blob_id
stringlengths
40
40
repo_name
stringlengths
6
108
path
stringlengths
3
244
length_bytes
int64
36
870k
score
float64
3.5
5.16
int_score
int64
4
5
text
stringlengths
36
870k
44408436b8299a52ca3c8849b70e6b81fca2b066
woongsup123/jigsaw-solver
/node.py
1,799
3.65625
4
class Node: def __init__(self, node_number): self.rotate_sum = 0 self.directions = [-1, -1, -1, -1] self.location = [False, False, False, False] # NE, SE, SW, NW self.node_number = node_number def print_node(self): print(self.directions) print(self.rotate_sum) print(self.location) def get_direction_at(self, num): return self.directions[num] def get_rotate_sum(self): return self.rotate_sum def get_directions(self): return self.directions def get_num_of_connected_edges(self): sum = 0 for direction in self.directions: if direction != -1: sum += 1 return sum def get_location_index(self): i = 0 while not self.location[i]: i += 1 return i def get_node_number(self): return self.node_number def is_NE(self): return self.location[0] def is_NW(self): return self.location[3] def set_north(self, north): self.directions[0] = north def set_east(self,east): self.directions[1] = east def set_south(self,south): self.directions[2] = south def set_west(self,west): self.directions[3] = west def set_location(self, index): self.location[index] = True def add_rotate_sum(self, num): self.rotate_sum += num def rotate_once(self): self.directions = self.directions[-1:] + self.directions[:-1] def set_connection(self, direction, piece): if direction == 0: self.set_north(piece) elif direction == 1: self.set_east(piece) elif direction == 2: self.set_south(piece) else: self.set_west(piece)
7635fb1160dd0e034e84c1f6610b496705f90ede
chenyang929/Problem-Solving-with-Algorithms-and-Data-Structures-using-Python-Notes
/04 递归/to_str.py
264
3.578125
4
# to_str.py def to_str(n, base): cover_str = '0123456789ABCDEF' if n < base: return cover_str[n] else: return to_str(n//base, base) + cover_str[n%base] if __name__ == '__main__': print(to_str(20, 8)) print(to_str(10 ,2))
0404323c3a9a60789a53571afc4750d3ad6d93c7
kailunfan/lcode
/107.二叉树的层次遍历-ii.py
1,424
3.921875
4
# # @lc app=leetcode.cn id=107 lang=python # # [107] 二叉树的层次遍历 II # # https://leetcode-cn.com/problems/binary-tree-level-order-traversal-ii/description/ # # algorithms # Easy (64.90%) # Likes: 235 # Dislikes: 0 # Total Accepted: 58.7K # Total Submissions: 89.6K # Testcase Example: '[3,9,20,null,null,15,7]' # # 给定一个二叉树,返回其节点值自底向上的层次遍历。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历) # # 例如: # 给定二叉树 [3,9,20,null,null,15,7], # # ⁠ 3 # ⁠ / \ # ⁠ 9 20 # ⁠ / \ # ⁠ 15 7 # # # 返回其自底向上的层次遍历为: # # [ # ⁠ [15,7], # ⁠ [9,20], # ⁠ [3] # ] # # # # @lc code=start # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def levelOrderBottom(self, root): """ :type root: TreeNode :rtype: List[List[int]] """ res,stack = [],[root] while stack: tmp_stack,tmp_res = [], [] for i in stack: if i: tmp_res.append(i.val) tmp_stack.extend([i.left,i.right]) if tmp_res: res.insert(0,tmp_res) stack = tmp_stack return res # @lc code=end
a2f855aa29da3b4b8e4a36b44e714f3924b66eab
droconnel22/QuestionSet_Python
/leet_code/hash_maps/anagram.py
2,044
4.3125
4
#!/bin/python3 import math import os import random import re import sys """ Two words are anagram of one another if their letters can be re-arranged to form the other word. In this challenge you will be given a string. YOu must split it into two contigous substrings, then determine the minimum number of characters to change to make the two substring into anagrams of one another. Example: abccde 1. break it into two parts abc cde Note that all letters have been used the substrings are contigous and their lenghts are equal you can change a and b in the first substring to d and e to have dec and cde which are anagram Here two changes were necessary Description Complete the anagram function in the editor below It should return the min number of character to change to make the words anagrams or -1 if its not possible takes in a string: Sample Input 6 aaabbb ab abc mnop xyyx xaxbbbxx Sample Output 3 1 -1 2 0 1 Explanation: Test Case #01: We split s into two strings S1='aaa' and S2='bbb' we have to replace all three of the characters from the first string to make the strings anagrams. Test case #2: ab you have to replace 'a' with 'b' which will generate 'bb' test case #3: abc it is not possible for two string of unequal of length to be anagrams of one another test csae #4: mnop mn op 2? test case #5: xyyx xy and yx are already anagrams of one another Test Case #06 xaxb bbxx 1 a-> b Revisit case 1 aaa bbb a:3 b:0 a:0 b:3 """ # Complete the anagram function below. def anagram(s): if(len(s) % 2 != 0): return -1 a = s[:len(s)//2] b = s[len(s)//2:] count = 0 for letter in list(string.ascii_lowercase): diff = a.count(letter)-b.count(letter) if diff > 0: count+=diff return count if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') q = int(input()) for q_itr in range(q): s = input() result = anagram(s) fptr.write(str(result) + '\n') fptr.close()
ddae4cf870ada38f5688099a4d2cabd4921fe8cf
xent3/Python
/Ödev1/Ödev_8.py
635
4.21875
4
""" Kullanıcıdan aldığınız bir sayının "Armstrong" sayısı olup olmadığını bulmaya çalışın. Örnek olarak, Bir sayı eğer 4 basamaklı ise ve oluşturan rakamlardan herbirinin 4. kuvvetinin toplamı( 3 basamaklı sayılar için 3.kuvveti ) o sayıya eşitse bu sayıya "Armstrong" sayısı denir. Örnek olarak : 1634 = 1^4 + 6^4 + 3^4 + 4^4 """ sayı=input("Lütfen sayı giriniz:") liste = list(sayı) print(liste) üst = int(len(liste)) toplam = 0 for i in liste: toplam = toplam + (int(i) ** üst) if(int(toplam) == int(sayı)): print("Armstrong sayısıdır") else: print("Değildir")
d6b9df9369de4bdfa9159e410451e614b48a23c8
Beomsudev/Git
/DAY10/P1/02_arrayDimShape.py
846
3.71875
4
# 02_arrayDimShape.py # 배열의 크기(dimension)와 형상(shape) import numpy as np # ndarray : n(정수) d(차원) array(행렬/배열) data = np.array([[1,2,3], [4,5,6]]) data2 = np.array([[1,2,3], [4,5,6], [7,8,9]]) print(type(data)) print('rank(차원) : ', data.ndim) # ndim 속성 이라고함 print('형상 : ', data.shape) # shape 속성 print('몇행? : ', data.shape[0]) print('몇열? : ', data.shape[1]) # int8, int16, int32, float64 print('자료형 : ', data.dtype) # dtype 속성 print(data) print(data[0][1], data[1][1], data[1][2]) print('-' * 30) print( data * data) print('-' * 30) mylist = [1, 2] print(mylist+mylist) print('-' * 30) print( data * 10) print('-' * 30) print( data + data) print('-' * 30) print( 1 / data) print('-' * 30) print( data ** 0.5) # 루트 print('-' * 30)
1112a4063c80da87ac644f33943ae62177281c04
projeto-de-algoritmos/PD_01Knapsack
/knapsack.py
874
3.65625
4
# -*- coding: utf-8 -*- def knapSack(W, wt, val, n): K = [[0 for x in range(W + 1)] for x in range(n + 1)] for i in range(n + 1): for w in range(W + 1): if i == 0 or w == 0: K[i][w] = 0 elif wt[i-1] <= w: K[i][w] = max(val[i-1] + K[i-1][w-wt[i-1]], K[i-1][w]) else: K[i][w] = K[i-1][w] return K[n][W] if __name__ == '__main__': print("Insira os valores de cada item intercalado por espaços: ") val = list(map(int, input().split())) # val = [60, 100, 120] print("Insira os peso de cada item intercalado por espaços: ") wt = list(map(int, input().split())) W = int(input("Insira a capacidade da mochila: ")) n = len(val) print("A valor máximo que se pode carregar na mochila é: {}".format(knapSack(W, wt, val, n)))
80577190a80a442882851864dd12fde02219bb10
TEAMLAB-Lecture/basic-math-ebbunnim
/basic_math.py
440
3.625
4
def get_greatest(number_list): return max(number_list) def get_smallest(number_list): return min(number_list) def get_mean(number_list): return sum(number_list)/len(number_list) def get_median(number_list): number_list.sort() l=len(number_list) if l%2: return number_list[l//2] a,b=number_list[l//2-1],number_list[l//2] return (a+b)/2 print(get_mean([54, 56, 30, 12, 58, 25, 17, 48, 80, 23]))
479fcc95db51207baff93d75463111bdb204866e
gcolson11/Capstone_Books
/collaborative_filtering.py
14,063
3.6875
4
# Code for building the book recommendation system and Web App import pandas as pd import numpy as np from math import sqrt from statistics import pstdev import random import streamlit as st ratings_file = 'Data/ratings_cleaned.csv' books_file = 'Data/books_cleaned.csv' #ratings_file = '/Users/gregoryolson/Documents/Data Science CT/Capstone/Capstone_Books/Data/ratings_cleaned.csv' #books_file = '/Users/gregoryolson/Documents/Data Science CT/Capstone/Capstone_Books/Data/books_cleaned.csv' ratings = pd.read_csv(ratings_file) books = pd.read_csv(books_file) st.set_page_config(initial_sidebar_state="expanded") # create collaborative filtering class class Collaborative_Filtering: def __init__(self, books, ratings, user_input): self.books = books self.ratings = ratings self.user_input = user_input self.books_cf = None self.input = None self.new_books_cf = None self.genre_list = None self.user_subset_group = None self.sim_dict = None self.pearson_df = None self.top_users_rating = None self.recommendation_df = None self.recommendation = None # make dataframe with only essential columns, convert year column to type int and rename def books_cfdf(self): self.books_cf = self.books[['id', 'title', 'authors', 'original_publication_year', 'genre1', 'genre2', 'genre3', 'small_image_url']] self.books_cf['original_publication_year'] = self.books_cf['original_publication_year'].astype(int) self.books_cf = self.books_cf.rename(columns={'original_publication_year': 'year'}) self.ratings = self.ratings.rename(columns={'book_id': 'id'}) return self.books_cf # filter the books by title, merge df's and drop year column def user_input_filter(self): input_id = self.books_cfdf()[self.books_cfdf()['title'].isin(self.user_input['title'].tolist())] self.input = pd.merge(input_id, self.user_input) self.input = self.input.drop('year', axis=1).reset_index(drop=True) return self.input # remove input books from books_cf def remove_input_books(self): input_book_list = self.user_input_filter()['id'].tolist() self.new_books_cf = self.books_cfdf()[~self.books_cfdf()['id'].isin(input_book_list)] return self.new_books_cf # create a list of genres def add_genres(self): self.genre_list = [] id_list = self.user_input_filter()['id'].tolist() # for loop that appends unique genre tags to genre_list for item in id_list: temp = self.books.loc[self.books['id'] == item] for i in range(24,27): a = temp.iloc[0, i] if a not in self.genre_list: self.genre_list.append(a) return self.genre_list ##NEW STEP - make average rating for each genre among user inputs def genre_ratings(self): avg_genre_rating = [] ag = self.add_genres() for item in ag: uifs = self.user_input_filter() temp_gdf = uifs.loc[(uifs['genre1'] == item) | (uifs['genre2'] == item) | (uifs['genre3'] == item)] c = temp_gdf['rating'].mean() avg_genre_rating.append(c) self.genre_rating_dict = {ag[i]: avg_genre_rating[i] for i in range(len(ag))} return self.genre_rating_dict # filter users that have read books that the input has also read def user_subset(self): user_subset = self.ratings[self.ratings['id'].isin(self.user_input_filter()['id'].tolist())] self.user_subset_group = user_subset.groupby(['user_id']) # sort so that users with book most in common with the input will have priority self.user_subset_group = sorted(self.user_subset_group, key=lambda x: len(x[1]), reverse=True) # limit number of users we look through to 100 self.user_subset_group = self.user_subset_group[0:100] return self.user_subset_group # calculate the pearson correlation or cosine similarity def correlation(self): self.sim_dict = {} std = pstdev(self.user_input_filter()['rating'].tolist()) # for loop that calculates Pearson correlation and stores values in above dict for name, group in self.user_subset(): group = group.sort_values(by='id') self.input = self.user_input_filter().sort_values(by='id') num_ratings = len(group) # store books from input that share book id with books in each group in df temp_df = self.input[self.input['id'].isin(group['id'].tolist())] # store both ratings in list for calculations rating_list = temp_df['rating'].tolist() group_list = group['rating'].tolist() if std == 0: # calculate cosine similarity cos_sim = np.dot(rating_list, group_list)/(np.linalg.norm(rating_list)*np.linalg.norm(group_list)) self.sim_dict[name] = cos_sim else: # calculate each component of Pearson correlation Sxx = sum([i**2 for i in rating_list]) - (sum(rating_list)**2 / float(num_ratings)) Syy = sum([i**2 for i in group_list]) - (sum(group_list)**2 / float(num_ratings)) Sxy = sum([i*j for i, j in zip(rating_list, group_list)]) \ - (sum(rating_list) * sum(group_list) / num_ratings) # calculate Pearson corr if Sxx and Syy not 0, else set = 0 if Sxx != 0 and Syy != 0: self.sim_dict[name] = Sxy/sqrt(Sxx*Syy) else: self.sim_dict[name] = 0 return self.sim_dict # convert dictionary to dataframe def to_df(self): self.sim_df = pd.DataFrame.from_dict(self.correlation(), orient='index') self.sim_df.columns = ['similarity_index'] self.sim_df['user_id'] = self.sim_df.index self.sim_df.index = range(len(self.sim_df)) return self.sim_df # get top 50 similar users, merge top_users with ratings, then multiply user similarity by user ratings def top_users(self): top_users = self.to_df().sort_values(by='similarity_index', ascending=False)[0:50] self.top_users_rating = top_users.merge(self.ratings, left_on='user_id', right_on='user_id', how='inner') self.top_users_rating['weighted_rating'] = self.top_users_rating['similarity_index'] * self.top_users_rating['rating'] return self.top_users_rating # method that calculates weighted average rec score def rec_df(self): # apply a sum to the top_users after grouping by user_id top_users_sum = self.top_users().groupby('id').sum()[['similarity_index','weighted_rating']] top_users_sum.columns = ['sum_similarity_index','sum_weighted_rating'] # find the weighted average and sort values in order of highest weights descending self.recommendation_df = pd.DataFrame() self.recommendation_df['weighted average rec score'] = top_users_sum['sum_weighted_rating'] \ / top_users_sum['sum_similarity_index'] # return df of recommendations sorted by weighted average rec score self.recommendation_df['id'] = top_users_sum.index self.recommendation_df = self.recommendation_df.sort_values(by='weighted average rec score', ascending=False) return self.recommendation_df # drop id column, return final recommendation def recommendations(self): rib = self.remove_input_books() recdf = self.rec_df() fives = recdf.loc[recdf['weighted average rec score'] == 5] if len(fives) > 10: self.recommendation = rib.loc[rib['id'].isin(recdf['id'].head(len(fives)).tolist())] count = 0 scores = [] genre_df = self.add_genres() gr = self.genre_ratings() for index, row in self.recommendation.iterrows(): if row['genre1'] in genre_df: count += 5 * (gr[row['genre1']] - 3) if row['genre2'] in genre_df: count += 3 * (gr[row['genre2']] - 3) if row['genre3'] in genre_df: count += 1 * (gr[row['genre3']] - 3) scores.append(count) count = 0 self.recommendation['genre_score'] = scores self.recommendation = self.recommendation.sort_values(by=['genre_score', 'id'], ascending=[False, True]) self.recommendation = self.recommendation.drop(['genre1', 'genre2', 'genre3', 'genre_score'], axis=1) self.recommendation = self.recommendation.head(10) else: self.recommendation = rib.loc[rib['id'].isin(recdf['id'].head(10).tolist())] self.recommendation = self.recommendation.drop(['genre1', 'genre2', 'genre3'], axis=1) self.recommendation = self.recommendation.head(10) return self.recommendation # method that returns each url of the user inputted books def book_images(self): input_df = pd.DataFrame.from_dict(self.user_input) input_df = self.books[self.books['id'].isin(self.user_input_filter()['id'])] image_list = input_df['image_url'].tolist() return image_list # Make Web App def app(): # Write in title and first instructions on Web App st.title('Read-y Books Recommender') st.write("Welcome! To receive book recommendations, fill out the information in the left sidebar. \ When you are finished rating, click the buttom that appears to receive your recommendations. \ You can also select the option below to have a recommendation randomly generated.") choice = st.radio(' ', ['Input your own book ratings', 'Or randomly generate a recommendation']) # create empty list to store pairs of book title and rating d = [] button = False # if user chooses to input their own data if choice == 'Input your own book ratings': # let's user choose number of books they'd like to rate st.sidebar.write('---') st.sidebar.title('Rate books below') j = st.sidebar.number_input('How many books would you like to rate?', value=3, min_value=1, max_value=50, step=1) st.sidebar.write('---') # Initialize first keys for selectbox keys1, keys2 = 0, 1 # first element of dropdown list is a placeholder value '-' title_list = ['-'] + books['title'].tolist() # for loop that appends book title and rating to list and then appends list to dictionary at every iteration for i in range(j): b = [] # user selects book title words = 'Select book ' + str(i+1) book_choice = st.sidebar.selectbox(words, title_list, key=keys1) keys1 += 2 if book_choice == '-': pass else: b.append(book_choice) # user selects rating rating_choice = st.sidebar.slider('Rating', min_value=0, max_value=5, value=0, key=keys2) keys2 += 2 st.sidebar.markdown('---') if rating_choice == 0: pass else: b.append(rating_choice) # if both title and rating are filled in, append these inputs to d if len(b) == 2: d.append(b) # create dataframe of user inputs to be used in collaborative filtering if len(d) == j: # ensure that all boxes are filled in button = st.sidebar.button('Click to generate recommendations') if button == True: user_input = pd.DataFrame(d, columns=['title', 'rating']) line = 'You rated ' + str(j) + ' books' st.markdown('---') st.subheader(line) st.write(' ') else: pass # if user chooses to have books randomly chosen for them elif choice == 'Or randomly generate a recommendation': # number of books we will rate button = True j = 5 # for loop that randomly selects 5 books and gives them a rating of 4 or 5 for i in range(5): b = [] b.append(random.choice(books['title'].tolist())) b.append(random.choice([1,2,3,4,5])) d.append(b) # create dataframe of user inputs to be used in collaborative filtering user_input = pd.DataFrame(d, columns=['title', 'rating']) st.markdown('---') st.subheader("We rated 5 books") st.write(' ') # continue with making recommendation and displaying in app if button == True: # instantiate Collaborative_Filtering class cf = Collaborative_Filtering(books, ratings, user_input) bi = cf.book_images() uif = cf.user_input_filter() # display book cover, rating, title and author of input books for i in range(j): col1, mid, col2, mid, col3 = st.beta_columns([1,2,1,1,20]) with col1: st.image(bi[i], width=60) with col2: st.write(str(uif.values[i][7])) #6 with col3: st.write(uif.values[i][1], '-', uif.values[i][2]) st.markdown('---') st.subheader('Based on the selected books here are some recommendations:') st.write(' ') #images = cf.rec_images() recs = cf.recommendations() # display book cover, recommendation ranking, title and author of book recommendations for i in range(len(recs)): col1, mid1, col2, mid2, col3 = st.beta_columns([1,2,1,1,20]) with col1: st.image(recs.values[i][-1], width=60) #images[i] with col2: st.write(str(i+1)) with col3: st.write(recs.values[i][1], '-', str(recs.values[i][2]))
26614f5cbe266818c5f34b536b9f921c922a18d2
