clh / causalvideovae /model /refiner /modeling_refiner.py
LiuhanChen's picture
Add files using upload-large-folder tool
f2b657e verified
from ..modeling_videobase import VideoBaseAE
from ..modules import Normalize
from ..modules.ops import nonlinearity
from typing import List, Tuple
import torch.nn as nn
from ..utils.module_utils import resolve_str_to_obj, Module
from ..utils.distrib_utils import DiagonalGaussianDistribution
from ..utils.scheduler_utils import cosine_scheduler
from ...utils.utils import custom_to_video
import torch
from diffusers.configuration_utils import register_to_config
from copy import deepcopy
import os
import glob
import numpy as np
from ...eval.cal_psnr import calculate_psnr
from decord import VideoReader, cpu
from pytorchvideo.transforms import ShortSideScale
from torchvision.io import read_video
from torchvision.transforms import Lambda, Compose
from torchvision.transforms._transforms_video import CenterCropVideo
class Encoder(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_size_mult: Tuple[int] = (1, 2, 4, 4),
attn_resolutions: Tuple[int] = (16,),
conv_in: Module = "Conv2d",
attention: Module = "AttnBlock",
resnet_blocks: Tuple[Module] = (
"ResnetBlock2D",
"ResnetBlock2D",
"ResnetBlock2D",
"ResnetBlock3D",
),
spatial_downsample: Tuple[Module] = (
"Downsample",
"Downsample",
"Downsample",
"",
),
dropout: float = 0.0,
resolution: int = 256,
num_res_blocks: int = 2,
) -> None:
super().__init__()
assert len(resnet_blocks) == len(hidden_size_mult), print(
hidden_size_mult, resnet_blocks
)
# ---- Config ----
self.num_resolutions = len(hidden_size_mult)
self.resolution = resolution
self.num_res_blocks = num_res_blocks
# ---- In ----
self.conv_in = resolve_str_to_obj(conv_in)(
3, hidden_size, kernel_size=3, stride=1, padding=1
)
# ---- Downsample ----
curr_res = resolution
in_ch_mult = (1,) + tuple(hidden_size_mult)
self.in_ch_mult = in_ch_mult
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = hidden_size * in_ch_mult[i_level]
block_out = hidden_size * hidden_size_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(
resolve_str_to_obj(resnet_blocks[i_level])(
in_channels=block_in,
out_channels=block_out,
dropout=dropout,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(resolve_str_to_obj(attention)(block_in))
down = nn.Module()
down.block = block
down.attn = attn
if spatial_downsample[i_level]:
down.downsample = resolve_str_to_obj(spatial_downsample[i_level])(
block_in, block_in
)
curr_res = curr_res // 2
self.down.append(down)
def forward(self, x):
h = self.conv_in(x)
h_ = []
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](h)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
if hasattr(self.down[i_level], "downsample"):
h_.append(h)
h = self.down[i_level].downsample(h)
return h, h_
class Decoder(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_size_mult: Tuple[int] = (1, 2, 4, 4),
attn_resolutions: Tuple[int] = (16,),
conv_out: Module = "CasualConv3d",
attention: Module = "AttnBlock",
resnet_blocks: Tuple[Module] = (
"ResnetBlock3D",
"ResnetBlock3D",
"ResnetBlock3D",
"ResnetBlock3D",
),
spatial_upsample: Tuple[Module] = (
"",
"SpatialUpsample2x",
"SpatialUpsample2x",
"SpatialUpsample2x",
),
dropout: float = 0.0,
resolution: int = 256,
num_res_blocks: int = 2,
):
super().__init__()
# ---- Config ----
self.num_resolutions = len(hidden_size_mult)
self.resolution = resolution
self.num_res_blocks = num_res_blocks
# ---- In ----
block_in = hidden_size * hidden_size_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
# ---- Upsample ----
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
skip = nn.ModuleList()
block_out = hidden_size * hidden_size_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(
resolve_str_to_obj(resnet_blocks[i_level])(
in_channels=block_in,
out_channels=block_out,
dropout=dropout,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(resolve_str_to_obj(attention)(block_in))
