blob_id
stringlengths
40
40
repo_name
stringlengths
6
108
path
stringlengths
3
244
length_bytes
int64
36
870k
score
float64
3.5
5.16
int_score
int64
4
5
text
stringlengths
36
870k
9201174ec5ac6d814d7e832796a6c2cc2a71619c
SenseiCain/python_crash_course
/syntax/functions.py
1,387
4.0625
4
# -- FUNCTIONS -- # Same indention notation as for loops # Define a Fn with def # Snake case def greet(name): print(f'Hello, {name.title()}!') # greet('Christian') # Positional arguments def greet_with_sirname(name, sirname='Mr/Mrs'): print(f'Greetings {sirname}. {name}') # greet_with_sirname('Christian', 'Mr') # Key Name arguments # Position doesn't matter here # Define on execution!!! # greet_with_sirname(sirname='Mr', name='Christian') # Return Value num = 2 def square(num): return num**2 # print(square(num)) # Optional args # Takes advantage of Python using non-empty strings as True def get_formatted_name(first_name, last_name, middle_name=''): if middle_name: full_name = f'{first_name} {middle_name} {last_name}' else: full_name = f'{first_name} {last_name}' return full_name.title() # print(get_formatted_name('Christian', 'Cain')) # Functions & immutable lists # function_name(list[:]) # Passing in an arbitrary amount of args def make_pizza(*toppings): for topping in toppings: print(topping) # make_pizza('cheese') # make_pizza('cheese', 'pepperoni', 'mushrooms') # Keyword Args # Use when unsure of how many key-values pairs will be passed in # **kwargs def build_profile(first, last, **user_info): user_info['first_name'] = first user_info['last_name'] = last return user_info # print(build_profile('Christian', 'Cain', hometown='Richwood'))
a0f3ce93b1b31b4832d13c8121ccd3a30d2ed717
vparjunmohan/Python
/Basics-Part-I/program79.py
189
4.125
4
'Write a Python program to get the size of an object in bytes.' import sys val = input('Enter a string object ') print("Memory size of '"+val+"' = "+str(sys.getsizeof(val))+ " bytes")
1ee93d08f113ef38a6fd6a016cc19195c5ecbe32
jsimfors/the_cash_register
/puppgift.py
10,685
4.34375
4
class Item: """ Attributes: item: what kind of item, ex banana price: the price of the item amount: the amount left in stock """ def __init__(self, item, price, amount): """ :param item: what kind of item, ex. banana :param price: The price of the item :param amount: the amount left in stock """ self.item = item self.amount = int(amount) self.price = price def __str__(self): """ prints the item name of the item, ex. banana """ return self.item def decrease_stock(self, units): """ is used to decrease the amount of a certain item. This method runs every time we use the 'buy' method from the 'Till' class. :param units: The amount of, ex. bananas, we want to buy/reduce from stock. :return: The amount left in stock, or False (if there's not enough in Stock) """ if self.amount >= units: self.amount -= units return self.amount else: return False def raise_stock(self, units): """ Used to add items to stock, runs every time we use the "return item" method in the 'Till' class. :param units: amount of items we want to add in stock. :return: The amount """ self.amount += units return self.amount class Till: """ Keeps track of the current transaction. """ def __init__(self): """ current_transaction = A receipt, key = name of the item. price_and_amount = A list of the price and amount of the item. used as the value in the current_transactions dictionary. """ self.current_transaction = {} self.price_and_amount = [] def print_receipt(self): """ Adds the current_transaction dictionary to the receipt. Deletes an item if the customer returns all the purchased units. Is used when the customer press # = Exit :return: A receipt, with all information including total price. """ all_total = 0 str_current_transactions = "" for i in self.current_transaction: total = self.current_transaction[i][2] all_total += total to_add = "{0:18}{1:0} {2:8}{3:0}\n".format(i, self.current_transaction[i][0], self.current_transaction[i][1], self.current_transaction[i][2]) str_current_transactions += str(to_add) return '----------------- RECEIPT -----------------\nItem Amount A-price Total\n{}\n' \ ' total: {}'.format(str_current_transactions, round(all_total, 2)) def buy(self, item, units): """ Used to add items to receipt, this method calls the 'decrease_stock' method If decrease_stock returns false, it'll print 'Not enough in stock". :param item: name of the item, ex Banana. :param units: Amount of items the customer buys :returns: information about what the customer bought/that it's not in stock. """ if Item.decrease_stock(item, units) is not False: price = item.price value_list = [] str_item = str(item) if str_item in self.current_transaction: self.current_transaction[str_item][0] += units self.current_transaction[str_item][2] = \ round(int(self.current_transaction[str_item][0]) * float(self.current_transaction[str_item][1]), 2) return "You bought {} {}s".format(units, str_item) else: cost = round((int(units) * float(price)), 2) value_list.append(units) value_list.append(price) value_list.append(cost) self.current_transaction[str_item] = value_list return "You bought {} {}s".format(units, str_item) else: return "Not enough {}s in stock".format(item) def return_item(self, item, units): """ Used to remove items from receipt. Calls the raise_stock in the Item class. :param item: name of the item, ex Banana. :param units: Amount of items the customer returns :return: information about what the customer returned """ str_item = str(item) if str_item in self.current_transaction: if self.current_transaction[str_item][0] >= units: self.current_transaction[str_item][0] -= units self.current_transaction[str_item][2] = \ round(int(self.current_transaction[str_item][0]) * float(self.current_transaction[str_item][1]), 2) Item.raise_stock(item, units) if self.current_transaction[str_item][0] == 0: del self.current_transaction[str_item] return "You returned {} {}s".format(units, str_item) else: return "You can't return more bananas than you bought" else: return "You did not buy any {}s".format(item) def get_int_input(prompt_string): """ checks if the input is either a # or an integer :param prompt_string: the input the customer buys :return: An integer or an Error message. """ done = False while done is not True: string = input(prompt_string) if string is not "0": try: return int(string) except ValueError: print("Unable to operate your request, please print a valid number.") done = False else: print("0 is not an option") done = False def get_int_menu_input(choice_string): """ needs this error-handling-function, since the menu has 1, 2, OR the '#' as an option. But the rest of the program just want's to check if it's an integer. :param choice_string: the input, from the customer :return: An integer, the string '#' or an Error message. """ done = False while done is not True: choice = input(choice_string) if choice == '#': return '#' else: try: return int(choice) except ValueError: print("Unable to operate your request, please print a valid option.") done = False def get_item_code(code, all_items): """ Checks if the input from the customer corresponds with an item in stock :param code: the item code, ex 001, 002... :param all_items dictionary with all the items :return: The item code or Error message. """ done = not True while done is not True: if code in all_items: return code else: print("Unable to operate your request, please print a valid code.") done = False code = input() def read_data_from_file(in_stock_file): """ Used to get information about the items in Stock. :param in_stock_file: a file with all the information :return: all_items, a dictionary with all data on it """ all_items = {} with open(in_stock_file) as f: for line in f: all_as_list = line.split() all_items[all_as_list[0]] = all_as_list[1:4] return all_items def convert_to_object(textfile): """ Converts the dictionary to an object for the Till class. :param textfile: a file with all the information :return: Objects for the Till class. """ all_items_obj = read_data_from_file(textfile) for key in all_items_obj: all_as_list = all_items_obj[key] all_items_obj[key] = Item(all_as_list[0], all_as_list[1], all_as_list[2]) return all_items_obj def write_to_file(my_obj, in_stock_file): """ When the customer is done shopping, this function takes the new information about what's left in stock, and updates the textfile. :param my_obj: the object from the Till class. :param in_stock_file: A textfile, where we rite all the information. :return: nothing """ f = open(in_stock_file, "w") for i in my_obj: to_write = str(i) + " " + str(my_obj[i].item) + " " + str(my_obj[i].price) + " " + str(my_obj[i].amount) f.writelines(to_write + '\n') def menu(till, dict_items): """ Used to display a meny for the user. With the options: 1 - Shopping 2 - Return item # - Exit :return: nothing """ print(""" ------------------------------- Hello Banana-Customer! What would you like to do? 1 - Shopping 2 - Return item # - Exit""") execute(menu_choice(), dict_items, till) def menu_choice(): """ Used to get input on what the customer wants to do :return: choice = an int, the chosen menu option """ return get_int_menu_input('Answer: ') def execute(choice, all_items, till): """ used to execute the option that the user chose, calls a specific method from the Till class :param choice: and int corresponding to the chosen option (from menu_choice() ) :param all_items: the objects for the Till class ?? eller? :param till: object to the till class. :return: nothing """ while choice != '#': if choice == 1: code = input("""What do you want to buy? Normal Banana=001 Jungle Banana=002 Dangerous-Banana=003 Poisonous-Banana=004""") name = get_item_code(code, all_items) name_object = all_items[name] amount = get_int_input("How many? ") till.buy(name_object, amount) all_items[name] = Item(name_object.item, name_object.price, name_object.amount) elif choice == 2: code = input("What would you like to return?") name = get_item_code(code, all_items) name_object = all_items[name] amount = get_int_input("How many? ") till.return_item(name_object, amount) all_items[name] = Item(name_object.item, name_object.price, name_object.amount) else: print("There's obviously only 2 options...") menu(till, all_items) else: print(till.print_receipt()) write_to_file(all_items, 'in_stock_file.txt') exit() def main(): """ To start program. """ my_till = Till() my_items = convert_to_object('in_stock_file.txt') menu(my_till, my_items) # To start program without the GUI: # main()
fe9279a9cf98f8691ab0c37e276453c299487318
alandmoore/tkinter-basics-code-examples
/Video2/diary.py
1,611
3.59375
4
"""My Diary Application in Tkinter""" import tkinter as tk # First line root = tk.Tk() # configure root root.title('My Diary') root.geometry('800x600') root.columnconfigure(1, weight=1) root.rowconfigure(2, weight=1) # subject subject_label = tk.Label(root, text='Subject: ') subject_label.grid(sticky='we', padx=5, pady=5) subject_inp = tk.Entry(root) subject_inp.grid(row=0, column=1, sticky=tk.E + tk.W) # category categories = ['Work', 'Hobbies', 'Health', 'Bills'] cat_label = tk.Label(root, text='Category: ') cat_label.grid(row=1, column=0, sticky=tk.E + tk.W, padx=5, pady=5) cat_inp = tk.Listbox(root, height=1) cat_inp.grid(row=1, column=1, sticky=tk.E + tk.W, padx=5, pady=5) for category in categories: cat_inp.insert(tk.END, category) # message message_inp = tk.Text(root) message_inp.grid(row=2, column=0, columnspan=2, sticky='nesw') # save button save_btn = tk.Button(root, text='Save') save_btn.grid(row=99, column=1, sticky=tk.E, ipadx=5, ipady=5) # Status bar status_bar = tk.Label(root, text='') status_bar.grid(row=100, column=0, columnspan=2, ipadx=5, ipady=5) # Functions and bindings def save(): """Save the data to a file""" subject = subject_inp.get() selected = cat_inp.curselection() if not selected: category = 'Misc' else: category = categories[selected[0]] message = message_inp.get('1.0', tk.END) filename = f'{category} - {subject}.txt' with open(filename, 'w') as fh: fh.write(message) status_bar.configure(text='File saved') save_btn.configure(command=save) # Last line root.mainloop()
63bbad4eba82181361a3a1273c5bf8847e71fbe7
hungd25/projects
/CS6390/HW4_P1.py
3,718
3.953125
4
""" """ def get_world_series_wins(file_location): """ This function reads the World Series Data and return a list type per line :param file_location: :return: list of wins """ series_file = open(file_location, 'r') # open file with read only series_wins = series_file.read().splitlines() # read all lines and return a list series_file.close() # close file return series_wins # return series of wins def get_team_wins_count(series_wins): """ This function count how many times a win based on the number of appearences in the list :param series_wins: :return: win_counts """ win_counts = {} # creates a empty dictionary for team in series_wins: # loop through series wins if team in win_counts: # if team(key) in win counts just add one to win count win_counts[team] += 1 # add one to current win count else: win_counts[team] = 1 # if team(key) not in win_counts add key and value 1 return win_counts # return win_counts def get_team_wins_year(series_wins): """ This function append the year of to team base on appearences in the list :param series_wins: :return: win_years """ win_years = {} # creates a empty dictionary year = 1903 # initialize year for team in series_wins: if year == 1904 or year == 1994: # if year is 1904 or 1994, skip it year += 1 # increment year by 1 if team in win_years: # if team(key) in win_years append the year to list win_years[team].append(year) else: win_years[team] = [year] #if team(key) not in win_years, value is list with year year += 1 # increment year by 1 return win_years # return win_years def show_team_win_year(win_years): """ This function print the win years :param win_years: :return: """ print("%s" % ('-' * 50)) # print 50 dashes print('{:26} {}'.format('Team:', 'Win Years')) # print title print("%s" % ('-' * 50)) # print 50 dashes for team in sorted(win_years.keys()): # loop through a sorted win_years by key print("{:26} {}".format(team + ":", win_years[team])) def show_team_total_wins(win_counts): """ This function print the win counts :param win_counts: :return: """ print("%s" % ('-' * 50)) # print 50 dashes print('{:26} {}'.format('Team:', 'Total Wins')) # print title print("%s" % ('-' * 50)) # print 50 dashes for team in sorted(win_counts, reverse=True, key=win_counts.get): # loop sorted win_counts by value descending print("{:26} {}".format(team + ":", win_counts[team])) def show_team_win_bar_graph(win_counts): """ This function print the win counts :param win_counts: :return: """ print("%s" % ('-' * 50)) # print 50 dashes print('{:26} {}'.format('Team:', 'Total Wins Bar Graph')) # print title print("%s" % ('-' * 50)) # print 50 dashes for team in sorted(win_counts, reverse=True, key=win_counts.get): # loop sorted win_counts by value descending print("{:26} {}".format((team + "("+ str(win_counts[team]) + ")" + ":"), '*' * win_counts[team])) file_location = "WorldSeriesWinners.txt" # location of file series_wins = get_world_series_wins(file_location) # call read file and store wins data win_counts = get_team_wins_count(series_wins) # call get win count with series wins win_years = get_team_wins_year(series_wins) # call get team win years with series wins show_team_win_year(win_years) # call print win years show_team_total_wins(win_counts) # call print total wins count show_team_win_bar_graph(win_counts) # call print total wins bar graph
6eb5114bcff34b32d3bc764773dc76e812c092e5
saikumarpochireddygari/Interview_Prep
/int_to_roman.py
4,291
4.03125
4
""" Question : Given a integer value convert it into it's equivalent roman representation and return the same. For example, two is written as II in Roman numeral, just two one's added together. Twelve is written as, XII, which is simply X + II. The number twenty seven is written as XXVII, which is XX + V + II. Roman numerals are usually written largest to smallest from left to right. However, the numeral for four is not IIII. Instead, the number four is written as IV. Because the one is before the five we subtract it making four. The same principle applies to the number nine, which is written as IX. There are six instances where subtraction is used: I can be placed before V (5) and X (10) to make 4 and 9. X can be placed before L (50) and C (100) to make 40 and 90. C can be placed before D (500) and M (1000) to make 400 and 900. """ class Solution: def intToRoman(self, num: int) -> str: if not num: return None value_to_symbol_dict = dict() #### Define dictionaries ###### value_to_symbol_dict[1] = 'I' value_to_symbol_dict[5] = 'V' value_to_symbol_dict[10] = 'X' value_to_symbol_dict[50] = 'L' value_to_symbol_dict[100] = 'C' value_to_symbol_dict[500] = 'D' value_to_symbol_dict[1000] = 'M' value_to_symbol_dict[4] = 'IV' value_to_symbol_dict[9] = 'IX' value_to_symbol_dict[40] = 'XL' value_to_symbol_dict[90] = 'XC' value_to_symbol_dict[400] = 'CD' value_to_symbol_dict[900] = 'CM' digits_stack = [] original_number = num while (original_number): digit = original_number % 10 digits_stack.append(digit) original_number = int(original_number/10) equivalent_roman_rep = '' pow_ten_multiplier = len(digits_stack) - 1 while(digits_stack): current_digit = digits_stack.pop() current_digit = current_digit * int(pow(10,pow_ten_multiplier)) pow_ten_multiplier -= 1 if current_digit in value_to_symbol_dict: equivalent_roman_rep = equivalent_roman_rep + value_to_symbol_dict[current_digit] else: if current_digit % 1000 == 0: for i in range(int(current_digit/1000)): equivalent_roman_rep = equivalent_roman_rep + value_to_symbol_dict[1000] elif current_digit > 500 and current_digit < 900: equivalent_roman_rep = equivalent_roman_rep + value_to_symbol_dict[500] current_digit = current_digit - 500 for i in range(int(current_digit/100)): equivalent_roman_rep = equivalent_roman_rep + value_to_symbol_dict[100] elif current_digit > 100 and current_digit < 400: for i in range(int(current_digit/100)): equivalent_roman_rep = equivalent_roman_rep + value_to_symbol_dict[100] elif current_digit > 50 and current_digit < 90: equivalent_roman_rep = equivalent_roman_rep + value_to_symbol_dict[50] current_digit = current_digit - 50 for i in range(int(current_digit/10)): equivalent_roman_rep = equivalent_roman_rep + value_to_symbol_dict[10] elif current_digit > 10 and current_digit < 40: for i in range(int(current_digit/10)): equivalent_roman_rep = equivalent_roman_rep + value_to_symbol_dict[10] elif current_digit > 5 and current_digit < 9: equivalent_roman_rep = equivalent_roman_rep + value_to_symbol_dict[5] current_digit = current_digit - 5 for i in range(int(current_digit)): equivalent_roman_rep = equivalent_roman_rep + value_to_symbol_dict[1] elif current_digit > 1 and current_digit < 4: for i in range(int(current_digit)): equivalent_roman_rep = equivalent_roman_rep + value_to_symbol_dict[1] return equivalent_roman_rep if __name__ =="__main__": a = 3879 soln = Solution() print(soln.intToRoman(a))
4fdefc5403a6fa5b8d05f1b6c9556b03903b87b9
chrisjdavie/hackerrank_algos
/compare_the_triplets/src/test.py
834
3.5
4