WSMathias/crypto-cli-trader
/innum.py
2,012
4.5625
5
""" This file contains functions to process user input. """ # return integer user input class Input: """ This class provides methods to process user input """ def get_int(self, message='Enter your number: ', default=0, warning=''): """ Accepts only integers """ hasInputNumbers = False while hasInputNumbers==False: try: # try to convert user input into a integer number userInput = input(message) if userInput is '': if default == 0: message = message+'\r' continue else: return default userInput = int(userInput) hasInputNumbers=True return userInput except ValueError: # if it gives a ValueError, return to line 2! print("[!] invalid input try again") # return floating point user input def get_float(self, message='Enter your number: ', default=0,warning=''): """ Accepts integer and floating point numbers """ hasInputNumbers = False while hasInputNumbers==False: try: # try to convert user input into a floating number userInput = input(message) if userInput is '': if default == 0: continue else: return default userInput = float(userInput) hasInputNumbers=True return userInput except KeyboardInterrupt : raise except ValueError: # if it gives a ValueError, return to line 2! print("[!] invalid input try again") def get_coin(self, message='Enter Coin symbol : ', default='', warning=''): """ Accepts Coin Symbol """ return input(message) #TODO: Logic need to be implimented
d9501dc4070b15277b7742828329f656887c9199
IBordfeld/ToDoList
/ToDoList.py
2,228
4
4
# Isaac Bordfeld and Karley Conroy # ToDoList class ToDoList: def __init__(self): self.ToDo = {} self.OpenList() # function used to add a new list in the program def addParentList(self, ListName): self.ToDo[ListName] = list() # function used to remove a list from a program def removeParentList(self, ListName): try: del self.ToDo[ListName] except: # will print if the list name entered doesnt exist or it is spelt wrong print("Not a current list, make sure you have correct spelling and capitalization!") # function that will add a task to an existing list def addToDoList(self, ListName, task): self.ToDo.get(ListName).append(task) # function that will remove a task from an existing list def removeFromToDoList(self, ListName, task): try: self.ToDo.get(ListName).remove(task) except: #will print if the item is not in the list or it is spelt incorrectly print("\nItem not found in list! Make sure capitalization is correct!\n") #used to save the list def SaveLists(self): #writes to the text file fptr = open("ToDo.txt", "w") for listName, task in self.ToDo.items(): fptr.write(listName + ":") run_time = len(task) for i in range(run_time - 1): fptr.write(task[i] + ",") fptr.write(task[-1] + "\n") fptr.close() print("List saved! Have a good day!") # used to open the text file def OpenList(self): # will read from the text fptr = open("ToDo.txt", "r") for ToDo in fptr.readlines(): tempList = ToDo.split(":") tempList = [tempList[0], tempList[1].strip("\n").split(",")] self.ToDo[tempList[0]] = tempList[1] fptr.close() # will print the context of the list def printList(self): listString = "" for name, listItems in self.ToDo.items(): listString += name + ":\n" for task in listItems: listString += f"- {task}\n" return listString[:-1] def getList(self): return self.ToDo
b55508a6427a7646b6397e3e9a7e5a4c686658c7
chandramohank/Logical-Programes
/Python/findthesecondlowest.py
371
3.75
4
import sys def findtheSecondLowest(inputarray): first,second=sys.maxsize ,sys.maxsize for i in range(0,len(inputarray)): if inputarray[i] < first: second=first first=inputarray[i] elif inputarray[i]<second and inputarray[i]!=first: second=inputarray[i] return second findtheSecondLowest([2,5,3,7,4])
a738bb798113738fe937e80c71d20eae2ce194fb
cmwright12/QED-promoter_prediction
/Python/Sample_scripts/sample_script.py
757
4.40625
4
# defining variables #x = 40 #city = "Jackson" #fruits = ["fruits", 8, "abc", x] #print(x) #print(city) #print(fruits) # lists versus sets #mylist = [1, 2, 2, 7, 3, 8, 2, 7] #print(mylist) #print(len(mylist)) #print(type(mylist)) #myset = set(mylist) #print(myset) #print(len(myset)) #print(type(myset)) # Playing with lists mylist = [1, 2, 3, 4, 5, 6, 7, 8] print(mylist) # element in 3-rd position; index starts at 0 print(mylist[2]) # elements in positions 4-7 print(mylist[4:8]) print(mylist[4:10]) # Playing with strings mystring = "Alexander Reed" print(mystring) print(mystring[0]) print(mystring[:10]) # last element print(mystring[-1]) # last name print(mystring[-4:]) # you can add strings first = "Alexander" last = "Reed" print(first + " " + last)
ef4c4b85636ff0aaeb1475e9b3da912949ad6996
Vijf/blockathon
/var/PyBlockchain-master/PyBlockchain/baseblock.py
1,644
3.5
4
"""Base classes for all objects.""" from hashlib import sha256 class BaseBlock(object): """base block""" @staticmethod def calculate_hash_block(unverified_block): """ a nonce "seals" a block to the blockchain. parameters ---------- unverified_block : Block object refers to a block that has not yet been added to the blockchain. we will generate an acceptable block hash for new block. returns ------- block_hash: hash representing hash of new block, satisfying proof of work conditions. """ msg = unverified_block.prev_hash + unverified_block.root_hash + str(unverified_block.nonce) block_hash = BaseBlock.generate_block_hash(msg) while not BaseBlock.is_proof_of_work(block_hash): unverified_block.nonce += 1 # increment until block hash is satisfactory msg = unverified_block.prev_hash + unverified_block.root_hash + str(unverified_block.nonce) block_hash = BaseBlock.generate_block_hash(msg) return block_hash @staticmethod def generate_block_hash(message): return sha256(message).hexdigest() @staticmethod def is_proof_of_work(hash_block): """ in this toy example, a valid block hash will start with 0. this condition is known as "proof of work." parameter --------- hash_block : str representing hex digest returns ------- boolean, whether hash_output is acceptable or not. """ return hash_block[0] is "0"
a9aeb4a7acb0524aa03d249d039bfc27e5f658ce
franciscoguemes/python3_examples
/advanced/tkinter/40_place_example.py
1,657
4.34375
4
#!/usr/bin/python3 # The place layout manager places the widgets at the specific position you want. # Example inspired from: https://www.youtube.com/watch?v=D8-snVfekto&t=1479s # For an in-detail explanation about place visit: https://effbot.org/tkinterbook/place.htm import tkinter HEIGHT = 700 WIDTH = 800 window = tkinter.Tk() window.title("Using place()") canvas = tkinter.Canvas(window, height=HEIGHT, width=WIDTH) canvas.pack() frame = tkinter.Frame(window,bg="#80c1ff") # On the X axis of the window, the frame will have: # 10% margin on the left # it will take 80% of the width # 10% margin on the right --> 100 - 10 -80 = 10 # On the Y axis of the window, the frame will have: # 10% margin on top # It will take 50% of the height # 40% margin on the bottom --> 100 - 10 - 50 = 40 frame.place(relx=0.1,rely=0.1, relwidth=0.8, relheight=0.5) # The rest of the items in the application are positioned relatively to the frame button = tkinter.Button(frame,text="Test button", bg="gray") # On the X axis of the frame, the button will have: # 0% margin on the left # it will take 25% of the frame's width # 75% margin on the right --> 100 - 0 -25 = 75 # On the Y axis of the frame, the button will have: # 0% margin on top # It will take 25% of the frame's height # 75% margin on the bottom --> 100 - 0 -25 = 75 button.place(relx=0, rely=0, relwidth=0.25, relheight=0.25) label = tkinter.Label(frame, text="This is a label", bg="yellow") label.place(relx=0.3, rely=0, relwidth=0.45, relheight=0.25) entry = tkinter.Entry(frame, bg="green") entry.place(relx=0.8, rely=0, relwidth=0.2, relheight=0.2) window.mainloop()
ff339003d1f00ab402d33dbbed22ed1d48e7db81
anobhama/Intern-Pie-Infocomm-Pvt-Lmt
/Array/ArrInMatrix.py
216
3.8125
4
# -*- coding: utf-8 -*- """ Created on Tue Aug 11 10:49:35 2020 @author: Anobhama """ #array using matrix function from numpy import * arr1=array([[1,2,3,4,9,0],[5,6,7,8,1,2]]) arr2=matrix(arr1) print("array",arr2)
af0f8fbfce6070e42b64c6d24daa67ca4673988f
balamini-dev/exercices_python
/LOTO_Version 1 (sans fonction) - Partie 1 fonctionnel.py
756
3.640625
4
import random grille_visiteur=[0]*6 for i in range (len(grille_visiteur)): numero_visiteur = int(input("veuillez entrer 1 numéro compris entre 1 et 49 : ")) grille_visiteur[i]= numero_visiteur print("Votre grille est : ") print(grille_visiteur) grille_loto=[0]*6 for i in range (len(grille_loto)): grille_loto[i] = random.randint(1, 9) print(grille_loto) grille_final =[0]*6 for i in range (len(grille_visiteur)): if grille_visiteur[i] in grille_loto: grille_final[i]=grille_visiteur[i] print(grille_final) print("Vous avez trouvé le ou les numéros : ") for i in range(len(grille_final)): if grille_final[i]!=0: print(grille_final[i])
5e8e140326002d4ad6d4c999ce947f067a326965
thanh-falis/Python
/bai__54/Parameter.py
437
3.53125
4
""" - Python hỗ trợ parameter mặc định khi khai báo hàm - Hàm print() thường dùng cũng có parameter mặc định """ def fl(n, m = 0): s = 0 for i in range(1, n + m, 1): s += 1 return s print(fl(5)) print(fl(5, 1)) def fl2(n, m = 1, k = 2): s = 0 for i in range(1, m+n+k, 1): s += i return s print("*"*30) print(fl2(5)) print(fl2(5, 3)) print(fl2(5, 3, 1)) print(fl2(5, k=4))
f918c0ff34fde19b1e2de29cec5d62c11ed55de6
Tejagani/cricket
/tkint5.py
1,040
3.703125
4
import tkinter as tk root=tk.Tk() v=tk.IntVar() def test(): if v.get()==1: print("python selected") elif v.get()==2: print("perl selected") b1=tk.Button(root, text="find", padx=40, command=test) l1=tk.Label(root, text="choose a programming language", justify=tk.LEFT, padx=20) l1.pack() l2=tk.Label(root, text="", justify=tk.CENTER, font="20", padx=20) l1.pack() r1=tk.Radiobutton(root, text="python", padx=20, variable=v, value=1) r1.pack(anchor=tk.W) r2=tk.Radiobutton(root, text="perl", padx=20, variable=v, value=2) r2.pack(anchor=tk.W) b1.pack(anchor=tk.W) l2.pack(anchor=tk.W) root.mainloop()
498ac593e31603e23b349c16abf26770265d7be5
Killerpol/PC2
/p1.py
288
4.0625
4
x = int(input("Ingrese una coordenada x")) y = int(input("Ingrese una coordenada y")) ##Importamos libreria math para hacer funcionar el math.sqrt que seria raiz cuadrada. import math ##Posicion cero o origen x0 = 0 y0 = 0 distancia = math.sqrt( (x-x0)**2 +(y-y0)**2 ) print (distancia)
5dc7330050df4a4bf23049151d356aee27542480
hansen487/CS-UY1114
/Fall 2016/CS-UY 1114/HW/HW3/hc1941_hw3_q2.py
629
3.828125
4
""" Name: Hansen Chen Section: EXB3 netID: hc1941 Description: Program that computes how much customer pays """ item1=int(input("Enter price of first item: ")) item2=int(input("Enter price of second item: ")) clubcard=str(input("Does the customer have a club card? (Y/N): ")) tax=float(input("Enter tax rate, e.g. 5.5 for 5.5% tax: ")) total=item1+item2 print("Base price =",total) if (item1>item2): item2=item2/2 else: item1=item1/2 total=item1+item2 if (clubcard=='y'): total=total*0.9 print("Price after discounts =",total) tax=tax/100 tax=1+tax total=total*tax total=round(total, 2) print("Total price =",total)
2daf5d102fc9b1b124d21e3b202d5bce63b9861f
samyunwei/LearnPython
/hotel.py
777
3.59375
4
# -*-coding:utf-8 -*- # File Name: hotel.py # Author: Sam # mail: [email protected] ######################################################################### #!/usr/bin/env python class HotelRoomClac(object): 'Hotel room rate calculator' def __init__(self,rt,sales=0.085,rm=0.1): ''''HotelRoomClac default argument: sales tax == 8.5% and room tax == 10%''' self.salesTax = sales self.roomTax = rm self.roomRate = rt def calcTotal(self,days=1): 'Calculate total;default to daily rate' daily = round((self.roomRate * (1+self.roomTax + self.salesTax)),2) return float(days) * daily sfo =HotelRoomClac(299) print sfo.calcTotal() print sfo.calcTotal(2) sea = HotelRoomClac(189,0.086,0.058) print sea.calcTotal(4)
b72555a9018c0bfa330a193ad5cc3d8d0e0b0c57
pogross/bitesofpy
/75/cal.py
549
3.921875
4
import re from typing import Dict def get_weekdays(calendar_output: str) -> Dict[int, str]: """Receives a multiline Unix cal output and returns a mapping (dict) where keys are int days and values are the 2 letter weekdays (Su Mo Tu ...)""" weekday_names = calendar_output.splitlines()[1].split() weeks = [re.findall(r"[0-9]+", line) for line in calendar_output.splitlines()[2:]] weekday_mapping = { int(day): weekday for week in weeks for day, weekday in zip(week, weekday_names) } return weekday_mapping
52f6d74d26fd0be5e86adc7818557e337898d6ee
Santos1000/Curso-Python
/PYTHON/pythonDesafios/desafio072.py
587
3.9375
4
cont = ('zero' ,'um' ,'dois' ,'tres' ,'quatro' ,'cinco' ,'seis' , 'sete' ,'oito' ,'nove' ,'dez' ,'onze' ,'doze' ,'treze' , 'catorze' ,'quinze' ,'desesseis' ,'desessete' ,'desoito','vinte') resp =' ' while True: numero = int(input(' Digite um número entre 0 e 20: ')) if 0 <= numero <=20: break print('Tente novamente', end='.') print(f'Você digitou o número {cont[numero]}') resp = ' ' while resp not in "NSsn": resp = str( input( 'Quer continuar:[s;n] ' ) ).strip().upper()[0] if resp == 'N': print( '{:-^40}'.format('PROGRAMA ENCERRADO'))
4ca63a7a9aaa432f4dcba077e9af8131c296b3dd
tainenko/Leetcode2019
/leetcode/editor/en/[2363]Merge Similar Items.py
2,978
3.921875
4
