blob_id
stringlengths 40
40
| repo_name
stringlengths 6
108
| path
stringlengths 3
244
| length_bytes
int64 36
870k
| score
float64 3.5
5.16
| int_score
int64 4
5
| text
stringlengths 36
870k
|
---|---|---|---|---|---|---|
d740fee3ec9d099fea72ed5f1306dcb0718f7160 | childofthefence/ucsd-algo-python | /venv/fibonacci.py | 698 | 3.828125 | 4 | fib_nums = [0, 1]
# place is how many fib numbers, starting at 1. The 10th fib number is thus 34
# indices in fib_nums stars at 0 so to get F19 would use something like fib_nums[19]
# and would be the 20th fib number (despite 19 being the index)
def calc_fib(place):
if place == 0:
return 0
elif place == 1:
return 1
if place > 1:
for vals in range(2, place):
fib_nums.append(fib_nums[vals-1] + fib_nums[vals-2])
# print(fib_nums)
return fib_nums[len(fib_nums)-1]
x_val_pass = 1000
x = calc_fib(x_val_pass)
x1 = fib_nums[(x_val_pass-1)]
print('Calc fib to {}th place is {} and the index of {} val is {} '.format(x_val_pass, x, (x_val_pass-1), x1))
print(x == x1) |
c6fd8cbfe4a6dca8fb433135460f25980a5f1798 | dilawarm/TDT4171 | /assignments/assignment5/neural_network_skeleton.py | 10,061 | 4.125 | 4 | # Use Python 3.8 or newer (https://www.python.org/downloads/)
import unittest
# Remember to install numpy (https://numpy.org/install/)!
import numpy as np
import pickle
import os
class NeuralNetwork:
def __init__(self, input_dim: int, hidden_layer: bool) -> None:
"""
Initialize the feed-forward neural network with the given arguments.
:param input_dim: Number of features in the dataset.
:param hidden_layer: Whether or not to include a hidden layer.
:return: None.
"""
# --- PLEASE READ --
# Use the parameters below to train your feed-forward neural network.
# Number of hidden units if hidden_layer = True.
self.hidden_units = 25
# This parameter is called the step size, also known as the learning rate (lr).
# See 18.6.1 in AIMA 3rd edition (page 719).
# This is the value of ฮฑ on Line 25 in Figure 18.24.
self.lr = 1e-3
# Line 6 in Figure 18.24 says "repeat".
# This is the number of times we are going to repeat. This is often known as epochs.
self.epochs = 400
# We are going to store the data here.
# Since you are only asked to implement training for the feed-forward neural network,
# only self.x_train and self.y_train need to be used. You will need to use them to implement train().
# The self.x_test and self.y_test is used by the unit tests. Do not change anything in it.
self.x_train, self.y_train = None, None
self.x_test, self.y_test = None, None
np.random.seed(0) # Setting random seed for reproducibility.
self.weights, self.biases = None, None # Initializing weights and biases
self.total_layers = (
None # Initializing the number of layers in the neural network.
)
"""
I have implemented the neural network as two lists, one with the weight matrices between each layer,
and the other with the bias vectors.
"""
if hidden_layer:
self.weights = [
np.random.randn(self.hidden_units, input_dim),
np.random.randn(1, self.hidden_units),
]
self.biases = [np.random.randn(self.hidden_units, 1), np.random.randn(1, 1)]
self.total_layers = 3
else:
self.weights = [np.random.randn(1, input_dim)]
self.biases = [np.random.randn(1, 1)]
self.total_layers = 2
self.sigmoid = lambda x: 1.0 / (
1.0 + np.exp(-x)
) # The sigmoid activation function: 1 / (1 + e^(-x))
self.sigmoid_derivative = lambda x: self.sigmoid(x) * (
1 - self.sigmoid(x)
) # The derivative of the sigmoid activation function to be used in the backpropagation algorithm.
def load_data(
self, file_path: str = os.path.join(os.getcwd(), "data_breast_cancer.p")
) -> None:
"""
Do not change anything in this method.
Load data for training and testing the model.
:param file_path: Path to the file 'data_breast_cancer.p' downloaded from Blackboard. If no arguments is given,
the method assumes that the file is in the current working directory.
The data have the following format.
(row, column)
x: shape = (number of examples, number of features)
y: shape = (number of examples)
"""
with open(file_path, "rb") as file:
data = pickle.load(file)
self.x_train, self.y_train = data["x_train"], data["y_train"]
self.x_test, self.y_test = data["x_test"], data["y_test"]
def train(self) -> None:
"""Run the backpropagation algorithm to train this neural network"""
for _ in range(self.epochs):
for x, y in zip(self.x_train, self.y_train):
weights_gradient = [
None for weight in self.weights
] # Initializing weight gradients for each layer which are going to be used to update the weights in the network.
biases_gradient = [
None for bias in self.biases
] # Initializing bias gradients for each layer which are going to be used to update the biases in the network.
activation = np.expand_dims(x, axis=1)
activations = [
activation
] # A list for storing all the activations when doing forward propagation
values = (
[]
) # A list for storing weight * x + bias values without applying the activation function.
for weight, bias in zip(self.weights, self.biases):
value = np.dot(weight, activation) + bias
values.append(value)
activation = self.sigmoid(value)
activations.append(activation)
"""
Calculating the error delta from output layer to be propagated backwards in the network. It is calculated
by taking the derivative of the loss function, which in our case is MSE, and multiply with derivate of
the sigmoid function applied on the value that entered the last layer of the network.
"""
error_delta = (activations[-1] - y) * self.sigmoid_derivative(
values[-1]
)
weights_gradient[-1] = np.dot(
error_delta, activations[-2].T
) # Setting error delta multiplied with the second last layer activations as weight gradient for last layer.
biases_gradient[-1] = error_delta # Setting error delta as bias gradient for last layer.
"""
This for-loop does the same as the code from line 128 - 136, but for each layer in the network.
Thus, the error is propagated backwards in the network, and the gradients for each layer are set.
"""
for layer in range(2, self.total_layers):
error_delta = np.dot(
self.weights[-layer + 1].T, error_delta
) * self.sigmoid_derivative(values[-layer])
weights_gradient[-layer] = np.dot(
error_delta, activations[-layer - 1].T
)
biases_gradient[-layer] = error_delta
self.weights = [
weight - self.lr * weight_gradient
for weight, weight_gradient in zip(self.weights, weights_gradient)
] # Updating the weights of the network by w_i - learning_rate * nabla w_i (w_i is the weight matrix at layer i, and nabla w_i is weight gradient.)
self.biases = [
bias - self.lr * bias_gradient
for bias, bias_gradient in zip(self.biases, biases_gradient)
] # Updating the biases of the network by b_i - learning_rate * nabla b_i (b_i is the bias vector at layer i, and nabla b_i is weight gradient.)
def predict(self, x: np.ndarray) -> float:
"""
Given an example x we want to predict its class probability.
For example, for the breast cancer dataset we want to get the probability for cancer given the example x.
:param x: A single example (vector) with shape = (number of features)
:return: A float specifying probability which is bounded [0, 1].
"""
# Applying forward propagation by performing weight * x + bias through the whole network.
activation = np.expand_dims(x, axis=1)
for weight, bias in zip(self.weights, self.biases):
activation = self.sigmoid(np.dot(weight, activation) + bias)
return activation[0][0] # Probability for the input x belonging to class 1.
class TestAssignment5(unittest.TestCase):
"""
Do not change anything in this test class.
--- PLEASE READ ---
Run the unit tests to test the correctness of your implementation.
This unit test is provided for you to check whether this delivery adheres to the assignment instructions
and whether the implementation is likely correct or not.
If the unit tests fail, then the assignment is not correctly implemented.
"""
def setUp(self) -> None:
self.threshold = 0.8
self.nn_class = NeuralNetwork
self.n_features = 30
def get_accuracy(self) -> float:
"""Calculate classification accuracy on the test dataset."""
self.network.load_data()
self.network.train()
n = len(self.network.y_test)
correct = 0
for i in range(n):
# Predict by running forward pass through the neural network
pred = self.network.predict(self.network.x_test[i])
# Sanity check of the prediction
assert 0 <= pred <= 1, "The prediction needs to be in [0, 1] range."
# Check if right class is predicted
correct += self.network.y_test[i] == round(float(pred))
return round(correct / n, 3)
def test_perceptron(self) -> None:
"""Run this method to see if Part 1 is implemented correctly."""
self.network = self.nn_class(self.n_features, False)
accuracy = self.get_accuracy()
self.assertTrue(
accuracy > self.threshold,
"This implementation is most likely wrong since "
f"the accuracy ({accuracy}) is less than {self.threshold}.",
)
def test_one_hidden(self) -> None:
"""Run this method to see if Part 2 is implemented correctly."""
self.network = self.nn_class(self.n_features, True)
accuracy = self.get_accuracy()
self.assertTrue(
accuracy > self.threshold,
"This implementation is most likely wrong since "
f"the accuracy ({accuracy}) is less than {self.threshold}.",
)
if __name__ == "__main__":
unittest.main()
|
db9f8f1535075c51e4eff02bb8c428eeb14a1d34 | saurabh-pandey/AlgoAndDS | /leetcode/arrays/remove_duplicate_sorted_a2.py | 990 | 3.5625 | 4 | from typing import List
def _shift_left(nums: List[int], index: int, shift_by: int) -> None:
for i in range(index, len(nums) - shift_by):
nums[i] = nums[i + shift_by]
def remove_elements_1(nums: List[int]) -> int:
new_len = len(nums)
end_marker = len(nums)
dup_count = 0
i = 1
while i < end_marker:
if nums[i - 1] == nums[i]:
dup_count += 1
new_len -= 1
else:
if dup_count > 0:
_shift_left(nums, i - dup_count, dup_count)
end_marker -= dup_count
i -= dup_count
dup_count = 0
i += 1
return new_len
def remove_elements_2(arr: List[int]) -> int:
if not arr:
return 0
write_index = 1
read_index = 1
while read_index < len(arr):
if arr[read_index - 1] != arr[read_index]:
arr[write_index] = arr[read_index]
write_index += 1
read_index += 1
return write_index
|
e79f4bc6a33ba7b4959aa50291042e0843ae9705 | Ompragash/python-ex... | /Simple_calculator.py | 680 | 4.15625 | 4 | #Python program to make a simple calculator
def add(x, y):
return x + y
def sub(x, y):
return x - y
def mul(x, y):
return x * y
def div(x, y):
return x / y
print("Select Operation.")
print("1.Add")
print("2.Subtrac")
print("3.Multiply")
print("4.Division")
choice = input("Enter the choice(1/2/3/4):")
n1 = int(input("Enter the first number:"))
n2 = int(input("Enter the second number:"))
if choice == '1':
print(n1,'+',n2,'=', add(n1, n2))
elif choice == '2':
print(n1,'-',n2,'=', sub(n1, n2))
elif choice == '3':
print(n1,'*',n2,'=', mul(n1, n2))
elif choice == '4':
print(n1,'/',n2,'=', div(n1, n2))
else:
print("Invalid input")
|
dca2eaa44133561cb48d950eab7983ad4efd3041 | jordymcm/learning-to-code | /python/Stories/hamsterV1.0.0.py | 889 | 3.84375 | 4 | #!/usr/bin/python3
from getch import getch
import os
answer=0
name=0
answer = input ('You are a hamster what\'s your name? A: Fred B: doggy C: Zoof ')
os.system('clear')
if answer == 'a' or answer == 'A':
name=('fred')
print ('Fred, that is a good choice')
getch() == ' '
os.system('clear')
answer = input ('Now '+ name +' needs a house. you have 2 choises. A: a house B: a flata ')
elif answer == 'b' or answer == 'B':
name=('doggy')
print ('doggy, that is a good choice')
getch() == ' '
os.system('clear')
answer = input ('Now '+ name +' needs a house. you have 2 choises. A: a house B: a flata ')
elif answer == 'c' or answer == 'C':
name=('zoof')
print ('zoof, that is a good choice')
getch() == ' '
os.system('clear')
answer = input ('Now '+ name +' needs a house. you have 2 choises. A: a house B: a flata ') |
cc6d93c6c4e4027c457d294031e08f8d3ca0f035 | edu-athensoft/stem1401python_student | /py200912f_python2m7/day04_201003/file_5_read.py | 352 | 3.6875 | 4 | """
open a file in read mode
"""
f = open("file5_mode_r.txt",'r')
# read the specified length of data in the file
print(f.read(8),end="==")
print(f.read(8),end="==")
# print(f.read(1),end="==")
# print("EOF",end="==")
# print(f.read(1),end="==")
# print("EOF")
print(f.read(8),end="==")
print(f.read(8),end="==")
print(f.read(8),end="==")
f.close() |
b7a9979f6dfb368954ac3a53a37e2e8d9eb99d91 | dongyingname/pythonStudy | /Data Science/np/numpyTrial.py | 5,135 | 4.40625 | 4 | # %%
# Numpy is the core library for scientific computing
# in Python. It provides a high-performance multidimensional
# array object, and tools for working with these arrays.
# If you are already familiar with MATLAB, you might find
# this tutorial useful to get started with Numpy.
# %%
# A numpy array is a grid of values, all of the same type,
# and is indexed by a tuple of nonnegative integers.
# The number of dimensions is the rank of the array; the
# shape of an array is a tuple of integers giving the size
# of the array along each dimension.
# We can initialize numpy arrays from nested Python lists,
# and access elements using square brackets:
import numpy as np
a = np.array([1, 2, 3]) # Create a rank 1 array
print(type(a)) # Prints "<class 'numpy.ndarray'>"
print(a.shape) # Prints "(3,)"
print(a[0], a[1], a[2]) # Prints "1 2 3"
a[0] = 5 # Change an element of the array
print(a) # Prints "[5, 2, 3]"
b = np.array([[1, 2, 3], [4, 5, 6]]) # Create a rank 2 array
print(b.shape) # Prints "(2, 3)"
print(b[0, 0], b[0, 1], b[1, 0]) # Prints "1 2 4"
# %%
a = np.zeros((2, 2)) # Create an array of all zeros
print(a) # Prints "[[ 0. 0.]
# [ 0. 0.]]"
b = np.ones((1, 2)) # Create an array of all ones
print(b) # Prints "[[ 1. 1.]]"
c = np.full((2, 2), 7) # Create a constant array
print(c) # Prints "[[ 7. 7.]
# [ 7. 7.]]"
d = np.eye(2) # Create a 2x2 identity matrix
print(d) # Prints "[[ 1. 0.]
# [ 0. 1.]]"
e = np.random.random((2, 2)) # Create an array filled with random values
print(e) # Might print "[[ 0.91940167 0.08143941]
# [ 0.68744134 0.87236687]]"
# %%
a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(a)
# Use slicing to pull out the subarray consisting of the first 2 rows
# and columns 1 and 2; b is the following array of shape (2, 2):
# [[2 3]
# [6 7]]
b = a[:2, 1:3]
# A slice of an array is a view into the same data, so modifying it
# will modify the original array.
print(a[0, 1]) # Prints "2"
b[0, 0] = 77 # b[0, 0] is the same piece of data as a[0, 1]
print(a[0, 1]) # Prints "77"
print(a)
# %%
# You can also mix integer indexing with slice indexing. However,
# doing so will yield an array of lower rank than the original
# array. Note that this is quite different from the way that
# MATLAB handles array slicing:
a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
# Two ways of accessing the data in the middle row of the array.
# Mixing integer indexing with slices yields an array of lower rank,
# while using only slices yields an array of the same rank as the
# original array:
row_r1 = a[1, :] # Rank 1 view of the second row of a
row_r2 = a[1:2, :] # Rank 2 view of the second row of a
print(row_r1, row_r1.shape)
print(row_r2, row_r2.shape)
row_r1[1] = 99
row_r2[0, 0] = 100
print('row_r1', row_r1)
print('a', a)
print('row_r2', row_r2)
print('a', a)
# We can make the same distinction when accessing columns of an array:
col_r1 = a[:, 1]
col_r2 = a[:, 1:2]
print(col_r1, col_r1.shape)
print(col_r2, col_r2.shape)
# %%
a = np.array([[1, 2], [3, 4], [5, 6]])
# An example of integer array indexing.
# The returned array will have shape (3,) and
print(a[[0, 1, 2], [0, 1, 0]]) # Prints "[1 4 5]"
# The above example of integer array indexing is equivalent to this:
print(np.array([a[0, 0], a[1, 1], a[2, 0]])) # Prints "[1 4 5]"
# When using integer array indexing, you can reuse the same
# element from the source array:
print(a[[0, 0], [1, 1]]) # Prints "[2 2]"
# Equivalent to the previous integer array indexing example
print(np.array([a[0, 1], a[0, 1]])) # Prints "[2 2]"
# %%
a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
print(a) # prints "array([[ 1, 2, 3],
# [ 4, 5, 6],
# [ 7, 8, 9],
# [10, 11, 12]])"
# Create an array of indices
b = np.array([0, 2, 0, 1])
# Select one element from each row of a using the indices in b
print(a[np.arange(4), b]) # Prints "[ 1 6 7 11]"
# Mutate one element from each row of a using the indices in b
a[np.arange(4), b] += 10
print(a)
# %%
# Boolean array indexing: Boolean array indexing lets you pick
# out arbitrary elements of an array. Frequently this type of
# indexing is used to select the elements of an array that
# satisfy some condition. Here is an example:
a = np.array([[1, 2], [3, 4], [5, 6]])
bool_idx = (a > 2) # Find the elements of a that are bigger than 2;
# this returns a numpy array of Booleans of the same
# shape as a, where each slot of bool_idx tells
# whether that element of a is > 2.
print(bool_idx) # Prints "[[False False]
# [ True True]
# [ True True]]"
# We use boolean array indexing to construct a rank 1 array
# consisting of the elements of a corresponding to the True values
# of bool_idx
print(a[bool_idx]) # Prints "[3 4 5 6]"
# We can do all of the above in a single concise statement:
print(a[a > 2])
# %%
|
e3c52f6189d7d4d20c845cd0a4e4d791d88e6076 | superniaoren/fresh-fish | /python_tricks/dictionary/test_dict_craziest_expression.py | 2,542 | 3.828125 | 4 | #
class AlwaysEqual:
def __eq__(self, some):
return True
def __hash__(self):
return id(self)
class AlwaysConflict:
def __hash__(self):
return 1
class AlwaysSame:
def __eq__(sefl, some):
return True
def __hash__(self):
return 1
if __name__ == '__main__':
descrp = 'In python, the keys: $True == 1 == 1.0, ' \
'The dict conflict happens in key or value, need double check. '
print(descrp)
error_prone = {True: 'true?', 1: '1?', 1.0: '1.0?'}
print(error_prone)
print('Now, to dig the reason !!')
key_eq = True == 1 == 1.0
print('key_eqaul: {}'.format(key_eq))
print("The boolean type is a subtype of the integer type, and boolean \n"\
"values behave like the values 0 and 1, respectively, in almost \n"\
"all contexts, the exception being that when converted to a string,\n"\
" the strings 'False' or 'True' are returned, respectively.")
no_yes = ['no', 'yes']
print("['no', 'yes'][False] = {}".format(no_yes[True]))
print("['no', 'yes'][True] = {}".format(no_yes[False])) # 1.0 float not work here
# overwritten, __eq__ or hash conflict ?? find it!
print("Find out: ")
objects = [AlwaysEqual(),
AlwaysEqual(),
AlwaysEqual(),
]
print([hash(obj) for obj in objects])
print(objects[0] == 43)
print(objects[1] == 'shop on line')
print(objects[2] == AlwaysEqual())
print("Test if the keys are overwritten: ")
key_over = {AlwaysEqual(): 'yes', AlwaysEqual(): 'no'}
print('key_overwritten: {}'.format(key_over)) # use is? not __eq__ ??
print('the keys get overwritten effect IS NOT based on their equality comparison result alone')
print("Test if the hash values are overwritten: ")
a_conf = AlwaysConflict()
b_conf = AlwaysConflict()
print(a_conf == b_conf)
print("hash = {0}, {1}".format(hash(a_conf), hash(b_conf)))
value_over = {AlwaysConflict(): 'yes', AlwaysConflict(): 'no'}
print("value_overwritten: {}".format(value_over))
print('the keys get overwritten effect IS NOT caused by hash value collisions alone either')
print("Test if the equality && hash-value collisions result in overwritten: ")
a_same = AlwaysSame()
b_same = AlwaysSame()
kv_over = {AlwaysSame(): 'yes', AlwaysSame(): 'no'}
print(a_same == b_same)
print("hash = {0}, {1}".format(hash(a_same), hash(b_same)))
print("kv_overwritten: {}".format(kv_over))
|
0d2bbfe07ddb86cb74eade29586cf9b903e28058 | gtxmobile/leetcode | /151. ็ฟป่ฝฌๅญ็ฌฆไธฒ้็ๅ่ฏ.py | 162 | 3.5625 | 4 | class Solution:
# @param s, a string
# @return a string
def reverseWords(self, s):
return ' '.join([w for w in s.strip().split() if w][::-1])
|
7586c98142cc7445da911f2a9fa4bf5f988ea699 | Aasthaengg/IBMdataset | /Python_codes/p02880/s118793555.py | 154 | 3.5625 | 4 | N=int(input())
resurt=''
for i in range(1,10):
if N%i ==0 and N//i<=9:
result='Yes'
break
else:
result='No'
print(result) |
eb708e1ca365e7cde1a32cc0ca71a063d9d67f56 | EngineerToBe/python-labs | /008_loops.py | 1,308 | 4.53125 | 5 | # with loops we can perform the set of task for n number of times
# for loop
pandavas = ['Yudhisthir', 'Arjun', 'Bhim', 'Nakul', "Sahdev"]
for pandav in pandavas:
print(pandav)
# break and continue
# The break statement terminates the loop containing it. Control of the program flows to the statement immediately after the body of the loop.
