class trainer(): """ init_code = f""" def __init__( self): model_file = (Path(__file__).parent/"model")/"{self.params['training']['model_file']}" if not model_file.exists(): raise ValueError(f'Trained model file not found: {{model_file}}') """ run_code = f""" def run(self, df):\\ """ if self.params['training']['algo'] in ['Neural Architecture Search']: self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models') self.importer.addModule(module='autokeras',mod_as='ak') init_code += f""" self.model = load_model(model_file,custom_objects=ak.CUSTOM_OBJECTS) """ run_code += """ df = df.astype(np.float32) return self.model.predict(df).reshape(1, -1) """ elif self.params['training']['algo'] in ['Neural Network','Convolutional Neural Network (1D)','Recurrent Neural Network','Recurrent Neural Network (GRU)','Recurrent Neural Network (LSTM)']: self.importer.addModule(module='numpy',mod_as='np') self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models') init_code += f""" self.model = load_model(model_file) """ run_code += """ df = np.expand_dims(df, axis=2) df = df.astype(np.float32) return self.model.predict(df).reshape(1, -1) """ else: self.importer.addModule('joblib') init_code += f""" self.model = joblib.load(model_file) """ run_code += """ df = df.astype(np.float32) return self.model.predict(df).reshape(1, -1) """ return code + init_code + run_code def formatter_code(self): self.importer.addModule('json') self.importer.addModule('pandas', mod_as='pd') return """ class output_format(): def __init__(self): pass def run(self, raw_df, output): raw_df['prediction'] = output[0] raw_df['prediction'] = raw_df['prediction'].round(2) outputjson = raw_df.to_json(orient='records',double_precision=5) outputjson = {"status":"SUCCESS","data":json.loads(outputjson)} return(json.dumps(outputjson)) """ class clustering( deployer): def __init__(self, params={}): super().__init__( params) self.feature_reducer = False if not self.name: self.name = 'clustering' def training_code( self): self.importer.addModule('joblib') self.importer.addModule(module='pandas',mod_as='pd') code = f""" class trainer(): """ init_code = f""" def __init__( self): model_file = (Path(__file__).parent/"model")/"{self.params['training']['model_file']}" if not model_file.exists(): raise ValueError(f'Trained model file not found: {{model_file}}') """ run_code = f""" def run(self, df):\\ """ if self.params['training']['algo'] == 'DBSCAN': init_code += f""" self.model = joblib.load(model_file) """ run_code += """ return self.model.fit_predict(df) """ else: init_code += f""" self.model = joblib.load(model_file) """ run_code += """ return self.model.predict(df).reshape(1, -1) """ return code + init_code + run_code def formatter_code(self): self.importer.addModule('json') self.importer.addModule('pandas', mod_as='pd') return """ class output_format(): def __init__(self): pass def run(self, raw_df, output): raw_df['prediction'] = output[0] raw_df['prediction'] = raw_df['prediction'].round(2) outputjson = raw_df.to_json(orient='records',double_precision=2) outputjson = {"status":"SUCCESS","data":json.loads(outputjson)} return(json.dumps(outputjson)) """ return code if __name__ == '__main__': config = {'usecase_name': 'AI0110', 'usecase_ver': '1', 'features': {'input_feat': ['v2'], 'target_feat': 'v1', 'text_feat': ['v2']}, 'paths': {'deploy': r'C:/Users/vashistah/AppData/Local/Programs/HCLTech/AION/data/target/AI0110/1', 'usecase': r'C:/Users/vashistah/AppData/Local/Programs/HCLTech/AION/data/target/AI0110'}, 'profiler': {'input_features': ['v2'], 'output_features': ['07xxxxxxxxx_vect', '08700621170150p_vect', '08702840625comuk_vect', '08718726270150gbpmtmsg18_vect', '1000s_vect', '10am7pm_vect', '10k_vect', '10p_vect', '10pmin_vect', '10ppm_vect', '11mths_vect', '125gift_vect', '12hrs_vect', '12mths_vect', '150p_vect', '150perwksub_vect', '150pm_vect', '150pmin_vect', '150pmsg_vect', '150pmsgrcvdhgsuite3422landsroww1j6hl_vect', '150pmtmsgrcvd18_vect', '150ppm_vect', '150ptone_vect', '150pwk_vect', '150week_vect', '16only_vect', '18only_vect', '1hr_vect', '1minmobsmorelkpobox177hp51fl_vect', '1st_vect', '1x150pwk_vect', '20p_vect', '20pmin_vect', '21st_vect', '220cm2_vect', '24hrs_vect', '25p_vect', '26th_vect', '2day_vect', '2find_vect', '2geva_vect', '2go_vect', '2marrow_vect', '2mrw_vect', '2nd_vect', '2nite_vect', '2optout_vect', '2p_vect', '2u_vect', '2waxsto_vect', '2wks_vect', '300p_vect', '31pmsg_vect', '3510i_vect', '3d_vect', '3g_vect', '3gbp_vect', '3hrs_vect', '3mins_vect', '3qxj9_vect', '3rd_vect', '3ss_vect', '3u_vect', '3uz_vect', '3wk_vect', '40gb_vect', '4a_vect', '4d_vect', '4eva_vect', '4get_vect', '4info_vect', '4mths_vect', '4th_vect', '4u_vect', '50p_vect', '5min_vect', '5pm_vect', '5wb_vect', '5we_vect', '60pmin_vect', '6hrs_vect', '6months_vect', '6pm_vect', '7250i_vect', '7ish_vect', '8am_vect', '8pm_vect', '8th_vect', '8wp_vect', '9ae_vect', '9ja_vect', '9pm_vect', '9t_vect', 'aathi_vect', 'abi_vect', 'ability_vect', 'abiola_vect', 'able_vect', 'abt_vect', 'abta_vect', 'aburo_vect', 'ac_vect', 'academic_vect', 'acc_vect', 'accept_vect', 'access_vect', 'accident_vect', 'accidentally_vect', 'accordingly_vect', 'account_vect', 'ache_vect', 'across_vect', 'acted_vect', 'action_vect', 'activate_vect', 'activities_vect', 'actor_vect', 'actual_vect', 'actually_vect', 'ad_vect', 'adam_vect', 'add_vect', 'added_vect', 'addicted_vect', 'addie_vect', 'address_vect', 'admin_vect', 'administrator_vect', 'admirer_vect', 'admit_vect', 'adore_vect', 'adoring_vect', 'ads_vect', 'adult_vect', 'advance_vect', 'adventure_vect', 'advice_vect', 'advise_vect', 'affair_vect', 'affairs_vect', 'affectionate_vect', 'afraid_vect', 'aft_vect', 'afternoon_vect', 'aftr_vect', 'agalla_vect', 'age_vect', 'age16_vect', 'ages_vect', 'ago_vect', 'agree_vect', 'ah_vect', 'aha_vect', 'ahead_vect', 'ahmad_vect', 'ai_vect', 'aight_vect', 'aint_vect', 'air_vect', 'airport_vect', 'airtel_vect', 'aiya_vect', 'aiyah_vect', 'aiyar_vect', 'aiyo_vect', 'al_vect', 'album_vect', 'alert_vect', 'alex_vect', 'alfie_vect', 'ali_vect', 'allah_vect', 'allow_vect', 'allowed_vect', 'almost_vect', 'alone_vect', 'along_vect', 'already_vect', 'alright_vect', 'alrite_vect', 'also_vect', 'always_vect', 'alwys_vect', 'amazing_vect', 'american_vect', 'among_vect', 'amount_vect', 'amp_vect', 'amt_vect', 'andros_vect', 'angry_vect', 'annie_vect', 'anniversary_vect', 'announcement_vect', 'anot_vect', 'another_vect', 'ans_vect', 'ansr_vect', 'answer_vect', 'answered_vect', 'answering_vect', 'answers_vect', 'anthony_vect', 'anti_vect', 'anybody_vect', 'anymore_vect', 'anyone_vect', 'anything_vect', 'anytime_vect', 'anyway_vect', 'anyways_vect', 'apartment_vect', 'app_vect', 'apparently_vect', 'applebees_vect', 'apply_vect', 'appointment_vect', 'appreciate_vect', 'appreciated_vect', 'approx_vect', 'apps_vect', 'appt_vect', 'april_vect', 'ar_vect', 'arcade_vect', 'ard_vect', 'area_vect', 'argh_vect', 'argument_vect', 'arm_vect', 'armand_vect', 'arms_vect', 'around_vect', 'arrange_vect', 'arrested_vect', 'arrive_vect', 'arsenal_vect', 'art_vect', 'arun_vect', 'asap_vect', 'ashley_vect', 'ask_vect', 'askd_vect', 'asked_vect', 'askin_vect', 'asking_vect', 'asks_vect', 'asleep_vect', 'ass_vect', 'assume_vect', 'ate_vect', 'atlanta_vect', 'atlast_vect', 'atm_vect', 'attached_vect', 'attempt_vect', 'attend_vect', 'auction_vect', 'august_vect', 'aunt_vect', 'aunty_vect', 'auto_vect', 'av_vect', 'available_vect', 'avatar_vect', 'ave_vect', 'avent_vect', 'avoid_vect', 'await_vect', 'awaiting_vect', 'awake_vect', 'award_vect', 'awarded_vect', 'away_vect', 'awesome_vect', 'aww_vect', 'b4_vect', 'ba_vect', 'babe_vect', 'babes_vect', 'babies_vect', 'baby_vect', 'back_vect', 'bad_vect', 'bag_vect', 'bags_vect', 'bahamas_vect', 'bak_vect', 'balance_vect', 'bank_vect', 'banks_vect', 'bar_vect', 'barely_vect', 'basic_vect', 'basically_vect', 'bat_vect', 'bath_vect', 'bathe_vect', 'bathing_vect', 'battery_vect', 'bay_vect', 'bb_vect', 'bc_vect', 'bck_vect', 'bcoz_vect', 'bday_vect', 'be_vect', 'bears_vect', 'beautiful_vect', 'beauty_vect', 'bec_vect', 'become_vect', 'becoz_vect', 'bed_vect', 'bedrm_vect', 'bedroom_vect', 'beer_vect', 'befor_vect', 'beg_vect', 'begin_vect', 'behave_vect', 'behind_vect', 'bein_vect', 'believe_vect', 'bell_vect', 'belly_vect', 'belovd_vect', 'best_vect', 'bet_vect', 'better_vect', 'beyond_vect', 'bf_vect', 'bid_vect', 'bids_vect', 'big_vect', 'bigger_vect', 'biggest_vect', 'bill_vect', 'billed_vect', 'billion_vect', 'bills_vect', 'bin_vect', 'biola_vect', 'birds_ve
ct', 'birla_vect', 'birth_vect', 'birthdate_vect', 'birthday_vect', 'bishan_vect', 'bit_vect', 'bitch_vect', 'bite_vect', 'black_vect', 'blackberry_vect', 'blah_vect', 'blake_vect', 'blank_vect', 'bleh_vect', 'bless_vect', 'blessing_vect', 'bloo_vect', 'blood_vect', 'bloody_vect', 'blue_vect', 'bluetooth_vect', 'bluff_vect', 'boat_vect', 'body_vect', 'bold_vect', 'bone_vect', 'bonus_vect', 'boo_vect', 'book_vect', 'booked_vect', 'booking_vect', 'books_vect', 'boost_vect', 'booty_vect', 'bored_vect', 'boring_vect', 'born_vect', 'boss_vect', 'boston_vect', 'bother_vect', 'bottom_vect', 'bought_vect', 'bout_vect', 'bowl_vect', 'box_vect', 'box326_vect', 'box334sk38ch_vect', 'box97n7qp_vect', 'boy_vect', 'boye_vect', 'boyfriend_vect', 'boys_vect', 'boytoy_vect', 'brah_vect', 'brand_vect', 'bread_vect', 'break_vect', 'breathe_vect', 'bright_vect', 'brilliant_vect', 'bring_vect', 'bringing_vect', 'brings_vect', 'british_vect', 'bro_vect', 'broad_vect', 'broke_vect', 'broken_vect', 'bros_vect', 'brothas_vect', 'brother_vect', 'brought_vect', 'bruv_vect', 'bslvyl_vect', 'bt_vect', 'btnationalrate_vect', 'btw_vect', 'bucks_vect', 'bud_vect', 'budget_vect', 'buff_vect', 'buffet_vect', 'bugis_vect', 'building_vect', 'buns_vect', 'burger_vect', 'burns_vect', 'bus_vect', 'buses_vect', 'business_vect', 'busy_vect', 'butt_vect', 'buy_vect', 'buying_vect', 'buzz_vect', 'bx420_vect', 'bx420ip45we_vect', 'bye_vect', 'ca_vect', 'cabin_vect', 'cafe_vect', 'cake_vect', 'cal_vect', 'calculation_vect', 'calicut_vect', 'california_vect', 'call_vect', 'call2optout674_vect', 'callback_vect', 'callcost_vect', 'called_vect', 'caller_vect', 'callers_vect', 'callertune_vect', 'callin_vect', 'calling_vect', 'calls_vect', 'callså_vect', 'cam_vect', 'camcorder_vect', 'came_vect', 'camera_vect', 'cameravideo_vect', 'campus_vect', 'can_vect', 'canada_vect', 'canal_vect', 'canary_vect', 'cancel_vect', 'cancelled_vect', 'cancer_vect', 'cant_vect', 'captain_vect', 'car_vect', 'card_vect', 'cardiff_vect', 'care_vect', 'cared_vect', 'career_vect', 'careful_vect', 'carefully_vect', 'caring_vect', 'carlos_vect', 'caroline_vect', 'cars_vect', 'cartoon_vect', 'case_vect', 'cash_vect', 'cashbalance_vect', 'cashin_vect', 'castor_vect', 'cat_vect', 'catch_vect', 'catching_vect', 'caught_vect', 'cause_vect', 'cbe_vect', 'cc_vect', 'cd_vect', 'cdgt_vect', 'cds_vect', 'celebrate_vect', 'celebration_vect', 'cell_vect', 'center_vect', 'centre_vect', 'certainly_vect', 'cha_vect', 'chain_vect', 'challenge_vect', 'chance_vect', 'change_vect', 'changed_vect', 'changes_vect', 'channel_vect', 'character_vect', 'charge_vect', 'charged_vect', 'charges_vect', 'charity_vect', 'charles_vect', 'chase_vect', 'chasing_vect', 'chat_vect', 'chatting_vect', 'cheap_vect', 'cheaper_vect', 'cheat_vect', 'chechi_vect', 'check_vect', 'checked_vect', 'checking_vect', 'cheers_vect', 'chennai_vect', 'cherish_vect', 'chest_vect', 'chicken_vect', 'chikku_vect', 'child_vect', 'childish_vect', 'children_vect', 'chill_vect', 'chillin_vect', 'china_vect', 'chinese_vect', 'chip_vect', 'chocolate_vect', 'choice_vect', 'choose_vect', 'chosen_vect', 'christ_vect', 'christmas_vect', 'church_vect', 'cine_vect', 'cinema_vect', 'citizen_vect', 'city_vect', 'claim_vect', 'claims_vect', 'claire_vect', 'class_vect', 'classes_vect', 'clean_vect', 'cleaning_vect', 'clear_vect', 'clearly_vect', 'click_vect', 'clock_vect', 'close_vect', 'closed_vect', 'closer_vect', 'closes_vect', 'clothes_vect', 'club_vect', 'cn_vect', 'co_vect', 'coast_vect', 'coat_vect', 'cochin_vect', 'code_vect', 'coffee_vect', 'coin_vect', 'coins_vect', 'cold_vect', 'colleagues_vect', 'collect_vect', 'collected_vect', 'collecting_vect', 'collection_vect', 'college_vect', 'colour_vect', 'come_vect', 'comedy_vect', 'comes_vect', 'comin_vect', 'coming_vect', 'commercial_vect', 'common_vect', 'community_vect', 'comp_vect', 'company_vect', 'competition_vect', 'complete_vect', 'completed_vect', 'completely_vect', 'complimentary_vect', 'computer_vect', 'concentrate_vect', 'concert_vect', 'conditions_vect', 'conducts_vect', 'confidence_vect', 'confirm_vect', 'congrats_vect', 'congratulations_vect', 'connection_vect', 'consider_vect', 'considering_vect', 'constant_vect', 'constantly_vect', 'contact_vect', 'contacted_vect', 'contacts_vect', 'content_vect', 'contents_vect', 'continue_vect', 'contract_vect', 'control_vect', 'convey_vect', 'convinced_vect', 'cool_vect', 'coping_vect', 'copy_vect', 'cornwall_vect', 'correct_vect', 'cos_vect', 'cost_vect', 'costa_vect', 'costs_vect', 'costå_vect', 'could_vect', 'count_vect', 'countin_vect', 'country_vect', 'couple_vect', 'course_vect', 'cover_vect', 'coz_vect', 'cr9_vect', 'cramps_vect', 'crave_vect', 'crazy_vect', 'created_vect', 'credit_vect', 'credited_vect', 'credits_vect', 'creepy_vect', 'crisis_vect', 'crore_vect', 'cross_vect', 'croydon_vect', 'cruise_vect', 'cry_vect', 'cs_vect', 'csbcm4235wc1n3xx_vect', 'csstop_vect', 'cud_vect', 'cuddling_vect', 'cum_vect', 'cup_vect', 'curious_vect', 'current_vect', 'currently_vect', 'cust_vect', 'custcare_vect', 'custcare08718720201_vect', 'custom_vect', 'customer_vect', 'customers_vect', 'cut_vect', 'cute_vect', 'cutting_vect', 'cuz_vect', 'cw25wx_vect', 'da_vect', 'dad_vect', 'daddy_vect', 'daily_vect', 'damn_vect', 'dance_vect', 'dancing_vect', 'dare_vect', 'dark_vect', 'darlin_vect', 'darling_vect', 'darren_vect', 'dat_vect', 'date_vect', 'dates_vect', 'dating_vect', 'dave_vect', 'day_vect', 'days_vect', 'de_vect', 'dead_vect', 'deal_vect', 'dealer_vect', 'dealing_vect', 'dear_vect', 'dearly_vect', 'death_vect', 'decide_vect', 'decided_vect', 'decimal_vect', 'decision_vect', 'deep_vect', 'def_vect', 'definite_vect', 'definitely_vect', 'del_vect', 'delete_vect', 'deleted_vect', 'delhi_vect', 'deliver_vect', 'delivered_vect', 'deliveredtomorrow_vect', 'delivery_vect', 'dem_vect', 'demand_vect', 'den_vect', 'denis_vect', 'department_vect', 'depends_vect', 'depressed_vect', 'derek_vect', 'desires_vect', 'desperate_vect', 'details_vect', 'dey_vect', 'dhoni_vect', 'dial_vect', 'dick_vect', 'dictionary_vect', 'didn_vect', 'didnt_vect', 'didt_vect', 'die_vect', 'died_vect', 'diet_vect', 'different_vect', 'difficult_vect', 'digital_vect', 'dignity_vect', 'din_vect', 'dinner_vect', 'dint_vect', 'direct_vect', 'directly_vect', 'dirty_vect', 'dis_vect', 'discount_vect', 'discuss_vect', 'dislikes_vect', 'display_vect', 'distance_vect', 'distract_vect', 'disturb_vect', 'division_vect', 'dload_vect', 'dnt_vect', 'doc_vect', 'docs_vect', 'doctor_vect', 'doesnt_vect', 'dog_vect', 'dogging_vect', 'doggy_vect', 'doin_vect', 'dollars_vect', 'don_vect', 'done_vect', 'dont_vect', 'donåõt_vect', 'door_vect', 'dorm_vect', 'double_vect', 'dough_vect', 'download_vect', 'downloads_vect', 'draw_vect', 'dream_vect', 'dreams_vect', 'dress_vect', 'dressed_vect', 'dresser_vect', 'drink_vect', 'drinking_vect', 'drinks_vect', 'drive_vect', 'driver_vect', 'drivin_vect', 'driving_vect', 'drop_vect', 'dropped_vect', 'drug_vect', 'drugs_vect', 'drunk_vect', 'dry_vect', 'ds_vect', 'dubsack_vect', 'dude_vect', 'due_vect', 'dun_vect', 'dunno_vect', 'durban_vect', 'dvd_vect', 'earlier_vect', 'early_vect', 'earth_vect', 'easier_vect', 'easily_vect', 'east_vect', 'easter_vect', 'easy_vect', 'eat_vect', 'eaten_vect', 'eatin_vect', 'eating_vect', 'ebay_vect', 'ec2a_vect', 'ee_vect', 'eek_vect', 'eerie_vect', 'effects_vect', 'eg_vect', 'egg_vect', 'eggs_vect', 'eh_vect', 'eight_vect', 'either_vect', 'ela_vect', 'electricity_vect', 'else_vect', 'elsewhere_vect', 'em_vect', 'email_vect', 'embarassed_vect', 'empty_vect', 'end_vect', 'ended_vect', 'ending_vect', 'ends_vect', 'enemy_vect', 'energy_vect', 'eng_vect', 'engin_vect', 'england_vect', 'english_vect', 'enjoy_vect', 'enjoyed_vect', 'enough_vect', 'enter_vect', 'entered_vect', 'entitled_vect', 'entry_vect', 'enuff_vect', 'envelope_vect', 'er_vect', 'erm_vect', 'escape_vect', 'especially_vect', 'esplanade_vect', 'eta_vect', 'etc_vect', 'euro_vect', 'euro2004_vect', 'europe_vect', 'eve_vect', 'eveb_vect', 'even_vect', 'evening_vect', 'event_vect', 'ever_vect', 'every_vect', 'everybody_vect', 'everyday_vect', 'everyone_vect', 'everything_vect', 'everywhere_vect', 'evn_vect', 'evng_vect', 'ex_vect', 'exact_vect', 'exactly_vect', 'exam_vect', 'exams_vect', 'excellent_vect', 'except_vect', 'exciting_vect', 'excuse_vect', 'excuses_vect', 'executive_vect', 'exeter_vect', 'exhausted_vect', 'expect_vect', 'expecting_vect', 'expensive_vect', 'experience_vect', 'expired_vect', 'expires_vect', 'explain_vect', 'explicit_vect', 'explosive_vect', 'express_vect', 'extra_vect', 'eye_vect', 'eyes_vect', 'fa_vect', 'fab_vect', 'face_vect', 'facebook_vect', 'fact_vect', 'faggy_vect', 'failed_vect', 'fair_vect', 'faith_vect', 'fall_vect', 'falls_vect', 'family_vect', 'fan_vect', '
fancies_vect', 'fancy_vect', 'fantasies_vect', 'fantastic_vect', 'fantasy_vect', 'far_vect', 'farm_vect', 'fast_vect', 'faster_vect', 'fat_vect', 'father_vect', 'fathima_vect', 'fault_vect', 'fave_vect', 'favorite_vect', 'favour_vect', 'favourite_vect', 'fb_vect', 'feb_vect', 'february_vect', 'feel_vect', 'feelin_vect', 'feeling_vect', 'feels_vect', 'fees_vect', 'feet_vect', 'fell_vect', 'felt_vect', 'fetch_vect', 'fever_vect', 'field_vect', 'fifteen_vect', 'fight_vect', 'fighting_vect', 'figure_vect', 'file_vect', 'files_vect', 'fill_vect', 'filling_vect', 'fills_vect', 'film_vect', 'final_vect', 'finally_vect', 'find_vect', 'fine_vect', 'fingers_vect', 'finish_vect', 'finished_vect', 'first_vect', 'fit_vect', 'fix_vect', 'fixed_vect', 'flag_vect', 'flaked_vect', 'flash_vect', 'flat_vect', 'flight_vect', 'flights_vect', 'flirt_vect', 'floor_vect', 'flower_vect', 'fml_vect', 'fo_vect', 'follow_vect', 'followed_vect', 'following_vect', 'fone_vect', 'food_vect', 'fool_vect', 'football_vect', 'force_vect', 'foreign_vect', 'forever_vect', 'forevr_vect', 'forget_vect', 'forgets_vect', 'forgiven_vect', 'forgot_vect', 'format_vect', 'forums_vect', 'forward_vect', 'forwarded_vect', 'found_vect', 'four_vect', 'fr_vect', 'fran_vect', 'freak_vect', 'free_vect', 'freefone_vect', 'freemsg_vect', 'freephone_vect', 'freezing_vect', 'fren_vect', 'frens_vect', 'fret_vect', 'fri_vect', 'friday_vect', 'friend_vect', 'friends_vect', 'friendship_vect', 'fringe_vect', 'frm_vect', 'frnd_vect', 'frnds_vect', 'frndship_vect', 'fuck_vect', 'fuckin_vect', 'fucking_vect', 'ful_vect', 'full_vect', 'fullonsmscom_vect', 'fun_vect', 'funny_vect', 'future_vect', 'fyi_vect', 'gal_vect', 'gals_vect', 'game_vect', 'games_vect', 'gang_vect', 'gap_vect', 'gaps_vect', 'garage_vect', 'garbage_vect', 'gary_vect', 'gas_vect', 'gautham_vect', 'gave_vect', 'gay_vect', 'gd_vect', 'ge_vect', 'gee_vect', 'geeee_vect', 'geeeee_vect', 'gender_vect', 'generally_vect', 'genius_vect', 'gentle_vect', 'gentleman_vect', 'gently_vect', 'germany_vect', 'get_vect', 'gets_vect', 'gettin_vect', 'getting_vect', 'gf_vect', 'gibbs_vect', 'gift_vect', 'gim_vect', 'girl_vect', 'girls_vect', 'gist_vect', 'giv_vect', 'give_vect', 'given_vect', 'gives_vect', 'giving_vect', 'glad_vect', 'gn_vect', 'go_vect', 'goal_vect', 'god_vect', 'goes_vect', 'goin_vect', 'going_vect', 'gold_vect', 'gon_vect', 'gona_vect', 'gone_vect', 'good_vect', 'goodmorning_vect', 'goodnight_vect', 'goodnite_vect', 'google_vect', 'gorgeous_vect', 'gossip_vect', 'got_vect', 'goto_vect', 'gotten_vect', 'govtinstituitions_vect', 'gr8_vect', 'grace_vect', 'gram_vect', 'grand_vect', 'granite_vect', 'gravity_vect', 'great_vect', 'green_vect', 'greet_vect', 'greetings_vect', 'grins_vect', 'grl_vect', 'ground_vect', 'group_vect', 'gt_vect', 'guaranteed_vect', 'gud_vect', 'gudnite_vect', 'guess_vect', 'guessing_vect', 'guide_vect', 'guilty_vect', 'guy_vect', 'guys_vect', 'gym_vect', 'ha_vect', 'haf_vect', 'haha_vect', 'hai_vect', 'hair_vect', 'haiz_vect', 'half_vect', 'halloween_vect', 'ham_vect', 'hand_vect', 'handed_vect', 'handle_vect', 'hands_vect', 'handset_vect', 'hanging_vect', 'happen_vect', 'happened_vect', 'happening_vect', 'happens_vect', 'happiness_vect', 'happy_vect', 'hard_vect', 'hardcore_vect', 'hardly_vect', 'harry_vect', 'hate_vect', 'hav_vect', 'havent_vect', 'havenåõt_vect', 'havin_vect', 'head_vect', 'headache_vect', 'headin_vect', 'heads_vect', 'hear_vect', 'heard_vect', 'heart_vect', 'heavy_vect', 'hee_vect', 'height_vect', 'held_vect', 'helen_vect', 'hell_vect', 'hella_vect', 'hello_vect', 'help_vect', 'help08712400602450p_vect', 'helpline_vect', 'hence_vect', 'henry_vect', 'heri_vect', 'herlove_vect', 'hes_vect', 'hex_vect', 'hey_vect', 'hgsuite3422lands_vect', 'hi_vect', 'hide_vect', 'high_vect', 'hill_vect', 'hint_vect', 'hip_vect', 'history_vect', 'hit_vect', 'hiya_vect', 'hl_vect', 'hlp_vect', 'hmm_vect', 'hmmm_vect', 'hmv_vect', 'ho_vect', 'hockey_vect', 'hol_vect', 'hold_vect', 'holder_vect', 'holding_vect', 'holiday_vect', 'holla_vect', 'hols_vect', 'holy_vect', 'home_vect', 'honey_vect', 'hook_vect', 'hop_vect', 'hope_vect', 'hoped_vect', 'hopefully_vect', 'hoping_vect', 'horny_vect', 'horo_vect', 'horrible_vect', 'hospital_vect', 'hospitals_vect', 'hostel_vect', 'hot_vect', 'hotel_vect', 'hotels_vect', 'hour_vect', 'hours_vect', 'house_vect', 'housemaid_vect', 'however_vect', 'hows_vect', 'howz_vect', 'hr_vect', 'hrishi_vect', 'hrs_vect', 'http_vect', 'hubby_vect', 'hug_vect', 'huh_vect', 'hun_vect', 'hungry_vect', 'hunny_vect', 'hurry_vect', 'hurt_vect', 'hurting_vect', 'hurts_vect', 'husband_vect', 'hv_vect', 'hw_vect', 'hyde_vect', 'iam_vect', 'ibhltd_vect', 'ibiza_vect', 'ic_vect', 'ice_vect', 'id_vect', 'idea_vect', 'ideal_vect', 'ideas_vect', 'identifier_vect', 'idiot_vect', 'idk_vect', 'ignore_vect', 'ikea_vect', 'il_vect', 'ill_vect', 'im_vect', 'imagine_vect', 'imma_vect', 'immediately_vect', 'imp_vect', 'important_vect', 'impossible_vect', 'improved_vect', 'in2_vect', 'inc_vect', 'inches_vect', 'incident_vect', 'include_vect', 'including_vect', 'inclusive_vect', 'inconsiderate_vect', 'indeed_vect', 'india_vect', 'indian_vect', 'indians_vect', 'indicate_vect', 'infections_vect', 'infernal_vect', 'info_vect', 'inform_vect', 'information_vect', 'informed_vect', 'innings_vect', 'insha_vect', 'inside_vect', 'instantly_vect', 'instead_vect', 'instructions_vect', 'insurance_vect', 'intelligent_vect', 'interest_vect', 'interested_vect', 'interesting_vect', 'interflora_vect', 'internet_vect', 'intro_vect', 'invest_vect', 'invite_vect', 'invited_vect', 'inviting_vect', 'iouri_vect', 'ip4_vect', 'ipod_vect', 'irritating_vect', 'iscoming_vect', 'ish_vect', 'island_vect', 'islands_vect', 'isnt_vect', 'issue_vect', 'issues_vect', 'it_vect', 'italian_vect', 'its_vect', 'itz_vect', 'itåõs_vect', 'ive_vect', 'iz_vect', 'izzit_vect', 'iåõm_vect', 'jacket_vect', 'jamster_vect', 'jan_vect', 'january_vect', 'jason_vect', 'java_vect', 'jay_vect', 'jazz_vect', 'jealous_vect', 'jeans_vect', 'jen_vect', 'jenny_vect', 'jess_vect', 'jesus_vect', 'jiayin_vect', 'jiu_vect', 'jo_vect', 'joanna_vect', 'job_vect', 'jogging_vect', 'john_vect', 'join_vect', 'joined_vect', 'joining_vect', 'joke_vect', 'jokes_vect', 'jokin_vect', 'joking_vect', 'jolly_vect', 'joy_vect', 'jsco_vect', 'jst_vect', 'juan_vect', 'juicy_vect', 'july_vect', 'june_vect', 'jus_vect', 'juz_vect', 'k52_vect', 'kadeem_vect', 'kaiez_vect', 'kallis_vect', 'kano_vect', 'kappa_vect', 'karaoke_vect', 'kate_vect', 'kay_vect', 'kb_vect', 'ke_vect', 'keep_vect', 'keeping_vect', 'keeps_vect', 'kent_vect', 'kept_vect', 'kerala_vect', 'key_vect', 'keys_vect', 'ki_vect', 'kick_vect', 'kid_vect', 'kidding_vect', 'kids_vect', 'kidz_vect', 'kind_vect', 'kinda_vect', 'kindly_vect', 'king_vect', 'kiss_vect', 'kisses_vect', 'kk_vect', 'knackered_vect', 'knew_vect', 'knock_vect', 'know_vect', 'knowing_vect', 'knows_vect', 'knw_vect', 'kz_vect', 'l8r_vect', 'la_vect', 'lab_vect', 'ladies_vect', 'lady_vect', 'lag_vect', 'laid_vect', 'land_vect', 'landline_vect', 'langport_vect', 'language_vect', 'laptop_vect', 'lar_vect', 'largest_vect', 'last_vect', 'late_vect', 'later_vect', 'latest_vect', 'latr_vect', 'laugh_vect', 'laughing_vect', 'law_vect', 'lazy_vect', 'ldn_vect', 'ldnw15h_vect', 'le_vect', 'lead_vect', 'learn_vect', 'least_vect', 'leave_vect', 'leaves_vect', 'leaving_vect', 'lect_vect', 'lecture_vect', 'left_vect', 'legal_vect', 'legs_vect', 'leh_vect', 'lei_vect', 'lem_vect', 'less_vect', 'lesson_vect', 'lessons_vect', 'let_vect', 'lets_vect', 'letter_vect', 'letters_vect', 'liao_vect', 'library_vect', 'lick_vect', 'licks_vect', 'lido_vect', 'lie_vect', 'lies_vect', 'life_vect', 'lifetime_vect', 'lift_vect', 'light_vect', 'lik_vect', 'like_vect', 'liked_vect', 'likely_vect', 'likes_vect', 'lil_vect', 'line_vect', 'linerental_vect', 'lines_vect', 'link_vect', 'lion_vect', 'lionm_vect', 'lionp_vect', 'lions_vect', 'lip_vect', 'list_vect', 'listen_vect', 'listening_vect', 'literally_vect', 'little_vect', 'live_vect', 'liverpool_vect', 'living_vect', 'lk_vect', 'll_vect', 'lmao_vect', 'lo_vect', 'loads_vect', 'loan_vect', 'loans_vect', 'local_vect', 'locations_vect', 'lock_vect', 'log_vect', 'login_vect', 'logo_vect', 'logopic_vect', 'lol_vect', 'london_vect', 'lonely_vect', 'long_vect', 'longer_vect', 'look_vect', 'lookatme_vect', 'looked_vect', 'lookin_vect', 'looking_vect', 'looks_vect', 'lor_vect', 'lose_vect', 'losing_vect',