# You are given two 2D integer arrays, items1 and items2, representing two sets # of items. Each array items has the following properties: # # # items[i] = [valuei, weighti] where valuei represents the value and weighti # represents the weight of the iᵗʰ item. # The value of each item in items is unique. # # # Return a 2D integer array ret where ret[i] = [valuei, weighti], with weighti # being the sum of weights of all items with value valuei. # # Note: ret should be returned in ascending order by value. # # # Example 1: # # # Input: items1 = [[1,1],[4,5],[3,8]], items2 = [[3,1],[1,5]] # Output: [[1,6],[3,9],[4,5]] # Explanation: # The item with value = 1 occurs in items1 with weight = 1 and in items2 with # weight = 5, total weight = 1 + 5 = 6. # The item with value = 3 occurs in items1 with weight = 8 and in items2 with # weight = 1, total weight = 8 + 1 = 9. # The item with value = 4 occurs in items1 with weight = 5, total weight = 5. # Therefore, we return [[1,6],[3,9],[4,5]]. # # # Example 2: # # # Input: items1 = [[1,1],[3,2],[2,3]], items2 = [[2,1],[3,2],[1,3]] # Output: [[1,4],[2,4],[3,4]] # Explanation: # The item with value = 1 occurs in items1 with weight = 1 and in items2 with # weight = 3, total weight = 1 + 3 = 4. # The item with value = 2 occurs in items1 with weight = 3 and in items2 with # weight = 1, total weight = 3 + 1 = 4. # The item with value = 3 occurs in items1 with weight = 2 and in items2 with # weight = 2, total weight = 2 + 2 = 4. # Therefore, we return [[1,4],[2,4],[3,4]]. # # Example 3: # # # Input: items1 = [[1,3],[2,2]], items2 = [[7,1],[2,2],[1,4]] # Output: [[1,7],[2,4],[7,1]] # Explanation: # The item with value = 1 occurs in items1 with weight = 3 and in items2 with # weight = 4, total weight = 3 + 4 = 7. # The item with value = 2 occurs in items1 with weight = 2 and in items2 with # weight = 2, total weight = 2 + 2 = 4. # The item with value = 7 occurs in items2 with weight = 1, total weight = 1. # Therefore, we return [[1,7],[2,4],[7,1]]. # # # # Constraints: # # # 1 <= items1.length, items2.length <= 1000 # items1[i].length == items2[i].length == 2 # 1 <= valuei, weighti <= 1000 # Each valuei in items1 is unique. # Each valuei in items2 is unique. # # # Related Topics Array Hash Table Sorting Ordered Set 👍 223 👎 9 # leetcode submit region begin(Prohibit modification and deletion) from collections import defaultdict class Solution: def mergeSimilarItems(self, items1: List[List[int]], items2: List[List[int]]) -> List[List[int]]: ret = [] cnt = defaultdict(int) for val, weight in items1: cnt[val] += weight for val, weight in items2: cnt[val] += weight for key in range(1, 1001): if key in cnt: ret.append([key, cnt[key]]) return ret # leetcode submit region end(Prohibit modification and deletion)
51ab2c00fbbbd19c48389687faa44fcef1542fdd
84danie/CS408PythonDemo
/demo.py
3,285
4.09375
4
# CS 408 - Group Project - Python Demo # Joshua Camacho and Danielle Holzberger # # Root approximation using bisection and Newton's method # with graphic results import math import matplotlib.pyplot as plt import numpy as np #Function whose roots are to be calculated def f1(x): return 2*math.pow(x,3)-11.7*math.pow(x,2)+17.7*x-5 #Deriviative of the function def f1D(x): return 6*math.pow(x, 2)-(2*11.7)*x+17.7 #Calculates the approximate error between iterations def approxError(c,p): return abs((c-p)/c) if c!=0 else 100000000000 #Determines the root of a function by providing #values that bracket the root def bisection(f, a, b, maxIterations, epsilon): if f(a)*f(b) > 0: print('Values of a and b do not bracket the root') return c = 0 errors = {} for n in range(0,maxIterations): prevC = c c = (a+b) / 2 errors[n] = approxError(c,prevC) if errors[n] < epsilon or f(c) == 0: return zip(*sorted(errors.items())) if f(a)*f(c) < 0: b = c else: a = c #Determines the root of a function by using #an initial guess def newton(f, fp, x, maxIterations, epsilon, delta): errors = {} for n in range(0,maxIterations): if abs(fp(x)) < delta or abs(fp(x)) == 0: print("Derivative approaching zero- cannot find root") return prevX = x x-= f(x) / fp(x) errors[n] = approxError(x,prevX) if errors[n] < epsilon or f(x) == 0: return zip(*sorted(errors.items())) print('Enter the desired error: ') error1 = input() print('Enter the maximum number of iterations:') maxIterations = input() #Comparion of methods for root 1 b1iterations,b1error = bisection(f1,-1,1,int(maxIterations),float(error1)) n1iterations,n1error = newton(f1,f1D,.5,int(maxIterations),float(error1),.00001) plt.figure(1) plt.subplot(311) plt.plot(b1iterations[1:],b1error[1:],'b',label = 'Bisection Method') plt.plot(n1iterations[1:],n1error[1:],'r',label = 'Newton\'s Method') plt.yscale('log') plt.xscale('log') plt.title('Number of Iterations vs. Approximate Error for Root 1') plt.xlabel('Number of Iterations') plt.ylabel('Approximate Error') plt.legend() #Comparison of methods for root 2 plt.subplot(312) b2iterations,b2error = bisection(f1,1,2,int(maxIterations),float(error1)) n2iterations,n2error = newton(f1,f1D,1.5,int(maxIterations),float(error1),.00001) plt.plot(b2iterations[1:],b2error[1:],'b',label = 'Bisection Method') plt.plot(n2iterations[1:],n2error[1:],'r',label = 'Newton\'s Method') plt.yscale('log') plt.xscale('log') plt.title('Number of Iterations vs. Approximate Error for Root 2') plt.xlabel('Number of Iterations') plt.ylabel('Approximate Error') plt.legend() #Comparison of methods for root 3 plt.subplot(313) b3iterations,b3error = bisection(f1,3,4,int(maxIterations),float(error1)) plt.plot(b3iterations[1:],b3error[1:],'b',label = 'Bisection Method') n3iterations,n3error = newton(f1,f1D,3,int(maxIterations),float(error1),.00001) plt.plot(n3iterations[1:],n3error[1:],'r',label = 'Newton\'s Method') plt.yscale('log') plt.xscale('log') plt.title('Number of Iterations vs. Approximate Error for Root 3') plt.xlabel('Number of Iterations') plt.ylabel('Approximate Error') plt.legend() plt.show()
50dcc02772117019845185ac80796bc1dbb0803e
ClaudioCarvalhoo/you-can-accomplish-anything-with-just-enough-determination-and-a-little-bit-of-luck
/problems/AE88.py
667
3.609375
4
# Numbers In Pi # O(n³+m) # n = len(pi) | m = len(numbers) def numbersInPi(pi, numbers): numbers = set(numbers) res = explore(pi, numbers, 0, 0, [None for _ in pi]) return res if res != float('inf') else -1 def explore(pi, numbers, i, spaces, necessarySpacesAfter): cur = "" best = float('inf') for j in range(i, len(pi)): cur += pi[j] if cur in numbers: if j == len(pi)-1: return spaces spacesAfter = necessarySpacesAfter[j+1] if spacesAfter == None: spacesAfter = explore(pi, numbers, j+1, spaces+1, necessarySpacesAfter) necessarySpacesAfter[j+1] = spacesAfter - spaces best = min(best, spacesAfter) return best
cb67d23c791f5c02f2d555b2169cd981020b7c7c
balmydawn/-
/Base/Day05/Exercises/习题3.py
371
3.765625
4
# 编写一段代码,让用户输入两个数字,求两个数之间所有整数的和(不包括两个数),并打印 num1 = int(eval(input('输入第一个数:')))+ 1 num2 = input('输入第二个数:') if type(eval(num2)) is float: num2 = int(eval(num2)) else: num2 = int(num2) - 1 res = 0 while num1 <= num2: res = res + num1 num1 += 1 print(res)
012fa11116891811442027db929a5420442cbe3a
GodsloveIsuor123/holbertonschool-higher_level_programming-3
/0x0B-python-input_output/4-append_write.py
264
4
4
#!/usr/bin/python3 ''' file: 4-append_write.py functions: -> append_write ''' def append_write(filename="", text=""): ''' appends a string at the end of a text file ''' with open(filename, 'a', encoding="utf-8") as file: return file.write(text)
7b17274aac6c92a871ea055d36c1922566b19615
samuelbeaubien/FrozenLake_OpenAI
/tests.py
163
3.515625
4
# Test getting inputs from the user move = input("Enter a move (0, 1, 2, 3): ") print (type(move)) move_int = int(move, 10) print (move_int) print (type(move_int))
6ccc7b7e7c143a6a8a101a54f24052e1e906c1e0
Offliners/Python_Practice
/code/024.py
189
4.3125
4
# using the third parameter # in a range str = "abcdefghijklmn" # print every second character print(str[::2]) # print every third character print(str[::3]) # Output: # acegikm # adgjm
4c0a535de8d60c844497d731f063d6ecdcf76f79
rhaussmann/data_sci
/ex_pyplot.py
5,850
3.578125
4
# https://matplotlib.org/gallery/index.html#pyplot-examples from __future__ import division from matplotlib import colors as mcolors import matplotlib.pyplot as plt import numpy as np def easy_subplots(): x = np.random.randn(50) # old style fig = plt.figure() ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222, sharex=ax1, sharey=ax1) ax3 = fig.add_subplot(223, sharex=ax1, sharey=ax1) ax3 = fig.add_subplot(224, sharex=ax1, sharey=ax1) # new style method 2; use an axes array fig, axs = plt.subplots(2, 2, sharex=True, sharey=True) axs[0, 0].plot(x) plt.show() def scatter_plot(): # Fixing random state for reproducibility np.random.seed(19680801) N = 50 x = np.random.rand(N) y = np.random.rand(N) colors = np.random.rand(N) area = np.pi * (15 * np.random.rand(N)) ** 2 # 0 to 15 point radii plt.scatter(x, y, s=area, c=colors, alpha=0.5) plt.show() def pie_chart(): # Pie chart, where the slices will be ordered and plotted counter-clockwise: labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' sizes = [15, 30, 45, 10] explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs') fig1, ax1 = plt.subplots() ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%', shadow=True, startangle=90) ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle. plt.show() def simple_plot(): plt.plot([1, 2, 3, 4]) plt.ylabel('some numbers') plt.show() def annotated_plot(): ax = plt.subplot(111) t = np.arange(0.0, 5.0, 0.01) s = np.cos(2 * np.pi * t) line, = plt.plot(t, s, lw=2) plt.annotate('local max', xy=(2, 1), xytext=(3, 1.5), arrowprops=dict(facecolor='black', shrink=0.05), ) plt.ylim(-2, 2) plt.show() def histogram_multihist(): np.random.seed(19680801) n_bins = 10 x = np.random.randn(1000, 3) fig, axes = plt.subplots(nrows=2, ncols=2) ax0, ax1, ax2, ax3 = axes.flatten() colors = ['red', 'tan', 'lime'] ax0.hist(x, n_bins, normed=1, histtype='bar', color=colors, label=colors) ax0.legend(prop={'size': 10}) ax0.set_title('bars with legend') ax1.hist(x, n_bins, normed=1, histtype='bar', stacked=True) ax1.set_title('stacked bar') ax2.hist(x, n_bins, histtype='step', stacked=True, fill=False) ax2.set_title('stack step (unfilled)') # Make a multiple-histogram of data-sets with different length. x_multi = [np.random.randn(n) for n in [10000, 5000, 2000]] ax3.hist(x_multi, n_bins, histtype='bar') ax3.set_title('different sample sizes') fig.tight_layout() plt.show() def boxplot_violin(): fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(9, 4)) # Fixing random state for reproducibility np.random.seed(19680801) # generate some random test data all_data = [np.random.normal(0, std, 100) for std in range(6, 10)] # plot violin plot axes[0].violinplot(all_data, showmeans=False, showmedians=True) axes[0].set_title('Violin plot') # plot box plot axes[1].boxplot(all_data) axes[1].set_title('Box plot') # adding horizontal grid lines for ax in axes: ax.yaxis.grid(True) ax.set_xticks([y + 1 for y in range(len(all_data))]) ax.set_xlabel('Four separate samples') ax.set_ylabel('Observed values') # add x-tick labels plt.setp(axes, xticks=[y + 1 for y in range(len(all_data))], xticklabels=['x1', 'x2', 'x3', 'x4']) plt.show() def barchart(): n_groups = 5 means_men = (20, 35, 30, 35, 27) std_men = (2, 3, 4, 1, 2) means_women = (25, 32, 34, 20, 25) std_women = (3, 5, 2, 3, 3) fig, ax = plt.subplots() index = np.arange(n_groups) bar_width = 0.35 opacity = 0.4 error_config = {'ecolor': '0.3'} rects1 = ax.bar(index, means_men, bar_width, alpha=opacity, color='b', yerr=std_men, error_kw=error_config, label='Men') rects2 = ax.bar(index + bar_width, means_women, bar_width, alpha=opacity, color='r', yerr=std_women, error_kw=error_config, label='Women') ax.set_xlabel('Group') ax.set_ylabel('Scores') ax.set_title('Scores by group and gender') ax.set_xticks(index + bar_width / 2) ax.set_xticklabels(('A', 'B', 'C', 'D', 'E')) ax.legend() fig.tight_layout() plt.show() def named_colors(): colors = dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS) # Sort colors by hue, saturation, value and name. by_hsv = sorted((tuple(mcolors.rgb_to_hsv(mcolors.to_rgba(color)[:3])), name) for name, color in colors.items()) sorted_names = [name for hsv, name in by_hsv] n = len(sorted_names) ncols = 4 nrows = n // ncols + 1 fig, ax = plt.subplots(figsize=(8, 5)) # Get height and width X, Y = fig.get_dpi() * fig.get_size_inches() h = Y / (nrows + 1) w = X / ncols for i, name in enumerate(sorted_names): col = i % ncols row = i // ncols y = Y - (row * h) - h xi_line = w * (col + 0.05) xf_line = w * (col + 0.25) xi_text = w * (col + 0.3) ax.text(xi_text, y, name, fontsize=(h * 0.8), horizontalalignment='left', verticalalignment='center') ax.hlines(y + h * 0.1, xi_line, xf_line, color=colors[name], linewidth=(h * 0.6)) ax.set_xlim(0, X) ax.set_ylim(0, Y) ax.set_axis_off() fig.subplots_adjust(left=0, right=1, top=1, bottom=0, hspace=0, wspace=0) plt.show() named_colors()
bef6ab5427693cf403f193728060b74296195b1e
Tim-Sotirhos/statistics-exercises
/probability_distributions.py
6,035
4.4375
4
# Probability Distribution import numpy as np import math from scipy import stats import matplotlib.pyplot as plt import pandas as pd # 1.) A bank found that the average number of cars waiting during the noon hour at a drive-up window follows a Poisson distribution with a mean of 2 cars. # Make a chart of this distribution and answer these questions concerning the probability of cars waiting at the drive-up window. def cars_at_bank_at_noon(): x = range(8) y = stats.poisson(2).pmf(x) plt.figure(figsize=(9, 6)) plt.bar(x, y, edgecolor='black', color='white', width=1) plt.xticks(x) plt.ylabel('P(X = x)') plt.xlabel('Average cars at drive_up window') print(cars_at_bank_at_noon()) # 1.a) What is the probability that no cars drive up in the noon hour? stats.poisson(2).pmf(0) (stats.poisson(2).rvs(10000) == 0).mean() # 1.b) What is the probability that 3 or more cars come through the drive through? stats.poisson(2).sf(2) (stats.poisson(2).rvs(10000) >= 3).mean() # 1.c) How likely is it that the drive through gets at least 1 car? stats.poisson(2).sf(0) (stats.poisson(2).rvs(10000) > 0).mean() # 2.) Grades of State University graduates are normally distributed with a mean of 3.0 and a standard deviation of .3. Calculate the following: # 2.a) What grade point average is required to be in the top 5% of the graduating class? gpa = np.random.normal(3, .3, (10000)) stats.norm(3, .3).isf(.05) np.percentile(gpa, 95) # 2.b) What GPA constitutes the bottom 15% of the class? stats.norm(3, .3).ppf(.15) np.percentile(gpa, 15) # 2.c) An eccentric alumnus left scholarship money for students in the third decile from the bottom of their class. # Determine the range of the third decile. Would a student with a 2.8 grade point average qualify for this scholarship? stats.norm(3, .3).ppf([.2,.3]) # Or stats.norm(3, .3).ppf(.3) stats.norm(3, .3).ppf(.2) np.percentile(gpa, [20, 30]) # 2.d) If I have a GPA of 3.5, what percentile am I in? 1 - stats.norm(3, .3).sf(3.5) # Or stats.norm(3, .3).cdf(3.5) (gpa <= 3.5).mean() # 3.) A marketing website has an average click-through rate of 2%. # One day they observe 4326 visitors and 97 click-throughs. # How likely is it that this many people or more click through? stats.binom(4326, .02).sf(96) ((np.random.random((10000, 4326)) <= .02).sum(axis=1) >= 97).mean() # 4.) You are working on some statistics homework consisting of 100 questions where all of the answers are a probability rounded to the hundreths place. # Looking to save time, you put down random probabilities as the answer to each question. # 4.a) What is the probability that at least one of your first 60 answers is correct? stats.binom(60,.01).sf(0) ((np.random.random((10000, 60)) <= .01).sum(axis=1) > 0).mean() # 5.) The codeup staff tends to get upset when the student break area is not cleaned up. # Suppose that there's a 3% chance that any one student cleans the break area when they visit it, and, # on any given day, about 90% of the 3 active cohorts of 22 students visit the break area. # How likely is it that the break area gets cleaned up each day? # How likely is it that it goes two days without getting cleaned up? # All week? n_students = round(.9*66) # cleanded each day stats.binom(n_students, .03).sf(0) # not cleaned two day (stats.binom(n_students, .03).cdf(0))**2 # not cleaned all week (stats.binom(n_students, .03).cdf(0))**5 # 6.) You want to get lunch at La Panaderia, but notice that the line is usually very long at lunchtime. # After several weeks of careful observation, # you notice that the average number of people in line when your lunch break starts is normally distributed with a mean of 15 and standard deviation of 3. # If it takes 2 minutes for each person to order, and 10 minutes from ordering to getting your food, what is the likelihood that you have at least 15 minutes left to eat your food before you have to go back to class? # Assume you have one hour for lunch, and ignore travel time to and from La Panaderia. mean = 15 std= 3 time_to_order = 2 lunch_hour = 60 eat_time = 15 prep_time = 10 people = round((lunch_hour - eat_time - prep_time - time_to_order) // time_to_order) lunch_line = stats.norm(15,3).cdf(people) lunch_line (np.random.normal(15,3, 10000) <= 16).mean() # 7.) Connect to the employees database and find the average salary of current employees, along with the standard deviation. # Model the distribution of employees salaries with a normal distribution and answer the following questions: def get_db_url(user, password, host, database_name): url = f'mysql+pymysql://{user}:{password}@{host}/{database_name}' return url import env from env import host, user, password url = get_db_url(user,password, host, "employees") url # Read the salaries tables into a dataframes salaries_query = "SELECT * FROM salaries WHERE to_date > NOW()" salaries = pd.read_sql(salaries_query, url) (salaries.tail(25)) average_salary = salaries.salary.mean() std_salary = salaries.salary.std() salary_distribution = stats.norm(average_salary, std_salary) # 7.a) What percent of employees earn less than 60,000? percent_under_60k = salary_distribution.cdf(60000) (salaries.salary < 60000).mean() # 7.b) What percent of employees earn more than 95,000? percent_above_95k = salary_distribution.sf(95000) (salaries.salary > 95000).mean() # 7.c) What percent of employees earn between 65,000 and 80,000? percent_above_65k = salary_distribution.cdf(65000) percent_below_80k = salary_distribution.cdf(80000) percent_between_65k_and_80k = percent_below_80k - percent_above_65k ((salaries.salary > 65000) & (salaries.salary < 80000)).mean() # Or using SF percent_above_65k = salary_distribution.sf(65000) percent_below_80k = salary_distribution.sf(80000) percent_between_65k_and_80k = percent_above_65k - percent_below_80k # 7.d) What do the top 5% of employees make? top_five_percent_salary = salary_distribution.isf(.05) salaries.salary.quantile(.95)
9e645c1c9c934ae57187fb6294a2428b8a955ad5