# If the break statement is inside a nested loop(loop inside another loop), the break statement will terminate the innermost loop.
for pandav in pandavas:
if pandav == 'Bhim':
print("My fav Pandav")
break
# The continue statement is used to skip the rest of the code inside a loop for the current iteration only. Loop does not terminate but continues on with the next iteration.
kids_age = [10, 9, 12, 14, 18, 13]
for age in kids_age:
if age < 10:
continue
else:
print(age)
# while loop
# The while loop performs a set of code until some condition is reached.
# While loops can be used to iterate through lists, just like for loops:
# List comprehensions are a third way of making lists.
# With this elegant approach, you could rewrite the for loop from the first example in just a single line of code:
ages = [23, 45, 67, 87, 100, 12, 14]
adult_age = [age for age in ages if age >= 18]
print(adult_age) |
9e5d145529906ea80fa4d575cc9f43a4e72fcc47 | Leo-hw/psou | /anal_pro4/deep_learn1/keras2.py | 2,106 | 3.625 | 4 | # Keras ๋ฅผ ์ด์ฉํด OR gate ๋
ผ๋ฆฌ ๋ชจ๋ธ์ ์์ฑํ ํ ๋ถ๋ฅ ๊ฒฐ๊ณผ ํ์ธ
import numpy as np
from tensorflow.keras.models import Sequential # ์ ํ ๋คํธ์ํฌ ์คํ
์ ์ ์
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.optimizers import SGD, Adam, RMSprop
# ์์ 1 : ๋ฐ์ดํฐ ์์ง ๋ฐ ๊ฐ๊ณต
x = np.array([[0,0], [0,1],[1,0],[1,1]])
y = np.array([[0],[0],[0],[1]]) #and
"""
model = Sequential()
model.add(Dense(5, input_dim=2))
model.add(Activation('relu'))
model.add(Dense(1))
model.add(Activation('sigmoid')) # ์ดํญ ๋ถ๋ฅ์ด๋ฏ๋ก ์ถ๋ ฅ์ ํ์ฑํ ํจ์๋ sigmoid
"""
model = Sequential()
model.add(Dense(5, input_dim=2, activation = 'relu'))
model.add(Dense(5, input_dim=2, activation = 'relu')) # hidden layer
model.add(Dense(1, activation = 'sigmoid')) # ์ถ๋ ฅํ ๋ ์ดํญ์ด๋ฏ๋ก sigmoid // ๋คํญ์ด๋ฉด softmax
print()
print(model.summary()) # ์ ์ฒด ๊ตฌ์กฐ์ ๋ํ parameter
print('---------------------------------------')
print('input(์
๋ ฅ ๊ตฌ์กฐ) : ',model.input) # ์
๋ ฅ ๊ตฌ์กฐ
print('output(์ถ๋ ฅ ๊ตฌ์กฐ) : ',model.output) # ์ถ๋ ฅ ๊ตฌ์กฐ
print('weights(๊ฐ์ค์น์ ํธํฅ) : ',model.weights) # ๊ฐ์ค์น์ ํธํฅ
print('---------------------------------------')
model.compile(optimizer=Adam(0.01), loss='binary_crossentropy', metrics=['accuracy'])
history = model.fit(x, y, epochs=1000, batch_size=1, verbose=1)
loss_metrics = model.evaluate(x, y)
print('loss_metrics : ', loss_metrics)
pred = (model.predict(x) > 0.5).astype('int32')
print('pred : ', pred.flatten())
print(' ****'*10)
print('loss : ', history.history['loss'])
print('acc : ', history.history['accuracy'])
import matplotlib.pyplot as plt
plt.plot(history.history['loss'], label = 'train loss')
plt.xlabel('epochs')
plt.ylabel('loss')
plt.legend(loc = 'best') # 4 ์ฌ๋ถ๋ฉด ์ค ์์น๋ฅผ ์ก์์ฃผ๋ ๊ฒ
plt.show()
import pandas as pd
pd.DataFrame(history.history).plot(figsize=(8,5))
plt.show()
|
e239afa4753e67cf501dcb1ad80117f912fca612 | kriti-banka/ml-workshop-wac-1 | /day_1/even_odd.py | 236 | 3.9375 | 4 | # If Condition
"""
if condition_1:
code
code
code
elif [optional] condition_2:
code
...
...
...
else [optional]:
code
code
"""
number = int(input())
if number % 2 == 0:
print('even')
else:
print('odd')
|
1ad42b305455d60ccda9ddd450d79ca2b83b719f | AmandaRH07/PythonUdemy | /1. Bรกsico/26- Exercicio2.py | 409 | 4 | 4 | hora = input("Digite a hora:")
if hora.isdigit():
hora = int(hora)
if hora < 0 or hora > 23:
print("Por favor, digite um horรกrio entre 0 e 23 horas")
else:
if hora <= 11:
print("Bom dia, dia")
elif hora <= 17:
print("Boa tarde, Brasil,Boa noite Itรกlia")
else:
print("Boa noite, vรก dormir, vocรช รฉ piranha, nรฃo morcega")
|
2d57899fae3d3036f3cd7adc0931c5a84d89bc23 | boliluce/CodingTest | /programmers/์ง์์ ํ์.py | 134 | 3.671875 | 4 | def solution(num):
#return "Even" if num%2==0 else "Odd"
return ["Even", "Odd"][num&1]
print(solution(3))
print(solution(4))
|
27502b0d82a9c38962a414f9e2276e537d300215 | zhengfuli/leetcode-in-python | /n044_wildcard_matching.py | 954 | 3.828125 | 4 | class WildCardMatching(object):
def wildCardMatching(self, s, p):
"""
:type s: str
:type p: str
:rtype: bool
"""
# sp, and pp are pointers for s and p, star for storing the star position
# ss for storing the letter in s corresponding to star in p
sp, pp, star, ss = 0, 0, -1, -1
while sp < len(s):
print pp, sp
if pp < len(p) and (s[sp] == p[pp] or p[pp] == '?'):
sp += 1
pp += 1
continue
if pp < len(p) and p[pp] == '*':
star, ss = pp, sp
pp += 1
continue
if star != -1:
pp = star + 1
ss += 1
sp = ss
continue
return False
while pp < len(p) and p[pp] == '*':
pp += 1
if pp == len(p):
return True
return False
|
6637ba5feb7e64e4bb6812e88fb0b6721d1e7bf7 | UmaAnantharaman/Python_Matplotlib_Numpypandas_ML | /openpyxl_worksheet_aceesscells.py | 632 | 4.09375 | 4 | #Create a workbook using openpyxl library
from openpyxl import Workbook
wb = Workbook()
#Make the current worksheet from the workbook active
ws = wb.active
#Changing the default title of the worksheet
ws.title = "Sample worksheet"
#Iterating through the workbook and printing the sheet names
for sheet in wb:
print(sheet.title)
#Creating a copy of the worksheet, copy_worksheet usage
source = wb.active
target = wb.copy_worksheet(source)
#Accessing the cells in worksheet by iterating, iter_rows usage
for row in ws.iter_rows(min_row=1, max_col=3, max_row=2):
for cell in row:
print(cell)
|
28259266de63cee34702478653c332fe1dc4be84 | archu333/python | /list slicing.py | 3,382 | 3.84375 | 4 | Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 16:30:00) [MSC v.1900 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
>>> list1=[2,4,6]
>>> print(list1[:])
[2, 4, 6]
>>> print(list1[-1])
6
>>> list=["Ajay","Baby","Mommy","Anil","Roshan","Ammu"]
>>> print(list[::2])
['Ajay', 'Mommy', 'Roshan']
>>> print(list[1::2])
['Baby', 'Anil', 'Ammu']
>>> print(list[2:3:])
['Mommy']
>>> print(list[-1:4:])
[]
>>> archu=[10,20,30,40,50,60,70,80,90]
>>> print(archu[0:8:1])
[10, 20, 30, 40, 50, 60, 70, 80]
>>> print(archu[0:7:2])
[10, 30, 50, 70]
>>> print(archu[-3:])
[70, 80, 90]
>>> print(archu[-2:5])
[]
>>> print(archu[:-3])
[10, 20, 30, 40, 50, 60]
>>> print(archu[1:-3:2])
[20, 40, 60]
>>> print(archu[::-1])
[90, 80, 70, 60, 50, 40, 30, 20, 10]
>>> a=[10,20,30,40,50]
>>> a[:2]=[1,2,3,4,5]
>>> print(a)
[1, 2, 3, 4, 5, 30, 40, 50]
>>> a=[10,20,30,40,50]
>>> a[::2]=[1,1,1,1,1,1,1,1,1]
Traceback (most recent call last):
File "<pyshell#21>", line 1, in <module>
a[::2]=[1,1,1,1,1,1,1,1,1]
ValueError: attempt to assign sequence of size 9 to extended slice of size 3
>>> a=[10,20,30,40,50]
>>> a[::2]=[1,1]
Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>
a[::2]=[1,1]
ValueError: attempt to assign sequence of size 2 to extended slice of size 3
>>> a=[10,20,30,40,50,60,70,80,90]
>>> a[::2]=[1,1,1,1,1]
>>> print(a)
[1, 20, 1, 40, 1, 60, 1, 80, 1]
>>>
>>>
>>>
>>> list=["abc","xyz","aba","1221"]
>>> s=0
>>> for i in list:
if i[0]==i[-1]:
s+=1
print(s)
1
2
>>> list=["abc","xyz","aba","1221"]
>>> s=0
>>> for i in list:
if i[0]==i[-1]:
s+=1
print(s)
SyntaxError: inconsistent use of tabs and spaces in indentation
>>>
>>>
>>> list=["abc","xyz","aba","1221"]
>>> s=0
>>> for i in list:
if i[0]==i[-1]:
s+=1
>>> print(s)
2
>>>
>>> list1=[1,2,3,4,5]
>>> list2=[5,6,7,8,9]
>>> r=false
Traceback (most recent call last):
File "<pyshell#55>", line 1, in <module>
r=false
NameError: name 'false' is not defined
>>> r="false"
>>> for i in list1:
for j in list2:
if i==j:
r="true"
>>> print(r)
true
>>>
>>>
>>> list1=[7,8,120,25,44,20,27]
>>> list2=[x for x in list1 if x%2!=0]
>>> print(list2)
[7, 25, 27]
>>> list3=[x for x in list1 if x%2==0]
>>> print(list3)
[8, 120, 44, 20]
>>>
>>>
>>> l=list(input().split())
Traceback (most recent call last):
File "<pyshell#79>", line 1, in <module>
l=list(input().split())
TypeError: 'list' object is not callable
>>> list=["Enjoying","Python"]
>>> list.append["good"]
Traceback (most recent call last):
File "<pyshell#81>", line 1, in <module>
list.append["good"]
TypeError: 'builtin_function_or_method' object is not subscriptable
>>> list=["I","Love","Python"]
>>> list2=["it","is","intresting"]
>>> list1=list+list2
>>> print(list1)
['I', 'Love', 'Python', 'it', 'is', 'intresting']
>>> print(list1*2)
['I', 'Love', 'Python', 'it', 'is', 'intresting', 'I', 'Love', 'Python', 'it', 'is', 'intresting']
>>> print(list2)
['it', 'is', 'intresting']
>>> print(list1)
['I', 'Love', 'Python', 'it', 'is', 'intresting']
>>> list1.append("programming skills")
>>> print(list1)
['I', 'Love', 'Python', 'it', 'is', 'intresting', 'programming skills']
>>> |
d994b636467ff4908e1daa64a31b4ce302a14154 | leilin-research/Link-Travel-Time-prediction | /filterTaxiDataset.py | 1,646 | 3.59375 | 4 | import dataToGraph
def isWithinRange(latitude,longitude,max_suitable_latitude,min_suitable_latitude,max_suitable_longitude,min_suitable_longitude):
return (latitude > min_suitable_latitude and latitude < max_suitable_latitude
and longitude > min_suitable_longitude and longitude < max_suitable_longitude)
def filterDataset(fileIn, fileOut,max_suitable_latitude,min_suitable_latitude,max_suitable_longitude,min_suitable_longitude):
'''
From input file, reads all lines and only writes them to output file if the POINT(latitude,longitude)
lies within range of max and min latitude and longitude values.
A line looks like this:
105;2014-02-01 00:00:21.033058+01;POINT(41.8971435606299 12.4729530904655)
'''
with open(fileIn, "r") as fin, open(fileOut, "w") as fout:
for line in fin:
latitude, longitude = dataToGraph.lineToPoint(line)
if isWithinRange(latitude,longitude,max_suitable_latitude,min_suitable_latitude,max_suitable_longitude,min_suitable_longitude):
fout.write(line)
def main():
fileIn = "/home/aniket/Desktop/BTP/Travel Time Prediction/Map backup/taxi_february.txt"
fileOut = "/home/aniket/Desktop/BTP/Travel Time Prediction/filteredTaxiData.txt"
# Run dataToGraph.py to get these values
max_suitable_latitude = 41.9123147
min_suitable_latitude = 41.7623147
max_suitable_longitude = 12.6046319
min_suitable_longitude = 12.4546319
filterDataset(fileIn,fileOut,max_suitable_latitude,min_suitable_latitude,max_suitable_longitude,min_suitable_longitude)
print("done")
if __name__=="__main__":
main()
|
6f695b3482fbf84bf4813b1cbc48989e94963d67 | MarkLyck/Learning-Python | /for.py | 102 | 3.625 | 4 | foods = ['bacbon', 'tuna', 'ham', 'sausages', 'beef']
for f in foods:
print(f)
print(len(f))
|
880e6fd13ed49921215c97107b7aa2681424f863 | ricardomartinez4/python | /orientadoObjetos/practica070.py | 2,842 | 3.96875 | 4 | # -*- coding: utf-8 -*-
'''
'''
class Rectangulo():
#
def __init__(self, base, altura, color='white'):
# Ahora en vez de iniciar los atributos se utilizan los mรฉtodos getter
self.base = float(base)
self.altura = float(altura)
self.color = color
def __str__(self):
return 'Rectรกngulo Dimensiones: ' + str(self.__base) + ', ' + str(self.__altura)
#
@property
def base(self):
return self.__base
@property
def altura(self):
return self.__altura
#
@base.setter
def base(self, base):
assert(base >= 0), 'La base no puede ser negativa'
self.__base = float(base)
@altura.setter
def altura(self, altura):
assert(altura >= 0), 'La altura no puede ser negativa'
self.__altura = float(altura)
def area(self):
return self.__base * self.__altura
def perimetro(self):
return 2 * self.__base + 2 * self.__altura
try:
#rectangulo = Rectangulo(-3,2)
rectangulo = Rectangulo(3,2)
print(rectangulo)
print(rectangulo.altura)
print(rectangulo.color)
rectangulo.color = 'black'
print(rectangulo.color)
rectangulo.altura = 4
print(rectangulo)
print(rectangulo.area())
print(rectangulo.perimetro())
except Exception as e:
print('Error: ' + str(e))# -*- coding: utf-8 -*-
'''
'''
class Rectangulo():
#
def __init__(self, base, altura, color='white'):
# Ahora en vez de iniciar los atributos se utilizan los mรฉtodos getter
self.base = float(base)
self.altura = float(altura)
self.color = color
def __str__(self):
return 'Rectรกngulo Dimensiones: ' + str(self.__base) + ', ' + str(self.__altura)
#
@property
def base(self):
return self.__base
@property
def altura(self):
return self.__altura
#
@base.setter
def base(self, base):
assert(base >= 0), 'La base no puede ser negativa'
self.__base = float(base)
@altura.setter
def altura(self, altura):
assert(altura >= 0), 'La altura no puede ser negativa'
self.__altura = float(altura)
def area(self):
return self.__base * self.__altura
def perimetro(self):
return 2 * self.__base + 2 * self.__altura
try:
#rectangulo = Rectangulo(-3,2)
rectangulo = Rectangulo(3,2)
print(rectangulo)
print(rectangulo.altura)
print(rectangulo.color)
rectangulo.color = 'black'
print(rectangulo.color)
rectangulo.altura = 4
print(rectangulo)
print(rectangulo.area())
print(rectangulo.perimetro())
except Exception as e:
print('Error: ' + str(e)) |
b8b6ef37b7dab583decfb4ab22d149d58191b494 | HaoLIU94/lpthw | /Pratice-exos/ex2.py | 281 | 3.671875 | 4 | import random
cont=1
while cont==1:
dice=[1,2,3,4,5,6]
res = random.randint(1,6)
print 'The result is',res
print 'Would you like to play again'
s = raw_input('yes/no\n')
if s =='yes':
cont=0
elif s=='no' :
cont=1
else:
pass
|
171e9b7299ddb13c6e7bb55bdf2889be39d83421 | sacki123/django_training | /Python test/thรชm pt vร o tuple.py | 380 | 3.796875 | 4 | tpl1 = ('a', 'b', 'c', 'd')
tpl2 = ('e',)
tpl3 = tpl1 + tpl2
print(tpl3)
lst = [1,2,3,4]
print(tuple(lst))
print(list(tpl3))
lst2 = ["Google",(10,20), 15, (40, 50, 60), ["a", "vร ", "e"], (70, 80, 90, 100)]
for index, value in enumerate(lst2):
if isinstance(value, tuple):
lst1 = list(lst2[index])
lst1[-1] = 200
lst2[index] = tuple(lst1)
print(lst2)
|
302930c6fe8b8e3a2deda19a132e839ba981961c | RoshaniPatel10994/-ITCS1140---Python--Practices- | /My Practice/rock collected in loop.py | 383 | 4.1875 | 4 | rocksdays = int()
weeks = 0
total = int()
days = 0
rocks = int()
for weeks in range(0, 2):
for days in range(0, 7):
rocks = int(input(" Enter the rocks you collected todays: "))+rocks
print("You collected: ", rocks, " rocks today")
weeks = weeks+ days
print(" You collected: ", rocks, " rocks this week.")
|
15609b2c5898686febdb31ac2dcfd0b19fa251d7 | bernardwija/Sir-Jude-Exercise | /1st Semester/Sir Jude's Exercise 7/No.1.py | 1,460 | 4.09375 | 4 | print('Welcome to List Converter!')
def removekeys(mydict,keylist):
print('Here are your datas: ')
print('Your dictionary:',mydict)
print('Your List:',keylist)
for i in keylist:
if i in mydict:
del mydict[i]
print('Here is your new dictionary:')
a=mydict
return a
def dictionary():
print('Please give us your available dictionary content down below.')
mydict = {}
while True:
dict = input('Please Input The Key Name: ')
val = input('Please Input The Key Value: ')
mydict[dict] = val
ans = input('Do you want to add another content(Yes or No)?: ')
if ans == 'Yes':
print(mydict)
continue
else:
print(mydict)
def list():
print('Now please give us your available list content down below.')
keylist =[]
while True:
list = input('Please Input The Key Name: ')
keylist.append(list)
ans = input('Do you want to add another content(Yes or No)?: ')
if ans == 'Yes':
print(keylist)
continue
else:
print(keylist)
break
print(removekeys(mydict,keylist))
list()
break
dictionary()
print('Thankyou for using our service!')
|
dac58ea7588cf42c7397afc380f37b748f9032a0 | tata-LY/python | /python-100-days/08.้ขๅๅฏน่ฑก็ผ็จๅบ็ก/1.py | 853 | 3.890625 | 4 | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
# @Time : 2021-1-12 16:08
# @Author : liuyang
# @File : 1.py
# @Software: PyCharm
class Student(object):
def __init__(self, name, age):
"""
__init__ๆฏไธไธช็นๆฎๆนๆณ็จไบๅจๅๅปบๅฏน่ฑกๆถ่ฟ่กๅๅงๅๆไฝ
:param name: ๅๅงๅๅญฆ็ๅๅญ
:param age: ๅๅงๅๅญฆ็ๅนด้พ
"""
self.name = name
self.age = age
def study(self, course_name = 'Python'):
print('%sๆญฃๅจๅญฆไน %s.' % (self.name, course_name))
def display_stu_info(self):
print('%s: %sๅฒ' % (self.name, self.age))
def main():
stu1 = Student('ๅๆด', 29)
stu1.study('Golang')
stu1.display_stu_info()
stu2 = Student('่ฅ่ฅไป', 28)
stu2.study('Math')
stu2.display_stu_info()
if __name__ == '__main__':
main() |
51863239e93ebea22250aecd50d49d5856b577db | Monzillaa/practices-python | /conditionals.py | 943 | 4.3125 | 4 | """ print("ingresa color")
color = input()
if color == "red" :
print("the color is red")
elif color == "blue":
print("the color is blue")
elif color == "yellow":
print("the color is yellow")
else:
print("any color bitch!!") """
""" print("ingresa tu nombre")
name = input()
print("ingresa tu apellido")
lastname = input()
if name == "Nini":
if lastname == "Morales":
print(f"You are {name} {lastname}")
elif name == "Mushu" and lastname == "Morales":
print(f"You are {name} {lastname}")
else:
print(f"You are {name} {lastname}")
else:
print(f"You are {name} {lastname}") """
##se utiliza para comparaciones and, or y not son comparadores logicos
x = 30
y = 5
if x > 2 and x <= 10:
print("x is greater than two and less than or equal to ten")
if x > 2 or x <= 20 :
print("x is geater than two or less or equal to twenty")
if(not(x == y)):
print("x is not equal y") |
49dc7f4165e15937be90a09bd1a04d2cfe79ceb9 | daniel-reich/ubiquitous-fiesta | /JmyD5D4KnhzmMPEKz_12.py | 511 | 3.734375 | 4 |
def constraint(txt):
letters = [i.lower() for i in txt if i.lower().isalpha()]
words = txt.split()
if len(set(letters)) == 26:
return 'Pangram'
if len(set(letters)) == len(letters):
return 'Heterogram'
if len({i.lower()[0] for i in words}) == 1:
return 'Tautogram'
s = set(words[0].lower())
for i in range(1, len(words)):
s.intersection_update(words[i].lower())
if len(s) > 0 or len(words) == 1:
return 'Transgram'
return 'Sentence'
|
c40b13afae5d363d1ec2e976f9af5ad667db1f78 | blue0712/blue | /demo65.py | 287 | 3.703125 | 4 | class Rectangle:
def __init__(self, width, height):
self.width = width
self.height = height
pass
def calculate_area(self):
return self.width * self.height
r1 = Rectangle(5, 7)
r2 = Rectangle(2, 9)
print(r1.calculate_area(), r2.calculate_area()) |
12daa5790ccfb0f8a00f66c39d74866112acb4a8 | marcosihe/Python_basico | /strings.py | 2,145 | 4.53125 | 5 | # MรTODOS
# upper() --> convierte a mayรบsucla
# capitalize --> convierte a mayรบscula la primera letra de la palabra
# strip() --> elimina los espacios que estรกn de mรกs
# lower() --> convierte a minรบscula
# replace('a', 'b') --> reemplaza todas las letras 'a' de la cadena por la letra 'b'
# รndices --> si nombre == 'Marcos' ENTONCES: nombre[0] --> 'm'
# len() --> devuelve el nรบmero de caracteres de la cadena de texto
# Slice --> cortar cadenas de caracteres
def run():
name = input('Ingrese su nombre: ')
print('Su nombre en mayรบsculas: ' + name.upper())
print('Su nombre en minรบsuculas: ' + name.lower())
print('Su nombre escrito de forma correcta: ' + name.capitalize())
print('Cantidad de caracteres que quedaron luego de haber utilizado el mรฉtodo capitalize: ' + str(len(name)))
print('El caracter de la posiciรณn 3 en su nombre es: ' + name[2])
sentence = input('Escriba una oraciรณn terminada en un punto: ')
print('Cambiando las letras o por la letra "e" en su oraciรณn: ' +
sentence.replace('o', 'e'))
print('La cantidad de caracteres en la frase ingresada es de: ' +
str(len(sentence)))
print('\n' + '*** STRIP ***')
random_word = input(
'Escriba una palabra con uno o mรกs espacios al final: ')
print('Cantidad de caracteres de la cadena ingresada: ' + str(len(random_word)))
print('Cantidad de caracteres sin los espacios sobrantes: ' +
str(len(random_word.strip())))
print('\n' + '*** SLICE ***')
first_name = input('Ingrese su primer nombre: ')
print('Estas son las primeras 3 letras de su nombre: ' +
first_name[0:3]) # alternativa: fisrt_name[:3]
print('Estas son las รบltimas letras que restan de su nombre:' +
first_name[3:])
print('Esta es una secuencia de letras de su nombre: ' + first_name[1:4])
aux = "PROGRAMACION"
print('\n' + aux)
print('Caracteres de la palabra PROGRAMACION, desde la r hasta la o, saltando 2 caracteres: ' +
aux[1:10:2])
print('Invertir la palabra PROGRAMACION')
print(aux[::-1])
if __name__ == '__main__':
run()
|
4566be4d35f74f7876c10fafdba860feee95379f | ashkhi/Python | /Week1/PrintBasics.py | 461 | 3.875 | 4 | # print can have multiple messages as arguments
print("Hello India !", "Hello World !", "Hi from Python class..")
