|
import random |
|
import argparse |
|
import cv2 |
|
from tqdm import tqdm |
|
import numpy as np |
|
import numpy.typing as npt |
|
import torch |
|
import torch.distributed as dist |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
from torch.utils.data import DataLoader, DistributedSampler, Subset |
|
from decord import VideoReader, cpu |
|
from torch.nn import functional as F |
|
from pytorchvideo.transforms import ShortSideScale |
|
from torchvision.transforms import Lambda, Compose |
|
from torchvision.transforms._transforms_video import CenterCropVideo |
|
import sys |
|
from torch.utils.data import Dataset, DataLoader, Subset |
|
import os |
|
import glob |
|
sys.path.append(".") |
|
from causalvideovae.model import CausalVAEModel |
|
from diffusers.models import AutoencoderKL |
|
from diffusers.models import AutoencoderKLTemporalDecoder |
|
from CV_VAE.models.modeling_vae import CVVAEModel |
|
from opensora.registry import MODELS, build_module |
|
from opensora.utils.config_utils import parse_configs |
|
from opensora.registry import MODELS, build_module |
|
from opensora.utils.config_utils import parse_configs |
|
import gradio as gr |
|
from functools import partial |
|
from einops import rearrange |
|
import torchvision.transforms as transforms |
|
from PIL import Image |
|
import time |
|
import imageio |
|
|
|
|
|
transform = transforms.Compose([ |
|
transforms.CenterCrop(512), |
|
]) |
|
|
|
def array_to_video( |
|
image_array: npt.NDArray, fps: float = 30.0, output_file: str = "output_video.mp4" |
|
) -> None: |
|
height, width, channels = image_array[0].shape |
|
imageio.mimwrite(output_file, image_array, fps=fps, quality=6,) |
|
""" |
|
fourcc = cv2.VideoWriter_fourcc(*"mp4v") |
|
video_writer = cv2.VideoWriter(output_file, fourcc, float(fps), (width, height)) |
|
for image in image_array: |
|
image_rgb = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) |
|
video_writer.write(image_rgb) |
|
|
|
video_writer.release() |
|
""" |
|
|
|
def custom_to_video( |
|
x: torch.Tensor, fps: float = 2.0, output_file: str = "output_video.mp4" |
|
) -> None: |
|
x = x.detach().cpu() |
|
x = torch.clamp(x, -1, 1) |
|
x = (x + 1) / 2 |
|
x = x.permute(1, 2, 3, 0).float().numpy() |
|
x = (255 * x).astype(np.uint8) |
|
array_to_video(x, fps=fps, output_file=output_file) |
|
return |
|
|
|
def _format_video_shape(video, time_compress=4, spatial_compress=8): |
|
time = video.shape[1] |
|
height = video.shape[2] |
|
width = video.shape[3] |
|
new_time = ( |
|
(time - (time - 1) % time_compress) |
|
if (time - 1) % time_compress != 0 |
|
else time |
|
) |
|
new_height = ( |
|
(height - (height) % spatial_compress) |
|
if height % spatial_compress != 0 |
|
else height |
|
) |
|
new_width = ( |
|
(width - (width) % spatial_compress) if width % spatial_compress != 0 else width |
|
) |
|
return video[:, :new_time, :new_height, :new_width] |
|
|
|
|
|
@torch.no_grad() |
|
def rec_nusvae(input_file): |
|
|
|
nus_vae_path = '/storage/clh/Causal-Video-VAE/gradio/nus_vae_temp/video.mp4' |
|
|
|
if input_file.endswith(('.jpg', '.jpeg', '.png', '.gif', '.bmp')): |
|
|
|
image = cv2.imread(input_file, cv2.IMREAD_COLOR) |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
fps=10 |
|
total_frames = 1 |
|
video_data = torch.from_numpy(image) |
|
video_data = video_data.unsqueeze(0) |
|
video_data = video_data.permute(3, 0, 1, 2) |
|
video_data = (video_data / 255.0) * 2 - 1 |
|
video_data = _format_video_shape(video_data) |
|
video_data = video_data.unsqueeze(0) |
|
video_data = video_data.to(dtype=data_type) |
|
|
|
elif input_file.endswith(('.mp4', '.avi', '.mov', '.wmv')): |
|
|
|
decord_vr = VideoReader(input_file, ctx=cpu(0)) |
|
total_frames = len(decord_vr) |
|
video = cv2.VideoCapture(input_file) |
|
fps = video.get(cv2.CAP_PROP_FPS) |
|
frame_id_list = np.linspace(0, total_frames-1, total_frames, dtype=int) |
|
video_data = decord_vr.get_batch(frame_id_list).asnumpy() |
|
video_data = torch.from_numpy(video_data) |
|
video_data = video_data.permute(3, 0, 1, 2) |
|
video_data = (video_data / 255.0) * 2 - 1 |
|