'loss_vect', 'lost_vect', 'lot_vect', 'lotr_vect', 'lots_vect', 'lou_vect', 'loud_vect', 'lounge_vect', 'lousy_vect', 'lovable_vect', 'love_vect', 'loved_vect', 'lovely_vect', 'loveme_vect', 'lover_vect', 'loverboy_vect', 'lovers_vect', 'loves_vect', 'loving_vect', 'low_vect', 'lower_vect', 'loyal_vect', 'loyalty_vect', 'ls15hb_vect', 'lt_vect', 'ltd_vect', 'luck_vect', 'lucky_vect', 'lucy_vect', 'lunch_vect', 'luv_vect', 'lux_vect', 'luxury_vect', 'lyf_vect', 'lyfu_vect', 'lyk_vect', 'm227xy_vect', 'm26_vect', 'm263uz_vect', 'm8s_vect', 'mac_vect', 'machan_vect', 'macho_vect', 'mad_vect', 'madam_vect', 'made_vect', 'mag_vect', 'maga_vect', 'magical_vect', 'mah_vect', 'mail_vect', 'mailbox_vect', 'main_vect', 'maintain_vect', 'major_vect', 'make_vect', 'makes_vect', 'makin_vect', 'making_vect', 'malaria_vect', 'male_vect', 'mall_vect', 'man_vect', 'managed_vect', 'management_vect', 'many_vect', 'map_vect', 'march_vect', 'mark_vect', 'market_vect', 'marriage_vect', 'married_vect', 'marry_vect', 'masters_vect', 'match_vect', 'matches_vect', 'mate_vect', 'mates_vect', 'matrix3_vect', 'matter_vect', 'max10mins_vect', 'maximize_vect', 'maxå_vect', 'may_vect', 'mayb_vect', 'maybe_vect', 'mca_vect', 'mcat_vect', 'meal_vect', 'mean_vect', 'meaning_vect', 'means_vect', 'meant_vect', 'meanwhile_vect', 'med_vect', 'medical_vect', 'medicine_vect', 'meds_vect', 'meet_vect', 'meetin_vect', 'meeting_vect', 'meh_vect', 'mei_vect', 'member_vect', 'members_vect', 'men_vect', 'menu_vect', 'merry_vect', 'mess_vect', 'message_vect', 'messaged_vect', 'messages_vect', 'messaging_vect', 'met_vect', 'mid_vect', 'middle_vect', 'midnight_vect', 'mids_vect', 'might_vect', 'miles_vect', 'milk_vect', 'min_vect', 'mind_vect', 'mine_vect', 'mini_vect', 'minimum_vect', 'minor_vect', 'mins_vect', 'minute_vect', 'minutes_vect', 'minuts_vect', 'miracle_vect', 'mis_vect', 'miserable_vect', 'miss_vect', 'missed_vect', 'missin_vect', 'missing_vect', 'mistake_vect', 'mistakes_vect', 'mite_vect', 'mm_vect', 'mmm_vect', 'mmmm_vect', 'mmmmmm_vect', 'mnths_vect', 'mo_vect', 'moan_vect', 'mob_vect', 'mobile_vect', 'mobiles_vect', 'mobilesdirect_vect', 'mobilesvary_vect', 'mobileupd8_vect', 'mobno_vect', 'moby_vect', 'mode_vect', 'model_vect', 'module_vect', 'modules_vect', 'moji_vect', 'mojibiola_vect', 'mokka_vect', 'mom_vect', 'moment_vect', 'moments_vect', 'moms_vect', 'mon_vect', 'monday_vect', 'money_vect', 'monkeys_vect', 'mono_vect', 'month_vect', 'monthly_vect', 'months_vect', 'mood_vect', 'moon_vect', 'moral_vect', 'morn_vect', 'morning_vect', 'mostly_vect', 'mother_vect', 'motorola_vect', 'mouth_vect', 'move_vect', 'moved_vect', 'movie_vect', 'movies_vect', 'moving_vect', 'mp3_vect', 'mr_vect', 'mrng_vect', 'mrt_vect', 'msg_vect', 'msgs_vect', 'mths_vect', 'mu_vect', 'much_vect', 'mum_vect', 'mummy_vect', 'murder_vect', 'murdered_vect', 'murderer_vect', 'music_vect', 'must_vect', 'muz_vect', 'na_vect', 'nag_vect', 'nah_vect', 'naked_vect', 'name_vect', 'name1_vect', 'name2_vect', 'named_vect', 'names_vect', 'nan_vect', 'nap_vect', 'nasdaq_vect', 'nat_vect', 'national_vect', 'natural_vect', 'nature_vect', 'naughty_vect', 'nb_vect', 'nd_vect', 'ne_vect', 'near_vect', 'nearly_vect', 'necessarily_vect', 'necklace_vect', 'ned_vect', 'need_vect', 'needed_vect', 'needs_vect', 'neither_vect', 'net_vect', 'netcollex_vect', 'network_vect', 'networks_vect', 'neva_vect', 'never_vect', 'new_vect', 'newest_vect', 'news_vect', 'next_vect', 'ni8_vect', 'nice_vect', 'nigeria_vect', 'night_vect', 'nights_vect', 'nimya_vect', 'nite_vect', 'no1_vect', 'nobody_vect', 'noe_vect', 'nokia_vect', 'nokias_vect', 'noline_vect', 'none_vect', 'noon_vect', 'nope_vect', 'norm_vect', 'norm150ptone_vect', 'normal_vect', 'normally_vect', 'northampton_vect', 'note_vect', 'nothin_vect', 'nothing_vect', 'notice_vect', 'noun_vect', 'nowadays_vect', 'nt_vect', 'ntt_vect', 'ntwk_vect', 'num_vect', 'number_vect', 'numbers_vect', 'nuther_vect', 'nvm_vect', 'nw_vect', 'nxt_vect', 'nyc_vect', 'nydc_vect', 'nyt_vect', 'o2_vect', 'obviously_vect', 'odi_vect', 'offer_vect', 'offers_vect', 'office_vect', 'official_vect', 'officially_vect', 'ofice_vect', 'often_vect', 'oh_vect', 'oi_vect', 'oic_vect', 'ok_vect', 'okay_vect', 'okey_vect', 'okie_vect', 'ola_vect', 'old_vect', 'omg_vect', 'omw_vect', 'one_vect', 'ones_vect', 'oni_vect', 'online_vect', 'onto_vect', 'onwards_vect', 'oooh_vect', 'oops_vect', 'open_vect', 'opening_vect', 'operator_vect', 'opinion_vect', 'opportunity_vect', 'opt_vect', 'option_vect', 'optout_vect', 'or2stoptxt_vect', 'orange_vect', 'oranges_vect', 'orchard_vect', 'order_vect', 'ordered_vect', 'oredi_vect', 'original_vect', 'oru_vect', 'os_vect', 'oso_vect', 'others_vect', 'otherwise_vect', 'otside_vect', 'outside_vect', 'outstanding_vect', 'outta_vect', 'ovulation_vect', 'oz_vect', 'pa_vect', 'pack_vect', 'package_vect', 'page_vect', 'pages_vect', 'paid_vect', 'pain_vect', 'painful_vect', 'painting_vect', 'panic_vect', 'paper_vect', 'papers_vect', 'paperwork_vect', 'parco_vect', 'parent_vect', 'parents_vect', 'paris_vect', 'park_vect', 'parked_vect', 'parking_vect', 'part_vect', 'partner_vect', 'partnership_vect', 'party_vect', 'pass_vect', 'passed_vect', 'password_vect', 'past_vect', 'pattern_vect', 'patty_vect', 'pay_vect', 'paying_vect', 'payment_vect', 'payoh_vect', 'pc_vect', 'peace_vect', 'pence_vect', 'people_vect', 'per_vect', 'perfect_vect', 'period_vect', 'person_vect', 'personal_vect', 'pete_vect', 'petey_vect', 'pg_vect', 'philosophy_vect', 'phoenix_vect', 'phone_vect', 'phones_vect', 'photo_vect', 'photos_vect', 'pic_vect', 'pick_vect', 'picked_vect', 'picking_vect', 'pics_vect', 'picsfree1_vect', 'picture_vect', 'pictures_vect', 'pie_vect', 'pieces_vect', 'pig_vect', 'pilates_vect', 'pin_vect', 'pink_vect', 'piss_vect', 'pissed_vect', 'pix_vect', 'pizza_vect', 'place_vect', 'places_vect', 'plan_vect', 'planned_vect', 'planning_vect', 'plans_vect', 'play_vect', 'played_vect', 'player_vect', 'players_vect', 'playing_vect', 'please_vect', 'pleased_vect', 'pleasure_vect', 'plenty_vect', 'pls_vect', 'plus_vect', 'plz_vect', 'pm_vect', 'po_vect', 'pobox_vect', 'pobox334_vect', 'pobox36504w45wq_vect', 'pobox45w2tg150p_vect', 'pobox84_vect', 'pod_vect', 'point_vect', 'points_vect', 'poker_vect', 'pole_vect', 'police_vect', 'politicians_vect', 'poly_vect', 'polyphonic_vect', 'polys_vect', 'pongal_vect', 'poor_vect', 'pop_vect', 'popped_vect', 'porn_vect', 'possession_vect', 'possible_vect', 'post_vect', 'postcard_vect', 'postcode_vect', 'posted_vect', 'posts_vect', 'potential_vect', 'potter_vect', 'pound_vect', 'pounds_vect', 'pouts_vect', 'power_vect', 'ppl_vect', 'pple_vect', 'ppm_vect', 'prabha_vect', 'practice_vect', 'practicing_vect', 'pray_vect', 'prefer_vect', 'premier_vect', 'prepare_vect', 'prescription_vect', 'present_vect', 'press_vect', 'pretty_vect', 'prey_vect', 'price_vect', 'prince_vect', 'princess_vect', 'print_vect', 'privacy_vect', 'private_vect', 'prize_vect', 'prob_vect', 'probably_vect', 'problem_vect', 'problems_vect', 'process_vect', 'processed_vect', 'prof_vect', 'profit_vect', 'program_vect', 'project_vect', 'prolly_vect', 'promise_vect', 'promises_vect', 'promo_vect', 'proof_vect', 'properly_vect', 'prospects_vect', 'provided_vect', 'ps_vect', 'ptbo_vect', 'pub_vect', 'pull_vect', 'purchase_vect', 'purity_vect', 'purpose_vect', 'push_vect', 'pushes_vect', 'pussy_vect', 'put_vect', 'puttin_vect', 'putting_vect', 'qatar_vect', 'quality_vect', 'queen_vect', 'ques_vect', 'question_vect', 'questions_vect', 'quick_vect', 'quickly_vect', 'quiet_vect', 'quit_vect', 'quite_vect', 'quiz_vect', 'quote_vect', 'quoting_vect', 'racing_vect', 'radio_vect', 'railway_vect', 'rain_vect', 'raining_vect', 'raise_vect', 'rakhesh_vect', 'rally_vect', 'ran_vect', 'random_vect', 'randomly_vect', 'randy_vect', 'rang_vect', 'range_vect', 'ranjith_vect', 'rate_vect', 'rates_vect', 'rather_vect', 'rays_vect', 'rcvd_vect', 'rd_vect', 're_vect', 'reach_vect', 'reached_vect', 'reaching_vect', 'reaction_vect', 'read_vect', 'readers_vect', 'reading_vect', 'ready_vect', 'real_vect', 'realise_vect', 'reality_vect', 'realized_vect', 'really_vect', 'realy_vect', 'reason_vect', 'reasonable_vect', 'reasons_vect', 'reboot_vect', 'recd_vect', 'receipt_vect', 'receive_vect', 'received_vect', 'receiving_vect', 'recent_vect', 'recently_vect', 'recession_vect', 'record_vect', 'records_vect', 'recovery_vect', 'red_vect', 'ref_vect', 'reference_vect', 'reg_vect', 'regards_vect', 'register_vect', 'registered_vect', 'regret_vect', 'regular_vect', 'relation_vect', 'relax_vect', 'released_vect', 'rem_vect', 'remain_vect', 'remains_vect', 'rem
ember_vect', 'remembered_vect', 'remembr_vect', 'remind_vect', 'reminder_vect', 'remove_vect', 'rent_vect', 'rental_vect', 'rentl_vect', 'repair_vect', 'repeat_vect', 'replied_vect', 'reply_vect', 'replying_vect', 'report_vect', 'representative_vect', 'request_vect', 'requests_vect', 'research_vect', 'resend_vect', 'respect_vect', 'respond_vect', 'responding_vect', 'response_vect', 'responsibility_vect', 'rest_vect', 'restaurant_vect', 'result_vect', 'results_vect', 'retrieve_vect', 'return_vect', 'returned_vect', 'returns_vect', 'reveal_vect', 'revealed_vect', 'review_vect', 'revision_vect', 'reward_vect', 'rhythm_vect', 'rice_vect', 'rich_vect', 'ride_vect', 'right_vect', 'rights_vect', 'ring_vect', 'ringtone_vect', 'ringtones_vect', 'rite_vect', 'river_vect', 'road_vect', 'roads_vect', 'roast_vect', 'rock_vect', 'rocks_vect', 'rofl_vect', 'roger_vect', 'role_vect', 'ron_vect', 'room_vect', 'roommate_vect', 'roommates_vect', 'rooms_vect', 'rose_vect', 'round_vect', 'row_vect', 'roww1j6hl_vect', 'roww1jhl_vect', 'royal_vect', 'rply_vect', 'rs_vect', 'rstm_vect', 'ru_vect', 'rub_vect', 'rude_vect', 'rule_vect', 'run_vect', 'running_vect', 'runs_vect', 'rush_vect', 'sacrifice_vect', 'sad_vect', 'sae_vect', 'safe_vect', 'said_vect', 'salam_vect', 'salary_vect', 'sale_vect', 'salon_vect', 'sam_vect', 'santa_vect', 'sar_vect', 'sarasota_vect', 'sarcastic_vect', 'sary_vect', 'sat_vect', 'sathya_vect', 'saturday_vect', 'savamob_vect', 'save_vect', 'saved_vect', 'saw_vect', 'say_vect', 'saying_vect', 'says_vect', 'scared_vect', 'scary_vect', 'sch_vect', 'schedule_vect', 'school_vect', 'schools_vect', 'science_vect', 'scold_vect', 'score_vect', 'scores_vect', 'scotland_vect', 'scream_vect', 'screaming_vect', 'scrounge_vect', 'se_vect', 'sea_vect', 'search_vect', 'searching_vect', 'season_vect', 'seat_vect', 'sec_vect', 'second_vect', 'seconds_vect', 'secret_vect', 'secretary_vect', 'secs_vect', 'sed_vect', 'see_vect', 'seeing_vect', 'seem_vect', 'seemed_vect', 'seems_vect', 'seen_vect', 'selected_vect', 'selection_vect', 'self_vect', 'sell_vect', 'selling_vect', 'sells_vect', 'sem_vect', 'semester_vect', 'sen_vect', 'send_vect', 'sender_vect', 'sending_vect', 'sense_vect', 'sent_vect', 'sentence_vect', 'sept_vect', 'series_vect', 'serious_vect', 'seriously_vect', 'service_vect', 'services_vect', 'serving_vect', 'set_vect', 'setting_vect', 'settings_vect', 'settle_vect', 'settled_vect', 'seven_vect', 'several_vect', 'sex_vect', 'sexy_vect', 'sh_vect', 'sha_vect', 'shall_vect', 'share_vect', 'shd_vect', 'sheets_vect', 'shes_vect', 'shesil_vect', 'shining_vect', 'ship_vect', 'shipping_vect', 'shirt_vect', 'shirts_vect', 'shit_vect', 'shld_vect', 'shocking_vect', 'shoot_vect', 'shop_vect', 'shoppin_vect', 'shopping_vect', 'short_vect', 'shorter_vect', 'shortly_vect', 'shot_vect', 'shoving_vect', 'show_vect', 'shower_vect', 'showing_vect', 'shows_vect', 'shu_vect', 'shuhui_vect', 'shy_vect', 'si_vect', 'sick_vect', 'side_vect', 'sighs_vect', 'sight_vect', 'sign_vect', 'signing_vect', 'silence_vect', 'silent_vect', 'silver_vect', 'sim_vect', 'simple_vect', 'simply_vect', 'since_vect', 'sing_vect', 'singing_vect', 'single_vect', 'singles_vect', 'sipix_vect', 'sir_vect', 'sis_vect', 'sister_vect', 'sit_vect', 'site_vect', 'sitting_vect', 'situation_vect', 'siva_vect', 'six_vect', 'size_vect', 'sk3_vect', 'sk38xh_vect', 'skilgme_vect', 'skip_vect', 'sky_vect', 'skype_vect', 'skyped_vect', 'slap_vect', 'slave_vect', 'sleep_vect', 'sleepin_vect', 'sleeping_vect', 'sleepy_vect', 'slept_vect', 'slice_vect', 'slide_vect', 'slightly_vect', 'slip_vect', 'slippers_vect', 'slo_vect', 'slots_vect', 'slow_vect', 'slowly_vect', 'small_vect', 'smashed_vect', 'smile_vect', 'smiles_vect', 'smiling_vect', 'smoke_vect', 'smoking_vect', 'sms_vect', 'smth_vect', 'sn_vect', 'snake_vect', 'snow_vect', 'social_vect', 'sofa_vect', 'soft_vect', 'software_vect', 'sol_vect', 'some1_vect', 'somebody_vect', 'someone_vect', 'somethin_vect', 'something_vect', 'sometimes_vect', 'somewhere_vect', 'song_vect', 'songs_vect', 'sony_vect', 'sonyericsson_vect', 'soon_vect', 'sooner_vect', 'sore_vect', 'sorry_vect', 'sort_vect', 'sorting_vect', 'sound_vect', 'sounds_vect', 'south_vect', 'sp_vect', 'space_vect', 'spanish_vect', 'speak_vect', 'speaking_vect', 'special_vect', 'specialcall_vect', 'specially_vect', 'speed_vect', 'spend_vect', 'spending_vect', 'spent_vect', 'spk_vect', 'spoke_vect', 'spoken_vect', 'spook_vect', 'sport_vect', 'sports_vect', 'spree_vect', 'spring_vect', 'sptv_vect', 'sry_vect', 'st_vect', 'staff_vect', 'stamps_vect', 'stand_vect', 'standard_vect', 'standing_vect', 'star_vect', 'staring_vect', 'start_vect', 'started_vect', 'starting_vect', 'starts_vect', 'starwars3_vect', 'statement_vect', 'station_vect', 'stay_vect', 'stayed_vect', 'staying_vect', 'std_vect', 'steam_vect', 'step_vect', 'steve_vect', 'stick_vect', 'sticky_vect', 'still_vect', 'stock_vect', 'stockport_vect', 'stomach_vect', 'stomps_vect', 'stones_vect', 'stop_vect', 'stopped_vect', 'stops_vect', 'store_vect', 'stores_vect', 'story_vect', 'str_vect', 'straight_vect', 'stranger_vect', 'street_vect', 'stress_vect', 'strike_vect', 'strong_vect', 'strongbuy_vect', 'stuck_vect', 'student_vect', 'study_vect', 'studying_vect', 'stuff_vect', 'stupid_vect', 'style_vect', 'stylish_vect', 'sub_vect', 'subpoly_vect', 'subs_vect', 'subscribe6gbpmnth_vect', 'subscribed_vect', 'subscriber_vect', 'subscription_vect', 'success_vect', 'successful_vect', 'successfully_vect', 'sucks_vect', 'sue_vect', 'sufficient_vect', 'suggest_vect', 'suite_vect', 'suits_vect', 'sum1_vect', 'summer_vect', 'sun_vect', 'sunday_vect', 'sunlight_vect', 'sunny_vect', 'sunshine_vect', 'suntec_vect', 'sup_vect', 'super_vect', 'superb_vect', 'superior_vect', 'supervisor_vect', 'supply_vect', 'support_vect', 'suppose_vect', 'supposed_vect', 'suprman_vect', 'sura_vect', 'sure_vect', 'surely_vect', 'surfing_vect', 'surprise_vect', 'surprised_vect', 'survey_vect', 'sux_vect', 'suzy_vect', 'sw7_vect', 'sw73ss_vect', 'sweet_vect', 'swing_vect', 'system_vect', 'ta_vect', 'tablets_vect', 'tahan_vect', 'take_vect', 'taken_vect', 'takes_vect', 'takin_vect', 'taking_vect', 'talent_vect', 'talk_vect', 'talking_vect', 'tampa_vect', 'tape_vect', 'tariffs_vect', 'tat_vect', 'taunton_vect', 'taylor_vect', 'tb_vect', 'tc_vect', 'tcrw1_vect', 'tcs_vect', 'tea_vect', 'teach_vect', 'teacher_vect', 'teaches_vect', 'team_vect', 'tear_vect', 'tease_vect', 'teasing_vect', 'tech_vect', 'technical_vect', 'tee_vect', 'teeth_vect', 'tel_vect', 'telephone_vect', 'tell_vect', 'telling_vect', 'tells_vect', 'telugu_vect', 'temple_vect', 'ten_vect', 'tenants_vect', 'tenerife_vect', 'tension_vect', 'term_vect', 'terms_vect', 'terrible_vect', 'test_vect', 'testing_vect', 'text_vect', 'texted_vect', 'texting_vect', 'textoperator_vect', 'texts_vect', 'th_vect', 'thangam_vect', 'thank_vect', 'thanks_vect', 'thanksgiving_vect', 'thanx_vect', 'that_vect', 'thats_vect', 'thatåõs_vect', 'the_vect', 'theatre_vect', 'themob_vect', 'theory_vect', 'thesis_vect', 'thgt_vect', 'thing_vect', 'things_vect', 'think_vect', 'thinkin_vect', 'thinking_vect', 'thinks_vect', 'thk_vect', 'thnk_vect', 'tho_vect', 'though_vect', 'thought_vect', 'three_vect', 'throat_vect', 'throw_vect', 'thru_vect', 'tht_vect', 'thts_vect', 'thurs_vect', 'thursday_vect', 'tick_vect', 'ticket_vect', 'tickets_vect', 'tight_vect', 'tihs_vect', 'til_vect', 'till_vect', 'time_vect', 'times_vect', 'timing_vect', 'tired_vect', 'tirunelvali_vect', 'tirupur_vect', 'tissco_vect', 'tkts_vect', 'tm_vect', 'tming_vect', 'tmobile_vect', 'tmr_vect', 'tncs_vect', 'toa_vect', 'toclaim_vect', 'today_vect', 'todays_vect', 'tog_vect', 'together_vect', 'tok_vect', 'told_vect', 'tomarrow_vect', 'tomo_vect', 'tomorrow_vect', 'tone_vect', 'tones_vect', 'tones2youcouk_vect', 'tonight_vect', 'tonite_vect', 'took_vect', 'tool_vect', 'tooo_vect', 'toot_vect', 'top_vect', 'topic_vect', 'torch_vect', 'toshiba_vect', 'tot_vect', 'total_vect', 'totally_vect', 'touch_vect', 'tough_vect', 'tour_vect', 'towards_vect', 'town_vect', 'track_vect', 'trade_vect', 'traffic_vect', 'train_vect', 'training_vect', 'transaction_vect', 'transfer_vect', 'transport_vect', 'travel_vect', 'treat_vect', 'treated_vect', 'tried_vect', 'trip_vect', 'trips_vect', 'trouble_vect', 'true_vect', 'truffles_vect', 'truly_vect', 'trust_vect', 'truth_vect', 'try_vect', 'trying_vect', 'ts_vect', 'tscs_vect', 'tscs087147403231winawk_vect', 'tt_vect', 'ttyl_vect', 'tues_vect', 'tuesday_vect', 'tuition_vect', 'turn_vect', 'turning_vect', 'turns_vect', 'tv_vect', 'twelve_vect', 'twice_vect', 'two_vect', 'txt_vect', 'txtauction_vect', 'txtin_vect', 'txting_vect', 'txtno_vect', 'txts_
vect', 'txtstop_vect', 'tyler_vect', 'type_vect', 'tyrone_vect', 'u4_vect', 'ubi_vect', 'ufind_vect', 'ugh_vect', 'uh_vect', 'uk_vect', 'uks_vect', 'ultimatum_vect', 'umma_vect', 'unable_vect', 'uncle_vect', 'understand_vect', 'understanding_vect', 'understood_vect', 'underwear_vect', 'unemployed_vect', 'uni_vect', 'unique_vect', 'university_vect', 'unless_vect', 'unlimited_vect', 'unnecessarily_vect', 'unredeemed_vect', 'unsold_vect', 'unsub_vect', 'unsubscribe_vect', 'upd8_vect', 'update_vect', 'updatenow_vect', 'upgrade_vect', 'upload_vect', 'upset_vect', 'upstairs_vect', 'ur_vect', 'ure_vect', 'urgent_vect', 'urgnt_vect', 'url_vect', 'urn_vect', 'urself_vect', 'us_vect', 'usb_vect', 'use_vect', 'used_vect', 'user_vect', 'usf_vect', 'using_vect', 'usual_vect', 'usually_vect', 'vale_vect', 'valentine_vect', 'valentines_vect', 'valid_vect', 'valid12hrs_vect', 'valuable_vect', 'value_vect', 'valued_vect', 'vary_vect', 've_vect', 'vegas_vect', 'verify_vect', 'version_vect', 'via_vect', 'vid_vect', 'video_vect', 'videochat_vect', 'videophones_vect', 'vijay_vect', 'vikky_vect', 'village_vect', 'violated_vect', 'violence_vect', 'vip_vect', 'virgin_vect', 'visit_vect', 'vivek_vect', 'vl_vect', 'voda_vect', 'vodafone_vect', 'vodka_vect', 'voice_vect', 'voicemail_vect', 'vomit_vect', 'vote_vect', 'voucher_vect', 'vouchers_vect', 'vry_vect', 'vth_vect', 'w45wq_vect', 'wa_vect', 'wah_vect', 'wait_vect', 'waited_vect', 'waitin_vect', 'waiting_vect', 'wake_vect', 'waking_vect', 'wales_vect', 'walk_vect', 'walked_vect', 'walking_vect', 'walmart_vect', 'wan_vect', 'wana_vect', 'want_vect', 'wanted_vect', 'wanting_vect', 'wants_vect', 'wap_vect', 'warm_vect', 'warner_vect', 'waste_vect', 'wasted_vect', 'wat_vect', 'watch_vect', 'watching_vect', 'water_vect', 'wats_vect', 'way_vect', 'wc1n3xx_vect', 'we_vect', 'weak_vect', 'wear_vect', 'wearing_vect', 'weather_vect', 'web_vect', 'website_vect', 'wed_vect', 'wedding_vect', 'wednesday_vect', 'wee_vect', 'weed_vect', 'week_vect', 'weekend_vect', 'weekends_vect', 'weekly_vect', 'weeks_vect', 'weigh_vect', 'weight_vect', 'weird_vect', 'welcome_vect', 'well_vect', 'welp_vect', 'wen_vect', 'went_vect', 'west_vect', 'wet_vect', 'what_vect', 'whatever_vect', 'whats_vect', 'whenever_vect', 'whenevr_vect', 'wherever_vect', 'whether_vect', 'white_vect', 'whn_vect', 'whole_vect', 'whos_vect', 'whose_vect', 'wid_vect', 'widelivecomindex_vect', 'wif_vect', 'wife_vect', 'wil_vect', 'willing_vect', 'win_vect', 'wind_vect', 'wine_vect', 'winner_vect', 'winning_vect', 'wins_vect', 'wipro_vect', 'wisdom_vect', 'wise_vect', 'wish_vect', 'wishes_vect', 'wishing_vect', 'wit_vect', 'within_vect', 'without_vect', 'wiv_vect', 'wk_vect', 'wkend_vect', 'wkg_vect', 'wkly_vect', 'wks_vect', 'wld_vect', 'wml_vect', 'wn_vect', 'wnt_vect', 'wo_vect', 'woke_vect', 'woken_vect', 'woman_vect', 'women_vect', 'wonder_vect', 'wonderful_vect', 'wondering_vect', 'wont_vect', 'woot_vect', 'word_vect', 'words_vect', 'work_vect', 'workin_vect', 'working_vect', 'works_vect', 'world_vect', 'worried_vect', 'worries_vect', 'worry_vect', 'worse_vect', 'worst_vect', 'worth_vect', 'wot_vect', 'would_vect', 'wow_vect', 'write_vect', 'wrong_vect', 'wtf_vect', 'wud_vect', 'wuld_vect', 'wun_vect', 'www4tcbiz_vect', 'wwwcomuknet_vect', 'wwwetlpcoukexpressoffer_vect', 'wwwgetzedcouk_vect', 'wwwldewcom_vect', 'wwwldewcom1win150ppmx3age16_vect', 'wwwmovietriviatv_vect', 'wwwringtonescouk_vect', 'wwwsmsconet_vect', 'wwwtxttowincouk_vect', 'wwwurawinnercom_vect', 'wylie_vect', 'xchat_vect', 'xmas_vect', 'xuhui_vect', 'xx_vect', 'xxx_vect', 'xxxx_vect', 'xxxxx_vect', 'xy_vect', 'ya_vect', 'yahoo_vect', 'yan_vect', 'yar_vect', 'yay_vect', 'yck_vect', 'yeah_vect', 'year_vect', 'years_vect', 'yelling_vect', 'yellow_vect', 'yep_vect', 'yes_vect', 'yest_vect', 'yesterday_vect', 'yet_vect', 'yetunde_vect', 'yijue_vect', 'ym_vect', 'yo_vect', 'yoga_vect', 'yogasana_vect', 'yor_vect', 'you_vect', 'yr_vect', 'yrs_vect', 'yummy_vect', 'yun_vect', 'yuo_vect', 'yup_vect', 'zed_vect', 'zindgi_vect', 'ìï_vect', 'ûò_vect'], 'input_features_type': {'v2': 'O'}, 'word2num_features': [], 'unpreprocessed_columns': [], 'force_numeric_conv': [], 'conversion_method': 'TF_IDF'}, 'selector': {'reducer': False, 'reducer_file': '', 'input_features': ['v2'], 