# print can have numbers
print(5)
# print can have decimal values
print(20.5)
# print can also have multiple different types of messages
print("Hello", 5, 20.5)
# print accepts only the round brackets
# curly, square or angular would give an error
#print with (), {}, [], <>
# print can have message inside single or double quotes
print('Hi') |
2bf6151c76f8189b83eedebde63f40ee4a37a843 | VineetAhujaX/Team-Automated-Chatbot | /Bonus.py | 2,276 | 3.921875 | 4 | # -*- coding: utf-8 -*-
"""
Created on Sat Jan 16 04:02:34 2021
@author: USER
"""
import requests
def getWeather():
# Enter your API key here
api_key = "9c9623d2c835fb356931d3b0b8d19c4a"
# base_url variable to store url
base_url = "http://api.openweathermap.org/data/2.5/weather?"
# Give city name
city_name = "Mandi"
# complete_url variable to store
# complete url address
complete_url = base_url + "q=" + city_name + "&appid=" + api_key
# get method of requests module
# return response object
response = requests.get(complete_url)
# json method of response object
# convert json format data into
# python format data
x = response.json()
# Now x contains list of nested dictionaries
# Check the value of "cod" key is equal to
# "404", means city is found otherwise,
# city is not found
# store the value of "main"
# key in variable y
y = x["main"]
# store the value corresponding
# to the "temp" key of y
current_temperature = y["temp"]
# store the value corresponding
# to the "pressure" key of y
current_pressure = y["pressure"]
# store the value corresponding
# to the "humidity" key of y
current_humidiy = y["humidity"]
# store the value of "weather"
# key in variable z
z = x["weather"]
# store the value corresponding
# to the "description" key at
# the 0th index of z
weather_description = z[0]["description"]
# print following values
return("The weather at IIT Mandi is:\n Temperature (in Celsius) = " +
str(round((current_temperature-273),0)) +
"\n Atmospheric Pressure (in kPa) = " +
str(current_pressure/10) +
"\n Humidity (in %) = " +
str(current_humidiy) +
"\n Description = " +
str(weather_description))
import datetime
def getTime():
now = datetime.datetime.now()
s= "Current date: "
s+= now.strftime("%d-%m-%Y")
s+= "\nCurrent time: "
s+= now.strftime("%H:%M")
return s
|
f7deec37c47814d6208f670682dffdbc174b34eb | KrolMateusz/Crypto | /Alghoritms/vigenere_cipher.py | 1,583 | 3.796875 | 4 | import pyperclip
import string
LETTERS = string.ascii_uppercase
def main():
file = open('C:\\Users\\Mateusz\\PythonProjects\\Aplikacja_szyfrowanie\\Alghoritms\\message_vigenere.txt')
message = file.read()
file.close()
key = 'ASIMOV'
encrypted = encrypt_message(message, key)
decrypted = decrypt_message(encrypted, key)
print('Encrypted message:\n%s' % encrypted)
print('\nCopying encrypted message to clipboard.\n')
pyperclip.copy(encrypted)
print('Decrypted message:\n%s' % decrypted)
def encrypt_message(message, key):
message = message.upper()
encrypted = []
key_index = 0
key = key.upper()
for symbol in message:
num = LETTERS.find(symbol.upper())
if num != -1:
num = (num + LETTERS.find(key[key_index])) % len(LETTERS)
encrypted.append(LETTERS[num])
key_index += 1
if key_index == len(key):
key_index = 0
else:
encrypted.append(symbol)
return ''.join(encrypted)
def decrypt_message(message, key):
message = message.upper()
decrypted = []
key_index = 0
key = key.upper()
for symbol in message:
num = LETTERS.find(symbol.upper())
if num != -1:
num = (num - LETTERS.find(key[key_index])) % len(LETTERS)
decrypted.append(LETTERS[num])
key_index += 1
if key_index == len(key):
key_index = 0
else:
decrypted.append(symbol)
return ''.join(decrypted)
if __name__ == '__main__':
main()
|
772e6d23d7a4428c788e3bb08974e78f1d62ad25 | Kirankumar76k/my-python-programs | /OOPS/PolyGit.py | 1,168 | 4.03125 | 4 | class Artillery():
def __init__(self):
self.className = "Artillery Class constructor"
def showName(self):
shootingRange = "aprox. 1-30 km"
return "Artillery" + " " + shootingRange
class Mortar(Artillery):
def showName(self):
shootingRange = "1 km"
return "Mortar" + " " + shootingRange
class Howitzer(Artillery):
def __init__(self):
self.className = "Howitzer Class constructor"
self.rndMath = 2 * 2
def showName(self, color="Green"):
shootingRange = "35 km"
return "Howitzer " + color + " " + shootingRange
class Cannon(Artillery):
def showName(self):
shootingRange = "10 km"
return "Cannon" + " " + shootingRange
a = Artillery();
print(a.className)
print(a.showName())
print("\n")
m = Mortar();
print(m.className)
print(m.showName())
print("\n")
h = Howitzer();
print(h.className)
print(h.rndMath)
print(h.showName())
print("\n")
x = Howitzer();
print(x.className)
print(x.rndMath)
print(x.showName("Blue"))
print("\n")
c = Cannon();
print(c.className)
print(c.showName())
print("\n") |
ce4e23ef1c0489bf2d97487416c87e64b1c67b2c | Najoj/advent-of-code | /2022/5/Stack.py | 681 | 3.8125 | 4 | class Stack:
def __init__(self):
self._stack = []
self._height = 0
def push(self, item, bottom=False):
if item and item.strip():
self._height += 1
if bottom:
self._stack = [item] + self._stack
else:
self._stack = self._stack + [item]
def pop(self):
if not self._stack:
return None
self._height -= 1
item = self._stack[-1]
self._stack = self._stack[:-1]
return item
def __len__(self):
return self._height
def __str__(self):
string = ' '.join(string for string in self._stack)
return string
|
bf35a78850c08000f95a857195d42c1ffdc9050b | surimLee/Python_study_ | /0315_4.py | 181 | 3.59375 | 4 | from tkinter import *
window = Tk()
canvas = Canvas(window, width=300, height=200)
canvas.pack()
canvas.create_polygon(10, 10, 150, 110, 250, 20, fill="blue")
window.mainloop() |
1da3eaaae1aa570c05e330396cc49276fcb3a586 | thewritingstew/lpthw | /ex11.py | 2,135 | 4.09375 | 4 | #============================================================
# beginning of original exercise
#============================================================
print "How old are you?",
age = raw_input() # accepts input with no prompt
print "How tall are you?",
height = raw_input('--> ') # accepts input with '--> ' prompt
print "How much do you weigh?",
weight = raw_input() # accepts input with no prompt
print "So, you're %r old, %r tall and %r heavy." % (
age, height, weight)
#============================================================
# end of original exercise
#============================================================
#============================================================
# beginning of extra practice with raw_input()
#============================================================
## variable to store a check for valid entry
#is_valid = 0
#
## as long as is_valid is not true
#while not is_valid :
#
# # try the following
# try :
#
# # set choice to the raw_input if it is an integer
# choice = int ( raw_input('How old are you (enter integer): ') )
# is_valid = 1 # set to 1 to validate input as integer
#
# # if an integer isn't entered by the user, then there will be a
# # "ValueError" when the code tries to interpret it. The following
# # couple lines of code catches that exception and handles it
# # by printing another line. Once this has happened, the while loop
# # repeats, which means the user will be asked for their age again.
# except ValueError, e :
# print ("'%s' is not a valid integer." % e.args[0].split(": ")[1])
#
## this if...elif...else sequence takes the integer and prints a response
## based on the value of the integer
#if choice <= 12:
# print ("You are a child...")
#elif choice <= 19:
# print ("You are a teenager...")
#elif choice > 20:
# print ("You are an adult...")
#else:
# print ("You aren't a teenager or a full adult...")
#============================================================
# end of extra practice with raw_input()
#============================================================
|
5122e3c1a8bc3853bee181705c6efc3664e7e1a4 | kennedy0597/projects | /Python/fileHandling.py | 874 | 3.9375 | 4 | # writing a file
# testtext = "aiosdjioasjodoajdjaso x,comaolsmdokqwokek,samocmoaskdoqmeo"
# file_handler = open("test1.txt", "w")
# file_handler.write(testtext)
# file_handler.close()
# reading file method 1
read_handler = open("test1.txt", "r").read()
print(read_handler)
# reading file method 2 line splitting
read_handler = open("test1.txt", "r")
for line in read_handler:
print('*****', line.rstrip())
read_handler.close()
# reading file method 3 word splitting
rhandler = open("test1.txt", "r")
for line in rhandler:
print('*****', line.split())
rhandler.close()
# reading file method 4 converting to list
rhandler = open("test1.txt", "r")
print(rhandler.readlines())
rhandler.close()
# writing file
file1 = open("test1.txt", "a")
file1.write("\nHello nice")
file1.close()
rhandler = open("test1.txt", "r")
print(rhandler.readlines())
rhandler.close()
|
e0d63f680849e7c642a5e14a7fab2bfe7c6772ba | nigelgomesot/ml | /statistical_methods/random_numbers.py | 1,028 | 3.765625 | 4 | # generate random numbers
from random import seed
from random import random
from random import randint
from random import gauss
from random import choice
from random import sample
from random import shuffle
print('\nseed ensures random function is deterministic')
seed(1)
print(random(), random(), random())
seed(1)
print(random(), random(), random())
print('\nfloating point values')
seed(1)
for _ in range(10):
value = random()
print(value)
print('\ninteger values')
seed(1)
for _ in range(10):
value = randint(0, 10)
print(value)
print('\ngaussian values')
seed(1)
for _ in range(10):
# gauss(mean, sd)
value = gauss(0, 1);
print(value)
print('\nsequence')
sequence = [i for i in range(20)]
print(sequence)
print('\nchoice from a list')
seed(1)
for _ in range(5):
value = choice(sequence)
print(value)
print('\nsample from a list')
seed(1)
value = sample(sequence, 5)
print(value)
print('\nshuffle list')
seed(1)
print('sequence')
print(sequence)
value = shuffle(sequence)
print('shuffle')
print(sequence)
|
dbd7d68b55411336bc308c6cd28112e2c6c133c0 | lvraikkonen/GoodCode | /leetcode/561_array_partition_I.py | 428 | 3.6875 | 4 | """
็ปๅฎไธไธช้ฟๅบฆไธบ2n็ๆดๆฐๆฐ็ป๏ผๅฐๆฐ็ปๅๆn็ป๏ผๆฑๆฏ็ปๆฐ็ๆๅฐๅผไนๅ็ๆๅคงๅผใ
ๆดไธชๆฐ็ป็ๆๅฐๅผxๅไธไธไธชๅผ็min็ญไบx๏ผๆไปฅๆฏ็ปๅผ็ๅๆๅคง๏ผๅบ่ฏฅ็ญไบๆ้กบๅบๆๅๅๅถๆฐไฝ็ฝฎ็ๆฐไนๅ
"""
class Solution(object):
def arrayPairSum(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
return sum(sorted(nums)[::2]) |
c20138e40ec60d554c2ba8d7094812df3117c6e8 | prachipatel2509/Sample- | /Assesment/n.py | 279 | 3.8125 | 4 |
def sequence(x):
l = [x]
if x < 1:
return []
while x > 1:
if x % 2 == 0:
x = x / 2
else:
x = 3 * x + 1
l.append(x)
return l
if __name__=="__main__":
n=int(input("Enter a no. :"))
print(sequence(n))
|
5dc798779edd0f61d1b47a8dabe6149bea9d602d | ducoendeman/Introduction-to-Functional-Programming | /scripts/python/lab2.py | 1,514 | 4.0625 | 4 | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Nov 4 14:25:16 2019
@author: duco
------------------------------------------------------------------------------------------------------------------------------
-- Lab 2: Validating Credit Card Numbers
------------------------------------------------------------------------------------------------------------------------------
"""
def toDigits(n):
"""
toDigits :: Integer -> [Integer]
type n = int
rtype = list (of ints)
"""
return [int(digit) for digit in str(n)]
def toDigitsRev(n):
"""
toDigitRev:: Integer -> [Integer]
type n = int
retype = list (of ints)
"""
return list(reversed(toDigits(n)))
def doubleSecond(xs):
"""
doubleSecond :: [Integer] -> [Integer]
type xs = list (of integers)
rtype = list (of integers)
"""
return [xs[i] if i%2 == 0 else 2*xs[i] for i in range(len(xs))]
def sumDigits(xs):
"""
sumDigits :: [Integer] -> Integer
type xs = list (of integers)
rtype = integer
"""
return sum([int(digit) for number in xs for digit in str(number)])
def isValid(n):
"""
isValid :: Integer -> Bool
type n = int
rtype = Bool
"""
return n % 10 == 0
def creditcardValid(n):
"""
type n = int
rtype = Bool
"""
return isValid(sumDigits(doubleSecond((toDigitsRev(n)))))
|
e4adb3621d03f1de0345f03086279ea58941b15b | hemapython/2ndnewlife | /40.py | 904 | 3.9375 | 4 | # writing program for exception handling
#fox=[34,2,1,45,76,45,22,45]
#print(fox[1:5])
#fox=(46,45,[45,12,34,21])
#print(fox.count(45)) # it will give output of how many times 45 present in tuple
#print(fox.index(45)) #it will provide the index number of tuple
#print(fox[2][3])
H=8
J=4
try:
print(H/J)
fox=int(input("enter the name"))
print(fox)
except ZeroDivisionError:
print("it captures all devide by zero errors")
except ValueError:
print("it captures all invalid value errors")
except Exception as e:
print("it captures all the error which not comes under above 2 types of errors")
else:
print("if there is no exception in try block then it will print else no")
finally:
("i can speak elegently i will aquire knowledge that is the only way y i have to come out of my fear , i wil do the things which scares me more")
|
fcdcbaffddc3c6caa7a14a05faadba16c7456f00 | ththanhbui/dangerously-raw | /sort_rides.py | 478 | 3.515625 | 4 | def get_distance(row1,col1,row2,col2):
return abs(row1-row2) + abs(col1-col2)
def get_ride_length(ride):
return get_distance(ride["start_col"], ride["start_row"], ride["fin_col"], ride["fin_row"])
def get_latest_possible_start_time(ride):
return ride["latest_finish"] - get_ride_length(ride)
# Take in a list of unclaimed rides
# Return the rides sorted by the latest possible start time
def sort_rides(rides):
return sorted(rides, key=get_latest_possible_start_time) |
06d318e6e265aa5c8cd77e233d4f8dd884dda706 | KristianMSchmidt/Algorithms-specialization-stanford- | /Course_1/week3_quick_sort/quick_sort.py | 3,203 | 4.28125 | 4 | """
Implementation of Quick Sort with different strategies for chosing pivots. Random pivots are provably best, though.
In particular, this exercise is about counting the number of comparisons when doing quick_sort.
"""
def partition_l(my_list, l, r):
"""
Partition subrutine to be used by quick sort.
Partitions my_list[l,r] with respect to pivot my_list[l]
"""
pivot = my_list[l]
#print pivot
i = l + 1
for j in range(l + 1, r+1):
#print i, j
if my_list[j] < pivot:
if i != j:
my_list[i], my_list[j] = my_list[j], my_list[i]
i += 1
my_list[l], my_list[i-1] = my_list[i-1], my_list[l]
#right_pivot_pos = i-1
return my_list, i-1
def partition_median_of_three(my_list, l, r):
"""
Partition subrutine to be used by quick sort.
Partitions my_list[l,r] where pivot is chosen as median of first, middle and last element
"""
m = l + (r - l)/2
#find pivot position
num_l, num_m, num_r = my_list[l], my_list[m], my_list[r]
if (num_l < num_m < num_r) or (num_r < num_m < num_l):
pivot_pos = m
elif num_m < num_l < num_r or num_r < num_l < num_m:
pivot_pos = l
else:
pivot_pos = r
#print "pivot", my_list[pivot_pos]
# make pivot the first element
my_list[l], my_list[pivot_pos] = my_list[pivot_pos], my_list[l]
# use standard partition on new list
return partition_l(my_list, l, r)
#print partition_median_of_three([3,2,1,0],1,3)
def partition_r(my_list, l, r):
"""
Partition subrutine to be used by quick sort.
Partitions my_list[l,r] with respect to pivot my_list[r]
"""
my_list[l], my_list[r] = my_list[r], my_list[l]
return partition_l(my_list, l, r)
def test():
result = partition_r([2,3,1,-1,-2,0], 0, 5)
print result
#test()
number_of_comparisons = 0
def quick_sort(my_list, l, r):
"""
Quick sort
"""
global number_of_comparisons
if r == l:
return my_list
#choose method for choosing pivot
#partitioned, right_pivot_pos = partition_l(my_list, l, r)
partitioned, right_pivot_pos = partition_r(my_list, l, r)
#partitioned, right_pivot_pos = partition_median_of_three(my_list, l, r)
number_of_comparisons += (r-l)
left_part = quick_sort(partitioned, l, max(l, right_pivot_pos - 1))
right_part = quick_sort(left_part, min(right_pivot_pos + 1, r), r)
return my_list
#print quick_sort([9,-1,2,8,18],0,4)
#print number_of_comparisons
def run_quick_sort(my_list):
return quick_sort(my_list, 0, len(my_list)-1)
def import_data():
import urllib2
URL = "https://d3c33hcgiwev3.cloudfront.net/_32387ba40b36359a38625cbb397eee65_QuickSort.txt?Expires=1514678400&Signature=UbQM4sANM7dVrQtz0DJ1850w5dkkwl-eJtx0ZC7Jz7KHjiVA4WxrBVeAUIaf76DAvLl7jPjrOrix4mvUu1Noti31wozK~70jT22V-uPuTr2YrWSCW4a1cRgEUcvHMK-necnAB1l5Kon6Bi1dc7N0dU6cywsat3EyPNOdDijaxW0_&Key-Pair-Id=APKAJLTNE6QMUY6HBC5A"
data_file = urllib2.urlopen(URL)
data = data_file.read()
data_lines = data.split('\n')
data_lines = data_lines[:-1]
data_lines = [int(number) for number in data_lines]
print "Data has been loaded and cleaned"
print run_quick_sort(data_lines)[-10:]
print "Total number of comparisons made under recursive partitioning:", number_of_comparisons
import_data()
|
3245cd7599855b8e7fb391c3eef760395bd6c354 | frclasso/CodeGurus_Python_mod2_turma1 | /Cap01-sintaxe_especifica/dict_comprehension/script3.py | 653 | 3.890625 | 4 | dict1 = {
'a':1,
'b':2,
'c':3,
'd':4,
'e':5,
'f':6,
}
dict1_comp = {k:v for(k,v) in dict1.items() if v > 2}
print(dict1_comp)
# for k, v in dict1.items():
# if v > 2:
# print(k,':', v)
dict2_comp = {k:v for(k, v) in dict1.items() if v > 2 if v % 2 == 0}
print(dict2_comp)
# for k, v in dict1.items():
# # if v > 2:
# # if v % 2 == 0:
# # print(k,':', v)
dict3_comp = {k:v for(k, v) in dict1.items() if v > 2 if v % 2 == 0 if v % 3 == 0}
print(dict3_comp)
# for k, v in dict1.items():
# if v > 2:
# if v % 2 == 0:
# if v % 3 == 0:
# print(k,':', v) |
957dbff70c969826eca5cc9ad954a7cdd7c98e3b | divyavani-gmail/ASSIGNMENT2 | /9.py | 263 | 3.65625 | 4 | # 9. Select the rows the age is between 2 and 4(inclusive)
import pymongo
myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["divya_db"]
mycol = mydb["vani_data"]
myquery = mycol.find({"age":{"$gte":2 ,"$lte":4}})
print(list(myquery)) |
6022befaf5be41b18bf0219cd41afba79e533af0 | Franklin-Wu/project-euler | /p109.py | 3,883 | 3.875 | 4 | # Darts
# Problem 109
#
# In the game of darts a player throws three darts at a target board which is split into twenty equal sized sections numbered one to twenty.
#
# (Only 1 of 20 sectors is shown.)
#
# +--------------------+
# \ [1 - 20] /
# +----------------+
# \ double /
# +------------+
# | |
# | |
# | |
# | single |
# | |
# | |
# | |
# +------------+
# \ triple /
# +--------+
# | |
# | |
# | |
# | |
# | |
# | single |
# | |
# | |
# | |
# | |
# | |
# +--------+
# \ 25 /
# +----+
# | 50 |
# +----+
#
# The score of a dart is determined by the number of the region that the dart lands in. A dart landing outside the red/green outer ring scores zero. The black and cream regions inside this ring represent single scores. However, the red/green outer ring and middle ring score double and treble scores respectively.
#
# At the centre of the board are two concentric circles called the bull region, or bulls-eye. The outer bull is worth 25 points and the inner bull is a double, worth 50 points.
#
# There are many variations of rules but in the most popular game the players will begin with a score 301 or 501 and the first player to reduce their running total to zero is a winner. However, it is normal to play a "doubles out" system, which means that the player must land a double (including the double bulls-eye at the centre of the board) on their final dart to win; any other dart that would reduce their running total to one or lower means the score for that set of three darts is "bust".
#
# When a player is able to finish on their current score it is called a "checkout" and the highest checkout is 170: T20 T20 D25 (two treble 20s and double bull).
#
# There are exactly eleven distinct ways to checkout on a score of 6:
# D3
# D1 D2
# S2 D2
# D2 D1
# S4 D1
# S1 S1 D2
# S1 T1 D1
# S1 S3 D1
# D1 D1 D1
# D1 S2 D1
# S2 S2 D1
# Note that D1 D2 is considered different to D2 D1 as they finish on different doubles. However, the combination S1 T1 D1 is considered the same as T1 S1 D1.
#
# In addition we shall not include misses in considering combinations; for example, D3 is the same as 0 D3 and 0 0 D3.
#
# Incredibly there are 42336 distinct ways of checking out in total.
#
# How many distinct ways can a player checkout with a score less than 100?
import time;
start_time = time.time();
def print_execution_time():
print 'Execution time = %f seconds.' % (time.time() - start_time);
N = 100;
singles = range(1, 21);
triples = [x * 3 for x in singles];
singles.append(25);
doubles = [x * 2 for x in singles];
aggregate = [0];
aggregate.extend(singles);
aggregate.extend(doubles);
aggregate.extend(triples);
aggregate.sort();
aggregate_count = len(aggregate);
doubles_count = len(doubles);
count_total = 0;
count_less_than_N = 0;
for aggregate_index_1 in range(aggregate_count):
# This range does not compensate for the S1 T1 D1 / T1 S1 D1 equivalence:
# for aggregate_index_2 in range(aggregate_count):
# This range compensates for the S1 T1 D1 / T1 S1 D1 equivalence:
for aggregate_index_2 in range(aggregate_index_1, aggregate_count):
for doubles_index_3 in range(doubles_count):
count_total += 1;
if (aggregate[aggregate_index_1] + aggregate[aggregate_index_2] + doubles[doubles_index_3]) < N:
count_less_than_N += 1;
print "Of the %d distinct ways of checking out, %d are with a score less than %d." % (count_total, count_less_than_N, N);
print;
print_execution_time();
|
b8690eefe5eae06ad8683af44c4408f9a828f17d | alondavid/Self.Py | /ex535.py | 509 | 4.15625 | 4 | #ex 535
def distance(num1, num2, num3):
'''int,int,int > Bool
the Function return True if:
(num2 - num1 or num3 - num1 = abs(1))
and (num2 - num1 or num2 - num3 or num3 - num1 > abs(2)).
