blob_id
string
repo_name
string
path
string
length_bytes
int64
score
float64
int_score
int64
text
string
1bd1eee00210e861a7f4cc329e6298d978cf8ce4
lvrbanec/100DaysOfCode_Python
/Project08. Beginner, Blind bid decision/main.py
1,094
4.15625
4
# 03.02.21, Frollo # level: Beginner # project: Create a blind bid program from replit import clear from art import logo print(logo) # add a new bidder function bidder_info = [] # could be also saved as {name1: amount1, name2: amount2} def add_bidder_info(val_name, val_bid): new_bidder = {"name": val_name, "bid": val_bid} bidder_info.append(new_bidder) # find the highest bidder function def find_highest_bidder(list_of_dictionary): max_bid = 0 for dictionary in list_of_dictionary: bid = dictionary["bid"] if bid > max_bid: max_bid = bid max_name = dictionary["name"] print(f'Highest bid is {max_bid}$ bidded by {max_name}.') # save info about the bidders will_continue = True while will_continue: input_name = input("What is your name?\n") input_bid = float(input("What's your bid?\n$")) input_continue = input("Are there any other bidders? Type 'yes' or 'no'.\n") add_bidder_info(val_name = input_name, val_bid = input_bid) clear() if input_continue == "no": will_continue = False print(bidder_info) find_highest_bidder(bidder_info)
07453d6cd3191a976c28147f7a4095e4c0bff300
AFishyOcean/py_unit_two
/age.py
161
3.84375
4
age =int(input('How old are you?')) old_age = (100 - age) year_of_age = (2021 + old_age) print('You will be 100 years old in', old_age, 'years in', year_of_age)
93798cd63ba8a244e6ef6039368b4ab053fd5816
alexnhan/CrackingTheCodingInterview
/Chapter1/rotateMatrix.py
429
4.03125
4
#!/usr/bin/python # Question 1.7 # ith row becomes N-1-ith column def rotateMatrix(mat,N): # create an empty matrix to hold rotated matrix newMat=[] for i in range(N): newMat.append(range(N)) # size newMat the same as mat for i in range(N): for j in range(N): newMat[j][N-1-i]=mat[i][j] return newMat if __name__=="__main__": mat=[[1,2,3,4],[4,5,6,7],[7,8,9,10],[10,11,12,13]] N=4 print mat,rotateMatrix(mat,N)
71d2f68bb1c4866381b5bd1350e10ddff84b1200
Shirados9/MaschineLearningSS20
/src/explore/dictonaries/explore_dicts.py
203
3.515625
4
thisdict = { "brand": "Ford", "model": "Mustang", "year" : 1964 } print(type(thisdict.values())) print(thisdict.values()) values = thisdict.values() for x in thisdict.values(): print(x)
b5567628bd4f086980f68d366562471c6831ccfa
demar01/python
/Chapter_PyBites/180_Group_names_by_country/names.py
903
3.578125
4
from collections import defaultdict data = """last_name,first_name,country_code Watsham,Husain,ID Harrold,Alphonso,BR Apdell,Margo,CN Tomblings,Deerdre,RU Wasielewski,Sula,ID Jeffry,Rudolph,TD Brenston,Luke,SE Parrett,Ines,CN Braunle,Kermit,PL Halbard,Davie,CN""" def group_names_by_country(data: str = data) -> defaultdict: countries = defaultdict(list) for line in data.splitlines(): name, surname, country = line.split(",") countries[country].append(f"{surname} {name}") return countries #group_names_by_country(data) # dep = [('Sales', 'John Doe'), # ('Sales', 'Martin Smith'), # ('Accounting', 'Jane Doe'), # ('Marketing', 'Elizabeth Smith'), # ('Marketing', 'Adam Doe')] # from collections import defaultdict # dep_dd = defaultdict(list) # for department, employee in dep: # dep_dd[department].append(employee) # set(dir(defaultdict)) - set(dir(dict))
f4fa3ecc341adce4c0e2c88f49537319eac38f6a
lreimer/fast-fibonacci
/src/test/polyglot/fibonacci.py
487
4.03125
4
print('Fibonacci in Python on GraalVM!') n = 42 def fibonacci(n): if n == 1: return 1 elif n == 2: return 1 else: return fibonacci(n-1) + fibonacci(n-2) def fibonacci_iter(n): if n == 1: return 1 elif n == 2: return 1 else: a = 1 b = 1 for i in range(2, n): c = a + b a = b b = c return b print("{0}'s fibonacci value is {1}".format(n, fibonacci(n)))
624e6f5faeda1783ad359b70a85b31cf0aea2cd1
pintuiitbhi/Codechef
/JulyLongChallenge2018/NSA.py
2,640
3.75
4
T = int(input()) def partition(arr,low,high): i = ( low-1 ) # index of smaller element pivot = arr[high] # pivot for j in range(low , high): # If current element is smaller than or # equal to pivot if arr[j] <= pivot: # increment index of smaller element i = i+1 arr[i],arr[j] = arr[j],arr[i] arr[i+1],arr[high] = arr[high],arr[i+1] return ( i+1 ) # The main function that implements QuickSort # arr[] --> Array to be sorted, # low --> Starting index, # high --> Ending index # Function to do Quick sort def quickSort(arr,low,high): if low < high: # pi is partitioning index, arr[p] is now # at right place pi = partition(arr,low,high) # Separately sort elements before # partition and after partition quickSort(arr, low, pi-1) quickSort(arr, pi+1, high) import numpy as np # Python Program to find # prefix sum of 2d array #R = 4 #C = 5 # calculating new array def prefixSum2D(a,R,C) : #global C, R psa = [[0 for x in range(C)] for y in range(R)] psa[0][0] = a[0][0] # Filling first row # and first column for i in range(1, C) : psa[0][i] = (psa[0][i - 1] + a[0][i]) for i in range(0, R) : psa[i][0] = (psa[i - 1][0] + a[i][0]) # updating the values in # the cells as per the # general formula for i in range(1, R) : for j in range(1, C) : # values in the cells of # new array are updated psa[i][j] = (psa[i - 1][j] + psa[i][j - 1] - psa[i - 1][j - 1] + a[i][j]) # # displaying the values # # of the new array # for i in range(0, R) : # for j in range(0, C) : # print (psa[i][j], # end = " ") # print () return psa for test_case in range(T): S = input() #l=[ord(c) for c in S] N=len(S) #quickSort(l,0,N-1) matrix=np.zeros([26,N],dtype=int) for i in range(N): matrix[ord(S[i])-97][i]=1 prefix_sum=prefixSum2D(matrix,26,N) for k in range(N): for i in range(1, R) : for j in range(1, C) : # values in the cells of # new array are updated psa[i][j] = (psa[i - 1][j] + psa[i][j - 1] - psa[i - 1][j - 1] + a[i][j]) print(matrix) print(prefix_sum)
771329aa614d4765f709dea7a00095edaca4ed3f
appupratik/ADV_Python
/02-Assignment.py
2,718
3.59375
4
#Question 1 #The SHIELD is a secretive organization entrusted with the task of guarding the world against any disaster. Their arch nemesis is the organization called HYDRA. Unfortunately some members from HYDRA had infiltrated into the SHIELD camp. SHIELD needed to find out all these infiltrators to ensure that it was not compromised. Nick Fury, the executive director and the prime SHIELD member figured out that every one in SHIELD could send a SOS signal to every other SHIELD member he knew well. The HYDRA members could send bogus SOS messages to others to confuse others, but they could never receive a SOS message from a SHIELD member. Every SHIELD member would receive a SOS message ateast one other SHIELD member, who in turn would have received from another SHIELD member and so on till NickFury. SHIELD had a sophisticated mechanism to capture who sent a SOS signal to whom. Given this information, Nick needed someone to write a program that could look into this data and figure out all HYDRA members. #Sample Input ''' Nick Fury : Tony Stark, Maria Hill, Norman Osborn Hulk : Tony Stark, HawkEye, Rogers Rogers : Thor, Tony Stark: Pepper Potts, Nick Fury Agent 13 : Agent-X, Nick Fury, Hitler Thor: HawkEye, BlackWidow BlackWidow:Hawkeye Maria Hill : Hulk, Rogers, Nick Fury Agent-X : Agent 13, Rogers Norman Osborn: Tony Stark, Thor ''' #Sample Output #Agent 13, Agent-X, Hitler dict1 = { 'Nick Fury': ['Tony Stark', 'Maria Hill', 'Norman Osborn'], 'Hulk' : ['Tony Stark', 'HawkEye', 'Rogers'], 'Rogers' : ['Thor'], 'Tony Stark': ['Pepper Potts', 'Nick Fury'], 'Agent 13' : ['Agent-X', 'Nick Fury', 'Hitler'], 'Thor': ['HawkEye', 'BlackWidow'], 'BlackWidow':['Hawkeye'], 'Maria Hill' : ['Hulk', 'Rogers', 'Nick Fury'], 'Agent-X' : ['Agent 13', 'Rogers'], 'Norman Osborn': ['Tony Stark', 'Thor'] } list1 = [] list2 = [] list1.append(('Nick Fury',1)) for el in dict1['Nick Fury']: list1.append((el,0)) for k,v in enumerate(list1): if list1[k][1] == 0: temp = list(list1[k]) temp[1] = 1 list1[k] = tuple(temp) if list1[k][0] in dict1.keys(): for el in dict1[list1[k][0]]: addVal = 0 for item in list1: if item[0] == el: addVal = 1 break if addVal == 0: list1.append((el,0)) for key in dict1.keys(): for val in dict1[key]: list2.append(val) list2 = list(set(list2)) final_list, addVal = zip(*list1) final_list = list(final_list) for person in final_list: list2.remove(person) list2.sort() print ('\nMembers of HYDRA are:') a = 1 for i in list2: print("\t",a,i) a +=1