import unittest from .solution import competition, compare_scores class testComplete(unittest.TestCase): def test_example(self): a_i = ( 5, 6, 7 ) b_i = ( 3, 6, 10 ) a_score, b_score = compare_scores( a_i, b_i ) self.assertEqual(a_score, 1) self.assertEqual(b_score, 1) class testOneComparison(unittest.TestCase): def test_alice_wins(self): a_score, b_score = competition( 2, 1 ) self.assertEqual(a_score, 1) self.assertEqual(b_score, 0) def test_draw(self): a_score, b_score = competition( 1, 1 ) self.assertEqual( a_score, 0 ) self.assertEqual( b_score, 0 ) def test_bob_wins(self): a_score, b_score = competition( 1, 2 ) self.assertEqual( a_score, 0 ) self.assertEqual( b_score, 1 )
f67c54e276519f3262c4de78033c72e900f5d988
ashu20031994/HackerRank-Python
/Day-1-Python Introduction/3.Division.py
629
4.375
4
"""Task The provided code stub reads two integers, and , from STDIN. Add logic to print two lines. The first line should contain the result of integer division, // . The second line should contain the result of float division, / . No rounding or formatting is necessary. Example The result of the integer division . The result of the float division is .""" def division(a, b): """This function will calculate floor division and division operation and then print the results.""" print(a//b) print(a/b) if __name__ == '__main__': a = int(input()) b = int(input()) division(a, b)
820439d74ac637d9c9cdf34d9b75369db5ec04e8
chensheng1/gitskills
/python 实例/cstest.py
580
3.71875
4
#!usr/bin/env python #coding:cp936 k=5 #Ӳҵıֵ n=100 #֧Ǯ mon=[] #ʼıֵ backmon=[] #ѰıֵĿʹСʼ for i in range(k+1): #Ŀеıֵб mon.append(2**i) mon.reverse() for m in mon: #ѡıֵnȥõֵǴ˱ֵĿʣµҪжϵġ backmon.append(n/m) n=n%m for j in range(k+1): if backmon[j]!=0: #жϴӡ print str(mon[j])+'Ҫ'+str(backmon[j])+''
1b17f63d3c562e74e3d22c15dcb5f134476ba6eb
masterprueba/Prueba-Big-Data
/primero/spark.py
1,786
3.5625
4
##- 1.Cargar el archivo csv por medio de comandos dentro de Databricks Community. ## Primero, cargo el archivo CSV y muestro los datos. import numpy as np import pandas as pd import collections file_location = "/FileStore/tables/Tweets.csv" file_type = "csv" # Opciones infer_schema = "false" first_row_is_header = "true" delimiter = "," # Leer Csv df = spark.read.format(file_type) \ .option("inferSchema", infer_schema) \ .option("header", first_row_is_header) \ .option("sep", delimiter) \ .load(file_location) display(df) #### Spark SQL #- 2.Extraer las columnas text y tweet_created #Capturo los dos campos con los que voy a trabajar y lo paso a DataFrame(pandas) df.createOrReplaceTempView("tweets") sqlDF = spark.sql("SELECT text,tweet_created FROM tweets") tweetsanddate = sqlDF.toPandas() #### DataFrame #- 3.Construir una nueva columna con los hashtags dentro del tweet. #Con la libreria pandas y una expresion regular creo la nueva columna con los hashtags tweetsanddate["hashtag"] = tweetsanddate.text.str.findall(r'@.*?(?=\s|$)') tweetsanddate.head() #### RDD #- 4.Encontrar cuales son los 10 hashtags que más se utilizan #Elimino filas con datos nulos, realiza el conteo de los hashtag, ordeno y muestro los 10 hashtag mas utilizados total = np.array([], dtype="str") for tw in tweetsanddate.hashtag: total = np.append(total,tw) data_has = pd.DataFrame(total).reset_index() data_has.columns = ['id','hashtag'] data_has = data_has.dropna() data_has.head(5) rdd_has = sc.parallelize(data_has.hashtag).filter(lambda x: x is not None) d = rdd_has.countByValue() ordered = collections.OrderedDict(sorted(d.items(), key=lambda t: t[1],reverse=True)) diez_hashtag = pd.DataFrame(ordered, columns=ordered.keys(), index=[1]) diez_hashtag.T.head(10)
6a6717d45c5cd3b387279cec4a73e4ce86f1f1e3
breynaUC/py-clase04
/ejercicios02.py
175
4
4
estudiantes= {"Raul":21,"Jairo":18,"Keyla":19} nombre = input("Nombre: ") if nombre.title() in estudiantes: print(estudiantes[nombre.title()]) else: print("No existe")
34d245a28e407c72e235ca3cb860380e0bc3c606
nazarov-yuriy/contests
/yrrgpbqr/p0347/__init__.py
606
3.53125
4
import unittest from typing import List import collections # ToDo: use uniquiness of answer and implement bucket sort class Solution: def topKFrequent(self, nums: List[int], k: int) -> List[int]: counts = collections.Counter(nums) return sorted(counts, key=lambda x: -counts[x])[:k] class Test(unittest.TestCase): def test(self): nums = [1, 1, 1, 2, 2, 3] k = 2 out = [1, 2] self.assertEqual(Solution().topKFrequent(nums, k), out) nums = [1] k = 1 out = [1] self.assertEqual(Solution().topKFrequent(nums, k), out)
4db6f9178e623ddcffded9307e1f27ecc9c424fa
SoSopog-dev/All
/kryptering.py
454
3.5625
4
import random from random import randint alphabet = "abcdefghijklmnopqrstuvwxyzæøå " p_al = "" pairs = {} p_al = list(p_al) if int(input("Generate? 1 = Yes 2 = No")) == 1: seed = randint(1,100) random.seed(seed) for letter in alphabet: newletter = alphabet[randint(0,29)] while newletter in p_al : newletter = alphabet[randint(0,29)] p_al.append(newletter) pairs[letter]= newletter print (seed) p_al = ""
3e205f2cae2c99e36f307feab693797808b577e8
piercepurselley/Python_Web_Dev_Practice
/Python Web Dev Practice/find_characters.py
480
3.75
4
word_list = ['hello', 'world', 'my', 'name', 'is', 'Anna'] char = 'o' new_list = [] #WE ARE GOING FOR... # new_list = ['hello', 'world'] # print [s for s in list if sub in s] # for x in range(0,len(word_list)): # if let in len(word_list) == char: # print "I did it!" for x in word_list: if x.find('o') > -1: new_list.append(x) print new_list # for x in word_list: # x = "hello" # for x in range(0, len(word_list)): # if x # print x
ce64623746347a2eaf78a58cd551346b1c7468d2
kavyaachu47/luminarpython
/luminar/Classroomassignments/fibnopgm.py
161
4.15625
4
#Program to produce fibonacci series num=int(input("enter value")) a=0 b=1 sum=0 c=1 while(c<=num): print(sum,end="") c+=1 a=b b=sum sum=a+b
1c8f7223bd09bde85e8aac7bef38d6960dfdd5d8
rustt71749/01_Lucky_Unicorn_V2
/04_Lucky_Unicorn_payment_mechanics.py
812
3.953125
4
# Lucky Unicorn Decomposition Step 4 # Set up payment mechanics # To do # Adjust total correctly for a given token # - if it's a unicorn add $5 # - if it's a zebra / horse, subtract 0.5 # - if it's a donkey,subtract 1 # Give user feedback based on winnings # State new total # Assume starting amount is $10 total = 10 # Assume manual token input for testing purposes token = input("Enter a token: ") # Adjust correctly for a given token if token == "unicorn": total += 5 feedback = "Congratulations, you got a lucky unicorn and have won $5.00!" elif token == "donkey": total -= 1 feedback = "Sorry, you did not win anything this round" else: total -= 0.5 feedback = "Congratulations, you won 50¢!" print() print(feedback) print("You have ${:.2f} to play with".format(total))
85ff122284f8c29288f2032e8f94dce154b1a516
Aasthaengg/IBMdataset
/Python_codes/p02393/s646088337.py
363
3.625
4
# -*- coding: utf-8 -*- """ Created on Fri Jan 30 16:38:31 2015 @author: hirose """ #Branch on Condition - Sorting Three Numbers n = map(int, raw_input().split()) a = n[0] b = n[1] c = n[2] for i in range(3): for i in range(2): if(n[i] > n[i+1]): temp = n[i] n[i] = n[i+1] n[i+1] = temp print n[0], n[1], n[2]
e45fda96ee2cc0c772fc40fcdbfc40caaa64dafe
typemegan/Python
/CorePythonProgramming_2nd/ch14_excution/udm_method.py
1,474
3.78125
4
#!/usr/bin/python #coding:utf-8 ''' 比较类中的三种方法: 类方法,实例方法,静态方法 ''' class A(object): def func(self): pass # self用来接收python自动传入的实例,无论绑定还是未绑定调用 @classmethod def bar(cls):pass # cls用来接收由python自动传入的类对象 @staticmethod def foo(*args):pass print 'A:' print 'A.func:'.ljust(12), A.func print 'A.bar:'.ljust(12), A.bar print 'A.foo:'.ljust(12), A.foo print 'A type:' print 'A.func:'.ljust(12), type(A.func) print 'A.bar:'.ljust(12), type(A.bar) print 'A.foo:'.ljust(12), type(A.foo) print '-'*30 a = A() print 'a:' print 'a.func:'.ljust(12), a.func print 'a.bar:'.ljust(12), a.bar print 'a.foo:'.ljust(12), a.foo print 'a type:' print 'a.func:'.ljust(12), type(a.func) print 'a.bar:'.ljust(12), type(a.bar) print 'a.foo:'.ljust(12), type(a.foo) ''' A: A.func: <unbound method A.func> A.bar: <bound method type.bar of <class '__main__.A'>> A.foo: <function foo at 0x7fc581cf6aa0> A type: A.func: <type 'instancemethod'> A.bar: <type 'instancemethod'> A.foo: <type 'function'> ------------------------------ a: a.func: <bound method A.func of <__main__.A object at 0x7fc581cf4b50>> a.bar: <bound method type.bar of <class '__main__.A'>> a.foo: <function foo at 0x7fc581cf6aa0> a type: a.func: <type 'instancemethod'> a.bar: <type 'instancemethod'> a.foo: <type 'function'> '''
b489e48634ed1bdd7286e8b46978c7fccbd556b0
tuouo/selfstudy
/learnfromBook/PythonCookbook/DataStructure/about_priority_queue
919
3.984375
4
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import heapq class PriorityQueue: def __init__(self): self._queue = [] self._index = 0 def push(self, item, priority): heapq.heappush(self._queue, (-priority, self._index, item)) self._index += 1 def pop(self): return heapq.heappop(self._queue)[-1] class Item: def __init__(self, name): self.name = name def __repr__(self): return 'Item({!r})'.format(self.name) a = Item('foo') b = Item('bar') c = Item('zoo') q = PriorityQueue() q.push(a, 1) q.push(b, 2) q.push(c, 5) q.push(Item('tank'), 2) q.push(Item('mike'), 3) print(q.pop()) print(q.pop()) print(q.pop()) print(q.pop()) print(q.pop()) # print(a < b) TypeError: unorderable types: Item() < Item() aa = (1, a) bb = (1, b) # print(aa < bb) TypeError: unorderable types: Item() < Item() bb = (2, b) print(aa < bb) # True
efcdd0fce7bffdb788497ab7e787f41db40f8c48
fmurray1/obs_overlay
/life_overlay_gen.py
1,251
3.5
4
""" Script generates a square image with a number in the middle to use as an OBS overlay for playing magic over webcam. """ import click from PIL import Image, ImageDraw, ImageFont SNOW_WHITE = (255, 250, 250) def text_on_img(text="NULL", filename='output.png', text_size=120, image_w=200, image_h=200): "Draw a text on an Image, saves it" fnt = ImageFont.truetype('arial.ttf', text_size) # create image image = Image.new(mode="RGB", size=(200, 200), color="black") draw = ImageDraw.Draw(image) # get center of img to put text text_w, text_h = fnt.getsize(text) # draw text draw.text(((image_w-text_w)/2, (image_h-text_h)/2), text, font=fnt, fill=(255, 250, 250)) # save file image.save(filename) @click.group() def cli(): """Base cli for click""" @cli.command(name='tax') @click.argument('tax', default='0', type=str) def commander_tax(tax): """Make the command tax image""" text_on_img(text=tax, filename='command_tax.png') @cli.command(name='life') @click.argument('life_count', default='40', type=str) def life_counter(life_count): "Make the life counter image" text_on_img(text=life_count, filename='life_count.png') if __name__ == "__main__": cli()
65161b034f0738a7ecb1b15354604a5f5c66ee76
Johnelvis/ECG-NN-Classifier
/ecg-nn-classifier/preprocessing/filters.py
1,788
3.5
4
from scipy.signal import medfilt, butter, lfilter """ Low pass filters the ecg signal to remove high frequency noise like electromagnetic interference. """ def low_pass_filter(data, cutoff, order, sample_rate=360): # Nyquist frequency ny = sample_rate >> 1 cut = cutoff / ny # Calculate filter coefficients using butterworth filter b, a = butter(order, cut, analog=False, btype="low") # Return the filtered signal using linear filter return lfilter(b, a, data) """ Band pass filters the ecg signal to remove low frequency noise like baseline drift and high frequency noise like electromagnetic interference. """ def band_pass_filter(data, cutoff, order, sample_rate=360): # Nyquist frequency ny = sample_rate >> 1 cut = [c / ny for c in cutoff] # Calculate filter coefficients using butterworth filter b, a = butter(order, cut, analog=False, btype="band") # Return the filtered signal using linear filter return lfilter(b, a, data) """ High pass filters the ecg signal to remove low frequency noise like baseline drift. """ def high_pass_filter(data, cutoff, order, sample_rate=360): # Nyquist frequency ny = sample_rate >> 1 cut = cutoff / ny # Calculate filter coefficients using butterworth filter b, a = butter(order, cut, analog=False, btype="high") # Return the filtered signal using linear filter return lfilter(b, a, data) """ Applies a median filter on a dataset where its width is defined in ms. """ def median_filter(data, time, sample_rate=360): window_size = int(time * sample_rate / 1000) # Floor size by 1 if even, as window size must be odd if window_size & 0x1 == 0: window_size -= 1 # Return the median filtered signal return medfilt(data, window_size)
4ab2db331b42f517acce0877681669d791c37919
shocklink/ShellScriptRepository
/shell-script/plot-memory-space/hex_to_binary.py
197
3.53125
4
#!/bin/python count = 0; with open('d','r') as f: for line in f: for word in line.split(): #print(word), print(bin(int(word, 16))[2:].zfill(64)), print
81111419f9b7f234b651b54444d1de6f093171f6
vijaymaddukuri/python_repo
/training/sdArray.py
169
3.84375
4
color = ['Red', 'Green', 'White', 'Black', 'Pink', 'Yellow'] newList=[] for (i,x) in enumerate(color): if i not in (0,4,5): newList.append(x) print(newList)
2fc1aca509b73e5b46cbd9c747a03c1689969d16
Mike-Xie/cs-module-project-hash-tables
/hashtable/code_test.py
1,349
3.984375
4
all_ints = [85, 46, 27, 81, 94, 9, 27, 38, 43, 99, 37, 63, 31, 42, 14] names = ["Bob", "Jane", "Bill"] divisible_by_three = list(filter(lambda x: x % 3 == 0, all_ints)) names_that_are_4_chars = list(filter(lambda x: len(x) == 4, names)) for item in divisible_by_three: print(item) # Print out all of the strings in the following array that represent a number divisible by 3: # [ # "five", # "twenty six", # "nine hundred ninety nine, # "twelve", # "eighteen", # "one hundred one", # "fifty two", # "forty one", # "seventy seven", # "six", # "twelve", # "four", # "sixteen" # ] # The expected output for the above input is: # nine hundred ninety nine # twelve # eighteen # six # twelve # You may use whatever programming language you wish. # Verbalize your thought process as much as possible before writing any code. Run through the UPER problem solving framework while going through your thought process. # pretty much you are writing a parser # either start at the front or the back and recurse to other end # while keeping a running total # the strings alternate a number and an optional multiplier like # 9 x 100 + 90 + 9 # terminals are below: # one # two # three # four # five # six # seven # eight # nine # ten # eleven # twelve # thirteen # fourteen # fifteen # sixteen # seventeen # eighteen # nineteen
acf5892120dcb3c6204ddede75604f3279801bc4
chenjiahui1991/LeetCode
/P0014.py
735
3.734375
4
class Solution: def longestCommonPrefix(self, strs): """ :type strs: List[str] :rtype: str """ if len(strs) == 0: return '' result = strs[0] for i in range(1, len(strs)): result = self.getLongest(result, strs[i]) return result def getLongest(self, str1, str2): result = ''; if len(str1) > len(str2): tmp = str1 str1 = str2 str2 = tmp for i, ch in enumerate(str1): if ch == str2[i]: result = result + ch else: return result return result s = Solution() print(s.longestCommonPrefix(['flower','flow','flight']))
4e1f9bcbb5d1bc368136051e50bfa1a4f9b675ba
radhikaca/puzzles
/Largesum.py
304
3.90625
4
# -*- coding: utf-8 -*- """ Created on Tue Aug 11 07:36:42 2020 @author: rad """ def fibonacci(): """Fibonacci numbers generator, first n""" a, b, i = 0, 1, 0 while i<10: yield i #yield a #a, b = b, a + b i += 1 f = fibonacci() for i in f: print(i)
b6a9835ce89cdd2ff0961c29f0d007d52cdc2713
xyzhangaa/ltsolution
/CountandSay.py
703
4
4
###The count-and-say sequence is the sequence of integers beginning as follows: ###1, 11, 21, 1211, 111221, ... ###1 is read off as "one 1" or 11. ###11 is read off as "two 1s" or 21. ###21 is read off as "one 2, then one 1" or 1211. ###Given an integer n, generate the nth sequence. #time O(n*2^n) #space O(2^n) def counts(self,s): count = 0 current = '#' result = '' for item in s: if item != current: if current!='#': result += str(count)+current count = 1 current = item else: count += 1 result += str(count)+current return result def countandsay(self,n): string = '1' for i in range(2,n+1): string = self.counts(string) return string
3c0abbab55674cae73b79d15de0f38e1aaaeba50
maryyang1234/hello-world
/string/10.计算字符串中的数字和.py
343
3.984375
4
import re def findSum(str1): p = re.compile("[0-9]+") list = p.findall(str1) sum =0 for i in list: sum= sum+int(i) return sum str1 = "12abc20yz68" print(findSum(str1)) """def find_sum(str1): # Regular Expression that matches digits in between a string return sum(map(int,re.findall('\d+',str1))) """
44cfca596adbb9b0d993b1d597c31e707c200180
simonom/outreach
/tephiplt/tephiplt.py
10,361
3.59375
4