>>> distance(1, 2, 10)
True
>>> distance(4, 5, 3)
False
'''
if (abs(num3 - num1) == 1 or abs(num2 - num1) == 1) and (abs(num2 - num3) > 2 or abs(num2 - num1) > 2 or abs(num3 - num1) > 2):
return True
return False
|
dc9cb6cd006928b9923b0016dfd45a1925a996e3 | siimkollane/programm | /uusaastalubadus.py | 324 | 3.5 | 4 | import tkinter as tk
def write_slogan():
print("Saan geo perioodihinde positiivse.")
root = tk.Tk()
frame = tk.Frame(root)
frame.pack()
button = tk.Button()
slogan = tk.Button(frame,
text="Vajuta minu peale!",
command=write_slogan)
slogan.pack(side=tk.LEFT)
root.mainloop() |
68392a4a749bc340fa76b447ab93cd63fcdecf0b | praveenkumarsrivas/Python-3_Programming | /Hackerrank-Python3/mean_varr_std.py | 592 | 3.921875 | 4 | # Output Format
# First, print the mean.
# Second, print the var.
# Third, print the std.
# Sample Input
# 2 2
# 1 2
# 3 4
# Sample Output
# [1.5 3.5]
# [1. 1.]
# 1.11803398875
import numpy
n, m = input().split()
n = int(n)
m = int(m)
l = list()
arr = list()
arr = []
x = 0
i = 0
for x in range(n):
l = input()
l = [int(y) for y in l.split(" ")]
arr.append(l)
#print(arr)
numpy.set_printoptions(legacy='1.13')
# np.arr().astype(np.int)
print(numpy.mean(arr, axis=1))
print(numpy.var(arr, axis=0))
print(numpy.std(arr, axis=None))
#read about the function set_printoptions |
5a2fa7376d2a2ca37f4d29194f5e40a67fb83025 | xiasiliang-hit/leetcode | /island_num.py | 1,705 | 3.65625 | 4 | ## now work !
import pdb
import Queue
#visited = []
#matrix = []
#X = 0
#Y = 0
#num = 0
class Solution(object):
def __init__(self):
global X, Y, visited, num
X = len(matrix[0])
Y = len(matrix)
visited = [[False for x in range(X) ] for y in range(Y)]
self.num = 0
def island_num(self):
#X = len(matrix[0])
#Y = len(matrix)
for j in range(Y):
for i in range(X):
if visited[j][i] == False and matrix[j][i] == 1:
self.expand(i, j)
# elif matrix[j][i] == 0:
# visited[j][i] = True
# continue
print visited
return self.num
def expand(self, coordx, coordy):
# X = len(matrix[0])
# Y = len(matrix)
print coordx, coordy
q = Queue.Queue()
q.put((coordx, coordy))
# visited[coordy][coordx] = True
while q.empty() is False:
(i, j) = q.get()
visited[j][i] = True
around = [(i-1, j), (i+1, j), (i, j-1), (i, j+1)]
tested = filter(lambda coord : coord[0]>=0 and coord[0]<= X-1 and coord[1] >= 0 and coord[1] <= Y-1, around)
for coordxy in tested:
print coordxy
if visited[coordxy[1]][coordxy[0]] == False and matrix[coordxy[1]][coordxy[0]] == 1:
q.put(coordxy)
self.num = self.num + 1
if __name__ == "__main__":
global matrix
matrix = [[0,1],[1,0], [0,1],[1,0]]
s = Solution()
print s.island_num()
|
b0322a6833f1563300b1b02745d458b6cdbc1462 | fedhere/StatisticalCompass | /main.py | 1,156 | 3.6875 | 4 | import numpy as np
import pandas as pd
from transform import transform
# Load the questions
questions = pd.read_csv('questions.csv')
# Initialise the position of the user at the origin
pos = np.zeros(3)
input_text = 'Enter response from -2 (strongly disagree) to +2 (strongly agree): '
# Using a C-style loop over questions without apology
for i in range(0, questions.shape[0]):
# Check the question satisfies a basic sanity check
norm = np.linalg.norm(questions.iloc[i, 1:])
if norm > 2.:
print('# WARNING: Very influential question.')
elif norm < 0.5:
print('# WARNING: Very uninfluential question.')
# Print the question
print('\nQuestion {k}/{n}:\n'.format(k=i+1, n=questions.shape[0]))
print(questions.iloc[i, 0] + '\n')
# Get the user's response
response = None # Placeholder value
while response < -2. or response > 2.:
response = input(input_text)
# Increment the user's position
pos += response*questions.iloc[i, 1:].values
# Apply some scaling to the position based on how far it was possible
# to move in each dimension
print(pos)
pos = transform(pos, questions)[0]
print('Your position in 3D is ' + str(pos) + '.')
|
3cd369cc0526d0f81349961ce3150c0ef97f83e8 | tartaponei/URI | /iniciante/1064positivosmedia.py | 165 | 3.640625 | 4 | p = 0
s = 0
for i in range(6):
n = float(input(""))
if(n > 0):
p += 1
s = s + n
print(p, "valores positivos")
print("{:.1f}" .format(s / p))
|
c7c75378f36e39183bd6a9510e405951cfd1c805 | CeruleanOwl/Python-Practice | /RockPaperScissors.py | 2,612 | 4.0625 | 4 | '''Global Variables'''
rockC = False
scissorsC = False
paperC = False
rockU = False
scissorsU = False
paperU = False
#computer logic
def computer_choice():
#import random module
import random
#request global variables
global rockC
global paperC
global scissorsC
#Random int generator between 1-3
computer = random.randint(1,3)
#Conditions for which random number is selected
if computer == 1:
rockC = True
print('Computer chose rock.')
elif computer == 2:
paperC = True
print('Computer chose paper.')
elif computer == 3:
scissorsC = True
print('Computer chose scissors.')
#player logic
def player_choice():
#request global variables
global rockU
global paperU
global scissorsU
#default choice to zero and requesting parameters to True
choice = 0
requesting = True
#Logic for user selecting choice and protecting from bad user selections
while requesting:
try:
while choice not in range(1,4):
choice = int(input('Please select Rock(1), Paper(2), or Scissors(3).\n'))
except ValueError:
print('That wasn\'t a selection. Try again.')
if choice in range(1,4):
requesting = False
#Conditions based on user selection
if choice == 1:
rockU = True
print('You chose rock.')
elif choice == 2:
paperU = True
print('You chose paper.')
elif choice == 3:
scissorsU = True
print('You chose scissors.')
#Decides who wins
def win_condition():
#request global variables
global rockC
global rockU
global paperC
global paperU
global scissorsC
global scissorsU
#Rock user condition against computer conditions.
if (rockU == True) and (rockC == True):
print('It was a draw.')
elif (rockU == True) and (paperC == True):
print('You Lose!')
elif (rockU == True) and (scissorsC == True):
print('You Win!')
elif (paperU == True) and (paperC == True):
print('It was a draw.')
elif (paperU == True) and (rockC == True):
print('You win!')
elif (paperU == True) and (scissorsC == True):
print('You lose!')
elif (scissorsU == True) and (scissorsC == True):
print('It was a draw.')
elif (scissorsU == True) and (paperC == True):
print('You win!')
elif (scissorsU == True) and (rockC == True):
print('You lose!')
#game logic
def play_game():
player_choice()
computer_choice()
win_condition()
play_game()
|
a9aded09b71a15dc2be4deabeb1bbd5655c88a27 | calvar122/EXUAGO2021-VPE-L1 | /0929/jose.benavides/serieFub.py | 712 | 3.90625 | 4 | #!/usr/bin/env python3
# c-basic-offset: 4; tab-width: 8; indent-tabs-mode: nil
# vi: set shiftwidth=4 tabstop=8 expandtab:
# :indentSize=4:tabSize=8:noTabs=true:
#
# SPDX-License-Identifier: GPL-3.0-or-later
#fn = fn-1 + fn-2
#Funcion recursiva para la serie de Fibonacci
def fibo(num):
if num == 0:
return 0
elif num == 1:
return 1
else:
return fibo(num - 1) + fibo(num - 2)
#Se pide al usuario que ingrese un dato
n = eval(input("Ingrese un numero y te regresare el elemento correspondiente a la serie de Fibonacci: "))
#Se guarda el retorno de la funcion
elemento = fibo(n)
#Se imprime el resultado
print(f"El {n} corresponde a {elemento} en la serie de Fibonacci")
|
ac3420ed1d71fbab98b8155a84e77c68262290af | amarinas/algo | /chapter_1_fundamentals/final_countdown.py | 396 | 3.796875 | 4 | # given 4 params
# print the multiples of param 1 starting at param 2 and extending to param 3
# if a multiple is equal to param 4 then skip
#given( 3,5,17,9) expected (6,12,15)
def final_count(param1,param2,param3,param4):
count = param3
while count > param2:
if count % param1 == 0 and count != param4:
print count
count = count - 1
final_count(3,5,17,9)
|
c30f6563e12403ce7de4281da1d7a25e2cad3c58 | MsDiala/data-structures-and-algorithms-python | /data_structures_and_algorithms/challenges/array_reverse/array_search.py | 317 | 3.921875 | 4 | def binary_search(arr, key):
low = 0
high = len(arr)
while len(arr) > 0:
middle = (low+high) // 2
if arr[middle] == key:
return middle
if arr[middle] < key:
low= middle
if arr[middle] > key:
high= middle
if middle == 0 or middle == len(arr) - 1:
return -1
return -1 |
4b85eb0e9e1462ab0bd1728f4ed1fba33ee99179 | ngpark7/deeplink_public | /2.ReinforcementLearning/MCTS/mcts.py | 9,222 | 3.5 | 4 | # For more information about Monte Carlo Tree Search check out our web site at www.mcts.ai
# http://mcts.ai/about/index.html
from math import *
import random
def upper_confidence_bounds(node_value, num_parent_visits, num_node_visits):
""" the UCB1 formula """
return node_value + sqrt(2 * log(num_parent_visits) / num_node_visits)
class OXOEnv:
""" A state of the game, i.e. the game board.
Squares in the board are in this arrangement
012
345
678
where 0 = empty, 1 = player 1 (X), 2 = player 2 (O)
"""
def __init__(self):
self.current_player = 1 # At the root pretend the current player 'Player 1'
self.board = [0, 0, 0, 0, 0, 0, 0, 0, 0] # 0 = empty, 1 = player 1, 2 = player 2
def clone(self):
""" Create a deep clone of this game state.
"""
env = OXOEnv()
env.current_player = self.current_player
env.board = self.board[:]
return env
def do_move(self, location):
""" Update a state by carrying out the given move.
Must update playerToMove.
"""
assert 8 >= location >= 0 == self.board[location] and location == int(location)
self.board[location] = self.current_player
if self.current_player == 1:
self.current_player = 2
elif self.current_player == 2:
self.current_player = 1
else:
assert False
def get_possible_locations(self):
""" Get all possible moves from this state.
"""
return [i for i in range(9) if self.board[i] == 0]
def get_result(self, player_just_moved):
""" Get the game result from the viewpoint of playerjm.
Case == 1.0: player 1 win,
Case == 2.0: player 2 win,
Case == 3.0: both player 1 and 2 win (draw)
"""
case = 0.0
for (x, y, z) in [(0, 1, 2), (3, 4, 5), (6, 7, 8), (0, 3, 6), (1, 4, 7), (2, 5, 8), (0, 4, 8), (2, 4, 6)]:
if self.board[x] == self.board[y] == self.board[z] == player_just_moved:
case += 1
elif self.board[x] == self.board[y] == self.board[z] == (3 - player_just_moved):
case += 2
if case == 1:
return 1 # player 1 win
elif case == 2:
return 2 # player 2 win
elif case == 3 or not self.get_possible_locations():
print("draw - ", case)
return 0 # draw
else:
return -1.0 # continue
assert False # Should not be possible to get here
def __repr__(self):
s = ""
for i in range(9):
s += ".XO"[self.board[i]]
if i % 3 == 2:
s += "\n"
return s[0:-1]
class Node:
""" A node in the game tree.
Note wins is always from the viewpoint of current_player.
Crashes if state not specified.
"""
def __init__(self, location=None, parent=None, env=None):
self.location = location # "None" for the root node
self.parent_node = parent # "None" for the root node
self.child_nodes = []
self.wins = 0
self.visits = 0
self.unvisited_locations = env.get_possible_locations() # future child nodes
def uct_select_child(self):
""" Use the UCB1 formula to select a child node.
Often a constant UCTK is applied so we have UCB1 to vary the amount of exploration versus exploitation.
"""
s = sorted(
self.child_nodes,
key=lambda c: upper_confidence_bounds(c.wins / c.visits, self.visits, c.visits)
)[-1]
return s
def add_child(self, loc, env):
""" Remove loc from untried_locations and add a new child node for the location loc.
Return the added child node
"""
n = Node(location=loc, parent=self, env=env)
self.unvisited_locations.remove(loc)
self.child_nodes.append(n)
return n
def update(self, result):
""" Update this node - one additional visit and result additional wins.
result must be from the viewpoint of current_player.
"""
self.visits += 1
self.wins += result
def to_tree_string(self, indent):
s = self.indent_string(indent) + str(self)
for c in self.child_nodes:
s += c.to_tree_string(indent + 1)
return s
@staticmethod
def indent_string(indent):
s = "\n"
for i in range(1, indent + 1):
s += "| "
return s
def to_children_string(self):
s = ""
for c in self.child_nodes:
s += str(c) + "\n"
return s
def __repr__(self):
return "[Location: {0}, W/V: {1}/{2}, U: {3}, Child Nodes: {4}]".format(
self.location,
self.wins,
self.visits,
str(self.unvisited_locations),
str([x.location for x in self.child_nodes])
)
def search_by_uct(env, iter_max, verbose=False):
""" Conduct a UCT (Upper Confidence Bounds for Trees) search for itermax iterations starting from rootstate.
Return the best move from the root_node.
Assumes 2 alternating players (player 1 starts), with game results in the range [1, 2, 0, -1].
"""
root_node = Node(location=None, parent=None, env=env)
print("[Search By UCT]")
for i in range(iter_max):
node = root_node
env2 = env.clone()
# Select
while node.unvisited_locations == [] and node.child_nodes != []: # node is fully expanded and non-terminal
node = node.uct_select_child()
env2.do_move(node.location)
print("Iter: {0}, Player {1} selects the best child node {2}".format(
i,
env2.current_player,
node.location
))
# Expand
if node.unvisited_locations: # if we can expand (i.e. state/node is non-terminal)
m = random.choice(node.unvisited_locations)
env2.do_move(m)
print("Iter: {0}, Player {1} expands to an arbitrary location {2}".format(
i,
env2.current_player,
m
))
node = node.add_child(m, env2) # add child and descend tree
# Rollout - this can often be made orders of magnitude quicker using a state.GetRandomMove() function
j = 0
while env2.get_possible_locations(): # while state is non-terminal
m = random.choice(env2.get_possible_locations())
env2.do_move(m)
print("Iter: {0} and {1}, Player {2} rolls out to the location {3}".format(
i,
j,
env2.current_player,
m
))
j += 1
# Backpropagate
j = 0
print("{0} - Cloned Env:\n{1}".format(3 - env.current_player, env2))
while node: # backpropagate from the expanded node and work back to the root node
node.update(env2.get_result(3 - env.current_player)) # state is terminal. Update node with result from
# point of view of 3 - env.current_player
print("Iter: {0}, {1}, Evaluate the node {2}: Wins/Visits - {3}/{4}".format(
i,
j,
node.location,
node.wins,
node.visits
))
node = node.parent_node
j += 1
print()
# Output some information about the tree - can be omitted
if verbose:
print(root_node.to_tree_string(0))
else:
print(root_node.to_children_string())
return sorted(root_node.child_nodes, key=lambda c: c.visits)[-1].location # return the move that was most visited
def play_game(verbose=True):
""" Play a sample game between two UCT players where each player gets a different number
of UCT iterations (= simulations = tree nodes).
"""
# state = OthelloState(4) # uncomment to play Othello on a square board of the given size
env = OXOEnv() # uncomment to play OXO
# state = NimState(15) # uncomment to play Nim with the given number of starting chips
while env.get_possible_locations():
print("Original Env:\n{0}".format(env))
if env.current_player == 1:
m = search_by_uct(env=env, iter_max=2, verbose=verbose) # Player 1
else:
m = search_by_uct(env=env, iter_max=2, verbose=verbose) # Player 2
print("Best Move: " + str(m) + "\n")
env.do_move(m)
print("Original Env:\n{0}".format(env))
if env.get_result(env.current_player) == 1:
print("Player " + str(env.current_player) + " wins!")
break
elif env.get_result(env.current_player) == 2:
print("Player " + str(3 - env.current_player) + " wins!")
break
elif env.get_result(env.current_player) == 0:
print("Nobody wins!")
break
elif env.get_result(env.current_player) == -1:
print("Continue...\n")
else:
assert False
if __name__ == "__main__":
play_game() |
589a566083cb9ffa0f331aed0930d7b0bfae4bdb | Clanrat/adventofcode | /day9.py | 1,017 | 3.953125 | 4 | import sys
import itertools
def shortest(cities, dest):
travel_plans = itertools.permutations(cities, len(cities))
return [calc_distance(travel_plan, dest) for travel_plan in travel_plans]
def calc_distance(travel_plan, dest):
distance = 0
for i in range(1, len(travel_plan)):
distance += int(dest[travel_plan[i - 1]][travel_plan[i]])
return distance
def main():
lines = open(sys.argv[1], 'r').readlines()
dest = {}
cities = []
for line in lines:
cp, distance = line.strip('\n').split(' = ')
city1, city2 = cp.split(' to ')
if city1 not in dest:
dest[city1] = {}
cities.append(city1)
if city2 not in dest:
dest[city2] = {}
cities.append(city2)
dest[city1][city2] = distance
dest[city2][city1] = distance
traveling_distances = shortest(cities, dest)
print(min(traveling_distances))
print(max(traveling_distances))
if __name__ == '__main__':
main()
|
be4022313e80f64fab6e48bbdfb59b439e177bbe | CodedBrackets/python_cricket | /hello.py | 685 | 3.875 | 4 | print("Hello World!")
for i in range(10):
print("\t",i)
print("\tBananazzzzz")
mylist=[]
mylist.append("Apple")
mylist.append("Banana")
mylist.append("Grapes")
print(mylist)
print("Square of 5 is : ",5**2)
x = object()
y = object()
# TODO: change this code
x_list = [x] * 10
y_list = [y] * 10
big_list = x_list + y_list
print("x_list contains %d objects" % len(x_list))
print("y_list contains %d objects" % len(y_list))
print("big_list contains %d objects" % len(big_list))
# testing code
if x_list.count(x) == 10 and y_list.count(y) == 10:
print("Almost there...")
if big_list.count(x) == 10 and big_list.count(y) == 10:
print("Great!") |
6d935feba24dec9ef75a85a4e9d81e47419fdbe4 | gauravdhmj/Project | /Tuples.py | 2,546 | 4.09375 | 4 | t = "a", "b", "c"
print(t)
print("a", "b", "c")
print(("a", "b", "c"))
welcome = "Welcome to my Nightmare", "Alice Cooper", 1975
bad = "Bad Company", "Bad Company", 1974
budgie = "Nightflight", "Budgie", 1981
imelda = "More Mayhem", "Imelda May", 2011
metallica = "Ride the Lightning", "Metallica", 1984
print(metallica)
print(metallica[0])
print(metallica[1])
print(metallica[2])
#
# metallica[0] = "Master of puppets"
imelda = imelda[0], "Imelda May", imelda[2]
print(imelda)
# A LIST HAS A MUTABLE OBJECT WHILE A TUPLE HAS AN IMMUTABLE OBJECT
#
metallica2 = ["Ride the Lightning", "Metallica", 1984]
print(metallica2)
metallica2[0] = "master of puupets"
print(metallica2)
#
# RIGHT HAND ASSIGNMENT IS EVALUATED FIRST THAN THE LEFT HAND SIDE
a = b = c = d = 12
print(c)
a, b = 12, 13
print(a, b)
a, b = b, a
print("a is {}".format(a))
print("b is {}".format(b))
# UNPACKING A TUPLE
metallica2.append("rock")
title, artist, year,n = metallica2
print(title)
print(artist)
print(year)
print(n)
# imelda.append("Jazz")
welcome = "Welcome to my Nightmare", "Alice Cooper", 1975
bad = "Bad Company", "Bad Company", 1974
budgie = "Nightflight", "Budgie", 1981
imelda = "More Mayhem", "Imilda May", 2011, (
(1, "Pulling the Rug"), (2, "Psycho"), (3, "Mayhem"), (4, "Kentish Town Waltz"))
print(imelda)
title, artist, year, tracks = imelda
print(title)
print(artist)
print(year)
print(tracks)
# Given the tuple below that represents the Imelda May album "More Mayhem", write
# code to print the album details, followed by a listing of all the tracks in the album.
#
# Indent the tracks by a single tab stop when printing them (remember that you can pass
# more than one item to the print function, separating them with a comma).
# imelda = "More Mayhem", "Imelda May", 2011, (
# (1, "Pulling the Rug"), (2, "Psycho"), (3, "Mayhem"), (4, "Kentish Town Waltz"))
#
print(imelda)
title, artist, year, tracks = imelda
print(title)
print(artist)
print(year)
for song in tracks:
track, title = song
print("\tTrack number {}, Title: {}".format(track, title))
#
# A TUPLE CONTAINING A LIST
imelda = "More Mayhem", "Imelda May", 2011, (
[(1, "Pulling the Rug"), (2, "Psycho"), (3, "Mayhem"), (4, "Kentish Town Waltz")])
print(imelda)
imelda[3].append((5, "All For You"))
title, artist, year, tracks = imelda
tracks.append((6, "Eternity"))
print(title)
print(artist)
print(year)
for song in tracks:
track, title = song
print("\tTrack number {}, Title: {}".format(track, title)) |
d1882c89bbfb5505bc97fb43f841e902398461ca | LordVendrik/Python-Bot | /Automation/s.py | 270 | 3.6875 | 4 | import pyperclip
import re
text = str(pyperclip.paste())
ph = re.compile(r'#write what you want to find',re.I)
mo = ph.findall(text)
if len(mo) > 0:
for i in range(len(mo)):
print('Mobile NUmber (' +str(i) +')' +mo[i])
else:
print('No NUmber found')
|
593ca9ac9ce2fb37c8b6422acd7b33ba116fd613 | CDeividi/CDeividi | /exercicio 2.py | 417 | 3.875 | 4 |
while(True):
try:
codigo=int(input('Insira o cรณdigo que deseja emitir digito verificador: \n'))
except ValueError:
print('Sรฃo vรกlidos somente nรบmeros inteiros !')
continue
if(codigo < 10000 or codigo > 30000):
print('Suportado apenas valores inteiros menores de 10000 e maiores de 30000')
continue
|
5f693a4306f1583f247405d8e551f15ebdff81ac | tcanfield/web | /sudoku/board.py | 5,920 | 4.03125 | 4 | import math
class sudoku_board:
#Initialize the board by passing in a string representing the board
#positions in order top to bottom, left to right. Use 0 to represent
#empty spaces
#
#arg board: String representation of the board.