'output_features': ['07xxxxxxxxx_vect', '08700621170150p_vect', '08702840625comuk_vect', '08718726270150gbpmtmsg18_vect', '1000s_vect', '10am7pm_vect', '10k_vect', '10p_vect', '10pmin_vect', '10ppm_vect', '11mths_vect', '125gift_vect', '12hrs_vect', '12mths_vect', '150p_vect', '150perwksub_vect', '150pm_vect', '150pmin_vect', '150pmsg_vect', '150pmsgrcvdhgsuite3422landsroww1j6hl_vect', '150pmtmsgrcvd18_vect', '150ppm_vect', '150ptone_vect', '150pwk_vect', '150week_vect', '16only_vect', '18only_vect', '1hr_vect', '1minmobsmorelkpobox177hp51fl_vect', '1st_vect', '1x150pwk_vect', '20p_vect', '20pmin_vect', '21st_vect', '220cm2_vect', '24hrs_vect', '25p_vect', '26th_vect', '2day_vect', '2find_vect', '2geva_vect', '2go_vect', '2marrow_vect', '2mrw_vect', '2nd_vect', '2nite_vect', '2optout_vect', '2p_vect', '2u_vect', '2waxsto_vect', '2wks_vect', '300p_vect', '31pmsg_vect', '3510i_vect', '3d_vect', '3g_vect', '3gbp_vect', '3hrs_vect', '3mins_vect', '3qxj9_vect', '3rd_vect', '3ss_vect', '3u_vect', '3uz_vect', '3wk_vect', '40gb_vect', '4a_vect', '4d_vect', '4eva_vect', '4get_vect', '4info_vect', '4mths_vect', '4th_vect', '4u_vect', '50p_vect', '5min_vect', '5pm_vect', '5wb_vect', '5we_vect', '60pmin_vect', '6hrs_vect', '6months_vect', '6pm_vect', '7250i_vect', '7ish_vect', '8am_vect', '8pm_vect', '8th_vect', '8wp_vect', '9ae_vect', '9ja_vect', '9pm_vect', '9t_vect', 'aathi_vect', 'abi_vect', 'ability_vect', 'abiola_vect', 'able_vect', 'abt_vect', 'abta_vect', 'aburo_vect', 'ac_vect', 'academic_vect', 'acc_vect', 'accept_vect', 'access_vect', 'accident_vect', 'accidentally_vect', 'accordingly_vect', 'account_vect', 'ache_vect', 'across_vect', 'acted_vect', 'action_vect', 'activate_vect', 'activities_vect', 'actor_vect', 'actual_vect', 'actually_vect', 'ad_vect', 'adam_vect', 'add_vect', 'added_vect', 'addicted_vect', 'addie_vect', 'address_vect', 'admin_vect', 'administrator_vect', 'admirer_vect', 'admit_vect', 'adore_vect', 'adoring_vect', 'ads_vect', 'adult_vect', 'advance_vect', 'adventure_vect', 'advice_vect', 'advise_vect', 'affair_vect', 'affairs_vect', 'affectionate_vect', 'afraid_vect', 'aft_vect', 'afternoon_vect', 'aftr_vect', 'agalla_vect', 'age_vect', 'age16_vect', 'ages_vect', 'ago_vect', 'agree_vect', 'ah_vect', 'aha_vect', 'ahead_vect', 'ahmad_vect', 'ai_vect', 'aight_vect', 'aint_vect', 'air_vect', 'airport_vect', 'airtel_vect', 'aiya_vect', 'aiyah_vect', 'aiyar_vect', 'aiyo_vect', 'al_vect', 'album_vect', 'alert_vect', 'alex_vect', 'alfie_vect', 'ali_vect', 'allah_vect', 'allow_vect', 'allowed_vect', 'almost_vect', 'alone_vect', 'along_vect', 'already_vect', 'alright_vect', 'alrite_vect', 'also_vect', 'always_vect', 'alwys_vect', 'amazing_vect', 'american_vect', 'among_vect', 'amount_vect', 'amp_vect', 'amt_vect', 'andros_vect', 'angry_vect', 'annie_vect', 'anniversary_vect', 'announcement_vect', 'anot_vect', 'another_vect', 'ans_vect', 'ansr_vect', 'answer_vect', 'answered_vect', 'answering_vect', 'answers_vect', 'anthony_vect', 'anti_vect', 'anybody_vect', 'anymore_vect', 'anyone_vect', 'anything_vect', 'anytime_vect', 'anyway_vect', 'anyways_vect', 'apartment_vect', 'app_vect', 'apparently_vect', 'applebees_vect', 'apply_vect', 'appointment_vect', 'appreciate_vect', 'appreciated_vect', 'approx_vect', 'apps_vect', 'appt_vect', 'april_vect', 'ar_vect', 'arcade_vect', 'ard_vect', 'area_vect', 'argh_vect', 'argument_vect', 'arm_vect', 'armand_vect', 'arms_vect', 'around_vect', 'arrange_vect', 'arrested_vect', 'arrive_vect', 'arsenal_vect', 'art_vect', 'arun_vect', 'asap_vect', 'ashley_vect', 'ask_vect', 'askd_vect', 'asked_vect', 'askin_vect', 'asking_vect', 'asks_vect', 'asleep_vect', 'ass_vect', 'assume_vect', 'ate_vect', 'atlanta_vect', 'atlast_vect', 'atm_vect', 'attached_vect', 'attempt_vect', 'attend_vect', 'auction_vect', 'august_vect', 'aunt_vect', 'aunty_vect', 'auto_vect', 'av_vect', 'available_vect', 'avatar_vect', 'ave_vect', 'avent_vect',
'avoid_vect', 'await_vect', 'awaiting_vect', 'awake_vect', 'award_vect', 'awarded_vect', 'away_vect', 'awesome_vect', 'aww_vect', 'b4_vect', 'ba_vect', 'babe_vect', 'babes_vect', 'babies_vect', 'baby_vect', 'back_vect', 'bad_vect', 'bag_vect', 'bags_vect', 'bahamas_vect', 'bak_vect', 'balance_vect', 'bank_vect', 'banks_vect', 'bar_vect', 'barely_vect', 'basic_vect', 'basically_vect', 'bat_vect', 'bath_vect', 'bathe_vect', 'bathing_vect', 'battery_vect', 'bay_vect', 'bb_vect', 'bc_vect', 'bck_vect', 'bcoz_vect', 'bday_vect', 'be_vect', 'bears_vect', 'beautiful_vect', 'beauty_vect', 'bec_vect', 'become_vect', 'becoz_vect', 'bed_vect', 'bedrm_vect', 'bedroom_vect', 'beer_vect', 'befor_vect', 'beg_vect', 'begin_vect', 'behave_vect', 'behind_vect', 'bein_vect', 'believe_vect', 'bell_vect', 'belly_vect', 'belovd_vect', 'best_vect', 'bet_vect', 'better_vect', 'beyond_vect', 'bf_vect', 'bid_vect', 'bids_vect', 'big_vect', 'bigger_vect', 'biggest_vect', 'bill_vect', 'billed_vect', 'billion_vect', 'bills_vect', 'bin_vect', 'biola_vect', 'birds_vect', 'birla_vect', 'birth_vect', 'birthdate_vect', 'birthday_vect', 'bishan_vect', 'bit_vect', 'bitch_vect', 'bite_vect', 'black_vect', 'blackberry_vect', 'blah_vect', 'blake_vect', 'blank_vect', 'bleh_vect', 'bless_vect', 'blessing_vect', 'bloo_vect', 'blood_vect', 'bloody_vect', 'blue_vect', 'bluetooth_vect', 'bluff_vect', 'boat_vect', 'body_vect', 'bold_vect', 'bone_vect', 'bonus_vect', 'boo_vect', 'book_vect', 'booked_vect', 'booking_vect', 'books_vect', 'boost_vect', 'booty_vect', 'bored_vect', 'boring_vect', 'born_vect', 'boss_vect', 'boston_vect', 'bother_vect', 'bottom_vect', 'bought_vect', 'bout_vect', 'bowl_vect', 'box_vect', 'box326_vect', 'box334sk38ch_vect', 'box97n7qp_vect', 'boy_vect', 'boye_vect', 'boyfriend_vect', 'boys_vect', 'boytoy_vect', 'brah_vect', 'brand_vect', 'bread_vect', 'break_vect', 'breathe_vect', 'bright_vect', 'brilliant_vect', 'bring_vect', 'bringing_vect', 'brings_vect', 'british_vect', 'bro_vect', 'broad_vect', 'broke_vect', 'broken_vect', 'bros_vect', 'brothas_vect', 'brother_vect', 'brought_vect', 'bruv_vect', 'bslvyl_vect', 'bt_vect', 'btnationalrate_vect', 'btw_vect', 'bucks_vect', 'bud_vect', 'budget_vect', 'buff_vect', 'buffet_vect', 'bugis_vect', 'building_vect', 'buns_vect', 'burger_vect', 'burns_vect', 'bus_vect', 'buses_vect', 'business_vect', 'busy_vect', 'butt_vect', 'buy_vect', 'buying_vect', 'buzz_vect', 'bx420_vect', 'bx420ip45we_vect', 'bye_vect', 'ca_vect', 'cabin_vect', 'cafe_vect', 'cake_vect', 'cal_vect', 'calculation_vect', 'calicut_vect', 'california_vect', 'call_vect', 'call2optout674_vect', 'callback_vect', 'callcost_vect', 'called_vect', 'caller_vect', 'callers_vect', 'callertune_vect', 'callin_vect', 'calling_vect', 'calls_vect', 'callså_vect', 'cam_vect', 'camcorder_vect', 'came_vect', 'camera_vect', 'cameravideo_vect', 'campus_vect', 'can_vect', 'canada_vect', 'canal_vect', 'canary_vect', 'cancel_vect', 'cancelled_vect', 'cancer_vect', 'cant_vect', 'captain_vect', 'car_vect', 'card_vect', 'cardiff_vect', 'care_vect', 'cared_vect', 'career_vect', 'careful_vect', 'carefully_vect', 'caring_vect', 'carlos_vect', 'caroline_vect', 'cars_vect', 'cartoon_vect', 'case_vect', 'cash_vect', 'cashbalance_vect', 'cashin_vect', 'castor_vect', 'cat_vect', 'catch_vect', 'catching_vect', 'caught_vect', 'cause_vect', 'cbe_vect', 'cc_vect', 'cd_vect', 'cdgt_vect', 'cds_vect', 'celebrate_vect', 'celebration_vect', 'cell_vect', 'center_vect', 'centre_vect', 'certainly_vect', 'cha_vect', 'chain_vect', 'challenge_vect', 'chance_vect', 'change_vect', 'changed_vect', 'changes_vect', 'channel_vect', 'character_vect', 'charge_vect', 'charged_vect', 'charges_vect', 'charity_vect', 'charles_vect', 'chase_vect', 'chasing_vect', 'chat_vect', 'chatting_vect', 'cheap_vect', 'cheaper_vect', 'cheat_vect', 'chechi_vect', 'check_vect', 'checked_vect', 'checking_vect', 'cheers_vect', 'chennai_vect', 'cherish_vect', 'chest_vect', 'chicken_vect', 'chikku_vect', 'child_vect', 'childish_vect', 'children_vect', 'chill_vect', 'chillin_vect', 'china_vect', 'chinese_vect', 'chip_vect', 'chocolate_vect', 'choice_vect', 'choose_vect', 'chosen_vect', 'christ_vect', 'christmas_vect', 'church_vect', 'cine_vect', 'cinema_vect', 'citizen_vect', 'city_vect', 'claim_vect', 'claims_vect', 'claire_vect', 'class_vect', 'classes_vect', 'clean_vect', 'cleaning_vect', 'clear_vect', 'clearly_vect', 'click_vect', 'clock_vect', 'close_vect', 'closed_vect', 'closer_vect', 'closes_vect', 'clothes_vect', 'club_vect', 'cn_vect', 'co_vect', 'coast_vect', 'coat_vect', 'cochin_vect', 'code_vect', 'coffee_vect', 'coin_vect', 'coins_vect', 'cold_vect', 'colleagues_vect', 'collect_vect', 'collected_vect', 'collecting_vect', 'collection_vect', 'college_vect', 'colour_vect', 'come_vect', 'comedy_vect', 'comes_vect', 'comin_vect', 'coming_vect', 'commercial_vect', 'common_vect', 'community_vect', 'comp_vect', 'company_vect', 'competition_vect', 'complete_vect', 'completed_vect', 'completely_vect', 'complimentary_vect', 'computer_vect', 'concentrate_vect', 'concert_vect', 'conditions_vect', 'conducts_vect', 'confidence_vect', 'confirm_vect', 'congrats_vect', 'congratulations_vect', 'connection_vect', 'consider_vect', 'considering_vect', 'constant_vect', 'constantly_vect', 'contact_vect', 'contacted_vect', 'contacts_vect', 'content_vect', 'contents_vect', 'continue_vect', 'contract_vect', 'control_vect', 'convey_vect', 'convinced_vect', 'cool_vect', 'coping_vect', 'copy_vect', 'cornwall_vect', 'correct_vect', 'cos_vect', 'cost_vect', 'costa_vect', 'costs_vect', 'costå_vect', 'could_vect', 'count_vect', 'countin_vect', 'country_vect', 'couple_vect', 'course_vect', 'cover_vect', 'coz_vect', 'cr9_vect', 'cramps_vect', 'crave_vect', 'crazy_vect', 'created_vect', 'credit_vect', 'credited_vect', 'credits_vect', 'creepy_vect', 'crisis_vect', 'crore_vect', 'cross_vect', 'croydon_vect', 'cruise_vect', 'cry_vect', 'cs_vect', 'csbcm4235wc1n3xx_vect', 'csstop_vect', 'cud_vect', 'cuddling_vect', 'cum_vect', 'cup_vect', 'curious_vect', 'current_vect', 'currently_vect', 'cust_vect', 'custcare_vect', 'custcare08718720201_vect', 'custom_vect', 'customer_vect', 'customers_vect', 'cut_vect', 'cute_vect', 'cutting_vect', 'cuz_vect', 'cw25wx_vect', 'da_vect', 'dad_vect', 'daddy_vect', 'daily_vect', 'damn_vect', 'dance_vect', 'dancing_vect', 'dare_vect', 'dark_vect', 'darlin_vect', 'darling_vect', 'darren_vect', 'dat_vect', 'date_vect', 'dates_vect', 'dating_vect', 'dave_vect', 'day_vect', 'days_vect', 'de_vect', 'dead_vect', 'deal_vect', 'dealer_vect', 'dealing_vect', 'dear_vect', 'dearly_vect', 'death_vect', 'decide_vect', 'decided_vect', 'decimal_vect', 'decision_vect', 'deep_vect', 'def_vect', 'definite_vect', 'definitely_vect', 'del_vect', 'delete_vect', 'deleted_vect', 'delhi_vect', 'deliver_vect', 'delivered_vect', 'deliveredtomorrow_vect', 'delivery_vect', 'dem_vect', 'demand_vect', 'den_vect', 'denis_vect', 'department_vect', 'depends_vect', 'depressed_vect', 'derek_vect', 'desires_vect', 'desperate_vect', 'details_vect', 'dey_vect', 'dhoni_vect', 'dial_vect', 'dick_vect', 'dictionary_vect', 'didn_vect', 'didnt_vect', 'didt_vect', 'die_vect', 'died_vect', 'diet_vect', 'different_vect', 'difficult_vect', 'digital_vect', 'dignity_vect', 'din_vect', 'dinner_vect', 'dint_vect', 'direct_vect', 'directly_vect', 'dirty_vect', 'dis_vect', 'discount_vect', 'discuss_vect', 'dislikes_vect', 'display_vect', 'distance_vect', 'distract_vect', 'disturb_vect', 'division_vect', 'dload_vect', 'dnt_vect', 'doc_vect', 'docs_vect', 'doctor_vect', 'doesnt_vect', 'dog_vect', 'dogging_vect', 'doggy_vect', 'doin_vect', 'dollars_vect', 'don_vect', 'done_vect', 'dont_vect', 'donåõt_vect', 'door_vect', 'dorm_vect', 'double_vect', 'dough_vect', 'download_vect', 'downloads_vect', 'draw_vect', 'dream_vect', 'dreams_vect', 'dress_vect', 'dressed_vect', 'dresser_vect', 'drink_vect', 'drinking_vect', 'drinks_vect', 'drive_vect', 'driver_vect', 'drivin_vect', 'driving_vect', 'drop_vect', 'dropped_vect', 'drug_vect', 'drugs_vect', 'drunk_vect', 'dry_vect', 'ds_vect', 'dubsack_vect', 'dude_vect', 'due_vect', 'dun_vect', 'dunno_vect', 'durban_vect', 'dvd_vect', 'earlier_vect', 'early_vect', 'earth_vect', 'easier_vect', 'easily_vect', 'east_vect', 'easter_vect', 'easy_vect', 'eat_vect', 'eaten_vect', 'eatin_vect', 'eating_vect', 'ebay_vect', 'ec2a_vect', 'ee_vect', 'eek_vect', 'eerie_vect', 'effects_vect', 'eg_vect', 'egg_vect', 'eggs_vect', 'eh_vect', 'eight_vect', 'either_vect', 'ela_vect', 'electricity_vect', 'else_vect', 'elsewhere_vect', 'em_vect', 'email_vect', 'embarassed_vect', 'empty_vect', 'end_vect', 'ended_vect', 'ending_vect', 'ends_vect', 'enemy_vect', 'energy_vect',
'eng_vect', 'engin_vect', 'england_vect', 'english_vect', 'enjoy_vect', 'enjoyed_vect', 'enough_vect', 'enter_vect', 'entered_vect', 'entitled_vect', 'entry_vect', 'enuff_vect', 'envelope_vect', 'er_vect', 'erm_vect', 'escape_vect', 'especially_vect', 'esplanade_vect', 'eta_vect', 'etc_vect', 'euro_vect', 'euro2004_vect', 'europe_vect', 'eve_vect', 'eveb_vect', 'even_vect', 'evening_vect', 'event_vect', 'ever_vect', 'every_vect', 'everybody_vect', 'everyday_vect', 'everyone_vect', 'everything_vect', 'everywhere_vect', 'evn_vect', 'evng_vect', 'ex_vect', 'exact_vect', 'exactly_vect', 'exam_vect', 'exams_vect', 'excellent_vect', 'except_vect', 'exciting_vect', 'excuse_vect', 'excuses_vect', 'executive_vect', 'exeter_vect', 'exhausted_vect', 'expect_vect', 'expecting_vect', 'expensive_vect', 'experience_vect', 'expired_vect', 'expires_vect', 'explain_vect', 'explicit_vect', 'explosive_vect', 'express_vect', 'extra_vect', 'eye_vect', 'eyes_vect', 'fa_vect', 'fab_vect', 'face_vect', 'facebook_vect', 'fact_vect', 'faggy_vect', 'failed_vect', 'fair_vect', 'faith_vect', 'fall_vect', 'falls_vect', 'family_vect', 'fan_vect', 'fancies_vect', 'fancy_vect', 'fantasies_vect', 'fantastic_vect', 'fantasy_vect', 'far_vect', 'farm_vect', 'fast_vect', 'faster_vect', 'fat_vect', 'father_vect', 'fathima_vect', 'fault_vect', 'fave_vect', 'favorite_vect', 'favour_vect', 'favourite_vect', 'fb_vect', 'feb_vect', 'february_vect', 'feel_vect', 'feelin_vect', 'feeling_vect', 'feels_vect', 'fees_vect', 'feet_vect', 'fell_vect', 'felt_vect', 'fetch_vect', 'fever_vect', 'field_vect', 'fifteen_vect', 'fight_vect', 'fighting_vect', 'figure_vect', 'file_vect', 'files_vect', 'fill_vect', 'filling_vect', 'fills_vect', 'film_vect', 'final_vect', 'finally_vect', 'find_vect', 'fine_vect', 'fingers_vect', 'finish_vect', 'finished_vect', 'first_vect', 'fit_vect', 'fix_vect', 'fixed_vect', 'flag_vect', 'flaked_vect', 'flash_vect', 'flat_vect', 'flight_vect', 'flights_vect', 'flirt_vect', 'floor_vect', 'flower_vect', 'fml_vect', 'fo_vect', 'follow_vect', 'followed_vect', 'following_vect', 'fone_vect', 'food_vect', 'fool_vect', 'football_vect', 'force_vect', 'foreign_vect', 'forever_vect', 'forevr_vect', 'forget_vect', 'forgets_vect', 'forgiven_vect', 'forgot_vect', 'format_vect', 'forums_vect', 'forward_vect', 'forwarded_vect', 'found_vect', 'four_vect', 'fr_vect', 'fran_vect', 'freak_vect', 'free_vect', 'freefone_vect', 'freemsg_vect', 'freephone_vect', 'freezing_vect', 'fren_vect', 'frens_vect', 'fret_vect', 'fri_vect', 'friday_vect', 'friend_vect', 'friends_vect', 'friendship_vect', 'fringe_vect', 'frm_vect', 'frnd_vect', 'frnds_vect', 'frndship_vect', 'fuck_vect', 'fuckin_vect', 'fucking_vect', 'ful_vect', 'full_vect', 'fullonsmscom_vect', 'fun_vect', 'funny_vect', 'future_vect', 'fyi_vect', 'gal_vect', 'gals_vect', 'game_vect', 'games_vect', 'gang_vect', 'gap_vect', 'gaps_vect', 'garage_vect', 'garbage_vect', 'gary_vect', 'gas_vect', 'gautham_vect', 'gave_vect', 'gay_vect', 'gd_vect', 'ge_vect', 'gee_vect', 'geeee_vect', 'geeeee_vect', 'gender_vect', 'generally_vect', 'genius_vect', 'gentle_vect', 'gentleman_vect', 'gently_vect', 'germany_vect', 'get_vect', 'gets_vect', 'gettin_vect', 'getting_vect', 'gf_vect', 'gibbs_vect', 'gift_vect', 'gim_vect', 'girl_vect', 'girls_vect', 'gist_vect', 'giv_vect', 'give_vect', 'given_vect', 'gives_vect', 'giving_vect', 'glad_vect', 'gn_vect', 'go_vect', 'goal_vect', 'god_vect', 'goes_vect', 'goin_vect', 'going_vect', 'gold_vect', 'gon_vect', 'gona_vect', 'gone_vect', 'good_vect', 'goodmorning_vect', 'goodnight_vect', 'goodnite_vect', 'google_vect', 'gorgeous_vect', 'gossip_vect', 'got_vect', 'goto_vect', 'gotten_vect', 'govtinstituitions_vect', 'gr8_vect', 'grace_vect', 'gram_vect', 'grand_vect', 'granite_vect', 'gravity_vect', 'great_vect', 'green_vect', 'greet_vect', 'greetings_vect', 'grins_vect', 'grl_vect', 'ground_vect', 'group_vect', 'gt_vect', 'guaranteed_vect', 'gud_vect', 'gudnite_vect', 'guess_vect', 'guessing_vect', 'guide_vect', 'guilty_vect', 'guy_vect', 'guys_vect', 'gym_vect', 'ha_vect', 'haf_vect', 'haha_vect', 'hai_vect', 'hair_vect', 'haiz_vect', 'half_vect', 'halloween_vect', 'ham_vect', 'hand_vect', 'handed_vect', 'handle_vect', 'hands_vect', 'handset_vect', 'hanging_vect', 'happen_vect', 'happened_vect', 'happening_vect', 'happens_vect', 'happiness_vect', 'happy_vect', 'hard_vect', 'hardcore_vect', 'hardly_vect', 'harry_vect', 'hate_vect', 'hav_vect', 'havent_vect', 'havenåõt_vect', 'havin_vect', 'head_vect', 'headache_vect', 'headin_vect', 'heads_vect', 'hear_vect', 'heard_vect', 'heart_vect', 'heavy_vect', 'hee_vect', 'height_vect', 'held_vect', 'helen_vect', 'hell_vect', 'hella_vect', 'hello_vect', 'help_vect', 'help08712400602450p_vect', 'helpline_vect', 'hence_vect', 'henry_vect', 'heri_vect', 'herlove_vect', 'hes_vect', 'hex_vect', 'hey_vect', 'hgsuite3422lands_vect', 'hi_vect', 'hide_vect', 'high_vect', 'hill_vect', 'hint_vect', 'hip_vect', 'history_vect', 'hit_vect', 'hiya_vect', 'hl_vect', 'hlp_vect', 'hmm_vect', 'hmmm_vect', 'hmv_vect', 'ho_vect', 'hockey_vect', 'hol_vect', 'hold_vect', 'holder_vect', 'holding_vect', 'holiday_vect', 'holla_vect', 'hols_vect', 'holy_vect', 'home_vect', 'honey_vect', 'hook_vect', 'hop_vect', 'hope_vect', 'hoped_vect', 'hopefully_vect', 'hoping_vect', 'horny_vect', 'horo_vect', 'horrible_vect', 'hospital_vect', 'hospitals_vect', 'hostel_vect', 'hot_vect', 'hotel_vect', 'hotels_vect', 'hour_vect', 'hours_vect', 'house_vect', 'housemaid_vect', 'however_vect', 'hows_vect', 'howz_vect', 'hr_vect', 'hrishi_vect', 'hrs_vect', 'http_vect', 'hubby_vect', 'hug_vect', 'huh_vect', 'hun_vect', 'hungry_vect', 'hunny_vect', 'hurry_vect', 'hurt_vect', 'hurting_vect', 'hurts_vect', 'husband_vect', 'hv_vect', 'hw_vect', 'hyde_vect', 'iam_vect', 'ibhltd_vect', 'ibiza_vect', 'ic_vect', 'ice_vect', 'id_vect', 'idea_vect', 'ideal_vect', 'ideas_vect', 'identifier_vect', 'idiot_vect', 'idk_vect', 'ignore_vect', 'ikea_vect', 'il_vect', 'ill_vect', 'im_vect', 'imagine_vect', 'imma_vect', 'immediately_vect', 'imp_vect', 'important_vect', 'impossible_vect', 'improved_vect', 'in2_vect', 'inc_vect', 'inches_vect', 'incident_vect', 'include_vect', 'including_vect', 'inclusive_vect', 'inconsiderate_vect', 'indeed_vect', 'india_vect', 'indian_vect', 'indians_vect', 'indicate_vect', 'infections_vect', 'infernal_vect', 'info_vect', 'inform_vect', 'information_vect', 'informed_vect', 'innings_vect', 'insha_vect', 'inside_vect', 'instantly_vect', 'instead_vect', 'instructions_vect', 'insurance_vect', 'intelligent_vect', 'interest_vect', 'interested_vect', 'interesting_vect', 'interflora_vect', 'internet_vect', 'intro_vect', 'invest_vect', 'invite_vect', 'invited_vect', 'inviting_vect', 'iouri_vect', 'ip4_vect', 'ipod_vect', 'irritating_vect', 'iscoming_vect', 'ish_vect', 'island_vect', 'islands_vect', 'isnt_vect', 'issue_vect', 'issues_vect', 'it_vect', 'italian_vect', 'its_vect', 'itz_vect', 'itåõs_vect', 'ive_vect', 'iz_vect', 'izzit_vect', 'iåõm_vect', 'jacket_vect', 'jamster_vect', 'jan_vect', 'january_vect', 'jason_vect', 'java_vect', 'jay_vect', 'jazz_vect', 'jealous_vect', 'jeans_vect', 'jen_vect', 'jenny_vect', 'jess_vect', 'jesus_vect', 'jiayin_vect', 'jiu_vect', 'jo_vect', 'joanna_vect', 'job_vect', 'jogging_vect', 'john_vect', 'join_vect', 'joined_vect', 'joining_vect', 'joke_vect', 'jokes_vect', 'jokin_vect', 'joking_vect', 'jolly_vect', 'joy_vect', 'jsco_vect', 'jst_vect', 'juan_vect', 'juicy_vect', 'july_vect', 'june_vect', 'jus_vect', 'juz_vect', 'k52_vect', 'kadeem_vect', 'kaiez_vect', 'kallis_vect', 'kano_vect', 'kappa_vect', 'karaoke_vect', 'kate_vect', 'kay_vect', 'kb_vect', 'ke_vect', 'keep_vect', 'keeping_vect', 'keeps_vect', 'kent_vect', 'kept_vect', 'kerala_vect', 'key_vect', 'keys_vect', 'ki_vect', 'kick_vect', 'kid_vect', 'kidding_vect', 'kids_vect', 'kidz_vect', 'kind_vect', 'kinda_vect', 'kindly_vect', 'king_vect', 'kiss_vect', 'kisses_vect', 'kk_vect', 'knackered_vect', 'knew_vect', 'knock_vect', 'know_vect', 'knowing_vect', 'knows_vect', 'knw_vect', 'kz_vect', 'l8r_vect', 'la_vect', 'lab_vect', 'ladies_vect', 'lady_vect', 'lag_vect', 'laid_vect', 'land_vect', 'landline_vect', 'langport_vect', 'language_vect', 'laptop_vect', 'lar_vect', 'largest_vect', 'last_vect', 'late_vect', 'later_vect', 'latest_vect', 'latr_vect', 'laugh_vect', 'laughing_vect', 'law_vect', 'lazy_vect', 'ldn_vect', 'ldnw15h_vect', 'le_vect', 'lead_vect', 'learn_vect', 'least_vect', 'leave_vect',