claytonjwong/Sandbox-Python
/fizz_buzz.py
1,132
3.9375
4
""" 412. Fizz Buzz Write a program that outputs the string representation of numbers from 1 to n. But for multiples of three it should output “Fizz” instead of the number and for the multiples of five output “Buzz”. For numbers which are multiples of both three and five output “FizzBuzz”. n = 15, Return: [ "1", "2", "Fizz", "4", "Buzz", "Fizz", "7", "8", "Fizz", "Buzz", "11", "Fizz", "13", "14", "FizzBuzz" ] """ class Solution(object): def fizzBuzz(self, n): ret = [] # # iterate from 1 to n inclusive # for i in range ( 1, n+1 ): if i%3==0 and i%5==0: ret.append("FizzBuzz") elif i%3==0: ret.append("Fizz") elif i%5==0: ret.append("Buzz") else: ret.append(str(i)) return ret def main(): import pdb pdb.set_trace() solution = Solution() print ( solution.fizzBuzz(15) ) if __name__ == "__main__": main()
294820bc4c447ebb3d9a679f04cf4d82b71cb836
rolfwessels/bar-craft-keg-cleaner
/misc/StartcodePUMPTEST.py
817
3.609375
4
import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BCM) # init list with pin numbers pinList = [2, 3, 4, 5, 6, 12, 13, 19] """ 2-Air 3_DUMP 4-H2O PMP 5 - H"O 6-SANRECIRC 12-SAN 13- 19-H2O RECIRC """ # loop through pins and set mode and state to 'low' for i in pinList: GPIO.setup(i, GPIO.OUT) GPIO.output(i, GPIO.HIGH) # time to sleep between operations in the main loop SleepTimePMP = 3 try: count = 2 while (count > 0): 'print '' The count is:', count for i in pinList: G GPIO.output(13, GPIO.HIGH) print ('End') # End program cleanly with keyboard except KeyboardInterrupt: 'print' " Quit" # Reset GPIO settings GPIO.cleanup()
45269148de868a50c87103e809fb27ca3fc8fec2
allenGKC/Leetcode_Practice
/python_code/Pow(x, n).py
548
3.921875
4
''' Problem:Pow(x, n) Implement pow(x, n). ''' class Solution(object): def myPow(self, x, n): """ :type x: float :type n: int :rtype: float """ if not n: return 1 if n<0: return 1/self.myPow(x, -n) if n == 1: return x if not n%2: return self.myPow(x*x, n/2) return x*self.myPow(x*x, n/2) ''' short method: return x ** n ''' ''' Test Case: ''' if __name__ == '__main__':
3dc03d4c0650b3c762d205f16380af76bdae657b
Sheetal2304/if_else
/Age.py
329
4.03125
4
age=int(input("enter the number")) if age<5: print("baccha hai") elif age>=5 and age <18: print("school ja skta h") elif age>=18 and age <21: print("vote daal skta h") elif age>=21 and age <24: print("drive kr skta h") elif age>=24 and age <25: print("shaadi kr skta h") elif age>=25: print("legally drink kr skta hai")
c11ca88fceba34ac84fea10277e9d720996012de
Aissen-Li/lintcode
/124.longestConsecutive.py
1,123
3.65625
4
class Solution: """ @param num, a list of integer @return an integer """ def longestConsecutive(self, num): nums = set(num) res = 0 for currentNum in num: if currentNum in nums: tempLen = 0 leftNum = currentNum - 1 rightNum = currentNum + 1 nums.remove(currentNum) while leftNum in nums: nums.remove(leftNum) tempLen += 1 leftNum -= 1 while rightNum in nums: nums.remove(rightNum) tempLen += 1 rightNum += 1 res = max(res, tempLen) return res class Solution2: """ @param num, a list of integer @return an integer """ def longestConsecutive(self, num): res, nums = 0, set(num) for low in num: if low - 1 not in nums: high = low + 1 while high in nums: high += 1 res = max(res, high - low) return res
389d749c093ebbca3a974601928e6fda5d75f172
jnixon7007/Functions_Parameters-Global_Variables
/diceRoller.py
847
3.96875
4
#Dice Roll program #This program rolls a dice and prints out the dices face import random,time s1 = "- - - - -\n| |\n| O |\n| |\n- - - - -\n" s2 = "- - - - -\n| O |\n| |\n| O |\n- - - - -\n" s3 = "- - - - -\n| O |\n| O |\n| O |\n- - - - -\n" s4 = "- - - - -\n| O O |\n| |\n| O O |\n- - - - -\n" s5 = "- - - - -\n| O O |\n| O |\n| O O |\n- - - - -\n" s6 = "- - - - -\n| O O |\n| O O |\n| O O |\n- - - - -\n" def roll(): print("rolling.....") time.sleep(0.5) roll = random.randint(1,6) return roll def show_dice(roll): if roll == 1: print(s1) elif roll == 2: print(s2) elif roll == 3: print(s3) elif roll == 4: print(s4) elif roll == 5: print(s5) else: print(s6) roll=roll() show_dice(roll)
a10c14aecbe96f0f8a0eb7617a7e3e39ed122268
pattric0222/Python
/week2/test1.py
249
4.0625
4
first = input("Input First Number \n") second = input("Input Second Number \n") print("{} = {} : ".format(first,second),first == second) print("{} > {} : ".format(first,second),first > second) print("{} < {} : ".format(first,second),first < second)
71c513fa365a859abc90c6cd52cbde80090b9ea3
wenyaowu/leetcode-js
/problems/splitArrayLargestSum.py
1,380
3.921875
4
""" Given an array which consists of non-negative integers and an integer m, you can split the array into m non-empty continuous subarrays. Write an algorithm to minimize the largest sum among these m subarrays. Note: If n is the length of array, assume the following constraints are satisfied: 1 ≤ n ≤ 1000 1 ≤ m ≤ min(50, n) Examples: Input: nums = [7,2,5,10,8] m = 2 Output: 18 Explanation: There are four ways to split nums into two subarrays. The best way is to split it into [7,2,5] and [10,8], where the largest sum among the two subarrays is only 18. """ class Solution: def splitArray(self, nums: List[int], m: int) -> int: lo = max(nums) hi = sum(nums) while lo < hi: mid = (lo+hi)//2 if self.split(mid, nums, m): # Can be split into equal or more than m partitions # mid words, we want to be greedy, try smaller sum hi = mid else: # mid doesn't work, move to mid+1 lo = mid + 1 return lo def split(self, target, nums, m): currentSum = 0 partitions = 1 for num in nums: currentSum += num if currentSum > target: partitions += 1 currentSum = num if partitions > m: return False return True
78638fbb27e51d492866598778007ff9651a1c89
Brukvo/PyBasics
/lesson06/task02.py
1,519
4.03125
4
""" 2. Реализовать класс Road (дорога), в котором определить атрибуты: length (длина), width (ширина). Значения данных атрибутов должны передаваться при создании экземпляра класса. Атрибуты сделать защищенными. Определить метод расчета массы асфальта, необходимого для покрытия всего дорожного полотна. Использовать формулу: длина * ширина * масса асфальта для покрытия одного кв метра дороги асфальтом, толщиной в 1 см * число см толщины полотна. Проверить работу метода. Например: 20м * 5000м * 25кг * 5см = 12500 т """ class Road: def __init__(self, length: int, width: int): self._length = length self._width = width def get_length(self): return self._length def get_width(self): return self._width def calc_mass(self, weight: int, thick: int): total = self._width * self._length * weight * thick return total r = Road(1250, 10) print(f'Ширина дорожного полотна: {r.get_width()}\n', f'Длина дорожного полотна: {r.get_length()}\n', f'Общая масса покрытия: {r.calc_mass(12, 4) / 1000} т')
87b8dab004797ba1a35dc2e5a9900190436db6ed
cvhs-cs-2017/practice-exam-RushBComrades
/MyFile.py
289
4.34375
4
"""Step 3: In MyFile.py, define a function for the turtle program that will draw a regular polygon with 'n' sides.""" n = int(input()) import turtle def meme(o): Vex = turtle.Turtle() Vex.speed(0) for x in range (n): Vex.forward(1) Vex.right((360/n)) meme(n)
c45fd4f5a8e15cd035acf90dac7bafd543d04c90
Joexder/Python-Curse
/Conditionals.py
297
4
4
x = input("<escribe tu edad: ") if int(x) > 26: print("Por mayor") elif int(x) == 26: print("En el limite") else: print("Por menor") y = input("Escribe un Color:") if y == 'red' or y == 'blue' or y == 'yellow': print("Colores primarios") else: print("Colores Secundarios")
857d42b5342ee738566323e7c7a13cda4adeefe4
hoang-ng/LeetCode
/Tree/437.py
1,315
3.5625
4
# 437. Path Sum III # You are given a binary tree in which each node contains an integer value. # Find the number of paths that sum to a given value. # The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes). # The tree has no more than 1,000 nodes and the values are in the range -1,000,000 to 1,000,000. # Example: # root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8 # Return 3. The paths that sum to 8 are: # 1. 5 -> 3 # 2. 5 -> 2 -> 1 # 3. -3 -> 11 from BinaryTree import (generateBinaryTree, TreeNode) class Solution(object): def pathSum(self, root, sum): def dfs(root, preSum, sum): if not root: return 0 currSum = preSum + root.val count = 0 if (currSum - sum) in dic: count += dic[currSum - sum] if currSum in dic: dic[currSum] += 1 else: dic[currSum] = 1 count += dfs(root.left, currSum, sum) count += dfs(root.right, currSum, sum) dic[currSum] -= 1 return count dic = {0: 1} return dfs(root, 0, sum) root = generateBinaryTree([10,5,-3,3,2,-1,11,3,-2,-1,1]) sol = Solution() sol.pathSum(root, 8)
f0f488f2b2ac4f039ff44e2ddf1b34dbb4898be1
daadestroyer/20MCAOOPS
/LabComponent/App10_generator.py
684
3.75
4
import time def timeit(func): def timed(*args, **kw): starttime = time.time() result = func(*args, *kw) endtime = time.time() print("time taken", endtime-starttime) return result return timed @timeit def fib(a=0, b=1): while True: yield a a, b = b, a+b f = fib() num = int(input("enter range for series")) for i in range(num): print(next(f)) # def fib(limit): # a, b = 0, 1 # while a < limit: # yield a # a,b=b,a+b # x = fib(5) # # try: # # while True: # # print(x.__next__()) # # except StopIteration: # # print('STOP ITERATING') # for i in x: # print(i)
2b0bc88b5ad4e7a454728b912dfad2cdd13cdb37
IhToN/DAW1-PRG
/Ejercicios/PrimTrim/Ejercicio38.py
516
3.578125
4
""" Comprobar las Leyes de Demorgan a. not (AUB) = not A or not B b. not(AorB) = not A and not B La negación de una conjunción es la desconjunción de la negación de los términos. """ A, B = {1, 2, 3}, {2, 3, 4} Universal = {x for x in range(100)} aleft = Universal - (A | B) aright = Universal - A & Universal - B print('Primera ley de Demorgan: ', aleft == aright) bleft = Universal - (A & B) bright = Universal - A | Universal - B print('Segunda ley de Demorgan: ', bleft == bright)
43303916c52c7b6277582892af4d2b3eef492db3
jwyx3/practices
/leetcode/binary-search/bs-answer/preimage-size-of-factorial-zeroes-function.py
1,117
3.609375
4
# https://leetcode.com/problems/preimage-size-of-factorial-zeroes-function/ # https://leetcode.com/problems/preimage-size-of-factorial-zeroes-function/solution/ # Time: O(log5(10*K)*log2(10*K)) # Space: O(1) class Solution(object): def preimageSizeFZF(self, K): """ :type K: int :rtype: int """ # 2 * 5 = 10. count(2) > count(5) # so f(x) = K. -> f(x) = x/5 + x/(5**2) + x/(5**3) + ... = K # assume x0 is the smallest number f(x0) = K # then 5 numbers which belongs to [x0, x0+4] are valid. -> count is 5 # otherwise, 0 # find x which f(x) = K. return 5 if found, otherwise, return 0 def check(x): count, d = 0, 5 while x >= d: count += x / d x /= d return count lo, hi = 0, 10*K + 1 while lo < hi: mid = (lo + hi) / 2 count = check(mid) if count == K: return 5 elif count > K: hi = mid else: lo = mid + 1 return 0
f2ad155fb39c8cbaec3d8cc4b1155c7d3a153976
guedanie/python-exercises
/warm-up.py
1,248
4.03125
4
# Take the word EASY: Its first three letters — E, A and S — are the fifth, first, and nineteenth letters, # respectively, in the alphabet. If you add 5, 1, and 19, you get 25, which is the value of the # alphabetical position of Y, the last letter of EASY. ## Cna you think of a common five-letter word that works in the opposite way - # in which the value of the alphabetical positions of its last four letters add up to the # value of the alphabetical position of its first letter? import pandas as pd with open('/usr/share/dict/words') as f: words = f.read().split('\n') five_words = [x for x in words if len(x) == 5] def find_value_of_letter(string): string = string.lower() letters = pd.Series(list(string)) alphabet = pd.Index(list("abcdefghijklmnopqrstuvwxyz")) last_three = letters[-4:] first = letters[0] count_last = 0 count_first = 0 list_of_words = [] for x in last_three: count_last += alphabet.get_loc(x) + 1 for x in first: count_first += alphabet.get_loc(x) + 1 if count_last == count_first: list_of_words += [string] return count_last == count_first words_value = [x for x in five_words if find_value_of_letter(x)] words_value
70ec80f7cafbf0c16d17a8e408d1c86101c69abd
addn2x/python3
/ex08-strings/string03.py
277
3.765625
4
a = 'This is some text' b = '123456' print(a.find('is')) print(a.find('other')) print(a.isalpha()) print(a.isdigit()) print(b.isalpha()) print(b.isdigit()) print(a.upper()) print(a.lower()) print(a.split()) print(a.join(b)) print(a + b) print(a.replace('is', 'was'))
1a833fd1f61e7f9f8a074cb5fac516909bb7445e
webclinic017/best_performance-python
/algorithm/linear/1.py
232
3.5
4
import numpy as np A = np.array( [ [1,2,4,1], [2,1,3,1], [5,2,1,4] ], dtype=np.float64 ) print(A) print(A.shape) # 오류 발생 #A[0,2] = 1+2j #A[2,1] = 1+2j # 0으로 바꿔보기 A[0,2] = 0 A[2,1] = 0 print(A)
4801233fbca798a2439ad0529ea365b904b29269
smarky7CD/PyNTRU
/PyNTRU/poly.py
2,286
3.59375
4
#!/usr/bin/env python3 from itertools import zip_longest class Polynomial(): def __init__(self,c, N): self._coeff = strip(c,0) self._N = N def __add__(self, other): new_coeff = [sum(x) for x in zip_longest(self, other, fillvalue=0)] return Polynomial(new_coeff, self._N) def __sub__(self, other): return self + (-other) def scale(self, m): """scalar multiplication of polynomial by int m""" new_coeff = [m*c for c in self] return Polynomial(new_coeff, self._N) def __mul__(self, other): """convolution product of truncated poly ring""" if self.isZero() or other.isZero(): return Zero() tmp_coeff = [0 for _ in range(self._N*2 -1)] for i,a in enumerate(self): for j,b in enumerate(other): tmp_coeff[i+j] += a*b trunc1 = tmp_coeff[:self._N] trunc2 = tmp_coeff[self._N:] new_coeff = [sum(x) for x in zip_longest(trunc1,trunc2,fillvalue=0)] return Polynomial(new_coeff, self._N) def __mod__(self, m): """ Reducing a polynomial's coeff mod m, also does center-lifting """ reduced_coeff = list(map(lambda x: x%m if x%m <= m//2 else x%m - m, self)) return Polynomial(reduced_coeff, self._N) def __str__(self): return ' '.join([str(c) for c in self]) def __len__(self): return len(self._coeff) def __iter__(self): return iter(self._coeff) def __neg__(self): return Polynomial([-c for c in self], self._N) def __eq__(self, other): return self.deg() == other.deg() and all([x==y for (x,y) in zip(self,other)]) def __ne__(self, other): return self.deg() != other.deg() and all([x!=y for (x,y) in zip(self,other)]) def tail_coeff(self): return self._coeff[0] def lead_coeff(self): return self._coeff[-1] def deg(self): return len(self) - 1 def isZero(self): return self._coeff == [0] def strip(L, e=0): """ strip all copies of e from end of list""" if len(L) == 0: return L i = len(L) - 1 while i>=0 and L[i] == e: i -= 1 return L[:i+1]
1bb1cb878947ed52d427d0f78fba0ca7f1e9b9e4
eush77/blackbox
/examples/test/factor.py
519
3.765625
4
#!/usr/bin/python3 from math import sqrt, floor from collections import defaultdict def factor(n): for k in range(2, floor(sqrt(n))+1): if not n%k: powers = factor(n // k) powers[k] += 1 return powers return defaultdict(int, {n: 1}) if __name__ == '__main__': n = int(input()) factorization = factor(n) print(' * '.join('{}{}'.format(prime, '^{}'.format(power) if power>1 else '') for prime,power in sorted(factorization.items())))
c16f8aa85f81d185151c9db2a88e1daa5774fe48
bgswaroop/tsai-epai-session15
/session15.py
1,890
3.6875
4
from collections import namedtuple from datetime import datetime from itertools import islice Ticket = namedtuple('Ticket', 'summons_number, plate_id, registration_state, plate_type, issue_date, violation_code, ' 'vehicle_body_type, vehicle_make, violation_description') date_formatter = lambda x: datetime.strptime(x, '%m/%d/%Y') ticket_datatype = [int, str, str, str, date_formatter, int, str, str, str] def fetch_data(): """ Goal 1 Create a lazy iterator that will return a named tuple of the data in each row. The data types should be appropriate - i.e. if the column is a date, you should be storing dates in the named tuple, if the field is an integer, then it should be stored as an integer, etc. :return: generator that returns single ticket at a time """ with open('nyc_parking_tickets_extract.csv', 'r') as f: next(f) for line in f: line_data = [x.strip() for x in line.strip().split(',')] line_data = [item_type(item) for item, item_type in zip(line_data, ticket_datatype)] yield Ticket(*line_data) return 'Finished reading the file' def compute_violations_by_car_make(): """ Goal 2 Calculate the number of violations by car make. :return: A dictionary containing the violations per car make """ parking_tickets = fetch_data() violations = {} for ticket in parking_tickets: if ticket.vehicle_make in violations: violations[ticket.vehicle_make] += 1 else: violations[ticket.vehicle_make] = 1 return violations def print_data(): """ Print the entire data :return: """ parking_tickets = fetch_data() for ticket in islice(parking_tickets, 10000): print(ticket) if __name__ == '__main__': print_data() print(compute_violations_by_car_make())