'''script to demonstrate the equations underlying the tephigram''' # based on EART23001: Atmospheric Physics and Weather (University of Manchester) # Simon O'Meara 2020: [email protected] # other helpful resource(s): http://homepages.see.leeds.ac.uk/~chmjbm/arran/radiosondes.pdf # ----------------------------------------------------------------------------------- # dependencies import numpy as np import matplotlib.pyplot as plt from matplotlib.transforms import Affine2D import matplotlib.ticker as ticker import ipdb import scipy.constants as si import math # ------------------------------------------------------------------------------------ fig1, ax1 = plt.subplots() # initiate plot # the anti-clockwise transformation needed to rotate plots away # from conventional design of orthogonal with respect to screen # angle - note this enables pressure to decrease with vertical in # plot trans = Affine2D().rotate_deg(315) trans_data = trans + ax1.transData # set temperature ranges & interval (oC) -------------------------------- Tmin = -120. # minimum Tmax = 120. # maximum Tint = 10. # interval within temperature range (oC and K) # ------------------------------------------------------------------------------------ # temperature range (oC) T_oC = (np.arange(Tmin, Tmax+0.1, Tint)).reshape(1, -1) # potential temperature range (oC) theta_oC = (np.arange(Tmax, Tmin-0.1, -Tint)).reshape(-1, 1) # repeat temperatures over a matrix of changing potential # temperature in rows and changing temperature in columns T_oC = np.repeat(T_oC, theta_oC.shape[0], axis=0) theta_oC = np.repeat(theta_oC, T_oC.shape[1], axis=1) # first plot (just T and potential temperature lines) ------------------- # the isotherms to plot Tlevels = np.arange(Tmin, Tmax+0.1, Tint) # plotting temperature contours tephi0 = ax1.contour(T_oC, theta_oC, T_oC, Tlevels, colors = 'black', linewidths = 0.5, linestyles = 'solid', transform = trans_data) # contour labels labels = [] # empty contour labels list for it in range(len(Tlevels)): labels.append(str(r'T=%s $\rm{^oC}$') %Tlevels[it]) fmt2 = {} for l, s in zip(tephi0.levels[0::2], labels[0::2]): fmt2[l] = s ax1.clabel(tephi0, tephi0.levels[0::2], inline = False, fmt = fmt2, fontsize = 10) # plotting potential temperature contours tephi0 = ax1.contour(T_oC, theta_oC, theta_oC, Tlevels, colors = 'black', linewidths = 0.5, linestyles = 'solid', transform = trans_data) # contour labels labels = [] # empty contour labels list for it in range(len(Tlevels)): labels.append(str(r'$\rm{\theta}$=%s $\rm{^oC}$') %Tlevels[it]) fmt2 = {} for l, s in zip(tephi0.levels[0::2], labels[0::2]): fmt2[l] = s ax1.clabel(tephi0, tephi0.levels[0::2], inline=False, fmt=fmt2, fontsize=10) ax1.set_ylim([-5, 100]) ax1.set_xlim([-70, 60]) # turn off ticks on axis plt.tick_params(axis = 'both', which = 'both', bottom = 0, left = 0, labelbottom = 0, labelleft = 0) plt.draw() plt.pause(1) # pause # calculating pressures based on combinations of # temperature and potential temperature ------------------------------------- T_K = T_oC+273.15 # convert to K theta_K = theta_oC+273.15 # convert to K # ratio of specific heat capacity at constant pressure to # specific heat capacity at constant volume for dry air gamma = 1.4 # pressure at temperature-potential temperature combination # recall: theta = T(1.e3./P)**((gamma-1.)/gamma), where T in K, P in hPa # and gamma is ratio of specific heat capacity at constant pressure to # specific heat capacity at constant volume for dry air P = 1.e3/((theta_K/T_K)**(gamma/(gamma-1))) # second plot (just pressure = 1000 hPa) --------------------------------------- # note 1000 hPa is treated here as the pressure representative of the Earth surface levels = np.arange(1000., 1001., 100) # the isobar(s) to display # plot pressure as contour lines tephi1 = ax1.contour(T_oC, theta_oC, P, levels, colors = 'green', transform = trans_data) # contour labels fmt2 = {} # empty dictionary labels = ['1000 hPa' ] for l, s in zip(tephi1.levels, labels): fmt2[l] = s ax1.clabel(tephi1, tephi1.levels, inline = True, fmt = fmt2, fontsize = 10) plt.draw() plt.pause(1) # pause presentation # third plot (all pressures (hPa)) --------------------------------------------- levels = np.arange(3.e2, 9.01e2, 1e2) # the isobar(s) to display # plot pressure as contour lines tephi2 = ax1.contour(T_oC, theta_oC, P, levels, colors = 'green', transform = trans_data) # contour labels fmt2 = {} # empty dictionary labels = ['300 hPa', '400 hPa', '500 hPa', '600 hPa', '700 hPa', '800 hPa', '900 hPa'] for l, s in zip(tephi2.levels[1::2], labels[1::2]): fmt2[l] = s ax1.clabel(tephi2, tephi2.levels[1::2], inline = True, fmt = fmt2, fontsize = 10) plt.draw() plt.pause(1) # pause # fourth plot (wet bulb potential temperature (oC)) -------------------- # latent heat of vapourisation (J/kg) for water as a function of temperature # doi.org/10.1002/qj.49711046626 Lw = 1.91846e6*(T_K/(T_K-33.91))**2. Rw = 462. # J/kg.K energy per unit mass of water vapour per unit temperature # ratio of latent heat of vapourisation to R A = -Lw/Rw # reference saturation vapour pressure at 0 oC (hPa) (Dry and Moist Air lecture) esvp0 = 6.1 exp0 = A/273.15 # reference exponential index at 0 oC (dimensionless) # saturation vapour pressure at all temperatures (hPa) esvp = esvp0*(np.exp(A/T_K-exp0)) # latent heat of vapourisation (J/kg) for water as a function of temperature # doi.org/10.1002/qj.49711046626 Lw = 1.91846e6*(T_K/(T_K-33.91))**2. # rate of change of r (water mixing ratio) with temperature from saturated # adiabatic lapse rate # equation (Convection and SALR lecture), note the first term results from the # differentiation of r = 5e_svp/8P with respect to T, where e_svp is given by the # esvp equation above (/K) drdT = 5.*(-A/(T_K**2.))*esvp/(8.*P) # specific heat capacity of dry air (J/K.kg) (Convection and SALR lecture) Cp = 1004. # saturated adiabatic lapse rate (Dry and Moist Air lecture) (K/m) Gamm = si.g/(Cp+Lw*drdT) # prepare for storing wet bulb potential temperarure (oC) thetaw_oC = np.zeros((theta_oC.shape)) # assume same as dry potential temperature to begin (oC) thetaw_oC[:, :] = theta_oC[:, :] # wet bulb potential temperatures at reference pressure (oC) is the same as for # the actual temperature and the potential temperature thetaw_oC[np.arange(theta_oC.shape[0]-1, -1, -1), np.arange(0, theta_oC.shape[1], 1)] = theta_oC[np.arange(theta_oC.shape[0]-1, -1, -1), np.arange(0, theta_oC.shape[1], 1)] R = si.R*1.e3/28.966 # specific gas constant for air (m2/(K.s^2)) R = si.R*1.e3/18. # specific gas constant for water vapour (m2/(K.s^2)) Gammr = si.g/1004 # dry adiabatic lapse rate (K/m) # ratio of isotherm adjacent to hypotenuse mn = (T_K[0, 1]-T_K[0, 0])/((T_K[0, 1]-T_K[0, 0])**2.+(theta_K[1, 0]-theta_K[0, 0])**2.)**0.5 # scaling factor for wet bulb potential temperature estimation mn = (T_K[0, 1]-T_K[0, 0])*mn for ir in range(theta_oC.shape[0]): # loop through rows # column where bottom left to top right diagonal met cd = Gamm.shape[1]-ir # below reference pressure (higher altitudes) # height (m) between columns in this row delz = (np.log(P[ir, 1:cd]/P[ir, 0:cd-1])/-si.g)*R*((T_K[ir, 1:cd]+T_K[ir, 0:cd-1])/2.) # temperature change following dry adiabatic lapse rate delTr = delz*Gammr # change in temperature following saturated adiabatic cooling delT = delz*Gamm[ir, 0:cd-1] # change in temperature effect on saturated adiabatic isotherms delTn = np.flip(np.cumsum(np.flip(mn-(delT/delTr)*mn))) # saturated adiabatic temperature isopleth thetaw_oC[ir, 0:cd-1] -= delTn # above reference pressure (lower altitudes) # height (m) between columns in this row delz = (np.log(P[ir, cd::]/P[ir, cd-1:-1])/-si.g)*R*((T_K[ir, cd::]+T_K[ir, cd-1:-1])/2.) # temperature change following dry adiabatic lapse rate delTr = delz*Gammr # change in temperature following saturated adiabatic cooling delT = delz*Gamm[ir, cd::] # change in temperature effect on saturated adiabatic isotherms delTn = np.cumsum(mn-(delT/delTr)*mn) # saturated adiabatic temperature isopleth thetaw_oC[ir, cd::] += delTn # plot wet bulb potential temperature contours tephi3 = ax1.contour(T_oC, theta_oC, thetaw_oC, Tlevels, colors = 'black', linewidths = 0.1, linestyles = '-', transform = trans_data) # contour labels labels = [] # empty contour labels list for it in range(len(Tlevels)): labels.append(str(r'$\rm{\theta_w}$=%s $\rm{^oC}$') %Tlevels[it]) fmt2 = {} for l, s in zip(tephi3.levels[0::2], labels[0::2]): fmt2[l] = s ax1.clabel(tephi3, tephi3.levels[0::2], inline = False, fmt = fmt2, fontsize = 10) plt.draw() plt.pause(1) # pause # fifth isopleth (mass mixing ratio of water (g of water/kg dry air)) ---------- # using ideal gas equation, estimate mass (kg) of water vapour in 1m3 of air # based on pressure, note hPa converted to Pa mw = (esvp*1e2*1.)/(Rw*T_K) mw = mw*1e3 # convert to g from kg # using ideal gas equation estimate mass of dry air, note hPa # converted to Pa ma = (P*1e2*1.)/(R*T_K) r = mw/ma # the mass mixing ratio (g of water/kg of dry air) # state water mixing ratios to plot rlevels = [0.15, 0.8, 2., 3., 5., 7., 9., 12., 16., 20., 28.] # plot water mixing ratio contours tephi4 = ax1.contour(T_oC, theta_oC, r, rlevels, colors = 'black', linewidths = 0.5, linestyles = '--', transform = trans_data) # contour labels labels = [r'0.15 $\rm{g\, kg^{-1}}$', r'0.8 $\rm{g\, kg^{-1}}$', r'2 $\rm{g\, kg^{-1}}$', r'3 $\rm{g\, kg^{-1}}$', r'5 $\rm{g\, kg^{-1}}$', r'7 $\rm{g\, kg^{-1}}$', r'9 $\rm{g\, kg^{-1}}$', r'12 $\rm{g\, kg^{-1}}$', r'16 $\rm{g\, kg^{-1}}$', r'20 $\rm{g\, kg^{-1}}$', r'28 $\rm{g\, kg^{-1}}$'] fmt2 = {} for l, s in zip(tephi4.levels, labels): fmt2[l] = s ax1.clabel(tephi4, tephi4.levels, inline = False, fmt = fmt2, fontsize = 10) plt.draw() plt.pause(1) # pause # finally plot example measurements ------------------- # measure temperatures (oC) measT = 80, 60, 50, 15, 15, 15, 15 xT = -50, -55, -60, -60, -35, -10, 15 # measured wet-bulb temperature (oC) measwT = 5, 5, 6, 7, 7, 7, 7 xwT = -90, -80, -75, -68, -35, -10, 5 # plot measurements plt.plot(xT, measT, '-r', transform = trans_data) plt.plot(xwT, measwT, '-b', transform = trans_data) plt.draw() plt.pause(1000) # pause # end of script ---------------------------------------------------
4be572ee85b35d30e9aba7a0d7c09a698ee83e35
rv404674/Algo-Implementations
/graph/dfs.py
1,145
3.828125
4
# NOTE # TIme complexity of In # for list - Average(O(n)) ( Implemented as sequences) # for dict - Average O(1), Worst O(n) ( as dict is hashing data type) # edpresso.com for dfs implementation # for a directed graph, the sum of size of adjaceny list of all nodes is E. 2+2+1+1 = 6 # hence O(V) + O(E) = O(V+E) # OV) because you nead to visit each vertex alteast once. # O(E) because you need to go through outgoing paths (edges) for each node # for densely populated graphs, e=v^2. hence O(v^2) graph = { 'a':['b','c'], 'b':['d','e'], 'c':['f'], 'd':[], 'e':['f'], 'f':[] } # visited = {} # def dfs(graph, visited, node): # if node not in visited: # print(node) # visited[node] = True # for neighbour in graph[node]: # dfs(graph, visited, neighbour) #OR def dfs(graph, visited, node): print(node) visited[node] = True print(visited, "VISITED") for neighbour in graph[node]: if neighbour not in visited: dfs(graph, visited, neighbour) def dfsutil(): visited = {} dfs(graph, visited, 'a') dfsutil()
daab04c1d1026165d2a385d0f75b7b6e741bd914
Vputri/Python
/tugas.py
276
3.78125
4
print "Ketikkan Control C atau -1 untuk keluar" number = 1 while number != -1: print '' try: number = int(raw_input("Masukan angka : ")) print "Anda memasukan :",number except ValueError: print "Bukan angka bilangan integer atau float!"
fb15cf38c01c041585dab3b53621e5020e157446
nirnicole/Artificial-Intelligence-Python-Repositories
/Evolutionary Computation/Genetic Algorithm/Maze.py
11,164
3.765625
4
import Problem import random from PIL import Image import numpy as np import math class MazeProblem(Problem.EvolutionProblem): """ in this problem we get different attempts to find a solution to a distance problem and we try to utilize them. its actually a local searching problem. dna structure: list of chars representing the direction the robot went from the set: {U,D,L,R}. fitness function: will be elaborate later. maximization problem: the fitness will be normalized between 0 to 1. attributes: initial population generations Swap function = Crossing at k random point mutation probability crossing probability elitism probability """ def __init__(self,path, initpop_size, iterations,maze_diffic = 0, cross_rate = 0.3, mute_rate = 0.2, elitisem_rate=0.1, cool_after=500.0, start=[0,0], end=[0,0]): """ we need to add to the basic initialization the following factors, including a layout data to compare to, start point and ending. """ self.layout_data= [] self.layout_data = self.translateMaze(path) self.LAYOUT_LINES = self.layout_data.__len__() self.LAYOUT_COLUMNS = self.layout_data[0].__len__() self.MAX_DIMENSION = max(self.LAYOUT_LINES, self.LAYOUT_COLUMNS) self.MAZE_DIFFICULTY = maze_diffic Problem.EvolutionProblem.__init__(self, initpop_size, (maze_diffic+1)* self.MAX_DIMENSION , ['L', 'R', 'U', 'D'], iterations, cross_rate, mute_rate, elitisem_rate, cool_after) self.SOURCE_COORDINATE = start self.DESTINATION_COORDINATE = end self.layout_data[end[0]][end[1]]=2 def generateInitialPopulation(self, use_heuristics=False): """ if heuristics are permitted, half of the population will be biased and quit accurate to the destination. although if obstacles are around, they will go through them and loose a lot of credit. the rest of the population is randomized. """ self.CUR_GENERATION = 0 cutting_factor = 2 #create with heuristics if use_heuristics: cutting_factor*=2 #start with manhattan routes x1, y1 = self.SOURCE_COORDINATE x2, y2 = self.DESTINATION_COORDINATE steps_vertically = x2 - x1 steps_horizontally = y2 - y1 self.GENES = ['L', 'R', 'U', 'D'] if steps_vertically>=0: vertical_direction = self.GENES[3] #down else: steps_vertically *= -1 vertical_direction = self.GENES[2] #up if steps_horizontally>=0: horizontal_direction = self.GENES[1] #right else: steps_horizontally *= -1 horizontal_direction = self.GENES[0] #left for i in range(2*self.INITIAL_POP_SIZE / cutting_factor): new_dna = [] #creat manhattan route for _ in range(steps_vertically): new_dna.append(vertical_direction) for _ in range(steps_horizontally): new_dna.append(horizontal_direction) while new_dna.__len__()<self.DNA_LENGTH: new_dna.append(self.GENES[3]) # add to group with a starting fitness evaluation self.population.append([self.getFitness(new_dna), new_dna]) #create random dna's for i in range(self.INITIAL_POP_SIZE/cutting_factor): action = i%4 new_dna = [self.GENES[action] for gene in range(self.DNA_LENGTH)] #add to group with a starting fitness self.population.append([self.getFitness(new_dna), new_dna]) while(self.population.__len__()<self.INITIAL_POP_SIZE): # deep copy to new list new_dna = self.dna[:] # shuffle the new list random.shuffle(new_dna) #add to group with a starting fitness self.population.append([self.getFitness(new_dna), new_dna]) def getFitness(self, dna): """ calculate how accurate the rout was, punish for obstacles ignorance and bonus every improving step. nonetheless, punish greatly for borders crossing. """ REPEATED_PENALTY = 2 # each repeated node is considered the same as REPEATED_PENALTY steps OBSTACLE_PENALTY = 200 # each obstacle on the way is considered the same as OBSTACLE_PENALTY steps DEST_NOT_REACHED_PENALTY = 2*self.DNA_LENGTH + self.manhattanDistance(self.SOURCE_COORDINATE, self.DESTINATION_COORDINATE) # if destination is not reached #collect data of route distance, bonus, repeated_nodes, obstacles, final_point, is_out_of_bound = self.simulateRoute(dna) # Calculate Penalties penalties = repeated_nodes * REPEATED_PENALTY + obstacles * OBSTACLE_PENALTY #if out of bound if is_out_of_bound: aggregate_fitness = float('inf') else: if distance == float('inf'): #if the rout didnt achive destination its weight will be its final point dis +penalties penalties += DEST_NOT_REACHED_PENALTY aggregate_fitness = self.manhattanDistance(final_point, self.DESTINATION_COORDINATE) + penalties else: aggregate_fitness = distance + penalties aggregate_fitness -= bonus #normalization normelized_fitness = 1.0 / (1+aggregate_fitness) if distance < float('inf') and not obstacles: print dna , (normelized_fitness) self.paintRout(dna) self.SOLVED = True # returning the inverse of the cost, so it'll become a proper fitness function return normelized_fitness def isGoal(self): if self.SOLVED : #if its fitness is perfect return self.SOLVED return self.SOLVED #FUNCTIONS def translateMaze(self, path, resize_factor=100.0): # 'maze.png' = path # Open the maze image and make greyscale, and get its dimensions try: im = Image.open(path).convert('L') w, h = im.size # Ensure all black pixels are 0 and all white pixels are 1 binary = im.point(lambda p: p > 128 and 1) # Resize to about resize_factorXresize_factor pixels. resizing_w = int(math.ceil(float(w)/resize_factor)) resizing_h = int(math.ceil(float(h)/resize_factor)) binary = binary.resize((w // resizing_w, h // resizing_h), Image.NEAREST) w, h = binary.size # Convert to Numpy array - because that's how images are best stored and processed in Python nim = np.array(binary) mat = [] # Print that puppy out for r in range(h): line = [] for c in range(w): line.append(nim[r, c]) mat.append(line) count=0 """ print "\n\n" for i in range(mat.__len__()): count+=1 print mat[i] print "\n" """ return mat except: print("Couldn't find path in images directory.") print("For your Attatntion, this is the path to put your layouts:") print path print "try putting your layout there." def paintRout(self, gene): layout_copy = [row[:] for row in self.layout_data] line = self.SOURCE_COORDINATE[0] column = self.SOURCE_COORDINATE[1] layout_copy[line][column] = 6 for action in gene: # goal, do step and stop counting if (line==self.DESTINATION_COORDINATE[0]) and (column==self.DESTINATION_COORDINATE[1]): layout_copy[line][column] = 8 break #do the action {'L','R','U','D'} if action== 'L': column-=1 elif action== 'R': column+=1 elif action== 'U': line-=1 elif action== 'D': line+=1 #out of bounds if line<0: line+=1 elif line>= self.LAYOUT_LINES: line-=1 if column<0: column+=1 elif column>= self.LAYOUT_COLUMNS: column-=1 layout_copy[line][column] = 7 layout_copy[line][column] = 8 print "\n\nRout Visualization :\n" for i in range(layout_copy.__len__()): print layout_copy[i] print "\nend" return layout_copy def simulateRoute(self, route): """ Returns a tuple of (distance, repeated_nodes, obstacles, final_point, is_out_of_bound). Distance will be infinity if the route is invalid (are taking us out of scope, or not reaching the destination) """ source = self.SOURCE_COORDINATE destination = self.DESTINATION_COORDINATE NOT_REACHED = float('inf') if source == destination: return 0, 0, 0, source, False point = source steps = 0 bonus = 0 revisit = 0 obstacles = 0 initial_distance = self.manhattanDistance(source,destination) points_visited = [point] for action in route: steps += 1 new_distance = self.manhattanDistance(point,destination) if new_distance < initial_distance: bonus +=1 initial_distance = new_distance else: bonus-=1 if action == "L": point = [point[0], point[1]-1] elif action == "R": point = [point[0], point[1] + 1] elif action == "U": point = [point[0]-1, point[1]] elif action == "D": point = [point[0]+1, point[1]] else: break #breaking out situations if point == destination: return steps ,3*bonus , revisit, obstacles, point, False if point[0] < 0 or point[0] >= self.LAYOUT_LINES or point[1] < 0 or point[1] >= self.LAYOUT_COLUMNS: # out of bounds, illegal move return NOT_REACHED ,bonus , revisit, obstacles, point, True #count obstacles if self.layout_data[point[0]][point[1]]==0: obstacles += 1 #count visited if point in points_visited: revisit += 1 else: points_visited.append(point) return NOT_REACHED ,bonus , revisit, obstacles, point, False def manhattanDistance(self, xy1, xy2): "Returns the Manhattan distance between points xy1 and xy2" return abs(xy1[0] - xy2[0]) + abs(xy1[1] - xy2[1])
0585b33867eaaa8a59059a63b4cc670f1bd4b615
michaelRobinson84/CP1404_semester2
/cp1404practicals/prac_09/sort_files_2.py
1,503
4.125
4
import shutil import os def main(): os.chdir("FilesToSort") lst_file_extensions = [] for directory_name, subdirectories, filenames in os.walk('.'): for filename in filenames: str_file_extension = get_file_extension(filename) if str_file_extension not in lst_file_extensions: # If we haven't dealt with this file type before lst_file_extensions.append(str_file_extension) str_user_input = input("What category would you lie to sort {} files into?".format(str_file_extension)) try: os.mkdir(str_user_input) except FileExistsError: pass for filename2 in filenames: # For each file in the current directory if get_file_extension(filename2) == str_file_extension: # If the file's extension matches the file # extension we are currently working on shutil.move(filename2, str_user_input) # Move the file where the user says for it # to go def get_file_extension(filename): index = 0 for char in filename: if char != ".": index += 1 else: index += 1 file_extension = filename[index:] return file_extension main()
e8b75cdc4e175ac09576106e68aaebe00cfd8a81
lucianojunnior17/Python
/Curso_Guanabara/aula72.py
507
3.875
4
cont = ('zero','um','dois','três','quatro','cinco','seis','sete','oito', 'nove','10','onze','doze','treze','quatorze','quize', 'dezeseis', 'dezessete','dezoito','dezenove','vinte','vinte um ','vinte dois', 'vinte três','vinte Quatro','vinte Cinco') while True: num = int(input('Digite um número entre 0 e 25 : ')) if 0 <= num <= 25: break else: num = cont print('Tente novamente : ', end='') print(f'Você digitou o número {cont[num]}')
1c13ac630b8d73c06c0fa14adb0c08669a7ef2d2
helsonxiao/exercises
/dictionary.py
413
4.25
4
dictionary = {} while True: user_action = input("Add or look up a word (a/l)?") if user_action == "a": type_word = input("Type the word:") type_definition = input("Type the definition:") dictionary[type_word] = type_definition elif user_action == "l": type_word = input("Type the word:") print(dictionary[type_word]) else: print("Please enter a/l.")