'leaves_vect', 'leaving_vect', 'lect_vect', 'lecture_vect', 'left_vect', 'legal_vect', 'legs_vect', 'leh_vect', 'lei_vect', 'lem_vect', 'less_vect', 'lesson_vect', 'lessons_vect', 'let_vect', 'lets_vect', 'letter_vect', 'letters_vect', 'liao_vect', 'library_vect', 'lick_vect', 'licks_vect', 'lido_vect', 'lie_vect', 'lies_vect', 'life_vect', 'lifetime_vect', 'lift_vect', 'light_vect', 'lik_vect', 'like_vect', 'liked_vect', 'likely_vect', 'likes_vect', 'lil_vect', 'line_vect', 'linerental_vect', 'lines_vect', 'link_vect', 'lion_vect', 'lionm_vect', 'lionp_vect', 'lions_vect', 'lip_vect', 'list_vect', 'listen_vect', 'listening_vect', 'literally_vect', 'little_vect', 'live_vect', 'liverpool_vect', 'living_vect', 'lk_vect', 'll_vect', 'lmao_vect', 'lo_vect', 'loads_vect', 'loan_vect', 'loans_vect', 'local_vect', 'locations_vect', 'lock_vect', 'log_vect', 'login_vect', 'logo_vect', 'logopic_vect', 'lol_vect', 'london_vect', 'lonely_vect', 'long_vect', 'longer_vect', 'look_vect', 'lookatme_vect', 'looked_vect', 'lookin_vect', 'looking_vect', 'looks_vect', 'lor_vect', 'lose_vect', 'losing_vect', 'loss_vect', 'lost_vect', 'lot_vect', 'lotr_vect', 'lots_vect', 'lou_vect', 'loud_vect', 'lounge_vect', 'lousy_vect', 'lovable_vect', 'love_vect', 'loved_vect', 'lovely_vect', 'loveme_vect', 'lover_vect', 'loverboy_vect', 'lovers_vect', 'loves_vect', 'loving_vect', 'low_vect', 'lower_vect', 'loyal_vect', 'loyalty_vect', 'ls15hb_vect', 'lt_vect', 'ltd_vect', 'luck_vect', 'lucky_vect', 'lucy_vect', 'lunch_vect', 'luv_vect', 'lux_vect', 'luxury_vect', 'lyf_vect', 'lyfu_vect', 'lyk_vect', 'm227xy_vect', 'm26_vect', 'm263uz_vect', 'm8s_vect', 'mac_vect', 'machan_vect', 'macho_vect', 'mad_vect', 'madam_vect', 'made_vect', 'mag_vect', 'maga_vect', 'magical_vect', 'mah_vect', 'mail_vect', 'mailbox_vect', 'main_vect', 'maintain_vect', 'major_vect', 'make_vect', 'makes_vect', 'makin_vect', 'making_vect', 'malaria_vect', 'male_vect', 'mall_vect', 'man_vect', 'managed_vect', 'management_vect', 'many_vect', 'map_vect', 'march_vect', 'mark_vect', 'market_vect', 'marriage_vect', 'married_vect', 'marry_vect', 'masters_vect', 'match_vect', 'matches_vect', 'mate_vect', 'mates_vect', 'matrix3_vect', 'matter_vect', 'max10mins_vect', 'maximize_vect', 'maxå_vect', 'may_vect', 'mayb_vect', 'maybe_vect', 'mca_vect', 'mcat_vect', 'meal_vect', 'mean_vect', 'meaning_vect', 'means_vect', 'meant_vect', 'meanwhile_vect', 'med_vect', 'medical_vect', 'medicine_vect', 'meds_vect', 'meet_vect', 'meetin_vect', 'meeting_vect', 'meh_vect', 'mei_vect', 'member_vect', 'members_vect', 'men_vect', 'menu_vect', 'merry_vect', 'mess_vect', 'message_vect', 'messaged_vect', 'messages_vect', 'messaging_vect', 'met_vect', 'mid_vect', 'middle_vect', 'midnight_vect', 'mids_vect', 'might_vect', 'miles_vect', 'milk_vect', 'min_vect', 'mind_vect', 'mine_vect', 'mini_vect', 'minimum_vect', 'minor_vect', 'mins_vect', 'minute_vect', 'minutes_vect', 'minuts_vect', 'miracle_vect', 'mis_vect', 'miserable_vect', 'miss_vect', 'missed_vect', 'missin_vect', 'missing_vect', 'mistake_vect', 'mistakes_vect', 'mite_vect', 'mm_vect', 'mmm_vect', 'mmmm_vect', 'mmmmmm_vect', 'mnths_vect', 'mo_vect', 'moan_vect', 'mob_vect', 'mobile_vect', 'mobiles_vect', 'mobilesdirect_vect', 'mobilesvary_vect', 'mobileupd8_vect', 'mobno_vect', 'moby_vect', 'mode_vect', 'model_vect', 'module_vect', 'modules_vect', 'moji_vect', 'mojibiola_vect', 'mokka_vect', 'mom_vect', 'moment_vect', 'moments_vect', 'moms_vect', 'mon_vect', 'monday_vect', 'money_vect', 'monkeys_vect', 'mono_vect', 'month_vect', 'monthly_vect', 'months_vect', 'mood_vect', 'moon_vect', 'moral_vect', 'morn_vect', 'morning_vect', 'mostly_vect', 'mother_vect', 'motorola_vect', 'mouth_vect', 'move_vect', 'moved_vect', 'movie_vect', 'movies_vect', 'moving_vect', 'mp3_vect', 'mr_vect', 'mrng_vect', 'mrt_vect', 'msg_vect', 'msgs_vect', 'mths_vect', 'mu_vect', 'much_vect', 'mum_vect', 'mummy_vect', 'murder_vect', 'murdered_vect', 'murderer_vect', 'music_vect', 'must_vect', 'muz_vect', 'na_vect', 'nag_vect', 'nah_vect', 'naked_vect', 'name_vect', 'name1_vect', 'name2_vect', 'named_vect', 'names_vect', 'nan_vect', 'nap_vect', 'nasdaq_vect', 'nat_vect', 'national_vect', 'natural_vect', 'nature_vect', 'naughty_vect', 'nb_vect', 'nd_vect', 'ne_vect', 'near_vect', 'nearly_vect', 'necessarily_vect', 'necklace_vect', 'ned_vect', 'need_vect', 'needed_vect', 'needs_vect', 'neither_vect', 'net_vect', 'netcollex_vect', 'network_vect', 'networks_vect', 'neva_vect', 'never_vect', 'new_vect', 'newest_vect', 'news_vect', 'next_vect', 'ni8_vect', 'nice_vect', 'nigeria_vect', 'night_vect', 'nights_vect', 'nimya_vect', 'nite_vect', 'no1_vect', 'nobody_vect', 'noe_vect', 'nokia_vect', 'nokias_vect', 'noline_vect', 'none_vect', 'noon_vect', 'nope_vect', 'norm_vect', 'norm150ptone_vect', 'normal_vect', 'normally_vect', 'northampton_vect', 'note_vect', 'nothin_vect', 'nothing_vect', 'notice_vect', 'noun_vect', 'nowadays_vect', 'nt_vect', 'ntt_vect', 'ntwk_vect', 'num_vect', 'number_vect', 'numbers_vect', 'nuther_vect', 'nvm_vect', 'nw_vect', 'nxt_vect', 'nyc_vect', 'nydc_vect', 'nyt_vect', 'o2_vect', 'obviously_vect', 'odi_vect', 'offer_vect', 'offers_vect', 'office_vect', 'official_vect', 'officially_vect', 'ofice_vect', 'often_vect', 'oh_vect', 'oi_vect', 'oic_vect', 'ok_vect', 'okay_vect', 'okey_vect', 'okie_vect', 'ola_vect', 'old_vect', 'omg_vect', 'omw_vect', 'one_vect', 'ones_vect', 'oni_vect', 'online_vect', 'onto_vect', 'onwards_vect', 'oooh_vect', 'oops_vect', 'open_vect', 'opening_vect', 'operator_vect', 'opinion_vect', 'opportunity_vect', 'opt_vect', 'option_vect', 'optout_vect', 'or2stoptxt_vect', 'orange_vect', 'oranges_vect', 'orchard_vect', 'order_vect', 'ordered_vect', 'oredi_vect', 'original_vect', 'oru_vect', 'os_vect', 'oso_vect', 'others_vect', 'otherwise_vect', 'otside_vect', 'outside_vect', 'outstanding_vect', 'outta_vect', 'ovulation_vect', 'oz_vect', 'pa_vect', 'pack_vect', 'package_vect', 'page_vect', 'pages_vect', 'paid_vect', 'pain_vect', 'painful_vect', 'painting_vect', 'panic_vect', 'paper_vect', 'papers_vect', 'paperwork_vect', 'parco_vect', 'parent_vect', 'parents_vect', 'paris_vect', 'park_vect', 'parked_vect', 'parking_vect', 'part_vect', 'partner_vect', 'partnership_vect', 'party_vect', 'pass_vect', 'passed_vect', 'password_vect', 'past_vect', 'pattern_vect', 'patty_vect', 'pay_vect', 'paying_vect', 'payment_vect', 'payoh_vect', 'pc_vect', 'peace_vect', 'pence_vect', 'people_vect', 'per_vect', 'perfect_vect', 'period_vect', 'person_vect', 'personal_vect', 'pete_vect', 'petey_vect', 'pg_vect', 'philosophy_vect', 'phoenix_vect', 'phone_vect', 'phones_vect', 'photo_vect', 'photos_vect', 'pic_vect', 'pick_vect', 'picked_vect', 'picking_vect', 'pics_vect', 'picsfree1_vect', 'picture_vect', 'pictures_vect', 'pie_vect', 'pieces_vect', 'pig_vect', 'pilates_vect', 'pin_vect', 'pink_vect', 'piss_vect', 'pissed_vect', 'pix_vect', 'pizza_vect', 'place_vect', 'places_vect', 'plan_vect', 'planned_vect', 'planning_vect', 'plans_vect', 'play_vect', 'played_vect', 'player_vect', 'players_vect', 'playing_vect', 'please_vect', 'pleased_vect', 'pleasure_vect', 'plenty_vect', 'pls_vect', 'plus_vect', 'plz_vect', 'pm_vect', 'po_vect', 'pobox_vect', 'pobox334_vect', 'pobox36504w45wq_vect', 'pobox45w2tg150p_vect', 'pobox84_vect', 'pod_vect', 'point_vect', 'points_vect', 'poker_vect', 'pole_vect', 'police_vect', 'politicians_vect', 'poly_vect', 'polyphonic_vect', 'polys_vect', 'pongal_vect', 'poor_vect', 'pop_vect', 'popped_vect', 'porn_vect', 'possession_vect', 'possible_vect', 'post_vect', 'postcard_vect', 'postcode_vect', 'posted_vect', 'posts_vect', 'potential_vect', 'potter_vect', 'pound_vect', 'pounds_vect', 'pouts_vect', 'power_vect', 'ppl_vect', 'pple_vect', 'ppm_vect', 'prabha_vect', 'practice_vect', 'practicing_vect', 'pray_vect', 'prefer_vect', 'premier_vect', 'prepare_vect', 'prescription_vect', 'present_vect', 'press_vect', 'pretty_vect', 'prey_vect', 'price_vect', 'prince_vect', 'princess_vect', 'print_vect', 'privacy_vect', 'private_vect', 'prize_vect', 'prob_vect', 'probably_vect', 'problem_vect', 'problems_vect', 'process_vect', 'processed_vect', 'prof_vect', 'profit_vect', 'program_vect', 'project_vect', 'prolly_vect', 'promise_vect', 'promises_vect', 'promo_vect', 'proof_vect', 'properly_vect', 'prospects_vect', 'provided_vect', 'ps_vect', 'ptbo_vect', 'pub_vect', 'pull_vect', 'purchase_vect', 'purity_vect', 'purpose_vect', 'push_vect', 'pushes_vect', 'pussy_vect', 'put_vect', 'puttin_vect', 'putting_vect', 'qatar_vect', 'quality_vect',
'queen_vect', 'ques_vect', 'question_vect', 'questions_vect', 'quick_vect', 'quickly_vect', 'quiet_vect', 'quit_vect', 'quite_vect', 'quiz_vect', 'quote_vect', 'quoting_vect', 'racing_vect', 'radio_vect', 'railway_vect', 'rain_vect', 'raining_vect', 'raise_vect', 'rakhesh_vect', 'rally_vect', 'ran_vect', 'random_vect', 'randomly_vect', 'randy_vect', 'rang_vect', 'range_vect', 'ranjith_vect', 'rate_vect', 'rates_vect', 'rather_vect', 'rays_vect', 'rcvd_vect', 'rd_vect', 're_vect', 'reach_vect', 'reached_vect', 'reaching_vect', 'reaction_vect', 'read_vect', 'readers_vect', 'reading_vect', 'ready_vect', 'real_vect', 'realise_vect', 'reality_vect', 'realized_vect', 'really_vect', 'realy_vect', 'reason_vect', 'reasonable_vect', 'reasons_vect', 'reboot_vect', 'recd_vect', 'receipt_vect', 'receive_vect', 'received_vect', 'receiving_vect', 'recent_vect', 'recently_vect', 'recession_vect', 'record_vect', 'records_vect', 'recovery_vect', 'red_vect', 'ref_vect', 'reference_vect', 'reg_vect', 'regards_vect', 'register_vect', 'registered_vect', 'regret_vect', 'regular_vect', 'relation_vect', 'relax_vect', 'released_vect', 'rem_vect', 'remain_vect', 'remains_vect', 'remember_vect', 'remembered_vect', 'remembr_vect', 'remind_vect', 'reminder_vect', 'remove_vect', 'rent_vect', 'rental_vect', 'rentl_vect', 'repair_vect', 'repeat_vect', 'replied_vect', 'reply_vect', 'replying_vect', 'report_vect', 'representative_vect', 'request_vect', 'requests_vect', 'research_vect', 'resend_vect', 'respect_vect', 'respond_vect', 'responding_vect', 'response_vect', 'responsibility_vect', 'rest_vect', 'restaurant_vect', 'result_vect', 'results_vect', 'retrieve_vect', 'return_vect', 'returned_vect', 'returns_vect', 'reveal_vect', 'revealed_vect', 'review_vect', 'revision_vect', 'reward_vect', 'rhythm_vect', 'rice_vect', 'rich_vect', 'ride_vect', 'right_vect', 'rights_vect', 'ring_vect', 'ringtone_vect', 'ringtones_vect', 'rite_vect', 'river_vect', 'road_vect', 'roads_vect', 'roast_vect', 'rock_vect', 'rocks_vect', 'rofl_vect', 'roger_vect', 'role_vect', 'ron_vect', 'room_vect', 'roommate_vect', 'roommates_vect', 'rooms_vect', 'rose_vect', 'round_vect', 'row_vect', 'roww1j6hl_vect', 'roww1jhl_vect', 'royal_vect', 'rply_vect', 'rs_vect', 'rstm_vect', 'ru_vect', 'rub_vect', 'rude_vect', 'rule_vect', 'run_vect', 'running_vect', 'runs_vect', 'rush_vect', 'sacrifice_vect', 'sad_vect', 'sae_vect', 'safe_vect', 'said_vect', 'salam_vect', 'salary_vect', 'sale_vect', 'salon_vect', 'sam_vect', 'santa_vect', 'sar_vect', 'sarasota_vect', 'sarcastic_vect', 'sary_vect', 'sat_vect', 'sathya_vect', 'saturday_vect', 'savamob_vect', 'save_vect', 'saved_vect', 'saw_vect', 'say_vect', 'saying_vect', 'says_vect', 'scared_vect', 'scary_vect', 'sch_vect', 'schedule_vect', 'school_vect', 'schools_vect', 'science_vect', 'scold_vect', 'score_vect', 'scores_vect', 'scotland_vect', 'scream_vect', 'screaming_vect', 'scrounge_vect', 'se_vect', 'sea_vect', 'search_vect', 'searching_vect', 'season_vect', 'seat_vect', 'sec_vect', 'second_vect', 'seconds_vect', 'secret_vect', 'secretary_vect', 'secs_vect', 'sed_vect', 'see_vect', 'seeing_vect', 'seem_vect', 'seemed_vect', 'seems_vect', 'seen_vect', 'selected_vect', 'selection_vect', 'self_vect', 'sell_vect', 'selling_vect', 'sells_vect', 'sem_vect', 'semester_vect', 'sen_vect', 'send_vect', 'sender_vect', 'sending_vect', 'sense_vect', 'sent_vect', 'sentence_vect', 'sept_vect', 'series_vect', 'serious_vect', 'seriously_vect', 'service_vect', 'services_vect', 'serving_vect', 'set_vect', 'setting_vect', 'settings_vect', 'settle_vect', 'settled_vect', 'seven_vect', 'several_vect', 'sex_vect', 'sexy_vect', 'sh_vect', 'sha_vect', 'shall_vect', 'share_vect', 'shd_vect', 'sheets_vect', 'shes_vect', 'shesil_vect', 'shining_vect', 'ship_vect', 'shipping_vect', 'shirt_vect', 'shirts_vect', 'shit_vect', 'shld_vect', 'shocking_vect', 'shoot_vect', 'shop_vect', 'shoppin_vect', 'shopping_vect', 'short_vect', 'shorter_vect', 'shortly_vect', 'shot_vect', 'shoving_vect', 'show_vect', 'shower_vect', 'showing_vect', 'shows_vect', 'shu_vect', 'shuhui_vect', 'shy_vect', 'si_vect', 'sick_vect', 'side_vect', 'sighs_vect', 'sight_vect', 'sign_vect', 'signing_vect', 'silence_vect', 'silent_vect', 'silver_vect', 'sim_vect', 'simple_vect', 'simply_vect', 'since_vect', 'sing_vect', 'singing_vect', 'single_vect', 'singles_vect', 'sipix_vect', 'sir_vect', 'sis_vect', 'sister_vect', 'sit_vect', 'site_vect', 'sitting_vect', 'situation_vect', 'siva_vect', 'six_vect', 'size_vect', 'sk3_vect', 'sk38xh_vect', 'skilgme_vect', 'skip_vect', 'sky_vect', 'skype_vect', 'skyped_vect', 'slap_vect', 'slave_vect', 'sleep_vect', 'sleepin_vect', 'sleeping_vect', 'sleepy_vect', 'slept_vect', 'slice_vect', 'slide_vect', 'slightly_vect', 'slip_vect', 'slippers_vect', 'slo_vect', 'slots_vect', 'slow_vect', 'slowly_vect', 'small_vect', 'smashed_vect', 'smile_vect', 'smiles_vect', 'smiling_vect', 'smoke_vect', 'smoking_vect', 'sms_vect', 'smth_vect', 'sn_vect', 'snake_vect', 'snow_vect', 'social_vect', 'sofa_vect', 'soft_vect', 'software_vect', 'sol_vect', 'some1_vect', 'somebody_vect', 'someone_vect', 'somethin_vect', 'something_vect', 'sometimes_vect', 'somewhere_vect', 'song_vect', 'songs_vect', 'sony_vect', 'sonyericsson_vect', 'soon_vect', 'sooner_vect', 'sore_vect', 'sorry_vect', 'sort_vect', 'sorting_vect', 'sound_vect', 'sounds_vect', 'south_vect', 'sp_vect', 'space_vect', 'spanish_vect', 'speak_vect', 'speaking_vect', 'special_vect', 'specialcall_vect', 'specially_vect', 'speed_vect', 'spend_vect', 'spending_vect', 'spent_vect', 'spk_vect', 'spoke_vect', 'spoken_vect', 'spook_vect', 'sport_vect', 'sports_vect', 'spree_vect', 'spring_vect', 'sptv_vect', 'sry_vect', 'st_vect', 'staff_vect', 'stamps_vect', 'stand_vect', 'standard_vect', 'standing_vect', 'star_vect', 'staring_vect', 'start_vect', 'started_vect', 'starting_vect', 'starts_vect', 'starwars3_vect', 'statement_vect', 'station_vect', 'stay_vect', 'stayed_vect', 'staying_vect', 'std_vect', 'steam_vect', 'step_vect', 'steve_vect', 'stick_vect', 'sticky_vect', 'still_vect', 'stock_vect', 'stockport_vect', 'stomach_vect', 'stomps_vect', 'stones_vect', 'stop_vect', 'stopped_vect', 'stops_vect', 'store_vect', 'stores_vect', 'story_vect', 'str_vect', 'straight_vect', 'stranger_vect', 'street_vect', 'stress_vect', 'strike_vect', 'strong_vect', 'strongbuy_vect', 'stuck_vect', 'student_vect', 'study_vect', 'studying_vect', 'stuff_vect', 'stupid_vect', 'style_vect', 'stylish_vect', 'sub_vect', 'subpoly_vect', 'subs_vect', 'subscribe6gbpmnth_vect', 'subscribed_vect', 'subscriber_vect', 'subscription_vect', 'success_vect', 'successful_vect', 'successfully_vect', 'sucks_vect', 'sue_vect', 'sufficient_vect', 'suggest_vect', 'suite_vect', 'suits_vect', 'sum1_vect', 'summer_vect', 'sun_vect', 'sunday_vect', 'sunlight_vect', 'sunny_vect', 'sunshine_vect', 'suntec_vect', 'sup_vect', 'super_vect', 'superb_vect', 'superior_vect', 'supervisor_vect', 'supply_vect', 'support_vect', 'suppose_vect', 'supposed_vect', 'suprman_vect', 'sura_vect', 'sure_vect', 'surely_vect', 'surfing_vect', 'surprise_vect', 'surprised_vect', 'survey_vect', 'sux_vect', 'suzy_vect', 'sw7_vect', 'sw73ss_vect', 'sweet_vect', 'swing_vect', 'system_vect', 'ta_vect', 'tablets_vect', 'tahan_vect', 'take_vect', 'taken_vect', 'takes_vect', 'takin_vect', 'taking_vect', 'talent_vect', 'talk_vect', 'talking_vect', 'tampa_vect', 'tape_vect', 'tariffs_vect', 'tat_vect', 'taunton_vect', 'taylor_vect', 'tb_vect', 'tc_vect', 'tcrw1_vect', 'tcs_vect', 'tea_vect', 'teach_vect', 'teacher_vect', 'teaches_vect', 'team_vect', 'tear_vect', 'tease_vect', 'teasing_vect', 'tech_vect', 'technical_vect', 'tee_vect', 'teeth_vect', 'tel_vect', 'telephone_vect', 'tell_vect', 'telling_vect', 'tells_vect', 'telugu_vect', 'temple_vect', 'ten_vect', 'tenants_vect', 'tenerife_vect', 'tension_vect', 'term_vect', 'terms_vect', 'terrible_vect', 'test_vect', 'testing_vect', 'text_vect', 'texted_vect', 'texting_vect', 'textoperator_vect', 'texts_vect', 'th_vect', 'thangam_vect', 'thank_vect', 'thanks_vect', 'thanksgiving_vect', 'thanx_vect', 'that_vect', 'thats_vect', 'thatåõs_vect', 'the_vect', 'theatre_vect', 'themob_vect', 'theory_vect', 'thesis_vect', 'thgt_vect', 'thing_vect', 'things_vect', 'think_vect', 'thinkin_vect', 'thinking_vect', 'thinks_vect', 'thk_vect', 'thnk_vect', 'tho_vect', 'though_vect', 'thought_vect', 'three_vect', 'throat_vect', 'throw_vect', 'thru_vect', 'tht_vect', 'thts_vect', 'thurs_vect', 'thursday_vect', 'tick_vect', 'ticket_vect', 'tickets_vect', 'tight_vect', 'tihs_vect', 'til_vect', 'till_vect', 'time_vect', 'times_vect', 'timing_vect', 'tired_vect', 'tirunelvali_vect', 'tirupur_vect', 'tissco_vect', 'tkts_vect', 'tm_vect', 'tming_vect', 'tmobile_vect', 'tmr_vect', 'tncs_vect', 'toa_
vect', 'toclaim_vect', 'today_vect', 'todays_vect', 'tog_vect', 'together_vect', 'tok_vect', 'told_vect', 'tomarrow_vect', 'tomo_vect', 'tomorrow_vect', 'tone_vect', 'tones_vect', 'tones2youcouk_vect', 'tonight_vect', 'tonite_vect', 'took_vect', 'tool_vect', 'tooo_vect', 'toot_vect', 'top_vect', 'topic_vect', 'torch_vect', 'toshiba_vect', 'tot_vect', 'total_vect', 'totally_vect', 'touch_vect', 'tough_vect', 'tour_vect', 'towards_vect', 'town_vect', 'track_vect', 'trade_vect', 'traffic_vect', 'train_vect', 'training_vect', 'transaction_vect', 'transfer_vect', 'transport_vect', 'travel_vect', 'treat_vect', 'treated_vect', 'tried_vect', 'trip_vect', 'trips_vect', 'trouble_vect', 'true_vect', 'truffles_vect', 'truly_vect', 'trust_vect', 'truth_vect', 'try_vect', 'trying_vect', 'ts_vect', 'tscs_vect', 'tscs087147403231winawk_vect', 'tt_vect', 'ttyl_vect', 'tues_vect', 'tuesday_vect', 'tuition_vect', 'turn_vect', 'turning_vect', 'turns_vect', 'tv_vect', 'twelve_vect', 'twice_vect', 'two_vect', 'txt_vect', 'txtauction_vect', 'txtin_vect', 'txting_vect', 'txtno_vect', 'txts_vect', 'txtstop_vect', 'tyler_vect', 'type_vect', 'tyrone_vect', 'u4_vect', 'ubi_vect', 'ufind_vect', 'ugh_vect', 'uh_vect', 'uk_vect', 'uks_vect', 'ultimatum_vect', 'umma_vect', 'unable_vect', 'uncle_vect', 'understand_vect', 'understanding_vect', 'understood_vect', 'underwear_vect', 'unemployed_vect', 'uni_vect', 'unique_vect', 'university_vect', 'unless_vect', 'unlimited_vect', 'unnecessarily_vect', 'unredeemed_vect', 'unsold_vect', 'unsub_vect', 'unsubscribe_vect', 'upd8_vect', 'update_vect', 'updatenow_vect', 'upgrade_vect', 'upload_vect', 'upset_vect', 'upstairs_vect', 'ur_vect', 'ure_vect', 'urgent_vect', 'urgnt_vect', 'url_vect', 'urn_vect', 'urself_vect', 'us_vect', 'usb_vect', 'use_vect', 'used_vect', 'user_vect', 'usf_vect', 'using_vect', 'usual_vect', 'usually_vect', 'vale_vect', 'valentine_vect', 'valentines_vect', 'valid_vect', 'valid12hrs_vect', 'valuable_vect', 'value_vect', 'valued_vect', 'vary_vect', 've_vect', 'vegas_vect', 'verify_vect', 'version_vect', 'via_vect', 'vid_vect', 'video_vect', 'videochat_vect', 'videophones_vect', 'vijay_vect', 'vikky_vect', 'village_vect', 'violated_vect', 'violence_vect', 'vip_vect', 'virgin_vect', 'visit_vect', 'vivek_vect', 'vl_vect', 'voda_vect', 'vodafone_vect', 'vodka_vect', 'voice_vect', 'voicemail_vect', 'vomit_vect', 'vote_vect', 'voucher_vect', 'vouchers_vect', 'vry_vect', 'vth_vect', 'w45wq_vect', 'wa_vect', 'wah_vect', 'wait_vect', 'waited_vect', 'waitin_vect', 'waiting_vect', 'wake_vect', 'waking_vect', 'wales_vect', 'walk_vect', 'walked_vect', 'walking_vect', 'walmart_vect', 'wan_vect', 'wana_vect', 'want_vect', 'wanted_vect', 'wanting_vect', 'wants_vect', 'wap_vect', 'warm_vect', 'warner_vect', 'waste_vect', 'wasted_vect', 'wat_vect', 'watch_vect', 'watching_vect', 'water_vect', 'wats_vect', 'way_vect', 'wc1n3xx_vect', 'we_vect', 'weak_vect', 'wear_vect', 'wearing_vect', 'weather_vect', 'web_vect', 'website_vect', 'wed_vect', 'wedding_vect', 'wednesday_vect', 'wee_vect', 'weed_vect', 'week_vect', 'weekend_vect', 'weekends_vect', 'weekly_vect', 'weeks_vect', 'weigh_vect', 'weight_vect', 'weird_vect', 'welcome_vect', 'well_vect', 'welp_vect', 'wen_vect', 'went_vect', 'west_vect', 'wet_vect', 'what_vect', 'whatever_vect', 'whats_vect', 'whenever_vect', 'whenevr_vect', 'wherever_vect', 'whether_vect', 'white_vect', 'whn_vect', 'whole_vect', 'whos_vect', 'whose_vect', 'wid_vect', 'widelivecomindex_vect', 'wif_vect', 'wife_vect', 'wil_vect', 'willing_vect', 'win_vect', 'wind_vect', 'wine_vect', 'winner_vect', 'winning_vect', 'wins_vect', 'wipro_vect', 'wisdom_vect', 'wise_vect', 'wish_vect', 'wishes_vect', 'wishing_vect', 'wit_vect', 'within_vect', 'without_vect', 'wiv_vect', 'wk_vect', 'wkend_vect', 'wkg_vect', 'wkly_vect', 'wks_vect', 'wld_vect', 'wml_vect', 'wn_vect', 'wnt_vect', 'wo_vect', 'woke_vect', 'woken_vect', 'woman_vect', 'women_vect', 'wonder_vect', 'wonderful_vect', 'wondering_vect', 'wont_vect', 'woot_vect', 'word_vect', 'words_vect', 'work_vect', 'workin_vect', 'working_vect', 'works_vect', 'world_vect', 'worried_vect', 'worries_vect', 'worry_vect', 'worse_vect', 'worst_vect', 'worth_vect', 'wot_vect', 'would_vect', 'wow_vect', 'write_vect', 'wrong_vect', 'wtf_vect', 'wud_vect', 'wuld_vect', 'wun_vect', 'www4tcbiz_vect', 'wwwcomuknet_vect', 'wwwetlpcoukexpressoffer_vect', 'wwwgetzedcouk_vect', 'wwwldewcom_vect', 'wwwldewcom1win150ppmx3age16_vect', 'wwwmovietriviatv_vect', 'wwwringtonescouk_vect', 'wwwsmsconet_vect', 'wwwtxttowincouk_vect', 'wwwurawinnercom_vect', 'wylie_vect', 'xchat_vect', 'xmas_vect', 'xuhui_vect', 'xx_vect', 'xxx_vect', 'xxxx_vect', 'xxxxx_vect', 'xy_vect', 'ya_vect', 'yahoo_vect', 'yan_vect', 'yar_vect', 'yay_vect', 'yck_vect', 'yeah_vect', 'year_vect', 'years_vect', 'yelling_vect', 'yellow_vect', 'yep_vect', 'yes_vect', 'yest_vect', 'yesterday_vect', 'yet_vect', 'yetunde_vect', 'yijue_vect', 'ym_vect', 'yo_vect', 'yoga_vect', 'yogasana_vect', 'yor_vect', 'you_vect', 'yr_vect', 'yrs_vect', 'yummy_vect', 'yun_vect', 'yuo_vect', 'yup_vect', 'zed_vect', 'zindgi_vect', 'ìï_vect', 'ûò_vect']}, 'training': {'algo': 'Logistic Regression', 'model_file': 'AI0110_1.sav'}} deployer = get_deployer('classification',params=config) deployer.run( )<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import shutil import subprocess from os.path import expanduser import platform deploymentfolder = os.path.join(os.path.dirname(os.path.abspath(__file__)),'HCLT','AION','target') modelname='AION_12' version='1' def createDockerImage(deploymentfolder,modelname,version,learner_type,textdata): modelPath = os.path.join(deploymentfolder) filename = os.path.join(deploymentfolder,'docker_image') modelservice = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','..','..','..','extensions','run_modelService.py') shellscript = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','..','..','..','extensions','start_modelservice.sh') aix = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','..','..','..','extensions','AIX-0.1-py3-none-any.whl') drift = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','..','..','..','extensions','Drift-0.1-py3-none-any.whl') sitepackage = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','..','..','..','extensions','site-packages') model_dockerSetup = os.path.join(os.path.dirname(os.path.abspath(__file__)),'dockersetup','docker_'+modelname + '_' + version) docker_setup = os.path.join(model_dockerSetup,modelname + '_' + version) model_sitepackage = os.path.join(model_dockerSetup,'site-packages') model_dockerSetupservicefile = os.path.join(model_dockerSetup,'run_modelService.py') model_dockershellscript = os.path.join(model_dockerSetup,'start_modelservice.sh') model_aix = os.path.join(model_dockerSetup,'AIX-0.1-py3-none-any.whl') model_drift = os.path.join(model_dockerSetup,'Drift-0.1-py3-none-any.whl') try: os.mkdir(model_dockerSetup) except Exception as e: print("Error in creating Setup directpry "+str(e)) pass shutil.copytree(modelPath, docker_setup) if textdata: shutil.copytree(sitepackage, model_sitepackage) modelpretrainpath=os.path.join(model_dockerSetup,'HCLT','AION','PreTrainedModels','TextProcessing') ''' try: os.makedirs(modelpretrainpath, exist_ok=True) except Exception as e: print("Error in creating Setup directpry "+str(e)) pass ''' home = expanduser("~") if platform.system() == 'Windows': hostpretrainpath = os.path.join(home,'AppData','Local','HCLT','AION','PreTrainedModels','TextProcessing') else: hostpretrainpath = os.path.join(home,'HCLT','AION','PreTrainedModels','TextProcessing') shutil.copytree(hostpretrainpath, modelpretrainpath) shutil.copyfile(modelservice, model_dockerSetupservicefile) shutil.copyfile(shellscript, model_dockershellscript) shutil.copyfile(aix, model_aix) shutil.copyfile(drift,model_drift) try: os.mkdir(filename) except: pass requirementfilename = os.path.join(model_dockerSetup,'requirements.txt') installfilename = os.path.join(model_dockerSetup,'install.py') dockerfile = os.path.join(model_dockerSetup,'Dockerfile') dockerdata='FROM python:3.8-slim-buster' dockerdata+='\\n' if textdata: dockerdata+='WORKDIR /root' dockerdata+='\\n' dockerdata+='COPY HCLT HCLT' dockerdata+='\\n' dockerdata+='WORKDIR /app' dockerdata+='\\n' dockerdata+='COPY requirements.txt requirements.txt' dockerdata+='\\n' dockerdata+='COPY '+modelname+'_'+version+' '+modelname+'_'+version dockerdata+='\\n' if textdata: dockerdata+='COPY site-packages site-packages' dockerdata+='\\n' dockerdata+='COPY install.py install.py' dockerdata+='\\n' dockerdata+='COPY run_modelService.py run_modelService.py' dockerdata+='\\n' dockerdata+='COPY AIX-0.1-py3-none-any.whl AIX-0.1-py3-none-any.whl' dockerdata+='\\n' dockerdata+='COPY Drift-0.1-py3-none-any.whl Drift-0.1-py3-none-any.whl' dockerdata+='\\n' dockerdata+='COPY start_