0adc9c83b412d2cfe8ab01095bcd951f0c6a50c9
FawneLu/leetcode
/264/Solution.py
475
3.625
4
```python3 import heapq class Solution: def nthUglyNumber(self, n: int) -> int: heap=[1] count=1 while count<=n: target=heapq.heappop(heap) if target*2 not in heap: heapq.heappush(heap,target*2) if target*3 not in heap: heapq.heappush(heap,target*3) if target*5 not in heap: heapq.heappush(heap,target*5) count+=1 return target ```
4d1fc819ef5a7a306b3eaae5d340af3e9fd7cd32
srividhyaravi/ML_Assignment
/Assignment_MLP/mlp_program.py
4,158
3.609375
4
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # In[2]: #reading the dataset from csv file def read_data(file): data = pd.read_csv(file, header=None , index_col=None) return data data = read_data('data.txt') data.head() # In[3]: #shuffling and splitting of the dataset def split_data(data): df = pd.DataFrame(data) #shuffle the dataset df = df.sample(frac=1) #split the dataset split = np.random.rand(len(df)) < 0.7 train = np.asmatrix(df[split], dtype = 'float64') test = np.asmatrix(df[~split], dtype = 'float64') X_train = train[:, :-1] y_train = train[:, -1] X_test = test[:, :-1] y_test = test[:,-1] return X_train,y_train,X_test,y_test X_train,y_train,X_test,y_test = split_data(data) # In[4]: #initializing params alpha = 0.002 epoch = 100 W = np.zeros(X_train.shape[1]+1) # In[5]: #activation function def activation(z): if z>=0: return 1 else: return 0 # In[6]: #prediction function def predict(x): z = np.dot(x, W[1:]) + W[0] g = activation(z) return g # In[7]: #training to learn the weights def train(X_train, y_train): loss_train = [] train_acc = [] epochs = range(1,epoch+1) for i in range(epoch): correct = 0 cost = 0 for x, y in zip(X_train, y_train): prediction = predict(x) y = np.array(y)[0][0] x = np.array(x)[0] error = y - prediction actual_value = int(y) if actual_value == prediction: correct += 1 W[1:] += alpha * error * x[0] W[0] += alpha * error cost += error**2 cost = cost/2 training_accuracy = correct/float(X_train.shape[0])*100.0 loss_train.append(cost) train_acc.append(training_accuracy) print("epoch:"+str(i)+" weight:"+str(W)+" learning rate:"+str(alpha)+" Training Accuracy:"+str(training_accuracy)) plt.plot(epochs, train_acc, 'g', label='Training accuracy') plt.xlim(0,epoch) plt.title('Training accuracy',fontsize=20) plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.legend() plt.show() plt.plot(epochs, loss_train, 'g', label='Training loss') plt.xlim(0,epoch) plt.title('Training loss',fontsize=20) plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() train(X_train, y_train) # In[8]: #Testset accuracy, Confusion Matrix and Accuracy metrics def test(X_test, y_test): print("Predictions on test data:") correct = 0 tp,fp,tn,fn = 0,0,0,0 for x,y in zip(X_test,y_test): prediction = predict(x) actual_value = int(np.array(y)[0][0]) print("X: "+str(x)+" prediction: "+str(prediction)+" Actual value:"+str(actual_value)) if actual_value == prediction: correct += 1 if actual_value == 0 and prediction == 0: tp += 1 if actual_value == 1 and prediction ==1: tn += 1 if actual_value == 0 and prediction ==1: fn += 1 if actual_value == 1 and prediction == 0: fp += 1 test_accuracy = correct/float(X_test.shape[0])*100.0 print("Test Accuracy:"+str(test_accuracy)) print() print("Accuracy metrics:") accuracy = (tp+tn)/(tp+tn+fp+fn) precision = tp/(tp+fp) recall = tp/(tp+fn) print("Accuracy: "+str(accuracy)) print("Precision: "+str(precision)) print("Recall: "+str(recall)) print() print("Confusion matrix:") cm = [[tp,fp],[fn,tn]] print(cm) print() df_cm = pd.DataFrame(cm, range(2), range(2)) plt.figure(figsize = (10,7)) sns.heatmap(df_cm, annot=True) plt.title('Confusion Matrix', fontsize = 20) plt.xlabel('Predicted', fontsize = 15) plt.ylabel('Actual', fontsize = 15) plt.show() test(X_test, y_test)
9a824124ce6934707dbce9f9f3dcd457e5a4d855
aayush2906/data_structures-Python
/InsertionSort.py
382
4.125
4
def InsertionSort(seq): for sliceEnd in range(len(seq)): pos=sliceEnd while pos > 0 and seq[pos] < seq[pos-1]: (seq[pos],seq[pos-1])=(seq[pos-1],seq[pos]) pos=pos-1 seq=[] n=int(input("Size of list::")) for i in range(0,n): x=int(input("Enter element::")) seq.insert(i,x) InsertionSort(seq) print("Sorted list",seq)
5645e7dbda048b8a2d02ea45d28a9a134a80f0f2
ardhysevenfold/animasi
/fiqoh.py
1,299
3.515625
4
from tkinter import * import time lebar = 600 tinggi = 400 tk = Tk() canvas = Canvas(tk, width=lebar, height=tinggi) tk.title("Gambar Bola Banyak Bergerak") canvas.pack() bola = canvas.create_oval(10, 10, 70, 70, fill="yellow") bola2 = canvas.create_oval(10, 10, 70, 70, fill="orange") bola3 = canvas.create_oval(10, 10, 70, 70, fill="black") kecepatanx = 5 kecepatany = 5 kecepatanx = 5 kecepatany = 5 kecepatanx = 5 kecepatany = 5 while True: canvas.move(bola, kecepatanx, kecepatany) pos = canvas.coords(bola) if pos[3] >= tinggi or pos[1] <= 0: kecepatany = -kecepatany if pos[2] >= lebar or pos[0] <= 0: kecepatanx = -kecepatanx tk.update() time.sleep(0.001) canvas.move(bola2, kecepatanx, kecepatany) pos = canvas.coords(bola2) if pos[3] >= tinggi or pos[1] <= 0: kecepatany = -kecepatany if pos[2] >= lebar or pos[0] <= 0: kecepatanx = -kecepatanx tk.update() time.sleep(0.001) canvas.move(bola3, kecepatanx, kecepatany) pos = canvas.coords(bola3) if pos[3] >= tinggi or pos[1] <= 0: kecepatany = -kecepatany if pos[2] >= lebar or pos[0] <= 0: kecepatanx = -kecepatanx tk.update() time.sleep(0.001) tk.mainloop()
8382a5c5de68f1d79e21a0fd99baa388f19c7df7
prasannakumarj/Learning_Python
/Chapter 02_Object_types/2_Lists/prg5.py
440
4.4375
4
#!/usr/bin/python #Title: List comprehension "expression" M=[[1,2,3], [4,5,6], [7,8,9]] #matrix in the form of list print('The matrix is:',M) col1=[i[0] for i in M] print('Column 1 elements are:',col1) col2=[i[1] for i in M] print('Column 2 elements are:',col2) col3=[i[2] for i in M] print('Column 3 elements are:',col3) '''The SYNTAX is: counter with index for counter in object Here for loop is used with "i" as a counter'''
66f2cfddb4ff48bd193552ce441888dff137087a
ltzone/EE447-Project
/backend/test.py
431
3.609375
4
s = """ for x in range(10): print(x, end='') print() """ code_exec = compile(s, '<string>', 'exec') code_eval = compile('10 + 20', '<string>', 'eval') code_single = compile('name = input("Input Your Name: ")', '<string>', 'single') a = exec(code_exec) b = eval(code_eval) c = exec(code_single) d = eval(code_single) print('a: ', a) print('b: ', b) print('c: ', c) print('name: ', name) print('d: ', d) print('name; ', name)
464000d7c90d89720624b8267e9bf2f4081217c6
LevenWin/Algorithm
/Python/Code/LinkedList/12-13.py
2,489
3.75
4
# -*- coding: UTF-8 -*- # 入环点 from linkedlist import LinkedLink from linkedlist import LinkNode import math def circleNode(head): meetNode = circleMeet(head) if meetNode == None: return None cur = head.next while cur != None and meetNode != None: if cur == meetNode: return cur else: cur = cur.next meetNode = meetNode.next return None # 入环点 def circleMeet(head): cur1 = head.next cur2 = head.next while cur1 != None and cur2 != None: cur1 = cur1.next cur2 = cur2.next.next if cur1 == cur2: return cur1 return None def noCircleMeet(head1, head2): cur1 = head1.next cur2 = head2.next l1 = 1 l2 = 2 while cur1.next != None: l1 += 1 cur1 = cur1.next while cur2.next != None: l2 += 1 cur2 = cur2.next if cur1 != cur2: return None large = l1 - l2 cur1 = head1.next cur2 = head2.next if l1 < l2: large = l2 - l1 cur1 = head2.next cur2 = head1.next while cur1 != None and cur2 != None and cur1 == cur2: if large == 0: cur2 = cur2.next cur1 = cur1.next return cur1 def twoCircleMeet(head1, head2, meet1, meet2): cur1 = meet1.next if meet1 == meet2: return twoCircleMeet2(head1, head2, meet1, meet2) else: while cur1 != None and cur1 != meet1: if cur1 == meet2: return twoCircleMeet2(head1, head2, meet1, meet2) return None # 不相交 # 环内相交 def twoCircleMeet1(head1, head2, meet1, meet2): # 返回meet1 或者meet2应该都行。 # return meet1 return meet2 # 环外相交。同一个入环点 def twoCircleMeet2(head1, head2, meet): cur1 = head1.next cur2 = head2.next l1 = 0 l2 = 0 while cur1 != meet: cur1 = cur1.next l1 += 1 while cur2 != meet: cur2 = cur2.next l2 += 1 # 后续逻辑跟在两无环链表相交一样 ... pass if __name__ == "__main__": link = LinkedLink() node1 = LinkNode(1) node2 = LinkNode(2) node3 = LinkNode(3) node4 = LinkNode(4) node5 = LinkNode(5) node6 = LinkNode(6) node1.next = node2 node2.next = node3 node3.next = node4 node4.next = node5 node5.next = node6 node6.next = node3 link.head.next = node1 print(circleNode(link.head).value)
4b6ac9aa0a2c62eeedf8a2df914cc8fa4c0e0e55
pickerxxr/CLRS-lab-practice
/Advantage_Shuffle.py
554
3.78125
4
# classic greedy def advantage_shuffle(arr_1, arr_2): arr_1_ctr = sorted(arr_1) arr_1_new = [] for i in arr_2: ctr = 0 for j in arr_1_ctr: if j > i: arr_1_new.append(j) ctr = 1 break if ctr == 0: arr_1_new.append(arr_1_ctr[0]) return arr_1_new a = [2, 7, 11, 15] b = [1, 10, 4, 11] c = [12, 24, 8, 32] d = [13, 25, 32, 11] print("A after shuffling:") print(advantage_shuffle(a, b)) print("C after shuffling:") print(advantage_shuffle(c, d))
59bd6af5bd2c79973183de4e8e7142b74fe1efa9
ujuc/introcs-py
/introcs/ch1/exp_q/2/1_2_2.py
253
3.546875
4
import math import sys from introcs.stdlib import stdio theta = float(sys.argv[1]) cos = math.cos(theta) sin = math.sin(theta) cos_sqrt = cos ** 2 sin_sqrt = sin ** 2 stdio.writeln(f"{cos_sqrt}, {sin_sqrt}") stdio.writeln(f"{cos_sqrt + sin_sqrt}")
aa5aa0ffde657aecf5372241d6d9f6e02dbf4afc
nabilchowdhury/comp551-applied-ml
/Assignment1/Q3.py
8,436
3.625
4
import matplotlib.pyplot as plt import numpy as np import pandas as pd ''' 3) Real-life dataset ''' df = pd.read_csv('./Datasets/communities.csv', header=None) df[0] = 1 df.drop([i for i in range(1, 5)], axis=1, inplace=True) # These columns are not predictive according to the dataset df.columns = [i for i in range(df.shape[1])] # Rename columns df = df.replace('?', np.NaN).astype(np.float64) ''' Part 1) Fill in missing values ''' df.fillna(df.mean(), inplace=True) # print(df.columns[df.isnull().any()].tolist()) N_examples = df.shape[0] M_cols = df.shape[1] df = df.sample(frac=1) # This shuffles the examples data = np.array(df, dtype=np.float64) ''' Part 2) Fit data and report 5-fold cross-validation error ''' # Normal equation with regularization (lambda_reg=0 means no regularization) def fit(X, y, lambda_reg=0): identity = np.identity(X.shape[1]) # identity[0, 0] = 0 # We do not penalize the bias term X_square = np.matmul(np.transpose(X), X) + lambda_reg * identity X_square_inverse = np.linalg.pinv(X_square) weights = np.matmul(np.matmul(X_square_inverse, np.transpose(X)), y) return weights # Gradient descent def gradient_descent(X, y, lambda_reg=0, alpha=1e-2, epochs=5000, weights=None): ''' Implementation of vectorized gradient descent with L2 regularization support :param X: The input matrix N x M, where each row is an example :param y: The output, N x 1 :param lambda_reg: Regularization hyperparamter (0 means no regularization) :param alpha: Learning rate :param epochs: Number of cycles over training data :param weights: Initial weights can be supplied if desired :return: The optimal weights after gradient descent ''' weights = weights if weights is not None else np.random.uniform(high=10, size=[M_cols - 1]) N = len(X) for epoch in range(epochs): weights = weights - alpha / N * ( np.matmul(np.transpose(X), np.matmul(X, weights) - y) + lambda_reg * weights) return weights def mean_square_error(X, y, W): y_hat = np.matmul(X, W) mean_square_err = np.sum(np.square(y - y_hat)) / len(y) return mean_square_err def cross_validation_split(X, n_folds=5, filename="file", write_to_csv=False): ''' Splits the dataset intn n_folds :param X: The input matrix, N x M :param n_folds: The number of folds :param filename: The output file prefix :param write_to_csv: True if saving each fold required :return: An array of dictionaries of length n_folds ''' N = len(X) // n_folds pairs = [] for i in range(n_folds): fold_train1 = X[0:i * N] if i < n_folds - 1: fold_test = X[i*N:(i+1)*N] fold_train2 = X[(i+1)*N:] else: fold_test = X[i*N:] fold_train2 = X[N:N] df_train = pd.DataFrame(np.concatenate((fold_train1, fold_train2))) df_test = pd.DataFrame(fold_test) if write_to_csv: df_train.to_csv('./Datasets/' + filename + '-train' + str(i + 1) + '.csv', header=False, index=False) df_test.to_csv('./Datasets/' + filename + '-test' + str(i + 1) + '.csv', header=False, index=False) pairs.append({'train': df_train, 'test': df_test}) return pairs def write_to_csv(to_df_object, filename, indexname=None): df_to_csv = pd.DataFrame(to_df_object) if indexname: df_to_csv.index.name = indexname df_to_csv.to_csv(filename + '.csv') # Generate the files for 5-fold cross-validation splits = cross_validation_split(data, 5, 'CandC', True) MSEs_closed_form = [] all_weights = {} fold = 1 for pair in splits: X_train = pair['train'].drop([M_cols - 1], axis=1) y_train = pair['train'][M_cols-1] X_test = pair['test'].drop([M_cols - 1], axis=1) y_test = pair['test'][M_cols - 1] weights = fit(X_train, y_train) MSEs_closed_form.append(mean_square_error(X_test, y_test, weights)) all_weights['fold' + str(fold)] = weights fold += 1 MSEs_gd = [] all_weights_gd = {} weights = np.random.uniform(high=10., size=[M_cols - 1]) fold = 1 for pair in splits: X_train = pair['train'].drop([M_cols - 1], axis=1) y_train = pair['train'][M_cols - 1] X_test = pair['test'].drop([M_cols - 1], axis=1) y_test = pair['test'][M_cols - 1] weights_gd = gradient_descent(np.array(X_train), np.array(y_train), epochs=20000, weights=np.copy(weights)) MSEs_gd.append(mean_square_error(X_test, y_test, weights_gd)) all_weights_gd['fold' + str(fold)] = weights_gd fold += 1 print('least squares:', np.average(MSEs_closed_form)) print('gradient descent:', np.average(MSEs_gd)) # Write weights to file (weight_index refers to w0, w1, etc. The weights for each fold are represented as columns in the csv. There are 5 columns and 123 rows) write_to_csv(all_weights, 'q3_part2_weights_for_closed_form', 'weight_index') write_to_csv(all_weights_gd, 'q3_part2_weights_for_gradient_descent', 'weight_index') ''' Part 3) Ridge-regression: Using only least-squares closed form solution for this part. ''' INCREMENTS = 100 MSE_vs_lambda = [] lambdas = np.arange(0, 5, 5 / INCREMENTS) lowest_mse = 999999 best_lambda = -1 for lambda_value in lambdas: cur_mse = 0 weights_for_folds = {} fold = 0 for pair in splits: X_train = pair['train'].drop([M_cols - 1], axis=1) y_train = pair['train'][M_cols - 1] X_test = pair['test'].drop([M_cols - 1], axis=1) y_test = pair['test'][M_cols - 1] weights = fit(X_train, y_train, lambda_value) cur_mse += mean_square_error(X_test, y_test, weights) weights_for_folds['fold' + str(fold)] = weights cur_mse /= len(splits) if cur_mse < lowest_mse: lowest_mse = cur_mse best_lambda = lambda_value MSE_vs_lambda.append(cur_mse) write_to_csv(weights_for_folds, './question3part3/weights_lambda_' + str(lambda_value), 'weight_index') print('Best lambda:', best_lambda) for i in range(len(MSE_vs_lambda)): print('MSE for lambda =', lambdas[i], 'is', MSE_vs_lambda[i]) plt.figure(1) plt.plot(lambdas[1:], MSE_vs_lambda[1:]) plt.title('Lambda vs MSE') plt.xlabel('Lambda') plt.ylabel('MSE') plt.show() # Feature selection # If a feature's associated weight is close to zero, it means that it contributes less to the prediction. # These features are good candidates for being excluded from the model. # We can first sort the weights and see which ones contribute the least to prediction all_weights_feature_selection = {} fold = 1 for pair in splits: X_train = pair['train'].drop([M_cols - 1], axis=1) y_train = pair['train'][M_cols - 1] X_test = pair['test'].drop([M_cols - 1], axis=1) y_test = pair['test'][M_cols - 1] weights = fit(X_train, y_train, lambda_reg=best_lambda) # Regularization with best_lambda from above all_weights_feature_selection['fold' + str(fold)] = weights fold += 1 # Now we look for weights that are close to zero in the regularized fit features_to_drop = set() for key in all_weights_feature_selection: w = all_weights_feature_selection[key] # This basically converts the weight vector [w0, w1...] to [(0, w0), (1, w1),...] so after we sort the weights we know which features they correspond to all_weights_feature_selection[key] = [(i, abs(w[i])) for i in range(len(w))] all_weights_feature_selection[key].sort(key=lambda x: x[1]) [features_to_drop.add(x[0]) for x in all_weights_feature_selection[key][:20]] for val in all_weights_feature_selection.values(): print(val) MSEs_final = [] all_weights_final = {} fold = 1 for pair in splits: X_train = pair['train'].drop([M_cols - 1], axis=1) y_train = pair['train'][M_cols-1] X_test = pair['test'].drop([M_cols - 1], axis=1) y_test = pair['test'][M_cols - 1] # Drop the features we found to have near 0 coefficients X_train.drop(list(features_to_drop), axis=1, inplace=True) X_test.drop(list(features_to_drop), axis=1, inplace=True) weights = fit(X_train, y_train, lambda_reg=best_lambda) MSEs_final.append(mean_square_error(X_test, y_test, weights)) all_weights_final['fold' + str(fold)] = weights fold += 1 print('Number of features to be dropped:', len(features_to_drop)) print('Best lambda:', best_lambda) print('MSE for best lambda:', lowest_mse) print('MSE for best lambda after dropping least contributing features:', np.average(MSEs_final))
