Datasets:
Tasks:
Audio Classification
Languages:
English
Size:
100K<n<1M
ArXiv:
Tags:
voice-anti-spoofing
License:
annotations_creators: | |
- other | |
language_creators: | |
- other | |
language: | |
- en | |
license: | |
- odc-by | |
multilinguality: | |
- monolingual | |
size_categories: | |
- 100K<n<1M | |
source_datasets: | |
- extended|vctk | |
task_categories: | |
- audio-classification | |
task_ids: [] | |
pretty_name: asvspoof2019 | |
tags: | |
- voice-anti-spoofing | |
# Dataset Card for asvspoof2019 | |
## Table of Contents | |
- [Dataset Description](#dataset-description) | |
- [Dataset Summary](#dataset-summary) | |
- [Supported Tasks](#supported-tasks-and-leaderboards) | |
- [Languages](#languages) | |
- [Dataset Structure](#dataset-structure) | |
- [Data Instances](#data-instances) | |
- [Data Fields](#data-instances) | |
- [Data Splits](#data-instances) | |
- [Dataset Creation](#dataset-creation) | |
- [Curation Rationale](#curation-rationale) | |
- [Source Data](#source-data) | |
- [Annotations](#annotations) | |
- [Personal and Sensitive Information](#personal-and-sensitive-information) | |
- [Considerations for Using the Data](#considerations-for-using-the-data) | |
- [Social Impact of Dataset](#social-impact-of-dataset) | |
- [Discussion of Biases](#discussion-of-biases) | |
- [Other Known Limitations](#other-known-limitations) | |
- [Additional Information](#additional-information) | |
- [Dataset Curators](#dataset-curators) | |
- [Licensing Information](#licensing-information) | |
- [Citation Information](#citation-information) | |
## Dataset Description | |
- **Homepage:** https://datashare.ed.ac.uk/handle/10283/3336 | |
- **Repository:** [Needs More Information] | |
- **Paper:** https://arxiv.org/abs/1911.01601 | |
- **Leaderboard:** [Needs More Information] | |
- **Point of Contact:** [Needs More Information] | |
### Dataset Summary | |
This is a database used for the Third Automatic Speaker Verification Spoofing | |
and Countermeasuers Challenge, for short, ASVspoof 2019 (http://www.asvspoof.org) | |
organized by Junichi Yamagishi, Massimiliano Todisco, Md Sahidullah, Héctor | |
Delgado, Xin Wang, Nicholas Evans, Tomi Kinnunen, Kong Aik Lee, Ville Vestman, | |
and Andreas Nautsch in 2019. | |
### Supported Tasks and Leaderboards | |
[Needs More Information] | |
### Languages | |
English | |
## Dataset Structure | |
### Data Instances | |
``` | |
{'speaker_id': 'LA_0091', | |
'audio_file_name': 'LA_T_8529430', | |
'audio': {'path': 'D:/Users/80304531/.cache/huggingface/datasets/downloads/extracted/8cabb6d5c283b0ed94b2219a8d459fea8e972ce098ef14d8e5a97b181f850502/LA/ASVspoof2019_LA_train/flac/LA_T_8529430.flac', | |
'array': array([-0.00201416, -0.00234985, -0.0022583 , ..., 0.01309204, | |
0.01339722, 0.01461792], dtype=float32), | |
'sampling_rate': 16000}, | |
'system_id': 'A01', | |
'key': 1} | |
``` | |
### Data Fields | |
Logical access (LA): | |
- `speaker_id`: `LA_****`, a 4-digit speaker ID | |
- `audio_file_name`: name of the audio file | |
- `audio`: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`. | |
- `system_id`: ID of the speech spoofing system (A01 - A19), or, for bonafide speech SYSTEM-ID is left blank ('-') | |
- `key`: 'bonafide' for genuine speech, or, 'spoof' for spoofing speech | |
Physical access (PA): | |
- `speaker_id`: `PA_****`, a 4-digit speaker ID | |
- `audio_file_name`: name of the audio file | |
- `audio`: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`. | |
- `environment_id`: a triplet (S,R,D_s), which take one letter in the set {a,b,c} as categorical value, defined as | |
| | a | b | c | | |
| -------------------------------- | ------ | ------- | -------- | | |
| S: Room size (square meters) | 2-5 | 5-10 | 10-20 | | |
| R: T60 (ms) | 50-200 | 200-600 | 600-1000 | | |
| D_s: Talker-to-ASV distance (cm) | 10-50 | 50-100 | 100-150 | | |
- `attack_id`: a duple (D_a,Q), which take one letter in the set {A,B,C} as categorical value, defined as | |
| | A | B | C | | |
| ----------------------------------- | ------- | ------ | ----- | | |
| Z: Attacker-to-talker distance (cm) | 10-50 | 50-100 | > 100 | | |
| Q: Replay device quality | perfect | high | low | | |
for bonafide speech, `attack_id` is left blank ('-') | |
- `key`: 'bonafide' for genuine speech, or, 'spoof' for spoofing speech | |
### Data Splits | |
| | Training set | Development set | Evaluation set | | |
| -------- | ------------ | --------------- | -------------- | | |
| Bonafide | 2580 | 2548 | 7355 | | |
| Spoof | 22800 | 22296 | 63882 | | |
| Total | 25380 | 24844 | 71237 | | |
## Dataset Creation | |
### Curation Rationale | |
[Needs More Information] | |
### Source Data | |
#### Initial Data Collection and Normalization | |
[Needs More Information] | |
#### Who are the source language producers? | |
[Needs More Information] | |
### Annotations | |
#### Annotation process | |
[Needs More Information] | |
#### Who are the annotators? | |
[Needs More Information] | |
### Personal and Sensitive Information | |
[Needs More Information] | |
## Considerations for Using the Data | |
### Social Impact of Dataset | |
[Needs More Information] | |
### Discussion of Biases | |
[Needs More Information] | |
### Other Known Limitations | |
[Needs More Information] | |
## Additional Information | |
### Dataset Curators | |
[Needs More Information] | |
### Licensing Information | |
This ASVspoof 2019 dataset is made available under the Open Data Commons Attribution License: http://opendatacommons.org/licenses/by/1.0/ | |
### Citation Information | |
``` | |
@InProceedings{Todisco2019, | |
Title = {{ASV}spoof 2019: {F}uture {H}orizons in {S}poofed and {F}ake {A}udio {D}etection}, | |
Author = {Todisco, Massimiliano and | |
Wang, Xin and | |
Sahidullah, Md and | |
Delgado, H ́ector and | |
Nautsch, Andreas and | |
Yamagishi, Junichi and | |
Evans, Nicholas and | |
Kinnunen, Tomi and | |
Lee, Kong Aik}, | |
booktitle = {Proc. of Interspeech 2019}, | |
Year = {2019} | |
} | |
``` | |