modelservice.sh start_modelservice.sh' dockerdata+='\\n' if textdata: dockerdata+='''RUN apt-get update \\ && apt-get install -y build-essential manpages-dev \\ && python -m pip install --no-cache-dir --upgrade pip \\ && python -m pip install --no-cache-dir pandas==1.2.4 \\ && python -m pip install --no-cache-dir numpy==1.19.5 \\ && python -m pip install --no-cache-dir joblib==1.0.1 \\ && python -m pip install --no-cache-dir Cython==0.29.23 \\ && mv site-packages/* /usr/local/lib/python3.8/site-packages \\ && python -m pip install --no-cache-dir scipy==1.6.3 \\ && python -m pip install --no-cache-dir AIX-0.1-py3-none-any.whl \\ && python -m pip install --no-cache-dir Drift-0.1-py3-none-any.whl \\ && python -m pip install --no-cache-dir scikit-learn==0.24.2 \\ && python -m pip install --no-cache-dir spacy==2.2.3 \\ && python -m pip install --no-cache-dir nltk==3.6.2 \\ && python -m pip install --no-cache-dir textblob==0.15.3 \\ && python -m pip install --no-cache-dir gensim==3.8.3 \\ && python -m pip install --no-cache-dir demoji==1.1.0 \\ && python -m pip install --no-cache-dir lxml==4.6.3 \\ && python -m pip install --no-cache-dir Beautifulsoup4==4.9.3 \\ && python -m pip install --no-cache-dir Unidecode==1.2.0 \\ && python -m pip install --no-cache-dir pyspellchecker==0.6.2 \\ && python -m pip install --no-cache-dir pycontractions==2.0.1 \\ && python -m pip install --no-cache-dir tensorflow==2.4.1 \\ && python -m pip install --no-cache-dir nltk==3.6.2 \\ && python -m pip install --no-cache-dir -r requirements.txt \\ && python install.py \\ && chmod +x start_modelservice.sh ENTRYPOINT ["./start_modelservice.sh"] ''' else: dockerdata+='''RUN apt-get update \\ && apt-get install -y build-essential manpages-dev \\ && python -m pip install --no-cache-dir --upgrade pip \\ && python -m pip install --no-cache-dir pandas==1.2.4 \\ && python -m pip install --no-cache-dir numpy==1.19.5 \\ && python -m pip install --no-cache-dir joblib==1.0.1 \\ && python -m pip install --no-cache-dir Cython==0.29.23 \\ && python -m pip install --no-cache-dir scipy==1.6.3 \\ && python -m pip install --no-cache-dir AIX-0.1-py3-none-any.whl \\ && python -m pip install --no-cache-dir Drift-0.1-py3-none-any.whl \\ && python -m pip install --no-cache-dir scikit-learn==0.24.2 \\ && python -m pip install --no-cache-dir -r requirements.txt \\ && chmod +x start_modelservice.sh ENTRYPOINT ["./start_modelservice.sh"] ''' f = open(dockerfile, "w") f.write(str(dockerdata)) f.close() requirementdata='' requirementdata+='word2number==1.1' if learner_type == 'DL': requirementdata+='\\n' requirementdata+='tensorflow==2.5.0' f = open(requirementfilename, "w") f.write(str(requirementdata)) f.close() if textdata: installfile=''' import nltk import ssl try: _create_unverified_https_context = ssl._create_unverified_context except AttributeError: pass else: ssl._create_default_https_context = _create_unverified_https_context nltk.download('punkt') nltk.download('wordnet') nltk.download('stopwords') nltk.download('averaged_perceptron_tagger')''' f = open(installfilename, "w") f.write(str(installfile)) f.close() try: command = 'docker pull python:3.8-slim-buster' os.system(command); #subprocess.check_call(["chmod", "+x", "start_modelservice.sh"], cwd=model_dockerSetup) subprocess.check_call(["docker", "build", "-t",modelname.lower()+":"+version,"."], cwd=model_dockerSetup) subprocess.check_call(["docker", "save", "-o",modelname.lower()+"_"+version+".tar",modelname.lower()+":"+version], cwd=model_dockerSetup) dockerfilepath = os.path.join(model_dockerSetup,modelname.lower()+"_"+version+".tar") shutil.copyfile(dockerfilepath, os.path.join(filename,modelname.lower()+"_"+version+".tar")) shutil.rmtree(model_dockerSetup) return 'Success','SUCCESSFULLY' except Exception as e: print("Error: "+str(e)) shutil.rmtree(model_dockerSetup) return 'Error',str(e) #createDockerImage(deploymentfolder,modelname,version)<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import subprocess import os import glob import sys import python_minifier def encrypt_files(path): cwd = os.getcwd() secure_path = os.path.join(path,'SecuredScripts') try: if not os.path.exists(secure_path): os.mkdir(secure_path) files = [f for f in glob.glob(path + "/*.py")] for file in files: #encrypted_file_details[0] = file #file = files[0] #print(file) #filename_w_dir = os.path.splitext(file) filename_w_ext = os.path.basename(file) filename, file_extension = os.path.splitext(filename_w_ext) file_folder_path = os.path.join(secure_path,filename) #print(file_folder_path) if not os.path.exists(file_folder_path): os.mkdir(file_folder_path) # Minify python source code minify_file = os.path.join(file_folder_path,filename+'_minify.py') pythonfolder,_ = os.path.split(sys.executable) pyminify_script = os.path.join(pythonfolder,'Scripts','pyminify.exe') minify_command = "\\""+sys.executable+"\\" \\""+pyminify_script+ "\\" \\"" + file + "\\" > \\"" + minify_file+"\\"" subprocess.call(minify_command, shell=True) # Change directory to folder path os.chdir(file_folder_path) # Obfuscate minified file pyarmor_script = os.path.join(pythonfolder,'Scripts','pyarmor.exe') obfusc_commmand = "\\""+sys.executable+"\\" \\""+pyarmor_script+"\\" obfuscate \\"" + minify_file+"\\"" #print(obfusc_commmand) subprocess.call(obfusc_commmand, shell=True) # Change directory to dist path obfusc_file = os.path.join(file_folder_path,'dist',filename+'_minify.py') #print(obfusc_file) chdirpath = os.path.join(file_folder_path,'dist') os.chdir(chdirpath) # Compress obfuscated file compressed_file = os.path.join(file_folder_path,'dist',filename+'_compressed.py') #print(compressed_file) pyminifier_script = os.path.join(pythonfolder,'Scripts','pyminifier.exe') compress_command = "\\""+sys.executable+"\\" \\""+pyminifier_script+"\\" --gzip -o \\"" +compressed_file + "\\" \\"" + obfusc_file+"\\"" #print(compress_command) subprocess.call(compress_command, shell=True) #compile_command = sys.executable+'-m py_compile "' + compressed_file+'"' #print(compile_command) #subprocess.call(compile_command , shell=True) #encrypted_file_details['compiled_file'] = file #compiled_file = os.path.join(file_folder_path,'dist','__pycache__',filename+'_compressed.cpython-37.pyc') #encrypted_file_details[1] = compiled_file #encrypted_file_list.append(encrypted_file_details) #encrypted_file = filename + '_compressed.cpython-37_encrypted.pyc' #encrypt_command = "python " + cwd + "\\\\Encrypt_Key_Dcrypt.py " + compiled_file + ' ' + encrypted_file + " --g -e" #print(encrypt_command) #subprocess.call(encrypt_command, shell=True) #encrypted_file_list += ']' #return(encrypted_file_list) os.chdir(path) except OSError as err: print ("Creation of the directory %s failed "+str(err)) # Driver function if __name__=="__main__": path = sys.argv[1] encrypt_files(path) #(base) C:\\Himanshu\\DataPreprocessing>pyminify DataPreprocessing.py > DataPreprocessing_minify.py #Obfuscate #(base) C:\\Himanshu\\DataPreprocessing>pyarmor obfuscate C:\\Himanshu\\DataPreprocessing\\DataPreprocessing_minify.py #Compression #(base) C:\\Himanshu\\DataPreprocessing>pyminifier --gzip -o C:\\Himanshu\\DataPreprocessing\\dist\\DataPreprocessing_compressed.py C:\\Himanshu\\DataPreprocessing\\dist\\DataPreprocessing_minify.py #(base) C:\\Himanshu\\DataPreprocessing>cd dist #(base) C:\\Himanshu\\DataPreprocessing\\dist>python DataPreprocessing_compressed.py "DocumentText" "Label" 90 ".csv" "C:\\Himanshu\\DataAcquisition\\ClassificationDataNewBalanced.csv" #Compiling compressed .py to .pyc file #(base) C:\\Himanshu\\DataPreprocessing\\dist>python -m py_compile DataPreprocessing_compressed.py #Encrypt .pyc file #(base) C:\\Himanshu\\DataPreprocessing\\dist>python C:\\Himanshu\\Encrypt_Key_Dcrypt.py C:\\Himanshu\\DataPreprocessing\\dist\\__pycache__\\DataPreprocessing_compressed.cpython-36.pyc DataPreprocessing_compressed.cpython-36_encrypted.pyc --g -e #Decrypt file #(base) C:\\Himanshu\\DataPreprocessing\\dist>python C:\\Himanshu\\Encrypt_Key_Dcrypt.py DataPreprocessing_compressed.cpython-36_encrypted.pyc DataPreprocessing_compressed.cpython-36_decrypted.pyc --d #Run decrypted file #(base) C:\\Himanshu\\DataPreprocessing\\dist>python DataPreprocessing_compressed.cpython-36_decrypted.pyc "DocumentText" "Label" 90 ".csv" "C:\\Himanshu\\DataAcquisition\\ClassificationDataNewBalanced.csv"<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import platform import sys import subprocess import glob import shutil import time from aion_deployment.EncryptPythonSourceCode import encrypt_files import json def encrypt(alldirs): for dir in alldirs: try: encrypt_files(dir) except Exception as error_obj: print("Exception in encrypting", error_obj) print("-"*50) def replace_by_compressed(alldirs): for dir in alldirs: try: #print("Processing dir", dir) files = [f for f in glob.glob(dir + "/*.py")] secure_path = os.path.join(dir, 'SecuredScripts') time.sleep(6) for file in files: try: filename_w_ext = os.path.basename(file) filename, file_extension = os.path.splitext(filename_w_ext) if filename == "__init__": continue #print("Processing file", file) file_folder_path = os.path.join(secure_path, filename, 'dist') compressed_file_path = os.path.join(file_folder_path, filename+'_compressed.py') shutil.copy(compressed_file_path, dir) os.remove(file) new_compressed_file_path = os.path.join(dir, filename+'_compressed.py') target_file_path = os.path.join(dir, filename_w_ext) os.rename(new_compressed_file_path, target_file_path) if filename == 'aion_prediction': shutil.copytree(os.path.join(file_folder_path, 'pytransform'), os.path.join(dir, 'pytransform')) except Exception as error_obj: print("Exception in file ", error_obj) shutil.rmtree(secure_path) except Exception as error_obj: print("Exception in dir ", error_obj) def start_Obfuscate(path): project_path = path subdirs = [dI for dI in os.listdir(project_path) if os.path.isdir(os.path.join(project_path,dI))] alldirs = [ project_path, ] for
subdir in subdirs: if(subdir != 'pytransform'): alldirs.append(os.path.join(project_path, subdir)) encrypt(alldirs) replace_by_compressed(alldirs) if __name__=="__main__": project_path = sys.argv[1] print("project_path", project_path) subdirs = [dI for dI in os.listdir(project_path) if os.path.isdir(os.path.join(project_path,dI))] alldirs = [ project_path, ] for subdir in subdirs: alldirs.append(os.path.join(project_path, subdir)) encrypt(alldirs) print("*"*50) replace_by_compressed(alldirs) # python eion_compress.py "C:\\Users\\ashwani.s\\Desktop\\22April\\22April\\Mohita" "C:\\Users\\ashwani.s\\Desktop\\eion\\eion" > logfile.log <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import pandas as pd import numpy as np import scipy import warnings import scipy.stats as st import logging import json class inputdrift(): def __init__(self,conf): self.log = logging.getLogger('eion') def get_input_drift(self,ndf,hdf,outputfolder): selectedColumns = self.features.split(',') dataalertcount=0 distributionChangeColumns="" distributionChangeMessage=[] for i in range(0,len(selectedColumns)): data1=hdf[selectedColumns[i]] data2=ndf[selectedColumns[i]] if(data1.dtype !="str" and data2.dtype !="str" ): cumulativeData=data1.append(data2) teststaticValue=teststatic(self,data1,data2) if (teststaticValue < 0.05): distributionName1,sse1=DistributionFinder(self,data1) distributionName2,sse2=DistributionFinder(self,data2) if(distributionName1 == distributionName2): dataalertcount = dataalertcount else: dataalertcount = dataalertcount+1 distributionChangeColumns=distributionChangeColumns+selectedColumns[i]+"," changedColumn = {} changedColumn['Feature'] = selectedColumns[i] changedColumn['KS_Training'] = teststaticValue changedColumn['Training_Distribution'] = distributionName1 changedColumn['New_Distribution'] = distributionName2 distributionChangeMessage.append(changedColumn) else : dataalertcount = dataalertcount else : response ="Selected Columns should be Numerical Values" if(dataalertcount == 0): resultStatus="Model is working as expected" else : resultStatus=json.dumps(distributionChangeMessage) return(dataalertcount,resultStatus) def DistributionFinder(self,data): try: distributionName ="" sse =0.0 KStestStatic=0.0 dataType="" if(data.dtype == "float64"): dataType ="Continuous" elif(data.dtype =="int"): dataType="Discrete" elif(data.dtype =="int64"): dataType="Discrete" if(dataType == "Discrete"): distributions= [st.bernoulli,st.binom,st.geom,st.nbinom,st.poisson] index, counts = np.unique(data.astype(int),return_counts=True) if(len(index)>=2): best_sse = np.inf y1=[] total=sum(counts) mean=float(sum(index*counts))/total variance=float((sum(index**2*counts) -total*mean**2))/(total-1) dispersion=mean/float(variance) theta=1/float(dispersion) r=mean*(float(theta)/1-theta) for j in counts: y1.append(float(j)/total) pmf1=st.bernoulli.pmf(index,mean) pmf2=st.binom.pmf(index,len(index),p=mean/len(index)) pmf3=st.geom.pmf(index,1/float(1+mean)) pmf4=st.nbinom.pmf(index,mean,r) pmf5=st.poisson.pmf(index,mean) sse1 = np.sum(np.power(y1 - pmf1, 2.0)) sse2 = np.sum(np.power(y1 - pmf2, 2.0)) sse3 = np.sum(np.power(y1 - pmf3, 2.0)) sse4 = np.sum(np.power(y1 - pmf4, 2.0)) sse5 = np.sum(np.power(y1- pmf5, 2.0)) sselist=[sse1,sse2,sse3,sse4,sse5] for i in range(0,len(sselist)): if best_sse > sselist[i] > 0: best_distribution = distributions[i].name best_sse = sselist[i] elif (len(index) == 1): best_distribution = "Constant Data-No Distribution" best_sse = 0.0 distributionName =best_distribution sse=best_sse elif(dataType == "Continuous"): distributions = [st.uniform,st.expon,st.weibull_max,st.weibull_min,st.chi,st.norm,st.lognorm,st.t,st.gamma,st.beta] best_distribution = st.norm.name best_sse = np.inf datamin=data.min() datamax=data.max() nrange=datamax-datamin y, x = np.histogram(data.astype(float), bins='auto', density=True) x = (x + np.roll(x, -1))[:-1] / 2.0 for distribution in distributions: with warnings.catch_warnings(): warnings.filterwarnings('ignore') params = distribution.fit(data.astype(float)) # Separate parts of parameters arg = params[:-2] loc = params[-2] scale = params[-1] # Calculate fitted PDF and error with fit in distribution pdf = distribution.pdf(x, loc=loc, scale=scale, *arg) sse = np.sum(np.power(y - pdf, 2.0)) if(best_sse >sse > 0): best_distribution = distribution.name best_sse = sse distributionName =best_distribution sse=best_sse except: response = str(sys.exc_info()[0]) message='Job has Failed'+response print(message) return distributionName,sse ##KStestStatic -pvalue finding def teststatic(self,data1,data2): try: teststatic =st.ks_2samp(data1,data2) pValue=0.0 scipyVersion =scipy.__version__ if(scipyVersion <= "0.14.1"): pValue =teststatic[1] else: pValue =teststatic.pvalue except: response = str(sys.exc_info()[0]) print("Input Drift Job Failed "+response) return pValue <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' from pathlib import Path from AION.prediction_package.imports import importModule from AION.prediction_package.aion_prediction import aionPrediction from AION.prediction_package.utility import TAB_CHAR from AION.prediction_package import utility from AION.prediction_package.base import deployer from AION.prediction_package import common import numpy as np def get_deployer( params): if params['training']['algo'] == 'ARIMA': return arima(params) elif params['training']['algo'] == 'LSTM': return lstm(params) elif params['training']['algo'] == 'ENCODER_DECODER_LSTM_MVI_UVO': return lstmencdec_mviuvo(params) elif params['training']['algo'] == 'MLP': return mlp(params) elif params['training']['algo'] == 'VAR': return var(params) elif params['training']['algo'] == 'FBPROPHET': return fbprophet(params) else: raise ValueError(f"Algorithm {params['training']['algo']} for time series forecasting is not supported") def _profiler_code(params, importer): """ This will create the profiler file based on the config file. separated file is created as profiler is required for input drift also. """ imported_modules = [ {'module': 'json', 'mod_from': None, 'mod_as': None}, {'module': 'scipy', 'mod_from': None, 'mod_as': None}, {'module': 'joblib', 'mod_from': None, 'mod_as': None}, {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'}, {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'}, {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None} ] utility.import_modules(importer, imported_modules) if 'code' in params['profiler'].get('preprocess',{}).keys(): code = params['profiler']['preprocess']['code'] else: code = "" code += """ class inputprofiler(): """ init_code = """ def __init__(self): """ init_code += """ # preprocessing preprocess_path = Path(__file__).parent.parent/'model'/'preprocess_pipe.pkl' if not preprocess_path.exists(): raise ValueError(f'Preprocess model file not found: {preprocess_path}') self.profiler = joblib.load(preprocess_path) """ run_code = """ def run(self,df): df = df.replace(r'^\\s*$', np.NaN, regex=True) """ if 'code' in params['profiler'].get('preprocess',{}).keys(): run_code += """ df = preprocess( df)""" if params['profiler'].get('unpreprocessed_columns'): run_code += f""" unpreprocessed_data = df['{params['profiler']['unpreprocessed_columns'][0]}'] df.drop(['{params['profiler']['unpreprocessed_columns'][0]}'], axis=1,inplace=True) """ if params['profiler'].get('force_numeric_conv'): run_code += f""" df[{params['profiler']['force_numeric_conv']}] = df[{params['profiler']['force_numeric_conv']}].apply(pd.to_numeric,errors='coerce')""" run_code += _profiler_main_code(params) if params['profiler'].get('unpreprocessed_columns'): run_code += f""" df['{params['profiler'].get('unpreprocessed_columns')[0]}'] = unpreprocessed_data """ run_code += """ return df """ utility.import_modules(importer, imported_modules) import_code = importer.getCode() return import_code + code + init_code + run_code def _profiler_main_code(params): code = f""" df = self.profiler.transform(df) columns = {params['profiler']['output_features']} if isinstance(df, scipy.sparse.spmatrix): df = pd.DataFrame(df.toarray(), columns=columns) else: df = pd.DataFrame(df, columns=columns) """ return code class arima( deployer): def __init__(self, params={}): super().__init__( params) self.name = 'timeseriesforecasting' def profiler_code( self): imported_modules = [ {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'}, {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'}, ] importer = importModule() utility.import_modules(importer, imported_modules) code = """ class inputprofiler(): def __init__(self): pass def run( self,df): df = df.replace(r'^\\s*$', np.NaN, regex=True) return df[['noofforecasts']] """ return importer.getCode()
+ code def feature_engg_code(self): self.importer.addModule(module='pandas',mod_as='pd') return f""" class selector(): def __init__(self): pass def run(self, df): return df """ def training_code(
]==2: prediction[col] = (datasetdf[col].iloc[-1]-datasetdf[col].iloc[-2]) + prediction[col].cumsum() prediction[col] = datasetdf[col].iloc[-1] + prediction[col].cumsum() prediction = pred return(prediction) def run(self,raw_df,df): df = self.invertTransformation(df) df = df.to_json(orient='records',double_precision=2) outputjson = {{"status":"SUCCESS","data":json.loads(df)}} return(json.dumps(outputjson)) """ class fbprophet( deployer): def __init__(self, params={}): super().__init__( params) self.name = 'timeseriesforecasting' def profiler_code( self): imported_modules = [ {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'}, {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'}, ] importer = importModule() utility.import_modules(importer, imported_modules) code = """ class inputprofiler(): def __init__(self): pass def run( self,df): df = df.replace(r'^\\s*$', np.NaN, regex=True) return df[['noofforecasts']] """ return importer.getCode() + code def feature_engg_code(self): self.importer.addModule(module='pandas',mod_as='pd') return f""" class selector(): def __init__(self): pass def run(self, df): return df """ def training_code( self): self.importer.addModule(module='pandas',mod_as='pd') self.importer.addModule(module='Path',mod_from='pathlib') self.importer.addModule(module='joblib') code = f""" class trainer(): def __init__(self): model_file = (Path(__file__).parent/"model")/"{self.params['training']['model_file']}" if not model_file.exists(): raise ValueError(f'Trained model file not found: {{model_file}}') self.model = joblib.load(model_file) """ code += f""" def run(self,df): sessonal_freq = '{self.params['training']['sessonal_freq']}' ts_prophet_future = self.model.make_future_dataframe(periods=int(df["noofforecasts"][0]),freq=sessonal_freq,include_history = False) """ if (self.params['training']['additional_regressors']): code += f""" additional_regressors={self.params['training']['additional_regressors']} ts_prophet_future[additional_regressors] = dataFrame[additional_regressors] ts_prophet_future.reset_index(drop=True) ts_prophet_future=ts_prophet_future.dropna() """ code += """ train_forecast = self.model.predict(ts_prophet_future) prophet_forecast_tail=train_forecast[[\\'ds\\', \\'yhat\\', \\'yhat_lower\\',\\'yhat_upper\\']].tail( int(df["noofforecasts"][0])) return(prophet_forecast_tail)""" return code def formatter_code(self): self.importer.addModule('json') self.importer.addModule('pandas', mod_as='pd') return """ class output_format(): def __init__( self): pass def run(self,raw_df,df): df = df.to_json(orient='records') outputjson = {"status":"SUCCESS","data":json.loads(df)} return(json.dumps(outputjson)) """ <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' # -*- coding: utf-8 -*- # -*- coding: utf-8 -*- import logging logging.getLogger('tensorflow').disabled = True import json import mlflow import mlflow.sklearn import mlflow.sagemaker as mfs # from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split # from sklearn import datasets import time import numpy as np # Load dataset # from sklearn.datasets import load_iris import pickle # Load the pickled model # from matplotlib import pyplot import sys import os import boto3 import subprocess import os.path from os.path import expanduser import platform from pathlib import Path class aionMlopsService: def __init__(self,model,mlflowtosagemakerDeploy,mlflowtosagemakerPushOnly,mlflowtosagemakerPushImageName,mlflowtosagemakerdeployModeluri,experiment_name,mlflow_modelname,awsaccesskey_id,awssecretaccess_key,aws_session_token,mlflow_container_name,aws_region,aws_id,iam_sagemakerfullaccess_arn,sm_app_name,sm_deploy_option,delete_ecr_repository,ecrRepositoryName): try: self.model=model self.mlflowtosagemakerDeploy=mlflowtosagemakerDeploy self.mlflowtosagemakerPushOnly=str(mlflowtosagemakerPushOnly) self.mlflowtosagemakerPushImageName=str(mlflowtosagemakerPushImageName) self.mlflowtosagemakerdeployModeluri=str(mlflowtosagemakerdeployModeluri) self.experiment_name=experiment_name self.mlflow_modelname=mlflow_modelname self.awsaccesskey_id=awsaccesskey_id self.awssecretaccess_key=awssecretaccess_key self.aws_session_token=aws_session_token self.mlflow_container_name=mlflow_container_name self.aws_region=aws_region self.aws_id=aws_id self.iam_sagemakerfullaccess_arn=iam_sagemakerfullaccess_arn self.sm_app_name=sm_app_name self.sm_deploy_option=sm_deploy_option self.delete_ecr_repository=delete_ecr_repository self.ecrRepositoryName=ecrRepositoryName from appbe.dataPath import LOG_LOCATION sagemakerLogLocation = LOG_LOCATION try: os.makedirs(sagemakerLogLocation) except OSError as e: if (os.path.exists(sagemakerLogLocation)): pass else: raise OSError('sagemakerLogLocation error.') self.sagemakerLogLocation=str(sagemakerLogLocation) filename_mlops = 'mlopslog_'+str(int(time.time())) filename_mlops=filename_mlops+'.log' # filename = 'mlopsLog_'+Time() filepath = os.path.join(self.sagemakerLogLocation, filename_mlops) logging.basicConfig(filename=filepath, format='%(message)s',filemode='w') # logging.basicConfig(filename="uq_logging.log", format='%(asctime)s %(message)s',filemode='w') # logging.basicConfig(filename="uq_logging.log", format=' %(message)s',filemode='w') # logging.basicConfig(filename='uq_logging.log', encoding='utf-8', level=logging.INFO) self.log = logging.getLogger('aionMLOps') self.log.setLevel(logging.DEBUG) # mlflow.set_experiment(self.experiment_name) except Exception as e: self.log.info('<!