9364772e75a94ec85ce7cec7869dd9029b82086c
TheThornBirds/pythonworker
/bases/tuple.py
695
4.34375
4
classmates = ('刘刘', '晨晨', 'charles') #tuple和list类似,但是tuple一旦初始化就不能修改 print(classmates) t = () #定义一个空的tuple t = (1,) #定义只有一个元素的tuple必须加一个逗号,消除歧义 print(t) t = ('a', 'b', ['A', 'B']) #"可变"的tuple,这里变得不是tuple的元素,而是list的元素。 t[2][0] = 'x' t[2][1] = 'y' print(t) #练习:用索引取出下面list的指定元素: # -*- coding: utf-8 -*- L = [ ['Apple', 'Google', 'Microsoft'], ['Java', 'Python', 'Ruby', 'PHP'], ['Adam', 'Bart', 'Lisa'] ] # 打印Apple: print(L[0][0]) # 打印Python: print(L[1][1]) # 打印Lisa: print(L[2][2]) print(L[-1][-1])
1e68153a0856330398eb698c211b4ca5ea4d3b4f
akashvshroff/Puzzles_Challenges
/k_goodness_string.py
1,059
3.5625
4
def min_ops(n, k, s): """ Charles defines the goodness score of a string as the number of indices i such that Si≠SN−i+1 where 1≤i≤N/2 (1-indexed). For example, the string CABABC has a goodness score of 2 since S2≠S5 and S3≠S4. Charles gave Ada a string S of length N, consisting of uppercase letters and asked her to convert it into a string with a goodness score of K. In one operation, Ada can change any character in the string to any uppercase letter. Could you help Ada find the minimum number of operations required to transform the given string into a string with goodness score equal to K? """ score = 0 limit = n//2 for i in range(n): if i < limit and s[i] != s[n-i-1]: score += 1 if score == k: return 0 else: return abs(k - score) if __name__ == '__main__': test = int(input()) for t in range(test): n, k = map(int, input().split()) s = input() ans = min_ops(n, k, s) print(f'Case #{t+1}: {ans}')
6bd01ced108b9ea56ff11bcfd4bbcef37cab1dad
renanreyc/linguagem_python
/algoritmos/AeC/questao08.py
336
4.15625
4
#Python num = int(input("Informe um número inteiro: ")) while num < 0: num = int(input("Número inválido. Digite um número maior ou igual a 0: ")) #Função def fatorial(num): fatorial = 1 for i in range(num, 0, -1): fatorial *= i return fatorial print(f"\nO valor do fatorial de {num} é:",fatorial(num))
3dd33013cb8c044e85b0a031a49cf34382cfc419
pondycrane/algorithms
/om_api/deck_of_cards/deck_of_cards.py
2,899
3.828125
4
import abc import collections import random import unittest class Card: def __init__(self, number, color, suit, folded=False): self.number = number self.color = color self.suit = suit self.folded = folded def fold(self): self.fold = not self.fold def __str__(self): return f'{self.__class__.__name__}, num: {self.number}, suit: {self.suit}, color: {self.color}' class FaceCard(Card): pass class NumberCard(Card): pass class GhostCard(Card): def __init__(self, number=-1, color='Black', suit='Ghost', folded=False): self.number = -1 self.color = 'Black' self.suit = 'Ghost' self.folded = folded class DeckOfCards(abc.ABC): def __init__(self, size): self.size = size self.cards = [] def shuffle(self): random.shuffle(self.cards) def draw(self): return self.cards.pop() @abc.abstractmethod def new_deck(self, factory): """ Create a new deck of cards. Supply a factory to create new deck. """ class HouseDeck(DeckOfCards): def __init__(self, size=54): super().__init__(size=54) def new_deck(self, factory): self.cards = [] for suit in ['diamond', 'heart', 'spade', 'club']: for i in range(1, 14): self.cards.append(factory.add_card(i, suit)) self.cards.extend([GhostCard() for i in range(2)]) self.shuffle() class BlackJackDeck(DeckOfCards): def __init__(self, size=5): super().__init__(size=5) def new_deck(self, house: HouseDeck): self.cards = [house.draw() for i in range(self.size)] class CardFactory(abc.ABC): def __init__(self): self.COLOR_CONFIG = collections.defaultdict(lambda x: 'BLACK') self.COLOR_CONFIG['diamond'] = 'RED' self.COLOR_CONFIG['heart'] = 'RED' self.COLOR_CONFIG['spade'] = 'BLACK' self.COLOR_CONFIG['club'] = 'BLACK' @abc.abstractmethod def add_card(self, number, suit): """ Add a new card based on the info provided. """ class HouseCardFactory(CardFactory): def add_card(self, number, suit): if number in [11, 12, 13]: card = Card(number, self.COLOR_CONFIG[suit], suit) elif 1 <= number <= 10: card = NumberCard(number, self.COLOR_CONFIG[suit], suit) elif number == -1: card = GhostCard() else: raise ValueError(f'Card number {number} not supported') return card class Test(unittest.TestCase): def test_house_deck(self): doc = HouseDeck() doc.new_deck(HouseCardFactory()) assert len(doc.cards) == 54 def test_blackjack_deck(self): doc = HouseDeck() doc.new_deck(HouseCardFactory()) bj = BlackJackDeck() bj.new_deck(doc) assert len(bj.cards) == 5
b75a0ddb353a3f00bab4fb9f512e5c887b95c3fe
Henri-J-Norden/solve-system
/solve_system.py
3,784
3.53125
4
from fractions import Fraction def _div(l, divider, new=False): if new: ln = [] for i in range(len(l)): if new: ln.append(Fraction(l[i], divider)) else: l[i] = Fraction(l[i], divider) if new: return ln def _sub(l, lSub): for i in range(len(l)): l[i] -= lSub[i] # performs the transformation in place def gauss(l, col=0, log=False): print("Column " + str(col+1)) for r in range(len(l)): print("Row " + str(r+1)) if len(l) <= col or l[col][col] == 0 or l[r][col] == 0: continue if r == col: _div(l[r], l[r][col]) print(getMatrix(l)) continue subtract = _div(l[col], Fraction(l[col][col], l[r][col]), True) _sub(l[r], subtract) print(getMatrix(l)) if len(l[0]) > col+2: gauss(l, col+1) def isComplete(l): for r in range(len(l)): for c in range(len(l)): if r == c: if l[r][c] != 1: return False continue if l[r][c] != 0: return False return True def getInput(): size = [int(input("Matrix rows: "))] cols = input("Matrix columns (leave empty for " + str(size[0]+1) + "): ") if len(cols) == 0: size.append(size[0] + 1) else: size.append(int(cols)) l = [[] for i in range(size[0])] if size[0] < 2 or size[1] <= size[0]: print("<rows> must be larger than 2 and <cols> must be larger <rows> + 1!") return l for i in range(size[0]): while True: l[i] = [] try: vals = input("Row " + str(i+1) + ": ") j = 0 for val in vals.split(" "): if "/" in val: val = list(map(int, val.split("/"))) l[i].append(Fraction(*val)) else: l[i].append(Fraction(float(val))) j += 1 if len(l[i]) != size[1]: print("Input does not match column count! (use spaces as separators between numbers)") continue break except Exception as e: if isinstance(e, KeyboardInterrupt): print("Input cancelled!\n") raise KeyboardInterrupt() print("Input parsing failed!") return l def _getStrings(l, getMax=False): lp = [[] for i in range(len(l))] maxLen = 0 for r in range(len(l)): for v in l[r]: lp[r].append((str(v.numerator) if v.denominator == 1 else str(v.numerator) + "/" + str(v.denominator))) maxLen = max(maxLen, len(lp[r][-1])) return lp if not getMax else (lp, maxLen) def getMatrix(l): lp, maxLen = _getStrings(l, True) ls = [] formatStr = "{: >" + str(maxLen) + "} " print(len(lp)) print(len(lp[0])) s = formatStr * (len(lp[0]) - 1) + "| " + formatStr for r in range(len(l)): ls.append(s.format(*lp[r])) return "\n".join(ls) l = [[]] while True: # calculate while len(l[0]) == 0: try: l = getInput() except: print("Input parsing failed!") gauss(l) if not isComplete(l): l1 = l.copy() gauss(l) while l1 != l: l1 = l.copy() gauss(l) # print values print() if isComplete(l): lp = _getStrings(l) for i in range(len(l)): print("Value col " + str(i+1) + ": " + " ".join(lp[i][len(lp):])) else: print("Complete transmutation failed!") print(getMatrix(l)) l = [[]] print("\n")
