|
|
|
|
|
import torch
|
|
|
|
import cupy
|
|
import re
|
|
|
|
kernel_Correlation_rearrange = '''
|
|
extern "C" __global__ void kernel_Correlation_rearrange(
|
|
const int n,
|
|
const float* input,
|
|
float* output
|
|
) {
|
|
int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x;
|
|
|
|
if (intIndex >= n) {
|
|
return;
|
|
}
|
|
|
|
int intSample = blockIdx.z;
|
|
int intChannel = blockIdx.y;
|
|
|
|
float fltValue = input[(((intSample * SIZE_1(input)) + intChannel) * SIZE_2(input) * SIZE_3(input)) + intIndex];
|
|
|
|
__syncthreads();
|
|
|
|
int intPaddedY = (intIndex / SIZE_3(input)) + 4;
|
|
int intPaddedX = (intIndex % SIZE_3(input)) + 4;
|
|
int intRearrange = ((SIZE_3(input) + 8) * intPaddedY) + intPaddedX;
|
|
|
|
output[(((intSample * SIZE_1(output) * SIZE_2(output)) + intRearrange) * SIZE_1(input)) + intChannel] = fltValue;
|
|
}
|
|
'''
|
|
|
|
kernel_Correlation_updateOutput = '''
|
|
extern "C" __global__ void kernel_Correlation_updateOutput(
|
|
const int n,
|
|
const float* rbot0,
|
|
const float* rbot1,
|
|
float* top
|
|
) {
|
|
extern __shared__ char patch_data_char[];
|
|
|
|
float *patch_data = (float *)patch_data_char;
|
|
|
|
// First (upper left) position of kernel upper-left corner in current center position of neighborhood in image 1
|
|
int x1 = blockIdx.x + 4;
|
|
int y1 = blockIdx.y + 4;
|
|
int item = blockIdx.z;
|
|
int ch_off = threadIdx.x;
|
|
|
|
// Load 3D patch into shared shared memory
|
|
for (int j = 0; j < 1; j++) { // HEIGHT
|
|
for (int i = 0; i < 1; i++) { // WIDTH
|
|
int ji_off = (j + i) * SIZE_3(rbot0);
|
|
for (int ch = ch_off; ch < SIZE_3(rbot0); ch += 32) { // CHANNELS
|
|
int idx1 = ((item * SIZE_1(rbot0) + y1+j) * SIZE_2(rbot0) + x1+i) * SIZE_3(rbot0) + ch;
|
|
int idxPatchData = ji_off + ch;
|
|
patch_data[idxPatchData] = rbot0[idx1];
|
|
}
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
__shared__ float sum[32];
|
|
|
|
// Compute correlation
|
|
for (int top_channel = 0; top_channel < SIZE_1(top); top_channel++) {
|
|
sum[ch_off] = 0;
|
|
|
|
int s2o = top_channel % 9 - 4;
|
|
int s2p = top_channel / 9 - 4;
|
|
|
|
for (int j = 0; j < 1; j++) { // HEIGHT
|
|
for (int i = 0; i < 1; i++) { // WIDTH
|
|
int ji_off = (j + i) * SIZE_3(rbot0);
|
|
for (int ch = ch_off; ch < SIZE_3(rbot0); ch += 32) { // CHANNELS
|
|
int x2 = x1 + s2o;
|
|
int y2 = y1 + s2p;
|
|
|
|
int idxPatchData = ji_off + ch;
|
|
int idx2 = ((item * SIZE_1(rbot0) + y2+j) * SIZE_2(rbot0) + x2+i) * SIZE_3(rbot0) + ch;
|
|
|
|
sum[ch_off] += patch_data[idxPatchData] * rbot1[idx2];
|
|
}
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
if (ch_off == 0) {
|
|
float total_sum = 0;
|
|
for (int idx = 0; idx < 32; idx++) {
|
|
total_sum += sum[idx];
|
|
}
|
|
const int sumelems = SIZE_3(rbot0);
|
|
const int index = ((top_channel*SIZE_2(top) + blockIdx.y)*SIZE_3(top))+blockIdx.x;
|
|
top[index + item*SIZE_1(top)*SIZE_2(top)*SIZE_3(top)] = total_sum / (float)sumelems;
|
|
}
|
|
}
|
|
}
|
|
'''
|
|
|
|
kernel_Correlation_updateGradFirst = '''
|
|
#define ROUND_OFF 50000
|
|
|
|
extern "C" __global__ void kernel_Correlation_updateGradFirst(
|
|
const int n,
|
|
const int intSample,
|
|
const float* rbot0,
|
|
const float* rbot1,
|
|
const float* gradOutput,
|
|
float* gradFirst,
|
|
float* gradSecond
|
|
) { for (int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; intIndex < n; intIndex += blockDim.x * gridDim.x) {
|
|
int n = intIndex % SIZE_1(gradFirst); // channels
|
|
int l = (intIndex / SIZE_1(gradFirst)) % SIZE_3(gradFirst) + 4; // w-pos
|
|
int m = (intIndex / SIZE_1(gradFirst) / SIZE_3(gradFirst)) % SIZE_2(gradFirst) + 4; // h-pos
|
|
|
|
// round_off is a trick to enable integer division with ceil, even for negative numbers
|
|
// We use a large offset, for the inner part not to become negative.
