Datasets:

Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 4,935 Bytes
f860717
 
3db7680
663a4c5
e9d7817
663a4c5
 
 
e9d7817
663a4c5
3db7680
663a4c5
e9d7817
663a4c5
3db7680
 
e9d7817
3db7680
3bb15b0
 
e9d7817
3bb15b0
e9d7817
 
663a4c5
 
 
 
034cb26
f5ccd67
663a4c5
77585d6
f860717
 
8776360
f860717
 
8776360
 
f860717
8776360
 
f860717
 
 
 
 
8dbbfd9
 
 
b10ea41
 
 
 
 
 
8dbbfd9
 
91ba11c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b10ea41
 
91ba11c
 
 
 
 
 
f860717
 
 
8776360
 
 
f860717
 
8776360
f860717
 
79598c4
f860717
 
79598c4
 
 
 
 
 
 
 
 
82414aa
 
 
 
 
 
f95753d
 
 
 
 
 
26cb791
a232da5
98675b6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
configs:
- config_name: clinical
  data_files:
  - split: gatortron
    path: Clinical Data (gatortron-base)/*
- config_name: pathology_report
  data_files:
  - split: gatortron
    path: Pathology Report (gatortron-base)/*
- config_name: wsi
  data_files:
  - split: uni
    path: Slide Image (UNI)/*
- config_name: molecular
  data_files:
  - split: senmo
    path: Molecular (SeNMo)/*
- config_name: radiology
  data_files:
  - split: remedis
    path: Radiology (REMEDIS)/*
  - split: radimagenet
    path: Radiology (RadImageNet)/*
language:
- en
tags:
- medical
- multimodal
- tcga
pretty_name: TCGA
license: cc-by-nc-nd-4.0
---

# Dataset Card for The Cancer Genome Atlas (TCGA) Multimodal Dataset
<!-- Provide a quick summary of the dataset. -->

The Cancer Genome Atlas (TCGA) Multimodal Dataset is a comprehensive collection of clinical data, pathology reports, and slide images for cancer patients. 
This dataset aims to facilitate research in multimodal machine learning for oncology by providing embeddings generated using state-of-the-art models such as GatorTron and UNI.

- **Curated by:** Lab Rasool
- **Language(s) (NLP):** English


## Uses
<!-- Address questions around how the dataset is intended to be used. -->

```python
from datasets import load_dataset

clinical_dataset = load_dataset("Lab-Rasool/TCGA", "clinical", split="gatortron")
pathology_report_dataset = load_dataset("Lab-Rasool/TCGA", "pathology_report", split="gatortron")
wsi_dataset = load_dataset("Lab-Rasool/TCGA", "wsi", split="uni")
molecular_dataset = load_dataset("Lab-Rasool/TCGA", "molecular", split="senmo")
remedis_radiology_dataset = load_dataset("Lab-Rasool/TCGA", "radiology", split="remedis")
radimagenet_radiology_dataset = load_dataset("Lab-Rasool/TCGA", "radiology", split="radimagenet")
```

Example code for loading HF dataset into a PyTorch Dataloader.
**Note**: Some embeddings are stored as buffers due to their multi-dimensional shape.

```python
from datasets import load_dataset
import os
from torch.utils.data import Dataset
import numpy as np

class CustomDataset(Dataset):
    def __init__(self, hf_dataset):
        self.hf_dataset = hf_dataset

    def __len__(self):
        return len(self.hf_dataset)
    
    def __getitem__(self, idx):
        hf_item = self.hf_dataset[idx]
        embedding = np.frombuffer(hf_item["embedding"], dtype=np.float32)
        embedding_shape = hf_item["embedding_shape"]
        embedding = embedding.reshape(embedding_shape)
        return embedding

if __name__ == "__main__":
    
    clinical_dataset = load_dataset("Lab-Rasool/TCGA", "clinical", split="gatortron")
    wsi_dataset = load_dataset("Lab-Rasool/TCGA", "wsi", split="uni")
    
    for index, item in enumerate(clinical_dataset):
        print(np.frombuffer(item.get("embedding"), dtype=np.float32).reshape(item.get("embedding_shape")).shape)
        break
```

## Dataset Creation

#### Data Collection and Processing
The raw data for this dataset was acquired using MINDS, a multimodal data aggregation tool developed by Lab Rasool. 
The collected data includes clinical information, pathology reports, and whole slide images from The Cancer Genome Atlas (TCGA). 
The embeddings were generated using the HoneyBee embedding processing tool, which utilizes foundational models such as GatorTron and UNI.

#### Who are the source data producers?
The source data for this dataset was originally collected and maintained by The Cancer Genome Atlas (TCGA) program, a landmark cancer genomics project jointly managed by the National Cancer Institute (NCI).


## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

```
@article{honeybee,
      title={HoneyBee: A Scalable Modular Framework for Creating Multimodal Oncology Datasets with Foundational Embedding Models}, 
      author={Aakash Tripathi and Asim Waqas and Yasin Yilmaz and Ghulam Rasool},
      year={2024},
      eprint={2405.07460},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
@article{waqas2024senmo,
  title={SeNMo: A self-normalizing deep learning model for enhanced multi-omics data analysis in oncology},
  author={Waqas, Asim and Tripathi, Aakash and Ahmed, Sabeen and Mukund, Ashwin and Farooq, Hamza and Schabath, Matthew B and Stewart, Paul and Naeini, Mia and Rasool, Ghulam},
  journal={arXiv preprint arXiv:2405.08226},
  year={2024}
}
```

### For more information about the data acquisition and processing tools used in creating this dataset, please refer to the following resources:

- MINDS paper: https://pubmed.ncbi.nlm.nih.gov/38475170/
- MINDS codebase: https://github.com/lab-rasool/MINDS
- HoneyBee paper: https://arxiv.org/abs/2405.07460
- HoneyBee codebase: https://github.com/lab-rasool/HoneyBee/

## Contact Information
For any questions or issues, please contact the dataset curators at [[email protected]].