------------- mlflow model INIT Error ---------------> '+str(e)) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) def mlflowSetPath(self,path): track_dir=os.path.join(path,'mlruns') uri="file:"+str(Path(track_dir)) return uri #Currently not used this delete ecr repository option def ecr_repository_delete(self,rep_name): # import subprocess client = boto3.client('ecr') repositories = client.describe_repositories() ecr_delete_rep=client.delete_repository(registryId=self.aws_id,repositoryName=self.ecrRepositoryName,force=True) mlflow_ecr_delete=subprocess.run(['aws', 'ecr', 'delete-repository','--repository-name',rep_name,'||','true']) self.log.info('Success: deleted aws ecr repository which contains mlops image.') def check_sm_deploy_status(self,app_name): sage_client = boto3.client('sagemaker', region_name=self.aws_region) endpoint_description = sage_client.describe_endpoint(EndpointName=app_name) endpoint_status = endpoint_description["EndpointStatus"] try: failure_reason=endpoint_description["FailureReason"] self.log.info("sagemaker end point creation failure reason is: "+str(failure_reason)) except: pass endpoint_status=str(endpoint_status) return endpoint_status def invoke_sm_endpoint(self,app_name, input_json): client = boto3.session.Session().client("sagemaker-runtime", self.aws_region) response = client.invoke_endpoint( EndpointName=app_name, Body=input_json, ContentType='application/json; format=pandas-split', ) # preds = response['Body'].read().decode("ascii") preds = response['Body'].read().decode("ascii") preds = json.loads(preds) # print("preds: {}".format(preds)) return preds def predict_sm_app_endpoint(self,X_test): #print(X_test) import pandas as pd prediction=None AWS_ACCESS_KEY_ID=str(self.awsaccesskey_id) AWS_SECRET_ACCESS_KEY=str(self.awssecretaccess_key) AWS_SESSION_TOKEN=str(self.aws_session_token) region = str(self.aws_region) #Existing model deploy options # mlflowtosagemakerPushImageName=str(self.mlflowtosagemakerPushImageName) # mlflowtosagemakerdeployModeluri=str(self.mlflowtosagemakerdeployModeluri) try: import subprocess cmd = 'aws configure set region_name '+region os.system(cmd) cmd = 'aws configure set aws_access_key_id '+AWS_ACCESS_KEY_ID os.system(cmd) cmd = 'aws configure set aws_secret_access_key '+AWS_SECRET_ACCESS_KEY os.system(cmd) ''' aws_region=subprocess.run(['aws', 'configure', 'set','region_name',region]) aws_accesskeyid=subprocess.run(['aws', 'configure', 'set','aws_access_key_id',AWS_ACCESS_KEY_ID]) aws_secretaccesskey=subprocess.run(['aws', 'configure', 'set','aws_secret_access_key',AWS_SECRET_ACCESS_KEY]) ''' except: pass #Create a session for aws communication using aws boto3 lib # s3_client = boto3.client('ecr',aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,aws_session_token=AWS_SESSION_TOKEN,region_name=region) # s3 = boto3.resource('ecr', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key= AWS_SECRET_ACCESS_KEY) session = boto3.Session(aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,aws_session_token=AWS_SESSION_TOKEN,region_name=region) #X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=2) # query_input = pd.DataFrame(X_test).iloc[[1,5]].to_json(orient="split") try: query_input = pd.DataFrame(X_test).to_json(orient="split") #print(query_input) prediction = self.invoke_sm_endpoint(app_name=self.sm_app_name, input_json=query_input) # self.log.info("sagemaker end point Prediction: \\n"+str(prediction)) except Exception as e: print(e) return prediction def deleteSagemakerApp(self,app_name,region): # import mlflow.sagemaker as mfs # region = 'ap-south-1' # app_name = 'aion-demo-app' mfs.delete(app_name=app_name,region_name=region, archive=False,synchronous=True, timeout_seconds=300) # print("AION mlops sagemaker application endpoint is deleted....\\n") self.log.info('AION mlops sagemaker application endpoint is deleted, application name is: '+str(app_name)) def deployModel2sagemaker(self,mlflow_container_name,tag_id,model_path): region = str(self.aws_region) aws_id = str(self.aws_id) iam_sagemakerfullaccess_arn = str(self.iam_sagemakerfullaccess_arn) app_name = str(self.sm_app_name) model_uri = str(model_path) app_status=False mlflow_root_dir = None try: os.
chdir(str(self.sagemakerLogLocation)) mlflow_root_dir = os.getcwd() self.log.info('mlflow root dir: '+str(mlflow_root_dir)) except: self.log.info("path issue.") try: c_status=self.check_sm_deploy_status(app_name) #if ((c_status == "Failed") or (c_status == "OutOfService")): if ((c_status == "Failed") or (c_status.lower() == "failed")): app_status=False self.log.info("Sagemaker endpoint status: Failed.\\n") mfs.delete(app_name=app_name,region_name=region, archive=False,synchronous=True, timeout_seconds=300) elif ((c_status.lower() == "inservice") or (c_status == "InService")): app_status=True self.log.info("Sagemaker endpoint status: InService. Running sagemaker endpoint name: \\n"+str(app_name)) else: app_status=False pass except: # print("deploy status error.\\n") pass #aws ecr model app_name should contain only [[a-zA-Z0-9-]] import re if app_name: pattern = re.compile("[A-Za-z0-9-]+") # if found match (entire string matches pattern) if pattern.fullmatch(app_name) is not None: #print("Found match: ") pass else: app_name = 'aion-demo-app' else: app_name = 'aion-demo-app' mlflow_image=mlflow_container_name+':'+tag_id image_url = aws_id + '.dkr.ecr.' + region + '.amazonaws.com/' + mlflow_image deploy_option="create" self.log.info('deploy_option: \\n'+str(deploy_option)) if (deploy_option.lower() == "create"): # Other deploy modes: mlflow.sagemaker.DEPLOYMENT_MODE_ADD,mlflow.sagemaker.DEPLOYMENT_MODE_REPLACE if not (app_status): try: mfs.deploy(app_name=app_name,model_uri=model_uri,region_name=region,mode="create",execution_role_arn=iam_sagemakerfullaccess_arn,image_url=image_url) self.log.info('sagemaker endpoint created and model deployed. Application name is: \\n'+str(app_name)) except: self.log.info('Creating end point application issue.Please check the connection and aws credentials \\n') else: self.log.info('Sagemaker application with user endpoint name already running.Please check. Please delete the old endpoint with same name.\\n') elif (deploy_option.lower() == "delete"): # import mlflow.sagemaker as mfs # # region = 'ap-south-1' # # app_name = 'aion-demo-app' # mfs.delete(app_name=app_name,region_name=region, archive=False,synchronous=True, timeout_seconds=300) # print("Mlflow sagemaker application endpoint is deleted....\\n") # self.log.info('Mlflow sagemaker application endpoint is deleted, application name is: '+str(app_name)) pass elif (deploy_option.lower() == "add"): pass elif (deploy_option.lower() == "replace"): pass else: pass return app_status def mlflow2sagemaker_deploy(self): self.log.info('<!------------- Inside AION mlops to sagemaker communication and deploy process. ---------------> ') deploy_status=False app_name = str(self.sm_app_name) self.log.info('Sagemaker Application Name: '+str(app_name)) uri_mlflow=self.mlflowSetPath(self.sagemakerLogLocation) mlflow.set_tracking_uri(uri_mlflow) mlops_trackuri=mlflow.get_tracking_uri() mlops_trackuri=str(mlops_trackuri) self.log.info('mlops tracking uri: '+str(mlops_trackuri)) localhost_deploy=False try: #Loading aion model to deploy in sagemaker mlflow.set_experiment(self.experiment_name) self.log.info('Endpoint Name: '+str(self.experiment_name)) # Assume, the model already loaded from joblib in aionmlflow2smInterface.py file. aionmodel2deploy=self.model # run_id = None # experiment_id=None # Use the loaded pickled model to make predictions # pred = knn_from_pickle.predict(X_test) with mlflow.start_run(run_name='AIONMLOps') as run: # aionmodel2deploy.fit(X_train, y_train) # predictions = aionmodel2deploy.predict(X_test) mlflow.sklearn.log_model(aionmodel2deploy, self.mlflow_modelname) run_id = run.info.run_uuid experiment_id = run.info.experiment_id self.log.info('AION mlops experiment run_id: '+str(run_id)) self.log.info('AION mlops experiment experiment_id: '+str(experiment_id)) self.log.info('AION mlops experiment model_name: '+str(self.mlflow_modelname)) artifact_uri = {mlflow.get_artifact_uri()} # print("1.artifact_uri: \\n",artifact_uri) mlflow.end_run() #If we need, we can check the mlflow experiments. # try: # mlflow_client = mlflow.tracking.MlflowClient('./mlruns') # exp_list = mlflow_client.list_experiments() # except: # pass #print("mlflow exp_list: \\n",exp_list) mlflow_modelname=str(self.mlflow_modelname) mlops_trackuri=mlops_trackuri.replace('file:','') mlops_trackuri=str(mlops_trackuri) # mlflow_root_dir = os.getcwd() mlflow_root_dir = None try: os.chdir(str(self.sagemakerLogLocation)) mlflow_root_dir = os.getcwd() self.log.info('mlflow root dir: '+str(mlflow_root_dir)) except: self.log.info("path issue.") model_path = 'mlruns/%s/%s/artifacts/%s' % (experiment_id, run_id,self.mlflow_modelname) # model_path=mlops_trackuri+'\\\\%s\\\\%s\\\\artifacts\\\\%s' % (experiment_id, run_id,mlflow_modelname) self.log.info("local host aion mlops model_path is: "+str(model_path)) time.sleep(2) #print("Environment variable setup in the current working dir for aws sagemaker cli connection... \\n") self.log.info('Environment variable setup in the current working dir for aws sagemaker cli connection... \\n ') AWS_ACCESS_KEY_ID=str(self.awsaccesskey_id) AWS_SECRET_ACCESS_KEY=str(self.awssecretaccess_key) AWS_SESSION_TOKEN=str(self.aws_session_token) region = str(self.aws_region) #Existing model deploy options mlflowtosagemakerPushImageName=str(self.mlflowtosagemakerPushImageName) mlflowtosagemakerdeployModeluri=str(self.mlflowtosagemakerdeployModeluri) import subprocess cmd = 'aws configure set region_name '+region os.system(cmd) cmd = 'aws configure set aws_access_key_id '+AWS_ACCESS_KEY_ID os.system(cmd) cmd = 'aws configure set aws_secret_access_key '+AWS_SECRET_ACCESS_KEY os.system(cmd) #Create a session for aws communication using aws boto3 lib # s3_client = boto3.client('ecr',aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,aws_session_token=AWS_SESSION_TOKEN,region_name=region) # s3 = boto3.resource('ecr', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key= AWS_SECRET_ACCESS_KEY) session = boto3.Session(aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,aws_session_token=AWS_SESSION_TOKEN,region_name=region) # session = boto3.session.Session( # aws_access_key_id=AWS_ACCESS_KEY_ID, # aws_secret_access_key=AWS_SECRET_ACCESS_KEY, # aws_session_token=AWS_SESSION_TOKEN # ) # awsclient = session.resource('ecr') # s3 = session.resource('s3') self.log.info('aws environment variable setup done... \\n') try: os.chdir(mlflow_root_dir) except FileNotFoundError: self.log.info('Directory does not exist. '+str(mlflow_root_dir)) except NotADirectoryError: self.log.info('model_path is not a directory. '+str(mlflow_root_dir)) except PermissionError: self.log.info('Issue in permissions to change to model dir. '+str(mlflow_root_dir)) mlflow_container_name=str(self.mlflow_container_name) mlflow_version=mlflow.__version__ tag_id=mlflow_version if (self.mlflowtosagemakerPushOnly.lower() == "true"): self.log.info('Selected option is <Deploy existing model to sagemaker> \\n') aws_id=str(self.aws_id) arn=str(self.iam_sagemakerfullaccess_arn) mlflow_image=mlflow_container_name+':'+tag_id image_url = aws_id+'.dkr.ecr.'+region+'.amazonaws.com/'+mlflow_image # print("image_url:========= \\n",image_url) deploy_status=True try: model_path=mlflowtosagemakerdeployModeluri # ##We need to run mlflow docker container command in the artifacts->model directory inside mlruns. self.log.info('Deploy existing model container-Model path given by user: '+str(model_path)) try: os.chdir(model_path) except FileNotFoundError: self.log.info('Directory does not exist. '+str(model_path)) except NotADirectoryError: self.log.info('model_path is not a directory. '+str(model_path)) except PermissionError: self.log.info('Issue in permissions to change to model dir. '+str(model_path)) try: mfs.push_image_to_ecr(image=mlflowtosagemakerPushImageName) deploy_status=True self.log.info('AION mlops pushed the docker container to aws ecr. \\n ') except: self.log.info("error in pushing existing container to ecr.\\n") deploy_status=False time.sleep(2) #Now,change the working dir to root dir,because now deploy needs full mlruns to model name dir. try: # print(" Changing directory to mlflow root dir....\\n") os.chdir(mlflow_root_dir) except FileNotFoundError: self.log.info('model path is not a directory. '+str(mlflow_root_dir)) except NotADirectoryError: self.log.info('model path is not a directory. '+str(mlflow_root_dir)) # print("{0} is not a directory".format(mlflow_root_dir)) except PermissionError: self.log.info('Issue in permissions to change to model dir. '+str(mlflow_root_dir)) # self.deployModel2sagemaker(mlflowtosagemakerPushImageName,tag_id,mlflowtosagemakerdeployModeluri) try: if (deploy_status): self.deployModel2sagemaker(mlflowtosagemakerPushImageName,tag_id,mlflowtosagemakerdeployModeluri) self.log.info('AION creates docker container and push the container into aws ecr.. ') time.sleep(2) except: self.log.info('AION deploy error.check connection and aws config parameters. ') deploy_status=False # self.log.info('model deployed in sagemaker. ') except Exception as e: self.log.info('AION mlops failed to push docker container in aws ecr, check configuration parameters. \\n'+str(e)) elif (self.mlflowtosagemakerPushOnly.lower() == "false"): if (self.mlflowtosagemakerDeploy.lower() == "true"): self.log.info('Selected option is <Create and Deploy model> \\n') deploy_status=True try: # ##We need to run mlflow docker container command in the artifacts->model directory inside mlruns. try: os.chdir(model_path) except FileNotFoundError: self.log.info('Directory does not exist. '+str(model_path)) except NotADirectoryError: self.log.info('model_path is not a directory. '+str(model_path)) except PermissionError: self.log.info('Issue in permissions to change to model dir. '+str(model_path)) try: mlflow_container_push=subprocess.run(['mlflow', 'sagemaker', 'build-and-push-container','--build','--push','--container',mlflow_container_name]) self.log.info('AION mlops creates docker container and push the container into aws ecr.. ') deploy_status=True time.sleep(2) except: self.log.info('error in pushing aion model container to sagemaker, please check the connection between local host to aws server.') deploy_status=False self.log.info('Now deploying the model container to sagemaker starts....\\n ') # Once docker push completes, again going back to mlflow parent dir for deployment #Now,change the working dir to root dir,because now deploy needs full mlruns to model name dir. try: os.chdir(mlflow_root_dir) except
FileNotFoundError: self.log.info('model_path does not exist. '+str(mlflow_root_dir)) except NotADirectoryError: self.log.info('model_path is not a directory. '+str(mlflow_root_dir)) except PermissionError: self.log.info('Issue in permissions to change to model dir. '+str(mlflow_root_dir)) # app_name = str(self.sm_app_name) try: if (deploy_status): self.deployModel2sagemaker(mlflow_container_name,tag_id,model_path) except: self.log.info('mlops deploy error.check connection') deploy_status=False except Exception as e: exc = {"status":"FAIL","message":str(e).strip('"')} out_exc = json.dumps(exc) self.log.info('mlflow failed to creates docker container please check the aws iam,ecr permission setup, aws id access_key,secret key values for aion.\\n') elif(self.mlflowtosagemakerDeploy.lower() == "false"): deploy_status=False localhost_deploy=True self.log.info('Selected option is <Create AION mlops container in local host .> \\n') self.log.info("User selected create-Deploy sagemaker option as False,") self.log.info("Creates the AION mlops-sagemaker container locally starting,but doesn't push into aws ecr and deploy in sagemaker. Check the container in docker repository. ") try: # ##We need to run AION mlops docker container command in the artifacts->model directory inside mlruns. try: os.chdir(model_path) self.log.info('After change to AION mlops model dir, cwd: '+str(model_path)) except FileNotFoundError: self.log.info('Directory does not exist. '+str(model_path)) except NotADirectoryError: self.log.info('model_path is not a directory. '+str(model_path)) except PermissionError: self.log.info('Issue in permissions to change to model dir. '+str(model_path)) # mlflow_container_local=subprocess.run(['AION mlops', 'sagemaker', 'build-and-push-container','--build','--no-push','--container',mlflow_container_name]) try: if not (deploy_status): mlflow_container_local=subprocess.run(['mlflow', 'sagemaker', 'build-and-push-container','--build','--no-push','--container',mlflow_container_name]) self.log.info('AION creates local host bsed docker container and push the container local docker repository. Check with <docker images> command.\\n ') localhost_deploy=True time.sleep(2) except: self.log.info('error in pushing aion model container to sagemaker, please check the connection between local host to aws server.') deploy_status=False localhost_deploy=False # print("AION mlops creates docker container and push the container into aws ecr.\\n") self.log.info('AION mlops creates docker container and stored locally... ') time.sleep(2) except Exception as e: localhost_deploy=False # print("mlflow failed to creates docker container please check the aws iam,ecr permission setup, aws id access_key,secret key values for aion.\\n") self.log.info('AION mlops failed to creates docker container in local machine.\\n'+str(e)) else: self.log.info('Deploy option not selected, Please check. ') localhost_deploy=False deploy_status=False else: pass localhost_container_status="Notdeployed" mlflow2sm_deploy_status="Notdeployed" if localhost_deploy: localhost_container_status="success" mlflow2sm_deploy_status="Notdeployed" # print("AION creates local docker container successfully.Please check in docker repository.") self.log.info("AION creates local docker container successfully.Please check in docker repository.") # else: # localhost_container_status="failed" # # print("AION failed to create local docker container successfully.Please check in docker repository.") # self.log.info("AION failed to create local docker container successfully.Please check in docker repository.") if (deploy_status): # Finally checking whether mlops model is deployed to sagemaker or not. app_name = str(self.sm_app_name) deploy_s = self.check_sm_deploy_status(app_name) if (deploy_s == "InService"): # print("AION mlops model is deployed at aws sagemaker, use application name(app_name) and region to access.\\n") self.log.info('AION mlops model is deployed at aws sagemaker, use application name(app_name) and region to access.\\n'+str(app_name)) mlflow2sm_deploy_status="success" localhost_container_status="Notdeployed" else: # print("AION Mlflow model not able to deploy at aws sagemaker\\n") self.log.info('AION mlops model not able to deploy at aws sagemaker.\\n') mlflow2sm_deploy_status="failed" localhost_container_status="Notdeployed" # else: # mlflow2sm_deploy_status="None" return mlflow2sm_deploy_status,localhost_container_status except Exception as inst: exc = {"status":"FAIL","message":str(inst).strip('"')} out_exc = json.dumps(exc) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> from kafka import KafkaConsumer from json import loads import pandas as pd import json import os,sys import time import multiprocessing from os.path import expanduser import platform import datetime modelDetails = {} class Process(multiprocessing.Process): def __init__(self, modelSignature,jsonData,predictedData,modelpath): super(Process, self).__init__() self.config = jsonData self.modelSignature = modelSignature self.data = predictedData self.modelpath = modelpath def run(self): #data = pd.json_normalize(self.data) minotoringService = self.config['minotoringService']['url'] trainingdatalocation = self.config['trainingDataLocation'][self.modelSignature] #filetimestamp = 'AION_'+str(int(time.time()))+'.csv' #data.to_csv(dataFile, index=False) inputFieldsJson = {"trainingDataLocation":trainingdatalocation,"currentDataLocation":self.data} inputFieldsJson = json.dumps(inputFieldsJson) ser_url = minotoringService+self.modelSignature+'/monitoring' driftTime = datetime.datetime.now() import requests try: response = requests.post(ser_url, data=inputFieldsJson,headers={"Content-Type":"application/json",}) outputStr=response.content outputStr = outputStr.decode('utf-8') outputStr = outputStr.strip() decoded_data = json.loads(outputStr) print(decoded_data) status = decoded_data['status'] msg = decoded_data['data'] except Exception as inst: if 'Failed to establish a new connection' in str(inst): status = 'Fail' msg = 'AION Service needs to be started' else: status = 'Fail' msg = 'Error during Drift Analysis' statusFile = os.path.join(self.modelpath,self.modelSignature+'_status.csv') df = pd.DataFrame(columns = ['dateTime', 'status', 'msg']) df = df.append({'dateTime' : driftTime, 'status' : status, 'msg' : msg},ignore_index = True) print(df) if (os.path.exists(statusFile)): df.to_csv(statusFile, mode='a', header=False,index=False) else: df.to_csv(statusFile, header=True,index=False) def launch_kafka_consumer(): from appbe.dataPath import DATA_DIR configfile = os.path.join(os.path.dirname(__file__),'..','config','kafkaConfig.conf') with open(configfile,'r',encoding='utf-8') as f: jsonData = json.load(f) f.close() kafkaIP=jsonData['kafkaCluster']['ip'] kafkaport = jsonData['kafkaCluster']['port'] topic = jsonData['kafkaCluster']['topic'] kafkaurl = kafkaIP+':'+kafkaport if jsonData['database']['csv'] == 'True': database = 'csv' elif jsonData['database']['mySql'] == 'True': database = 'mySql' else: database = 'csv' kafkaPath = os.path.join(DATA_DIR,'kafka') if not (os.path.exists(kafkaPath)): try: os.makedirs(kafkaPath) except OSError as e: pass consumer = KafkaConsumer(topic,bootstrap_servers=[kafkaurl],auto_offset_reset='earliest',enable_auto_commit=True,group_id='my-group',value_deserializer=lambda x: loads(x.decode('utf-8'))) for message in consumer: message = message.value data = message['data'] data = pd.json_normalize(data) modelname = message['usecasename'] version = message['version'] modelSignature = modelname+'_'+str(version) modelpath = os.path.join(kafkaPath,modelSignature) try: os.makedirs(modelpath) except OSError as e: pass secondsSinceEpoch = time.time() if modelSignature not in modelDetails: modelDetails[modelSignature] = {} modelDetails[modelSignature]['startTime'] = secondsSinceEpoch if database == 'csv': csvfile = os.path.join(modelpath,modelSignature+'.csv') if (os.path.exists(csvfile)): data.to_csv(csvfile, mode='a', header=False,index=False) else: data.to_csv(csvfile, header=True,index=False) modelTimeFrame = jsonData['timeFrame'][modelSignature] currentseconds = time.time() print(currentseconds - modelDetails[modelSignature]['startTime']) if (currentseconds - modelDetails[modelSignature]['startTime']) >= float(modelTimeFrame): csv_path = os.path.join(modelpath,modelSignature+'.csv') #predictedData = pd.read_csv(csv_path) ##predictedData = predictedData.to_json(orient="records") index = Process(modelSignature,jsonData,csv_path,modelpath) index.start() modelDetails[modelSignature]['startTime'] = secondsSinceEpoch <s> import os import shutil import sys import subprocess from os.path import expanduser import platform import json def createDockerImage(model_name,model_version,module,folderpath): command = 'docker pull python:3.8-slim-buster' os.system(command); subprocess.check_call(["docker", "build", "-t",module+'_'+model_name.lower()+":"+model_version,"."], cwd=folderpath) def local_docker_build(config): print(config) config = json.loads(config) model_name = config['usecase'] model_version = config['version'] mlaac__code_path = config['mlacPath'] docker_images = {} docker_images['ModelMonitoring'] = 'modelmonitoring'+'_'+model_name.lower()+':'+model_version dataset_addr = os.path.join(mlaac__code_path,'ModelMonitoring') createDockerImage(model_name,model_version,'modelmonitoring',dataset_addr) docker_images['DataIngestion'] = 'dataingestion'+'_'+model_name.lower()+':'+model_version dataset_addr = os.path.join(mlaac__code_path,'DataIngestion') createDockerImage(model_name,model_version,'dataingestion',dataset_addr) transformer_addr = os.path.join(mlaac__code_path,'DataTransformation') docker_images['DataTransformation'] = 'datatransformation'+'_'+model_name.lower()+':'+model_version createDockerImage(model_name,model_version,'datatransformation',transformer_addr) featureengineering_addr = os.path.join(mlaac__code_path,'FeatureEngineering') docker_images['FeatureEngineering'] = 'featureengineering'+'_'+model_name.lower()+':'+model_version createDockerImage(model_name,model_version,'featureengineering',featureengineering_addr) from os import listdir arr = [filename for filename in os.listdir(mlaac__code_path) if filename.startswith("ModelTraining")] docker_training_images = [] for x in arr: dockertraing={} dockertraing['Training'] = str(x).lower()+'_'+model_name.lower()+':'+model_version docker_training_images.append(dockertraing) training_addri = os.path.join(mlaac__code_path,x) createDockerImage(model_name,model_version,str(x).lower(),training_addri) docker_images['ModelTraining'] = docker_training_images docker_images['ModelRegistry'] = 'modelregistry'+'_'+model_name.lower()+':'+model_version deploy_addr = os.path.join(mlaac__code_path,'ModelRegistry') createDockerImage(model_name,model_version,'modelregistry',deploy_addr) docker_images['ModelServing'] = 'modelserving'+'_'+model_name.lower()+':'+model_version deploy_addr = os.path.join(mlaac__code_path,'ModelServing') createDockerImage(model_name,model_version,'modelserving',deploy_addr) outputjsonFile = os.path.join(mlaac__code_path,'dockerlist.json') with open(outputjsonFile, 'w') as f: json.dump(docker_images, f) f.close() output = {'Status':'Success','Msg':outputjsonFile} output = json.dumps(output) print("aion_build_container:",output)<s> import docker import json import logging def read_json(file_path): data = None