ae962928e6300ebf3fec6cb8626a18407e5e7a9a
kstulgys/coding-challenges
/leetcode/125/index.py
315
3.78125
4
import re def isPalindrome(s): s = re.sub(r'[\W_]', "", s).lower() left = 0 right = len(s) - 1 while left < right: if s[left] != s[right]: return False left += 1 right -= 1 return True test = 'A man, a plan, a canal: Panama' print(isPalindrome(test))
71409e651ae833aebbaa68b87be04a1ecc06c9a0
joseph-mutu/JianZhiOfferCodePics
/数组中重复的数字.py
1,031
3.90625
4
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2019-09-14 09:22:11 # @Author : mutudeh ([email protected]) # @Link : ${link} # @Version : $Id$ import os class Solution: # 利用额外的散列表寻找重复出现的数字 # def duplicate(self,numbers,duplication): # if not numbers: # return False # dupli_dic = {} # for num in numbers: # if dupli_dic.get(num): # dupli_dic[num] += 1 # duplication[0] = num # print(duplication[0]) # return True # else: # dupli_dic[num] = 1 # return False # 不使用散列表 def duplicate(self,numbers,duplication): cur_pos = 0 while cur_pos < len(numbers): if numbers[cur_pos] == cur_pos: cur_pos +=1 else: if numbers[cur_pos] == numbers[numbers[cur_pos]]: print("cur_pos",cur_pos) duplication[0] = numbers[cur_pos] return True else: tem = numbers[cur_pos] numbers[cur_pos] = numbers[numbers[cur_pos]] numbers[tem] = tem return False s = Solution() print(s.duplicate([0,1,2,3,4,5],[-1]))
005895eb599215870ff2432641ebaa7d5280941a
bigearsenal/test
/04_data_structures/task_4_2.py
356
3.53125
4
""" Задание 4.2 Преобразовать строку MAC из формата XXXX:XXXX:XXXX в формат XXXX.XXXX.XXXX Ограничение: Все задания надо выполнять используя только пройденные темы. MAC = 'AAAA:BBBB:CCCC'""" MAC = 'AAAA:BBBB:CCCC' print(MAC.replace(':', '.'))
b646db5680c422573657a009925c0820f8354c2f
Toofifty/project-euler
/python/006.py
606
3.734375
4
""" The sum of the squares of the first ten natural numbers is, 1^2 + 2^2 + ... + 10^2 = 385 The square of the sum of the first ten natural numbers is, (1 + 2 + ... + 10)^2 = 552 = 3025 Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 - 385 = 2640. Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum. """ import timer @timer.many(1000) def main(): return sum(i for i in range(100 + 1)) ** 2 - sum([i*i for i in range(100 + 1)]) main() # 25164150 # 0.0110ms
3896b2da8c8a8abc22fa82d977d982b1b8df81c1
luzlyherrera/Ejercicios-de-repaso
/Ejercicio92.py
3,919
3.84375
4
#Funcion que llena el arreglo con números aleatorios #Funcion que crea una copia original del arreglo #Funcion que muestra en pantalla en arreglo #Funcion de ordena por burbuja #Funcion de ordenar por seleccion #Funcion de ordenar por insercion #Funcion de ordenar por quirk-sort #Funcion que muestra un menú de opciones import random def arreglo(n): lista = [] for i in range(n): lista.append(random.randint(0,100)) return lista def copiar(original): copia = [] for i in range(len(original)): copia.append(original[i]) return copia def mostrar(lista): print("-------------") for i in range(len(lista)): print(lista[i]) print("-------------") def metodoBurbuja(lista): for i in range(1,len(lista)): for j in range(0,len(lista)-i): if(lista[j+1] < lista[j]): aux=lista[j] lista[j]=lista[j+1] lista[j+1]=aux mostrar(lista) print("----------------\n") def metodoSeleccion(lista): for i in range(len(lista)-1,0,-1): posicionDelMayor=0 for j in range(1,i+1): if lista[j]>lista[posicionDelMayor]: posicionDelMayor = j temp = lista[i] lista[i] = lista[posicionDelMayor] lista[posicionDelMayor] = temp mostrar(lista) print("----------------\n") def metodoInsercion(lista): for i in range(len(lista)): for j in range(i,0,-1): if(lista[j-1] > lista[j]): aux=lista[j] lista[j]=lista[j-1] lista[j-1]=aux mostrar(lista) print("----------------\n") def metodoQuickSort(lista,izq,der): i=izq j=der x=lista[(izq + der)//2] while( i <= j ): while lista[i]<x and j<=der: i=i+1 while x<lista[j] and j>izq: j=j-1 if i<=j: aux = lista[i]; lista[i] = lista[j]; lista[j] = aux; i=i+1; j=j-1; if izq < j: metodoQuickSort(lista, izq, j) if i < der: metodoQuickSort(lista, i, der ) mostrar(lista) print("----------------\n") def menu(): l=[] print("Seleccione una opcion:") print("1. Ordenar el arrelo por el método de burbuja") print("2. Ordenar el arrelo por el método de seleccion") print("3. Ordenar el arrelo por el método de insercion") print("4. Ordenar el arrelo por el método de quick sort") print("5. Salir") n=int(input("Ingrese un numero: ")) if n==1: num=int(input("Ingresa cuantos numeros quiere que tenga el arreglo\n")) l=arreglo(num) print("El arreglo creado es: ") mostrar(l) print("El arreglo ordenado es:") metodoBurbuja(l) menu() elif n==2: num=int(input("Ingresa cuantos numeros quiere que tenga el arreglo\n")) l=arreglo(num) print("El arreglo creado es: ") mostrar(l) print("El arreglo ordenado es:") metodoSeleccion(l) menu() elif n==3: num=int(input("Ingresa cuantos numeros quiere que tenga el arreglo\n")) l=arreglo(num) print("El arreglo creado es: ") mostrar(l) print("El arreglo ordenado es:") metodoInsercion(l) menu() elif n==4: num=int(input("Ingresa cuantos numeros quiere que tenga el arreglo\n")) l=arreglo(num) print("El arreglo creado es: ") mostrar(l) print("El arreglo ordenado es:") metodoQuickSort(l) menu() else: print("Bye") menu() """ l=arreglo(5) print(l) print(copiar(l)) mostrar(l) metodoQuickSort(l,0,len(l)-1) """
c4264cce2eb267cec68c407d485aaba71b49e1c8
smileyoung1993/pystudy
/mymod.py
430
3.609375
4
# mymod.ex # 내가 정의한 모듈 pi =3.14 def add(a,b): return a + b def subtract(a,b): return a - b def multiply(a,b): return a * b def divide(a,b): return a / b def main(): print("mymod testcode") print("add", add(10,20)) print("subtract", subtract(20,10)) if __name__ == "__main__": main()# 파이썬에서 바로 시작했을때 __main__출력 # import 했을때는 mymod가 출력
04a08f5e12b72e5f4309a3f3490d9f1845ea456a
henrylin2008/Coding_Problems
/LeetCode/Easy/28_strStr.py
1,144
4.0625
4
# 28. Implement strStr() # Link: https://leetcode.com/problems/implement-strstr/ # # Return the index of the first occurrence of needle in haystack, or -1 if needle is not part of haystack. # # Example 1: # # Input: haystack = "hello", needle = "ll" # Output: 2 # Example 2: # # Input: haystack = "aaaaa", needle = "bba" # Output: -1 # Clarification: # # What should we return when needle is an empty string? This is a great question to ask during an interview. # # For the purpose of this problem, we will return 0 when needle is an empty string. This is consistent to C's strstr() # and Java's indexOf(). def strStr(haystack, needle): for i in range(len(haystack) - len(needle) + 1): # go through every item in range b/t difference of 2 strings # range = difference b/t len(haysatack) and len(needle) if haystack[i: i + len(needle)] == needle: # search if there's a match of string of needle in haystack # ex 1 (above): i + len(needle) = 2 + 2 = 4 # haystack[i: i + len(needle)] = ll return i # return the index of first matched letter (of needle) return -1 # if no match found
745f93b4d4320a2163222bb8837fb7d2ede15118