f9a21b792c1bc1a46163196eb52ce918fe3722c8
Juanjo-M/Primero
/Lab3219-1.py
309
4.21875
4
#print ("¿Que palabra desea escribir?"): #P=str(input("")) P = input("¿Que palabra desea escribir? ") while (P !="chupacabra"): #print("Puede seguir escribiendo palabras") if (P == "chupacabra"): break P = input("¿Que palabra desea escribir? ") print("Aqui se detiene el bucle")
6012313385274520a4dadff02ff1fbbeb5037f9a
KrisR15/Knots_and_Crosses
/Knots_&_Crosses.py
6,157
3.953125
4
import random def display_board(board): #Create a game board print("\n"*100) print(" "+board[1]+" | "+board[2]+" | "+""+board[3]+" ") print("-----------") print(" "+board[4]+" | "+board[5]+" | "+""+board[6]+" ") print("-----------") print(" "+board[7]+" | "+board[8]+" | "+""+board[9]+" ") def player_input(): #Decide player markers player1_marker = "null" player2_marker = "null" marker_option_list = ["X","O"] while player1_marker not in marker_option_list: player1_marker = input("Player 1, would you like to be 'X' or 'O'? ").upper() if player1_marker not in marker_option_list: print("Sorry, invalid selection. Please input 'X' or 'O'") else: break if player1_marker == "X": player2_marker = "O" else: player2_marker = "X" return(player1_marker,player2_marker) def place_marker(board, marker, position): #Make a move board[position] = marker def win_check(board, mark): #Check if either player has won #ROW CHECKS return ((board[1] == mark and board[2] == mark and board[3] == mark) or (board[4] == mark and board[5] == mark and board[6] == mark) or (board[7] == mark and board[8] == mark and board[9] == mark) or #COLUMN CHECKS (board[1] == mark and board[4] == mark and board[7] == mark) or (board[2] == mark and board[5] == mark and board[8] == mark) or (board[3] == mark and board[6] == mark and board[9] == mark) or #DIAGONAL (board[1] == mark and board[5] == mark and board[9] == mark) or (board[3] == mark and board[5] == mark and board[7] == mark)) def choose_first(): #randomly decide who starts first_player = random.randint(1,2) if first_player == 1: return "Player 1" elif first_player == 2: return "Player 2" def space_check(board, position): #check if the position is empty return board[position] == " " def full_board_check(board): #check if the board is full (tie check) marker_options = ["X", "O"] fill_counter = 0 for position in board: if position == "X" or position == "O": fill_counter += 1 else: pass return fill_counter == 9 def player_choice(board): #choose next move position = int(input("Choose your next position: (1-9) ")) while position not in [1,2,3,4,5,6,7,8,9] or not space_check(board, position): print("Invalid selection. Position is either not an option or already taken.") position = int(input('Choose your next position: (1-9) ')) return position def replay(): #Decide if you want to play again response = input("Would you like to play again (Yes or No)?: ").lower() replay_options = ["yes", "no"] while True: if response not in replay_options: print("Invalid input, please type 'Yes' or 'No'.") response = input("Would you like to play again (Yes or No)?: ").lower() continue elif response == "yes": return True else: return False #While loop to keep running the game print("Welcome to Knots & Crosses!") while True: #Play The Game #Set Everything Up (Board, whos first and marker choice) the_board = [" "]*10 #Empty blank board player1_marker, player2_marker = player_input() #Tuple unpacking to assign markers turn = choose_first() #Decides who is going to play first print(f"\n{turn} will play first") play_game = input("Ready to play? 'Yes' or 'No': ").lower() if play_game == "yes": game_on = True else: game_on = False #Game Play while game_on == True: #Player 1's turn if turn == "Player 1": #Show the board display_board(the_board) #Choose a position print("\nPlayer 1") position = player_choice(the_board) #Place the marker on the position place_marker(the_board,player1_marker,position) #Check if they won if win_check(the_board,player1_marker): display_board(the_board) print("PLAYER 1 WINS!") game_on = False #or check if there is a tie else: if full_board_check(the_board): display_board(the_board) print("THE GAME IS A TIE!") game_on = False #No tie or no win next players turn else: turn = "\nPlayer 2 plays first" #Player 2's turn else: #Show the board display_board(the_board) #Choose a position print("\nPlayer 2") position = player_choice(the_board) #Place the marker on the position place_marker(the_board,player2_marker,position) #Check if they won if win_check(the_board,player2_marker): display_board(the_board) print("PLAYER 2 WINS!") game_on = False #or check if there is a tie else: if full_board_check(the_board): display_board(the_board) print("THE GAME IS A TIE!") game_on = False #No tie or no win next players turn else: turn = "Player 1" #break out of game while loop on replay() if not replay(): break
0e70290950aabafe8b9e6c5a0f2f44863186062c
RaskoANML/maths
/Python/LeoExoPoly1d.py
424
3.5625
4
""" First trial with data plotting """ import numpy as np import matplotlib.pyplot as plt p = np.poly1d([666,0,1,2]) x = np.arange(-20,60,1) print "Voici les antecedants :", x print "Voici le polynome", p # calcul des ordonnees y = p(x) print "Voici les ordonnees correspondant a l'interval -20 a 59: ", y plt.plot(x, y, color ='blue', linewidth=2.5, linestyle="--") plt.legend("polynome 666 x^3 + x + 2") plt.show()
f23398f7af6a1d7625dcab2dab3103b6fc93cd8b
Harry-Ramadhan/Basic-Phthon-5
/casting.py
377
3.78125
4
# float to integer # x = 1.99999 # print (x) # print (type(x)) # y = int (x) # print (y) # print(type(y)) # int to float # a = 100 # print(a) # print(type(b)) # b = float(a) # print(b) # print(type(b)) # string to float # x = "4.5" # print(x) # print(type(x)) # y = float (x) # print(y) # print(type(y)) # # float to string # a = 9.999 # print(a) # print(type(a)) # b =
530e7ee280aa40fb04cad40771b0e5549372cd5c
AChen24562/Python-QCC
/Exam2-Review/Review3d-if-loops.py
311
4.3125
4
#3d Loops and Input num1 = int(input("Enter number 1: ")) num2 = int(input("Enter number 2: ")) if num1 < num2: while num1 <= num2: print(num1, end="|") num1 += 1 elif num1 > num2: for x in range(num1): print(num1, end="|") num1 -= 1 else: print(f"{num1} = {num2}")
9a6e7affeb833bbea4288dc31bca0acf3e6042ec
ed-kiryukhin/MITx_6.00.1x
/ProblemSet01/PS01-1.py
276
3.96875
4
## https://courses.edx.org/courses/course-v1:MITx+6.00.1x_8+1T2016/courseware/Week_2/Basic_Problem_Set_1/ ## COUNTING VOWELS ## Assume s is a string of lower case characters count=0 for letter in s: if letter in "aeiou": count += 1 print "Number of vowels: %d" % (count)
d70f05b74205bbbcb95b03f09e9dc76e6a71ed16
mayurikpawar/pythonbasic
/data.py
660
4.1875
4
#python program demonstrating list my_data = ["MY SELF MAYURI KAILAS PAWAR"] l1 = ["I AM PERSUING BE E&TC FROM SANDIP FOUNDATION","nashik"] print my_data print l1 l1.reverse() print l1 list = ['i am from jalgaon','but i am studying in nashik'] print('index of i am from jalgaon',list.index('i am from jalgaon')) print(list) l2 = ['m','a','r','v','e','l','o','u','s'] l2.count(3) print l2 #output #['MY SELF MAYURI KAILAS PAWAR'] #['I AM PERSUING BE E&TC FROM SANDIP FOUNDATION', 'nashik'] #['nashik', 'I AM PERSUING BE E&TC FROM SANDIP FOUNDATION'] #('index of i am from jalgaon', 0) #['i am from jalgaon', 'but i am studying in nashik'] #['m', 'a', 'r', 'v', 'e', 'l', 'o', 'u', 's']
cd86db56f077762c121b7b85288385e5ef76039c
skuld1020/PY4E
/PY4E/triangle_area.py
1,045
3.796875
4
# -*- coding: utf-8 -*- """ Created on Sat Mar 14 22:37:06 2020 @author: Happy sunday """ """給三點求三角形邊長和面績""" def area(a,b,c): s = (a+b+c)/2 A = (s*(s-a)*(s-b)*(s-c))**(1/2) return A def length(x1,y1,x2,y2): L = ((x1-x2)**2+(y1-y2)**2)**(1/2) return L A_x1 = input('Please input the x of A:') A_y1 = input('Please input the y of A:') B_x2 = input('Please input the x of B:') B_y2 = input('Please input the y of B:') C_x3 = input('Please input the x of C:') C_y3 = input('Please input the y of C:') try: x1 = float(A_x1) y1 = float(A_y1) x2 = float(B_x2) y2 = float(B_y2) x3 = float(C_x3) y3 = float(C_y3) except: print('Please enter the float') quit() AB = length(x1,x2,y1,y2) BC = length(x2,x3,y2,y3) AC = length(x1,x3,y1,y3) A = area(AB,BC,AC) print('A is','(',x1,',',y1,')') print('B is','(',x2,',',y2,')') print('C is','(',x3,',',y3,')') print('The lengths are',AB,BC,AC) print('The area for ABC is',A)
3a02b435c8dfc37ca835cfd443618bce0fa0b180
KingJMS1/EEInformation
/Add.py
221
3.546875
4
from time import time b = 5 c = 3 d = 2 initime = time() for x in range(100000): b = (c + d)%100 c= (b + d)%1000 d= (c + b + d)%500 b= (d - c)%150 fintime = time() print("TIME: " + str(fintime - initime))
91d5f2188d3b1fd32e2df4ef54452ddf654a069e
Noksis/Python
/Sara/Task 5.py
1,120
3.5
4
import numpy as np import pandas as pd import matplotlib.pyplot as plt df = pd.DataFrame() file = open('Input.csv','r') df = pd.read_csv(file) Answer = [] # First task (Index: 0,1,2) Answer.append("Size:") Answer.append(df.size) Answer.append("10:") Answer.append(df[:10]) Answer.append("Random 10:") Answer.append(df.sample(n=10)) # Second task (Index: 3) Answer.append("NaNs:") Answer.append(df.isna().sum()) # 3 task (Index: 4) Answer.append("IDs:") Answer.append(len(pd.unique(df.ID))) # 4 task (Index: 5) # (2 is Women and 1 is Mens) SEX = df['SEX'].value_counts(normalize=True) * 100 Answer.append("2 = women, 1 = mens") Answer.append(SEX) # 5 task fig = plt.figure() plt.title('A Horizontal Bar Chart') plt.xlabel("Age") plt.ylabel("Amount") plt.grid(1) plt.hist(df.AGE) # 6 task (Index 6,7) D = df["default.payment.next.month"].sum() ND = len(df) - D Answer.append("default") Answer.append(D) Answer.append("normal") Answer.append(ND) fig = plt.figure() plt.pie([D,ND],labels = ["default","No default"],autopct='%1.1f%%') plt.title('Pie of defaults') plt.grid(True) for i in Answer: print(i) plt.show()
0b504117f2537045f1ed76550798c36e5965e0b1
NikolasMatias/urionlinejudge-exercises
/Iniciante/Python/exercises from 2001 to 2600/exercise_2493.py
1,481
3.734375
4
def is_calculo_possible(valor_a, valor_b, resultado_calculo): return valor_a+valor_b == resultado_calculo or valor_a-valor_b == resultado_calculo or valor_a*valor_b == resultado_calculo def test_calculo(calculo, expressao_escolhida): valor_a,valor_b, resultado_calculo = [int(x) for x in calculo.replace('=', ' ').split()] if expressao_escolhida == 'I': return not is_calculo_possible(valor_a, valor_b, resultado_calculo) if expressao_escolhida == '+': return valor_a+valor_b == resultado_calculo if expressao_escolhida == '-': return valor_a-valor_b == resultado_calculo if expressao_escolhida == '*': return valor_a*valor_b == resultado_calculo while True: try: qtdeExpressoes = int(input()) expressoes = [input() for x in range(qtdeExpressoes)] respostaJogadores = [input() for x in range(qtdeExpressoes)] jogadoresErrados = [] for resposta_jogador in respostaJogadores: nome_jogador, indice, resposta = resposta_jogador.split() if not test_calculo(expressoes[int(indice)-1], resposta): jogadoresErrados.append(nome_jogador) if len(jogadoresErrados) == 0: print('You Shall All Pass!') elif len(jogadoresErrados) == len(respostaJogadores): print('None Shall Pass!') else: jogadoresErrados.sort() print(' '.join(jogadoresErrados)) except EOFError: break
ee78ab4299708bdaa37f2acbf193a01ec7e91dbc
C-Powers/AutomateTheBoringStuff
/truthy_and_fasly.py
595
4.5625
5
#this code looks at truthy and falsey values. #no boolean operators are used, but if we enter a name, it's "truthy" because #we did input something #if we dont input a name, it's falsey, because we did not input a name name=raw_input("Please enter a name: ") if name: print "Thank you so much for entering a name. :]" else: print "you did not enter a name :[" ''' Please note that the above method is not particularly good. The best way to do it would be by using an operator, such as !=. So, it would look like: if name !='' which means, that if the name input is not blank. '''
b9d405a29353245bc80d8c9b9b15bf48f38d9c3b
gefranco/holbertonschool-higher_level_programming
/0x0B-python-input_output/7-save_to_json_file.py
207
3.5625
4
#!/usr/bin/python3 import json def save_to_json_file(my_obj, filename): with open(filename, mode="w", encoding="utf-8") as myFile: json_obj = json.dumps(my_obj) myFile.write(json_obj)
9be94a2011df44d9c00859fe28784a90589ea48b
wellingtongoncalves/Python
/desafio010.py
143
3.796875
4
carteira = float(input('Quanto você tem na carteira: ')) dolares = carteira / 3.27 print('Você pode comprar {:.2f} dolares'.format(dolares))
95a7f62ab6a223fae447c33adfd5cff3b31b8af4
artneuronmusic/Blog_AcceptanceTesting
/app.py
1,667
3.765625
4
from flask import Flask, render_template, request, redirect, url_for app = Flask(__name__) posts = [] @app.route('/') #its show the homepage after url def homepage(): return render_template('home.html') #will return the page: home.html @app.route('/blog') #now in blog page def blog_page(): return render_template('blog.html', posts=posts) #it might have posts after adding it later @app.route('/post', methods=['GET', 'POST']) #go to the create page which is entitled with post, in this one, the server needs to receive input and post it. def add_post(): if request.method == 'POST': #if the request of the func is equal to "POST, then input the forms for title and content title = request.form['title'] content = request.form['content'] global posts #why need global? we have posts in the beginning. posts.append({ #add materials in posts 'title': title, 'content': content }) return redirect(url_for('blog_page')) #everytime return to the blog_page, not blog return render_template('new_post.html') #create a new page for new_post @app.route('/post/<string:title>') #in the post section, we have the data of the new input def see_post(title): global posts #the collection for post in posts: # among those posts, if the one u want is found, then show the page if post['title'] == title: return render_template('post.html', post=post) return render_template('post.html', post=None) #otherwise, show nothing if __name__ == '__main__': app.run()
0d1c2ac6bf562fbf71615a82ac83d1cff86ea1d9
CppChan/Leetcode
/medium/mediumCode/BinaryTree/DistanceOfTwoNodes.py
1,393
3.6875
4
class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class Solution(object): def distance(self, root, k1, k2): if root == k1:return self.findnode(root, k2,0) if root == k2: return self.findnode(root, k1,0) return self.findcommon(root, k1, k2)[0] def findnode(self, root, k,depth): if root == k: return depth if not root: return 0 left = self.findnode(root.left, k, depth+1) right = self.findnode(root.right, k, depth+1) if left == 0: return right else: return left def findcommon(self,root, k1, k2): if not root:return (0, False) if root == k1 or root == k2: return (0, True) left = self.findcommon(root.left, k1, k2) right = self.findcommon(root.right, k1, k2) if left[1] and right[1]: return(left[0]+right[0]+2, False) if left[1]: return(left[0]+1, True) if right[1]: return(right[0]+1, True) if not left[1] and not right[1]: if left[0]>0:return (left[0], False) if right[0]>0: return (right[0], False) return(0, False) if __name__ == "__main__": s = Solution() a = TreeNode(1) # b = TreeNode(2) c = TreeNode(3) # d = TreeNode(4) # e = TreeNode(5) # f = TreeNode(6) # g = TreeNode(7) # a.left = b a.right = c # b.left = d # b.right = e # c.left = f # c.right = g print s.distance(a, a, c)
18400af13b65f17c94f4e27c2a25319ded04df08
WD2016GitBuild/iPython
/itchat/timer.py
507
3.53125
4
#coding=utf8 import datetime import time def doSth(): print("acb") # 一般网站都是1:00点更新数据,所以每天凌晨一点启动 def main(h=1,m=0): while True: now = datetime.datetime.now() print(now.hour) print(now.minute) # print(now.hour, now.minute) if now.hour == h and now.minute == m: doSth() # 每隔60秒检测一次 time.sleep(60) if __name__ == "__main__": main()
531ac21c7675a1541892a43afa816412db3cdabc
venanciomitidieri/Exercicios_Python
/081 - Extraindo dados de uma Lista.py
841
4.1875
4
# Exercício Python 081 - Extraindo dados de uma Lista # Crie um programa que vai ler vários números e colocar em uma lista. Depois disso, mostre: # A) Quantos números foram digitados. # B) A lista de valores, ordenada de forma decrescente. # C) Se o valor 5 foi digitado e está ou não na lista. valores = list() while True: valores.append(int(input('Digite um valor: '))) resp = str(input('Deseja continuar? [S/N] ')).strip().upper() if resp in 'N': break print('-=' * 30) print(f'Os valores digitados foram: {valores}') print(f'O tamanho da lista é: {len(valores)}') valores.sort(reverse=True) print(f'A lista em ordem descresente será: {valores}') if 5 in valores: print('O valor 5 faz parte da lista.') else: print('O valor 5 não foi encontrado na lista.')
