clh / train_ddp_refiner.py
LiuhanChen's picture
Add files using upload-large-folder tool
a71d323 verified
import os
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader, DistributedSampler, Subset
import argparse
import logging
from colorlog import ColoredFormatter
import tqdm
from itertools import chain
import wandb
import random
import numpy as np
from pathlib import Path
from einops import rearrange
from causalvideovae.model import Refiner, EMA, CausalVAEModel
from causalvideovae.utils.utils import RealVideoDataset
from causalvideovae.model.dataset_videobase import VideoDataset
from causalvideovae.model.utils.module_utils import resolve_str_to_obj
from causalvideovae.model.utils.video_utils import tensor_to_video
import time
try:
import lpips
except:
raise Exception("Need lpips to valid.")
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def ddp_setup():
dist.init_process_group(backend="nccl")
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
def setup_logger(rank):
logger = logging.getLogger()
logger.setLevel(logging.INFO)
formatter = ColoredFormatter(
f"[rank{rank}] %(log_color)s%(asctime)s - %(levelname)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
log_colors={
"DEBUG": "cyan",
"INFO": "green",
"WARNING": "yellow",
"ERROR": "red",
"CRITICAL": "bold_red",
},
reset=True,
style="%",
)
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.DEBUG)
stream_handler.setFormatter(formatter)
if not logger.handlers:
logger.addHandler(stream_handler)
return logger
def check_unused_params(model):
unused_params = []
for name, param in model.named_parameters():
if param.grad is None:
unused_params.append(name)
return unused_params
def set_requires_grad_optimizer(optimizer, requires_grad):
for param_group in optimizer.param_groups:
for param in param_group["params"]:
param.requires_grad = requires_grad
def total_params(model):
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
total_params_in_millions = total_params / 1e6
return int(total_params_in_millions)
def get_exp_name(args):
return f"{args.exp_name}-lr{args.lr:.2e}-bs{args.batch_size}-rs{args.resolution}-sr{args.sample_rate}-fr{args.num_frames}"
def set_train(modules):
for module in modules:
module.train()
def set_eval(modules):
for module in modules:
module.eval()
def set_modules_requires_grad(modules, requires_grad):
for module in modules:
module.requires_grad_(requires_grad)
def save_checkpoint(
epoch,
batch_idx,
optimizer_state,
state_dict,
scaler_state,
checkpoint_dir,
filename="checkpoint.ckpt",
ema_state_dict={}
):
filepath = checkpoint_dir / Path(filename)
torch.save(
{
"epoch": epoch,
"batch_idx": batch_idx,
"optimizer_state": optimizer_state,
"state_dict": state_dict,
"ema_state_dict": ema_state_dict,
"scaler_state": scaler_state,
},
filepath,
)
return filepath
def valid(rank, model, vae, val_dataloader, precision, args):
if args.eval_lpips:
lpips_model = lpips.LPIPS(net='alex', spatial=True)
lpips_model.to(rank)
lpips_model = DDP(lpips_model, device_ids=[rank])
lpips_model.requires_grad_(False)
lpips_model.eval()
bar = None
if rank == 0:
bar = tqdm.tqdm(total=len(val_dataloader), desc="Validation...")