#Positions listed in order left to right, top to bottom. 0 for empty spaces.
#
#arg size: The maximum number of the board. e.g. size=9 for a 9x9 board
def __init__(self, board_string, size):
if len(board_string) != size*size:
raise ValueError("Number of board positions does not match board size." +str(len(board_string)) +str(size))
#for i in range(size):
# for j in range(size):
# self.board_positions[i][j] = board[(i*9)+j]
#This loop as a list comprehension:
self.board_positions = [[board_string[(i*9)+j] for j in range(size)]for i in range(size)]
self.size = size
#Getter/setters:
def set_cell(self, row, col, val):
self.board_positions[row][col] = val
def get_cell(self, row, col):
return self.board_positions[row][col]
def get_board(self):
return self.board_positions
def get_single_string(self):
string = ""
for i in range(self.size):
for j in range(self.size):
string = string + str((self.board_positions[i][j]))
return string
def __str__(self):
string = ""
for i in range(self.size):
string = string + str((self.board_positions[i])) + "\n"
return string
class sudoku_solve:
#Create a sudoku board to start with
def __init__(self, board_string, size):
self.starting_board = sudoku_board(board_string, size)
self.size = size
self.stack = []
def solve(self):
return self.solve_dfs(self.starting_board, 0, 0)
def solve_dfs(self, board, row=0, col=0):
#Base Case
if self.is_solved(board):
self.solved_board = board
return self.solved_board
#Find a valid number for a cell and recursively keep going
if board.get_cell(row, col) == '0':
for i in range(1, self.size+1):
if self.valid_cell(board, row, col, str(i)):
board.set_cell(row, col, str(i))
self.solve_dfs(board, self.next_row(row, col), self.next_col(col))
if self.is_solved(board):
return self.solved_board
#If we get here we have backtracked, so set this row/col back to 0 and keep trying
board.set_cell(row, col, '0')
else:
self.solve_dfs(board, self.next_row(row,col), self.next_col(col))
if self.is_solved(board):
return self.solved_board
def next_row(self, row, col):
if col is 8:
return row+1
else:
return row
def next_col(self, col):
if col is 8:
return 0
else:
return col+1
def prev_row(self, row, col):
if col is 0:
return row-1
else:
return row
def prev_col(self, col):
if col is 0:
return 8
else:
return col-1
def is_solved(self, board):
rows_solved = True
for i in range(self.size):
row = []
for j in range(self.size):
row.append(board.get_cell(i,j))
if j is self.size-1:
if not (set(['1','2','3','4','5','6','7','8','9']) <= set(row)):
rows_solved = False
break
cols_solved = True
for i in range(self.size):
col = []
for j in range(self.size):
col.append(board.get_cell(j,i))
if j is self.size-1:
if not (set(['1','2','3','4','5','6','7','8','9']) <= set(col)):
rows_solved = False
break
return (rows_solved and cols_solved)
def valid_cell(self, board, row, col, value):
#Make sure number is not already in this row
row_values = []
for i in range(self.size):
row_values.append(board.get_board()[row][i])
if value in row_values:
return False
#Make sure number is not already in this col
col_values = []
for i in range(self.size):
col_values.append(board.get_board()[i][col])
if value in col_values:
return False
#Makre sure number is not already in this square. (square is sqrt(size) x sqrt(size) square)
total_squares = self.size
square_size = int(math.sqrt(total_squares))
#Find which square the row/col is in
square_num = (int((row/square_size))*square_size) + int((col/square_size))
#Check each cell in that square and see if the value is already in it
for row in range(square_size):
for col in range(square_size):
cell = board.get_board()[row + (int((square_num/square_size))*square_size)][col + ((square_num%square_size)*square_size)]
if value == cell:
return False
#If none of the checks return false return true
return True
#start_time = time.time()
#board_string = "000037600000600090008000004090000001600000009300000040700000800010009000002540000"
#board = sudoku_board(board_string, 9)
#solver = sudoku_solve(board_string, 9)
#print(solver.solve())
|
b7942016a2fc747501a19583d7e239063cac29de | flame4ost/Python-projects | /additional tasks x classes/Fraction.py | 1,106 | 3.953125 | 4 | class Fraction:
# numerator: int
value = 0
def __init__(self, numerator, denominator):
self.numerator = numerator
self.denominator = denominator
print(str(self.numerator) + ' | ' + str(self.denominator))
def calculateSum(self):
sum = self.makeSum(self.numerator, self.denominator)
print("Sum : " + str(sum))
pass
@staticmethod
def makeSum(numerator, denominator):
return numerator + denominator
def showDifference(self):
difference = self.numerator - self.denominator
print("Difference : " + str(difference))
pass
def showProduct(self):
product = self.numerator * self.denominator
print("Product : " + str(product))
pass
def showDivide(self):
divide = self.numerator / self.denominator
print("Divide : " + str(divide))
pass
print("Input denominator: ")
newDenominator = int(input())
print("Input nomerator: ")
newNumerator = int(input())
f = Fraction(newNumerator, newDenominator)
f.calculateSum()
f.showDifference()
f.showProduct()
f.showDivide()
|
d2dd0e571bfa6da3e1b693fdb54dee89ec8252a1 | danae678/techx-appliedds | /Associative Arrays/firstNonrepeated.py | 577 | 4.28125 | 4 | # Find the first non-repeated character in a string.
# Some things you can reason from the example:
# The return value is the non-repeated character itself, as opposed to the index or some other value
# Example:
# Input: input_string = "supercalifragilisticexpialidocious"
# Output: "f"
import collections
def first_nonrepeat(word):
dictionary = collections.Counter(word)
for i in dictionary:
if dictionary[i] == 1:
return i
return None
print(first_nonrepeat("hello"))
print(first_nonrepeat("supercalifragilisticexpialidocious")) |
b85971cf4844976a2469e693f4d15098afc7b3ad | mk270/dot-home | /bin/newmonth | 583 | 3.71875 | 4 | #!/usr/bin/env python
import datetime
import sys
import calendar
def run():
try:
_, month, year = sys.argv
except:
print >>sys.stderr, "Usage: newmonth month year"
m = int(month)
y = int(year)
print "\n%s %d\n" % (calendar.month_name[m].upper(), y)
for day in xrange(0, calendar.monthrange(y, m)[1]):
d = day + 1
date = datetime.datetime(y, m, d)
w = date.strftime('%a')
sun = {True: "\n", False: ""}[date.weekday() == 6]
print "%s %0.2d:%s" % (w, d, sun)
if __name__ == '__main__':
run()
|
965b9effdbebe69659fb6418c06c998fca135c23 | damodardikonda/Python-Basics | /core2web/Week5/patt.py | 308 | 3.609375 | 4 | '''
Program 4: Write a Program to Print following Pattern.
A
B A
C B A
D C B A
'''
ch="A"
for i in range(4):
for j in range(4):
if j<3-j:
print("",end="\t")
else:
print(ch,end="")
ch=(chr(ord(ch))-1)
print()
ch=(chr(ord('A'))+j+1)
|
c02abd392e2efc34120880783b208efcdadd3afe | sihyeonn/Sunday | /Python/๋ชจ๋์ ํ์ด์ฌ/13B-walk.py | 735 | 3.890625 | 4 | import turtle as t
import random
MOVE = 10
def turn_right():
t.setheading(0)
t.forward(MOVE)
def turn_up():
t.setheading(90)
t.forward(MOVE)
def turn_left():
t.setheading(180)
t.forward(MOVE)
def turn_down():
t.setheading(270)
t.forward(MOVE)
def blank():
t.clear()
def change_color():
x = random.randint(0, 10)
mod = x % 3
if mod == 0:
t.color("red")
elif mod == 1:
t.color("yellow")
else:
t.color("blue")
t.shape("turtle")
t.speed(0)
t.onkeypress(turn_right, "Right")
t.onkeypress(turn_up, "Up")
t.onkeypress(turn_left, "Left")
t.onkeypress(turn_down, "Down")
t.onkeypress(blank, "Escape")
t.onkeypress(change_color, "space")
t.listen()
|
afc73f4034232443ae0551f480e34983fef334ba | andrea2910/c4v2020 | /code/indicators/dialysis_indicator.py | 5,353 | 4.03125 | 4 | import pandas as pd
def dialysis_indicator(df):
"""
dialysis.py
------------------
This Function calculates the dialysis indicator, a metric that measures
whether or not dialysis can be performed in the hospital in that particular state
Logic
-----
First, the function cleans the variables that is related to dialysis by imputing
missing values to 0 or converting necessary categorical columns to numerical values
Then it manually classifies the components required for a dialysis into 5 types and their indicator variables:
Materials ('materials_surgery'), staff ('staff_surgery'),
Reverse Osmosis unit operability ('flag_rrt_reverse_osmosis_unit_operability'),
hospital operability('flag_rrt_operability'), and
Number of Hemodialysis equipments operability('flag_rrrt_num_hemodialysis_equipments_operability').
Value:
1 would indicate the components required is fulfilled
0 would indicate there is at least one missing component
The following variables from the dataset will be classified into 'materials_surgery'
'rrt_hemodialysis_avail_filter',
'rrt_hemodialysis_avail_lines',
'rrt_hemodialysis_avail_kit_hemodialysis',
'rrt_hemodialysis_avail_iron',
'rrt_hemodialysis_avail_b_complex',
'rrt_hemodialysis_avail_calcium',
'rrt_hemodialysis_avail_zemblar',
'rrt_reverse_osmosis_unit_operability'
The following variables from the dataset will be classified into 'staff_surgery'
'rrt_staff_nephrology',
'rrt_staff_md',
'rrt_staff_resident',
'rrt_staff_nurse',
'rrt_staff_nurse_nephrologist'
Then a status indicator variable is created for these 5 types of data: ('XXXXX')
When all 5 of the indicator variables is met, it means that the dialysis can be done
Value of ('XXXXX'):
1 = dialysis can be performed
0 = dialysis cannot be performed
Input
-----
Pandas Dataframe
Output
------
Pandas Series
"""
dialysis = df.copy()
# Imputing blank spaces
dialysis.replace(r'^\s*$', "Unknown", regex=True, inplace = True)
# Imputing nulls with 0
dialysis = dialysis.fillna(0)
# Temp column for feature engineering for material
dialysis['materials'] = dialysis[[
'rrt_hemodialysis_avail_filter',
'rrt_hemodialysis_avail_lines',
'rrt_hemodialysis_avail_kit_hemodialysis',
'rrt_hemodialysis_avail_iron',
'rrt_hemodialysis_avail_b_complex',
'rrt_hemodialysis_avail_calcium',
'rrt_hemodialysis_avail_zemblar',
'rrt_reverse_osmosis_unit_operability',
]].sum(axis=1)
# Temp Column, can do surgery or no, based on availability of the supplies (filter : zemblar)
dialysis['materials_surgery'] = 0
for index, val in dialysis.iterrows():
if dialysis.loc[index,'materials'] == 0:
dialysis.loc[index,'materials_surgery'] = 0
else:
dialysis.loc[index,'materials_surgery'] = 1
# Temp column for feature engineering for material
dialysis['staffs'] = dialysis[[
'rrt_staff_nephrology',
'rrt_staff_md',
'rrt_staff_resident',
'rrt_staff_nurse',
'rrt_staff_nurse_nephrologist']].sum(axis=1)
dialysis['staff_surgery'] = 0
# Temp Column, can do surgery or no, based on availability of the supplies (filter : zemblar)
for index, val in dialysis.iterrows():
if dialysis.loc[index,'staffs'] == 0:
dialysis.loc[index,'staff_surgery'] = 0
else:
dialysis.loc[index,'staff_surgery'] = 1
# Temp feature for RO unit
dialysis['flag_rrt_reverse_osmosis_unit_operability'] = 0
for index, val in dialysis.iterrows():
if dialysis.loc[index,'rrt_reverse_osmosis_unit_operability'] == 0:
dialysis.loc[index,'flag_rrt_reverse_osmosis_unit_operability'] = 0
else:
dialysis.loc[index,'flag_rrt_reverse_osmosis_unit_operability'] = 1
# Temp feature for operatibility
dialysis['flag_rrt_operability'] = 0
for index, val in dialysis.iterrows():
if dialysis.loc[index,'rrt_operability'] == 0:
dialysis.loc[index,'flag_rrt_operability'] = 0
else:
dialysis.loc[index,'flag_rrt_operability'] = 1
# Temp feature for equipment
dialysis['flag_rrrt_num_hemodialysis_equipments_operability'] = 0
for index, val in dialysis.iterrows():
if dialysis.loc[index,'rrt_num_hemodialysis_equipments_operability'] == 0:
dialysis.loc[index,'flag_rrrt_num_hemodialysis_equipments_operability'] = 0
else:
dialysis.loc[index,'flag_rrrt_num_hemodialysis_equipments_operability'] = 1
# Decision Variable
dialysis['temp'] = dialysis[['materials_surgery',
'staff_surgery',
'flag_rrt_reverse_osmosis_unit_operability',
'flag_rrt_operability',
'flag_rrrt_num_hemodialysis_equipments_operability']].sum(axis=1)
surgery = []
for i in dialysis['temp']:
if i == 5:
surgery.append(1)
else:
surgery.append(-1)
dialysis['dialysis_indicator'] = pd.Series(surgery)
return dialysis['dialysis_indicator'] |
51d7e6c3f0965fae518a2a346f1f5e9ab555b9e0 | SINHOLEE/Algorithm | /python/ํ๋ก๊ทธ๋๋จธ์ค/๋ฐฉ๊ธ๊ทธ๊ณก.py | 1,417 | 3.5625 | 4 | from datetime import datetime
def string_to_minute(start, end):
temp1 = datetime.strptime(start, '%H:%M')
temp2 = datetime.strptime(end, '%H:%M')
temp3 = temp2 - temp1
return temp3.seconds // 60
def string_to_list(string):
# ๊ฒ์ฆ์๋ฃ
lis = []
for s in string:
if s == "#":
lis[-1] += s
else:
lis.append(s)
return lis
def solution(m, musicinfos):
# ๋
ธ๋์ ๋ชฉ, minutes
answer = []
my_melody = string_to_list(m)
for musicinfo in musicinfos:
start, end, title, music = musicinfo.split(',')
minutes = string_to_minute(start, end)
radio_melody = string_to_list(music)
if len(my_melody) > minutes:
continue
for i in range(minutes-len(my_melody)+1):
for j in range(len(my_melody)):
if my_melody[j] != radio_melody[(i+j) % len(radio_melody)]:
break
else:
if len(answer) == 0:
answer.append((title, minutes))
else:
if answer[0][1] < minutes:
answer[0] = (title, minutes)
break
if len(answer) == 0:
return "(None)"
print(answer)
return answer[0][0]
solution("CC#BCC#BCC#BCC#B", ["23:30,00:00,FOO,CC#B", "04:00,04:08,BAR,CC#BCC#BCC#B"])
print(string_to_minute("10:12", "11:01")) |
198c7baf4e32bfeaf82f75bc7449871c7a72d325 | mandeep-codetresure/python-study1 | /classpractise.py | 506 | 3.75 | 4 | class Calculator:
def __init__(self, number):
self.number = number
@staticmethod
def greet():
print("welcome user")
def square(self):
print(f"square of {self.number} is {self.number **2}")
def cube(self):
print(f"Cuberoot of {self.number} is {self.number **3}")
def squareRoot(self):
print(f"Squareroot of the number {self.number} is {self.number **0.5}")
a = Calculator(5)
a.greet()
a.square()
a.cube()
a.squareRoot() |
918ec59032e9302215f4458b8db0166cd228a5c1 | danyalsaqib/Machine-Learning-Basics | /Code Files/Python, Matlab, and Pandas/exportFile.py | 449 | 3.625 | 4 | # Import Pandas using its common nickname
import pandas as pd
# Reading test_data.csv as a dataframe
df = pd.read_csv('test_data.csv')
# Adding another column for average scores
df['Average Score'] = (df['Math Score'] + df['Physics Score'] + df['Chemistry Score'] + df['English Score']) / 4
# Short Method
df['Short Method Average'] = (df.iloc[:, 2:6].sum(axis=1)) / 4
# Exporting into a separate csv file
df.to_csv('modified.csv', index = False) |
c0f8adb7cb46ad9e9d258e2458f3c2ee8db75382 | Cassio-4/URI-Online-Judge | /python/Begginer/1017.py | 108 | 3.703125 | 4 | hours = int(input())
speed = int(input())
fuelSpent = (hours * speed)/12.0
print('{:.3f}'.format(fuelSpent)) |
b71c4eb4ca4ab67e9d230c0a00c2c584bb8426d1 | benny83324/c_to_f | /c_to_f.py | 110 | 3.796875 | 4 | c = float(input("What is the temperature in C so far:"))
f = c * 9 / 5 + 32
print("temperature F is mow:",f)
|
ab01b29943909262c37078c6769fc5fcf256da66 | santhosh-kumar/AlgorithmsAndDataStructures | /python/test/unit/common/test_linked_list.py | 1,366 | 3.8125 | 4 | """
Unit Test for binary_tree
"""
from unittest import TestCase
from common.linked_list import LinkedList
from common.linked_list import Node
class TestLinkedList(TestCase):
"""
Unit test for LinkedList
"""
def test_construct(self):
"""Test for construct
Args:
self: TestLinkedList
Returns:
None
Raises:
None
"""
# Given
input_linked_list = LinkedList()
input_linked_list.append(Node(1))
input_linked_list.append(Node(2))
input_linked_list.append(Node(3))
input_linked_list.append(Node(4))
input_linked_list.append(Node(5))
# Then
self.assertEqual(input_linked_list.output_list(), [1, 2, 3, 4, 5])
def test_reverse(self):
"""Test for reverse
Args:
self: TestLinkedList
Returns:
None
Raises:
None
"""
# Given
input_linked_list = LinkedList()
input_linked_list.append(Node(1))
input_linked_list.append(Node(2))
input_linked_list.append(Node(3))
input_linked_list.append(Node(4))
input_linked_list.append(Node(5))
# When
input_linked_list.reverse()
# Then
self.assertEqual(input_linked_list.output_list(), [5, 4, 3, 2, 1])
|
f93ae3b67ce53447ec7528f0b37b3670895d8ae5 | antrijuzar/DDU-sem-4-programs | /SP/Lab 1/P5.py | 633 | 4.1875 | 4 | # first
a=-5
if a>0:
if a%2==0:
print(str(a) + " is positive even number")
else:
print(str(a) + " is negative number")
# Output is : -5 is negative number because the outer if statement is evaluated
# and the condition is false so the else statement gets executed.
# second
a=5
if a>0:
if a%2==0 :
print(str(a) + " is positive even number")
else:
print(str(a) + " is odd number")
# Output is : 5 is odd number because the outer if statement is evaluated
# first and the condition is true so the inner if statement gets executed
# abd the condition is false so inner else is evaluated finally |
258ccc665fe6922754b0f692476d60d3024f1e03 | julianestebanquintana/ladrillos | /videojuego.py | 6,356 | 3.515625 | 4 | import sys
import time
import pygame
ancho = 640
alto = 480
color_azul = (0, 0, 64)
color_blanco = (255, 255, 255)
pygame.init() # Es necesario para poder usar las fuentes en un juego
# ย pygame.font.init()
class Bolita(pygame.sprite.Sprite):
# Los objetos que se ven en la pantalla en pygame, son sprites
def __init__(self):
pygame.sprite.Sprite.__init__(self)
# Cargar imagen
self.image = pygame.image.load('bolita.png')
# Cargar el rectรกngulo de la bolita
self.rect = self.image.get_rect()
# (x,y) : Center x
# (0,0) : Esquina superior izquierda
# (ancho, alto) : Esquina inferior derecha
# Se le da una posiciรณn inicial central:
self.rect.centerx = ancho/2
self.rect.centery = alto/2
# Establecer velocidad inicial
self.speed = [3, -3]
def update(self):
# Evitar que se salga por arriba
if self.rect.top <= 0:
self.speed[1] = -self.speed[1]
# Evitar que se salga por los lados
if self.rect.right >= ancho or self.rect.left <= 0:
self.speed[0] = -self.speed[0]
# Mover segรบn posiciรณn actual y velocidad
self.rect.move_ip(self.speed)
class Raqueta(pygame.sprite.Sprite):
def __init__(self):
pygame.sprite.Sprite.__init__(self)
# Cargar imagen
self.image = pygame.image.load('paleta.png')
# Cargar el rectรกngulo de la raqueta
self.rect = self.image.get_rect()
# Se le da una posiciรณn inicial centrada en pantalla en X.
self.rect.midbottom = (ancho/2, alto - 20)
# Establecer velocidad inicial
self.speed = [0, 0]
def update(self, evento):
# Buscar si se presionรณ flecha izquierda
if evento.key == pygame.K_LEFT and self.rect.left > 0:
self.speed = [-6, 0]
# Si se presionรณ flecha derecha
elif evento.key == pygame.K_RIGHT and self.rect.right < ancho:
self.speed = [6, 0]
else:
self.speed = [0, 0]
# Mover segรบn posiciรณn actual y velocidad
self.rect.move_ip(self.speed)
class Ladrillo(pygame.sprite.Sprite):
def __init__(self, posicion):
pygame.sprite.Sprite.__init__(self)
# Cargar imagen
self.image = pygame.image.load('ladrillo.png')
# Cargar el rectรกngulo del ladrillo
self.rect = self.image.get_rect()
# Se le da una posiciรณn inicial, provista externamente
self.rect.topleft = posicion
class Muro(pygame.sprite.Group):
# Existe un contenedor de sprites que se llama Group
# Group permite agregar elementos con el mรฉtodo .add
# Group permite dibujar el grupo con el mรฉtodo .draw
def __init__(self, cantidad_ladrillos):
pygame.sprite.Group.__init__(self)
pos_x = 0
pos_y = 20
for i in range(cantidad_ladrillos):
ladrillo = Ladrillo((pos_x, pos_y))
self.add(ladrillo)
pos_x += ladrillo.rect.width
if pos_x >= ancho:
pos_x = 0
pos_y += ladrillo.rect.height
# Funciรณn llamada tras dejar ir la bolita
def juego_terminado():
# all_fonts = pygame.font.get_fonts()
fuente = pygame.font.SysFont('Consolas', 72)
texto = fuente.render('Game over', True, color_blanco)
texto_rect = texto.get_rect()
texto_rect.center = [ancho/2, alto/2]
pantalla.blit(texto, texto_rect)
pygame.display.flip()
# Pausa por tres segundos antes de salir
time.sleep(5)
sys.exit()
def mostrar_puntuacion():
fuente = pygame.font.SysFont('Consolas', 20)
texto = fuente.render(str(puntuacion).zfill(5), True, color_blanco)
texto_rect = texto.get_rect()
texto_rect.topleft = [0, 0]
pantalla.blit(texto, texto_rect)
def mostrar_vidas():
fuente = pygame.font.SysFont('Consolas', 20)
cadena = "Vidas: " + str(vidas).zfill(2)
texto = fuente.render(cadena, True, color_blanco)
texto_rect = texto.get_rect()
texto_rect.topright = [ancho, 0]
pantalla.blit(texto, texto_rect)
# Inicializando pantalla
pantalla = pygame.display.set_mode((ancho, alto))
# Adicionando tรญtulo de pantalla
pygame.display.set_caption('Juego de Ladrillos')
# Para monitorear el tiempo, pygame ofrece el objeto .Clock
reloj = pygame.time.Clock()
# Ajustar repeticiรณn de evento de tecla presionada
pygame.key.set_repeat(30)
bolita = Bolita()
jugador = Raqueta()
muro = Muro(50)
puntuacion = 0
vidas = 3
while True:
# Establecer los FPS permite determinar la mรกxima velocidad a la que va
# a correrse el juego
reloj.tick(60)
# Se revisan los eventos...
for evento in pygame.event.get():
if evento.type == pygame.QUIT:
sys.exit()
elif evento.type == pygame.KEYDOWN:
jugador.update(evento)
# Actualizar posiciรณn de la bolita
bolita.update()
# Colisiรณn bolita - jugador
if pygame.sprite.collide_rect(bolita, jugador):
bolita.speed[1] = -bolita.speed[1]