with open(file_path,'r') as f: data = json.load(f) return data def run_pipeline(inputconfig): inputconfig = json.loads(inputconfig) logfilepath = inputconfig['logfilepath'] logging.basicConfig(level=logging.INFO,filename =logfilepath) usecasename = inputconfig['usecase'] logging.info("UseCaseName :"+str(usecasename)) version = inputconfig['version'] logging.info("version :"+str(version)) config = inputconfig['dockerlist'] persistancevolume = inputconfig['persistancevolume'] logging.info("PersistanceVolume :"+str(persistancevolume)) datasetpath = inputconfig['datasetpath'] logging.info("DataSet Path :"+str(datasetpath)) config = read_json(config) client = docker.from_env() inputconfig = {'modelName':usecasename,'modelVersion':str(version),'dataLocation':datasetpath} inputconfig = json.dumps(inputconfig) inputconfig = inputconfig.replace('"', '\\\\"') logging.info("===== Model Monitoring Container Start =====") outputStr = client.containers.run(config['ModelMonitoring'],'python code.py -i'+datasetpath,volumes=[persistancevolume+':/aion']) outputStr = outputStr.decode('utf-8') logging.info('ModelMonitoring: '+str(outputStr)) print('ModelMonitoring: '+str(outputStr)) logging.info("===== ModelMonitoring Stop =====") logging.info("===== Data Ingestion Container Start =====") outputStr = client.containers.run(config['DataIngestion'],'python code.py',volumes=[persistancevolume+':/aion']) outputStr = outputStr.decode('utf-8') logging.info('DataIngestion: '+str(outputStr)) print('DataIngestion: '+str(outputStr)) logging.info("===== Data Ingestion Container Stop =====") outputStr = outputStr.strip() decoded_data = json.loads(outputStr) status = decoded_data['Status'] if status != 'Success': output = {'Status':'Error','Msg':'Data Ingestion Fails'} logging.info("===== Transformation Container Start =====") outputStr = client.containers.run(config['DataTransformation'],'python code.py',volumes=[persistancevolume+':/aion']) outputStr = outputStr.decode('utf-8') logging.info('Data Transformations: '+str(outputStr)) print('Data Transformations: '+str(outputStr)) logging.info("===== Transformation Container Done =====") outputStr = outputStr.strip() decoded_data = json.loads(outputStr) status = decoded_data['Status'] if status != 'Success': output = {'Status':'Error','Msg':'Data Transformations Fails'} logging.info("===== Feature Engineering Container Start =====") outputStr = client.containers.run(config['FeatureEngineering'],'python code.py',volumes=[persistancevolume+':/aion']) outputStr = outputStr.decode('utf-8') logging.info('FeatureEngineering: '+str(outputStr)) print('FeatureEngineering: '+str(outputStr)) logging.info("===== Feature Engineering Container Done =====") outputStr = outputStr.strip() decoded_data = json.loads(outputStr) status = decoded_data['Status'] modeltraining = config['ModelTraining'] for mt in modeltraining: logging.info("===== Training Container Start =====") outputStr = client.containers.run(mt['Training'],'python code.py',volumes=[persistancevolume+':/aion']) outputStr = outputStr.decode('utf-8') logging.info('ModelTraining: '+str(outputStr)) print('ModelTraining: '+str(outputStr)) logging.info("===== Training Container Done =====") outputStr = outputStr.strip() try: decoded_data = json.loads(outputStr) status = decoded_data['Status'] except Exception as inst: logging.info(inst) logging.info("===== Model Registry Start =====") outputStr = client.containers.run(config['ModelRegistry'],'python code.py',volumes=[persistancevolume+':/aion']) outputStr = outputStr.decode('utf-8') logging.info('ModelRegistry: '+str(outputStr)) print('ModelRegistry: '+str(outputStr)) logging.info("===== ModelRegistry Done =====") logging.info("===== ModelServing Start =====") outputStr = client.containers.run(config['ModelServing'],'python code.py',volumes=[persistancevolume+':/aion']) outputStr = outputStr.decode('utf-8') logging.info('Prediction: '+str(outputStr)) print('Prediction: '+str(outputStr)) logging.info("===== ModelServing Done =====") <s> import os import sys import json from pathlib import Path import subprocess import shutil import argparse def create_and_save_yaml(git_storage_path, container_label,usecasepath): file_name_prefix = 'gh-acr-' yaml_file = f"""\\ name: gh-acr-{container_label} on: push: branches: main paths: {container_label}/** workflow_dispatch: jobs: gh-acr-build-push: runs-on: ubuntu-latest steps: - name: 'checkout action' uses: actions/checkout@main - name: 'azure login' uses: azure/login@v1 with: creds: ${{{{ secrets.AZURE_CREDENTIALS }}}} - name: 'build and push image' uses: azure/docker-login@v1 with: login-server: ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}} username: ${{{{ secrets.REGISTRY_USERNAME }}}} password: ${{{{ secrets.REGISTRY_PASSWORD }}}} - run: | docker build ./{container_label}/ModelMonitoring -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelmonitoring:{container_label} docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelmonitoring:{container_label} docker build ./{container_label}/DataIngestion -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/dataingestion:{container_label} docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/dataingestion:{container_label} docker build ./{container_label}/DataTransformation -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/datatransformation:{container_label} docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/datatransformation:{container_label} docker build ./{container_label}/FeatureEngineering -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/featureengineering:{container_label} docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/featureengineering:{container_label} docker build ./{container_label}/ModelRegistry -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelregistry:{container_label} docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelregistry:{container_label} docker build ./{container_label}/ModelServing -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelserving:{container_label} docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelserving:{container_label} """ arr = [filename for filename in os.listdir(usecasepath) if filename.startswith("ModelTraining")] for x in arr: yaml_file+=' docker build ./'+container_label+'/'+x+' -t ${{ secrets.REGISTRY_LOGIN_SERVER }}/'+x.lower()+':'+container_label yaml_file+='\\n' yaml_file+=' docker push ${{ secrets.REGISTRY_LOGIN_SERVER }}/'+x.lower()+':'+container_label yaml_file+='\\n' with open(Path(git_storage_path)/(file_name_prefix + container_label + '.yaml'), 'w') as f: f.write(yaml_file) def run_cmd(cmd): try: subprocess.check_output(cmd, stderr=subprocess.PIPE) except subprocess.CalledProcessError as e: if e.stderr: if isinstance(e.stderr, bytes): err_msg = e.stderr.decode(sys.getfilesystemencoding()) else: err_msg = e.stderr elif e.output: if isinstance(e.output, bytes): err_msg = e.output.decode(sys.getfilesystemencoding()) else: err_msg = e.output else: err_msg = str(e) return False, err_msg return True, "" def validate_config(config): non_null_keys = ['url','username', 'token', 'location', 'gitFolderLocation', 'email', 'modelName'] missing_keys = [k for k in non_null_keys if k not in config.keys()] if missing_keys: raise ValueError(f"following fields are missing in config file: {missing_keys}") for k,v in config.items(): if k in non_null_keys and not v: raise ValueError(f"Please provide value for '{k}' in config file.") def upload(config): validate_config(config) url_type = config.get('url_type','https') if url_type == 'https': https_str = "https://" url = https_str + config['username'] + ":" + config['token'] + "@" + config['url'][len(https_str):] else: url = config['url'] model_location = Path(config['location']) git_folder_location = Path(config['gitFolderLocation']) git_folder_location.mkdir(parents=True, exist_ok=True) (git_folder_location/'.github'/'workflows').mkdir(parents=True, exist_ok=True) if not model_location.exists(): raise ValueError('Trained model data not found') os.chdir(str(git_folder_location)) (git_folder_location/config['modelName']).mkdir(parents=True, exist_ok=True) shutil.copytree(model_location, git_folder_location/config['modelName'], dirs_exist_ok=True) create_and_save_yaml((git_folder_location/'.github'/'workflows'), config['modelName'],config['location']) if (Path(git_folder_location)/'.git').exists(): first_upload = False else: first_upload = True if first_upload: cmd = ['git','init'] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) cmd = ['git','config','user.name',config['username']] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) cmd = ['git','config','user.email',config['email']] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) cmd = ['git','add', '-A'] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) cmd = ['git','commit','-m',f"commit {config['modelName']}"] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) cmd = ['git','branch','-M','main'] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) if first_upload: cmd = ['git','remote','add','origin', url] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) cmd = ['git','push','-f','-u','origin', 'main'] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) else: cmd = ['git','push'] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) return json.dumps({'Status':'SUCCESS'}) if __name__ == '__main__': try: if shutil.which('git') is None: raise ValueError("git is not installed on this system") parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', help='Config file location or as a string') args = parser.parse_args() if Path(args.config).is_file() and Path(args.config).suffix == '.json': with open(args.config,'r') as f: config = json.load(f) else: config = json.loads(args.config) print(upload(config)) except Exception as e: status = {'Status':'Failure','msg':str(e)} print(json.dumps(status))<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import logging logging.getLogger('tensorflow').disabled = True import json #from nltk.corpus import stopwords from collections import Counter from numpy import mean from numpy import std from pandas import read_csv from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder from sklearn.compose import ColumnTransformer from learner.machinelearning import machinelearning # from sklearn.dummy import DummyClassifier # create histograms of numeric input variables import sys import os import re import pandas as pd import numpy as np from learner.aion_matrix import aion_matrix import tensorflow as tf tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) import autokeras as ak # load the sonar dataset from sklearn.model_selection import train_test_split # from sklearn.metrics import cohen_kappa_score # from sklearn.metrics import roc_auc_score # from
sklearn.metrics import confusion_matrix from sklearn.metrics import roc_curve from math import sqrt from sklearn.metrics import mean_squared_error, explained_variance_score,mean_absolute_error from sklearn import metrics class aionNAS: def __init__(self,nas_class,nas_params,xtrain1,xtest1,ytrain1,ytest1,deployLocation): try: self.dfFeatures=None self.nas_class=nas_class self.nas_params=nas_params self.targetFeature=None self.log = logging.getLogger('eion') self.n_models=int(self.nas_params['n_models']) self.n_epochs=int(self.nas_params['n_epochs']) self.optimizer=self.nas_params['optimizer'] self.metrics=self.nas_params['metrics'] self.tuner=self.nas_params['tuner'] self.seed=int(self.nas_params['seed']) self.xtrain = xtrain1 self.xtest = xtest1 self.ytrain = ytrain1 self.ytest = ytest1 #self.labelMaps = labelMaps self.deployLocation=deployLocation except Exception as e: self.log.info('<!------------- NAS INIT Error ---------------> ') exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) def paramCheck(self): try: if not (self.nas_class): self.log.info('<!------------- NAS class input Error ---------------> ') if not (self.nas_params): self.log.info('<!------------- NAS model hyperparameter input Error ---------------> ') if not (self.targetFeature): self.log.info('<!------------- NAS model targetFeature input Error ---------------> ') if (self.n_models < 1): self.n_models=1 if not (self.dfFeatures): self.log.info('<!------------- NAS model features Error ---------------> ') if (self.n_epochs < 1): self.n_models=1 if not (self.optimizer): self.optimizer="adam" if not (self.tuner): self.tuner="greedy" if (self.seed < 1): self.seed=0 if not (self.metrics): self.metrics=None except ValueError: self.log.info('<------------------ NAS config file error. --------------->') def recall_m(self,y_true, y_pred): true_positives = tf.keras.metrics.Sum(tf.keras.backend.round(tf.keras.backend.clip(y_true * y_pred, 0, 1))) possible_positives = tf.keras.metrics.Sum(tf.keras.backend.round(tf.keras.backend.clip(y_true, 0, 1))) recall = true_positives / (possible_positives + tf.keras.backend.epsilon()) return recall def precision_m(self,y_true, y_pred): true_positives = tf.keras.metrics.Sum(tf.keras.backend.round(tf.keras.backend.clip(y_true * y_pred, 0, 1))) predicted_positives = tf.keras.metrics.Sum(tf.keras.backend.round(tf.keras.backend.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + tf.keras.backend.epsilon()) return precision def f1_score(self,y_true, y_pred): precision = self.precision_m(y_true, y_pred) recall = self.recall_m(y_true, y_pred) return 2*((precision*recall)/(precision+recall+tf.keras.backend.epsilon())) def nasStructdataPreprocess(self): df=self.data self.paramCheck() target=df[self.targetFeature].values counter = Counter(target) for k,v in counter.items(): per = v / len(target) * 100 self.log.info('autokeras struct Class=%d, Count=%d, Percentage=%.3f%%' % (k, v, per)) # select columns with numerical data types num_ix = df.select_dtypes(include=['int64', 'float64']).columns subset = df[num_ix] last_ix = len(df.columns) - 1 y=df[self.targetFeature] X = df.drop(self.targetFeature, axis=1) #Using Pearson Correlation # plt.figure(figsize=(12,10)) # cor = df.corr() # sns.heatmap(cor, annot=True, cmap=plt.cm.Reds) # plt.show() # select categorical features cat_ix = X.select_dtypes(include=['object', 'bool']).columns # one hot encode cat features only ct = ColumnTransformer([('o',OneHotEncoder(),cat_ix)], remainder='passthrough') X = X.reset_index() X=X.replace(to_replace="NULL",value=0) X = X.dropna(how='any',axis=0) X = ct.fit_transform(X) from sklearn.preprocessing import scale X = scale(X) # label encode the target variable to have the classes 0 and 1 y = LabelEncoder().fit_transform(y) # separate into train and test sets X_train, X_test, y_train, y_test=train_test_split(X,y,test_size=self.test_size,random_state=1) return X_train, X_test, y_train, y_test def nasStructClassification(self,scoreParam): try: objClf = aion_matrix() X_train, X_test, y_train, y_test= self.xtrain, self.xtest, self.ytrain, self.ytest modelName="nas_structdata_classifier" self.log.info("Processing structured data block...\\n") s_in = ak.StructuredDataInput() #s_in = Flatten()(s_in) s_out = ak.StructuredDataBlock(categorical_encoding=True)(s_in) self.log.info("Data pipe via autokeras Classification Dense layers ...\\n") s_out = ak.ClassificationHead()(s_out) self.log.info("applying autokeras automodel to run different neural models...\\n") try: tuner = str(self.tuner).lower() except UnicodeEncodeError: tuner = (self.tuner.encode('utf8')).lower() nasclf = ak.AutoModel( inputs=s_in, outputs=s_out, overwrite=True, tuner=tuner, max_trials=self.n_models, seed=self.seed) # compile the model #nasclf.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc',self.f1_score,self.precision_m, self.recall_m]) nasclf.fit(X_train, y_train, epochs=self.n_epochs) best_model = nasclf.export_model() mpredict=best_model.predict(X_test) mtpredict=best_model.predict(X_train) #loss, accuracy, f1_score, precision, recall = nasclf.evaluate(X_test, y_test, verbose=0) #from sklearn.metrics import classification_report #Classification report y_pred_bool = np.argmax(mpredict, axis=1) y_train_pred_bool = np.argmax(mtpredict, axis=1) score = objClf.get_score(scoreParam,y_test, y_pred_bool) #best_model = nasclf.export_model() best_model_summary=best_model.summary() filename = os.path.join(self.deployLocation,'log','summary.txt') with open(filename,'w') as f: best_model.summary(print_fn=lambda x: f.write(x + '\\n')) f.close() #self.log.info("==========") #self.log.info(best_model_summary) self.log.info("NAS struct data classification, best model summary: \\n"+str(best_model.summary(print_fn=self.log.info))) #self.log.info("==========") #Save and load model # # #try: # try: # best_model.save("model_class_autokeras", save_format="tf") # except Exception: # best_model.save("model_class_autokeras.h5") # loaded_model = load_model("model_class_autokeras", custom_objects=ak.CUSTOM_OBJECTS) # loadedmodel_predict=loaded_model.predict(X_test) loss,accuracy_m=nasclf.evaluate(X_test, y_test) #mpredict_classes = mpredict.argmax(axis=-1) #accuracy = accuracy_score(y_test.astype(int), mpredict.astype(int)) # precision tp / (tp + fp) #precision = precision_score(y_test.astype(int), mpredict.astype(int),average='macro') # recall: tp / (tp + fn) #recall = recall_score(y_test.astype(int), mpredict.astype(int),average='macro') #f1score=f1_score(y_test.astype(int), mpredict.astype(int) , average="macro") self.log.info("Autokeras struct data classification metrics: \\n") except Exception as inst: self.log.info("Error: NAS failed "+str(inst)) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) print(inst) return modelName,nasclf,score def nasStructRegressor(self,scoreParam): objClf = aion_matrix() modelName="nas_struct_regressor" #self.paramCheck() X_train, X_test, y_train, y_test= self.xtrain, self.xtest, self.ytrain, self.ytest # Autokeras alg s_in = ak.StructuredDataInput() #tf.keras.layers.GlobalMaxPooling2D()(s_in) s_out = ak.StructuredDataBlock(categorical_encoding=True)(s_in) self.log.info("Data pipe via autokeras Regression Dense layers ...\\n") s_out = ak.RegressionHead(loss='mse', metrics=['mae'])(s_out) self.log.info("applying autokeras automodel to evaluate different neural models...\\n") try: tuner = str(self.tuner).lower() except UnicodeEncodeError: tuner = (self.tuner.encode('utf8')).lower() nas_reg = ak.AutoModel( inputs=s_in, outputs=s_out, overwrite=True, tuner=tuner, max_trials=self.n_models) nas_reg.fit(X_train, y_train, epochs=self.n_epochs) best_model = nas_reg.export_model() self.log.info("NAS struct data regression best model summary: \\n") best_model_summary=best_model.summary(print_fn=self.log.info) self.log.info(best_model_summary) predictm=best_model.predict(X_test) mtpredict=best_model.predict(X_train) score = objClf.get_score(scoreParam,y_test, predictm) self.log.info("Autokeras struct data regression metrics: \\n") return modelName,nas_reg,score def nasMain(self,scoreParam): modelName = "" nasclf=None nas_reg=None #text_reg_model=None mse_value=0 reg_rmse=0 mape_reg=0 huber_loss_reg=0 accuracy=0 precision=0 recall=0 #Dummy values to return main for classification problems dummy_score_1=int(0) #dummy_score_2=int(0) try: if ((self.nas_class.lower() == "classification")): modelName,nasclf,score=self.nasStructClassification(scoreParam) self.log.info('NAS Struct Classification score: '+str(score)) best_model_nas = nasclf.export_model() scoredetails = '{"Model":"NAS","Score":'+str(round(score,2))+'}' return best_model_nas,self.nas_params,round(score,2),'NAS',-1,-1,-1 elif (self.nas_class.lower() == "regression"): modelName,nas_reg,score =self.nasStructRegressor(scoreParam) self.log.info('NAS Struct Regression score: '+str(score)) best_model_nas = nas_reg.export_model() ''' filename = os.path.join(self.deployLocation,'model','autoKerasModel') best_model_nas = nas_reg.export_model() try: best_model_nas.save(filename, save_format="tf") modelName = 'autoKerasModel' except Exception: filename = os.path.join(self.deployLocation,'model','autoKerasModel.h5') best_model_nas.save(filename) modelName = 'autoKerasModel.h5' ''' scoredetails = '{"Model":"NAS","Score":'+str(round(score,2))+'}' ''' error_matrix = '"MSE":"'+str(round(mse_value,2))+'","RMSE":"'+str(round(reg_rmse,2))+'","MAPE":"'+str(round(mape_reg,2))+'","MSLE":"'+str(round(msle_reg,2))+'"' ''' return best_model_nas,self.nas_params,score,'NAS' else: pass except Exception as inst: print(inst) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) output = {"status":"FA