psnr_list = []
lpips_list = []
video_log = []
num_video_log = args.eval_num_video_log
with torch.no_grad():
for batch_idx, batch in enumerate(val_dataloader):
inputs = batch['video'].to(rank)
with torch.cuda.amp.autocast(dtype=precision):
latents = vae.encode(inputs).sample()
video_recon = vae.decode(latents)
refines = model(video_recon)
# Upload videos
if rank == 0:
for i in range(len(refines)):
if num_video_log <= 0:
break
refine_video = tensor_to_video(refines[i])
video_log.append(refine_video)
num_video_log -= 1
inputs = rearrange(inputs, "b c t h w -> (b t) c h w").contiguous()
refines = rearrange(refines, "b c t h w -> (b t) c h w").contiguous()
# Calculate PSNR
mse = torch.mean(torch.square(inputs - refines), dim=(1,2,3))
psnr = 20 * torch.log10(1 / torch.sqrt(mse))
psnr = psnr.mean().detach().cpu().item()
# Calculate LPIPS
if args.eval_lpips:
lpips_score = lpips_model.forward(inputs, refines).mean().detach().cpu().item()
lpips_list.append(lpips_score)
psnr_list.append(psnr)
if rank == 0:
bar.update()
# Release gpus memory
torch.cuda.empty_cache()
return psnr_list, lpips_list, video_log
def gather_valid_result(psnr_list, lpips_list, video_log_list, rank, world_size):
gathered_psnr_list = [None for _ in range(world_size)]
gathered_lpips_list = [None for _ in range(world_size)]
gathered_video_logs = [None for _ in range(world_size)]
dist.all_gather_object(gathered_psnr_list, psnr_list)
dist.all_gather_object(gathered_lpips_list, lpips_list)
dist.all_gather_object(gathered_video_logs, video_log_list)
return np.array(gathered_psnr_list).mean(), np.array(gathered_lpips_list).mean(), list(chain(*gathered_video_logs))
def train(args):
# Setup logger
ddp_setup()
rank = int(os.environ["LOCAL_RANK"])
logger = setup_logger(rank)
# Init
ckpt_dir = Path(args.ckpt_dir) / Path(get_exp_name(args))
if rank == 0:
try:
ckpt_dir.mkdir(exist_ok=False, parents=True)
except:
logger.warning(f"`{ckpt_dir}` exists!")
time.sleep(5)
logger.warning("Connecting to WANDB...")
wandb.init(
project=os.environ.get("WANDB_PROJECT", "causalvideovae"),
config=args,
name=get_exp_name(args)
)
dist.barrier()
# Load generator model
if args.pretrained_model_name_or_path is not None:
if rank == 0:
logger.warning(
f"You are loading a checkpoint from `{args.pretrained_model_name_or_path}`."
)
model = Refiner.from_pretrained(
args.pretrained_model_name_or_path, ignore_mismatched_sizes=False
)
elif args.model_config is not None:
if rank == 0:
logger.warning(f"Model will be inited randomly.")
model = Refiner.from_config(args.model_config)
else:
raise Exception(
"You should set either `--pretrained_model_name_or_path` or `--model_config`"
)
# Load discriminator model
disc_cls = resolve_str_to_obj(args.disc_cls, append=False)
logger.warning(f"disc_class: {args.disc_cls} perceptual_weight: {args.perceptual_weight} loss_type: {args.loss_type}")
disc = disc_cls(
disc_start=args.disc_start,
disc_weight=args.disc_weight,
logvar_init=args.logvar_init,
perceptual_weight=args.perceptual_weight,
loss_type=args.loss_type
)
# DDP
model = model.to(rank)
vae = CausalVAEModel.from_pretrained(args.vae_path, ignore_mismatched_sizes=False)
vae.requires_grad_(False)
vae = vae.to(rank).to(torch.bfloat16)
model = DDP(
model, device_ids=[rank], find_unused_parameters=args.find_unused_parameters
)
disc = disc.to(rank)
disc = DDP(
disc, device_ids=[rank], find_unused_parameters=args.find_unused_parameters
)
dataset = VideoDataset(
args.video_path,
sequence_length=args.num_frames,
resolution=args.resolution,
sample_rate=args.sample_rate,
dynamic_sample=args.dynamic_sample,
)
ddp_sampler = DistributedSampler(dataset)
dataloader = DataLoader(
dataset, batch_size=args.batch_size, sampler=ddp_sampler, pin_memory=True, num_workers=args.dataset_num_worker
)
val_dataset = RealVideoDataset(
real_video_dir=args.eval_video_path,
num_frames=args.eval_num_frames,
sample_rate=args.eval_sample_rate,
crop_size=args.eval_resolution,
resolution=args.eval_resolution,
)
indices = range(args.eval_subset_size)
val_dataset = Subset(val_dataset, indices=indices)
val_sampler = DistributedSampler(val_dataset)
val_dataloader = DataLoader(val_dataset, batch_size=args.eval_batch_size, sampler=val_sampler, pin_memory=True)
# Optimizer
modules_to_train = [module for module in model.module.get_decoder()]
if not args.freeze_encoder:
modules_to_train += [module for module in model.module.get_encoder()]
else:
for module in model.module.get_encoder():
module.eval()
module.requires_grad_(False)
logger.warning("Encoder is freezed!")