# Colisiรณn bolita - muro
# ย pygame.sprite.spritecollide(bolita, muro, True)
# Pide un booleano: ยฟLos sprites tocados deben ser destruรญdos?
# Pero esta soluciรณn elimina los ladrillos, pero no cambia la direcciรณn
# de la bolita. A continuaciรณn, otra soluciรณn:
lista = pygame.sprite.spritecollide(bolita, muro, False)
if lista:
ladrillo = lista[0]
cx = bolita.rect.centerx
if cx < ladrillo.rect.left or cx > ladrillo.rect.right:
bolita.speed[0] = -bolita.speed[0]
else:
bolita.speed[1] = -bolita.speed[1]
muro.remove(ladrillo)
puntuacion += 10
# Revisar si la bolita sale de la pantalla
if bolita.rect.top > alto:
vidas -= 1
bolita.rect.top -= alto/2
# Se rellena el fondo
pantalla.fill(color_azul)
# Se muestra la puntuaciรณn y las vidas
mostrar_puntuacion()
mostrar_vidas()
# Dibujar bolita en pantalla
# La funciรณn blit dibuja una superficie sobre otra.
pantalla.blit(bolita.image, bolita.rect)
# Se dibuja la raqueta del jugador
pantalla.blit(jugador.image, jugador.rect)
# Dibujar el muro
muro.draw(pantalla)
# Actualizar los elementos en pantalla
pygame.display.flip()
if vidas <= 0:
juego_terminado()
|
56079c8d71e50abb6f0a10da94512d4bd36957b4 | olgaamp/python | /venv/1.py | 738 | 3.515625 | 4 | from math import *
nsDict = {'global': None}
varDict = {}
def create(a, b):
nsDict[a] = b
def add(a, b):
varDict[a] = b
def get(prostr, per):
# x = varDict.get(a)
# print(x)
res = False
for k in varDict:
if (k == prostr and varDict[k] == per):
res = True
print(k)
if (res == False):
if (nsDict[prostr] is None):
print('None')
else:
get(nsDict[prostr], per)
kol = int(input())
for i in range(kol):
cmd, ns, var = input().split()
if (cmd == 'create'):
create(str(ns), str(var))
if (cmd == 'add'):
add(str(ns), str(var))
if (cmd == 'get'):
get(str(ns), str(var))
print(nsDict)
print(varDict) |
3a5242bd6e7dba591b4d0158ed05c236ea01ffc1 | heidarinejad/MyNests | /Integrate_and_fire_neuron.py | 2,027 | 3.765625 | 4 | # iaf (integrate_and_fire) neuron example
import nest
import pylab # for plotting
# in this program a DC current is injected to neuron using a current generator device and V_m is recorded by 'spike_detector'
# to do so the best way is define a function so called ' build_network'
# this function take the resoultion as a input
def build_network(dt):
nest.ResetKernel()
nest.SetKernelStatus({"local_num_threads":1, "resolution": dt}) # number of threads is set to zero
neuron=nest.Create("iaf_psc_alpha")
nest.SetStatus(neuron, "I_e",376.0) # neuron is received an external current
Vm=nest.Create('voltmeter')
nest.SetStatus(Vm, 'withtime', True) #times are given in the times vector in events
sd=nest.Create('spike_detector')
nest.Connect(Vm,neuron)
nest.Connect(neuron, sd)
# The Voltmeter is connected to the neuron and the neuron to the spikedetector
# because the neuron sends spikes to the detector and the voltmeter 'observes' the neuron
return Vm,sd
# the neuron is stimulated with 3 different dt and voltage is plotted
i=1
for dt in [0.1,0.5,1.0]:
print("Running simulation with dt=%.2f" %dt)
Vm,sd=build_network(dt)
nest.Simulate(100.0) # ms
# spike detector counts the spike numbers during simulation time
potentials=nest.GetStatus(Vm,"events")[0]["V_m"]
times=nest.GetStatus(Vm, "events")[0]["times"]
# The values of the voltage recorded by the voltmeter are read out and the values for the membrane potential
# are stored in potential and the corresponding times in the times array
# To print out the results (voltage trace over time)
pylab.figure(i)
pylab.plot(times,potentials, label="dt=%.2f" %dt)
print("Number of spikes: {0}".format(nest.GetStatus(sd, "n_events")[0]))
pylab.legend(loc=5) # this is for defining the position of label box 0=<loc=<10
pylab.xlabel("Time (ms)")
pylab.ylabel("V_m (mV)")
pylab.show()
i=i+1
#pylab.plt(times,potentials)
|
f70f99dbaa4b1574b75ec698a909d2ed8f34a465 | mdalton87/python-exercises | /solutions.py | 1,504 | 4.1875 | 4 | # 1.
#
# Write a function named isnegative.
# It should accept a number and return a boolean value
# based on whether the input is negative.
def isnegative(x):
return x < 0
# 2.
# Write a function named count_evens. It should accept a list and return the number of even numbers in the list.
def count_evens(num_list):
count = 0
for number in num_list:
if number % 2 == 0:
count += 1
return count
# 3.
# Write a function named increment_odds.
# It should accept a list of numbers and return a new list
# with the odd numbers from the original list incremented.
def increment_odds(myList=[]):
new_list = []
for number in myList:
# if number is even return number
if (number % 2) == 0:
return new_list.append(number)
# if number is odd return number + 1
else:
return new_list.append(number + 1)
# 4.
def average(list_of_numbers=[]):
return float((sum(list_of_numbers) / len(list_of_numbers)))
# 5.
def name_to_dict(full_name):
name = [full_name.split(' ')]
return {'first_name': name[0], 'last_name': name[1]}
# 6.
def capitalize_name(names):
for name in names:
name['first_name'].append = name['first_name'].capitalize()
name['last_name'].append = name['last_name'].capitalize()
# 7.
def count_vowels(string):
count = 0
string = string.lower()
for c in string:
if c in 'aeiou':
count += 1
return count
# 8.
|
2eb514c8cb7d5f90ee35fe62631fa2e35d35dd81 | jose-ramirez/project_euler | /problems/p19.py | 1,384 | 4.03125 | 4 | #You are given the following information, but you may prefer
#to do some research for yourself.
#
#1 Jan 1900 was a Monday.
#Thirty days has September, April, June and November.
#All the rest have thirty-one, Saving February alone,
#Which has twenty-eight, rain or shine.
#And on leap years, twenty-nine.
#A leap year occurs on any year evenly divisible by 4,
#but not on a century unless it is divisible by 400.
#
#How many Sundays fell on the first of the
#month during the twentieth century (1 Jan 1901 to 31 Dec
#2000)?
def is_leap(year):
a = (year % 4 == 0 and year % 100 != 0)
b = year % 400 == 0
return a or b
def p19():
total = 0
start = 1 #jan 1st, 1900 is monday:
common = [3, 0, 3, 2, 3, 2, 3, 3, 2, 3, 2]
leap = [3, 1, 3, 2, 3, 2, 3, 3, 2, 3, 2]
for year in range(1901, 2001):
#get first day of the year, 0 is sunday:
a = 2 if is_leap(year - 1) else 1
y = leap if is_leap(year) else common
start = (start + a) % 7
tmp = start
#get first days of year's months:
f = []
for d in y:
tmp += d
tmp %= 7
f.append(tmp)
#count sundays:
g = [x for x in f if x == 0]
#add the count to the total, adding the first day
# if it was sunday:
t = len(g) if start != 0 else len(g) + 1
total += t
return total
print(p19()) |
5bfa906b00b190ec1f28f9e2c586e39704207c77 | nishantchaudhary12/w3resource_solutions_python | /Strings/uppercase_str.py | 539 | 4.40625 | 4 | #Write a Python function to convert a given string to all uppercase if it contains at least 2 uppercase characters
# in the first 4 characters.
def upper_str(sample_string):
count = 0
new_string = ''
for each in range(0, 4):
if sample_string[each].isupper():
count += 1
if count > 1:
new_string = sample_string.upper()
else:
new_string = sample_string
return new_string
def main():
sample_string = 'HTtp://www.w3resource.com'
print(upper_str(sample_string))
main() |
c914d570a0fad439482cb03a94c1fba136724e5e | MattAnderson16/Algorithms | /stack.py | 1,306 | 4.21875 | 4 | class stack:
"""Stack class"""
def __init__(self):
self.items = []
self.max_size = None
self.stack_pointer = None
def is_empty(self):
if len(self.items) == 0:
return True
else:
return False
def push(self,item_to_add):
if len(self.items) < self.max_size:
self.items.append(item_to_add)
if len(self.items) == 1:
self.stack_pointer = 0
else:
self.stack_pointer += 1
def pop(self):
if len(self.items) > 0:
item = self.items[self.stack_pointer]
self.items.pop(self.stack_pointer)
if self.stack_pointer > 0:
self.stack_pointer -= 1
else:
self.stack_pointer = None
return item
def peek(self):
return self.items[self.stack_pointer - 1]
def size(self,max_size):
self.max_size = max_size
if __name__ == "__main__":
stack = stack()
print(stack.items)
print(stack.is_empty())
stack.size(6)
stack.push("a")
print(stack.items)
print(stack.is_empty())
stack.peek()
stack.push("b")
print(stack.peek())
print(stack.pop())
print(stack.peek())
|
85d0abb36fa69b7b6dcbf05634daf2613baeb308 | mizhi/project-euler | /python/problem-55.py | 1,784 | 4.15625 | 4 | #!/usr/bin/env python
# If we take 47, reverse and add, 47 + 74 = 121, which is palindromic.
#
# Not all numbers produce palindromes so quickly. For example,
#
# 349 + 943 = 1292,
# 1292 + 2921 = 4213
# 4213 + 3124 = 7337
#
# That is, 349 took three iterations to arrive at a palindrome.
#
# Although no one has proved it yet, it is thought that some numbers,
# like 196, never produce a palindrome. A number that never forms a
# palindrome through the reverse and add process is called a Lychrel
# number. Due to the theoretical nature of these numbers, and for the
# purpose of this problem, we shall assume that a number is Lychrel
# until proven otherwise. In addition you are given that for every
# number below ten-thousand, it will either (i) become a palindrome in
# less than fifty iterations, or, (ii) no one, with all the computing
# power that exists, has managed so far to map it to a palindrome. In
# fact, 10677 is the first number to be shown to require over fifty
# iterations before producing a palindrome:
# 4668731596684224866951378664 (53 iterations, 28-digits).
#
# Surprisingly, there are palindromic numbers that are themselves
# Lychrel numbers; the first example is 4994.
#
# How many Lychrel numbers are there below ten-thousand?
#
# NOTE: Wording was modified slightly on 24 April 2007 to emphasise
# the theoretical nature of Lychrel numbers.
def palindrome_number(n):
ns=str(n)
return ns == ns[::-1]
def lychrel(n, lychrel_set=set()):
wn = n
for i in xrange(0, 50):
nl = list(str(wn))
nl.reverse()
rn = int("".join(nl))
wn = wn + rn
if palindrome_number(wn):
return False
return True
num = 0
for i in xrange(1, 10000):
if lychrel(i):
num += 1
print num
|
ab9d571dbb0ce77c6c86ae9588e678c7ea134b68 | shrishtydayal2304/python | /hackerrank/Sets/Symmetric Difference.py | 270 | 3.71875 | 4 | # Enter your code here. Read input from STDIN. Print output to STDOUT
from __future__ import print_function
a=int(input())
x=set(map(int,input().split()))
# print(x)
b=int(input())
y=set(map(int,input().split()))
w=sorted(x.symmetric_difference(y))
print(*w,sep='\n')
|
1551c6af7432a330e266cf243dc79de8aa785800 | MartaCortes/Repository | /Coding_and_Visualization_Projects/Sklearn Python/sklearn.py | 16,673 | 3.671875 | 4 | #!/usr/bin/env python
# coding: utf-8
# ## Assignment 3 Advanced Programming
# ### Authors: Rafaela Becerra & Marta Cortรฉs
# #### Part I Scikit-Learn
#
# #### Preprocess
#
# Some libraries are imported and the solar dataset is read (in cvs format) into a Pandas dataframe
# In[1]:
import numpy as np
from numpy.random import randint
import pandas as pd
import os
os.chdir('/Users/cortesocanamarta/Documents/Marta/MรSTER DATA SCIENCE/Advanced Programming/Third Assignment')
os.getcwd()
train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
# NIA as randomseed in order to create reproductible results:
# In[2]:
my_NIA = 1722552880
np.random.seed(my_NIA)
# Determine the response variable and atributes for the train and test set
# In[3]:
X_train=train[train.columns[0:1200]]
X_test=test[test.columns[0:1200]]
y_train=train['energy']
y_test=test['energy']
# Normalization of the atributes with MinMaxScaler, which allows to transform these features by scaling each to a range between 0 and 1.
# In[4]:
from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()
X_train_minmax = min_max_scaler.fit_transform(X_train)
X_test_minmax = min_max_scaler.transform(X_test)
# Selection of the first 75 columns which represent one blue point features
# In[5]:
X_train_minmax=X_train_minmax[:,0:75]
X_test_minmax=X_test_minmax[:,0:75]
# Create a validation partition, the first 10 years data for trainning and the rest for the validation process
# In[6]:
from sklearn.model_selection import PredefinedSplit
validation_indices = np.zeros(X_train_minmax.shape[0])
validation_indices[:round(10/12*X_train_minmax.shape[0])] = -1
tr_val_partition = PredefinedSplit(validation_indices)
# #### Machine Learning methods with default parameters
#
# We have selected the mean squared error as a metric for comparing the different kind of machine learning methods. The mean squared error or MSE, simultaneously minimizes the prediction variance and prediction bias, then, it is a good quality measure of an estimator. The lower the MSE, it will mean a closer estimation of the quantity of energy produce compare to the real data. The MSE can be expressed as:
#
# $$M S E=\sum_{i=1}^{N}\left(y_{i}-\hat{y}_{i}\right)^{2}$$
#
#
#
# ##### Regression Models
#
# Decision Trees are a non-parametric supervised learning method that can be used for classification and regression. In this case, the goal is to create a model that predicts the value of the target variable which is the amount of energy produce, by learning simple decision rules inferred from the data atributes.
# In[7]:
from sklearn import tree
rgt = tree.DecisionTreeRegressor()
rgt.fit(X_train_minmax, y_train)
y_test_pred = rgt.predict(X_test_minmax)
from sklearn import metrics
from sklearn.metrics import mean_squared_error
print("\n The MSE is:\n", metrics.mean_squared_error(y_test_pred, y_test))
# ##### KNN
#
# The Neighbors-based regression is used when the data target is continuous rather tha discrete variable, then the variable is predicted by local interpolation of the targets associated of the nearest neighbors in the training set.
# In[8]:
from sklearn.neighbors import KNeighborsRegressor
neigh = KNeighborsRegressor()
neigh.fit(X_train_minmax, y_train)
y_test_pred_KNN = neigh.predict(X_test_minmax)
print("\n The MSE is:\n", metrics.mean_squared_error(y_test_pred_KNN, y_test))
# ##### SVMs
#
# Support vector machines are a set of supervised learning methods used for classification, regression and outlier detection. In the case of regression, this method approximates the best values with a given margin called epsilon, that considers the model complexity and error rate.
# In[9]:
from sklearn import svm
svmr = svm.SVR(gamma='auto')
svmr.fit(X_train_minmax, y_train)
y_test_pred_SVM = svmr.predict(X_test_minmax)
print("\n The MSE is:\n", metrics.mean_squared_error(y_test_pred_SVM, y_test))
# #### Machine Learning methods with tuning hyper-parameters
#
# Hyperparameter optimization or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. Each method has important parameters that can be change in order to get the best model. It is necesary to define:
#
# * The search space (the hyper-parameters of the method and their allowed values): these will differ for each method.
# * The search method: in this case for all the methods will be a random-search.
# * The evaluation method: it will be use a crossvalidation process.
#
#
# ##### Regression Trees
#
# In regression trees, the parameters that will be optimized are:
# * max_depth (default=None):the maximum depth of the tree.
# * min_samples_split (default=2): the minimum number of samples required to split an internal node
#
# Since, both are discrete variables sp_randint is used in order to create a discrete uniform distribution.
# Hence, the default parameters are:
# * criterion (default=โmseโ). The function to measure the quality of a split.
# * splitter (default=โbestโ). The strategy used to choose the split at each node.
# * min_samples_leaf (default=1). The minimum number of samples required to be at a leaf node.
# * min_weight_fraction_leaf (default=0.). The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node.
# * random_state (default=None). The random number generator is the RandomState instance used by np.random.
# * max_leaf_nodes (default=None). Unlimited number of nodes.
# * min_impurity_decrease (default=0.). A node will be split if this split induces a decrease of the impurity greater than or equal to 0.
# * min_impurity_split (default=1e-7). Threshold for early stopping in tree growth.
# In[10]:
from scipy.stats import randint as sp_randint
param_grid={'max_depth': sp_randint(2,20), 'min_samples_split':sp_randint(2,20)}
from sklearn.model_selection import RandomizedSearchCV
rgt_grid = RandomizedSearchCV(rgt, param_grid, scoring='neg_mean_squared_error', cv=tr_val_partition, n_jobs=1, verbose=1)
rgt_grid.fit(X_train_minmax, y_train)
y_test_pred_rgt_G = rgt_grid.predict(X_test_minmax)
print("\n The best parameters across all the searched parameters:\n", rgt_grid.best_params_)
print("\n The MSE is:\n", metrics.mean_squared_error(y_test_pred_rgt_G, y_test))
# ##### KNN
#
# The hyper-parameter that needs to be optimized at least is the 'n_neighbors'(default = 5), which corresponds to the number of neighbors that will be used set to a maximun of 20. The rest of the parameters will be set as default:
#
# * weights= โuniformโ : uniform weights. All points in each neighborhood are weighted equally.
# * p= 2 : use of euclidean_distance for calculation.
# * algorithm: โautoโ. Decides the most appropriate algorithm based on the values passed to fit method.
# * leaf_size= 30 : leaf size passed when BallTree or KDTree algorith are use.
# * metric= โminkowskiโ. The distance metric to use for the tree.
# * metric_params= None. Zero additional keyword arguments for the metric function.
# In[11]:
param_grid={'n_neighbors': sp_randint(1,20)}
neigh_grid = RandomizedSearchCV(neigh, param_grid, scoring='neg_mean_squared_error', cv=tr_val_partition, n_jobs=1, verbose=1)
neigh_grid.fit(X_train_minmax, y_train)
y_test_pred_KNN_G = neigh_grid.predict(X_test_minmax)
print("\n The best parameters across all the searched parameters:\n", neigh_grid.best_params_)
print("\n The MSE is:\n", metrics.mean_squared_error(y_test_pred_KNN_G, y_test))
# ##### SVMs
#
# The hyper-parameters choosen to be optimized are:
#
# * kernel (default=โrbfโ): specifies the kernel type to be used in the algorithm. Three types of possible kernels will be consider. These are โlinearโ, โpolyโ, and โrbfโ.
# * degree (default=3): degree of the polynomial kernel function if โpolyโ is consider. This will be set as a integer sequence of possible values, with a maximun of 6.
# * C (default=1.0): regularization parameter. It controls the trade off between smooth decision boundary and classifying the training points correctly. C in svm, is not too sensitive, then it is quicker to try different values that come from a logarithmic scale.
# * gamma (default=โscaleโ): Kernel coefficient for โrbfโ, and โpolyโ, it will be optimized as a float, considering a sequence set as a maximum of 0.1.
# * epsilon (default=0.1): Epsilon in the epsilon-SVR model. It specifies the epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value. It will be optimized as a float, considering various options with a maximun set as 0.9.
#
# In contrast, the parameters set as default for this method are:
#
#
#
#
# * shrinking (default=True).
# * max_iter (default=-1). No limit on iterations within solver.
# In[12]:
param_grid1={'C': np.logspace(0, 3, num=10000), 'gamma': [1e-7, 1e-1], 'kernel': ('linear', 'rbf','poly'), 'degree' : [0, 1, 2, 3, 4, 5, 6], 'epsilon':[0.1,0.9]}
svmr_grid = RandomizedSearchCV(svmr, param_grid1, scoring='neg_mean_squared_error', cv=tr_val_partition, n_jobs=1, verbose=1)
svmr_grid.fit(X_train_minmax, y_train)
y_test_pred_SVM_G = svmr_grid.predict(X_test_minmax)
print("\n The best parameters across all the searched parameters:\n", svmr_grid.best_params_)
print("\n The MSE is:\n", metrics.mean_squared_error(y_test_pred_SVM_G, y_test))
# In[ ]:
#
#
#
# From all the results that we got, we can say first that all the models when optimizing its hyper-paremeters, the metrics result better, and give a more accurate model. By comparing the MSE resulting between type of methods, the one that is more accurate is the KNN method, which returned a better metric than the regression tree method and the support vector regressor (Table 1). These results will be much more accurate, if all the data is use and not only the variables from one of the points.