shourya192007/A-dance-of-python
/pandas_tutorial/1.Basics.py
818
4.25
4
import pandas as pd # creating a data frame titanic_data = pd.DataFrame( { "name":["Preyansh","Prerit","Doreamon"], "age":[11,11,24], "type":["Human","Human","Robo Cat"], "century":["21st","21st","22nd"], "specialPower":["coding","coding","gadgets"] } ) # print(titanic_data.describe()) # selecting a series print(titanic_data["age"].max()) # creating a series titanic_series = pd.Series(["Preyansh","Prerit","Nobita"], name="Boyz") print(titanic_series) # REMEMBER # Import the package, aka import pandas as pd # A table of data is stored as a pandas DataFrame # Each column in a DataFrame is a Series # You can do things by applying a method to a DataFrame or Series # https://pandas.pydata.org/docs/getting_started/intro_tutorials/01_table_oriented.html
8877d866fe371f416f24cf323c96184371f746b3
dwildmark/aoc_2018
/06/code.py
2,589
3.828125
4
from collections import defaultdict import sys def parse_input_to_list(): output = [] with open("input.txt", "r") as file: for i, line in enumerate(file): x, y = line.split(", ") output.append(dict(x = int(x), y = int(y))) return output def manhattan_dist(point_a, point_b): return abs(point_a["x"] - point_b["x"]) + abs(point_a["y"] - point_b["y"]) def find_closest_point(point_list, coordinate): min = sys.maxsize min_point = dict() min_index = sys.maxsize min_occurence = 1 for i, point in enumerate(point_list): distance = manhattan_dist(point, coordinate) if distance < min: min = distance min_index = i min_point = point min_occurence = 1 elif distance == min: min_occurence += 1 if min_occurence > 1: #print coordinate, "is equally close to", min_point return -1 #print coordinate, "is closest to", min_point return min_index def point_is_neighbor_with_infinity(point, xmax, ymax): if point["x"] >= xmax or point["x"] <= 0 or point["y"] >= ymax or point["y"] <= 0: return True return False def part_one(): points = parse_input_to_list() xmax = max(points, key=lambda x:x["x"])["x"] + 1 ymax = max(points, key=lambda x:x["y"])["y"] + 1 grid = [[-1 for y in range(ymax)] for x in range(xmax)] points_score = defaultdict(int) for x, row in enumerate(grid): for y, col in enumerate(row): index = find_closest_point(points, dict(x = x, y = y)) if index == -1: continue elif points_score[index] != -1: if point_is_neighbor_with_infinity(dict(x = x, y = y), xmax, ymax): points_score[index] = -1 else: points_score[index] += 1 print "Part 1 solution:" print max(points_score.items(), key=lambda x:x[1]) def calc_total_dist(points_list, coordinate): total_distance = 0 for point in points_list: total_distance += manhattan_dist(point, coordinate) return total_distance def part_two(): coords = parse_input_to_list() xmax = max(coords, key=lambda x:x["x"])["x"] + 1 ymax = max(coords, key=lambda x:x["y"])["y"] + 1 area = 0 for x in range(xmax): for y in range(ymax): distance = calc_total_dist(coords, dict(x = x, y = y)) if distance <= 10000: area += 1 print "Part 2 solution:" print area part_one() part_two()
2ceaf8371f5effa82ecd5e89c8f1ff0c5743da23
Minkov/python-advanced-2020-01
/comprehensions/2_vowels.py
132
4.15625
4
vowels = {'a', 'o', 'u', 'e', 'i'} text = input() result = [ch for ch in text if ch.lower() not in vowels] print(''.join(result))
7cc0ee3f5f318961ace74c111edc90d4227a5023
babichevko/proga_babichev_2021
/звёзды.py
220
3.578125
4
import turtle as t t.speed(5) def z(n): b=(n-2)*180/n a=180-b/3 for i in range(n): t.forward(100) t.left(a) z(5) t.penup() t.backward(150) t.pendown() z(11)
cce5d4db3ca6cd1079de84673613f86ba7faafc7
segmond/pythonThingz
/err_day_countdown/countdown.py
1,538
3.765625
4
#!/usr/bin/python import Tkinter as tk import time from datetime import datetime, timedelta ''' Count down to bed time, then count down to wake up time ''' class Countdown: def __init__(self): # create root/main window self.root = tk.Tk() self.time_str = tk.StringVar() label_font = ('helvetica', 20) tk.Label(self.root, textvariable=self.time_str, font=label_font, bg='white', fg='blue', relief='raised', bd=3).pack(fill='x', padx=5, pady=5) def get_next_countdown(self): now = datetime.now() sleep_time = datetime(now.year,now.month,now.day,23,00,0) # sleep at 11:00pm if now >= sleep_time: # up at 5:00am wakeup_time = datetime(now.year,now.month,now.day, 5, 0) + timedelta(days=1) time_left = wakeup_time - now self.event = 'Wake up in' else: time_left = sleep_time - now self.event = 'Sleep in' return time_left.seconds def count_down(self, seconds_left): (mins, sec) = divmod(seconds_left, 60) (hr, mins) = divmod(mins, 60) sf = self.event + " {:02d}:{:02d}:{:02d}".format(*(hr, mins, sec)) self.time_str.set(sf) time.sleep(1) def draw(self): while True: seconds_left = self.get_next_countdown() self.count_down(seconds_left) self.root.update() def run(self): self.draw() self.root.mainloop() c = Countdown() c.run()
ff2a343b4c550f6a78eb5ff343d39a847ff70f8a
mcauleyc/CA4015_Assignment_1
/Book/_build/jupyter_execute/clustering.py
17,666
3.90625
4
#!/usr/bin/env python # coding: utf-8 # # Cluster Analysis # # Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group are more similar to each other than to those in other groups. # In[1]: import numpy as np import pandas as pd import statsmodels.api as sm import matplotlib.pyplot as plt import seaborn as sns sns.set() sns.set_palette('gnuplot2', n_colors=10) from sklearn.cluster import KMeans from collections import Counter from sklearn.metrics import silhouette_score from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler # In[2]: all_95 = pd.read_csv("./data/all_95.csv", header = [0,1], index_col=0) all_100 = pd.read_csv("./data/all_100.csv", header = [0,1], index_col=0) all_150 = pd.read_csv("./data/all_150.csv", header = [0,1], index_col=0) df = pd.read_csv("./data/agg_all.csv", index_col=0) df # ## 1. The Optimal Number of Clusters # # There are two methods to find the optimal number of clusters for a dataset, the Elbow Method and the Silhouette Method. # ### 1.1 The Elbow Method # # This is the most common method for determining the optimal number of clusters. To do this you must calculate the Within-Cluster-Sum of Squared Errors (WSS) for different values of *k*, and choose the *k* for which WSS first starts to diminish. In a plot of WSS-versus-k, this is visible as an elbow. # In[3]: def elbow_score(x): distortions = [] K = range(1,11) for k in K: kmeanModel = KMeans(n_clusters=k) kmeanModel.fit(x) distortions.append(kmeanModel.inertia_) plt.plot(K, distortions, 'bx-') plt.xlabel('k') plt.ylabel('Distortion') plt.title('The Elbow Method showing the optimal k') plt.show() # ### 1.2 The Silhouette Method # # # This is a method to find the optimal number of clusters *k*. The silhouette value measures how similar a point is to its own cluster (cohesion) compared to other clusters (separation). A high value is desirable. This is the formula: # # $$ # s(i) = \frac{b(i) - a(i)}{max(a(i), b(i))} # $$ # # >**_NOTE:_** *s(i)* is defined