parameters_to_train = []
for module in modules_to_train:
parameters_to_train += module.parameters()
gen_optimizer = torch.optim.Adam(parameters_to_train, lr=args.lr)
disc_optimizer = torch.optim.Adam(
disc.module.discriminator.parameters(), lr=args.lr
)
# AMP scaler
scaler = torch.cuda.amp.GradScaler()
precision = torch.bfloat16
if args.mix_precision == "fp16":
precision = torch.float16
elif args.mix_precision == "fp32":
precision = torch.float32
# Load from checkpoint
start_epoch = 0
start_batch_idx = 0
if args.resume_from_checkpoint:
if not os.path.isfile(args.resume_from_checkpoint):
raise Exception(
f"Make sure `{args.resume_from_checkpoint}` is a ckpt file."
)
checkpoint = torch.load(args.resume_from_checkpoint, map_location="cpu")
if "ema_state_dict" in checkpoint and len(checkpoint['ema_state_dict']) > 0 and os.environ.get("NOT_USE_EMA_MODEL", 0) == 0:
logger.info("Load from EMA state dict! If you want to load from original state dict, you should set NOT_USE_EMA_MODEL=1.")
sd = checkpoint["ema_state_dict"]
sd = {key.replace("module.", ""): value for key, value in sd.items()}
model.module.load_state_dict(sd, strict=True)
else:
if "gen_model" in sd["state_dict"]:
sd = sd["state_dict"]["gen_model"]
else:
sd = sd["state_dict"]
model.module.load_state_dict(sd)
disc.module.load_state_dict(checkpoint["state_dict"]["dics_model"], strict=False)
if not args.not_resume_training_process:
scaler.load_state_dict(checkpoint["scaler_state"])
gen_optimizer.load_state_dict(checkpoint["optimizer_state"]["gen_optimizer"])
disc_optimizer.load_state_dict(checkpoint["optimizer_state"]["disc_optimizer"])
start_epoch = checkpoint["epoch"]
start_batch_idx = checkpoint.get("batch_idx", 0)
logger.info(
f"Checkpoint loaded from {args.resume_from_checkpoint}, starting from epoch {start_epoch} batch {start_batch_idx}"
)
else:
logger.warning(
f"Checkpoint loaded from {args.resume_from_checkpoint}, starting from epoch {start_epoch} batch {start_batch_idx}. But training process is not resumed."
)
if args.ema:
logger.warning(f"Start with EMA. EMA decay = {args.ema_decay}.")
ema = EMA(model, args.ema_decay)
ema.register()
# Training loop
logger.info("Prepared!")
dist.barrier()
if rank == 0:
logger.info(f"=== Model Params ===")
logger.info(f"Generator:\t\t{total_params(model.module)}M")
logger.info(f"\t- Encoder:\t{total_params(model.module.encoder):d}M")
logger.info(f"\t- Decoder:\t{total_params(model.module.decoder):d}M")
logger.info(f"Discriminator:\t{total_params(disc.module):d}M")
logger.info(f"===========")
logger.info(f"Precision is set to: {args.mix_precision}!")
logger.info("Start training!")