# 
# #### Part II Scikit-Learn
#
#
# #### Preprocess
#
#
# Selection of the first 300 columns which represent four blue point features
#
#
# In[ ]:
# In[13]:
X_train=train[train.columns[0:300]]
X_test=test[test.columns[0:300]]
# Create a validation partition, the first 10 years data for trainning and the rest for the validation process
# In[14]:
from sklearn.model_selection import PredefinedSplit
validation_indices = np.zeros(X_train.shape[0])
validation_indices[:round(10/12*X_train.shape[0])] = -1
tr_val_partition = PredefinedSplit(validation_indices)
# Selection of the 10% of attributes and random assignation of 10% of nan for each column in the train and test dataset.
# In[15]:
np.random.seed(my_NIA)
# In[16]:
nan_atr=np.random.choice(list(X_train.columns), size=round(len(X_train.columns)*0.1), replace=False)
# In[17]:
for i in range(0,len(nan_atr)):
np.random.seed(i)
nan_row=np.random.choice(X_train.index.tolist(), size=round(len(X_train.index)*0.1), replace=False)
X_train.loc[nan_row,nan_atr[i]]=np.nan
# In[18]:
for i in range(0,len(nan_atr)):
np.random.seed(i)
nan_row=np.random.choice(X_test.index.tolist(), size=round(len(X_test.index)*0.1), replace=False)
X_test.loc[nan_row.tolist(),nan_atr[i]]=np.nan
# Convertion to numpy array
# In[19]:
X_train=X_train.to_numpy()
X_test=X_test.to_numpy()
# #### Pipelines
#
# #### SelectionKBest
#
# Default parameters
# In[ ]:
# In[20]:
from sklearn.pipeline import Pipeline
from sklearn.neighbors import KNeighborsRegressor
from sklearn.impute import SimpleImputer
from sklearn.feature_selection import SelectKBest, VarianceThreshold, f_regression
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import GridSearchCV
from sklearn import metrics
imputer = SimpleImputer(strategy='median')
constant = VarianceThreshold(threshold=0.0) #Feature selector that removes all low-variance features.
min_max_scaler = MinMaxScaler()
selector = SelectKBest(f_regression)
knn = KNeighborsRegressor()
selectkbest = Pipeline([
('impute', imputer),
('constant', constant),
('scaler', min_max_scaler),
('select', selector),
('knn_regression', knn)])
selectkbest = selectkbest.fit(X_train, y_train)
y_test_pred = selectkbest.predict(X_test)
print("\n The MSE is:\n",
metrics.mean_squared_error(y_test_pred, y_test))
# Hyper-parameter tunning of the k number of features
# In[21]:
param_grid = {'select__k': range(1,40,1)}
selectkbest_grid = GridSearchCV(selectkbest,
param_grid,
scoring='neg_mean_squared_error',
cv=tr_val_partition,
n_jobs=1, verbose=1)
selectkbest_grid = selectkbest_grid.fit(X_train, y_train)
y_test_pred = selectkbest_grid.predict(X_test)
print("\n The MSE is:\n",
metrics.mean_squared_error(y_test_pred, y_test))
selectkbest_grid.get_params()
print(selectkbest_grid.best_params_)
# Set the resulting k number after optimization, and look for the n_neighbors number that will give the best model
# In[22]:
selectkbest = selectkbest.set_params(**{'select__k':12})
param_grid = {'knn_regression__n_neighbors': range(1,20,1)}
selectkbest_grid = GridSearchCV(selectkbest,
param_grid,
scoring='neg_mean_squared_error',
cv=tr_val_partition,
n_jobs=1, verbose=1)
selectkbest_grid = selectkbest_grid.fit(X_train, y_train)
y_test_pred = selectkbest_grid.predict(X_test)
print("\n The MSE is:\n",
metrics.mean_squared_error(y_test_pred, y_test))
print(selectkbest_grid.best_params_)
# #### PCA
#
# PCA with default parameters
# In[23]:
from sklearn.decomposition import PCA
imputer = SimpleImputer(strategy='median')
constant = VarianceThreshold(threshold=0.0) #Feature selector that removes all low-variance features.
min_max_scaler = MinMaxScaler()
selector = PCA()
knn = KNeighborsRegressor()
pca = Pipeline([
('impute', imputer),
('constant', constant),
('scaler', min_max_scaler),
('select', selector),
('knn_regression', knn)])
pca = pca.fit(X_train, y_train)
pca.get_params()
y_test_pred = pca.predict(X_test)
print("\n The MSE is:\n",
metrics.mean_squared_error(y_test_pred, y_test))
# Hyper-parameter tunning of n_components
# In[24]:
param_grid = {'select__n_components': range(1,40,1)}
pca_grid = GridSearchCV(pca,
param_grid,
scoring='neg_mean_squared_error',
cv=tr_val_partition,
n_jobs=-1, verbose=1)
pca_grid = pca_grid.fit(X_train, y_train)
y_test_pred = pca_grid.predict(X_test)
print("\n The MSE is:\n",
metrics.mean_squared_error(y_test_pred, y_test))
print(pca_grid.best_params_)
# Set parameter n_components, and find the optimal n_neighbors for the best model
# In[25]:
pca = pca.set_params(**{'select__n_components':7})
param_grid = {'knn_regression__n_neighbors': range(1,20,1)}
pca_grid = GridSearchCV(pca,
param_grid,
scoring='neg_mean_squared_error',
cv=tr_val_partition,
n_jobs=1, verbose=1)
pca_grid = pca_grid.fit(X_train, y_train)
y_test_pred = pca_grid.predict(X_test)
print("\n The MSE is:\n",
metrics.mean_squared_error(y_test_pred, y_test))
print(pca_grid.best_params_)
# As the results show, the best model is the one with the PCA as the method for reducting the non important features of the dataset, this is the best result considering also the results from part I. The parameters resulted for the SelectKBest method were k=12 and n_neighbors=6, these means that the selecting method recognized 12 features that were representative from all the 300 variables, in contrast, the PCA identified only 7 components as the ones that had to be mantain and 19 neighbors.
# Consequently, the PCA, gave a more accurate prediction and with less information, this is why it is consider as the best method of selection. Finally, the KNN gave the most accurate prediction of the amount of energy with both of the hyper-parameter tunnings. The summary of the MSEs results for the previous method are gathered in the next table:
# 
|
cd22c86f74b78705397305900b50b8dbbfa36fc0 | dbwebb-se/python-slides | /oopython/example_code/vt23/kmom04/mock.py | 2,043 | 3.734375 | 4 | """
Gรฅr igenom Mock i unittest.
https://docs.python.org/3/library/unittest.mock.html
"""
from unittest import mock
# https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock
# Vi kan antingen skapa ett Mock eller MagicMock objekt.
# Fรถr att anvรคnda Mock objektet behรถver vi i fรถrvรคg specificera vilka attribut
# och metoder som ska ersรคttas och hur de ska bete sig.
# MagicMock dรคremot รคr mer automatisk/magisk, det objektet har vissa metoder fรถrskapade.
# MagicMock รคr en subklass till Mock. Objekt skapar attribut och metoder
# nรคr de anvรคnds pรฅ objektet och sparar hur de har anvรคnts. Det gรฅr รคven
# att konfigurera dem fรถr att sรคtta retur vรคrden och assert:a hur de har anvรคnts
m = mock.MagicMock()
type(m)
# Om anropar m som en funktion ska den returnera "magic"
m.return_value = "magic"
print(m())
def koo():
"""
Function used to return value in a Mock
"""
return "functional magic"
# Om side_effect รคr satt till en funktion som returnerar ett vรคrdet kommer
# det vรคrdet returneras och inte vรคrdet frรฅn ".return_value".
m.side_effect = koo
print(m())
# side_effect kan ocksรฅ vara en sekvens
m.side_effect = [1, 2, 3]
# Dรฅ returneras nรคsta element varje gรฅng mocken anropas.
print(m())
print(m())
print(m())
# Kastar StopIteration
# print(m())
# Kan ocksรฅ anvรคnda side_effect fรถr att kasta ett exception nรคr en metod anropas.
def raise_exception():
"""
How to riase an exception in mocked function/method
"""
raise ValueError()
m.side_effect = raise_exception
print(m())
# ValueError och iterationsfel
m.chaos = raise_exception
print(m())
# Vi kan lรคgga till attribut pรฅ Mock objektet ocksรฅ
m.something = "magic"
print(m.something)
# Lรฅtsas skapa funktioner och bestรคmma vad de ska returnera
m.boo.return_value = "funcational magic"
print(m.boo())
# Vi kan gรถra vรคldigt mycket och dynamiska saker med Mock.
# Detta var grunderna i Mock, fรถr att testa input ska vi anvรคnda oss av
# Mock.patch. Fortsรคtt kolla i filen patch.py.
|
1d7ebc1b65ba02e23c43c2750360a2b7d9367cb0 | jadamsowers/arc-reactor | /Python/breathe.py | 2,174 | 3.625 | 4 | # breathe.py by J. Adam Sowers
# Generates an array of RGB values to make a NeoPixel device appear to
# 'breathe', similar to the sleeping MacBook LED indicator.
import math
import sys
import colorsys
r,g,b = 0x40,0xD0,0xFF # blue-ish glow
numSteps = 128
#colorsys expects RGB values in the range [0,1]
r,g,b = [ x / 255.0 for x in r,g,b]
# convert to HSV colorspace (hue, saturation, value)
# this makes it easier to adjust the values since we only have to
# vary the value (brightness)
h,s,v = colorsys.rgb_to_hsv (r,g,b)
# generate an Arduino-compatible array and store it in PROGMEM (flash memory)
# to free up SRAM for other uses.
sys.stdout.write("/* this array generated by breathe.py\n"
"using LED 'breathing' function by Sean Voisen.\n"
"http://sean.voisen.org/blog/2011/10/breathing-led-with-arduino/ */\n"
"const uint8_t numSteps = %d;\n" % numSteps
)
sys.stdout.write("const uint32_t breath[numSteps] PROGMEM = {")
# About the breathing function:
# The generic function to simulate breathing appears to be e^(cos(x)).
# The inner function [cos(x)] output will be in [-1, 1].
# Therefore the min and max of the 'breathing' function will be [e^-1, e^1]
# We want values from [0,1], so we need to offset the min value by 1/e
# and scale by 1 / (e - 1/e).
min_offset = 1 / math.e
scaling_factor = 1 / (math.e - min_offset)
pi_over_numSteps = math.pi / numSteps
for n in range(numSteps):
if not n % 8:
sys.stdout.write("\n ")
# Calculate the scaling factor. This will output a value from [0,1]
# which, when applied to the V in the HSV representation, will scale the
# brightness without affecting hue or saturation.
scale = (
math.exp( math.cos( pi_over_numSteps * n - math.pi ) ) #breathing function
- min_offset ) * scaling_factor
# NeoPixels library expects integer RGB values in the range [0,255]
r,g,b = [ int(x * 255) for x in colorsys.hsv_to_rgb(h,s,v*scale) ]
# pack the r,g,b values into one hex value
rgb = str.format('0x{:06X}', (r << 16) + (g << 8) + b)
sys.stdout.write("%s" % rgb)
if n < numSteps - 1:
sys.stdout.write(", ")
sys.stdout.write("\n};\n")
|
8052a046ff59c1bee411e1fe0f6f640ed3eb9eba | goareum93/K-digital-training | /01_Python/18_OOP/01_ํด๋์ค๊ตฌํ.py | 5,795 | 4.0625 | 4 | ####
## ํด๋์ค ๊ตฌํ : ๋ฉ์๋, ํ๋ ์ ์, ์์ฑ์ ์ด์ฉ
# ํด๋์ค ์ ์ธ
# class ํด๋์ค์ด๋ฆ [(์ํผํด๋์ค๋ช
)] :
# ํ๋(์์ฑ)1
# ํ๋(์์ฑ)2
# def method1(self):
# ...
# def method2(self):
# ...
# ๋น ํด๋์ค ์ ์
# class Car:
# pass
#
# car1 = Car()
# print(car1)
# # <__main__.Car object at 0x0000020491E4F1F0>
#
# class Car:
# # ๋ฉ์๋ ์ ์
# def show(self):
# print('์ํ์ค์
๋๋ค')
#
# # ์ธ์คํด์ค ์์ฑ
# car1 = Car()
# car2 = Car()
# car3 = Car()
# print("------")
# car1.show() # ๋ฉ์๋ ํธ์ถ
# car2.show()
# car3.show()
# ํน์ ํด๋์ค์ ์ธ์คํด์ค์ธ์ง ํ์ธ : isinstance(์ธ์คํด์ค๋ช
, ํด๋์ค๋ช
)
# print(isinstance(car1, Car))
# print(isinstance(car1, int))
#
# x = 3
# print(isinstance(x,int))
#
# y = list([1,2,3,4])
# print(isinstance(y, list))
#
# print(type(x))
#
# z = 'Hi, ๋ฐ๊ฐ์์'
# print(type(z))
#
# a = True
# print(type(a))
#
# # ํ์ด์ฌ์์ ๊ธฐ๋ณธ์ ๊ณตํ๊ณ ์๋ int, float, bool, str, list, dict, set, tuple
# # => ํด๋์ค
#
# print(isinstance(a, int))
#
# b = (1,2,3)
# print(type(b))
# print(isinstance(b,list))
#
# # instance & object
# # ๊ฐ์ ๊ฒ ๊ฐ๋ฆฌํค๊ณ ์์
# # instnace : ํด๋์ค์ ์ฐ๊ด์ง์ด ๋งํ ๋
# # ์. car1์ Car ํด๋์ค์ ์ธ์คํด์ค์ด๋ค
# # object :๋จ๋
์ผ๋ก ๋ถ๋ฅผ ๋
# # ์. car1 ๊ฐ์ฒด
#############################################
# ํ๋ ์ถ๊ฐ : ๋ฉ์๋ ๋ด์์ ์ฌ์ฉ
#
# class Car:
# def show(self):
# print('์ํ์ค์
๋๋ค')
#
# # def drive(self):
# # self.speed=60 # speed ํ๋
# # print('%d ๋ก ์ฃผํ์ค์
๋๋ค' % self.speed)
#
# def drive(self, speed):
# self.speed = speed # speed ํ๋
# print('%d ๋ก ์ฃผํ์ค์
๋๋ค' % self.speed)
#
# # ๋ฉ์ธ : ์ธ์คํด์ค๋ฅผ ์์ฑํ๊ณ ์ด์ฉ
# car1 = Car()
# car1.drive(70)
# print(car1.speed)
# car1.drive(50)
#
# # ์ธ์คํด์ค.ํ๋
# car1.color = 'red'
# print(car1.color)
# ํด๋์ค์์ ํ๋ ์ ์ธ
# class Car:
# speed = 0
# color = ''
# model = ''
#
# def show(self):
# print('์ํ์ค์
๋๋ค')
#
# def drive(self):
# print('%d ๋ก ์ฃผํ์ค์
๋๋ค' % self.speed)
#
# mycar = Car()
# print(mycar.speed)
# mycar.drive()
# mycar.speed = 60
# mycar.drive()
# ์์ฑ์(consrutor) : ์ธ์คํด์ค๋ฅผ ์์ฑํด์ฃผ๋ ํจ์
# ๊ธฐ๋ณธ ์์ฑ์ : ์ธ์คํด์ค ํธ์ถ => ์ธ์คํด์ค๋ช
.ํด๋์ค์ด๋ฆ()
# class Car:
# def __init__(self):
# self.color = 'white'
# self.speed = 0
#
# def showInfo(self):
# print('์ด ์๋์ฐจ์ ์์์ %s์
๋๋ค.' % self.color)
#
# def drive(self):
# if self.speed != 0:
# print('%d ๋ก ์ฃผํ์ค์
๋๋ค' % self.speed)
# else:
# print('์ ์ฐจ์ค์
๋๋ค')
#
# mycar = Car()
# print(mycar.color)
# print(mycar.speed)
# mycar.showInfo()
# mycar.drive()
# mycar.speed = 50
# mycar.drive()
# ๋งค๊ฐ๋ณ์๊ฐ ์๋ ์์ฑ์ __init__(self, ๋งค๊ฐ๋ณ์1, ๋งค๊ฐ๋ณ์2,...)
# => ํ๋์ ์ด๊ธฐ๊ฐ ์ง์
# class Car:
# def __init__(self, color, speed):
# self.color = color
# self.speed = speed
#
# def showInfo(self):
# print('์ด ์๋์ฐจ์ ์์์ %s์
๋๋ค.' % self.color)
#
# def drive(self):
# if self.speed != 0:
# print('%d ๋ก ์ฃผํ์ค์
๋๋ค' % self.speed)
# else:
# print('์ ์ฐจ์ค์
๋๋ค')
#
# mycar = Car('red', 10)
# print(mycar.color)
# print(mycar.speed)
# mycar.showInfo()
# mycar.drive()
# mycar.speed = 50
# mycar.drive()
#
# yourcar = Car('blue', 0)
# yourcar.showInfo()
# ๋ํดํธ ๋งค๊ฐ๋ณ์๋ฅผ ์ฌ์ฉํ ์์ฑ์
# class Car:
# def __init__(self, speed=0, color='white'):
# self.speed = speed
# self.color = color
#
# def showInfo(self):
# print('์ด ์๋์ฐจ์ ์์์ %s์
๋๋ค.' % self.color)
#
# def drive(self):
# if self.speed != 0:
# print('%d ๋ก ์ฃผํ์ค์
๋๋ค' % self.speed)
# else:
# print('์ ์ฐจ์ค์
๋๋ค')
#
# car1 = Car()
# car2 = Car(color='yellow')
# car3 = Car(10, 'blue')
# car4 = Car(10)
# car5 = Car(color='black', speed=50)
# car1.showInfo()
# car2.showInfo()
# car3.showInfo()
# car4.drive()
# print(car5.speed)
# print(car5.color)
# ๋น๊ณต๊ฐ ํ๋ ์ ์ : __ํ๋๋ช
# ํด๋์ค ๋ด๋ถ์ ๋ฉ์๋๋ฅผ ํตํด์ ์ฌ์ฉ
class Car:
def __init__(self, speed=0, color='white'):
self.speed = speed
self.__color = color # ํด๋์ค ๋ด์์๋ง ์ฌ์ฉํ๋ ๋น๊ณต๊ฐ ํ๋
# def __str__(self):
# print('์ด ์๋์ฐจ์ ์์์ %s์ด๊ณ ,\n ์๋๋ %d์
๋๋ค.' % (self.__color, self.speed))
# color ํ๋ ๊ฐ์ ๋ฐํ๋ฉ์๋
def getColor(self):
return self.__color
# color ํ๋๊ฐ์ ๋ณ๊ฒฝ๋ฉ์๋
def setColor(self, color):
self.__color = color
# ๋น๊ณต๊ฐ ๋ฉ์๋
def __showColor(self):
print('์ด ์๋์ฐจ์ ์์์ %s์
๋๋ค.' % self.__color)
def showInfo(self):
self.__showColor()
print('์๋๋ %d์
๋๋ค.' % self.speed)
def drive(self):
if self.speed != 0:
print('%d ๋ก ์ฃผํ์ค์
๋๋ค' % self.speed)
else:
print('์ ์ฐจ์ค์
๋๋ค')
def upSpeed(self, up):
self.speed += up
def downSpeed(self, down):
self.speed -= down
if self.speed < 0 :
self.speed = 0
car1 = Car()
print(car1.getColor())
car1.setColor('Red')
print(car1.getColor())
# car1.color = 'blue' # ํ๋๋ฅผ ์ธ๋ถ์ ์ง์ ์ ๊ทผ
# car1.__showColor()
car1.showInfo()
car1.upSpeed(20)
car1.drive()
car1.upSpeed(20)
car1.drive()
car1.downSpeed(10)
car1.drive() |
8bf0d7d753ff517a7547f06698343d2f182f7285 | thedeveshpareek/random-simple-polygon-generation | /src-generate/main_naive.py | 1,837 | 3.703125 | 4 | # -----------------------------------------------------------------------------
# Naive polygon generation algorithm
# -----------------------------------------------------------------------------
from src.Edge import Edge
from src.Polygon import Polygon
from src.Math import quickhull
import sys
import matplotlib.pyplot as plt
import time
if __name__ == "__main__":
# take input from test.txt
f = open("test.txt", "r")
# start timer
start = time.time()
# insert input points to list
points = []
n = int(f.readline())
for i in range(n):
coord = f.readline().split(' ')
points.append([float(coord[0]), float(coord[1])])
# initialize the polygon as a convex hull of the points
polygon = Polygon(quickhull(points))
# update points set to exclude polygon vertices
points = [x for x in points if x not in polygon.vertices]
# while the list of available points is not empty
while points:
# get the closest point and removing edge
(e, point) = polygon.findClosest(points)
# find the index to insert the vertex and edges in
i = polygon.edges.index(e)
polygon.vertices.insert(i + 1, point)
polygon.edges[i] = Edge(e.start, point)
polygon.edges.insert(i + 1, Edge(point, e.end))
# remove newly added vertex from
points.remove(point)
# print results
print()
print("---------------- Naive Approach ----------------")
print("Number of vertices: %i" % n)
print("Execution time: %s seconds" % (time.time() - start))
print("------------------------------------------------")
print()
# plot the polygon
pset = polygon.vertices
pset.append(pset[0])
xs, ys = zip(*pset)
plt.plot(xs, ys)
plt.show()
# close test.txt file
f.close()
|
05bf5dfee32b157e534466d0533ffd571c075561 | JongSeokJang/Sogang_ConputingThinking | /p3_2.py | 168 | 3.734375 | 4 | a = input();
c_temp = float(a);
f_temp = ((9/5) * c_temp) + 32
print ("===============")
print ("Celsius : %.1f" %(c_temp) );
print ("Fahrenheit : %.2f" %(f_temp) );
|
c4528607c93d78a0f7eb730ef62562c5a0ff2cef | piraog/PacketPrioritizing | /Simulation.py | 14,869 | 3.515625 | 4 | import numpy as np
import matplotlib.pyplot as plt
from Network import *
class Simulation:
'''This class runs scheduling algorithms for emergency flows over a given network.