|
|
const int round_off = ROUND_OFF;
|
|
const int round_off_s1 = round_off;
|
|
|
|
// We add round_off before_s1 the int division and subtract round_off after it, to ensure the formula matches ceil behavior:
|
|
int xmin = (l - 4 + round_off_s1 - 1) + 1 - round_off; // ceil (l - 4)
|
|
int ymin = (m - 4 + round_off_s1 - 1) + 1 - round_off; // ceil (l - 4)
|
|
|
|
// Same here:
|
|
int xmax = (l - 4 + round_off_s1) - round_off; // floor (l - 4)
|
|
int ymax = (m - 4 + round_off_s1) - round_off; // floor (m - 4)
|
|
|
|
float sum = 0;
|
|
if (xmax>=0 && ymax>=0 && (xmin<=SIZE_3(gradOutput)-1) && (ymin<=SIZE_2(gradOutput)-1)) {
|
|
xmin = max(0,xmin);
|
|
xmax = min(SIZE_3(gradOutput)-1,xmax);
|
|
|
|
ymin = max(0,ymin);
|
|
ymax = min(SIZE_2(gradOutput)-1,ymax);
|
|
|
|
for (int p = -4; p <= 4; p++) {
|
|
for (int o = -4; o <= 4; o++) {
|
|
// Get rbot1 data:
|
|
int s2o = o;
|
|
int s2p = p;
|
|
int idxbot1 = ((intSample * SIZE_1(rbot0) + (m+s2p)) * SIZE_2(rbot0) + (l+s2o)) * SIZE_3(rbot0) + n;
|
|
float bot1tmp = rbot1[idxbot1]; // rbot1[l+s2o,m+s2p,n]
|
|
|
|
// Index offset for gradOutput in following loops:
|
|
int op = (p+4) * 9 + (o+4); // index[o,p]
|
|
int idxopoffset = (intSample * SIZE_1(gradOutput) + op);
|
|
|
|
for (int y = ymin; y <= ymax; y++) {
|
|
for (int x = xmin; x <= xmax; x++) {
|
|
int idxgradOutput = (idxopoffset * SIZE_2(gradOutput) + y) * SIZE_3(gradOutput) + x; // gradOutput[x,y,o,p]
|
|
sum += gradOutput[idxgradOutput] * bot1tmp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
const int sumelems = SIZE_1(gradFirst);
|
|
const int bot0index = ((n * SIZE_2(gradFirst)) + (m-4)) * SIZE_3(gradFirst) + (l-4);
|
|
gradFirst[bot0index + intSample*SIZE_1(gradFirst)*SIZE_2(gradFirst)*SIZE_3(gradFirst)] = sum / (float)sumelems;
|
|
} }
|
|
'''
|
|
|
|
kernel_Correlation_updateGradSecond = '''
|
|
#define ROUND_OFF 50000
|
|
|
|
extern "C" __global__ void kernel_Correlation_updateGradSecond(
|
|
const int n,
|
|
const int intSample,
|
|
const float* rbot0,
|
|
const float* rbot1,
|
|
const float* gradOutput,
|
|
float* gradFirst,
|
|
float* gradSecond
|
|
) { for (int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; intIndex < n; intIndex += blockDim.x * gridDim.x) {
|
|
int n = intIndex % SIZE_1(gradSecond); // channels
|
|
int l = (intIndex / SIZE_1(gradSecond)) % SIZE_3(gradSecond) + 4; // w-pos
|
|
int m = (intIndex / SIZE_1(gradSecond) / SIZE_3(gradSecond)) % SIZE_2(gradSecond) + 4; // h-pos
|
|
|
|
// round_off is a trick to enable integer division with ceil, even for negative numbers
|
|
// We use a large offset, for the inner part not to become negative.