up = nn.Module()
up.block = block
up.attn = attn
up.skip = skip
if spatial_upsample[i_level]:
up.upsample = resolve_str_to_obj(spatial_upsample[i_level])(
block_in, block_in
)
up.skip = resolve_str_to_obj(conv_out)(block_in+hidden_size * hidden_size_mult[i_level-1],
block_in, kernel_size=3, padding=1)
curr_res = curr_res * 2
self.up.insert(0, up)
# ---- Out ----
self.norm_out = Normalize(block_in)
self.conv_out = resolve_str_to_obj(conv_out)(
block_in, 3, kernel_size=3, padding=1
)
def forward(self, h, h_):
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks):
h = self.up[i_level].block[i_block](h)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if hasattr(self.up[i_level], "upsample"):
h = self.up[i_level].upsample(h)
h = torch.concat([h_[i_level-1], h], dim=1)
h = self.up[i_level].skip(h)
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class Refiner(VideoBaseAE):
@register_to_config
def __init__(
self,
hidden_size: int = 128,
hidden_size_mult: Tuple[int] = (1, 2, 4, 4),
attn_resolutions: Tuple[int] = [],
dropout: float = 0.0,
resolution: int = 256,
num_res_blocks: int = 2,
encoder_conv_in: Module = "CausalConv3d",
encoder_attention: Module = "AttnBlock3D",
encoder_resnet_blocks: Tuple[Module] = (
"ResnetBlock3D",
"ResnetBlock3D",
"ResnetBlock3D",
"ResnetBlock3D",
),
encoder_spatial_downsample: Tuple[Module] = (
"SpatialDownsample2x",
"SpatialDownsample2x",
"SpatialDownsample2x",
"",
),
decoder_conv_out: Module = "CausalConv3d",
decoder_attention: Module = "AttnBlock3D",
decoder_resnet_blocks: Tuple[Module] = (
"ResnetBlock3D",
"ResnetBlock3D",
"ResnetBlock3D",
"ResnetBlock3D",
),
decoder_spatial_upsample: Tuple[Module] = (
"",
"SpatialUpsample2x",
"SpatialUpsample2x",
"SpatialUpsample2x",
),
) -> None:
super().__init__()
self.tile_sample_min_size = 256
self.tile_sample_min_size_t = 65
self.tile_latent_min_size = int(self.tile_sample_min_size / (2 ** (len(hidden_size_mult) - 1)))
self.tile_overlap_factor = 0.25
self.use_tiling = False
self.encoder = Encoder(
hidden_size=hidden_size,
hidden_size_mult=hidden_size_mult,
attn_resolutions=attn_resolutions,
conv_in=encoder_conv_in,
attention=encoder_attention,
resnet_blocks=encoder_resnet_blocks,
spatial_downsample=encoder_spatial_downsample,
dropout=dropout,
resolution=resolution,
num_res_blocks=num_res_blocks,
)
self.decoder = Decoder(
hidden_size=hidden_size,
hidden_size_mult=hidden_size_mult,
attn_resolutions=attn_resolutions,
conv_out=decoder_conv_out,
attention=decoder_attention,
resnet_blocks=decoder_resnet_blocks,
spatial_upsample=decoder_spatial_upsample,
dropout=dropout,
resolution=resolution,
num_res_blocks=num_res_blocks,
)
def get_encoder(self):
return [self.encoder]
def get_decoder(self):
return [self.decoder]
def encode(self, x):
if self.use_tiling and (
x.shape[-1] > self.tile_sample_min_size
or x.shape[-2] > self.tile_sample_min_size
or x.shape[-3] > self.tile_sample_min_size_t
):
return self.tiled_encode(x)
enc = self.encoder(x)
return enc
def decode(self, z):
if self.use_tiling and (
z.shape[-1] > self.tile_latent_min_size
or z.shape[-2] > self.tile_latent_min_size
or z.shape[-3] > self.tile_latent_min_size_t
):
return self.tiled_decode(z)
dec = self.decoder(z)
return dec
def forward(self, input):
enc, enc_ = self.encoder(input)
dec = self.decoder(enc, enc_)
return dec+input
def on_train_start(self):
self.ema = deepcopy(self) if self.save_ema==True else None
def get_last_layer(self):
if hasattr(self.decoder.conv_out, "conv"):
return self.decoder.conv_out.conv.weight
else:
return self.decoder.conv_out.weight
def blend_v(
self, a: torch.Tensor, b: torch.Tensor, blend_extent: int
) -> torch.Tensor:
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
for y in range(blend_extent):
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (
1 - y / blend_extent
) + b[:, :, :, y, :] * (y / blend_extent)
return b
def blend_h(
self, a: torch.Tensor, b: torch.Tensor, blend_extent: int