to be equal to zero if *i* is the only point in the cluster. This is to prevent the number of clusters from increasing significantly with many single-point clusters. # # *a(i)* is the measure of the similarity of the point *i* to its own cluster. # # $$ # a(i) = \frac{1}{\lvert C_{i}\rvert - 1} \sum_{j{\in}C_{i}, i{\neq}j} d(i,j) # $$ # # Similarly, *b(i)* is the measure of dissimilarity of *i* from points in other clusters. # # $$ # b(i) = \min_{i{\neq}j} \frac{1}{\lvert C_{j}\rvert} \sum_{j{\in}C_{j}} d(i,j) # $$ # # Where *d(i,j)* is the euclidean distance between the two points. # # In[4]: def sil_value(x): sil = [] kmax = 10 # dissimilarity would not be defined for a single cluster, thus, minimum number of clusters should be 2 for k in range(3, kmax+1): kmeans = KMeans(n_clusters = k).fit(x) labels = kmeans.labels_ sil.append(silhouette_score(x, labels, metric = 'euclidean')) return sil # https://medium.com/analytics-vidhya/how-to-determine-the-optimal-k-for-k-means-708505d204eb # ## 2. Clustering the Data # # I chose to perform clustering on the total amount won or lost compared to the amount the participants chose the deck 'C'. I thought this would be interesting because C was a "good" deck but had frequent losses. The losses also depended on the payload of the study. I wanted to see if the clusters had any relationship to the payload. # # I also wanted to cluster the data comparing the total amount won or lost to the amount of times the participants chose a "good" deck. This would be interesting to see if there was anything in particular that defined each of these clusters. # ### 2.1 Performing Clustering on Deck C # # I began by making a dataframe with just 'Total' and 'C' columns. # In[5]: c = df.iloc[:,[1,4]] c # I then used the elbow method and the silhouette method to find the optimal number of clusters. # In[6]: elbow_score(c) # In[7]: c_sil = sil_value(c) plt.plot([3,4,5,6,7,8,9,10], c_sil) plt.title('Optimal k for c') plt.xlabel('silhouette score') plt.ylabel('k') plt.show() # It was not completely clear from the elbow method whick value I should use for *k*. It looked to be between 3 and 7. In the silhouette method the peak was at 10 but there was also a slightly lower peak at 7. For this reason I chose 7 as my *k* and made 7 clusters. # I used `sklearn.cluster.KMeans` to create the clusters and fit them to the data. # In[8]: c_kmeans = KMeans(7) c_kmeans.fit(c) # I then find the identified clusters in c. # In[9]: c_identified_clusters = c_kmeans.fit_predict(c) c_identified_clusters # This is a graph of the data with the different clusters shown in different colours. # In[10]: c_data_with_clusters = df.copy() c_data_with_clusters['Clusters'] = c_identified_clusters sns.lmplot(data=c_data_with_clusters, x='Total', y='C', hue='Clusters', fit_reg=False, legend=True) # Then, for a comparison, I plotted the data using colour to differentiate payload. # In[11]: sns.lmplot(data=c_data_with_clusters, x='Total', y='C', hue='Payload', fit_reg=False, legend=True, palette='rainbow') # As you can see the datapoints in cluster 6 all chose c less and had the highest loss in the study. All of these data points were in payload 3. This makes sense because these people obviously chose C less because they were getting frequent losses from it and those losses were growing as they went. Most of the people who chose C the most were in payload 2 which is where the losses in C were constant. # ### 2.2 Performing Clustering on "Good" Decks # # Now I would like to cluster the data based on the "good" card decks to see if there is any insight to be gleamed from it. # In[12]: good = df.iloc[:,[1,7]] elbow_score(good) good_sil = sil_value(good) good_k = good_sil.index(max(good_sil)) + 2 plt.plot([3,4,5,6,7,8,9,10], good_sil) plt.title('Optimal k for good') plt.xlabel('silhouette score') plt.ylabel('k') plt.show() # There is no clear *k* from the elbow plot, and the peak at 10 is a fair bit higher than any other peak in the silhouette plot. Therefore, I chose to make 10 clusters this time. # In[13]: good_kmeans = KMeans(10) good_kmeans.fit(good) good_identified_clusters = good_kmeans.fit_predict(good) good_data_with_clusters = df.copy() good_data_with_clusters['Clusters'] = good_identified_clusters sns.lmplot(data=good_data_with_clusters, x='Total', y='Good', hue='Clusters', fit_reg=False, legend=True) sns.lmplot(data=good_data_with_clusters, x='Total', y='Good', hue='Payload', fit_reg=False, legend=True, palette='rainbow') sns.lmplot(data=good_data_with_clusters, x='Total', y='Good', hue='StudyNo', fit_reg=False, legend=True) # As you can see from the two graphs, there is obviously a strong correlation between picking "good" decks and winning more money. There does not seem to be any correlation between payload and "good" decks though. Maia et al. frequently asked the participants about their knowledge of the decks at regular intervals during the task. This is study number 4 and is shown in yellow on the graph. Nothing major stands out about this study except there were less people who chose the "bad" decks. It is hard to see because the datapoints for study 4 are all in the centre of the graph but there are a lot less of their datapoints under 0.4 than the other studies. # ### 2.3 Further Analysis of "Good" Decks # # I would now like to look more closely at clusters 7 and 9 because they are the most extreme on each side. It is said that after about 50 choices most people begin to see the patterns ang go for the "good" decks more consistently. I want to see if the people in cluster 9 seemed to figure out the pattern and the people in cluster 7 did not. # I began by getting the number of the good cluster (9) and the bad cluster (7). This is just in case the cluster numbers change at some point. # In[14]: good_cluster = good_data_with_clusters[good_data_with_clusters['Total'] == max(good_data_with_clusters['Total'])]['Clusters'].iloc(0)[0] bad_cluster = good_data_with_clusters[good_data_with_clusters['Total'] == min(good_data_with_clusters['Total'])]['Clusters'].iloc(0)[0] # I then found the subjects of the cluster so that I could find out whether they belonged to 95, 100, or 150. I then looked at the choices they made after the first 50 rounds and did some analysis on that. # In[15]: good_subj_1 = list(good_data_with_clusters[good_data_with_clusters['Clusters'] == bad_cluster]['Subj']) good_subj_1 good_lst = [] for i in good_subj_1: n, idx = i.split('_', 1) if n == '100': good_lst.append(list(all_100[all_100.index == idx].values[0])[101::2]) elif n == '150': good_lst.append(list(all_150[all_150.index == idx].values[0])[101::2]) elif n == '95': good_lst.append(list(all_95[all_95.index == idx].values[0])[101::2]) good_d = {'a' : 0, 'b' : 0, 'c' : 0, 'd' : 0} good_l, no_bad = [], [] for i in good_lst: c = Counter(i) good_d['a'] += c[1] good_d['b'] += c[2] good_d['c'] += c[3] good_d['d'] += c[4] if c[1] + c[2] != 0: good_l.append((c[3] + c[4]) / (c[1] + c[2])) else: no_bad.append(c) print(good_d) print(len([x for x in good_l if x < .5])) print(len(good_l)) print(no_bad) print(np.mean(good_l)) # This cluster chose 'B' the most and 6 out of 8 people were twice as likely to choose "bad" decks over "good" decks. This shows that the people in this cluster probably did not see the pattern and got distracted by the infrequent losses in Deck B. # # The mean of the ratios between good and bad is 0.369, which