|
|
const int round_off = ROUND_OFF;
|
|
const int round_off_s1 = round_off;
|
|
|
|
float sum = 0;
|
|
for (int p = -4; p <= 4; p++) {
|
|
for (int o = -4; o <= 4; o++) {
|
|
int s2o = o;
|
|
int s2p = p;
|
|
|
|
//Get X,Y ranges and clamp
|
|
// We add round_off before_s1 the int division and subtract round_off after it, to ensure the formula matches ceil behavior:
|
|
int xmin = (l - 4 - s2o + round_off_s1 - 1) + 1 - round_off; // ceil (l - 4 - s2o)
|
|
int ymin = (m - 4 - s2p + round_off_s1 - 1) + 1 - round_off; // ceil (l - 4 - s2o)
|
|
|
|
// Same here:
|
|
int xmax = (l - 4 - s2o + round_off_s1) - round_off; // floor (l - 4 - s2o)
|
|
int ymax = (m - 4 - s2p + round_off_s1) - round_off; // floor (m - 4 - s2p)
|
|
|
|
if (xmax>=0 && ymax>=0 && (xmin<=SIZE_3(gradOutput)-1) && (ymin<=SIZE_2(gradOutput)-1)) {
|
|
xmin = max(0,xmin);
|
|
xmax = min(SIZE_3(gradOutput)-1,xmax);
|
|
|
|
ymin = max(0,ymin);
|
|
ymax = min(SIZE_2(gradOutput)-1,ymax);
|
|
|
|
// Get rbot0 data:
|
|
int idxbot0 = ((intSample * SIZE_1(rbot0) + (m-s2p)) * SIZE_2(rbot0) + (l-s2o)) * SIZE_3(rbot0) + n;
|
|
float bot0tmp = rbot0[idxbot0]; // rbot1[l+s2o,m+s2p,n]
|
|
|
|
// Index offset for gradOutput in following loops:
|
|
int op = (p+4) * 9 + (o+4); // index[o,p]
|
|
int idxopoffset = (intSample * SIZE_1(gradOutput) + op);
|
|
|
|
for (int y = ymin; y <= ymax; y++) {
|
|
for (int x = xmin; x <= xmax; x++) {
|
|
int idxgradOutput = (idxopoffset * SIZE_2(gradOutput) + y) * SIZE_3(gradOutput) + x; // gradOutput[x,y,o,p]
|
|
sum += gradOutput[idxgradOutput] * bot0tmp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
const int sumelems = SIZE_1(gradSecond);
|
|
const int bot1index = ((n * SIZE_2(gradSecond)) + (m-4)) * SIZE_3(gradSecond) + (l-4);
|
|
gradSecond[bot1index + intSample*SIZE_1(gradSecond)*SIZE_2(gradSecond)*SIZE_3(gradSecond)] = sum / (float)sumelems;
|
|
} }
|
|
'''
|
|
|
|
def cupy_kernel(strFunction, objVariables):
|
|
strKernel = globals()[strFunction]
|
|
|
|
while True:
|
|
objMatch = re.search('(SIZE_)([0-4])(\()([^\)]*)(\))', strKernel)
|
|
|
|
if objMatch is None:
|
|
break
|
|
|
|
|
|
intArg = int(objMatch.group(2))
|
|
|
|
strTensor = objMatch.group(4)
|
|
intSizes = objVariables[strTensor].size()
|
|
|
|
strKernel = strKernel.replace(objMatch.group(), str(intSizes[intArg]))
|
|
|
|
|
|
while True:
|
|
objMatch = re.search('(VALUE_)([0-4])(\()([^\)]+)(\))', strKernel)
|
|
|
|
if objMatch is None:
|
|
break
|
|
|
|
|
|
intArgs = int(objMatch.group(2))
|
|
strArgs = objMatch.group(4).split(',')
|
|
|
|
strTensor = strArgs[0]
|
|
intStrides = objVariables[strTensor].stride()
|
|
strIndex = [ '((' + strArgs[intArg + 1].replace('{', '(').replace('}', ')').strip() + ')*' + str(intStrides[intArg]) + ')' for intArg in range(intArgs) ]
|
|
|
|
strKernel = strKernel.replace(objMatch.group(0), strTensor + '[' + str.join('+', strIndex) + ']')
|
|
|
|
|
|
return strKernel
|
|
|
|
|
|
@cupy.memoize(for_each_device=True)
|
|
def cupy_launch(strFunction, strKernel):
|
|
return cupy.RawKernel(strKernel, strFunction)
|
|
|
|
|
|
class _FunctionCorrelation(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(self, first, second):
|
|
rbot0 = first.new_zeros([ first.shape[0], first.shape[2] + 8, first.shape[3] + 8, first.shape[1] ])
|
|
rbot1 = first.new_zeros([ first.shape[0], first.shape[2] + 8, first.shape[3] + 8, first.shape[1] ])
|
|
|
|
self.save_for_backward(first, second, rbot0, rbot1)
|
|
|
|
first = first.contiguous(); assert(first.is_cuda == True)
|
|
second = second.contiguous(); assert(second.is_cuda == True)