video_data = _format_video_shape(video_data) |
|
video_data = video_data.unsqueeze(0) |
|
video_data = video_data.to(dtype=data_type) |
|
|
|
video_data = video_data.to(device4) |
|
latents, posterior, x_z = nus_vae.encode(video_data) |
|
video_recon, x_z_rec = nus_vae.decode(latents, num_frames=video_data.size(2)) |
|
custom_to_video(video_recon[0], fps=fps, output_file=nus_vae_path) |
|
time.sleep(15) |
|
|
|
return nus_vae_path |
|
|
|
@torch.no_grad() |
|
def rec_cvvae(input_file): |
|
|
|
cv_vae_path = '/storage/clh/Causal-Video-VAE/gradio/cv_vae_temp/video.mp4' |
|
|
|
if input_file.endswith(('.jpg', '.jpeg', '.png', '.gif', '.bmp')): |
|
|
|
image = cv2.imread(input_file, cv2.IMREAD_COLOR) |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
fps=10 |
|
total_frames = 1 |
|
video_data = torch.from_numpy(image) |
|
video_data = video_data.unsqueeze(0) |
|
video_data = video_data.permute(3, 0, 1, 2) |
|
video_data = (video_data / 255.0) * 2 - 1 |
|
video_data = _format_video_shape(video_data) |
|
video_data = video_data.unsqueeze(0) |
|
video_data = video_data.to(dtype=data_type) |
|
|
|
elif input_file.endswith(('.mp4', '.avi', '.mov', '.wmv')): |
|
|
|
decord_vr = VideoReader(input_file, ctx=cpu(0)) |
|
total_frames = len(decord_vr) |
|
video = cv2.VideoCapture(input_file) |
|
fps = video.get(cv2.CAP_PROP_FPS) |
|
frame_id_list = np.linspace(0, total_frames-1, total_frames, dtype=int) |
|
video_data = decord_vr.get_batch(frame_id_list).asnumpy() |
|
video_data = torch.from_numpy(video_data) |
|
video_data = video_data.permute(3, 0, 1, 2) |
|
video_data = (video_data / 255.0) * 2 - 1 |
|
video_data = _format_video_shape(video_data) |
|
video_data = video_data.unsqueeze(0) |
|
video_data = video_data.to(dtype=data_type) |
|
|
|
video_data = video_data.to(device3) |
|
latent = cvvae.encode(video_data).latent_dist.sample() |
|
video_recon = cvvae.decode(latent).sample |
|
custom_to_video(video_recon[0], fps=fps, output_file=cv_vae_path) |
|
time.sleep(10) |
|
return cv_vae_path |
|
|
|
@torch.no_grad() |
|
def rec_our12(input_file): |
|
|
|
our_vae_path = '/storage/clh/Causal-Video-VAE/gradio/our_temp/video.mp4' |
|
if input_file.endswith(('.jpg', '.jpeg', '.png', '.gif', '.bmp')): |
|
|
|
image = cv2.imread(input_file, cv2.IMREAD_COLOR) |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
fps=10 |
|
total_frames = 1 |
|
video_data = torch.from_numpy(image) |
|
video_data = video_data.unsqueeze(0) |
|
video_data = video_data.permute(3, 0, 1, 2) |
|
video_data = (video_data / 255.0) * 2 - 1 |
|
video_data = _format_video_shape(video_data) |
|
video_data = video_data.unsqueeze(0) |
|
video_data = video_data.to(dtype=data_type) |
|
|
|
elif input_file.endswith(('.mp4', '.avi', '.mov', '.wmv')): |
|
|
|
decord_vr = VideoReader(input_file, ctx=cpu(0)) |
|
total_frames = len(decord_vr) |
|
video = cv2.VideoCapture(input_file) |
|
fps = video.get(cv2.CAP_PROP_FPS) |
|
frame_id_list = np.linspace(0, total_frames-1, total_frames, dtype=int) |
|
video_data = decord_vr.get_batch(frame_id_list).asnumpy() |
|
video_data = torch.from_numpy(video_data) |
|
video_data = video_data.permute(3, 0, 1, 2) |
|
video_data = (video_data / 255.0) * 2 - 1 |
|
video_data = _format_video_shape(video_data) |
|
video_data = video_data.unsqueeze(0) |
|
video_data = video_data.to(dtype=data_type) |
|
|
|
|
|
input_data = video_data.clone() |
|
input_data = input_data.to(device0) |
|
latents = vqvae.encode(input_data).sample().to(data_type) |
|
video_recon = vqvae.decode(latents) |
|
custom_to_video(video_recon[0], fps=fps, output_file=our_vae_path) |
|
|
|
return our_vae_path |
|
|
|
@torch.no_grad() |
|
def rec_new(input_file): |
|
|
|
our_vae_path = '/storage/clh/Causal-Video-VAE/gradio/new_temp/video.mp4' |
|
if input_file.endswith(('.jpg', '.jpeg', '.png', '.gif', '.bmp')): |
|
|
|
image = cv2.imread(input_file, cv2.IMREAD_COLOR) |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
fps=10 |
|
total_frames = 1 |
|
video_data = torch.from_numpy(image) |
|
video_data = video_data.unsqueeze(0) |
|
video_data = video_data.permute(3, 0, 1, 2) |
|