shows that the participants in the cluster were far less likely to choose good decks. If the mean was 1 it would mean that the participants chose fairly evenly between the "good" and "bad" decks. # In[16]: good_subj_2 = list(good_data_with_clusters[good_data_with_clusters['Clusters'] == good_cluster]['Subj']) good_subj_2 good_lst = [] for i in good_subj_2: n, idx = i.split('_', 1) if n == '100': good_lst.append(list(all_100[all_100.index == idx].values[0])[101::2]) elif n == '150': good_lst.append(list(all_150[all_150.index == idx].values[0])[101::2]) elif n == '95': good_lst.append(list(all_95[all_95.index == idx].values[0])[101::2]) good_d = {'a' : 0, 'b' : 0, 'c' : 0, 'd' : 0} good_l, no_bad = [], [] for i in good_lst: c = Counter(i) good_d['a'] += c[1] good_d['b'] += c[2] good_d['c'] += c[3] good_d['d'] += c[4] if c[1] + c[2] != 0: good_l.append((c[3] + c[4]) / (c[1] + c[2])) else: no_bad.append(c) print(good_d) print(len([x for x in good_l if x < 1])) print(len(good_l)) print(no_bad) print(np.mean(good_l)) # In this cluster 'C' was chosen the most despite its frequent losses. None of the participants chose the "bad" decks more frequently than the "good" decks, with some people never choosing the bad decks at all. The mean was 15.049 which is very high. This means that the "bad" were barely chosen in comparison to the "good" decks. # # For these reasons I think it is safe to assume that a lot of these participants figured out that the decks C and D contained more rewards than penalties. # ## 3. Preserving the Privacy of Each Lab # # Next, I wanted to find a way to obtain similar clustering results while preserving the privacy of each lab. # ### 3.1 Using PCA # # Principal Component Analysis, or PCA, is a way to reduce the dimensionality of a dataset. It also is able to provide some degree of privacy to the data. # First I dropped the columns that were not numeric and useful. # In[17]: x = df.drop(columns = ['Subj','Study', 'StudyNo', 'Payload']) # I then performed PCA for two components and added them to a dataframe with the study number and payload. # In[18]: pca = PCA(n_components=2) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data = principalComponents , columns = ['principal component 1', 'principal component 2']) pca_df = pd.concat([principalDf, df[['StudyNo', 'Payload']]], axis = 1) # https://towardsdatascience.com/pca-using-python-scikit-learn-e653f8989e60 pca_df # I then got the elbow and silhouette scores and chose 7 as my optimal *k*. # In[19]: elbow_score(principalDf) pca_sil = sil_value(principalDf) pca_k = pca_sil.index(max(pca_sil)) + 2 plt.plot([3,4,5,6,7,8,9,10], pca_sil) plt.title('Optimal k for pca') plt.xlabel('silhouette score') plt.ylabel('k') plt.show() # I then clustered the data and made graphs showing the clusters, the payload, and the study. # In[20]: pca_kmeans = KMeans(7) pca_kmeans.fit(pca_df) pca_identified_clusters = pca_kmeans.fit_predict(pca_df) pca_data_with_clusters = pca_df.copy() pca_data_with_clusters['Clusters'] = pca_identified_clusters sns.lmplot(data=pca_data_with_clusters, x='principal component 1', y='principal component 2', hue='Clusters', fit_reg=False, legend=True) sns.lmplot(data=pca_data_with_clusters, x='principal component 1', y='principal component 2', hue='Payload', fit_reg=False, legend=True, palette='rainbow') sns.lmplot(data=pca_df, x='principal component 1', y='principal component 2', hue='StudyNo', fit_reg=False, legend=True) # These graphs do not look like the graphs I made before. There is more data in the top left quadrant of the graph. There does not seem to be much correlation between the clusters and the payoff but cluster 4 seems to be made up of majority payload 3 studies. There is no clear connection between these clusters and the studies. # ### 3.2 Using Centroids # # To do this I decided to perform clustering on each lab's results separately and then cluster their centroids to see if it gave similar results to clustering the data from all of the labs together. For this example I will use the same analysis as before, the 'Total' and the "good" decks. # I looped through the studies and got the silhouette score for each study. I then performed k-means clustering on the data from each study. I added the centroid of each cluste to a dataframe called 'centroids'. # In[21]: centroids = pd.DataFrame(columns = ['Total', 'Good', 'StudyNo']) for study in range(1,11): study_df = df[df['StudyNo'] == study] study_good = study_df.iloc[:,[1,7]] study_good_sil = sil_value(study_good) study_good_k = study_good_sil.index(max(study_good_sil)) + 2 # plt.plot([3,4,5,6,7,8,9,10], study_good_sil) # plt.title('Optimal k for {}'.format(study_df['Study'].iloc(0)[0])) # plt.xlabel('silhouette score') # plt.ylabel('k') # plt.show() study_good_kmeans = KMeans(study_good_k) study_good_kmeans.fit(study_good) study_good_identified_clusters = study_good_kmeans.fit_predict(study_good) centers = np.array(study_good_kmeans.cluster_centers_) for i in centers: centroids = centroids.append({'Total': i[0], 'Good': 1-i[1], 'StudyNo': study}, ignore_index=True) print(centroids) # Here is a graph of all the centroids. As you can see, it is similar to the graph for all datapoints when plotting 'Total' and 'Good'. It also still captures that some studies had more variation in their 'Total' or in the amount a "good" deck was chosen. For example, the 6th study had people choosing "good" decks all the time and some people never choosing them. In contrast, the people in study 4 mostly chose a "good" deck somewhere between 40% and 80% of the time. # In[22]: sns.lmplot(data=centroids, x='Total', y='Good', hue='StudyNo', fit_reg=False, legend=True, palette='gnuplot2') # This is where I got the optimal *k* for the centroids data and performed clustering on it. # In[23]: centroid_good = centroids.iloc[:,[0,1]] elbow_score(centroid_good) centroid_good_sil = sil_value(centroid_good) centroid_good_k = centroid_good_sil.index(max(centroid_good_sil)) + 2 plt.plot([3,4,5,6,7,8,9,10], centroid_good_sil) plt.title('Optimal k for centroid_good') plt.xlabel('silhouette score') plt.ylabel('k') plt.show() centroid_good_kmeans = KMeans(10) centroid_good_kmeans.fit(centroid_good) centroid_good_identified_clusters = centroid_good_kmeans.fit_predict(centroid_good) centroid_good_data_with_clusters = centroids.copy() centroid_good_data_with_clusters['Clusters'] = centroid_good_identified_clusters sns.lmplot(data=centroid_good_data_with_clusters, x='Total', y='Good', hue='Clusters', fit_reg=False, legend=True) # The clusters show the same as the original clusters that the smaller clusters are on the edge because there are less datapoints there and the ones in the middle are bigger. # Overall, I would say that this method of preserving privacy is fine if you just want to understand the overall picture of the data and see roughly what way the data would look if it was clustered. However if you want to perform deeper analysis on the data it would not be very useful. # ## Conclusion # # There are some interesting insights to be learned from this data when it has been clustered. There are relationships between the amount won or lost and the decks chosen, and the payload for the amount deck C was rewarding or penalising may have impacted the way that participants made their decisions. It is also harder to gain insight into the data as a whole when the privacy of each study is preserved.