# Training Bar
bar_desc = ""
bar = None
if rank == 0:
max_steps = (
args.epochs * len(dataloader) if args.max_steps is None else args.max_steps
)
bar = tqdm.tqdm(total=max_steps, desc=bar_desc.format(current_epoch=0, loss=0))
bar_desc = "Epoch: {current_epoch}, Loss: {loss}"
logger.warning("Training Details: ")
logger.warning(f" Max steps: {max_steps}")
logger.warning(f" Dataset Samples: {len(dataloader)}")
logger.warning(
f" Total Batch Size: {args.batch_size} * {os.environ['WORLD_SIZE']}"
)
dist.barrier()
# Training Loop
num_epochs = args.epochs
current_step = 1
def update_bar(bar):
if rank == 0:
bar.desc = bar_desc.format(current_epoch=epoch, loss=f"-")
bar.update()
for epoch in range(num_epochs):
set_train(modules_to_train)
ddp_sampler.set_epoch(epoch) # Shuffle data at every epoch
for batch_idx, batch in enumerate(dataloader):
if epoch <= start_epoch and batch_idx < start_batch_idx:
update_bar(bar)
current_step += 1
continue
inputs = batch["video"].to(rank)
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=precision):
latents = vae.encode(inputs).sample()
video_recon = vae.decode(latents)
if (
current_step % 2 == 1
and current_step >= disc.module.discriminator_iter_start
):
set_modules_requires_grad(modules_to_train, False)
step_gen = False
step_dis = True
else:
set_modules_requires_grad(modules_to_train, True)
step_gen = True
step_dis = False
assert (
step_gen or step_dis
), "You should backward either Gen or Dis in a step."
with torch.cuda.amp.autocast(dtype=precision):
outputs = model(video_recon)
# Generator Step
if step_gen:
with torch.cuda.amp.autocast(dtype=precision):
g_loss, g_log = disc(
inputs,
outputs,
optimizer_idx=0,
global_step=current_step,
last_layer=model.module.get_last_layer(),
split="train",
)
gen_optimizer.zero_grad()
scaler.scale(g_loss).backward()
scaler.step(gen_optimizer)
scaler.update()
if args.ema:
ema.update()
if rank == 0 and current_step % args.log_steps == 0:
wandb.log({"train/generator_loss": g_loss.item()}, step=current_step)
# Discriminator Step
if step_dis:
with torch.cuda.amp.autocast(dtype=precision):
d_loss, d_log = disc(
inputs,
outputs,
optimizer_idx=1,
global_step=current_step,
last_layer=None,
split="train",
)
disc_optimizer.zero_grad()
scaler.scale(d_loss).backward()
scaler.step(disc_optimizer)
scaler.update()
if rank == 0 and current_step % args.log_steps == 0:
wandb.log({"train/discriminator_loss": d_loss.item()}, step=current_step)
def valid_model(model, vae, name=""):
set_eval(modules_to_train)
psnr_list, lpips_list, video_log = valid(rank, model, vae, val_dataloader, precision, args)
valid_psnr, valid_lpips, valid_video_log = gather_valid_result(psnr_list, lpips_list, video_log, rank, dist.get_world_size())
if rank == 0:
name = "_" + name if name != "" else name
wandb.log({f"val{name}/recon": wandb.Video(np.array(valid_video_log), fps=10)}, step=current_step)
wandb.log({f"val{name}/psnr": valid_psnr}, step=current_step)
wandb.log({f"val{name}/lpips": valid_lpips}, step=current_step)
logger.info(f"{name} Validation done.")
if current_step % args.eval_steps == 0 or current_step == 1:
if rank == 0:
logger.info("Starting validation...")
valid_model(model, vae)
if args.ema:
ema.apply_shadow()
valid_model(model, vae, "ema")
ema.restore()
# Checkpoint
if current_step % args.save_ckpt_step == 0 and rank == 0:
file_path = save_checkpoint(
epoch,
batch_idx,
{
"gen_optimizer": gen_optimizer.state_dict(),
"disc_optimizer": disc_optimizer.state_dict(),
},
{
"gen_model": model.module.state_dict(),
"dics_model": disc.module.state_dict(),
},
scaler.state_dict(),
ckpt_dir,
f"checkpoint-{current_step}.ckpt",
ema_state_dict=ema.shadow if args.ema else {}
)
logger.info(f"Checkpoint has been saved to `{file_path}`.")