video_data = (video_data / 255.0) * 2 - 1 |
|
video_data = _format_video_shape(video_data) |
|
video_data = video_data.unsqueeze(0) |
|
video_data = video_data.to(dtype=data_type) |
|
|
|
elif input_file.endswith(('.mp4', '.avi', '.mov', '.wmv')): |
|
|
|
decord_vr = VideoReader(input_file, ctx=cpu(0)) |
|
total_frames = len(decord_vr) |
|
video = cv2.VideoCapture(input_file) |
|
fps = video.get(cv2.CAP_PROP_FPS) |
|
frame_id_list = np.linspace(0, total_frames-1, total_frames, dtype=int) |
|
video_data = decord_vr.get_batch(frame_id_list).asnumpy() |
|
video_data = torch.from_numpy(video_data) |
|
video_data = video_data.permute(3, 0, 1, 2) |
|
video_data = (video_data / 255.0) * 2 - 1 |
|
video_data = _format_video_shape(video_data) |
|
video_data = video_data.unsqueeze(0) |
|
video_data = video_data.to(dtype=data_type) |
|
|
|
|
|
input_data = video_data.clone() |
|
input_data = input_data.to(device0) |
|
latents = newvae.encode(input_data).sample().to(data_type) |
|
video_recon = newvae.decode(latents) |
|
custom_to_video(video_recon[0], fps=fps, output_file=our_vae_path) |
|
|
|
return our_vae_path |
|
|
|
@torch.no_grad() |
|
def show_origin(input_file): |
|
return input_file |
|
|
|
@torch.no_grad() |
|
def main(args: argparse.Namespace): |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
input_interface = gr.components.File(label="上传文件(图片或视频)") |
|
with gr.Row(): |
|
output_video1 = gr.Video(label="原始视频或图片") |
|
output_video2 = gr.Video(label="我们的3D VAE输出视频或图片") |
|
with gr.Row(): |
|
show_origin_button = gr.components.Button("展示原始视频或图片") |
|
show_origin_button.click(fn=show_origin, inputs=input_interface, outputs=output_video1) |
|
our12_button = gr.components.Button("用我们的3D VAE重建视频或图片") |
|
our12_button.click(fn=rec_our12, inputs=input_interface, outputs=output_video2) |
|
with gr.Row(): |
|
output_video3 = gr.Video(label="CV-VAE VAE输出视频或图片") |
|
output_video4 = gr.Video(label="Open-Sora VAE输出视频或图片") |
|
with gr.Row(): |
|
cvvae_button = gr.components.Button("用CV VAE重建视频或图片") |
|
cvvae_button.click(fn=rec_cvvae, inputs=input_interface, outputs=output_video3) |
|
nusvae_button = gr.components.Button("用Open-Sora VAE重建视频或图片") |
|
nusvae_button.click(fn=rec_nusvae, inputs=input_interface, outputs=output_video4) |
|
""" |
|
with gr.Row(): |
|
output_video5 = gr.Video(label="我们最新内部版本VAE") |
|
with gr.Row(): |
|
new_button = gr.components.Button("用新VAE重建视频或图片") |
|
new_button.click(fn=rec_new, inputs=input_interface, outputs=output_video5) |
|
""" |
|
|
|
|
|
demo.launch(server_name="0.0.0.0", server_port=11904) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--ckpt", type=str, default="") |
|
parser.add_argument("--sample_fps", type=int, default=30) |
|
parser.add_argument("--tile_overlap_factor", type=float, default=0.125) |
|
parser.add_argument('--enable_tiling', action='store_true') |
|
parser.add_argument("--device", type=str, default="cuda") |
|
parser.add_argument("--config", type=str, default="cuda") |
|
args = parser.parse_args() |
|
device = args.device |
|
data_type = torch.bfloat16 |
|
device0 = torch.device('cuda:2') |
|
ckpt = '/storage/clh/models/488dim8_layernorm_nearst' |
|
vqvae = CausalVAEModel.from_pretrained(ckpt) |
|
if args.enable_tiling: |
|
vqvae.enable_tiling() |
|
vqvae.tile_overlap_factor = args.tile_overlap_factor |
|
vqvae = vqvae.to(data_type).to(device0) |
|
vqvae.eval() |
|
|
|
device3 = torch.device('cuda:3') |
|
ckpt = '/storage/clh/CV-VAE/vae3d' |
|
cvvae = CVVAEModel.from_pretrained(ckpt) |
|
cvvae = cvvae.to(device3).to(data_type) |
|
cvvae.eval() |
|
device4 = torch.device('cuda:4') |
|
cfg = parse_configs(args, training=False) |
|
nus_vae = build_module(cfg.model, MODELS) |
|
nus_vae = nus_vae.to(device4).to(data_type) |
|
nus_vae.eval() |
|
""" |
|
device5 = torch.device('cuda:5') |
|
ckpt = '/storage/clh/models/488dim8' |
|
newvae = CausalVAEModel.from_pretrained(ckpt) |
|
if args.enable_tiling: |
|
newvae.enable_tiling() |
|
newvae.tile_overlap_factor = args.tile_overlap_factor |
|
newvae = vqvae.to(data_type).to(device0) |
|
newvae.eval() |
|
""" |
|
main(args) |
|
|