a24522be5f97badb956590dccdec0731a0a69024
kapppa-joe/leetcode-practice
/daily/20201025-stone-game-IV.py
959
3.5
4
from functools import lru_cache from math import sqrt class Solution: def winnerSquareGame(self, n: int) -> bool: square_nums = [i * i for i in range(int(sqrt(n)), 0, -1)] @lru_cache(None) def can_win(i: int) -> bool: if i in square_nums: return True else: for j in square_nums: if j < i and not can_win(i - j): return True return False return can_win(n) def winnerSquareGameb(self, n: int) -> bool: if sqrt(n) % 1 == 0: return True dp = {} square_nums = [i * i for i in range(1, int(sqrt(n)) + 1)] dp[0] = False for i in range(1, n + 1): if i in square_nums: dp[i] = True else: dp[i] = any(not dp[i-j] for j in square_nums if j < i) return dp[n] fn = Solution().winnerSquareGame
77bebfd73388d0fc3e432a2784e5ef99c5e6aa4a
jsgiant/SDE-sheet-python
/1_find_the_duplicate.py
695
3.71875
4
# Given an array of integers nums containing n + 1 integers where each integer is in the range [1, n] inclusive. def findTheDuplicate(nums): nums_len = len(nums) if nums_len > 1: # Find the intersection point of the two runners. slow = nums[0] fast = nums[nums[0]] while True: slow = nums[slow] fast = nums[nums[fast]] if slow == fast: break # Find the "entrance" to the cycle. slow = nums[0] while slow != fast: slow = nums[slow] fast = nums[fast] return slow return -1 # Input: nums = [1,3,4,2,2] # Output: 2
0e5ef84ad4b36150a414456450533759c4ba6de5
jinglepp/python_cookbook
/07函数/07.07匿名函数捕获变量值.py
1,506
4.03125
4
# coding:utf-8 # 问题 # 你用lambda定义了一个匿名函数,并想在定义时捕获到某些变量的值。 # 解决方案 # 先看下下面代码的效果: x = 10 a = lambda y: x + y x = 20 b = lambda y: x + y print(a(10)) # 30 print(b(10)) # 30 # 这其中的奥妙在于lambda表达式中的x是一个自由变量, 在运行时绑定值,而不是定义时就绑定, # 这跟函数的默认值参数定义是不同的。因此,在调用这个lambda表达式的时候,x的值是执行时的值。例如: x = 15 print(a(10)) # 25 x = 3 print(a(10)) # 13 # 如果你想让某个匿名函数在定义时就捕获到值,可以将那个参数值定义成默认参数即可,就像下面这样: x = 10 a = lambda y, x=x: x + y x = 20 b = lambda y, x=x: x + y print(a(10)) # 20 print(b(10)) # 30 # 讨论 # 在这里列出来的问题是新手很容易犯的错误,有些新手可能会不恰当的使用lambda表达式。 # 比如,通过在一个循环或列表推导中创建一个lambda表达式列表,并期望函数能在定义时就记住每次的迭代值。例如: funcs = [lambda x: x + n for n in range(5)] for f in funcs: print(f(0)) # 4,4,4,4,4 # 但是实际效果是运行是n的值为迭代的最后一个值。现在我们用另一种方式修改一下: funcs = [lambda x, n=n: x + n for n in range(5)] for f in funcs: print(f(0)) # 0,1,2,3,4 # 通过使用函数默认值参数形式,lambda函数在定义时就能绑定到值。
3738d1ca4910d62feebe0e7f3cebfc94404c49cd
bljessica/machine-learning-practices
/studying-practices/gradient-descent.py
1,692
3.71875
4
import matplotlib.pyplot as plt import random #训练集 x_data = [1.0, 2.0, 3.0] y_data = [2.0, 4.0, 6.0] w = 1.0 #初始权重猜测 def forward(x): return x * w #梯度下降代价函数 def cost(xs, ys): cost = 0 for x, y in zip(x_data, y_data): cost += (forward(x) - y) ** 2 return cost / len(xs) #随机梯度下降(SGD)代价函数 def stochastic_cost(x, y): return (forward(x) - y) ** 2 def gradient(xs, ys): grad = 0 for x, y in zip(xs, ys): grad += 2 * (forward(x) - y) * x return grad / len(xs) #随机梯度下降梯度 def stochastic_gradient(x, y): return 2 * (forward(x) - y) * x print('Predict(before training)', 4, forward(4)) epoch_list = [] loss_list = [] #进行100轮训练(梯度下降算法) # for epoch in range(100): #epoch 阶段(轮) # cost_val = cost(x_data, y_data) # grad_val = gradient(x_data, y_data) # w -= 0.01 * grad_val # print('Epoch: ', epoch, 'w=', w, 'loss=', cost_val) # epoch_list.append(epoch) # loss_list.append(cost_val) #进行100轮训练(随机梯度下降算法) for epoch in range(100): randIndex = random.randint(0, len(x_data) - 1) #随机取一个数据 x = x_data[randIndex] y = y_data[randIndex] grad = stochastic_gradient(x, y) w -= 0.01 * grad print('\tgrad:', x, y, grad) loss = stochastic_cost(x, y) epoch_list.append(epoch) loss_list.append(loss) print('Epoch: ', epoch, 'w=', w, 'loss=', loss) print('Predict(after training)', 4, forward(4)) plt.plot(epoch_list, loss_list) plt.xlabel('epoch') plt.ylabel('Loss') plt.show()
9655650d39dfc18d50e83de8adc24f75dcf34c76
wahello/physics
/backend/data/random_student.py
1,500
3.65625
4
from openpyxl import Workbook import random import string # 姓名 学校 年级 学号 专业 电话号码 电子邮箱 账号状态 major = ['物理','化学','英语','计算机','经管','人文','环境','土木','机械','设计'] mail = ['163','162'] status = [True,False] def random_phone(): head = ['139','188','185','136','155','135','158','151','152','153'] s = '0123456789' return random.choice(head)+"".join(random.choice(s) for i in range(8)) def main(): wb = Workbook() ws = wb.create_sheet("学生信息") for i in range(1,200): name = ''.join(random.sample(string.ascii_letters + string.digits, 8)) school_id = random.randint(1,6) grade = random.randint(2017,2020) code = '{:0>7}'.format(str(i)) major_id = random.randint(0,len(major)-1) phone = random_phone() mail_name = phone+"@"+random.choice(mail)+".com" statuss = random.choice(status) print(name,school_id,grade,code,major[major_id],phone,mail_name,statuss) ws.cell(row=i,column=1).value = name ws.cell(row=i,column=2).value = school_id ws.cell(row=i,column=3).value = grade ws.cell(row=i,column=4).value = code ws.cell(row=i,column=5).value = major[major_id] ws.cell(row=i,column=6).value = phone ws.cell(row=i,column=7).value = mail_name ws.cell(row=i,column=8).value = statuss wb.save("random.xlsx") if __name__ == '__main__': main()
eeb9669ee0c15a5d7d4412b77e8011a4af4c0316
lionheartStark/sword_towards_offer
/leetcode/py36/最短无序连续子数组N581.py
714
3.625
4
from typing import List from typing import List class Solution: def my_findUnsortedSubarray(self, nums: List[int]) -> int: stack = [] n = len(nums) shixu = [] minx = float('INF') maxy = 0 for i in range(n): if stack == [] or nums[i] >= stack[-1][0]: stack.append((nums[i], i)) else: j = 0 while stack[j][0] <= nums[i]: j += 1 minx = min(minx, stack[j][1]) maxy = i if minx != float('INF'): return -minx + maxy + 1 else: return 0 a = Solution().findUnsortedSubarray([1, 3, 5, 2, 4]) print(a)
8ab66ebc8be0b313943cb9f2889c8400ec053581
saldanaj/CS325-Algorithms
/HW1/JoaquinSaldana_Question4FinalSubmission/mergesort.py
2,565
3.953125
4
#!/usr/bin/python # Student: Joaquin Saldana # Assignment: Homework 1 / Merge Sort program import string import io # Citation: the code for the merge_sort and the sort functions was borrowed from the # following site https://pythonandr.com/2015/07/05/the-merge-sort-python-code/ def merge(array1, array2): mergedArray = [] while len(array1) != 0 and len(array2) != 0: if array1[0] < array2[0]: mergedArray.append(array1[0]) array1.remove(array1[0]) else: mergedArray.append(array2[0]) array2.remove(array2[0]) if len(array1) == 0: mergedArray += array2 else: mergedArray += array1 return mergedArray #===================================================================== # Citation: the code for the merge_sort and the sort functions was borrowed from the # following site https://pythonandr.com/2015/07/05/the-merge-sort-python-code/ def merge_sort(arrayOfInts): if len(arrayOfInts) == 0 or len(arrayOfInts) == 1: return arrayOfInts else: middle = len(arrayOfInts)/2 a1 = merge_sort(arrayOfInts[:middle]) a2 = merge_sort(arrayOfInts[middle:]) return merge(a1,a2) #===================================================================== def main(): # list/array variable that will hold what we read from the file and later sort intArray = [] file = open('merge.out', 'w') with open('data.txt') as datafile: for line in datafile: #read the line from the file and insert/append the values in to a list/array where we will start # the insertsort algorithm and output to a file data = line.split() # append to the list the numbers read from the file for i in data: intArray.append(int(i)) # store the size of the array into the variable arraySize = intArray[0] # print the variable for testing # print arraySize # remove the variable from the array/list del intArray[0] #insertion sort algorithm newArray = merge_sort(intArray) # print the list for the sake of checking it's working print newArray for number in newArray: file.write(str(number)) file.write(" ") file.write("\n") # empty the contents of the array so we can start over, and continue starting over until # we have reached the end of file del intArray[:] del newArray[:] file.close() print "Finished writing to merge.out. Please open the file to see the results. Thanks." main()
f2efc4243b1b305b43cbd1fb583a8e5a0e684249
Oscar883/AprendiendoPython
/Conversiones.py
646
4.09375
4