0dba48939a7bfa51e829aafb5d4a3ea53cc1bdca
mnihatyavas/Python-uygulamalar
/Brian Heinold (243) ile Python/p10204.py
153
3.71875
4
# coding:iso-8859-9 Trke for i in range(10): print ('*' * 10) for i in range(10): print ('*' * (i+1)) for i in range(10): print ('*' * (10-i))
08a6bd2a0ae1a0528a7ab26135c2738196dae764
nghidinh/python-learning
/FundamentalProgramming/lecture8/StudentScoreMaintenance.py
4,372
3.734375
4
# a = [5, 9, 'Three', 2, 'Six'] # print a[3:] # print a[:4] # print a[2:5] # print a[4] # print a[-1] # # score = [65, 78, 90, 85, 50] # k = int(raw_input('Student number ')) # if k < 150001 or k > 150005: # print 'No such student number' # else: # print 'score = ', score[k - 150001] # # score = [-2, -2, -2, -2, -2] # while True: # stID = int(raw_input('Student ID')) # if 150001 <= stID <= 150005: # score[stID - 150001] = int(raw_input('seiseki ')) # else: break # print score # score = [-2,]*5 # while True: # stID = int(raw_input('Student ID')) # if 150001 <= stID <= 150005: # score[stID - 150001] = int(raw_input('seiseki ')) # else: break # print score # while True: # studentID = int(raw_input('StID')) # if 150001 <= studentID <= 150005: # print score[studentID - 150001] # else: break # stID1 = int(raw_input('First Student ID')) #the first student # stID2 = int(raw_input('First Student ID')) #the first student # score = [-2,]*(stID2 - stID1 + 1) # while True: # stID = int(raw_input('Student ID')) # if 150001 <= stID <= 150005: # score[stID - 150001] = int(raw_input('seiseki ')) # else: break # print score # while True: # studentID = int(raw_input('StID')) # if 150001 <= studentID <= 150005: # print score[studentID - 150001] # else: break # #Detecting which students's scores are missing # stID1 = int(raw_input('First Student ID')) #the first student # stID2 = int(raw_input('First Student ID')) #the first student # score = [-2,]*(stID2 - stID1 + 1) # while True: # stID = int(raw_input('Student ID')) # if 150001 <= stID <= 150005: # score[stID - 150001] = int(raw_input('seiseki ')) # else: break # #If all the scores are input and some scores remain -2, then ouput them. # for stID in range(stID1, stID2 + 1): # if score[stID - stID1] == -2: # print 'score for', stID, 'is missing' #Detecting duplicate registrations of scores # stID1 = int(raw_input('First Student ID ')) # stID2 = int(raw_input('Last Student ID ')) # score = [-2] * (stID2 - stID1 + 1) # while True: # stID = int(raw_input('Student ID')) # if stID1 <= stID <= stID2: # if score[stID - stID1] != -2: # print stID, 'Score is already registered ' # continue # score[stID - stID1] = int(raw_input('seiseki ')) # else: break # for stID in range(stID1, stID2+1): # if score[stID - stID1] == -2: # print 'score for', stID, 'is missing' # # IDs = [0, 0]; IDe = [0, 0] # IDs[0] = int(raw_input('From 14xxxx: ')) # IDe[0] = int(raw_input('To 14xxxx: ')) # IDs[1] = int(raw_input('From 15xxxx: ')) # IDe[1] = int(raw_input('To 15xxxx: ')) # score14 = [-2,] * (IDe[0] - IDs[0] + 1) # score15 = [-2,] * (IDe[1] - IDs[1] + 1) # # while True: # stID = int(raw_input('Student ID: ')) # if IDs[0] <= stID <= IDe[0]: # if score14[stID - IDs[0]] != -2: # print stID, 'Score is already registered' # else: # score14[stID - IDs[0]] = int(raw_input('seiseki')) # elif IDs[1] <= stID <= IDe[1]: # if score15[stID - IDs[1]] != -2: # print stID, 'Score is already registered' # else: # score15[stID - IDs[1]] = int(raw_input('seiseki')) # else: break # # for stID in range(IDs[0], IDe[0] + 1): # if score14[stID - IDs[0]] == -2: # print 'score for', stID, 'is missing' # for stID in range(IDs[1], IDe[1] + 1): # if score15[stID - IDs[1]] == -2: # print 'score for', stID, 'is missing' # n = int(raw_input('How many? ')) IDs = [0, ]* n; IDe = [0, ]*n for i in range(0, n): IDs[i] = int(raw_input('From ')) IDe[i] = int(raw_input('To ')) for i in range(0, n): score[i] = [-2,] * (IDe[i] - IDs[i] + 1) while True: stID = int(raw_input('Student ID')) for i in range(0, n): if IDs[i] <= stID <= IDe[i]: if score[i][stID - IDs[i]] != -2: print stID, 'Score is already registered ' else: score[i][stID - IDs[i]] = int(raw_input('seiseki ')) else: break for i in range(0, n): for stID in range(IDs[i], IDe[i]+1): if score[i][stID - IDs[i]] == -2: print 'score for ', stID, 'is missing'
ba34128d174c722d46b0c6a213a0593d8f4937eb
mmutiso/svpino_challenge
/find_missing_number.py
1,028
3.765625
4
import random def data_generator(): array = [i for i in range(1,101)] random_number = random.randint(1,100) array.remove(random_number) random.shuffle(array) return (array, random_number) def solution(arr): ''' create a visited array initialized with all False. The size of the visited array is the length of 100 + 1 Iterate first time on arr to set visitation Iterate second time on visited to check unvisited ''' N = len(arr) visited_array = [False] * (100+1) for i in range(N): element = arr[i] visited_array[element] = True for i in range(1, len(visited_array)): if visited_array[i] == False: return i #For the scenario in question we will never get here if __name__ == "__main__": (arr, missing_element) = data_generator() result = solution(arr) assert result == missing_element (arr, missing_element) = data_generator() result = solution(arr) assert result == missing_element
235093da6c5dd075d79da9d3007ae69c44f11528
NicolasBaak/primeros_programas_python
/Funciones/clase.py
628
3.9375
4
#Nos piden diseñar un procedimiento que recibe como datos las dos listas y una cadena con #el nombre de un estudiante. Si el estudiante pertenece a la clase, el procedimiento imprimirá #su nombre y nota en pantalla. Si no es un alumno incluido en la lista, se imprimirá un mensaje #que lo advierta. def muestra_nota_de_alumno(alumnos, notas, alumno_buscado): encontrado = False for i in range(len(alumnos)): if alumnos[i]==alumno_buscado: print(alumno_buscado,notas[i]) return if not encontrado: print('El alumno {0} no pertenece al grupo.'.format(alumno_buscado))
277dcda3a4abcf5244545b7390576e044f9770dc
MihailoJoksimovic/cs6006-implementations
/depth_first.py
1,582
3.859375
4
# Implement depth first graph search. Try implementing edge classification and topological sort as well # How to represent graphs? 1. Adjacency lists, 2. Objects graph = { 'a': ['b', 'd'], 'b': ['e'], 'c': ['e', 'f'], 'd': ['b'], 'e': ['d', 'g'], 'f': [], 'g': ['d'] } visiting_order = [] def depth_first_search(start_node, adjacency_list, parents, visiting): neighbors = adjacency_list[start_node] print("Visiting {}".format(start_node)) visiting[start_node] = True for neighbor in neighbors: if neighbor in visiting: print("Found a back-edge from {} to {}".format(start_node, neighbor)) if neighbor not in parents: parents[neighbor] = start_node depth_first_search(neighbor, adjacency_list, parents, visiting) del visiting[start_node] visiting_order.append(start_node) # depth_first_search('a', graph) # Now lets make sure to visit ALL vertices parents = {} for vertex in graph.keys(): if vertex in parents: continue parents[vertex] = None depth_first_search(vertex, graph, parents, visiting = {}) visiting_order.reverse() print(visiting_order) print("New graph!!!") graph = { 5: [11], 7: [8, 11], 3: [8, 10], 11: [2, 9, 10], 8: [9], 2: [], 9: [], 10: [] } visiting_order = [] parents = {} for vertex in graph.keys(): if vertex in parents: continue parents[vertex] = None depth_first_search(vertex, graph, parents, visiting = {}) visiting_order.reverse() print(visiting_order)
5d1ae44cfc5234ccbfcfcf12782be925619d646b
r-hague/Python_work
/Loan_time_payment.py
2,057
4.21875
4
import math myFunc = input("Press 1 to calculate payment amount for a given duration and principal. \n Press 2 to calculate duration for a given payment amount and principal. \n Press 3 to calculate principal for a given duration and payment amount: ") interestRate = input("Interest rate (%): ") r = interestRate / 1200 if myFunc == 1: loanValue = input("Principal ($): ") duration = input("Loan duration (months): ") payment1 = (r*loanValue)/(1-((1+r)**(-1*duration))) payment = int(math.ceil(payment1)) print "Monthly payment is $", payment totalPaid = payment*duration totalInterest = totalPaid-loanValue print "Total paid is $", totalPaid, " and the interest paid is $", totalInterest print "month interest balance" elif myFunc == 2: loanValue = input("Principal ($): ") payment = input("Loan payment ($): ") duration1 = (-1*math.log(1-((r*loanValue)/payment)))/(math.log(1+r)) duration2 = int(math.ceil(duration1)) dur_yr = float(duration2)/12 print "Loan duration is ", duration2, " months or ", dur_yr, " years " totalPaid = payment*duration2 totalInterest = totalPaid-loanValue print "Total paid is $", totalPaid, " and the interest paid is $", totalInterest print "month interest balance" elif myFunc == 3: payment1 = input("Loan payment ($): ") duration = input("Loan duration (months): ") loanValue1 = payment1*((1-(1+r)**(-1*duration))/r) loanValue = int(math.ceil(loanValue1)) print "Loan principal is $", loanValue payment = int(math.ceil(payment1)) totalPaid = payment * duration totalInterest = totalPaid - loanValue print "Total paid is $", totalPaid, " and the interest paid is $", totalInterest print "month interest balance" else: print "error" loanBalance = loanValue i = 1 while loanBalance > 0.01: interest = (interestRate/1200)*loanBalance loanBalance = (interest + loanBalance) - payment print i, interest, loanBalance i += 1
c59f9438bcff90694fd5938c20285707498adc18
matyama/zal-tutorials
/tutorial04.py
2,239
4.5
4
#!/usr/bin/env python3 import math from combinatorics import factorial def range_sum_loop(a, b): pass def range_sum_func(a, b): pass def range_sum_expr(a, b): pass def euler_naive(num_iters): pass def euler(num_iters): pass def sqrt(x): pass def prime(n): pass if __name__ == '__main__': # function range(n) creates a generator/iterator of numbers from interval [0,n), the default step is 1 r = range(10) print(r, type(r)) # in order to display the sequence, we can use list() constructor print(list(r)) # one can also define the initial element - in this case the sequence starts with 1 r2 = range(1, 5) print(list(r2)) # typical usage is in a for loop - the body is in this case evaluated for i = 2, 4, 6, 8 for i in range(2, 10, 2): print(i) print('continue, break:') # with any loop comes in hand pair of statements: continue and break for i in range(5): if i == 1: # when continue is called, the rest of the block is not evaluated and the loop continues with next iter. continue if i == 3: # when break is called, the loop execution breaks at this point and we continue after the loop body break print(i) print('while:') # next loop type is while which iterates while it's loop condition is satisfied x = 2 while x ** 2 < 100: print(x ** 2) x += 2 # advanced usage of for is "list comprehension" squares = [x ** 2 for x in range(2, 10, 2)] print(type(squares), squares) # one can even use if filter in list comprehensions odd = [x for x in range(1, 10) if x % 2 == 1] print(odd) # how to create your own generator? - simply use () in comprehension even = (2 * k for k in range(10)) print(type(even), even, list(even)) print('range_sum:') print(range_sum_loop(2, 10)) print(range_sum_func(2, 10)) print(range_sum_expr(2, 10)) print("euler's number:") print(euler_naive(100)) print(euler(100)) print(math.e) print('sqrt:') print(sqrt(5.)) print(math.sqrt(5.)) print('primality test') print(prime(13)) print(prime(256))
ecc5c3563103ce17063704276583c3bd529a4110
YosraAouini/pandas-numpy
/world_statistics_data.py
3,085
3.96875
4
# world_data.py # # A terminal-based application for computing and printing statistics based on given input. # Detailed specifications are provided via the Assignment 5 git repository. # You must include the main listed below. You may add your own additional classes, functions, variables, etc. # You may import any modules from the standard Python library, including numpy and pandas. # Remember to include docstrings and comments. ## Import librairies import pandas as pd import warnings warnings.filterwarnings("ignore") def main(): # Stage 1: Import data print("ENSF 592 World Data") ## Import data data=pd.read_csv('Assign5Data.csv',header=0, delimiter=";") ## Set index index = pd.MultiIndex.from_frame(data[['UN Region', 'UN Sub-Region','Country']]) data.set_index(index,inplace=True) ## #Define function region_valid to raise error when the sub-region doesn't exist def region_valide(sub_region): if sub_region not in data['UN Sub-Region'].unique(): raise ValueError("You must enter a valid UN sub-region name") #Using the while functionality, the user can enter many time the sub-region name until he enter a valid name sub_region = None while sub_region is None: input_value = str(input("Please enter a sub-region name: ")) try: # try and convert the string input to a number region_valide(input_value) sub_region=input_value except ValueError: # tell the user off print("You must enter a valid UN sub-region name".format(input=input_value)) ## Select data concerning the sub region data_r=data[data['UN Sub-Region']==sub_region ] ## Define the find_null()` to determine whether any area data is missing for the chosen sub-region. def find_null(sub_region_name): data_km=data_r['Sq Km'] if len(data_km[data_km.isnull()])!=0: return data_km[data_km.isnull()] else: print("There are no missing sq km values for this sub-region.") print("Sq Km measurements are missing for:") print(find_null(sub_region )) print("Calculating change in population and latest density") ## Calculate change in population data_r['change_pop']=data_r['2020 Pop'] - data_r['2000 Pop'] ## Calculate population density data_r["population_density"]=data_r['2020 Pop']/data_r['Sq Km'] print(data_r.iloc[:,3:]) print("Number of threatened species in each country of the sub-region:") species =data_r[['Plants (T)','Fish (T)','Birds (T)','Mammals (T)']] data_r["species_number"] = species.sum(axis=1) print(data_r[['Plants (T)','Fish (T)','Birds (T)','Mammals (T)','species_number']]) print("The calculated sq km area per umber of threatened species in each country is:") data_r['species_density']=data_r['Sq Km']/data_r['species_number'] print(data_r['species_density']) if __name__ == '__main__': main()
990f06031119e8d514d26f48a1d2896426edb5f7
531621028/python
/函数式编程/filter.py
964
3.921875
4
#和map()类似,filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素 def is_odd(x): return x % 2 == 1 print(list(filter(is_odd,[1,2,3,4,5,6,7,8,9]))) #注意到filter()函数返回的是一个Iterator,也就是一个惰性序列,所以要强迫filter()完成计算结果,需要用list()函数获得所有结果并返回list def _odd_iter(): n = 1 while True: n = n + 2 yield n def _not_divisible(n): return lambda x : x % n > 0 def primes(): yield 2 it = _odd_iter() while True: n = next(it) yield n it = filter(_not_divisible(n),it) for n in primes(): if n < 1000: pass else: break def is_palindrome(n): y = n sum = 0 while y != 0: x = y % 10 y = int(y / 10) sum = sum * 10 + x return sum == n output = filter(is_palindrome, range(1, 1000)) print(list(output))
9f24f047b3966e31dc38ce21ca8f3a261f692bd1
Shubham-cod/Data-Reporting
/data_report_server.py
1,207
3.765625
4
#################################### creating socket TCP server to recieve the data ######################################### import socket import pickle HOST = '127.0.0.1' # hostname or IP address PORT = 65432 # Port to listen with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind((HOST, PORT)) #assigning socket as a server socket s.listen(5) #listens to incoming client signal conn, addr = s.accept() #accepts the signal from client and connection is established from_client = b"" #variable to concatenate and store recieved data with conn: print('Connected by', addr) while True: data = conn.recv(3000024) if not data: break else: from_client += data #concatenating recieving data data_rec = pickle.loads(data) #unpickling/extracting recieved data print(data_rec) #printing recieved data s.close() ############################################################### END ###########################################################
e7f8e237f7c0cc8b3645a4d3efa4dd7d586fabf4
awesomediff/cs207-FinalProject
/awesomediff/core.py