d834259aff6b772dd4de91b08ffd036ca61e882a
dushabella/Introduction_to_Bioinformatics
/03_genome_reconstruction/project3.py
5,537
3.640625
4
""" Mini project #3: --------------- A project is focused on finding the minimum length k of k-mers for which it is possible to obtain unique cyclic genome. It bases on constructing de Bruijn graph with k-mers on a nodes, which indeed is a solution of Eulerian path problem. Good source of knowledge: http://www.bioinformatika.matf.bg.ac.rs/predavanja/literatura/Phillip%20Compeau,%20Pavel%20Pevzner%20-%20Bioinformatics%20Algorithms_%20An%20Active%20Learning%20Approach.%201-Active%20Learning%20Publ.%20(2015).pdf [pages 121-138] """ from typing import Dict, List, Set, Tuple from sys import getrecursionlimit, setrecursionlimit def read_file(path: str) -> Dict: """ Reading genes from a file into a dictionary in which keys represent a genome name, and a values - the genomes. """ genomes = dict() dict_hlpr = "" with open(path, 'r') as file: for line in file: if line.startswith(">"): dict_hlpr = line[2:-1] # print(dict_hlpr) else: genomes[dict_hlpr] = line[:-1] # print(line[:-1]) return(genomes) def composition(genomes: str, k_len: int) -> List[str]: """ Takes a circular genes and divide it for all possible k-mers (fragments) of a size of "k-mer" parameter and returns a list of k-mers that "wrap around" the end. For example: in: composition(“ATACGGTC”, 3) out: [“ATA”, “TAC”, “ACG”, “CGG”, “GGT”, “GTC”, “TCA”, “CAT”] :param gene: gene for reconstruction :param k_len: size of each divided kmer (fragment) :return fragments: list of kmers """ fragments = list() length = len(genomes) hlpr = "" for i in range(length): hlpr = genomes[i : i+k_len] len2 = len(hlpr) if len2 < k_len: hlpr = hlpr + genomes[: k_len-len2] fragments.append(hlpr) return(fragments) def simple_reconstruction(kmers: List[str]) ->str: #->List[str]: """ Reconstruction of a circular genome of k-mers For example: circular string assembled from the cycle "AC" -> "CT" -> "TA" is simply (ACT) :param kmers: A list of mers :return result: circular string """ result = "" i = 0 for kmer in kmers: result += kmer[-1] i += 1 return(result) def assembly(kmers: List[str], assembled: List[str], found_genomes: Set[str]) -> Set[str]: """ Recursive function for genome assembly using k-mers as edges of de Bruijn graph and prefixes/suffixes as nodes. It solves Eulerian path problem in effect. :param kmers: list of k-mers of genome sequence :param assembled: [RECURSION PARAM] put empty list here :param found_genomes: [RECURSION PARAM] put empty set here :return found_genomes: genomes that might be constructed from given fragments. """ if len(kmers) == 0: # end new_genome = simple_reconstruction(assembled) found_genomes.add(new_genome) return found_genomes elif len(assembled) == 0: # begin assembled.append(kmers[0]) found_genomes = assembly(kmers[1:], assembled, found_genomes) else: possible_to_join_id = [i for i, mer in enumerate(kmers) if mer[:-1] == assembled[-1][1:]] # if suffix == prefix for index in possible_to_join_id: assembled.append(kmers[index]) found_genomes = assembly(kmers[:index] + kmers[index+1:], assembled, found_genomes) del assembled[-1] return found_genomes def is_same_as_original(original: str, assembled: str) -> bool: """ Checks if achieved genome assembly is same as original genome. :param original: :param created: :return the_same: True - identical or identical but shifted """ concatenated = assembled + assembled the_same = original in concatenated return the_same def remove_redundant(found_genomes: Set[str]) -> List[str]: """ Removes redundant found_genomes genomes (like 'CTGACATA' and 'CATACTGA') :param found_genomes: :return result: list with unique found_genomes genome """ found_genomes = list(found_genomes) i = 0 while i < len(found_genomes): if any([is_same_as_original(found_genomes[i], found_genomes[k]) for k in range(len(found_genomes)) if i != k]): del found_genomes[i] else: i += 1 return found_genomes def find_min_k(genome: str, k: int=30) -> str: """ Returns minimum k found for building k-mers that will achieve only one unique and correct genome from genome assembly operation. Starts from high value of k because the recursive assembly function is getting slow for low k. :param genome: input genom that is first decomposed for k-mers :param k: k-mer length from which the searching algorithm starts :return min_k: minimum found k """ while k > 5: comp = composition(genome, k) created = assembly(comp, list(), set()) created = remove_redundant(created) if len(created) > 1: return k+1 last = created[0] k -= 1 return k+1 def main(): setrecursionlimit(getrecursionlimit()*2) genomes = read_file("genomes.txt") for key in genomes: print("____________________________________") print("Name:", key) genome = genomes[key] print("genome:", genome) min_k = find_min_k(genome) print("min k: ", min_k) if __name__ == "__main__": main()
f7887648f9e418c6406ff72f9b90938a22d54131
raunakpalit/myPythonLearning
/venv/setChallenge.py
429
4.40625
4
# Create a program that takes some text and returns a list of # all the characters in the text that are not vowels, sorted in # alphabetical order. # # You can either enter the text from the keyboard or # initialise a string variable with the string. vowels = frozenset("aeiou") random_text = input("Enter a text: ") finalSet = set(random_text).difference(vowels) print(finalSet) finalList = sorted(finalSet) print(finalList)
afb83515e78ac7f14d0b967d49e332c9d1bf5cea
89Mansions/AI_STUDY
/keras/keras54_conv1d_09_cifar10.py
2,952
3.796875
4
# Dnn, LSTM, Conv2d 중 가장 좋은 결과와 비교 from tensorflow.keras.datasets import cifar10 import matplotlib.pyplot as plt import numpy as np #1. DATA (x_train, y_train), (x_test, y_test) = cifar10.load_data() print(x_train.shape, y_train.shape) # (50000, 32, 32, 3) (50000, 1) print(x_test.shape, y_test.shape) # (10000, 32, 32, 3) (10000, 1) # print(x_train[0]) # print("y_train[0] : " , y_train[0]) # 6 # print(x_train[0].shape) # (32, 32, 3) # plt.imshow(x_train[0], 'gray') # 0 : black, ~255 : white (가로 세로 색깔) # plt.imshow(x_train[0]) # 색깔 지정 안해도 나오긴 함 # plt.show() # print(np.min(x_train),np.max(x_train)) # 0 ~ 255 # x > preprocessing x_train = x_train.reshape(x_train.shape[0],96,32) / 255. x_test = x_test.reshape(x_test.shape[0],96,32) / 255. # y > preprocessing from tensorflow.keras.utils import to_categorical y_train = to_categorical(y_train) y_test = to_categorical(y_test) print(y_train.shape) # (50000, 10) print(y_test.shape) # (10000, 10) #2. Modeling from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Conv1D, Flatten, MaxPool1D, Dropout model = Sequential() model.add(Conv1D(filters=64,kernel_size=3,padding='same',\ activation='relu',input_shape=(x_train.shape[1],x_train.shape[2]))) model.add(Dropout(0.2)) model.add(Conv1D(filters=64,kernel_size=3,padding='same')) model.add(Dropout(0.3)) model.add(MaxPool1D(pool_size=2)) model.add(Conv1D(filters=128,kernel_size=3,padding='same')) model.add(Dropout(0.4)) model.add(MaxPool1D(pool_size=2)) model.add(Conv1D(filters=128,kernel_size=3,padding='same')) model.add(Dropout(0.5)) model.add(MaxPool1D(pool_size=2)) model.add(Flatten()) model.add(Dense(512,activation='relu')) model.add(Dense(512,activation='relu')) model.add(Dense(10, activation='softmax')) # model.summary() #3. Compile, Train from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint modelpath = '../data/modelcheckpoint/k54_9_cifar10_{epoch:02d}-{val_loss:.4f}.hdf5' model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['acc']) es = EarlyStopping(monitor='val_loss', patience=5, mode='max') cp = ModelCheckpoint(filepath=modelpath,monitor='val_loss', save_best_only=True, mode='auto') model.fit(x_train, y_train, epochs=70, batch_size=32, validation_split=0.2, callbacks=[es, cp]) #4. predict, Evaluate loss, acc = model.evaluate(x_test, y_test, batch_size=32) print("loss : ", loss) print("acc : ", acc) print("y_test : ", np.argmax(y_test[-5:-1],axis=1)) y_pred = model.predict(x_test[-5:-1]) print("y_pred : ", np.argmax(y_pred,axis=1)) # CNN # loss : 9.670855522155762 # acc : 0.10000000149011612 # ModelCheckPoint # loss : 1.1197590827941895 # acc : 0.6021000146865845 # y_test : [8 3 5 1] # y_pred : [3 3 3 0] # Conv1D # loss : 1.9518097639083862 # acc : 0.4715999960899353 # y_test : [8 3 5 1] # y_pred : [8 5 5 4]
2e991dce3e99d8bd078e0d06d3f8de2a90e7cec2
cp4011/Algorithms
/New_Interview/排序算法/10_桶排序.py
2,838
4.3125
4
""" 桶排序(Bucket Sort) 1. 设置一个定量的数组当作空桶; 2. 遍历输入数据,并且把数据一个一个放到对应的桶里去; 3. 对每个不是空的桶进行排序; 4. 从不是空的桶里把排好序的数据拼接起来。 桶排序实际上是计数排序的推广,但实现上要复杂许多。 桶排序先用一定的函数关系将数据划分到不同有序的区域(桶)内,然后子数据分别在桶内排序,之后顺次输出。 当每一个不同数据分配一个桶时,也就相当于计数排序。 假设n个数据,划分为k个桶,桶内采用快速排序,时间复杂度为O(n)+O(k * n/k*log(n/k))=O(n)+O(n*(log(n)-log(k))), 显然,k越大,时间复杂度越接近O(n),当然空间复杂度O(n+k)会越大,这是空间与时间的平衡。 桶排序最好情况下使用线性时间O(n),桶排序的时间复杂度,取决与对各个桶之间数据进行排序的时间复杂度, 因为其它部分的时间复杂度都为O(n)。很显然,桶划分的越小,各个桶之间的数据越少,排序所用的时间也会越少。但相应的空间消耗就会增大。 """ def BucketSort(lst): ##############桶内使用快速排序 def QuickSort(lst): def partition(arr, left, right): key = left # 划分参考数索引,默认为第一个数,可优化 while left < right: while left < right and arr[right] >= arr[key]: right -= 1 while left < right and arr[left] <= arr[key]: left += 1 (arr[left], arr[right]) = (arr[right], arr[left]) (arr[left], arr[key]) = (arr[key], arr[left]) return left def quicksort(arr, left, right): # 递归调用 if left >= right: return mid = partition(arr, left, right) quicksort(arr, left, mid - 1) quicksort(arr, mid + 1, right) # 主函数 n = len(lst) if n <= 1: return lst quicksort(lst, 0, n - 1) return lst ###################### n = len(lst) big = max(lst) num = big // 10 + 1 bucket = [] buckets = [[] for i in range(0, num)] for i in lst: buckets[i // 10].append(i) # 划分桶 for i in buckets: # 桶内排序 bucket = QuickSort(i) arr = [] for i in buckets: if isinstance(i, list): for j in i: arr.append(j) else: arr.append(i) for i in range(0, n): lst[i] = arr[i] return lst x = input("请输入待排序数列:\n") y = x.split() arr = [] for i in y: arr.append(int(i)) arr = BucketSort(arr) # print(arr) print("数列按序排列如下:") for i in arr: print(i, end=' ')
bfa2301b4152e8ba54f19eb8afe20514ecb6813e
2KNG/old_freshman
/python_source/수업/210401.py
2,798
3.5
4
# # # # g = [30,10,20] # # # # print(g) # # # # print(g[2]) # # # # import turtle as t # # # # t. shape ('turtle') # # # # t. speed (0) # # # # a=['red','orange','yellow','green','blue','black' ] # # # # t. begin_fill() # # # # for i in range(300): # # # # t. fd(i) # # # # t. rt(i) # # # # if i < len(a): # # # # t. color(a[i]) # # # # else : # # # # t. color(a[i%5]) # # # # t.end_fill() # # # t= {1001:"홍길동", 1002:"이기자"} # # # print(t[1001]) # # # print(t.get(1001)) # # # print(1002 in t) # # # t[1003]="우리집" # # # t[1001]="강아지" # # # print(t) # # # del t[1003] # # # print(t) # # # print(t.keys()) # # # print(t.values()) # # # print(t.items()) # # # print(t) # # # a,b = set(t) # # # print(a) # # # print(b) # # # b=set(a) # # # primt(b) # x = {"홍길동", "최고야", "이기자"} # y = {"최고야", "이민호", "박호보"} # print(x & y) #and # print(x | y) #or # a = x & y # print(a) # b = x | y # print(b) # 순서가 없다 # x.add("단비") # print(x) # k = {"뉸뉴뉴뉸ㄴ뉴ㅠ":"우리집강아지"} # print(k) # x = list(x) # print(x) # y= tuple(y) # print(y) # k['단비'] = '우리집강아지' # print(type(x)) # print(type(y)) # print(type(k)) # from random import* # id = range(1,46) # print(id) # print(type(id)) # id=list(id) # print(type(id)) # print(id) # choice=sample(id,6) # print(choice) # print(choice[0]) # print(choice[1:]) # a, b = map(int, input(). split()) # print(a+b) # print(a-b) # print(a*b) # print(a/b) # print(a//b) # print(a%b) # weather = input("오늘 날씨는 비 or 눈 or 활사") # temp = int(input("기온은 어때요? 정수입력")) # if weather=="비" or weather=="눈": # print("우산준비") # elif weather=="황사": # print("마스크준비") # else : # print("준비물이 필요 없음") ''' 3개의 정수를 입력받아서 평균(점수)을 구한다 평균이 90이상 "A학점:,# 평균이 90이상 "B학점" 평균이 70이상 "C학점, 그외는 "F학점" 출력 평균이 60점 이상이고, 모든 정수가 40점 이상이면 "합격"출력" 평균이 60점 미만이거나, 한 과목이라도 40미만이면 "불합격" 출력 ''' #학번 : 2161110053 #이름 : 김강현 a, b, c = map(int, input().split()) avg = (a+b+c)/3 if 60 <= avg and 40 <= a and 40 <= b and 40 <= c : print("합격") if avg>=90 : print("A학점") elif avg>=80 : print("B학점") elif avg>=70 : print("C학점") else : print("F학점") else : print("불합격") ''' 문제 2. 3개의 정수를 입력받아서 평균을 구하고} 평균이 60점 이상이거, 모든 정수가 40점 이상이면 "합격"출력" 평균이 60점 미만이거나, 한 과목이라도 40미만이면 "불합격" 출력 '''
e42f13fa50de819f49b2a09086aee196a71e1b52
31more/Homework_python_1
/hometask2_ready.py
7,040
4.21875
4
""" For и range, которые мы изучили в предыдущем файле, можно использовать для обращения к элементам списка по индексам. Немного про списки и индексы l = [6,2,5,6,2,1,9] такие индексы 0 1 2 3 4 5 6 Если мы хотим получить доступ к элементам списка, нам необходимо обращаться по индексам. """ print("""Например 3-им элементом списка выше будет: """) l = [6, 2, 5, 6, 2, 1, 9] print(l[3]) ########################################## # TODO задание 1 ########################################## """Выведите 5тый элемент списка""" print("Результат задания 1") l = [6, 2, 5, 6, 2, 1, 9] print(l[4]) ########################################## # конец задания ########################################## """ Так же с помощью обращения по индексу в списке можно не только узнавать значение списка, но и изменять его, например заменим 4ое значение""" print("Старый l ", l) l[4] = 356 print("Новый l", l) """ Теперь увеличим 5ое значение в 2 раза""" print("Старый l", l) l[5] = l[5] * 2 print("Новый l", l) ########################################## # TODO задание 2 ########################################## """Замените предпоследний элемент списка на 10""" print("Результат задания 2") l = [6, 2, 5, 6, 2, 1, 9] print("Старое значение: ", l[5]) l[5] = 10 print("Список после изменения", l) ########################################## # конец задания ########################################## ########################################## # TODO задание 3 ########################################## """Уменьшите первый элемент в 3 раза""" print("Результат задания 3") l = [6, 2, 5, 6, 2, 1, 9] l[0] = int(l[0]/3) print("Список после изменения", l) ########################################## # конец задания ########################################## """ Индексы у списка l любой длинны изменяются от 0 до числа len(l) - 1 То есть выглядят так 0, 1, 2, 3, ..., len(l) с помощью range, который мы рассматривали раньше можно получить набор индексов любого списка Пример:""" print("""Индексами списка l = [9,3,6,2,4,6,2,4,5,3,2,4,6] являются числа: """) l = [9, 3, 6, 2, 4, 6, 2, 4, 5, 3, 2, 4, 6] for i in range(len(l)): print(i) """ в данном случае в range мы начинали с 0, закончили числом len(l)(не включительно) - то есть как раз последним индексом и шли с шагом 1""" print(""" Раз мы можем с помощью такого фора получить доступ ко всем индексам, значит можем взаисодействовать со всеми элементами списка. Например вывести их (как ранее делали другим for)""") l = [9, 3, 6, 2, 4, 6, 2, 4, 5, 3, 2, 4, 6] for i in range(len(l)): print(l[i]) print(""" Или заменить все на 8 """) l = [9, 3, 6, 2, 4, 6, 2, 4, 5, 3, 2, 4, 6] print("Старый l", l) for i in range(len(l)): l[i] = 8 print("Новый l", l) print(""" Или все уменьшить в 4 раза """) l = [9, 3, 6, 2, 4, 6, 2, 4, 5, 3, 2, 4, 6] print("Старый l", l) for i in range(len(l)): l[i] = l[i] / 4 print("Новый l", l) ########################################## # TODO задание 4 ########################################## """Возвести каждый элемент во вторую степень""" print("Результат задания 4") l = [9, 3, 6, 2, 4, 6, 2, 4, 5, 3, 2, 4, 6] for i in range(len(l)): l[i] = l[i]**2 print("Список после изменения", l) ########################################## # конец задания ########################################## ########################################## # TODO задание 5 ########################################## """Вычесть из каждого элемента результат выражения 32/5""" print("Результат задания 5") l = [9, 3, 6, 2, 4, 6, 2, 4, 5, 3, 2, 4, 6] for i in range(len(l)): l[i] -= (32/5) print("Список после изменения", l) ########################################## # конец задания ########################################## print(""" Так же как мы влияли на весь список, так же можно повлиять и на часть, например увеличит вдвое все элементы, кроме первого: """) l = [9, 3, 6, 2, 4, 6, 2, 4, 5, 3, 2, 4, 6] print("Старый l", l) for i in range(1, len(l)): l[i] = l[i] / 4 print("Новый l", l) """ Здесь важна 1 в range - которой раньше не было """ print(""" Или можем работать с элементами с третьего по восьмой, например, заменим их на 8ки """) l = [9, 3, 6, 2, 4, 6, 2, 4, 5, 3, 2, 4, 6] print("Старый l", l) for i in range(3, 8): l[i] = 8 print("Новый l", l) """ Стоит обратить внимание на изменения в range """ ########################################## # TODO задание 6 ########################################## """Прибить к первым 5-ти элементам 16""" print("Результат задания 6") l = [9, 3, 6, 2, 4, 6, 2, 4, 5, 3, 2, 4, 6] for i in range(0, 5): l[i] = 16 print("Список после изменения", l) ########################################## # конец задания ########################################## ########################################## # TODO задание 7 ########################################## """Возвести в степень самого себя (a**a) числа с индексами от 7 до 11""" print("Результат задания 7") l = [9, 3, 6, 2, 4, 6, 2, 4, 5, 3, 2, 4, 6] for i in range(7,12): l[i] = l[i]**l[i] print("Список после изменения", l) ########################################## # конец задания ##########################################
acace5e89b8c239d29084761f8075c429f73c18d
z627797668/PAT-B.py
/1001.py
117
3.734375
4
n=input() ans=0 n=int(n) while n!=1: ans+=1 if n%2==0: n/=2 else: n=(3*n+1)/2 print(ans)
1c8e7c54e3e4071a478ba158a0af43e59102579e
PeterL64/UCDDataAnalytics