) -> torch.Tensor:
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
for x in range(blend_extent):
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (
1 - x / blend_extent
) + b[:, :, :, :, x] * (x / blend_extent)
return b
def tiled_encode(self, x):
t = x.shape[2]
t_chunk_idx = [i for i in range(0, t, self.tile_sample_min_size_t-1)]
if len(t_chunk_idx) == 1 and t_chunk_idx[0] == 0:
t_chunk_start_end = [[0, t]]
else:
t_chunk_start_end = [[t_chunk_idx[i], t_chunk_idx[i+1]+1] for i in range(len(t_chunk_idx)-1)]
if t_chunk_start_end[-1][-1] > t:
t_chunk_start_end[-1][-1] = t
elif t_chunk_start_end[-1][-1] < t:
last_start_end = [t_chunk_idx[-1], t]
t_chunk_start_end.append(last_start_end)
moments = []
for idx, (start, end) in enumerate(t_chunk_start_end):
chunk_x = x[:, :, start: end]
if idx != 0:
moment = self.tiled_encode2d(chunk_x, return_moments=True)[:, :, 1:]
else:
moment = self.tiled_encode2d(chunk_x, return_moments=True)
moments.append(moment)
moments = torch.cat(moments, dim=2)
return moments
def tiled_decode(self, x):
t = x.shape[2]
t_chunk_idx = [i for i in range(0, t, self.tile_latent_min_size_t-1)]
if len(t_chunk_idx) == 1 and t_chunk_idx[0] == 0:
t_chunk_start_end = [[0, t]]
else:
t_chunk_start_end = [[t_chunk_idx[i], t_chunk_idx[i+1]+1] for i in range(len(t_chunk_idx)-1)]
if t_chunk_start_end[-1][-1] > t:
t_chunk_start_end[-1][-1] = t
elif t_chunk_start_end[-1][-1] < t:
last_start_end = [t_chunk_idx[-1], t]
t_chunk_start_end.append(last_start_end)
dec_ = []
for idx, (start, end) in enumerate(t_chunk_start_end):
chunk_x = x[:, :, start: end]
if idx != 0:
dec = self.tiled_decode2d(chunk_x)[:, :, 1:]
else:
dec = self.tiled_decode2d(chunk_x)
dec_.append(dec)
dec_ = torch.cat(dec_, dim=2)
return dec_
def tiled_encode2d(self, x, return_moments=False):
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
row_limit = self.tile_latent_min_size - blend_extent
# Split the image into 512x512 tiles and encode them separately.
rows = []
for i in range(0, x.shape[3], overlap_size):
row = []
for j in range(0, x.shape[4], overlap_size):
tile = x[
:,
:,
:,
i : i + self.tile_sample_min_size,
j : j + self.tile_sample_min_size,
]
tile = self.encoder(tile)
row.append(tile)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_extent)
result_row.append(tile[:, :, :, :row_limit, :row_limit])
result_rows.append(torch.cat(result_row, dim=4))
moments = torch.cat(result_rows, dim=3)
posterior = DiagonalGaussianDistribution(moments)
return posterior
def tiled_decode2d(self, z):
overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
row_limit = self.tile_sample_min_size - blend_extent
# Split z into overlapping 64x64 tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, z.shape[3], overlap_size):
row = []
for j in range(0, z.shape[4], overlap_size):
tile = z[
:,
:,
:,
i : i + self.tile_latent_min_size,
j : j + self.tile_latent_min_size,
]
if self.use_quant_layer:
tile = self.post_quant_conv(tile)
decoded = self.decoder(tile)
row.append(decoded)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_extent)
result_row.append(tile[:, :, :, :row_limit, :row_limit])
result_rows.append(torch.cat(result_row, dim=4))
dec = torch.cat(result_rows, dim=3)
return dec
def enable_tiling(self, use_tiling: bool = True):
self.use_tiling = use_tiling
def disable_tiling(self):
self.enable_tiling(False)
def init_from_ckpt(self, path, ignore_keys=list()):
sd = torch.load(path, map_location="cpu")
print("init from " + path)
if "ema_state_dict" in sd and len(sd['ema_state_dict']) > 0 and os.environ.get("NOT_USE_EMA_MODEL", 0) == 0:
print("Load from ema model!")
sd = sd["ema_state_dict"]
sd = {key.replace("module.", ""): value for key, value in sd.items()}
elif "state_dict" in sd:
print("Load from normal model!")
if "gen_model" in sd["state_dict"]:
sd = sd["state_dict"]["gen_model"]
else:
sd = sd["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
self.load_state_dict(sd, strict=True)