IL","message":str(inst).strip('"')} output = json.dumps(output) <s> import itertools import logging from typing import Optional, Dict, Union from nltk import sent_tokenize import torch from transformers import( AutoModelForSeq2SeqLM, AutoTokenizer, PreTrainedModel, PreTrainedTokenizer, ) logger = logging.getLogger(__name__) class QGPipeline: """Poor man's QG pipeline""" def __init__( self, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, ans_model: PreTrainedModel, ans_tokenizer: PreTrainedTokenizer, qg_format: str, use_cuda: bool ): self.model = model self.tokenizer = tokenizer self.ans_model = ans_model self.ans_tokenizer = ans_tokenizer self.qg_format = qg_format self.device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu" self.model.to(self.device) if self.ans_model is not self.model: self.ans_model.to(self.device) assert self.model.__class__.__name__ in ["T5ForConditionalGeneration", "BartForConditionalGeneration"] if "T5ForConditionalGeneration" in self.model.__class__.__name__: self.model_type = "t5" else: self.model_type = "bart" def __call__(self, inputs: str): inputs = " ".join(inputs.split()) sents, answers = self._extract_answers(inputs) flat_answers = list(itertools.chain(*answers)) if len(flat_answers) == 0: return [] if self.qg_format == "prepend": qg_examples = self._prepare_inputs_for_qg_from_answers_prepend(inputs, answers) else: qg_examples = self._prepare_inputs_for_qg_from_answers_hl(sents, answers) qg_inputs = [example['source_text'] for example in qg_examples] questions = self._generate_questions(qg_inputs) output = [{'answer': example['answer'], 'question': que} for example, que in zip(qg_examples, questions)] return output def _generate_questions(self, inputs): inputs = self._tokenize(inputs, padding=True, truncation=True) outs = self.model.generate( input_ids=inputs['input_ids'].to(self.device), attention_mask=inputs['attention_mask'].to(self.device), max_length=32, num_beams=4, ) questions = [self.tokenizer.decode(ids, skip_special_tokens=True) for ids in outs] return questions def _extract_answers(self, context): sents, inputs = self._prepare_inputs_for_ans_extraction(context) inputs = self._tokenize(inputs, padding=True, truncation=True) outs = self.ans_model.generate( input_ids=inputs['input_ids'].to(self.device), attention_mask=inputs['attention_mask'].to(self.device), max_length=32, ) dec = [self.ans_tokenizer.decode(ids, skip_special_tokens=False) for ids in outs] answers = [item.split('<sep>') for item in dec] answers = [i[:-1] for i in answers] return sents, answers def _tokenize(self, inputs, padding=True, truncation=True, add_special_tokens=True, max_length=512 ): inputs = self.tokenizer.batch_encode_plus( inputs, max_length=max_length, add_special_tokens=add_special_tokens, truncation=truncation, padding="max_length" if padding else False, pad_to_max_length=padding, return_tensors="pt" ) return inputs def _prepare_inputs_for_ans_extraction(self, text): sents = sent_tokenize(text) inputs = [] for i in range(len(sents)): source_text = "extract answers:" for j, sent in enumerate(sents): if i == j: sent = "<hl> %s <hl>" % sent source_text = "%s %s" % (source_text, sent) source_text = source_text.strip() if self.model_type == "t5": source_text = source_text + " </s> " inputs.append(source_text) return sents, inputs def _prepare_inputs_for_qg_from_answers_hl(self, sents, answers): inputs = [] for i, answer in enumerate(answers): if len(answer) == 0: continue for answer_text in answer: sent = sents[i] sents_copy = sents[:] answer_text = answer_text.strip() ans_start_idx = 0 # ans_start_idx = sent.index(answer_text) # if answer_text in sent: # ans_start_idx = sent.index(answer_text) # else: # continue sent = f"{sent[:ans_start_idx]} <hl> {answer_text} <hl> {sent[ans_start_idx + len(answer_text): ]}" sents_copy[i] = sent source_text = " ".join(sents_copy) source_text = f"generate question: {source_text}" if self.model_type == "t5": source_text = source_text + " </s> " inputs.append({"answer": answer_text, "source_text": source_text}) return inputs def _prepare_inputs_for_qg_from_answers_prepend(self, context, answers): flat_answers = list(itertools.chain(*answers)) examples = [] for answer in flat_answers: source_text = f"answer: {answer} context: {context}" if self.model_type == "t5": source_text = source_text + " </s> " examples.append({"answer": answer, "source_text": source_text}) return examples class MultiTaskQAQGPipeline(QGPipeline): def __init__(self, **kwargs): super().__init__(**kwargs) def __call__(self, inputs: Union[Dict, str]): if type(inputs) is str: # do qg return super().__call__(inputs) else: # do qa return self._extract_answer(inputs["question"], inputs["context"]) def _prepare_inputs_for_qa(self, question, context): source_text = f"question: {question} context: {context}" if self.model_type == "t5": source_text = source_text + " </s> " return source_text def _extract_answer(self, question, context): source_text = self._prepare_inputs_for_qa(question, context) inputs = self._tokenize([source_text], padding=False) outs = self.model.generate( input_ids=inputs['input_ids'].to(self.device), attention_mask=inputs['attention_mask'].to(self.device), max_length=16, ) answer = self.tokenizer.decode(outs[0], skip_special_tokens=True) return answer class E2EQGPipeline: def __init__( self, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, use_cuda: bool ) : self.model = model self.tokenizer = tokenizer self.device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu" self.model.to(self.device) assert self.model.__class__.__name__ in ["T5ForConditionalGeneration", "BartForConditionalGeneration"] if "T5ForConditionalGeneration" in self.model.__class__.__name__: self.model_type = "t5" else: self.model_type = "bart" self.default_generate_kwargs = { "max_length": 256, "num_beams": 4, "length_penalty": 1.5, "no_repeat_ngram_size": 3, "early_stopping": True, } def __call__(self, context: str, **generate_kwargs): inputs = self._prepare_inputs_for_e2e_qg(context) # TODO: when overrding default_generate_kwargs all other arguments need to be passsed # find a better way to do this if not generate_kwargs: generate_kwargs = self.default_generate_kwargs input_length = inputs["input_ids"].shape[-1] # max_length = generate_kwargs.get("max_length", 256) # if input_length < max_length: # logger.warning( # "Your max_length is set to {}, but you input_length is only {}. You might consider decreasing max_length manually, e.g. summarizer('...', max_length=50)".format( # max_length, input_length # ) # ) outs = self.model.generate( input_ids=inputs['input_ids'].to(self.device), attention_mask=inputs['attention_mask'].to(self.device), **generate_kwargs ) prediction = self.tokenizer.decode(outs[0], skip_special_tokens=True) questions = prediction.split("<sep>") questions = [question.strip() for question in questions[:-1]] return questions def _prepare_inputs_for_e2e_qg(self, context): source_text = f"generate questions: {context}" if self.model_type == "t5": source_text = source_text + " </s> " inputs = self._tokenize([source_text], padding=False) return inputs def _tokenize( self, inputs, padding=True, truncation=True, add_special_tokens=True, max_length=512 ): inputs = self.tokenizer.batch_encode_plus( inputs, max_length=max_length, add_special_tokens=add_special_tokens, truncation=truncation, padding="max_length" if padding else False, pad_to_max_length=padding, return_tensors="pt" ) return inputs SUPPORTED_TASKS = { "question-generation": { "impl": QGPipeline, "default": { "model": "valhalla/t5-small-qg-hl", "ans_model": "valhalla/t5-small-qa-qg-hl", } }, "multitask-qa-qg": { "impl": MultiTaskQAQGPipeline, "default": { "model": "valhalla/t5-small-qa-qg-hl", } }, "e2e-qg": { "impl": E2EQGPipeline, "default": { "model": "valhalla/t5-small-e2e-qg", } } } def pipeline( task: str, model: Optional = None, tokenizer: Optional[Union[str, PreTrainedTokenizer]] = None, qg_format: Optional[str] = "highlight", ans_model: Optional = None, ans_tokenizer: Optional[Union[str, PreTrainedTokenizer]] = None, use_cuda: Optional[bool] = True, **kwargs, ): # Retrieve the task if task not in SUPPORTED_TASKS: raise KeyError("Unknown task {}, available tasks are {}".format(task, list(SUPPORTED_TASKS.keys()))) targeted_task = SUPPORTED_TASKS[task] task_class = targeted_task["impl"] # Use default model/config/tokenizer for the task if no model is provided if model is None: model = targeted_task["default"]["model"] # Try to infer tokenizer from model or config name (if provided as str) if tokenizer is None: if isinstance(model, str): tokenizer = model else: # Impossible to guest what is the right tokenizer here raise Exception( "Impossible to guess which tokenizer to use. " "Please provided a PretrainedTokenizer class or a path/identifier to a pretrained tokenizer." ) # Instantiate tokenizer if needed if isinstance(tokenizer, (str, tuple)): if isinstance(tokenizer, tuple): # For tuple we have (tokenizer name, {kwargs}) tokenizer = AutoTokenizer.from_pretrained(tokenizer[0], **tokenizer[1]) else: tokenizer = AutoTokenizer.from_pretrained(tokenizer) # Instantiate model if needed if isinstance(model, str): model = AutoModelForSeq2SeqLM.from_pretrained(model) if task == "question-generation": if ans_model is None: # load default ans model ans_model = targeted_task["default"]["ans_model"] ans_tokenizer = AutoTokenizer.from_pretrained(ans_model) ans_model = AutoModelForSeq2SeqLM.from_pretrained(ans_model) else: # Try to infer tokenizer from model or config name (if provided as str) if ans_tokenizer is None: if isinstance(ans_model, str): ans_tokenizer = ans_model else: # Impossible to guest what is the right tokenizer here raise Exception( "Impossible to guess which tokenizer to use. " "Please provided a PretrainedTokenizer class or a path/identifier to a pretrained tokenizer." ) # Instantiate tokenizer if needed if isinstance(ans_tokenizer, (str, tuple)): if isinstance(ans_tokenizer, tuple): # For tuple we have (tokenizer name, {kwargs}) ans_tokenizer = AutoTokenizer.from_pretrained(ans_tokenizer[0], **ans_tokenizer[1]) else: ans_tokenizer = AutoTokenizer.from_pretrained(ans_tokenizer) if isinstance(ans_model, str): ans_model = AutoModelForSeq2SeqLM.from_pretrained(ans_model) if task == "e2e-qg": return task_class(model=model, tokenizer=tokenizer, use_cuda=use_cuda) elif task == "question-generation": return task_class
(model=model, tokenizer=tokenizer, ans_model=ans_model, ans_tokenizer=ans_tokenizer, qg_format=qg_format, use_cuda=use_cuda) else: return task_class(model=model, tokenizer=tokenizer, ans_model=model, ans_tokenizer=tokenizer, qg_format=qg_format, use_cuda=use_cuda) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import socket import os import rsa from os.path import expanduser from pathlib import Path import requests import platform from appbe.dataPath import DATA_DIR import socket import getmac import subprocess import sys import json from datetime import datetime import binascii computername = socket.getfqdn() global_key = ''' -----BEGIN RSA PUBLIC KEY----- MIIBCgKCAQEAzJcxqRiUpp7CzViyqNlYaeyceDh5y6Ib4SoxoyNkN3+k0q+cr1lb k0KdWTtHIVqH1wsLYofYjpB7X2RN0KYTv8VfwmfQNrpFEbiRz4gcAeuxGCPgGaue N1ttujQMWHWCcY+UH5Voh8YUfkW8P+T3zxvr1d30D+kVBJC59y/31JvTzr3Bw/T+ NYv6xiienYiEYtm9d5ATioEwZOXaQBrtVvRmqcod5A1h4kn1ZauLX2Ph8H4TAuit NLtw6xUCJNumphP7xdU+ca6P6a6eaLprgKhvky+nz16u9/AC2AazRQHKWf8orS6b fw16JDCRs0zU4mTQLCjkUUt0edOaRhUtcQIDAQAB -----END RSA PUBLIC KEY----- ''' quarter_key = ''' -----BEGIN RSA PUBLIC KEY----- MIIBCgKCAQEAmKzOJxVEV9ulA+cjfxguAduLMD47OWjLcEAEmEuK8vR4O5f6e2h1 08NniGC+nkwqmM00U7JTVBkqnt9S/JgE3pAH2xwfWda2OvXNWisWmOQdqB0+XRHh NXsIG3yRk/sMlDpe7MJIyM5ADSu01PLn9FZTfmMq7lEp32tAf71cuUE/dwuWSvEQ WK2hn1L4D97O43XCd7FHtMSHfgtjdcCFgX9IRgWLKC8Bm3q5qcqF4v3cHuYTj3V9 njxPtRqPg6HJFiJrm9AX5bUEHAvbTcw4wAmsNTRQHPvVB+Lc+yGh5x8crhKjNB01 gdB5I3a4mPO7dKvadR6Mr28trr0Ff5t2HQIDAQAB -----END RSA PUBLIC KEY----- ''' halfYear_key=''' -----BEGIN RSA PUBLIC KEY----- MIIBCgKCAQEAgrGNwl8CNYQmVxi8/GEgPjfL5aEmyPkDyaJb9h4hZDSZCeeKd7Rv wwhuRTdBBfOp0bQ7QS7NYMg38Xlc3x85I9RnxdQdDKn2nRuvG0hG3wMBFy/DCSXF tXbDjJkLijAhqcBNu8m+a2Gtn14ShC7TbcfY4iVXho3WFUrn0xq6S5ducqWCsLJh R+TNImCaMICqfoAzEDGC3ojO5Hi3vJmmyK5CVp6bt4wLRATQjcp1ujGW4Uv4kEgp 7TR077c226v1KOdKdyZPHJzT1MKwZrG2Gdluk3/Y1apbwyGzYqFdTCOAB+mE73Dn wFXURgDJQmaU2oxxaA13WRcELpnirm+aIwIDAQAB -----END RSA PUBLIC KEY----- ''' oneYear_key=''' -----BEGIN RSA PUBLIC KEY----- MIIBCgKCAQEA3GLqn+vkKn3fTNH3Bbb3Lq60pCoe+mn0KPz74Bp7p5OkZAUe14pP Tcf/UqdPwiENhSCseWtfZmfKDK8qYRHJ5xW02+AhHPPdiacS45X504/lGG3q/4SG ZgaFhMDvX+IH/ZH+qqbU3dRQhXJCCrAVAa7MonzM6yPiVeS2SdpMkNg1VDR1oTLB Pn+qSV6CnkK1cYtWCRQ23GH2Ru7fc09r7m8hVcifKJze84orpHC5FX0WScQuR8h/ fs1IbGkxTOxP8vplUj/cd4JjUxgd+w+8R4kcoPhdGZF5UGeZA8xMERzQLvh+4Ui0 KIvz5/iyKB/ozaeSG0OMwDAk3WDEnb1WqQIDAQAB -----END RSA PUBLIC KEY----- ''' full_key=''' -----BEGIN RSA PUBLIC KEY----- MIIBCgKCAQEAhqfNMuYYLdVrePhkO9rU/qT6FgolzI0YyzIJ2OeJE+++JioYm6nn ohQU32iiE0DZlCCLrHJXOOIAz2Op80goX0lxtngyxVUPsiB5CI77sAC7x6K3anJ0 elpnQCC0+xV2ZL5eIMNQHLe+X6wJl/HGWqkUlxKpWr4/kBEB4EisW60OePfhntIN 4OUJ7iEq+sDdOM5WazJIXeNV1cig4i6057GE3k5ITcQUmw17DZu2+dqkIscckaG+ t5SF7Qnvt4IY8IeQp2htx3yD+CJCV0u2uKwoSFMGJn3OWdaixC3+eojyMXmfAWtQ Ee9NLNNaTCMIvQ8BeItJLQs2Htw3bZNMvwIDAQAB -----END RSA PUBLIC KEY----- ''' def validate_key_Pair(privatepath,publickey): with open(privatepath, 'rb') as privatefile: keydata = privatefile.read() privatefile.close() try: privkey = rsa.PrivateKey.load_pkcs1(keydata,'PEM') data = 'Validate Global License' signature = rsa.sign(data.encode('utf-8'), privkey, 'SHA-1') pubkey = rsa.PublicKey.load_pkcs1(publickey) except: return False try: rsa.verify(data.encode('utf-8'), signature, pubkey) return True except Exception as e: return False def updateDRecord(licensepath): domain_license_path = os.path.join(DATA_DIR,'License','license_domain.lic') if(os.path.isfile(licensepath)): with open(licensepath, 'rb') as f: licensekey = f.read() f.close() with open(domain_license_path, 'wb') as f: f.write(licensekey) f.close() if(validate_key_Pair(domain_license_path,global_key)): return True,'Valid Domain License' else: return False,'Invalid Domain License' else: return False,'File Not Exists' def generateLicenseKey(userKey): record = {'UserKey':userKey} record = json.dumps(record) status = 'Error' url = 'https://qw7e33htlk.execute-api.ap-south-1.amazonaws.com/default/aion_license' try: response = requests.post(url, data=record,headers={"x-api-key":"3cQKRkKA4S57pYrkFp1Dd9jRXt4xnFoB9iqhAQRM","Content-Type":"application/json",}) if response.status_code == 200: outputStr=response.content outputStr = outputStr.decode('utf-8','ignore') outputStr = outputStr.strip() license_dict = json.loads(str(outputStr)) if license_dict['status'] == 'success': status = 'Success' licenseKey = license_dict['msg'] else: status = 'Error' licenseKey = '' else: status = 'Error' licenseKey = '' except Exception as inst: print(inst) status = 'Error' licenseKey = '' msg = {'status':status,'key':userKey,'licenseKey':licenseKey,'link':''} return msg def updateRecord(licensepath): currentDirectory = os.path.dirname(os.path.abspath(__file__)) license_path = os.path.join(currentDirectory,'..','lic','license.lic') if(os.path.isfile(licensepath)): with open(licensepath, 'rb') as f: licensekey = f.read() f.close() with open(license_path, 'wb') as f: f.write(licensekey) f.close() status,msg = check_domain_license() if status: status,msg = getdaysfromstartdate() if status: status,msg = check_days_license(int(msg)) return status,msg else: return False,'File Not Exists' def check_domain_license(): if 'CORP.HCL.IN' in computername: return True,'HCL Domain' else: return True,'HCL Domain' def diff_month(d1, d2): return (d1.year - d2.year) * 12 + d1.month - d2.month def getdaysfromstartdate(): currentDirectory = os.path.dirname(os.path.abspath(__file__)) startdatePath = os.path.join(currentDirectory,'..','lic','startdate.txt') if(os.path.isfile(startdatePath)): with open(startdatePath, "rb") as fl: encrypted_message = fl.read() fl.close() privkey = '''-----BEGIN RSA PRIVATE KEY----- MIIEqwIBAAKCAQEAm75ZwaepuxGJjU1Slk1+IUO2E49Hy8i9dym5FUaBRyTRH6R+ GTF1kcpd+1QinIZDMIdsmAc95Y8pTufxY30QxCkOhVASitSQWHS/IiWQHmsTJwdr 38lqZnQQloOt/iPlhcavbxu/yKFzwBmp+nM+ErDTnCBh6EGCGrw1xWF30T2IBpmp WwMEoqZsFV69RzwQAw39KG1KCxi5uscrB62YPgUdlT2b4Yaa90egQhGLLVdnKvhP ORiGT9omCH90Dkm1oMMQ0Y2JBLezgXa/bunSqtTBxEwzlwUAX2JJcanFYrzKy2OL xzwNRlWUXilZ4R/1RHAgUdNyKbYxZqc24MApoQIDAQABAoIBAQCHZ/i7gNz10qqH 2qkqGlfF7gvYd6MRTwdDGlhbYgA17ZGP9EDaAIFabtpFEAJDmgvCnotQpkMvWcet XcUmHW89TQDd8R8d6u9QqLggpQ3nFGsDbNViLMjAKLrfUb8tjOIZ7ANNE5ArjAuK AgYhxJ48O9bPD+xvtLwip95PHxMMz1CF0vxrpCinvPdeC3HzcnLNZWN3ustbph/4 Tx8mrKDpAVIHVYVbY4CMtm7NbIBYdyR9Lokc4zBg/OTuLo+0QRVJ3GHAN6cGxTwY vLwN9iBBHyn9WBp5NIOSoCdob7+ce8y+X8yHmVhwRCfcrYphzfFNfP7SPNzV1dLs dFybn/h9AoGJALCOC7ss+PBXy5WrWVNRPzFO7KrJDl5q7s/gMk0PkB4i4XOKHDTl MhHZXhxp84HwpphwNxPHvpFe3pVZwwoe8LH1neoodlLOF0Kuk3jENh6cMhKFvcZ+ gxaBxGSCOXF/U307mh0i4AafClhVjxtLgBW5iJSVA9Brc7ZqVwxlUP7aYGzReIE1 uEMCeQDh0vq8NteUlkM/wpNzrHHqgtEzePbTYa+QcTm4xhARHR/cO+E0/mZIfltw 3NVWCIalMia+aKnvRHqHy/cQfEo
2Uv/h8oARWnbrvicMRTwYL0w2GrP0f+aG0RqQ msLMzS3kp6szhM7C99reFxdlxJoWBKkp94psOksCgYkApB01zGRudkK17EcdvjPc sMHzfoFryNpPaI23VChuR4UW2mZ797NAypSqRXE7OALxaOuOVuWqP8jW0C9i/Cps hI+SnZHFAw2tU3+hd3Wz9NouNUd6c2MwCSDQ5LikGttHSTa49/JuGdmGLTxCzRVu V0NiMPMfW4I2Sk8o4U3gbzWgwiYohLrhrwJ5ANun/7IB2lIykvk7B3g1nZzRYDIk EFpuI3ppWA8NwOUUoj/zksycQ9tx5Pn0JCMKKgYXsS322ozc3B6o3AoSC5GpzDH4 UnAOwavvC0ZZNeoEX6ok8TP7EL3EOYW8s4zIa0KFgPac0Q0+T4tFhMG9qW+PWwhy Oxeo3wKBiCQ8LEgmHnXZv3UZvwcikj6oCrPy8fnhp5RZl2DPPlaqf3vokE6W5oEo LIKcWKvth3EU7HRKwYgaznj/Mw55aETx31R0FiXMG266B4V7QWPF/KuaR0GBsYfu +edGXQCnLgooKlMtQLdL5mcLXHc9x/0Z0iYEejJtbjcGR87WylSNaCH3hH703iQ= -----END RSA PRIVATE KEY----- ''' privkey = rsa.PrivateKey.load_pkcs1(privkey,'PEM') decrypted_message = rsa.decrypt(encrypted_message, privkey) decrypted_message = decrypted_message.decode() import datetime start_time = datetime.datetime.strptime(decrypted_message, '%Y-%m-%d') current_date = datetime.datetime.today().strftime('%Y-%m-%d') current_date = datetime.datetime.strptime(current_date, '%Y-%m-%d') Months = diff_month(current_date,start_time) return True,Months else: return False,'Start Date Not Exists' def check_days_license(months): currentDirectory = os.path.dirname(os.path.abspath(__file__)) license_path = os.path.join(currentDirectory,'..','lic','license.lic') if(os.path.isfile(license_path)): if(validate_key_Pair(license_path,full_key)): return True,'Valid License' elif(validate_key_Pair(license_path,oneYear_key)): if months <= 12: return True,'Valid License' else: return False,'License for AI.ON has expired. Please contact ERS Research for renewal.' elif(validate_key_Pair(license_path,halfYear_key)): if months <= 6: return True,'Valid License' else: return False,'License for AI.ON has expired. Please contact ERS Research for renewal.' elif(validate_key_Pair(license_path,quarter_key)): if months <= 3: return True,'Valid License' else: return False,'License for AI.ON has expired. Please contact ERS Research for renewal.' else: return False,'Invalid License' else: return False,'License Not exists.Please contact ERS Research for renewal.' def checklicense(): import binascii license_path = os.path.join(DATA_DIR,'License','license.lic') if(os.path.isfile(license_path)): try: with open(license_path, 'r') as privatefile: license_key = privatefile.read() privatefile.close() encrypted_message = binascii.unhexlify(license_key.encode()) privkey = '''-----BEGIN RSA PRIVATE KEY----- MIIEqQIBAAKCAQEAhqfNMuYYLdVrePhkO9rU/qT6FgolzI0YyzIJ2OeJE+++JioY m6nnohQU32iiE0DZlCCLrHJXOOIAz2Op80goX0lxtngyxVUPsiB5CI77sAC7x6K3 anJ0elpnQCC0+xV2ZL5eIMNQHLe+X6wJl/HGWqkUlxKpWr4/kBEB4EisW60OePfh ntIN4OUJ7iEq+sDdOM5WazJIXeNV1cig4i6057GE3k5ITcQUmw17DZu2+dqkIscc kaG+t5SF7Qnvt4IY8IeQp2htx3yD+CJCV0u2uKwoSFMGJn3OWdaixC3+eojyMXmf AWtQEe9NLNNaTCMIvQ8BeItJLQs2Htw3bZNMvwIDAQABAoIBAGGmuRnrYaeDeWAO CmqZxRMyQybOjyDrRgq9rAR/zJoHp8b3ikcBDTkuBQELWVZLFj7k50XU2cono9zC cxI5xwVrNqrUOkV+7VYJVJzPTFkT/xnEt+zbOfstKmmIDpdzthtTLuHlomhhHA83 rPFi5a0Dpynz35suEnm6ONxx4ICONa3xkQ51ALm8EEsdJ+qRQhi2HLTF/OVZMxSa A2DlFd4ChOEbYaN63xVCDxPXe9BfeHd/Rnim9x4xL9i2RL+mhARUy/ZP6LMHIPk7 NxTrGr4TuE/ETg8FZ3cywSnwsMlcplXo8Ar+5ths2XKxbmH1TI/vuQV1r7r0IeqV F4W/xOkCgYkAiDQy7/WyJWuT+rQ+gOjSUumXgWE3HO+vJAsy05cTZFSs+nUE4ctn FnvbBIRuClSr3zhcTtjaEaVnZ2OmGfOoAq0cvaXSlxqEs2456WQBf9oPHnvJEV07 AIqzo2EuDvGUh/bkFN3+djRRL9usNNplYA8jU3OQHGdeaS15ZikT+ZkQLXoHE0Oh vQJ5AP0W9Qouvc9jXRhjNNOWmgt+JiHw/oQts/LUWJ2T4UJ7wKAqGwsmgf0NbF2p aZ6AbMc7dHzCb52iLJRxlmlkJYzg449t0MgQVxTKQ5viIAdjkRBCIY2++GcYXb6k 6tUnF0Vm2kpffYUb5Lx5JoUE6IhMP0mEv3jKKwKBiCmvoC9lCUL+q+m9JKwbldOe fqowcMfAa+AiNUohIORCLjbxfa8Fq+VrvtqhFXS/+WJ2Q3o2UHe6Ie24x+uFcVRw Wy2IBO4ORbMM91iBLRxORvZTeHSCDj7aNKS6Z3hXY9hBLglc8DaJSJfXKdt7RC+k MnGmGuM2l+Sk8FTeGaj4ucTRZjz1JBkCeQDhNSV1GyShv4xeoCCoy1FmOqmZ+EWy vqxqv1PfXHDM5SwCGZWY9XokAGbWbWLjvOmO27QLNEV34pCCwxSR0aCsXI2B2rk2 3Xtvr5A7zRqtGIdEDWSoKjAGJSN9+mhQpglKI3zJQ3GBGdIPeEqzgSud5SNHu01a IaMCgYgyoxtqdWi90iE75/x+uIVGJRdHtWoL2dr8Ixu1bOMjKCR8gjneSRTqI1tA lbRH5K/jg6iccB/pQmBcIPIubF10Nv/ZQV760WK/h6ue2hOCaBLWT8EQEEfBfnp+ 9rfBfNQIQIkBFTfGIHXUUPb9sJgDP1boUxcqxr9bpKUrs1EMkUd+PrvpHIj2 -----END RSA PRIVATE KEY----- ''' privkey = rsa.PrivateKey.load_pkcs1(privkey,'PEM') decrypted_message = rsa.decrypt(encrypted_message, privkey) msg = decrypted_message.decode().split('####') product = msg[0] computernameLicense = msg[1] computername = socket.getfqdn() licenseValid = False if product.lower() == 'aion': if computernameLicense == computername: uuidlicense = msg[3] uuid = guid() if uuidlicense == uuid: current_date = datetime.now() license_expiry_date = msg[5] license_expiry_date = datetime.strptime(license_expiry_date,'%Y-%m-%d %H:%M:%S') if current_date > license_expiry_date: return False,'License Expire' else: return True,'' return False,'License Error' except Exception as e: print(e) return False,'License Error' else: return False,'Generate License' def generate_record_key(product,version): computername = socket.getfqdn() macaddress = getmac.get_mac_address() license_date = datetime.today().strftime('%Y-%m-%d %H:%M:%S') try: user = os.getlogin() except: user = 'NA' uuid = guid() msg = product+'###'+version+'###'+computername+'###'+macaddress+'###'+user+'###'+sys.platform+'###'+uuid+'###'+license_date pkeydata='''-----BEGIN RSA PUBLIC KEY----- MIIBCgKCAQEAm75ZwaepuxGJjU1Slk1+IUO2E49Hy8i9dym5FUaBRyTRH6R+GTF1 kcpd+1QinIZDMIdsmAc95Y8pTufxY30QxCkOhVASitSQWHS/IiWQHmsTJwdr38lq ZnQQloOt/iPlhcavbxu/yKFzwBmp+nM+ErDTnCBh6EGCGrw1xWF30T2IBpmpWwME oqZsFV69RzwQAw39KG1KCxi5uscrB62YPgUdlT2b4Yaa90egQhGLLVdnKvhPORiG T9omCH90Dkm1oMMQ0Y2JBLezgXa/bunSqtTBxEwzlwUAX2JJcanFYrzKy2OLxzwN RlWUXilZ4R/1RHAgUdNyKbYxZqc24MApoQIDAQAB -----END RSA PUBLIC KEY----- ''' pubkey = rsa.PublicKey.load_pkcs1(pkeydata) encrypted_message = rsa.encrypt(msg.encode(), pubkey) encrypted_message = binascii.hexlify(encrypted_message).decode() return(encrypted_message) def run(cmd): try: return subprocess.run(cmd, shell=True, capture_output=True, check=True, encoding="utf-8").stdout.strip() except Exception as e: print(e) return None def guid(): if sys.platform == 'darwin': return run( "ioreg -d2 -c IOPlatformExpertDevice | awk -F\\\\\\" '/IOPlatformUUID/{print $(NF-1)}'", ) if sys.platform == 'win32' or sys.platform == 'cygwin' or sys.platform == 'msys': return run('wmic csproduct get uuid').split('\\n')[2].strip() if sys.platform.startswith('linux'): return run('cat /var/lib/dbus/machine-id') or \\ run('cat /etc/machine-id') if sys.platform.startswith('openbsd') or sys.platform.startswith('freebsd'): return run('cat /etc/hostid') or \\ run('kenv -q smbios.system.uuid') def updateLicense(licensekey): license_folder = os.path.join(DATA_DIR,'License') license_folder = Path(license_folder) license_folder.mkdir(parents=True, exist_ok=True) license_file = license_folder/'license.lic' with open(license_file, "w") as fl: fl.write(licensekey) fl.close() def enterRecord(version): validLicense,msg = checklicense() if not validLicense: key = generate_record_key('AION',version) msg = {'status':msg,'key':key,'licenseKey':'','link':''} return validLicense,msg <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import pandas as pd import numpy as np import os import datetime, time, timeit from sklearn.model_selection import KFold from sklearn.metrics import confusion_matrix