/5_Data_Manipulation_With_Pandas/2_Aggregating_Data/6_One_Method_Of_Calculating_Proportion_By_Subsetting_And_Summing.py
931
3.859375
4
# What percentage of sales occurred at each store type # Calculating grouped summary statistics without using the .groupby() method # From the sales DataFrame, Walmart has three different store types, A, B and C import pandas as pd # Calculate the total weekly_sales over the whole dataset. sales_all = sales["weekly_sales"].sum() # Subset for type A stores, calc total weekly sales sales_A = sales[sales["type"] == "A"]["weekly_sales"].sum() # .agg(sum) gives the same answer # Subset for type B stores, calc total weekly sales sales_B = sales[sales['type'] == 'B']['weekly_sales'].sum() # Subset for type C stores, calc total weekly sales sales_C = sales[sales['type'] == 'C']['weekly_sales'].sum() # Get proportion for each type # Combine the A/B/C results into a list, and divide by sales_all to get the proportion of sales by type sales_propn_by_type = [sales_A, sales_B, sales_C] / sales_all print(sales_propn_by_type)
232feb2fa72867a5ce9c6ae0c3e4f95332383aa2
hysz/leetcode
/longest_substring.py
1,885
3.640625
4
class Solution: def lengthOfLongestSubstring(self, s: str) -> int: ''' We construct a lookup table that allows you to query for next occurence of a character. We use len(s) to denote a non-existent index. Ex for string "abab" { "a: { 0: 2, 2: len(s), -1: 2 // Used to lookup furthest occurence }, "b": { 1: 3, 3: len(s) } } ''' # construct lookup lookup = {} for i,c in enumerate(s): if not c in lookup: lookup[c] = {} l = lookup[c] l[i] = len(s) l[-1] = i else: l = lookup[c] l[l[-1]] = i l[i] = len(s) l[-1] = i # We trying forming a substring from each index `i` in `s`, # using the lookup table to exit once we hit a repeated character. longest_substr_len = 0 longest_substr_len_from_i = 0 for i,c in enumerate(s): idx_of_next_repeating_char = lookup[c][i] j = i + 1 while j < idx_of_next_repeating_char: idx_of_next_repeating_char = min(idx_of_next_repeating_char, lookup[s[j]][j]) j += 1 longest_substr_len_from_i = j - i if longest_substr_len_from_i > longest_substr_len: longest_substr_len = longest_substr_len_from_i return longest_substr_len #print(Solution().lengthOfLongestSubstring("")) #print(Solution().lengthOfLongestSubstring("a")) #print(Solution().lengthOfLongestSubstring("abab")) #print(Solution().lengthOfLongestSubstring("abcabcbb"))
f9fa69f4d89dae8293c108caacbb123fa4f2244c
quake0day/oj
/sortColors2.py
1,191
3.609375
4
import sys class Solution: """ @param colors: A list of integer @param k: An integer @return: nothing """ def sortColors2(self, colors, k): # write your code here count = 0 start = 0 end = len(colors) - 1 while count < k: minium = sys.maxint maxium = -minium - 1 for i in xrange(start, end): minium = min(minium, colors[i]) maxium = max(maxium, colors[i]) left = start right = end cur = left while cur <= right: if colors[cur] == minium: colors = self.swap(left, cur, colors) cur += 1 left += 1 elif colors[cur] > minium and colors[cur] < maxium: cur += 1 else: colors = self.swap(cur, right, colors) right -= 1 count += 2 start = left end = right return colors def swap(self, left, right, colors): tmp = colors[left] colors[left] = colors[right] colors[right] = tmp return colors a = Solution() print a.sortColors2([8,1,10,1,8,8,2,4,9,3,8,1,3,3,6,2,5,1,1,7,1,1,3,9,6,4,6,6,7,2], 10)
d2ee85b8419cce79cfaeadfc47dab7797ade8948
mjefris16/Muhammad-Jefri-Saputra_I0320066_M-Abyan-Naufal_Tugas7
/I0320066_soal1_tugas7.py
996
3.765625
4
print("="*40) judul = "Program Kalimat Sapaan" center = judul.center(40,"*") print(center) print("="*40) Nama = input("Siapa nama anda: ") kapital = Nama.capitalize() print("Nama anda adalah: ", kapital) sapaan = input("Masukkan kalimat sapaan anda: ") print("Kalimat sapaan anda: ", sapaan) print("Jumlah huruf kalimat sapaan anda: ", len(sapaan), "huruf") sapaan1 = sapaan.upper() sapaan2 = sapaan.lower() print("Kalimat sapaan anda dalam huruf kapital: ", sapaan1) print("Kalimat sapaan anda dalam huruf kecil: ", sapaan2) a = sapaan.count("a") i = sapaan.count("i") u = sapaan.count("u") e = sapaan.count("e") o = sapaan.count("o") print("Jumlah huruf a dalam kalimat sapaan anda = ", a, "huruf") print("Jumlah huruf i dalam kalimat sapaan anda = ", i, "huruf") print("Jumlah huruf u dalam kalimat sapaan anda = ", u, "huruf") print("Jumlah huruf e dalam kalimat sapaan anda = ", e, "huruf") print("Jumlah huruf o dalam kalimat sapaan anda = ", o, "huruf")
6b937beba87cf764239e14aa690e81771e6ac0dd
Eric-Wonbin-Sang/CS110Manager
/2020F_final_project_submissions/madireddysaumit/7395236_main-1.py
1,914
3.5625
4
import csv import matplotlib.pyplot as plt import yfinance as yf date_list = [] price_list = [] with open("NFLX.csv") as csv_file: for row in list(csv.reader(csv_file))[2:]: print() print(row[0]) date_list.append(row[0]) price_list.append(float(row[4])) with open("AAPL.csv") as csv_file: for row in list(csv.reader(csv_file))[2:]: print() print(row[0]) date_list.append(row[0]) price_list.append(float(row[4])) with open("DIS.csv") as csv_file: for row in list(csv.reader(csv_file))[2:]: print() print(row[0]) date_list.append(row[0]) price_list.append(float(row[4])) with open("AMZN.csv") as csv_file: for row in list(csv.reader(csv_file))[2:]: print() print(row[0]) date_list.append(row[0]) price_list.append(float(row[4])) def get_date_list_and_price_list_from_csv(NFLX): date_list, close_list = [], [] with open(csv_file_path) as csv_file: for row in list(csv.reader(csv_file))[1:]: date_list.append(row[0]) close_list.append(float(row[4])) return date_list, close_list def get_date_list_and_price_list_from_csv(AAPL): date_list, close_list = [], [] with open(csv_file_path) as csv_file: for row in list(csv.reader(csv_file))[1:]: date_list.append(row[0]) close_list.append(float(row[4])) return date_list, close_list def get_date_list_and_price_list_from_csv(DIS): date_list, close_list = [], [] with open(csv_file_path) as csv_file: for row in list(csv.reader(csv_file))[1:]: date_list.append(row[0]) close_list.append(float(row[4])) return date_list, close_list plt.plot(date_list, price_list) plt.xlabel("Date") plt.ylabel("Closing price") plt.title("Best Streaming Stocks") plt.xticks(rotation=90) plt.show()
ae359eab5722da60127ec70c3fe15ce3df7c4567
Dolantinlist/DolantinLeetcode
/1-50/4*_median_of_arrays.py
1,047
3.59375
4
#There are two sorted arrays nums1 and nums2 of size m and n respectively. #Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). class Solution: def findMedianSortedArrays(self, nums1, nums2): l = len(nums1) + len(nums2) if l%2: return self.find_kth(nums1, nums2, l//2) else: return (self.find_kth(nums1, nums2, l//2 - 1) + self.find_kth(nums1, nums2, l//2))/2 def find_kth(self, a, b, k): if not a: return b[k] if not b: return a[k] ia, ib = len(a)//2, len(b)//2 ma, mb = a[ia], b[ib] if ia + ib < k: if ma > mb: return self.find_kth(a, b[ib+1:], k - ib - 1) else: return self.find_kth(a[ia+1:], b, k - ia - 1) else: if ma > mb: return self.find_kth(a[:ia], b, k) else: return self.find_kth(a, b[:ib], k) print(Solution().findMedianSortedArrays([1,2], [3,4]))
98028f9379448d78e7c7fe5a0109d8c6947bdcc4
paolofrd/PROBLEM-5
/PROBLEM5.py
1,836
3.59375
4
import math #for user-inputs with lib-dependent characteristics import matplotlib.pyplot as plt import matplotlib.patches as mpatch user = input('Input function x(n): ') reses = [] #storage xn = [] #storage of x(n) variables gibx = list(range(0,200)) #y(n) for n in range (0,200): #y(n) = -1.5x(n) + 2x(n + 1) - 0.5x(n+2) if n == 0: #convert string input into a formula that python can utilize n0 = -1.5*(eval(user)) #evaluate x(n) where n = 0, the result will then be multiplied to -1.5 n = n + 1 #x(n + a); in this case, a = 1 nm1 = 2*(eval(user)) n = n + 2 nm2 = -.5*(eval(user)) res1 = n0 + nm1 + nm2 #compilation of formulas reses.append(res1) #storing of all values of y(n) into a single list #y(n) = 0.5x(n + 1) - 0.5x(n-1) elif n > 0 and n <= 198: n = n + 1 n0 = .5*(eval(user)) n = n - 1 nm1 = -.5*(eval(user)) res2 = n0 + nm1 reses.append(res2) #y(n) = 1.5x(n) - 2x(n - 1) + 0.5x(n - 2) elif n == 199: n0 = 1.5*(eval(user)) n = n - 1 nm1 = -2*(eval(user)) n = n - 2 nm2 = .5*(eval(user)) res3 = n0 + nm1 + nm2 reses.append(res3) break #just in case the program enters an endless loop #x(n) / user-defined function for n in range(0,200): xn.append(eval(user)) #evaluate x(n) with values of n ranging from 0 to 199 #plotting plt.grid() #add grid plt.xlabel('n elements') plt.ylabel('x and y elements') plt.plot(gibx,reses) plt.plot(gibx,xn) blu = mpatch.Patch(color = 'blue', label = 'y(n)') #add custom legend orange = mpatch.Patch(color = 'orange', label = 'x(n)') plt.legend(handles = [blu,orange]) #apply legend to graph plt.show() #show graph
0192eaedd7405159c4b68c5501b620ee6f0588a9
occ010/aoc2019
/day3/part1.py
3,269
4
4
def main(): wire1 = [] wire2 = [] with open("input", 'r') as fp: wire1 = parse_coordinates(fp.readline()) wire2 = parse_coordinates(fp.readline()) # Loop through all the line segments in wire1 and wire2 to see where they intersect intersections = [] for i in range(len(wire1) - 1): for j in range(len(wire2) - 1): p1 = wire1[i] q1 = wire1[i + 1] p2 = wire2[j] q2 = wire2[j + 1] if (lines_intersect(p1, q1, p2, q2)): intersections.append(calculate_intersection(p1, q1, p2, q2)) print("The two wires intersect at the following points:") print (intersections) min_dist = 0 for point in intersections: dist = calculate_manhattan_dist(point) if (min_dist == 0): min_dist = dist elif (min_dist > dist): min_dist = dist print("Closest intersection is at distance of {}.".format(min_dist)) def parse_coordinates(line): paths = line.split(',') x = y = 0 coordinates = [(x, y)] for path in paths: direction = path[0:1] distance = int(path[1:]) if direction == 'D': y -= distance elif direction == 'U': y += distance elif direction == 'L': x -= distance elif direction == 'R': x += distance coordinates.append((x, y)) return coordinates def lines_intersect(p1, q1, p2, q2): ''' Checks if the two line segments given by (p1, q1) and (p2, q2) intersects. Adapted from https://www.geeksforgeeks.org/check-if-two-given-line-segments-intersect/ ''' o1 = orientation(p1, q1, p2) o2 = orientation(p1, q1, q2) o3 = orientation(p2, q2, p1) o4 = orientation(p2, q2, q1) intersect = False # general case if (o1 != o2 and o3 != o4): intersect = True # Ignore colinear cases for purposes of this puzzle return intersect def orientation(p, q, r): ''' Checks orientation of ordered triplet (p, q, r). Returns: 0 --> points are colinear 1 --> clockwise 2 --> counter-clockwise ''' value = (q[1] - p[1]) * (r[0] - q[0]) value -= (q[0] - p[0]) * (r[1] - q[1]) if (value == 0): return 0 elif (value >0): return 1 else: return 2 def calculate_intersection(p1, q1, p2, q2): ''' Calculates the intersection point of line segments (p1, q1) and (p2, q2). Adapted from https://stackoverflow.com/a/1968345 ''' s1_x = q1[0] - p1[0] s1_y = q1[1] - p1[1] s2_x = q2[0] - p2[0] s2_y = q2[1] - p2[1] s = (-s1_y * (p1[0] - p2[0]) + s1_x * (p1[1] - p2[1])) / (-s2_x * s1_y + s1_x * s2_y) t = ( s2_x * (p1[1] - p2[1]) - s2_y * (p1[0] - p2[0])) / (-s2_x * s1_y + s1_x * s2_y) (x, y) = (0, 0) if (s >= 0 and s <= 1 and t >= 0 and t <= 1): # Collision detected x = p1[0] + (t * s1_x) y = p1[1] + (t * s1_y) return (x, y) def calculate_manhattan_dist(p): ''' Calculates the Manhattan distance for a given point (p) from origin (0,0) ''' return int(abs(p[0]) + abs(p[1])) if __name__ == "__main__": main()
55bdeabb0b264434185d0b96b67df82699a315ca
swairshah/ml
/sampling/error_estimate.py
1,960
3.546875
4
# Sampling uniformly to calculate error wrt optimal model # vs sampling with Importance sampling to calculate error wrt # optimal model. Does one give a 'better' estimate than the other? import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn import datasets from sklearn.datasets import make_regression np.random.seed(0) m = 10000 n = 50 I = 100 r = 10 weighted = True X, y, coef = make_regression(n_samples = m, n_features = n, noise = 10, coef = True) lm = LinearRegression() lm.fit(X,y) y_pred = lm.predict(X) e = (y - y_pred)**2 w = e/np.sum(e) err_base = np.mean(e) # uniform sampling unif_errors = [] for i in range(I): idx = np.random.randint(0,len(X),size=r) X1 = X[idx,:] y1 = y[idx] err = np.mean((lm.predict(X1) - y1)**2) unif_errors.append(err) # importance sampling imp_errors = [] for i in range(I): idx = np.random.choice(range(len(X)), r, p = w) w1 = w[idx] if weighted: X1 = X[idx,:]/(m*w1[:,None])**0.5 y1 = y[idx]/(m*w1)**0.5 else: X1 = X[idx,:] y1 = y[idx] e = np.mean((lm.predict(X1) - y1)**2) # The following should be equlivalent to # dividing x and y by sqrt(m*w1), since we are # dividing the final error by m*w1. # doesn't give the same answer. #X1 = X[idx,:] #y1 = y[idx] #e = np.mean((lm.predict(X1) - y1)**2) #if weighted: # e = e/(m*w1) imp_errors.append(e) print "base error: %.2f" % err_base print "imp err", np.mean(imp_errors), "uni err", np.mean(unif_errors) #print "variance importance %.2f" % np.var(imp_errors) #print "variance uniform %.2f" % np.var(unif_errors) print "variance importance %.2f" % np.mean((imp_errors - err_base)**2) print "variance uniform %.2f" % np.mean((unif_errors - err_base)**2) #plt.subplot(211) #plt.hist(unif_errors, color="blue") #plt.subplot(212) #plt.hist(imp_errors, color="orange") #plt.show()
4f09bc904bbd8c7b7ba00bddbb5efc38ace9d707
gsy/leetcode
/employee_importance.py
1,180
3.640625
4
# Employee info class Employee: def __init__(self, id, importance, subordinates): # It's the unique id of each node. # unique id of this employee self.id = id # the importance value of this employee self.importance = importance # the id of direct subordinates self.subordinates = subordinates class Solution: def getImportance(self, employees, id): """ :type employees: Employee :type id: int :rtype: int """ # 广度遍历,找到所有的下属,然后加上重要性 mapping = {} for employee in employees: mapping[employee.id] = employee ids = [id] total = 0 while len(ids) > 0: current = mapping[ids.pop(0)] total = total + current.importance ids = ids + current.subordinates return total if __name__ == "__main__": s = Solution() r = s.getImportance([Employee(1, 5, [2, 3]), Employee(2, 3, []), Employee(3, 3, [])], 1) assert r == 11 r = s.getImportance([Employee(1, 15, [2]), Employee(2, 10, [3]), Employee(3, 5, [])], 1) assert r == 30
5186fc54db1173b8c5a1db6731fba7ccbbe117ad
jbro321/Python_Basic_Enthusiastic
/Python_Basic_Enthusiastic/Chapter_07/P_07_1_5.py
457
3.78125
4
# Enthusiastic_Python_Basic #P_07_1_5 def main(): num = int(input("값을 입력하세요: ")) if num < 0: print("입력한 값은 0보다 작습니다.") elif 0 <= num < 10: #파이썬만 가능한 수식 print("입력한 값은 0 이상 10 미만입니다.") elif 10 <= num < 20: print("입력한 값은 10 이상 20 미만입니다.") else: print("입력한 값은 20 이상입니다.") print(main())
4443e279d14f83abdf021cd0c0362d40184a259c
Hellofafar/Leetcode
/Medium/681.py
3,468
3.765625
4
# ------------------------------ # 681. Next Closest Time # # Description: # Given a time represented in the format "HH:MM", form the next closest time by reusing the current digits. # There is no limit on how many times a digit can be reused. # # You may assume the given input string is always valid. For example, "01:34", "12:09" are all valid. # "1:34", "12:9" are all invalid. # # Example 1: # Input: "19:34" # Output: "19:39" # Explanation: The next closest time choosing from digits 1, 9, 3, 4, is 19:39, which occurs 5 minutes later. # It is not 19:33, because this occurs 23 hours and 59 minutes later. # # Example 2: # Input: "23:59" # Output: "22:22" # Explanation: The next closest time choosing from digits 2, 3, 5, 9, is 22:22. It may be assumed that the # returned time is next day's time since it is smaller than the input time numerically. # # Version: 1.0 # 10/25/17 by Jianfa # ------------------------------ import itertools class Solution(object): def nextClosestTime(self, time): """ :type time: str :rtype: str """ h1 = int(time[0]) h2 = int(time[1]) m1 = int(time[3]) m2 = int(time[4]) nums = [h1, h2, m1, m2] groups = itertools.permutations(nums, 2) # Check if there exists minutes that in the range (m1m2, 59] candidates = [10 * x[0] + x[1] for x in groups] candidates.extend([10 * h1 + h1, 10 * h2 + h2, 10 * m1 + m1, 10 * m2 + m2]) candidates = list(set(candidates)) candidates.sort() mm = 10 * m1 + m2 mm_idx = candidates.index(mm) if mm_idx + 1 < len(candidates) and candidates[mm_idx + 1] <= 59: new_mm = candidates[mm_idx + 1] if new_mm < 10: return "%d%d:%d%d" % (h1, h2, 0, new_mm) else: return "%d%d:%d" % (h1, h2, new_mm) # Check other hours hh = 10 * h1 + h2 hh_idx = candidates.index(hh) # If exist hour in (h1h2, 23] if hh_idx + 1 < len(candidates) and candidates[hh_idx + 1] <= 23: new_hh = candidates[hh_idx + 1] new_mm = candidates[0] if new_hh < 10: new_hh = "0%d" % new_hh else: new_hh = str(new_hh) if new_mm < 10: new_mm = "0%d" % new_mm else: new_mm = str(new_mm) return new_hh + ":" + new_mm # If not exist hour in (h1h2, 23] else: new_hh = new_mm = candidates[0] if new_hh < 10: return "%d%d:%d%d" % (0, new_hh, 0, new_mm) else: return str(new_hh) + ":" + str(new_mm) # Used for test if __name__ == "__main__": test = Solution() time = "21:56" print(test.nextClosestTime(time)) # ------------------------------ # Summary: # My idea is to check the hour at first, then check the minutes. Assume original time is h1h2:m1m2 # For the same hour, if there exists a minute combination mimj that in the range (m1m2, 59], then return h1h2:mimj # If not, then check another hour. # If there exists a hour combination hihj that in the range (h1h2, 23], then find the smallest combination mimj, # return hihj:mimj. # If no hour in (h1h2, 23], find the smallest combination ninj, return ninj:ninj. Actually ni/nj should be the same.