# Update step
update_bar(bar)
current_step += 1
dist.destroy_process_group()
def main():
parser = argparse.ArgumentParser(description="Distributed Training")
# Exp setting
parser.add_argument(
"--exp_name", type=str, default="test", help="number of epochs to train"
)
parser.add_argument("--seed", type=int, default=1234, help="seed")
# Training setting
parser.add_argument(
"--epochs", type=int, default=10, help="number of epochs to train"
)
parser.add_argument(
"--max_steps", type=int, default=None, help="number of epochs to train"
)
parser.add_argument("--save_ckpt_step", type=int, default=1000, help="")
parser.add_argument("--ckpt_dir", type=str, default="./results/", help="")
parser.add_argument(
"--batch_size", type=int, default=1, help="batch size for training"
)
parser.add_argument("--lr", type=float, default=1e-5, help="learning rate")
parser.add_argument("--log_steps", type=int, default=5, help="log steps")
parser.add_argument("--freeze_encoder", action="store_true", help="")
# Data
parser.add_argument("--video_path", type=str, default=None, help="")
parser.add_argument("--num_frames", type=int, default=17, help="")
parser.add_argument("--resolution", type=int, default=512, help="")
parser.add_argument("--sample_rate", type=int, default=1, help="")
parser.add_argument("--dynamic_sample", type=bool, default=False, help="")
# Generator model
parser.add_argument("--find_unused_parameters", action="store_true", help="")
parser.add_argument(
"--pretrained_model_name_or_path", type=str, default=None, help=""
)
parser.add_argument(
"--vae_path", type=str, default=None, help=""
)
parser.add_argument("--resume_from_checkpoint", type=str, default=None, help="")
parser.add_argument("--not_resume_training_process", action="store_true", help="")
parser.add_argument("--model_config", type=str, default=None, help="")
parser.add_argument(
"--mix_precision",
type=str,
default="bf16",
choices=["fp16", "bf16", "fp32"],
help="precision for training",
)
# Discriminator Model
parser.add_argument("--load_disc_from_checkpoint", type=str, default=None, help="")
parser.add_argument(
"--disc_cls",
type=str,
default="causalvideovae.model.losses.LPIPSWithDiscriminator3D",
help="",
)
parser.add_argument("--disc_start", type=int, default=5, help="")
parser.add_argument("--disc_weight", type=float, default=0.5, help="")
parser.add_argument("--kl_weight", type=float, default=1e-06, help="")
parser.add_argument("--perceptual_weight", type=float, default=1.0, help="")
parser.add_argument("--loss_type", type=str, default="l1", help="")
parser.add_argument("--logvar_init", type=float, default=0.0, help="")
# Validation
parser.add_argument("--eval_steps", type=int, default=1000, help="")
parser.add_argument("--eval_video_path", type=str, default=None, help="")
parser.add_argument("--eval_num_frames", type=int, default=17, help="")
parser.add_argument("--eval_resolution", type=int, default=256, help="")
parser.add_argument("--eval_sample_rate", type=int, default=1, help="")
parser.add_argument("--eval_batch_size", type=int, default=8, help="")
parser.add_argument("--eval_subset_size", type=int, default=50, help="")
parser.add_argument("--eval_num_video_log", type=int, default=2, help="")
parser.add_argument("--eval_lpips", action="store_true", help="")
# Dataset
parser.add_argument("--dataset_num_worker", type=int, default=16, help="")
# EMA
parser.add_argument("--ema", action="store_true", help="")
parser.add_argument("--ema_decay", type=float, default=0.999, help="")
args = parser.parse_args()
set_random_seed(args.seed)
train(args)
if __name__ == "__main__":
main()