|
|
|
|
output = first.new_zeros([ first.shape[0], 81, first.shape[2], first.shape[3] ])
|
|
|
|
if first.is_cuda == True:
|
|
n = first.shape[2] * first.shape[3]
|
|
cupy_launch('kernel_Correlation_rearrange', cupy_kernel('kernel_Correlation_rearrange', {
|
|
'input': first,
|
|
'output': rbot0
|
|
}))(
|
|
grid=tuple([ int((n + 16 - 1) / 16), first.shape[1], first.shape[0] ]),
|
|
block=tuple([ 16, 1, 1 ]),
|
|
args=[ n, first.data_ptr(), rbot0.data_ptr() ]
|
|
)
|
|
|
|
n = second.shape[2] * second.shape[3]
|
|
cupy_launch('kernel_Correlation_rearrange', cupy_kernel('kernel_Correlation_rearrange', {
|
|
'input': second,
|
|
'output': rbot1
|
|
}))(
|
|
grid=tuple([ int((n + 16 - 1) / 16), second.shape[1], second.shape[0] ]),
|
|
block=tuple([ 16, 1, 1 ]),
|
|
args=[ n, second.data_ptr(), rbot1.data_ptr() ]
|
|
)
|
|
|
|
n = output.shape[1] * output.shape[2] * output.shape[3]
|
|
cupy_launch('kernel_Correlation_updateOutput', cupy_kernel('kernel_Correlation_updateOutput', {
|
|
'rbot0': rbot0,
|
|
'rbot1': rbot1,
|
|
'top': output
|
|
}))(
|
|
grid=tuple([ output.shape[3], output.shape[2], output.shape[0] ]),
|
|
block=tuple([ 32, 1, 1 ]),
|
|
shared_mem=first.shape[1] * 4,
|
|
args=[ n, rbot0.data_ptr(), rbot1.data_ptr(), output.data_ptr() ]
|
|
)
|
|
|
|
elif first.is_cuda == False:
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
return output
|
|
|
|
|
|
@staticmethod
|
|
def backward(self, gradOutput):
|
|
first, second, rbot0, rbot1 = self.saved_tensors
|
|
|
|
gradOutput = gradOutput.contiguous(); assert(gradOutput.is_cuda == True)
|
|
|
|
gradFirst = first.new_zeros([ first.shape[0], first.shape[1], first.shape[2], first.shape[3] ]) if self.needs_input_grad[0] == True else None
|
|
gradSecond = first.new_zeros([ first.shape[0], first.shape[1], first.shape[2], first.shape[3] ]) if self.needs_input_grad[1] == True else None
|
|
|
|
if first.is_cuda == True:
|
|
if gradFirst is not None:
|
|
for intSample in range(first.shape[0]):
|
|
n = first.shape[1] * first.shape[2] * first.shape[3]
|
|
cupy_launch('kernel_Correlation_updateGradFirst', cupy_kernel('kernel_Correlation_updateGradFirst', {
|
|
'rbot0': rbot0,
|
|
'rbot1': rbot1,
|
|
'gradOutput': gradOutput,
|
|
'gradFirst': gradFirst,
|
|
'gradSecond': None
|
|
}))(
|
|
grid=tuple([ int((n + 512 - 1) / 512), 1, 1 ]),
|
|
block=tuple([ 512, 1, 1 ]),
|
|
args=[ n, intSample, rbot0.data_ptr(), rbot1.data_ptr(), gradOutput.data_ptr(), gradFirst.data_ptr(), None ]
|
|
)
|
|
|
|
|
|
|
|
if gradSecond is not None:
|
|
for intSample in range(first.shape[0]):
|
|
n = first.shape[1] * first.shape[2] * first.shape[3]
|
|
cupy_launch('kernel_Correlation_updateGradSecond', cupy_kernel('kernel_Correlation_updateGradSecond', {
|
|
'rbot0': rbot0,
|
|
'rbot1': rbot1,
|
|
'gradOutput': gradOutput,
|
|
'gradFirst': None,
|
|
'gradSecond': gradSecond
|
|
}))(
|
|
grid=tuple([ int((n + 512 - 1) / 512), 1, 1 ]),
|
|
block=tuple([ 512, 1, 1 ]),
|
|
args=[ n, intSample, rbot0.data_ptr(), rbot1.data_ptr(), gradOutput.data_ptr(), None, gradSecond.data_ptr() ]
|
|
)
|
|
|
|
|
|
|
|
elif first.is_cuda == False:
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
return gradFirst, gradSecond
|
|
|
|
|
|
|
|
def FunctionCorrelation(tenFirst, tenSecond):
|
|
return _FunctionCorrelation.apply(tenFirst, tenSecond)
|
|
|
|
|
|
class ModuleCorrelation(torch.nn.Module):
|
|
def __init__(self):
|
|
super(ModuleCorrelation, self).__init__()
|
|
|
|
|
|
def forward(self, tenFirst, tenSecond):
|
|
return _FunctionCorrelation.apply(tenFirst, tenSecond)
|
|
|
|
|