f45ec95b7b2e24120bb6ca3bdb7196c2c13fb0c1
thiago-allue/portfolio
/02_ai/1_ml/3_data_preparation/code/chapter_16/05_cart_regression.py
637
3.84375
4
# decision tree for feature importance on a regression problem from sklearn.datasets import make_regression from sklearn.tree import DecisionTreeRegressor from matplotlib import pyplot # define dataset X, y = make_regression(n_samples=1000, n_features=10, n_informative=5, random_state=1) # define the model model = DecisionTreeRegressor() # fit the model model.fit(X, y) # get importance importance = model.feature_importances_ # summarize feature importance for i,v in enumerate(importance): print('Feature: %0d, Score: %.5f' % (i,v)) # plot feature importance pyplot.bar([x for x in range(len(importance))], importance) pyplot.show()
c0ec19829fe70224b31690c061a7cec76a64238c
CatPhD/JSC_Python
/Day 1/W3/Sols/p4.py
169
3.953125
4
a = float(input('Enter a: ')) b = float(input('Enter b: ')) c = float(input('Enter c: ')) R =((a+b>c) and (b+c>a) and (c+a>b)) print('Is this a triangle?:', R)
5ddea5ba935f16553b8466628f392a36f8debfba
Shobhit-hub/infomation-security-assignment-1
/additive cypher.py
1,832
4.03125
4
#Program for Additive Cypher #function to encode def encode(text,shift): result="" for i in range(0,len(text)): if text[i]>='a' and text[i]<='z': result+=chr(((ord(text[i])-ord('a')+shift)%26)+ord('a')) elif text[i]>='A' and text[i]<='Z': result+=chr(((ord(text[i])-ord('A')+shift)%26)+ord('A')) else: result+=text[i] return result #function to decode def decode(text,shift): result="" for i in range(0,len(text)): if text[i]>='a' and text[i]<='z': result+=chr(((ord(text[i])-ord('a')-shift)%26)+ord('a')) elif text[i]>='A' and text[i]<='Z': result+=chr(((ord(text[i])-ord('A')-shift)%26)+ord('A')) else: result+=text[i] return result def main(): while True: print("MENU") print("1.Encode") print("2.Decode") print("3.Exit") while True: try: choice=int(input('Enter choice: ')) if choice <1 or choice >3: print("Input not in range 1-3 !! Try Again") continue break except: print("Invalid Choice") if choice<3: text=input("Enter a string : ") #Input string while True: try: shift=int(input('Enter shift: ')) #input shift break except: print("Please enter a number") if choice==1: print("Encoded String : ",encode(text,shift)) elif choice==2: print("Decoded String : ",decode(text,shift)) else: break main()
f324c7c89a0153d73b1c2f6041a5ed728c9228f5
Ebyy/python_projects
/Files/Refactoring.py
480
3.6875
4
import json filename = 'username.json' def greet_user(): """Initiate code to greet user.""" try: with open(filename) as f_object: username = json.load(f_object) except FileNotFoundError: username = input("What is your username? ") with open(filename,'w') as f_object: json.dump(username,f_object) print("We'll remember you next time!") else: print("Welcome back " + username + "!") greet_user()
ca770131f4604f4355ac9e429073c69ef300cc5c
phlalx/algorithms
/leetcode/523.continuous-subarray-sum.py
1,697
3.671875
4
# # @lc app=leetcode id=523 lang=python3 # # [523] Continuous Subarray Sum # # https://leetcode.com/problems/continuous-subarray-sum/description/ # # algorithms # Medium (24.24%) # Likes: 1107 # Dislikes: 1559 # Total Accepted: 110K # Total Submissions: 449.6K # Testcase Example: '[23,2,4,6,7]\n6' # # Given a list of non-negative numbers and a target integer k, write a function # to check if the array has a continuous subarray of size at least 2 that sums # up to a multiple of k, that is, sums up to n*k where n is also an # integer. # # # # Example 1: # # # Input: [23, 2, 4, 6, 7], k=6 # Output: True # Explanation: Because [2, 4] is a continuous subarray of size 2 and sums up to # 6. # # # Example 2: # # # Input: [23, 2, 6, 4, 7], k=6 # Output: True # Explanation: Because [23, 2, 6, 4, 7] is an continuous subarray of size 5 and # sums up to 42. # # # # # Note: # # # The length of the array won't exceed 10,000. # You may assume the sum of all the numbers is in the range of a signed 32-bit # integer. # # # # @lc code=start #TAGS variant on 2-sum # # Several tricks # 1. reduce to two-sum with partial sums and mod k # 2. corner case % k # 3. sub array length >= 2, imply to maintain cur and cur_prev # see 974 for a simpler variant class Solution: def checkSubarraySum(self, nums: List[int], k: int) -> bool: n = len(nums) prev = {0} cur_prev = 0 cur = nums[0] % k if k else nums[0] for i in range(1, n): tmp = cur + nums[i] cur_prev, cur = cur, (tmp % k if k else tmp) if cur in prev: return True prev.add(cur_prev) return False # @lc code=end
435d913d035c7b65722ed1e4a780ed74d54a0fcf
mrinmayig/Python-data-structures-and-algorithms
/findminele.py
509
3.84375
4
#Given an array of length N find the minimum element in the array def minElem(arr): curr_num=0 min_num=arr[0] for i in range(1,len(arr)): curr_num=arr[i] if curr_num < min_num: min_num=curr_num return min_num #Given an array of length N find the maximum element in the array def maxElem(arr): curr_num=0 max_num=arr[0] for i in range(1,len(arr)): curr_num=arr[i] if curr_num > max_num: max_num=curr_num return max_num
0fed8ae7a5af8de3b4341cc637f33a309482effc
allyshoww/python-examples
/exemplos/ex6.py
712
3.6875
4
#!/usr/bin/python carrinho = [] produto1 = {"nome": "Tenis", "valor": 21.70} produto2 = {"nome": "Meia", "valor": 10} produto3 = {"nome": "Camiseta", "valor": 17.30} produto4 = {"nome": "Calca", "valor": 100.00} carrinho.append(produto1) carrinho.append(produto2) carrinho.append(produto3) carrinho.append(produto4) def totalCarrinho(carrinho): return sum(produto["valor"] for produto in carrinho) def cupomDesconto(cupom=""): if cupom == "xyzgratis": return 0.50 else: return 1 print("o total da sua compra e: ", (totalCarrinho(carrinho)*cupomDesconto())) print("utilizando o cupom xyzgratis o valor sera de ", (totalCarrinho(carrinho)*cupomDesconto("xyzgratis")))
a8a1432aced1f46d13b3f3988bad93f5dd49ac72
ZhouZiXuan-imb/pythonCourse
/python_Day09-字符串/03-字符串的模拟用户注册案例.py
344
3.75
4
count = 0 while (True): username = input('请输入用户名:') password = input('请输入密码:') result = username.find(password) if (count >= 5): print('今日不能再次注册') break if (result != -1): print('请重新输入') count += 1 else: print('登陆成功')
715262b2ba6193bcd68fb4b73b73c2dabb1fa3ba
koshikka/assingment1
/a1_t1_4.py
134
3.5625
4
def c_to_k(c): k = c + 273.15 return k c = 27.0 k = c_to_k(c) print ("celsius of" + str(c) + "is" + str(k) + "in kelvin")
d2cc82ee4b5eb82e4ad11c407d66dd12527c35ec
qumc8642/data_science_questionaire
/q2.py
701
3.75
4
import pandas as pd import numpy as np # The most important part of this dataset seems to be the salary, data = pd.read_csv('data.csv') imputed_data = data #Impute the salary with the mean on the data (there are some 0s check for nan too) salary = data['Salary'] mean = np.mean(salary) index = 0 bad_indexes = [] for number in salary: if number == np.nan or float(number) == 0.0: data.iloc[index, 2] = mean.round() index = index + 1 # Data after values have been imputed with the mean. print(data) # get some one hot encodes staff_status_one_hot = pd.get_dummies(data['Employee Status']) position_title_one_hot = pd.get_dummies(data['Position Title']) print(position_title_one_hot)
c9990236f7693bd7be5cfbd206be54fd97f43fe5
mikeykh/prg105
/12.3 Recursive Power Method.py
612
4.3125
4
# Design a function that uses recursion to raise a number to a power. The function should accept two arguments: the number to be raised and the exponent. Assume that the exponent is a positive integer. def main(): # Get the product of the base raised to the exponent x = get_power(3, 4) # Displays the product print(x) # The get_power function accepts two arguments, base and exp # and returns the product of base raised to exp def get_power(base, exp): if exp == 0: return 1 else: exp -= 1 return base * get_power(base, exp) # Call the main function main()
ba78696042f255ea658e195f8413dd2780678280
loki-ppl/caesar-cipher
/caesar.py
1,868
3.9375
4
cifra = 3 alfabeto = "abcdefghijklmnopqrstuvwxyz" letras = 26 new_texto = [] new_texto2 = [] texto = "" resultado = "" menu = True while menu == True: opcao = input("\nDigite 1 para Cifrar\nDigite 2 para Decifrar\nDigite 3 para mudar a Cifra\nDigite 0 para Sair\n") # ============================= Cifrar ============================= if opcao == '1': new_texto = [] texto = input("Digite o texto a ser cifrado: ") for i in range(len(texto)): cifrar = ord(texto[i]) + cifra if cifrar > 122: cifrar = cifrar - letras cifrar = chr(cifrar) new_texto.append(cifrar) resultado = ''.join(new_texto) print("\nTexto cifrado: ", resultado) # ============================= Decifrar ============================= elif opcao == '2': new_texto = [] texto = input("Digite o texto a ser decifrado: ") for k in range(len(alfabeto)): new_texto = [] for i in range(len(texto)): decifrar = ord(texto[i]) + k if decifrar > 122: decifrar = decifrar - letras decifrar = chr(decifrar) new_texto.append(decifrar) new_texto2.insert(k, new_texto) new_texto2[k] = ''.join(new_texto) print("Texto decifrado ",k+1,": ", new_texto2[k]) elif opcao == '3': print("Valor atual da cifra: ", cifra) cifra = int(input("Digite o novo valor para a cifra:")) print("Valor da cifra alterado para: ", cifra) # ================================ END ================================= elif opcao == '0': menu = False
275d7652eb50cdd4d8148d9d3c465022ecf14013
niralpokal/amazon_orders
/csvparser.py
271
3.53125
4
import csv def parsecsv(filename): with open(filename, newline='') as csvfile: parsedcsv = [] ordersreader = csv.reader(csvfile, delimiter=',', quotechar='|') for row in ordersreader: parsedcsv.append(row) return parsedcsv
80e7a9468b0b4b86dfb4cdc08131d60eb46c43eb
brianhuynh2021/Python-Crash-Course
/apostrophe.py
651
3.53125
4
# Avoiding Syntax Errors with Strings # One kind of error that you might see with some regularity is a syntax error. # A syntax error occurs when Python doesn’t recognize a section of your pro- # gram as valid Python code. For example, if you use an apostrophe within # single quotes, you’ll produce an error. This happens because Python inter- # prets everything between the first single quote and the apostrophe as a # string. It then tries to interpret the rest of the text as Python code, which # causes errors. msg = "One of Python's strengths is its diverse community." print(msg) msg = 'One of Python's strengths is its diverse community.'
bd8c35eaf5bd3cfacef28ba4dfd57789dc457824
nishantchaudhary12/Starting-with-Python
/Chapter 5/StringRepeater.py
270
4.15625
4
#string repeater string = input('Enter the string: ') number = int(input('Enter the number of times you want to print the string: ')) def string_print(x, y): for num in range(y): print(x,end='') if __name__ == '__main__': string_print(string,number)
2860e405f1620859125218b7dc77e4df93dae195
kimmorsha/MarawiSiegeTweetsEmotionAnalysis
/marawi_tweets_with_location/marawi_tweets_august/official/initial_preprocessed/rename.py
660
3.65625
4
import os """ Renames the filenames within the same directory to be Unix friendly (1) Changes spaces to hyphens (2) Makes lowercase (not a Unix requirement, just looks better ;) Usage: python rename.py """ path = os.getcwd() filenames = os.listdir(path) print(path) num = 8 for filename in filenames: print(filename) if f if num < 9: num = num + 1 new_filename = "marawi_tweets_08_0" + str(num) + ".csv" os.rename(filename, new_filename) elif num == 13 or num == 14 or num == 23 or num == 24 or num == 25 or num == 26: pass else: num = num + 1 new_filename = "marawi_tweets_08_" + str(num) + ".csv" os.rename(filename, new_filename)
7d16a609305084006db9bfd1e0313998a2e02d7d
jjdshrimpton/PythonJunk
/Sorting Visualiser2.py
8,472
3.609375
4
import math from tkinter import * from random import randint, shuffle, sample from time import sleep root = Tk() root.title("Sorting Algorithms Visualiser") sortType = StringVar() menuText = StringVar() colourOptions = ["Red", "Green", "Blue", "Monochrome", "Random"] #Initialises the necessary functions based on entered parameters into the form. def go(): global sortType myText.delete("1.0",END) #Creates a random set of data based on selected parameters. data = [] quantity = int(myScaleQuantity.get()) rangeMax = int(myScaleRangeMax.get()) for i in range(quantity): data.append(randint(0,rangeMax)) #Runs the appropriate function based on which radio button for types of sort has been selected if sortType.get() == "Bubble": bubble_sort(data,rangeMax) elif sortType.get() == "Bogo": bogo_sort(data,rangeMax) elif sortType.get() == "Cocktail": cocktail_shaker_sort(data,rangeMax) #Takes in a value and a max value and returns a hex colour code of corresponding intensity. e.g. 23/100 = 23% brightness on RGB. def get_colour(value,rangeMax): global menuText activeColour = menuText.get() hexIntensity = str(hex(int(math.floor(float(value)/float(rangeMax)*255)))[2:]) while len(hexIntensity) < 2: hexIntensity = "0" + hexIntensity if activeColour == "Red": return "#" + hexIntensity + "0000" elif activeColour == "Green": return "#00" + hexIntensity + "00" elif activeColour == "Blue": return "#0000" + hexIntensity elif activeColour == "Monochrome": return "#" + hexIntensity + hexIntensity + hexIntensity else: return "#" + "".join(sample("0123456789ABCDEF",6)) #Bubble sort function, takes in a set of data and the maximum value this data can be (used for some calculations regarding geometry) def bubble_sort(data,rangeMax): iterations = 1 #This simply inverts the speed selection (e.g. speed 100 leads to a sleep of 0, speed 1 leads to a sleep of 1 second, speed 50 leads to a sleep of 0.5 second) speed = (100-myScaleSpeed.get()) / 100 sorted = False while sorted == False: changeMade = False #log to the screen the current state of the data array myText.delete("1.0",END) myText.insert(END,"Iteration " + str(iterations) + ": " + str(data)+"\n") for i in range(0,len(data)-1): if data[i] > data[i+1]: buffer = data[i] data[i] = data[i+1] data[i+1] = buffer changeMade = True iterations += 1 plot_boxes(data,rangeMax) sleep(speed) if changeMade == False: sorted = True myText.insert(END, "Sort completed after " + str(iterations) + " iterations.") #Bubble sort function, takes in a set of data and the maximum value this data can be (used for some calculations regarding geometry) def cocktail_shaker_sort(data,rangeMax): iterations = 1 #This simply inverts the speed selection (e.g. speed 100 leads to a sleep of 0, speed 1 leads to a sleep of 1 second, speed 50 leads to a sleep of 0.5 second) speed = (100-myScaleSpeed.get()) / 100 sorted = False while sorted == False: changeMade = False #log to the screen the current state of the data array myText.delete("1.0",END) myText.insert(END,"Iteration " + str(iterations) + ": " + str(data)+"\n") #first parse over data for i in range(0,len(data)-1): if data[i] > data[i+1]: buffer = data[i] data[i] = data[i+1] data[i+1] = buffer changeMade = True iterations += 1 plot_boxes(data,rangeMax) sleep(speed) myText.delete("1.0",END) myText.insert(END,"Iteration " + str(iterations) + ": " + str(data)+"\n") #return parse over data for i in range(len(data)-1,0,-1): if data[i] < data[i-1]: buffer = data[i] data[i] = data[i-1] data[i-1] = buffer changeMade = True iterations += 1 plot_boxes(data,rangeMax) sleep(speed) if changeMade == False: sorted = True myText.insert(END, "Sort completed after " + str(iterations) + " iterations.") #Randomly re-orders the numbers over and over until they are placed in order by chance. def bogo_sort(data,rangeMax): iterations = 1 #This simply inverts the speed selection (e.g. speed 100 leads to a sleep of 0, speed 1 leads to a sleep of 1 second, speed 50 leads to a sleep of 0.5 second) speed = (100-myScaleSpeed.get()) / 100 sorted = False while sorted == False: plot_boxes(data,rangeMax) changeNeeded = False #log to the screen the current state of the data array myText.delete("1.0",END) myText.insert(END,"Iteration " + str(iterations) + ": " + str(data)+"\n") for i in range(0,len(data)-1): if data[i] > data[i+1]: changeNeeded = True if changeNeeded == False: sorted = True else: iterations += 1 sleep(speed) shuffle(data) myText.insert(END, "Sort completed after " + str(iterations) + " iterations.") #Takes in a list of numbers as well as the maximum value each number can be. Plots these as points on the canvas relative to the parameters selected on the form. def plot_boxes(data,rangeMax): myCanvas.delete("all") quantity = len(data) rectangleWidth = 800/quantity for i in range(quantity): #TLX: i*canvas width/quantity of data items // TLY: canvas height - canvas height/max data value*current data value #BRX: i*canvas width/quantity of data items+quantity of data items // BRY: height of canvas myCanvas.create_rectangle(i*rectangleWidth,400-400/rangeMax*data[i],i*rectangleWidth+rectangleWidth,400, fill=get_colour(data[i],rangeMax)) myCanvas.update() #Takes in a list of numbers as well as the maximum value each number can be. Plots these as points on the canvas relative to the parameters selected on the form. def plot_boxes(data,rangeMax): myCanvas.delete("all") quantity = len(data) rectangleWidth = 800/quantity for i in range(quantity): #TLX: i*canvas width/quantity of data items // TLY: canvas height - canvas height/max data value*current data value #BRX: i*canvas width/quantity of data items+quantity of data items // BRY: height of canvas myCanvas.create_rectangle(i*rectangleWidth,400-400/rangeMax*data[i],i*rectangleWidth+rectangleWidth,400, width=0, fill=get_colour(data[i],rangeMax)) myCanvas.update() #Declaration of form objects myCanvas = Canvas(root, width=800, height=400) myRadioBubble = Radiobutton(root, text='Bubble', variable=sortType, value="Bubble") myRadioCocktail = Radiobutton(root, text='Cocktail Shaker', variable=sortType, value="Cocktail") myRadioInsertion = Radiobutton(root, text="Insertion", variable=sortType, value="Insertion") myRadioBogo = Radiobutton(root, text='Bogo', variable=sortType, value="Bogo") myLabelQuantity = Label(root, text="Data points:") myScaleQuantity = Scale(root, from_=3, to=1000, orient=HORIZONTAL) myLabelRangeMax = Label(root, text="Max value:") myScaleRangeMax = Scale(root, from_=5, to=100, orient=HORIZONTAL) myLabelSpeed = Label(root, text="Speed:") myScaleSpeed = Scale(root, from_=0, to=100, orient=HORIZONTAL) myButton = Button(root, text="Go!", command=go) myDropdownColours = OptionMenu(root , menuText, *colourOptions) myText = Text(root, height=8) #Default values set to form objects sortType.set("Bubble") menuText.set("Red") myScaleQuantity.set(25) myScaleRangeMax.set(100) myScaleSpeed.set(50) #Form object 'packing' and layout. myCanvas.grid(row=0, columnspan=4) myRadioBubble.grid(row=1, column=0) myRadioCocktail.grid(row=1, column=1) myRadioInsertion.grid(row=2, column=0) myRadioBogo.grid(row=2, column=1) myText.grid(rowspan=10, row=1, column=2) myLabelQuantity.grid(row=3,column=0) myScaleQuantity.grid(row=3,column=1) myLabelRangeMax.grid(row=4,column=0) myScaleRangeMax.grid(row=4,column=1) myLabelSpeed.grid(row=5,column=0) myScaleSpeed.grid(row=5,column=1) myDropdownColours.grid(row=6, column=0, columnspan=2, pady=10) myButton.grid(row=6, column=2, columnspan=2, pady=10) root.mainloop()
34846e9ee05b0f08ccdcc8a6127dc7d74f80ec00
manji-0/atcoder
/tenkai/2015/a.py
157
3.5
4
def main(): A = [100,100,200] for i in range(3,20): A.append(A[i-1]+A[i-2]+A[i-3]) print(A[-1]) if __name__ == '__main__': main()
d01d04383b79db71acc820de63d8278259ae4d80
jacquerie/leetcode
/leetcode/0012_integer_to_roman.py
784
3.609375
4
# -*- coding: utf-8 -*- NUMERAL_ROMAN_MAP = [ (1000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] class Solution: def intToRoman(self, num): result = [] for numeral, roman in NUMERAL_ROMAN_MAP: while num >= numeral: result.append(roman) num -= numeral return "".join(result) if __name__ == "__main__": solution = Solution() assert "III" == solution.intToRoman(3) assert "IV" == solution.intToRoman(4) assert "IX" == solution.intToRoman(9) assert "LVIII" == solution.intToRoman(58) assert "MCMXCIV" == solution.intToRoman(1994)
41c176104cdcc2ff420a0a47a3319ddbfb8236a4
ptkang/python-advanced
/chapter04/duck_4_1.py
1,984
4.53125
5
# 鸭子类型:当看到一只鸟走起来像鸭子,游泳起来像鸭子,叫起来也像鸭子,那么这只鸟就可以被称为鸭子 # 一个对象实现什么样的方法,则它就拥有什么样的类型和操作 # 一个对象只要实现了相关类型的魔法函数,那么就可以使用这个类型对应的方法操作这个对象 # 一个对象拥有一个已实现的魔法函数,那么这个对象就可以被这个魔法函数对应的操作正确使用 # 鸭子类型的本质:面向协议编程,一个类实现了对应协议的魔法函数,则可以使用这个类实现的协议操作来操作这个类. # 即python本质是面向协议编程 # 多态:实现相同函数的不同对象,都可以使用相同的函数或操作去访问,将这个行为称为多态 # 例1:一个对象可以指向不同的类,并调用其共同的成员函数 # 这个在c++中被称为运行时多态 class Cat(): def say(self): print('I am a cat') class Dog(): def say(self): print('I am a Dog') class Duck(): def say(self): print('I am a Duck') animal_list = [Cat, Dog, Duck] for animal in animal_list: animal().say() # 例2:只要一个对象满足某一个类型,则都可以被可调用这个类型的方法调用 # 以下代码能正确执行是应为name_list,name_tuple, name_set,company都是iterable的 # Extend list by appending elements from the iterable. class Company(): def __init__(self, employee_list): self.employee = employee_list def __getitem__(self, item): return self.employee[item] name_list = ['person1', 'person2'] name_tuple = ['person3', 'person4'] name_set = set() name_set.add('person4') name_set.add('person5') company = Company(['Bob', 'Lily']) print(name_list) name_list.extend(name_tuple) print(name_list) name_list.extend(name_set) print(name_list) name_list.extend(company) print(name_list)
6333cdb7c1c8c009233cbe2f1eb9e3c0a790e02f
Nishinomiya0foa/Old-Boys
/2_Threading_MySql_html/day39_Pool/07_CallBack.py
457
3.53125
4
"""回调函数 ---- 把一个函数的返回值作为参数,执行另一个函数(在主进程执行)""" import os from multiprocessing import Pool def func1(n): print('In func1 ', os.getpid()) return n**2 def func2(n): print('In func2 ', os.getpid()) print(n) if __name__ == '__main__': print('主进程:', os.getpid()) p = Pool(5) p.apply_async(func=func1, args=(9, ), callback=func2) p.close() p.join()
132381ce00557f229f7291fe5ff4fec741edd751
DenysLins/code-interview
/leetcode/70-climbing-stairs/solution.py
340
3.8125
4
# https://leetcode.com/problems/climbing-stairs/ class Solution: def climbStairs(self, n: int) -> int: a, b = 1, 2 if n < 2: return n else: for i in range(3, n + 1): a, b = b, a + b return b if __name__ == "__main__": print(Solution().climbStairs(10))
a698479abe43cba6b063e565a07d7b69806f32f0
hammerdrucken65/t1
/dice.py
1,894
4.15625
4
import random # getnum print "prompt" to screen", takes input from user, and converts that input # to an integer. If the user input cannot be converted to integer, the program # informs the user and tells them to start again. def getnum(prompt, min, max): # prompt = question statement to print to screen, min is the minimum valid integer, max is the max valid integer validInput = False while validInput==False: userInput = input(prompt) try: userInput = int(userInput) except: print("bad input") continue if (userInput <= max and userInput >= min): validInput = True else: print("bad input") return userInput def howManyDice(): print ("this stub pretends to ask user how many dice thay want") dieCount = random.randint(1, 5) print("dieCount = %s" % (dieCount)) return dieCount def trueOrFalse(number): getnum() class Die(): def __init__(self, sides = 6): self.rollval = None self.sides = sides self.color = "white" def roll(self): self.rollval = random.randint(1, self.sides) rollagain = True # use different varialbe name, and default to True while rollagain: # now change this to True (simplified version while rollagain) die = [] total = 0 numberOfDice = getnum(prompt="how many dice would you like to roll: ",min=1,max=30) sides = getnum(prompt="how many sides do you want them to have?: ",min=4, max=30) for x in range(0,numberOfDice): die.append(Die(sides=sides)) die[x].roll() print("value of the die is %s" % (die[x].rollval)) total = total+die[x].rollval print("total is %s" % (total)) if getnum(prompt="would you like to roll another die? 1: yes 2: no (please use number): ",min=1,max=2)==2: rollagain = False
8076ca925bdf1a4951cc4d8d89dd05f74b91e703
rubykumar1/python-creations
/palindrome_check.py
477
4.40625
4
# -*- coding: utf-8 -*- """ Created on Sat Dec 2 08:24:28 2017 @author: Ruby Kumar EXERCISE:Ask the user for a string and print out whether this string is a palindrome or not. (A palindrome is a string that reads the same forwards and backwards.) """ number = input("Enter a number: ") num_list = [int(digit) for digit in str(number)] if num_list == list(reversed(num_list)): print("Your number is a palindrome.") else: print("Your number is not a palindrome.")