Args:
* network (Network): a network we want to run the simulation on
Kwargs:
* eFlowDeadLine (int): the deadline of the simulated emergency flow
* nExp (int): number of simuations we want to run
* runType (str): specify if we want to run each simulation on every node or just at 1 starting point for the emergency flow
Attributes:
* schedulability : an array of the schedulability ratio for each algorithm and each experiment
* nStolenFlows : an array of the average number of flow stolen by each algorithm in each experiment: SFSA, OBSSA
* nStolenFlowsScheduled : an array of the average number of flow stolen by each algorithm in each experiment when the packet was scheduled: SFSA, OBSSA
'''
def __init__(self, network, eFlowDeadLine=4, nExp=100, runType='average on all nodes' ):
self.n = network
self.nExp = nExp
self.eFlowDeadLine = eFlowDeadLine
self.nStolenFlows = np.array([[0 for _ in range(2)] for i in range(nExp)])
self.nStolenFlowsScheduled = np.array([[0 for _ in range(2)] for i in range(nExp)])
self.schedulability = np.array([[0 for _ in range(2)] for i in range(nExp)])
if runType == 'average on all nodes':
self.runOnAllNodes()
elif runType == 'simple':
self.run()
elif runType == 'average on all starting points':
self.runOnAllStartpoints()
self.schedulability = np.around(100*self.schedulability,decimals=0)
def runOnAllNodes(self):
'''Runs both algorithms using, in turn, each connected node of the network as starting point. Then average the results.'''
for i in range(self.nExp):
self.n = Network(self.n.nNodes, self.n.nFlows, self.n.nChannels, self.n.eFork, self.n.schedulingMethod)
activeNodes = [node for node,w in enumerate(self.n.W) if (w!={} and node!=0)]
for node in activeNodes:
SFSA = self.runSFSA(node)
OBSSA = self.runOBSSA(node)
self.schedulability[i][0] += SFSA[0]
self.nStolenFlows[i][0] += SFSA[1]
self.nStolenFlowsScheduled[i][0] += SFSA[0]*SFSA[1]
self.schedulability[i][1] += OBSSA[0]
self.nStolenFlows[i][1] += OBSSA[1]
self.nStolenFlowsScheduled[i][1] += OBSSA[0]*OBSSA[1]
# if OBSSA[0]<SFSA[0]:
# print(SFSA)
# print(OBSSA)
# print(self.n.intersections)
# for k,v in enumerate(self.n.W):
# print(k, " ", v)
for i in range(self.nExp):
if self.schedulability[i][0]!=0:
self.nStolenFlowsScheduled[i][0] = self.nStolenFlowsScheduled[i][0]/self.schedulability[i][0]
else:
self.nStolenFlowsScheduled[i][0] = 0
if self.schedulability[i][1]!=0:
self.nStolenFlowsScheduled[i][1] = self.nStolenFlowsScheduled[i][1]/self.schedulability[i][1]
else:
self.nStolenFlowsScheduled[i][1] = 0
self.nStolenFlowsScheduled = np.true_divide(self.nStolenFlowsScheduled.sum(0),(self.nStolenFlowsScheduled!=0).sum(0))
self.schedulability = np.mean(self.schedulability, 0)
self.schedulability /= (len(activeNodes)) #*(self.n.globalPeriod-self.eFlowDeadLine)
self.nStolenFlows = np.mean(self.nStolenFlows, 0)
self.nStolenFlows /= (len(activeNodes)) #*(self.n.globalPeriod-self.eFlowDeadLine)
def runOnAllStartpoints(self):
'''Runs both algorithms using, in turn, each node at the begining of a regular flow as starting point. Then average the results.'''
for i in range(self.nExp):
self.n = Network(self.n.nNodes, self.n.nFlows, self.n.nChannels, self.n.eFork, self.n.schedulingMethod)
startpoints = [path[0] for path in self.n.H]
for node in startpoints:
SFSA = self.runSFSA(node)
OBSSA = self.runOBSSA(node)
self.schedulability[i][0] += SFSA[0]
self.nStolenFlows[i][0] += SFSA[1]
self.nStolenFlowsScheduled[i][0] += SFSA[0]*SFSA[1]
self.schedulability[i][1] += OBSSA[0]
self.nStolenFlows[i][1] += OBSSA[1]
self.nStolenFlowsScheduled[i][1] += OBSSA[0]*OBSSA[1]
# if OBSSA[0]<SFSA[0]:
# print(SFSA)
# print(OBSSA)
# print(self.n.intersections)
# for k,v in enumerate(self.n.W):
# print(k, " ", v)
for i in range(self.nExp):
if self.schedulability[i][0]!=0:
self.nStolenFlowsScheduled[i][0] = self.nStolenFlowsScheduled[i][0]/self.schedulability[i][0]
else:
self.nStolenFlowsScheduled[i][0] = 0
if self.schedulability[i][1]!=0:
self.nStolenFlowsScheduled[i][1] = self.nStolenFlowsScheduled[i][1]/self.schedulability[i][1]
else:
self.nStolenFlowsScheduled[i][1] = 0
self.nStolenFlowsScheduled = np.true_divide(self.nStolenFlowsScheduled.sum(0),(self.nStolenFlowsScheduled!=0).sum(0))
self.schedulability = np.mean(self.schedulability, 0)
self.schedulability /= (len(startpoints)) #*(self.n.globalPeriod-self.eFlowDeadLine)
self.nStolenFlows = np.mean(self.nStolenFlows, 0)
self.nStolenFlows /= (len(startpoints)) #*(self.n.globalPeriod-self.eFlowDeadLine)
def run(self):
'''Runs both algorithm on 1 random connected node of the network.'''
for i in range(self.nExp):
self.n = Network(self.n.nNodes, self.n.nFlows, self.n.nChannels, self.n.eFork, self.n.schedulingMethod)
origine = random.sample([node for node,w in enumerate(self.n.W) if (w!={} and node!=0)],1)[0]
# print('-------------------------------------------------')
SFSA = self.runSFSA(origine)
OBSSA = self.runOBSSA(origine)
# print(SFSA)
# print(OBSSA)
# for k,v in enumerate(self.n.W):
# print(k, " ", v)
self.schedulability[i][0] += SFSA[0]
self.nStolenFlows[i][0] += SFSA[1]
self.schedulability[i][1] += OBSSA[0]
self.nStolenFlows[i][1] += OBSSA[1]
self.nStolenFlowsScheduled = np.multiply(self.schedulability,self.nStolenFlows)
self.nStolenFlowsScheduled = np.true_divide(self.nStolenFlowsScheduled.sum(0),(self.nStolenFlowsScheduled!=0).sum(0))
self.schedulability = np.mean(self.schedulability, 0)
self.nStolenFlows = np.mean(self.nStolenFlows, 0)
def runSFSA(self, origine="random", initialTime=0):
'''Our implementation of SFSA, origine is used to specify the origine node (int) if we want to study a specific transmission. initialTime can be used to offset the departure of the emergency flow (the deadline is relative to this departure time).'''
if origine == 'random':
origine = random.sample([node for node,w in enumerate(self.n.W) if (w!={} and node!=0)],1)[0] #connected origine
route = [(initialTime, origine)] #list of time, node the emergency nodes cross
D = self.eFlowDeadLine + initialTime
scheduability = 1
reachedGateway = 0
stolenFlows = []
while scheduability and not reachedGateway:
#print('route ', route, ' time ', time, ' args ', route[-1][1], ' ', time)
nextSlot = self.nextSlot(route[-1][1], route[-1][0], D) #select the next available slot to live the node
if nextSlot != False:
arrivalTime = nextSlot[0]+1
nextNode = nextSlot[1][0]
route += [(arrivalTime, nextNode)]
stolenFlows += [nextSlot[1][1]]
if nextSlot[1][0]==0:
reachedGateway = 1
else:
#print('last node ', self.n.W[route[-1][1]])
scheduability = 0
return (scheduability, len(set(stolenFlows)), route) #return the schedulability,
#nb of stolen flows and route followed
def nextSlot(self, node, time, deadLine): #select the next flow exiting a node, if it is within deadlines
slots = self.n.W[node]
availableSlots = [slot for slot in slots.items() if (deadLine-slot[0]-1)>=0 and slot[0]>=time]
if len(availableSlots)>0:
nextSlot = min(availableSlots[:])
else:
return False
return nextSlot
def runOBSSA(self, origine = 'random', initialTime=0):
'''Our implementation of OBSSA, origine is used to specify the origine node (int) if we want to study a specific transmission. initialTime can be used to offset the departure of the emergency flow (the deadline is relative to this departure time).'''
if origine == 'random':
origine = random.sample([node for node,w in enumerate(self.n.W) if (w!={} and node!=0)],1)[0] #connected origine
route = [(initialTime, origine)] #list of time, node the emergency nodes cross
D = self.eFlowDeadLine + initialTime
schedulability = 1
reachedGateway = 0
stolenFlows = []
while schedulability and not reachedGateway:
if stolenFlows!=[] and self.n.A[route[-1][1]][stolenFlows[-1]][2]+1<self.eFlowDeadLine: #schedulable on the current flow
reachedGateway = 1
elif self.goodAvailableStolenFlow(route[-1][0], route[-1][1], stolenFlows)!=[]: #schedulable on a previously stolen flow
reachedGateway = 1
elif self.optimalSlot(route[-1][0], route[-1][1])!='false': #finding the optimal path, if it exists
flow = self.optimalSlot(route[-1][0], route[-1][1]) #adding the optimal slot to our route
arrivalTime = self.n.A[route[-1][1]][flow][0]+1
destination = self.n.A[route[-1][1]][flow][1]
route += [(arrivalTime,destination)]
stolenFlows.append(flow)
if destination == 0:
reachedGateway=1
else:
schedulability = 0
return (schedulability,len(set(stolenFlows)),route)
def goodAvailableStolenFlow(self, time, node, stolenFlows):
flows = list(set(stolenFlows)&set([flow for flow,info in self.n.A[node].items() if (info[0]>=time and self.eFlowDeadLine>=info[2])]))
if flows!=[]:
flow = flows[0]
return [flow]
return []
def optimalSlot(self,time,node):
criterion = []
for flow,info in self.n.A[node].items():
N = info[0] - time
if N>=0 and info[0]<self.eFlowDeadLine:
a = len([1 for i in self.n.intersections[flow][1] if i[0]<node])
criterion.append((flow,N/(a+1),N))
criterion.sort(key=lambda t:t[2])
if criterion!=[]:
optimalFlow = min(criterion,key=lambda t:t[1])[0]
return optimalFlow
return 'false'
if __name__ == '__main__':
'''comparison of OBSSA and SFSA, 1000 exp, averaged for each exp on every edge node'''
# network = Network(300, 15, nChannels=2, eFork=5, schedulingMethod='FCFS')
# simulation = Simulation(network, nExp = 100, eFlowDeadLine=8,runType='average on all starting points')
# print(simulation.schedulability, simulation.nStolenFlows, simulation.nStolenFlowsScheduled)
'''We have the same results in average for randomly generated networks (the cases where OBSSA presents a real advantage are
extremely rare, even with a high forking'''
nNodes = [10*i for i in range(2,11)]
schedulability1 = []
stolenFlows1 = []
stolenFlowsScheduled1 = []
for n in nNodes:
network = Network(n, 15, nChannels=2, eFork=5, schedulingMethod='RoundRobin')
simulation = Simulation(network, nExp = 500, eFlowDeadLine=6)
schedulability1 += [[simulation.schedulability[0],simulation.schedulability[1]]]
stolenFlows1 += [[simulation.nStolenFlows[0],simulation.nStolenFlows[1]]]
stolenFlowsScheduled1 += [[simulation.nStolenFlowsScheduled[0],simulation.nStolenFlowsScheduled[1]]]
print(schedulability1)
print(stolenFlowsScheduled1)
schedulability2 = []
stolenFlows2 = []
stolenFlowsScheduled2 = []
# for n in nNodes:
# network = Network(n, 15, nChannels=2, eFork=5, schedulingMethod='RoundRobin')
# simulation = Simulation(network, nExp = 1000, eFlowDeadLine=i)
# schedulability2 += [[simulation.schedulability[0],simulation.schedulability[1]]]
# stolenFlows2 += [[simulation.nStolenFlows[0],simulation.nStolenFlows[1]]]
# stolenFlowsScheduled2 += [[simulation.nStolenFlowsScheduled[0],simulation.nStolenFlowsScheduled[1]]]
# print(schedulability2)
plt.plot(nNodes, [i[0] for i in schedulability1])
plt.plot(nNodes, [i[1] for i in schedulability1])
plt.legend(['SFSA RR','OBSSA RR'])
plt.title('schedulability versus number of nodes for 15 flows, 2 channels, D=6')
plt.xlabel('Number of nodes')
plt.ylabel('Schedulability Ratio')
plt.show()
plt.plot(nNodes, [i[0] for i in stolenFlows1])
plt.plot(nNodes, [i[1] for i in stolenFlows1])
plt.legend(['SFSA RR','OBSSA RR'])
plt.title('stolen flows versus number of nodes for 15 flows, 2 channels, D=6')
plt.xlabel('Number of nodes')
plt.ylabel('Stolen Flows')
plt.show()
plt.plot(nNodes, [i[0]*100.0 for i in stolenFlowsScheduled1])
plt.plot(nNodes, [i[1]*100.0 for i in stolenFlowsScheduled1])
plt.legend(['SFSA RR','OBSSA RR'])
plt.title('stolen flows versus number of nodes for 15 flows, 2 channels, D=6')
plt.xlabel('Number of nodes')
plt.ylabel('Stolen Flows for scheduled packets')
plt.show()
|
e06e4705afbeb7ba916cb22c5728ea8fbf91cea9 | yejinee/Algorithm | /Algorithm Concept/Union_Find.py | 1,521 | 3.890625 | 4 | """
[ ์๋ก์ ์งํฉ ์๋ฃ ๊ตฌ์กฐ ]
- ์ฐ์ฐ
1) ํฉ์งํฉ (Union)
- ๋์๊ณผ์
1. Node ๊ฐฏ์ ํฌ๊ธฐ์ ๋ถ๋ชจํ
์ด๋ธ ์ด๊ธฐํ (์๊ธฐ ์์ )
2. Unionํ๋ ค๋ node๋ค์ ๋ฃจํธ๋
ธ๋ ์ฐพ๊ธฐ (๋ถ๋ชจํ
์ด๋ธ ๊ฑฐ์ฌ๋ฌ ์ฌ๋ผ๊ฐ ๊ฒ)
3. 2๊ฐ node์ ๋ฃจํธ๋
ธํธ ์ค ๋ ์์ ๋ฒํธ์ ๋ฃจํธ๋ฅผ ๊ฐ์ง ๋
ธ๋์ ๋ฃจํธ๋
ธ๋๊ฐ ๋ค๋ฅธ ๋
ธ๋์ ๋ถ๋ชจ๋
ธ๋ ๋
=> ์ฐ๊ฒฐ์ฑ ํตํด ์งํฉ์ ํํ ํ์ธ ๊ฐ๋ฅ( ์ฌ๊ทํจ์๋ก ๋ฃจํธ๋
ธ๋ ํ์ธํด๋ณด์์ผํจ )
2) ์ฐพ๊ธฐ (Find)
: ๊ฒฝ๋ก ์์ถ ๋ฐฉ๋ฒ(Findํจ์ ์ฌ๊ทํธ์ถ ๋ค์ ๋ถ๋ชจtable ๊ฐ ๋ฐ๋ก ๊ฐฑ์ ) ์ฌ์ฉ
"""
# ๋
ธ๋ X์ ๋ฃจํธ ๋
ธ๋ ์ฐพ๋ Function
def find_parent(parent,x):
if parent[x] != x:
parent[x]=find_parent(parent,parent[x])
return parent[x]
# Union์ฐ์ฐ ์ํํ๋ Function
def union_parent(parent,a,b):
a=find_parent(parent,a)
b=find_parent(parent,b)
if a<b:
parent[b]=a
else:
parent[a]=b
print(parent)
v,e=map(int,input().split())
parent=[0]*(v+1) #๋ถ๋ชจ table ์ด๊ธฐํ
# ๋ถ๋ชจ ํ
์ด๋ธ์ ๋ถ๋ชจ๋ฅผ ์๊ธฐ์์ ์ผ๋ก ์ด๊ธฐํ
for i in range(1,v+1):
parent[i]=i
# Union ์ฐ์ฐ ์ํํ๊ธฐ
for i in range(e):
a,b=map(int,input().split())
union_parent(parent,a,b)
print("๊ฐ ์์๊ฐ ์ํ ์งํฉ", end=' ')
for i in range(1,v+1):
print(find_parent(parent,i), end=' ')
print()
# ๋ถ๋ชจ ํ
์ด๋ธ ๋ด์ฉ ์ถ๋ ฅ
print("๋ถ๋ชจ ํ
์ด๋ธ: ", end=' ')
for i in range(1,v+1):
print(parent[i],end=' ')
|
f13e0a842e4b301ac52a671b1b43b850e0cfd64c | JesusMartinezCamps/programacion | /python/yatzy_Refactoring_TDD_Kata/yatzy.py | 3,573 | 3.5625 | 4 | class Yatzy:
@staticmethod
#Un metodo static no puede recibir un objeto
def chance(*dice):
total = 0
for die in dice:
total += die
return total
@staticmethod
def yatzy(*dice):
if dice.count(dice[0]) == 5:
return 50
return 0
@staticmethod
def ones(*dice):
score = 0
for die in dice:
if die == 1:
score += die
return score
# ONE = 1
# return dice.count(ONE) * ONE
@staticmethod
def twos(*dice):
score = 0
for die in dice:
if die == 2:
score += 2
return score
"""
TWO = 2
return dice.count(TWO) * TWO
"""
@staticmethod
def threes(*dice):
score = 0
for die in dice:
if die == 3:
score += 3
return score
def __init__(self, d1, d2, d3, d4, _5):
self.dice = [0]*5
self.dice[0] = d1
self.dice[1] = d2
self.dice[2] = d3
self.dice[3] = d4
self.dice[4] = _5
def fours(self):
score = 0
for number in range(5):
if (self.dice[number] == 4):
score += 4
return score
def fives(self):
score = 0
for number in range(5):
if (self.dice[number] == 5):
score += 5
return score
def sixes(self):
score = 0
for number in range(5):
if (self.dice[number] == 6):
score += 6
return score
@staticmethod
def pair(*dice):
for number in range(6, 0, -1):
if dice.count(number) >= 2:
return number * 2
return 0
@staticmethod
def two_pair(*dice):
score = 0
number_of_pairs = 0
for number in range(6, 0, -1):
if dice.count(number) >= 4:
score += number * 4
number_of_pairs += 2
elif dice.count(number) >= 2:
score += number * 2
number_of_pairs += 1
if number_of_pairs >= 2:
return score
return 0
@staticmethod
def three_of_a_kind(*dice):
score = 0
for number in range(1, 7, 1):
if dice.count(number) >= 3:
score += number * 3
return score
return 0
@staticmethod
def four_of_a_kind(*dice):
score = 0
for number in range(1, 7, 1):
if dice.count(number) >= 4:
score += number * 4
return score
return 0
@staticmethod
def small_straight(*dice):
straight = 0
for number in range(1, 6, 1):
if dice.count(number) == 1:
straight += 1
if straight == 5:
return 15
else:
return 0
@staticmethod
def large_straight(*dice):
straight = 0
for number in range(2, 7, 1):
if dice.count(number) == 1:
straight += 1
if straight == 5:
return 20
else:
return 0
@staticmethod
def full_house(*dice):
score = 0
for number in range(1, 7, 1):
if dice.count(number) > 4 or dice.count(number) == 1:
return 0
elif dice.count(number) == 3:
score += number * 3
elif dice.count(number) == 2:
score += number * 2
return score |
70fce8052217feb51feb2c40eea8e11c04d69688 | gabriellaec/desoft-analise-exercicios | /backup/user_348/ch44_2020_04_08_17_26_59_480524.py | 304 | 3.859375 | 4 | #usando dicionรกrio
meses = {'janeiro': 1, 'fevereiro': 2, 'marรงo': 3, 'abril': 4, 'maio': 5, 'junho': 6, 'julho': 7, 'agosto': 8, 'setembro': 9, 'outubro': 10, 'novembro': 11, 'dezembro': 12}
numero = input('digite o nome do mes: ')
mes = meses[numero]
print("O mes de {0} รฉ: {1}".format(numero, mes)) |
f06d6151b50b2c7508a79ffa22a2d97986266d69 | Vinograd17/Python | /HW 6/hw6_task_3.py | 595 | 3.5625 | 4 | # Task 3
class Worker:
def __init__(self, name, surname, position, income):
self.name = name
self.surname = surname
self.position = position
self.income_wage = income['wage']
self.income_bonus = income['bonus']
class Position(Worker):
def get_full_name(self):
return f'{self.name} {self.surname} {self.position}'
def get_total_income(self):
return self.income_wage + self.income_bonus
posit = Position('Anton', 'Ivanov', 'CEO', {"wage": 10000, "bonus": 5000})
print(posit.get_full_name())
print(posit.get_total_income())
|
b9f5bfbeed0832d2a48d43e07735e8b6bf41efde | catliaw/berkeleyext_intro_computers_programming | /Module7/sort_and_mean.py | 917 | 4.40625 | 4 | #!/usr/bin/python3
# This program consists of a user-defined function called sort_and_mean
# which takes a list of numbers as an argument and sorts and PRINTS that
# list of numbers. The function also calculates and RETURNS the mean value
# numberse in the list.
# Test input: [3,9,7,4,0,2]
def sort_and_mean(nums_list):
sorted_list = []
total = None
list_length = len(nums_list)
while nums_list:
minimum = nums_list[0]
for num in nums_list:
if num < minimum:
minimum = num
sorted_list.append(minimum)
nums_list.remove(minimum)
if total is None:
total = minimum
else:
total += minimum
average = float(total) / float(list_length)
print("Sorted list of numbers:")
print(sorted_list)
print("\nAverage of numbers:")
print(average)
return average
sort_and_mean([3,9,7,4,0,2])
|
f5c403e3a80a030d8459377563aaf10d8fbaca04 | BThacker/codingbatPYTHON | /list2/List2.py | 3,192 | 4.0625 | 4 | # @Brandon Thacker
# www.codingbat.com PYTHON List2 Problems and Solutions
# Max of 1 Loop
'''COUNT_EVENS
Return the number of even ints in the given array.
Note: the % "mod" operator computes the remainder,
e.g. 5 % 2 is 1.
count_evens([2, 1, 2, 3, 4]) โ 3
count_evens([2, 2, 0]) โ 3
count_evens([1, 3, 5]) โ 0
'''
def count_evens(nums):
counter = 0
for x in range(0, len(nums)):
if nums[x] % 2 == 0:
counter += 1
return counter
'''BIG_DIFF
Given an array length 1 or more of ints, return the difference
between the largest and smallest values in the array.
Note: the built-in min(v1, v2) and max(v1, v2) functions
return the smaller or larger of two values.
big_diff([10, 3, 5, 6]) โ 7
big_diff([7, 2, 10, 9]) โ 8
big_diff([2, 10, 7, 2]) โ 8
'''
def big_diff(nums):
smallest = 1000
largest = -1000
for x in range(0, len(nums)):
if nums[x] < smallest:
smallest = nums[x]
if nums[x] > largest:
largest = nums[x]
return largest - smallest
'''CENTERED_AVERAGE
Return the "centered" average of an array of ints, which we'll
say is the mean average of the values, except ignoring the
largest and smallest values in the array. If there are multiple
copies of the smallest value, ignore just one copy, and likewise
for the largest value. Use int division to produce the final
average. You may assume that the array is length 3 or more.
centered_average([1, 2, 3, 4, 100]) โ 3
centered_average([1, 1, 5, 5, 10, 8, 7]) โ 5
centered_average([-10, -4, -2, -4, -2, 0]) โ -3
'''
def centered_average(nums):
avgCalc = len(nums) - 2
smallest = 1000
largest = -1000
totalsum = 0
for x in range(0, len(nums)):
if nums[x] < smallest:
smallest = nums[x]
if nums[x] > largest:
largest = nums[x]
totalsum += nums[x]
return (totalsum - largest - smallest) / avgCalc
'''SUM13
Return the sum of the numbers in the array, returning 0 for an
empty array. Except the number 13 is very unlucky, so it does
not count and numbers that come immediately after a 13 also do
not count.
sum13([1, 2, 2, 1]) โ 6
sum13([1, 1]) โ 2
sum13([1, 2, 2, 1, 13]) โ 6
'''
def sum13(nums):
sum = 0;
for i in range(len(nums)):
if nums[i] == 13:
sum += 0
continue
if i >= 1 and nums[i - 1] == 13:
sum += 0
continue
sum += nums[i]
return sum
'''SUM67
Return the sum of the numbers in the array, except ignore
sections of numbers starting with a 6 and extending to the
next 7 (every 6 will be followed by at least one 7). Return
0 for no numbers.
sum67([1, 2, 2]) โ 5
sum67([1, 2, 2, 6, 99, 99, 7]) โ 5
sum67([1, 1, 6, 7, 2]) โ 4
'''
def sum67(nums):
flagged = False
sum = 0
if len(nums) == 0:
return 0
for i in range(len(nums)):
if not flagged and nums[i] == 6:
flagged = True
continue
if flagged and nums[i] == 7:
flagged = False
continue
if not flagged:
sum += nums[i]
return sum
'''HAS22
Given an array of ints, return True if the array contains a
2 next to a 2 somewhere.
has22([1, 2, 2]) โ True
has22([1, 2, 1, 2]) โ False
has22([2, 1, 2]) โ False
'''
def has22(nums):
for x in range (len(nums)):
if x >= 1 and nums[x] == 2 and nums[x - 1] == 2:
return True
return False |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.