12,946
4.09375
4
import math import numpy as np class variable: def __init__(self,val,der=1): """ Initialize a variable object with a specified value and derivative. Expect scalar for val. Expect scalar or a numpy array for der. If no derivative is specified, a seed of 1 is assumed. """ self._val = val assert isinstance(der, (np.ndarray, float, int)), "der must be a scalar or a numpy array" self._der = der @property def val(self): return self._val @property def der(self): return self._der def __repr__(self): """ Define representation of variable object: """ return "awesomediff.variable(val={},der={})".format(self.val,self.der) def __neg__(self): """ Overload negation. Returns a variable object with: val : negated value. der : negated derivative. """ return variable(val=-self.val,der=-self.der) def __add__(self,other): """ Overload addition. Returns a variable object with: val : sum of values. der : sum of derivatives. """ self_val = self.val self_der = self.der try: # Assume other object is a variable: other_val = other.val other_der = other.der except: # If not, use this value and derivative 0. try: float(other) except: raise ValueError("{} is not a number.".format(other)) other_val = other other_der = 0 # Derivative of a constant is zero. # Calculate new values (simple summation): new_val = self_val + other_val new_der = self_der + other_der # Return variable with new value and derivative: return variable(val=new_val,der=new_der) def __radd__(self,other): """ Overload reverse addition by calling __add__(). """ return self.__add__(other) def __mul__(self,other): """ Overload multiplication. Returns a variable object with: val : product of values. der : result of product rule """ self_val = self.val self_der = self.der try: # Assume other object is a variable: other_val = other.val other_der = other.der except: # If not, uses this value and derivative 0. try: float(other) except: raise ValueError("{} is not a number.".format(other)) other_val = other other_der = 0 # Derivative of a constant is zero. # Calculate new values (applying product rule): new_val = self_val * other_val new_der = (self_der * other_val) + (self_val * other_der) # Return variable with new value and derivative: return variable(val=new_val,der=new_der) def __rmul__(self,other): """ Overload reverse multiplication Calls __mul__. """ return self.__mul__(other) def __sub__(self,other): """ Overload subtraction. Implemented using negation and addition. """ return self.__add__(-other) def __rsub__(self,other): """ Overload reverse subtraction. Implemented using negation and addition. """ return self.__neg__().__add__(other) def __truediv__(self, other): try: # assume other is an instance variable new_val = self.val / other.val new_der = (self.der * other.val - self.val * other.der) / other.val ** 2 except: # assume in the form of variable/scaler try: float(other) except: raise ValueError("{} is not a number or instance variable.".format(other)) if float(other) == 0: raise ZeroDivisionError('Cannot perform division by zero') new_val = self.val / float(other) new_der = self.der / float(other) return variable(val=new_val, der=new_der) def __rtruediv__(self, other): new_val = other / self.val new_der = -other * self.val ** (-2) # other*self.pow(-1) return variable(val=new_val, der=new_der) def __eq__(self, other): """ Overload equal Check if the thing compared to is a variable and has the same vale """ return isinstance(other, variable) and self.val == other.val def __ne__(self, other): """ Overload not equal Check if the thing compared to is a variable and does not have the same vale """ return not isinstance(other, variable) or not (self.val == other.val) def __lt__(self, other): """ Overload less than """ try: return self.val<other.val except: raise AttributeError("Can only compare varibles.") def __gt__(self, other): """ Overload greater than """ try: return self.val>other.val except: raise AttributeError("Can only compare varibles.") def __le__(self, other): """ Overload less than or equal to """ try: return self.val<=other.val except: raise AttributeError("Can only compare varibles.") def __ge__(self,other): """ Overload greater than or equal to """ try: return self.val>=other.val except: raise AttributeError("Can only compare varibles.") def __pow__(self, other): try: # check whether other is a number new_val = self.val ** other except: raise ValueError("{} must be a number.".format(other)) new_der = other * self.val ** (other - 1) * self.der return variable(val=new_val, der=new_der) def __rpow__(self, other): try: new_val = other** self.val except: raise ValueError("{} must be a number.".format(other)) new_der = other**self.val * np.log(other) return variable(val=new_val, der=new_der) def _build_jacobian(outputs): """ INPUT: outputs: a list of awesomediff.variable objects OUTPUT: returns n x m jacobian matrix where n is the number of functions and m is the total number of variables EXAMPLE: outputs = [awesomediff.variable(val=5, der=[4]), awesomediff.variable (val=0.5, der=[0.5])] ## _build_jacobian(outputs) [[4] [0.25]] """ n = len(outputs) # get number of functions m = len(outputs[0].der) # get number of variables jacobian = np.zeros((n,m)) for i, output in enumerate(outputs): jacobian[i,:] = output.der return jacobian def evaluate(func,vals,seed=None): """ A wapper function that evaluates a user-defined function using awesomediff.variable objects. INPUTS: func: A user-defined function of n variables and m functions that will be evaluated to find the value and derivative at a specified point. The user-defined function may take one or more variables as arguments and may return one or more function outputs (as a list). Functions may include basic operations (+,*,etc), as well as any special functions supported by awesomediff. vals: A scalar (for univariate function) or a list of scalars (for multivariate function) at which to evaluate the function and its derivative. seed: A scalar (for univariate function) or a list of lists (for multivariate function) containing seed values for each variable. The lengths of the outer list and inner list must equal the number of arguments taken by `func` (i.e. the number of variables). Defaults to a seed of 1 for each variable if no seed value is provided. EXAMPLE: To set seed of variables x, y, z at 1, 2, and 3, respectively, user passes the following list of lists as seed: [[1,0,0],[0,2,0],[0,0,3]] The length of outer list and the lengths of each of the inner lists must be equal to the total number of variables (in this example, 3) ... RETURNS: output_value: value of function at a specified point. A scalar for a function, a vector of scalars for a vector function jacobian: the jacobian of function. A vector of scalar or scalars for univariate and multivariate functions, respectively. A matrix of scalars for univariate and multivariate vector functions ... EXAMPLE: ## def parametric_ellipse(a,b,t): x = a * ad.cos(t) y = b * ad.sin(t) return [x, y] ## output_value, jacobian = ad.evaluate(func=parametric_ellipse,vals=[4,2,0]) ## output_value np.array([4, 0]) # [a*cos(t), b*sin(t)] ## jacobian np.array([[1,0,0],[0,0,4]]) #[[cos(t), 0, -a*sin(t)],[0 , sin(t), a*cos(t)]] """ ## check user input for vals and convert it to numpy array # user input for vals will be a scalar for univariate function and # a list of scalars for multivariate function try: float(vals) # if vals is a scalar vals = np.array([vals]) except: if isinstance(vals, list): # if vals is a list vals = np.array(vals) ## get number of values that were passed as inputs num_vars = len(vals) ## check user input for seed # user input for seed will be a scalar for univariate function and # a list of scalars for multivariate function # if user doesn't pass in value for seed argument, create seed with value of 1 if seed == None: if num_vars == 1: #if univariate function seed = np.array([1]) else: #if multivariate function seed_matrix = np.identity(num_vars) #if user passes in value for seed argument else: try: float(seed) # if seed is a scalar seed = np.array([seed]) except: if isinstance(seed, list): # if seed is a list # check length of outer list assert len(seed) == num_vars, "length of outer list must equal number of variables" # check length of inner list for s in seed: try: len(s) except: # seed for univariate function given as a list raise ValueError("seed for univariate function should be given as a scalar") assert len(s) == num_vars, "length of inner list must equal number of variables" seed_matrix = np.array(seed) else: # if seed is not provided as a scalar or a list raise ValueError("seed must be provided as a scalar or a list") ## evaluate the user-defined function passed in # instantiate awesomediff.variable objects if num_vars == 1: # if univariate function var = variable(val=vals[0], der=seed) inputs = [var] else: # if multivariate function inputs = [] for i,v in enumerate(vals): var = variable(val=v,der=seed_matrix[i,:]) inputs.append(var) # pass awesomediff.variable objects into user-defined function # outputs will be an awesomediff.variable object or a list of # awesomediff.variable objects storing values and derivatives of functions try: outputs = func(*inputs) except Exception as e: raise RuntimeError("function evaluation failed with the following error: {}".format(e)) # create output_value and jacobian try: # if a vector-function len(outputs) output_value = np.zeros(len(outputs)) for i,output in enumerate(outputs): output_value[i] = output.val jacobian = _build_jacobian(outputs) except: # if not a vector function output_value = outputs.val jacobian = outputs.der return output_value, jacobian
aaeee0275cbd100624c088e4966234edb4aa4226
crystal616/8480Group
/code/recom.py
7,250
3.546875
4
''' recom.py Author: Ying Cai Date: 11/10/12 Description: Compute movie similarity. Analyze user's watching list, select similar movies and recommend. Compute the recall and precision of the recommendation list. ''' import pandas as pd import numpy as np import scipy as sp import math import json #cleaned full movie_genre dataset movie_genre = pd.read_csv("movie_left.csv") movieId2title = {} index2movieId={} movieId2index={} for i in range(0,len(movie_genre)): movieId=movie_genre.at[i, 'movieId'] title=movie_genre.at[i,'title'] movieId2title[movieId]=title index2movieId[i]=movieId movieId2index[movieId]=i movie_genre.drop(columns="title") row = movie_genre.shape[0] print(row) genre_matrix = np.zeros((row, 20 + 1), dtype = int) #movie genres names = ["Action","Adventure","Animation","Children","Comedy","Crime","Documentary","Drama","Fantasy","Film-Noir","Horror","Musical","Mystery","Romance","Sci-Fi","Thriller","War","Western","IMAX","(no genres listed)"] print(len(names)) genres = movie_genre["genres"] print(genres.shape) for i in range (0, row): id = int(movie_genre.iloc[[i]]["movieId"]) genre_matrix[i][0] = id strs = movie_genre.at[i, "genres"].split("|") for g in strs: loc = names.index(g)+1 genre_matrix[i][loc] = 1 genre_matrix = genre_matrix[:,1:21] genre_matrix_T = genre_matrix.transpose() #compute cosine similarity similarity_matrix = np.dot(genre_matrix, genre_matrix_T) cosine_sim = similarity_matrix cosine_sim = cosine_sim.astype(float) sqrt=[] for i in range(0,len(cosine_sim[0])): sqrt.append(math.sqrt(cosine_sim[i][i])) for r in range (0, row): for l in range (r, row): if (cosine_sim[r,l] != 0): cosine_sim[r,l] = cosine_sim[r,l] / (sqrt[r]*sqrt[l]) cosine_sim[l,r] = cosine_sim[r,l] #compute recall and precision of recommendation def recall_precision (pred_list, real_dict): count = 0 real_count = len(real_dict)# or len(real_list) pred_count = len(pred_list) if real_count == 0: return 0.0,0.0 for user in pred_list: user = str(user) if real_dict.get(user,0) != 0: count = count + 1 recall = count / real_count precision = count / pred_count return recall, precision #generate similar movie list, total # of chosen movies >= nn def select_movie_basedon_similarity (similarity_matrix, movieIndex,nn,step): IDs = [] similarity_list = similarity_matrix[movieIndex,:] size = similarity_list.shape[0] limit = 0.99+step #choose movies whose similarity > 0.99. If we don't have >=nn movies selected, #decrease the threshold of similarity by one "step", start a new iteration while len(IDs) < nn: limit = limit - step for i in range (0, size): if similarity_list[i] >= limit and i != movieIndex: m_ID = index2movieId[i] IDs.append(m_ID) return IDs def pred_list (movieId_list, movie_user_dict): ##Here must user movieId not index user_list = [] for movieId in movieId_list: user_list.extend(list(movie_user_dict[str(movieId)].keys())) user_list = list(set(user_list)) return user_list def real_list (movie_user_dict, movieId): m_dict = movie_user_dict.get(str(movieId)) return m_dict def rec_movie_list(userId, user_movie_train_dict, movie_user_train_dict, similarity_matrix,cutOff, listLength, nn, step): select_movie = [] watched_list = user_movie_train_dict.get(str(userId)) #compute the mean of all ratings mean = sum(watched_list.values()) / float(len(watched_list)) if cutOff != 0: maxRating=max(watched_list.values()) mean = mean + (maxRating-mean)/2 #examine if an user "like" or "dislike" a particular movie for key in watched_list: if watched_list.get(key) >= mean: index=movieId2index[int(key)] select_movie.extend(select_movie_basedon_similarity(similarity_matrix, index, nn, step)) select_movie = list(set(select_movie)) if len(select_movie) > listLength: #recommend 50, 100 or 150 movies temp_list = [] for movie in select_movie: temp_list.append((movie, len(movie_user_train_dict.get(str(movie))))) temp_list.sort(key=sortSecond, reverse=True) list_50 = temp_list[:listLength] select_movie = [] for i in range (0, listLength): select_movie.append(list_50[i][0]) return select_movie def sortSecond(val): return val[1] def movie_realwatch_list (user_movie_test_dict, userId): userId = str(userId) return user_movie_test_dict.get(userId,{}) with open("user_movie_train_dict.json") as f: user_movie_train_dict = json.load(f) f.close with open("movie_user_train_dict.json") as f: movie_user_train_dict = json.load(f) f.close with open("user_movie_test_dict.json") as f: user_movie_test_dict = json.load(f) f.close rating=pd.read_csv('rating_left.csv') userlist = np.random.choice(rating.userId.unique(), 1000) recall = [] precision = [] # threshold for choosing neighbor steps = [0.02,0.1] # number of nearest neighbor nn = [1,3,5,10] # use mean for threshold of preference cutOffs = [0,1] # length of recommendation list listLengths = [50, 100, 150] # generate list and compute recall and precision for step in steps: for k in nn: for cutOff in cutOffs: for listLength in listLengths: for userId in userlist: select_movies=rec_movie_list(userId, user_movie_train_dict, movie_user_train_dict,cosine_sim,cutOff,listLength, k, step) real_watch=movie_realwatch_list(user_movie_test_dict, userId) a, b = recall_precision (select_movies, real_watch) recall.append(a) precision.append(b) print('recall: ',a, ' precision: ', b) with open('recall-movie2user-cutOff'+str(cutOff)+'-L'+str(listLength)+'-k'+str(k)+'-step'+str(step)+'.json', 'w') as outfile: json.dump(recall, outfile) with open('precision-movie2user-cutOff'+str(cutOff)+'-L'+str(listLength)+'-k'+str(k)+'-step'+str(step)+'.json', 'w') as outfile: json.dump(precision,outfile) with open("movie_user_dict.json") as f: movie_user_dict = json.load(f) f.close() recall=[] precision=[] # compute recall and precision to find an optional "step" value for step in steps: for k in nn: for i in range(row): recom_movies=select_movie_basedon_similarity(cosine_sim,i, k, step) pred=pred_list(recom_movies,movie_user_dict) real=real_list(movie_user_dict, index2movieId[i]) a, b = recall_precision (pred, real) recall.append(a) precision.append(b) print('recall: ',a, ' precision: ', b) with open('recall-user2movie-step'+str(step)+'-k'+str(k)+'.json', 'w') as outfile: json.dump(recall, outfile) with open('precision-user2movie-step'+str(step)+'-k'+str(k)+'.json', 'w') as outfile: json.dump(precision,outfile)
8b6181752ad87fc8c37b98bdb9f3cbbd159746eb
pinkrespect/HappyHappyAlgorithm
/test_score.py
212
3.53125
4
import stdin from sys as read score = int(read.readline().rstrip()) if score > 89: print("A") elif score > 79: print("B") elif score > 69: print("C") elif score > 59: print("D") else: print("F")
78f3ae2d87f3a3d494feff8186737798caeb6379
syurskyi/Python_Topics
/125_algorithms/_examples/_algorithms_challenges/pybites/beginner/1/summing.py
621
3.75
4
def sum_numbers(numbers=None): total = 0 if numbers == None: for i in range(1,101): total = total + i elif len(numbers) == 0: total = 0 elif isinstance(numbers, list) or isinstance(numbers, tuple): for i in numbers: total = total + i elif not isinstance(numbers, list) or not isinstance(numbers, tuple): count = len(numbers) for i in range(0,count): total = total + numbers[i] return total # The isinstance() function checks if the object (first argument) is an instance or subclass of classinfo class (second argument).