78d182a6a372d1f795b3c2eeb9d42951597bb7b7
brotchie/brotchie-euler
/py/p30.py
164
3.640625
4
def isdigpow(x, p): return x == sum(int(k)**p for k in str(x)) pows = [] for i in range(2, 2e5): if isdigpow(i, 5): pows.append(i) print sum(pows)
aba6a94254c8a8b42d4646b5c7ba94b833bcd5b9
vip7265/ProgrammingStudy
/leetcode/problems/sjw_sqrtx.py
669
3.625
4
""" Problem URL: https://leetcode.com/problems/sqrtx/ """ class Solution: def mySqrt(self, x: int) -> int: # return self.naiveSolution(x) # 2020ms, O(sqrt(n)) return self.binarySearchSolution(x) # 40ms, O(logn) def naiveSolution(self, x): base = 0 while base*base <= x: base += 1 return base-1 def binarySearchSolution(self, x): lo, hi = 0, x while lo < hi: mid = (lo + hi) // 2 if mid*mid <= x < (mid+1)*(mid+1): return mid elif mid*mid < x: lo = mid + 1 else: hi = mid return lo
802fcdfa9702f243421523081a3d0c1df4ad3ccb
jennifer-ryan/pands-problem-set
/7_square_root.py
861
4.28125
4
# Problem: Write a program that that takes a positive floating point number as input and outputs an approximation of its square root. # Import square root function from math module. from math import sqrt # Import getFloat function from pcinput.py to ensure input is a positive floating point number. from pcinput import getFloat # Prompt user to enter a positive floating point number and set value to variable i. i = getFloat("Please enter a positive number: ") # Format s so there is only 1 decimal place. s = round(sqrt(i), 1) # If s is the same as int(s), the number is a whole number square root and not approximate so the output is adjusted. # Help from https://stackoverflow.com/q/4541155 if s != int(s): print("The square root of", i, "is approximately " + str(s) + ".") else: print("The square root of", int(i), "is " + str(int(s)) + ".")
897ed86105ae5b026b98a1fdb7c93cf7df15f3cd
Scottycags/csc201_fp_s2016_Scott_Cagnard
/election_Scott_Cagnard.py
17,652
4
4
# Name: Scott Cagnard # Homework 5: Election prediction import csv import os import time def read_csv(path): """Reads the CSV file at path, and returns a list of rows from the file. Parameters: path: path to a CSV file. Returns: list of dictionaries: Each dictionary maps the columns of the CSV file to the values found in one row of the CSV file. Although this function will work for any csv file, for our purposes, depending on the contents of the CSV file, this will typically be a list of *ElectionDataRow*s or a list of *PollDataRow*s (or a list of electoral college data rows). """ output = [] for row in csv.DictReader(open(path)): output.append(row) return output ################################################################################ # Problem 1: State edges ################################################################################ def row_to_edge(row): """Given an *ElectionDataRow* or *PollDataRow*, returns the Democratic *Edge* in that *State*. Parameters: row: an *ElectionDataRow* or *PollDataRow* for a particular *State* Returns: Democratic *Edge* in that *State*: a float """ return float(row["Dem"]) - float(row["Rep"]) def state_edges(election_result_rows): """Given a list of *ElectionDataRow*s, returns *StateEdge*s. Parameters: election_result_rows: list of *ElectionDataRow*s This list has no duplicate *States*; that is, each *State* is represented at most once in the input list. Returns: *StateEdges*: dictionary from *State* (string) to *Edge* (float) """ state_edges = {} #Create empty dictionary for row in election_result_rows: #Iterate through each row state = row['State'] edge = row_to_edge(row) state_edges[state] = edge #Map each state to the democratic edge of the state return state_edges #Return the new dictionary ################################################################################ # Problem 2: Find the most recent poll row ################################################################################ def earlier_date(date1, date2): """Given two dates as strings, returns True if date1 is before date2. Parameters: date1: a string representing a date (formatted like "Oct 06 2012") date2: a string representing a date (formatted like "Oct 06 2012") Returns: bool: True if date1 is before date2. """ return (time.strptime(date1, "%b %d %Y") < time.strptime(date2, "%b %d %Y")) def most_recent_poll_row(poll_rows, pollster, state): """ Given a list of *PollDataRow*s, returns the most recent row with the specified *Pollster* and *State*. If no such row exists, returns None. Parameters: poll_rows: a list of *PollDataRow*s pollster: a string representing a *Pollster* state: a string representing a *State* Returns: A *PollDataRow*: a dictionary from string to string OR None, if no such row exists """ mostrecent = None #Set a variable equal to None date2 = 'Feb 10 1900' #Create an old formatted date for row in poll_rows: #Iterate through each row date = row['Date'] #Extract the date of each row if row['State'] == state and row['Pollster'] == pollster and earlier_date(date, date2) == False: mostrecent = row date2 = row['Date'] return mostrecent #If there is a state and pollster and it is the most recent poll, then #we can return it as an output for our most recent poll. #If not, it will produce the output None ################################################################################ # Problem 3: Pollster predictions ################################################################################ def unique_column_values(rows, column_name): """Given a list of rows and the name of a column (a string), returns a set containing all values in that column. Parmeters: rows: a list of rows (could be a *PollDataRow* or another type of row) column_name: a string Returns: A set: containing all unique values in column `column_name` """ values = [] #Create an empty list for row in rows: #Iterate through each row values.append(row[column_name]) values = set(values) return values #Append each unique value and transform it into a set and #return the set as an output def pollster_predictions(poll_rows): """Given a list of *PollDataRow*s, returns *PollsterPredictions*. For a given pollster, uses only the most recent poll for a state. Parameters: poll_rows: a list of *PollDataRow*s Returns: A *PollsterPredictions*: a dictionary from *Pollster* to *StateEdges* """ dict = {} #Create an empty dictionary dict = dict.fromkeys(unique_column_values(poll_rows, "Pollster")) #Extract all the unique Pollster values and assign them as specific keys for keys in dict: #Iterate through each key of the dictionary list = [] #Create an empty list for poll_row in poll_rows: #Iterate through each row if (most_recent_poll_row(poll_rows, keys, poll_row["State"]) != None): list.append(most_recent_poll_row(poll_rows, keys, poll_row["State"])) dict[keys] = state_edges(list) return dict #Using only the most recent poll for a state, the pollsters become the key #of the dictionary, and are assigned to the value of the state and its edge ################################################################################ # Problem 4: Pollster errors ################################################################################ def average_error(state_edges_predicted, state_edges_actual): """Given predicted *StateEdges* and actual *StateEdges*, returns the average error of the prediction. For each state present in state_edges_predicted, its error is calculated. The average of all of these errors is returned. Parameters: state_edges_predicted: *StateEdges*, a dictionary from *State* to *Edge* state_edges_actual: *StateEdges*, a dictionary from *State* to *Edge* Returns: float: the average error """ d1 = state_edges_predicted #Assign the predicted state edges to a variable length = list(state_edges_predicted.values()) #Create a list of the predicted state edge values z = len(length) #Find the number of elements in the list "length" d2 = state_edges_actual #Assign the actual state edge values to a variable d3 = {} #Create an empty dictionary for k, v in d1.items(): d3[k] = v - d2.get(k, 0) #Find the difference between the predicted values and the actual values list1 = list(d3.values()) #Assign the differences to a list x = list(map(abs, list1)) #Take the absolute value of the differences a = sum(x) #Take the sum of the new values return a/z #Calculate the average of all the errors def pollster_errors(pollster_predictions, state_edges_actual): """Given *PollsterPredictions* and actual *StateEdges*, retuns *PollsterErrors*. Parameters: pollster_predictions: *PollsterPredictionss*, dictionary from *Pollster* to *StateEdges* state_edges_actual: *StateEdges*, dictionary from *State* to *Edge* Returns: *PollsterErrors*: a dictionary from *Pollster* to float (The float represents the *Pollster*'s average error). """ totalAverage = {} #Create an empty dictionary for k in pollster_predictions: states = pollster_predictions[k] for j in states: if j in state_edges_actual: average = average_error(pollster_predictions[k], state_edges_actual) totalAverage[k] = average #Map each pollster to its calculated average error of each state return totalAverage ################################################################################ # Problem 5: Pivot a nested dictionary ################################################################################ def pivot_nested_dict(nested_dict): """Pivots a nested dictionary, producing a different nested dictionary containing the same values. The input is a dictionary d1 that maps from keys k1 to dictionaries d2, where d2 maps from keys k2 to values v. The output is a dictionary d3 that maps from keys k2 to dictionaries d4, where d4 maps from keys k1 to values v. For example: input = { "a" : { "x": 1, "y": 2 }, "b" : { "x": 3, "z": 4 } } output = {'y': {'a': 2}, 'x': {'a': 1, 'b': 3}, 'z': {'b': 4} } """ reverse_nest_dict = {} #Create an empty dictionary for k, v in nested_dict.items(): #Iterate through each pair of elements for k2, v2 in v.items(): #Iterate through pair of values try: reverse_nest_dict[k2][k] = v2 except KeyError: reverse_nest_dict[k2] = { k : v2 } return reverse_nest_dict #Create a dictionary that produces a different nested dictionary which #contains the same values ################################################################################ # Problem 6: Average the edges in a single state ################################################################################ def average_error_to_weight(error): """Given the average error of a *Pollster*, returns that pollster's weight. Parameters: error: a float representing a *Pollster*'s average error, The error must be a positive number. Returns: float: weight, calculated as 1/(error)^2 """ return error ** (-2) # The default average error of a pollster who did no polling in the # previous election. DEFAULT_AVERAGE_ERROR = 5.0 def pollster_to_weight(pollster, pollster_errors): """"Given a *Pollster* and a *PollsterErrors*, return the given pollster's weight. Parameters: pollster: *Pollster*, a string pollster_errors: *PollsterErrors*, a dictionary from *Pollster* to float Returns: float: weight """ if pollster not in pollster_errors: weight = average_error_to_weight(DEFAULT_AVERAGE_ERROR) else: weight = average_error_to_weight(pollster_errors[pollster]) return weight def weighted_average(items, weights): """Returns the weighted average of a list of items. Parameters: items: a list of numbers. weights: a list of numbers, whose sum is nonzero. Each weight in weights corresponds to the item in items at the same index. items and weights must be the same length. Returns: float: the weighted average, the sum of (product of each item and its weight) divided by (the sum of the weights) """ assert len(items) > 0 assert len(items) == len(weights) a = items #Assign the items to a variable b = weights #Assign the weights to a variable x = list(items) #Transform the items to a list y = list(weights) #Transform the weights to a list sum1 = sum(weights) #Sum up all of the weights z = [a*b for a,b in zip(x, y)] #Multiply both lists by matching up the elements from both lists sum2 = sum(list(z)) #Take the sum of all of the products return float(sum2/sum1) #Divide the sum of the products by the sum of the weights to get the weighted average def average_edge(pollster_edges, pollster_errors): """Given *PollsterEdges* and *PollsterErrors*, returns the average of these *Edge*s weighted by their respective *PollsterErrors*. Parameters: pollster_edges: *PollsterEdges*, a dictionary from *Pollster* to *Edge* pollster_errors: *PollsterErrors*, a dictionary from *Pollster* to float Returns: float: the weighted average of the *Edge*s, weighted by the errors """ a = list(pollster_edges.values()) #List the values of the pollster edges alen = len(a) #Obtain the length of the list of values above b = list(pollster_edges.keys()) #List the keys of the pollster edges pollster_errors = pollster_errors c = [] #Create an empty list for i in b: #Iterate through each key c.append(pollster_to_weight(i, pollster_errors)) #Calcualte the weight of each pollster error c1 = c[0:alen] #Ignore the pollster errors that dont have a pollster edge final = weighted_average(a, c1) #Use the weighted average function to get the weighted average function #to get the weighted avergae of the Edge's, which are weighted by the errors return final ################################################################################ # Problem 7: Predict the 2012 election ################################################################################ def predict_state_edges(pollster_predictions, pollster_errors): """Given *PollsterPredictions* from a current election and *PollsterErrors* from a past election, returns predicted *StateEdges* of the current election. Parameters: pollster_predictions: *PollsterPredictions*, a dictionary from *Pollster* to *StateEdges* pollster_errors: *PollsterErrors*, a dictionary from *Pollster* to float Returns: *StateEdges*: predicted *StateEdges* of the current election """ dict = {} #Create an empty dictionary pollster_state_prediction = pivot_nested_dict(pollster_predictions) for state in pollster_state_prediction: dict[state] = average_edge(pollster_state_prediction[state], pollster_errors) return dict #Iterate through each state and calculate the predicted edge for each state ################################################################################ # Electoral College, Main Function, etc. ################################################################################ def electoral_college_outcome(ec_rows, state_edges): """Given electoral college rows and *StateEdges*, returns the outcome of the Electoral College. Parameters: ec_rows: a list of electoral college rows, where an electoral college row is a dictionary from string to string (similar to an *ElectionDataRow* or a *PollDataRow* but with different keys) state_edges: *StateEdges*, a dictionary from *State* to *Edge* Returns: dictionary containing only the keys "Dem" and "Rep", mapped to a number (as a float) of electoral votes won by that party. If a state has an edge of exactly 0.0, its votes are evenly divided between both parties. """ ec_votes = {} # maps from state to number of electoral votes for row in ec_rows: ec_votes[row["State"]] = float(row["Electors"]) outcome = {"Dem": 0, "Rep": 0} for state in state_edges: votes = ec_votes[state] if state_edges[state] > 0: outcome["Dem"] += votes elif state_edges[state] < 0: outcome["Rep"] += votes else: outcome["Dem"] += votes/2.0 outcome["Rep"] += votes/2.0 return outcome def print_dict(dictionary): """Given a dictionary, prints its contents in sorted order by key. Rounds float values to 8 decimal places. Returns: None """ for key in sorted(dictionary.keys()): value = dictionary[key] if type(value) == float: value = round(value, 8) print (key, value) def main(): """Main function, executed when election.py is run as a Python script. """ # Read state edges from the 2008 election edges_2008 = state_edges(read_csv("data/2008-results.csv")) # Read pollster predictions from the 2008 and 2012 election polls_2008 = pollster_predictions(read_csv("data/2008-polls.csv")) polls_2012 = pollster_predictions(read_csv("data/2012-polls.csv")) # Compute pollster errors for the 2008 election error_2008 = pollster_errors(polls_2008, edges_2008) # Predict the 2012 state edges prediction_2012 = predict_state_edges(polls_2012, error_2008) # Predict the 2012 Electoral College outcome ec_2012 = electoral_college_outcome(read_csv("data/2012-electoral-college.csv"), prediction_2012) print("Predicted 2012 election results:") print_dict(prediction_2012) print() print("Predicted 2012 Electoral College outcome:") print_dict(ec_2012) print() # If this file, election.py, is run as a Python script (such as by typing # "python election.py" at the command shell), then run the main() function. #if __name__ == "__main__": # main() ### ### Collaboration ### # ... Write your answer here, as a comment (on lines starting with "#").