ea1b63f1c1810daff85f30ef678b9ed47eb5a6d8
KARTHICKMUTHUSAMY/beginer
/detective saikat.py
168
3.765625
4
def stair(): x=0 y=[] z=int(input()) for i in range(z): y.append(int(input())) for i in y: x+=(z-i) print(x) try: stair() except: print('invalid') p
6a681d0495baf3f0ce68b022ebccdbff043341a4
binarioGH/codewars
/simpletrans.py
204
3.703125
4
#-*-coding: utf-8-*- def encode(text): plain_text = ["", ""] index = 0 for symbol in text: plain_text[index] += symbol if index == 0: index += 1 else: index -= 1 return "".join(plain_text)
93fa93c1ab92ebed9582be1a5699b6eb63d8072a
YaroslavGavrilychev/Python_1594
/HW3.py
885
3.640625
4
name_percent_main_part = 'процент' while True: try: percent_from_input = int(input('Введите пожалуйста число от 1 до 20: ')) except: print('Пожалуйста введите целое число') else: if percent_from_input < 1 or percent_from_input > 20: print('Ваше число не входит в диапазон от 1 до 20') else: break def get_percent_full_name(percent): suffix = get_percent_suffix(percent) return f'{percent} {name_percent_main_part}{suffix}' def get_percent_suffix(percent): if percent > 4: return 'ов' if percent > 1: return 'а' return '' print(get_percent_full_name(percent_from_input)) print('Все склонения от 1 до 20:') for i in range(1, 21): print(get_percent_full_name(i))
37c9a4b0920c424e1c5b4bd34b3b7a9098a9083b
Adam-Of-Earth/holbertonschool-higher_level_programming
/0x06-python-classes/1-square.py
323
3.875
4
#!/usr/bin/python3 """a class Square Description of a square class """ class Square: """square shape infomation about the square and how to use it """ def __init__(self, size): """Create a square size large size(int): how large the size wil be """ self.__size = size
b6d4d895080d924b49da87976f8e9604a8e80fbf
green-fox-academy/balazsbarni
/week04/day01/09-teachers-and-students.py
561
3.671875
4
#### Teacher Student #- Create `Student` and `Teacher` classes #- `Student` # - learn() # - question(teacher) -> calls the teachers answer method #- `Teacher` # - teach(student) -> calls the students learn method # - answer() class Student(object): def question(self, teacher): teacher.answer() def learn(self): print("IDK") class Teacher(object): def teach(self, student): student.learn() def answer(self): print("Ans") stud = Student() teach = Teacher() stud.question(teach) teach.teach(stud)
b11c5aaca7509dea3a7f0c9ed54defabc3a01811
twtrubiks/python-notes
/__len__tutorial.py
710
3.734375
4
class Product(object): def __init__(self): self.items = [ { 'id': 1, 'value': 10 }, { 'id': 2, 'value': 20 }, { 'id': 3, 'value': 30 }, { 'id': 4, 'value': 40 } ] def __len__(self): return sum(item['value'] for item in self.items) if __name__ == "__main__": data = 'test' print('data.__str__(): {}'.format(data.__len__())) print('len(data): {}'.format(len(data))) product = Product() print('len(product): {}'.format(len(product)))
f70f0c5b5a05003fb026b312a535cdf8fece228c
npankaj365/survivor-bias
/luck.py
2,344
3.546875
4
import random import colorama import persons import argparse def show_top(persons, number): count = 0 for person in persons[:number]: if person.talent_rank < number: count += 1 print(colorama.Fore.GREEN, end='') elif person.talent_rank < number * 2: print(colorama.Fore.YELLOW, end='') print(person, end='') print(colorama.Fore.RESET) return count arg_parser = argparse.ArgumentParser( description="Simulation of importance of Luck in Success.") arg_parser.add_argument('--batch', dest='batch', type=int, default=10, help="how many batch of simulation to run. (10)") arg_parser.add_argument('--size', dest='size', type=int, default=1000, help="how many persons to put in each batch. (1000)") arg_parser.add_argument('--choose', dest='choose', type=int, default=10, help="how many people to choose at the top. (10)") arg_parser.add_argument('--luck_factor', dest='lf', type=float, default=0.1, help="how important is the luck. (0.1)") arg_parser.add_argument('--seed', dest='seed', default=None, help="seed value for random.") arg_parser.add_argument('--verbose', dest='verbose', action='store_true', help="verbose output.") args = arg_parser.parse_args() if args.seed: random.seed(args.seed) persons.Person.LUCK_FACTOR = args.lf data = [] for i in range(args.batch): ps = persons.get_persons(args.size) if args.verbose: print(f'Experiment: {i+1}') both = show_top(ps, args.choose) color = colorama.Fore.BLACK if both > 4: color += colorama.Back.GREEN elif both > 2: color += colorama.Back.YELLOW else: color += colorama.Back.RED print('Would have Accepted Anyway: ', end='') print(color + f'{both}' + colorama.Back.RESET + colorama.Fore.RESET) else: both = sum(map(lambda p: p.luck_rank < args.choose, ps[:args.choose])) data.append(both) freq_table = [0 for i in range(args.choose+1)] for d in data: freq_table[d] += 1 most_freq = max(freq_table) for i, entry in enumerate(freq_table): print(f'{i:2d} ', end='') print('█' * (entry * 50 // most_freq) + f' {entry}')
d3dff9d3eb34385cca871f0fe8f2fb16d747ff98
kgashok/pygorithm
/pygorithm/sorting/tim_sort.py
3,625
4.5
4
def inplace_insertion_sort(arr, start_ind, end_ind): """ Performs an in-place insertion sort over a continuous slice of an array. A natural way to avoid this would be to use numpy arrays, where slicing does not copy. This is in-place and has no result. :param arr: the array to sort :param start_ind: the index to begin sorting at :param end_ind: the index to end sorting at. This index is excluded from the sort (i.e., len(arr) is ok) """ for i in range(start_ind + 1, end_ind): current_number = arr[i] for j in range(i - 1, start_ind - 1, -1): if arr[j] > current_number: arr[j], arr[j + 1] = arr[j + 1], arr[j] else: arr[j + 1] = current_number break # iterative Timsort function to sort the # array[0...n-1] (similar to merge sort) def tim_sort(arr, run=32): """ Tim sort algorithm. See https://en.wikipedia.org/wiki/Timsort. This is performed in-place. :param arr: list of values to sort :param run: the largest array that is sorted with an insertion sort. :return: the sorted array """ # Sort individual subarrays of size run for i in range(0, len(arr), run): inplace_insertion_sort(arr, i, min(i + run, len(arr))) # start merging from size RUN (or 32). It will merge # to form size 64, then 128, 256 and so on .... size = run while size < len(arr): # pick starting point of left sub array. We # are going to merge arr[left..left+size-1] # and arr[left+size, left+2*size-1] # After every merge, we increase left by 2*size for left in range(0, len(arr), 2 * size): # find ending point of left sub array # mid+1 is starting point of right sub array mid = left + size right = min(left + (2 * size), len(arr)) # merge sub array arr[left.....mid] & # arr[mid+1....right] merge(arr, left, mid, right) size = 2 * size return arr def merge(arr, left, mid, right): """ Merge of two sections of array, both of which are individually sorted. The result is that the entire chunk is sorted. Note that right edges are exclusive (like slicing). This modifies the passed array, but requires a complete copy of the array. .. code:: python merge([0, -1, 1, 3, 2, 4], 2, 4, 6) # [0, -1, 1, 2, 3, 4] :param arr: the array which should have a portion sorted in-place :param left: the left-most index which is included in the merge :param mid: the first index that belongs to the second section :param right: the right-edge in the merge, which is not included in the sort. """ # original array is broken in two parts # left and right array left_arr = arr[left:mid] right_arr = arr[mid:right] left_pos = 0 right_pos = 0 arr_ind = left # after comparing, we merge those two array # in larger sub array while left_pos < len(left_arr) and right_pos < len(right_arr): if left_arr[left_pos] <= right_arr[right_pos]: arr[arr_ind] = left_arr[left_pos] left_pos += 1 else: arr[arr_ind] = right_arr[right_pos] right_pos += 1 arr_ind += 1 # copy remaining elements of left, if any for i in range(left_pos, len(left_arr)): arr[arr_ind] = left_arr[i] arr_ind += 1 # copy remaining element of right, if any for i in range(right_pos, len(right_arr)): arr[arr_ind] = right_arr[i] arr_ind += 1
4cb5626a12a93cd280931061a84fdc6b660e6b73
EmmanuelJeanBriand/hello-world
/cleancode/calculadora/calculadora.py
1,982
3.96875
4
def ask_option(): return int(input("Seleccione opción")) def ask_int(s): return int(input(s)) header = r"""******** Calculadora ********""" menu = r"""Menu 1) Suma 2) Resta 3) Multiplicación 4) División 5) Salir""" pairs = {1: ('La suma es: {res}', lambda a, b: a + b), 2: ('La resta es: {res}', lambda a, b: a - b), 3: ('La multiplicación es: {res}', lambda a, b: a * b), 4: ('La división es: {res}', lambda a, b: a / b)} bye = 5 def calcula(a, b, op_number): r"""Realiza ``a`` @ ``b`` con @ la operación número ``op_number`` e imprime el resultado. ``op_number`` es clave del diccionario global ``pairs`` EJEMPLOS:: >>> calcula(3, 2, 1) La suma es: 5 >>> calcula(3, 2, 2) La resta es: 1 >>> calcula(3, 2, 3) La multiplicación es: 6 >>> calcula(3, 2, 4) La división es: 1.5 >>> calcula(3, 0, 4) No se permite la división entre 0 >>> calcula(3, 2, 0) Traceback (most recent call last): ... ValueError: Opción no prevista """ if op_number in pairs.keys(): (s, operation) = pairs[op_number] try: res = operation(a, b) except ZeroDivisionError: print("No se permite la división entre 0") else: print(s.format(res=res)) else: raise ValueError('Opción no prevista') def calculadora(): r"""Pide datos y operación, y realiza la operación Interactivo. """ print(header) print(menu) option = ask_option() while option in pairs.keys(): a = ask_int("Ingrese número:") # errors not considered here b = ask_int("Ingrese otro número:") # same calcula(a, b, option) option = ask_option() else: if option == bye: print("Bye") else: print("opción no prevista. Bye.")
36044d929d19fe21dbad7636b6506a13d09704ef
Eduardo271087/python-udemy-activities
/section-10/inheritance.py
1,021
3.828125
4
class Fabrica: def __init__(self, marca, nombre, precio, descripcion, ruedas = None, distribuidor = None): self.marca = marca self.nombre = nombre self.precio = precio self.descripcion = descripcion self.ruedas = ruedas self.distribuidor = distribuidor def __str__(self): return """\ MARCA\t\t{} NOMBRE\t\t{} PRECIO\t\t{} DESCRIPCION\t{}""".format(self.marca, self.nombre, self.precio, self.descripcion) auto = Fabrica('Ford', 'Ranger', 10, 'Camioneta 4x4') print(auto.nombre) class Auto(Fabrica): pass z = Auto('Ford', 'Ranger', 100.000, 'Camioneta') print(z) class Deportivo(Fabrica): ruedas = "" distribuidor = "" def __str__(self): return """\ MARCA\t\t{} NOMBRE\t\t{} PRECIO\t\t{} DESCRIPCION\t{} RUEDAS\t\t{} DISTRIBUIDOR\t{}""".format(self.marca, self.nombre, self.precio, self.descripcion, self.ruedas, self.distribuidor) deportivo = Deportivo('Volkswagen', 'Vento', 54000, 'El mejor') deportivo.ruedas = 3 deportivo.distribuidor = 'Tu autito' print(deportivo)
81a6e59840b3d3656a142c4823f4aa1899a1e133
lgl90pro/colloquium2
/56.py
643
3.765625
4
'''56. Якщо в одновимірному масиві є три поспіль однакових елемента, то змінній r привласнити значення істина. Виконав: Лещенко В. О.''' import numpy as np A = np.random.randint(0, 9, 15) print(f'Вихідний масив: {A}.\n') for i in range(len(A) - 2): if (A[i] == A[i+1] == A[i+2]): # якщо зустрічається 3 однакових елементи підряд, r = істинна, і припиняємо цикл r = True break else: # інакше, r = хиба r = False print(r)
942247a1a2d2f2ff344161521ed462e57403b78b
dothuan96/machine-learning-coursera
/ML Basic - Python/linear reg_one var.py
1,885
3.796875
4
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat May 2 13:08:14 2020 @author: thuando """ """ Linear regression for 1 variable """ import numpy as np import pandas as pd import matplotlib.pyplot as plt #reading dataset data = pd.read_csv('ex1data1.txt', header = None) #read 1st column X = data.iloc[:,0] #read 2nd column y = data.iloc[:,1] #number of training examples m = len(y) #view first few rows of the data data.head() plt.scatter(X,y) plt.xlabel('Population of city (10,000s)') plt.ylabel('Profit in (10,000s)') plt.show() #convert rank-1 array to rank-2 array X = X[:, np.newaxis] y = y[:, np.newaxis] #initialize the initial parameter theta_0 and theta_1 = 0 theta = np.zeros([2,1]) iterations = 2000 #learning rate alpha = 0.01 #create intercept x0 = 1 ones = np.ones((m,1)) #adding intercept X = np.hstack((ones, X)) #computing the cost def computeCost(X, y, theta): #multiply matrix X and vector theta = h_theta(x) error = np.dot(X, theta) - y return np.sum(np.power(error, 2)) / (2*m) J = computeCost(X, y, theta) print("Cost of random theta:", round(J, 2)) #finding optimal parameters using Gradient Descent def gradientDescent(X, y, theta, alpha, iterations): #update 'interations' times for _ in range(iterations): #find hypothesis - y error = np.dot(X, theta) - y #X.T mean transpose X #error * x_(i) gradient = np.dot(X.T, error) theta = theta - (alpha/m) * gradient return theta thetaOptimal = gradientDescent(X, y, theta, alpha, iterations) print("Theta optimal:", np.round(thetaOptimal, 2)) print("Cost of theta optimal:", round(computeCost(X, y, thetaOptimal), 2)) #plot showing the best fit line hyps = np.dot(X, thetaOptimal) plt.scatter(X[:,1], y) plt.xlabel('Population of city (10,000s)') plt.ylabel('Profit in (10,000s)') plt.plot(X[:,1], hyps) plt.show()
16d8f90c8b1a78afcb1adfd78d348c690e62174f
nareshkr22/gtu_python
/pract17.py
178
3.765625
4
from module import * num1 = input("Enter Number 1 : ") num2 = input("Enter Number 2 : ") oper = input("Enter the operation : ") print(perform(int(num1),int(num2),oper))
936dc0b530010a91aa1ee114b7ca41ba4dda91cf
felipe-basina/python
/modulos/modulo_leitura_arquivo.py
939
3.828125
4
''' Script utilizado para leitura de arquivo from modulo_leitura_arquivo import ler_arquivo arquivo = 'e:/instalados/python/dev/exercicios/modulos/arquivo_leitura.txt' ler_arquivo(arquivo) ''' def ler_arquivo(nome_arquivo): if not nome_arquivo: print('Um nome de arquivo deve ser definido!') else: # Utilizar 'with' para nao precisar utilizar bloco try-finally conteudo = '' with open(nome_arquivo, encoding='utf-8') as f: conteudo = f.read() f.closed print('\nConteudo do arquivo\n') print(conteudo) print('\n') # Realizando leitura linha por linha = mais eficiente! def ler_arquivo_por_linha(nome_arquivo): if not nome_arquivo: print('Um nome de arquivo deve ser definido!') else: with open(nome_arquivo, encoding='utf-8') as f: print('\n') for line in f: print(line, end='')
d93ea266d20bb08f219c36bf69d8ed1635c335b2
aswinishiyana/shiyana
/positive.py
126
4.15625
4
num=float(input("Enter a number")) if num>0 print("positive number") elif num==0 print("zero") else: print("Negative number")
3b3b623b172c9b69c1c40b1032b0bb264bde0087
allatambov/allatambov.github.io
/PyProgPerm/practice/practice01/problem01.py
563
3.703125
4
line = ["Третьяковская", "Марксистская", "Площадь Ильича", "Авиамоторная", "Шоссе Энтузиастов", "Перово", "Новогиреево", "Новокосино"] station = input("Enter current station: ") i = line.index(station) print("Следующая станция: " + line[i + 1] + ".") # alternatives (uncomment): # print(f"Следующая станция: {line[i + 1]}.") # print("Следующая станция: ", line[i + 1], ".", sep = "") # print("Следующая станция: ", line[i + 1], ".", sep = "")
43d87f386f4145ff5977b12174f04f8db9216be8
rossmfadams/AlgorithmsP2
/arrayGenerator.py
712
3.78125
4
# This program returns the N amount of elements in an array import random # create four lists of random numbers def generate_random_list_number(number): first_list = [] second_list = [] third_list = [] fourth_list = [] for i in range(number): value = random.randint(0, number) first_list.append(value) second_list.append(value) third_list.append(value) fourth_list.append(value) return first_list, second_list, third_list, fourth_list # Take in sorted lists and randomly pick an index to swap with index 100 # return the lists def randomizer(arr): value = random.randint(0, 99) arr[99], arr[value] = arr[value], arr[99] return arr
4b0cc072f13613fc04c15b90bd9f769a94cd92ff
ShallowAlex/leetcode-py
/101-200/146.py
2,036
3.515625
4
class Node: def __init__(self, key=None, value=None): self.key = key self.value = value self.pre = None self.next = None class LRUCache: def __init__(self, capacity: int): self.capacity = capacity self.head = Node() self.tail = Node() self.head.next = self.tail self.tail.pre = self.head self.dic = dict() def get(self, key: int) -> int: if key in self.dic: self.move_to_end(key) return self.dic[key].value else: return -1 def put(self, key: int, value: int) -> None: if key in self.dic: self.move_to_end(key) self.dic[key].value = value else: new_node = Node(key, value) self.dic[key] = new_node new_node.pre = self.tail.pre new_node.next = self.tail self.tail.pre.next = new_node self.tail.pre = new_node if len(self.dic) > self.capacity: self.dic.pop(self.head.next.key) self.head.next = self.head.next.next self.head.next.pre = self.head def move_to_end(self, key: int): # old_node = self.dic[key] old_node.pre.next = old_node.next old_node.next.pre = old_node.pre old_node.next = self.tail old_node.pre = self.tail.pre self.tail.pre.next = old_node self.tail.pre = old_node # from collections import OrderedDict # class LRUCache(OrderedDict): # def __init__(self, capacity: int): # self.capacity = capacity # def get(self, key: int) -> int: # if key not in self: # return -1 # else: # self.move_to_end(key) # return self[key] # def put(self, key: int, value: int) -> None: # if key in self: # self.move_to_end(key) # self[key] = value # if len(self) > self.capacity: # self.popitem(last = False)
a4e46386f722808a8e904e8118d0f266d69cf611
kylechenoO/812pytest
/pynative/q14.py
204
4.0625
4
#!/opt/anaconda/bin/python ## Question 14: Print downward Half-Pyramid Pattern with Star (asterisk) def getHalfPyramid(size): for i in range(size): print('*' * (size - i)) getHalfPyramid(5)
252cfe8cba3c5a85b2def4aeb4ea7aada76247d1
goalong/lc
/v1/61.rotate-list.133330774.ac.py
1,225
3.703125
4
# # [61] Rotate List # # https://leetcode.com/problems/rotate-list/description/ # # algorithms # Medium (24.43%) # Total Accepted: 131.8K # Total Submissions: 539.7K # Testcase Example: '[1,2,3,4,5]\n2' # # Given a list, rotate the list to the right by k places, where k is # non-negative. # # # # Example: # # Given 1->2->3->4->5->NULL and k = 2, # # return 4->5->1->2->3->NULL. # # # # Definition for singly-linked list. # class ListNode(object): # def __init__(self, x): # self.val = x # self.next = None class Solution(object): def rotateRight(self, head, k): """ :type head: ListNode :type k: int :rtype: ListNode """ # 4 star. if not head: return None cur = head n = 0 last = None while cur: n += 1 if cur.next is None: last = cur cur = cur.next k = k % n if k == 0: return head step = n - k - 1 node = head while step > 0: node = node.next step -= 1 new_head = node.next node.next = None last.next = head return new_head
f78a688ec2f6a58de128d60278efffc9c4f69754
wlommusic/machine-learning-repo
/#2 regression/1 linear reg/linear-reg.py
1,351
3.828125
4
# -*- coding: utf-8 -*- """ Created on Mon Feb 8 11:56:19 2021 @author: wlom """ #importing the libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt #importing the dataset data = pd.read_csv('Salary_Data.csv') x= data.iloc[:,:-1].values #rows,col y= data.iloc[:,-1].values #splitting the data from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=1) #training the linear model on training set from sklearn.linear_model import LinearRegression reg = LinearRegression() reg.fit(x_train,y_train) #predicting the test results y_pred=reg.predict(x_test) # print(y_pred) #visuallizing the training set results plt.scatter(x_train,y_train ,color='blue') plt.plot(x_train,reg.predict(x_train),color='red') plt.title('Salary vs Exp (test set)') plt.xlabel('Years of Exp') plt.ylabel('Salary') plt.show() #visualizing the test set results plt.scatter(x_test,y_test ,color='blue') plt.plot(x_train,reg.predict(x_train),color='red') plt.title('Salary vs Exp (test set)') plt.xlabel('Years of Exp') plt.ylabel('salary') plt.show() #to predict salary in any given no of years y_pred = reg.predict([[12]])#double [[]] coz it expects 2d array print(f"predicted salary: {y_pred}") y_pred = reg.predict([[105]]) print(f"predicted salary: {y_pred}")
a79955480941c6a3516aaa750fafdc1fe3dc4dbc
satojkovic/algorithms
/problems/bulb_switch.py
392
3.625
4
def bulb_switch(n): bulbs = [1 for _ in range(n)] for i in range(1, n + 1): if i == 1: continue elif i == n: bulbs[-1] = 0 if bulbs[-1] == 1 else 1 else: for j in range(i - 1, n, i): bulbs[j] = 0 if bulbs[j] == 1 else 1 return sum(bulbs) def bulb_switch2(n): import math return int(math.sqrt(n))