#Declaramos variable str, con cadena de numeros. numero = "1234" #Se MUESTRA el tipo de variable , # type = da un dato type, no un str(<class 'str'>). print(type(numero)) #Convertimos la cadena a int. numero=int(numero) #Se MUESTRA como el tipo ha cambiado, #aunque se usa la misma variable (<class 'int'>). print(type(numero)) #Se declara un str con meta sustitucion #(posiciones donde iran valores usando format). salida="El numero utilizado es {}" #Se MUESTRA el resultado. La meta sustitucion hara que donde #donde esta {} se coloque el valor de la variable numero, (El numero utilizado es 1234). print(salida.format(numero))
ca433b1c89660a13dfd6b81777e9e0297728a6f4
Esirn/Learning_Coding
/SUM(1!~20!).py
146
3.609375
4
a=1 b=0 print("SUM(1!~20!)\n=0",end='') for i in range(1,21): a *= i; b += a; print("+{0}".format(a),end='') print("\n={0}".format(b))
16bee523d94e83d6181822e0522a44083740dc02
webclinic017/Financial_Machine_Learning
/old_stuff/fixed_window_labeling.py
8,670
3.6875
4
""" Name :fixed_window_labeling.py in Project: Financial_ML Author : Simon Leiner Date : 19.05.2021 Description: sheet contains the functions for computing the triple barrier method """ import pandas as pd import numpy as np import matplotlib.pyplot as plt from datetime import datetime, timedelta import matplotlib.dates as mdates # some printing options pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Checked: Functions work def get_vertical_barriers(ps,numdays): """ This function calculates the horizontal barriers numdays ahead. :param ps: pd.Series: Prices :param numdays: integer: number of days to add for vertical barrier :return: pd.Series: Timestamps of vertical barriers """ # get the index as numbers and add numdays vertical_barriers = ps.index.searchsorted(ps.index + pd.Timedelta(days = numdays)) # remove the last entries: by shifting we exceeded the number of rows vertical_barriers = vertical_barriers[vertical_barriers < ps.shape[0]] # subset the price Series index and get the index too vertical_barriers = pd.Series(ps.index[vertical_barriers], index = ps.index[:vertical_barriers.shape[0]]) return vertical_barriers # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Checked: Functions work def get_labels(barriers,ps): """ This function calcualtes the path returns and thus the Labels for each triple barrier event. :param barriers: pd.DataFrame: with all the needed information :param ps: pd.Series: Prices :return: pd.DataFrame: Labels with the starting date of the triple barrier as index """ # drop na rows if there isn't a horizontal barrier barriers.dropna(subset = ["vert_barrier"], inplace = True) # create a df with the events as index df_label = pd.DataFrame(index = barriers.index) # calculate the path returns : differnece between price at starting date and date the price hit a barrier: df_label["ret"] = ps.loc[barriers["vert_barrier"].values].values / ps.loc[barriers.index] - 1 # add colum bin: indicate the sign of a number element-wise. returns 1 ,0, -1 for the sign df_label["Label"] = np.sign(df_label["ret"]) # note if the return is exactly 0, np.sign return 0, as we want a binary problem, we have to convert these rare events to another class for index, value in enumerate(df_label["Label"]): if value == 0: # declare 0 returns as negative returns df_label["Label"][index] = -1 # only for writing the new gained information in the container barriers["ret"] = df_label["ret"] barriers["Label"] = df_label["Label"] return df_label # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Checked: Functions work def get_triple_barrier_labeld_data(ps,h,num_days,plotting = True): """ This function combines all the above functions and executes them in the correct order :param ps: pd.Series: Prices :param h: float: filter size :param numdays: integer: number of days to add for vertical barrier :param plotting: boolean: wether to plot or not :return: pd.DataFrame: Labels with the starting date of the triple barrier as index """ # most recent datapoint most_recent_date = ps.index[-1].strftime('%Y-%m-%d') # get the vertical barriers vertical_barriers = get_vertical_barriers(ps, num_days) # most recent horizontal barrier most_recent_horizontal = pd.to_datetime(str(vertical_barriers.values[-1])) # create a container to save the values barriers = pd.concat({"price": ps, "vert_barrier": vertical_barriers}, axis=1) # get the labeld Data df_label = get_labels(barriers,ps) # get the class distribution distribution = df_label["Label"].value_counts(normalize=True) # flag warning if (distribution[1] > 0.75) or (distribution[1] < 0.15): print(f"Be careful, the class distribution is very unbalanced with positive: {round(distribution[1],2)*100} % and negative returns: {round(distribution[2],2)*100} %") print("-" * 10) print(f"The last triple barrier for {num_days} days back has formed on the {df_label.index[-1].strftime('%Y-%m-%d')} - {most_recent_horizontal.strftime('%Y-%m-%d')} and there is data up to the {most_recent_date}.") print("-" * 10) # show the df with all the given information print(f"Overview of the triple barrier labling approach:") print(barriers.tail(2)) print("-" * 10) if plotting == True: # plotting plot_one_triple_barrier(barriers, ps, num_days) # change the index to not the first, nut the horizontal barrier df_label.set_index(vertical_barriers,inplace = True) # show the returning DF # print(f"Overview of the Labeld Data:") # print(df_label.tail(3)) # print("-" * 10) return df_label # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Checked: Functions work def plot_one_triple_barrier(barriers,ps,numdays,last_barriers = 5): """ This function plots some triple barrier events. :param barriers: pd.DataFrame: with all the needed information :param ps: pd.Series: Prices :param numdays: integer: number of days to add for vertical barrier :param last_barriers: integer: number on how many barriers to plot :return: None """ # barriers old index starting_dates_tpb = barriers.index # change the index to not the first, but the horizontal barrier barriers.set_index("vert_barrier", inplace=True) # get the most recent date now = datetime.now() # last_barriers times the timepan of the horizontal barriers last_x_months = now - timedelta(days=31 + numdays) # plot the last formed triple barrier and just the most recent month plotting_price_recent_x_months = ps[(ps.index >= last_x_months) & (ps.index <= barriers.index[-1])] # print(plotting_price_recent_x_months) # plot the last Labled Datapoints (returns) plotting_labels_returns_recent_x_months = barriers[barriers.index >= last_x_months]["ret"] * 100 # print(plotting_labels_returns_recent_x_months) # plotting plt.subplot(2, 3, 1) # plot the Labels of the last recent month plt.plot(plotting_labels_returns_recent_x_months,color="goldenrod") # stylistical stuff plt.ylabel("Returns in %:") plt.axhline(y=0, color="black") plt.title(f"Returns forming the Labels from {last_x_months.strftime('%Y-%m-%d')} up to {plotting_labels_returns_recent_x_months.index[-1].strftime('%Y-%m-%d')}:") date_format = mdates.DateFormatter('%m-%d') plt.gca().xaxis.set_major_formatter(date_format) # plotting plt.subplot(2, 3, 4) # plot the adjusted Close of the last recent month plt.plot(plotting_price_recent_x_months, label="Adj Close", color="goldenrod") # possible colors to select all_colors = ["black","blue","teal","navy","grey","darkred","dimgray","royalblue","teal","cyan","maroon","indigo"] # define a colorrange: colors = [] # create a colorlist for j in range(1,(last_barriers + 2)): # choose one color color = all_colors[j] # append the color colors.append(color) # loop over the last recent points for i in range(1,len(colors)): # ith last starting date start = starting_dates_tpb[-i] # print(start) # ith last vertical barrier end = barriers.index[-i] # print(end) price = plotting_price_recent_x_months[-i] # plot plt.plot([start, end], [price, price], color=f"{colors[i]}", linestyle="--") plt.plot([start, start], [price -0.1,price +0.1], color=f"{colors[i]}", linestyle="-") plt.plot([end, end], [price -0.1,price +0.1], color=f"{colors[i]}", linestyle="-") # stylistical stuff plt.ylabel("Price in € or $:") plt.title(f"Adjusted Close and the last {last_barriers} TPBs from {last_x_months.strftime('%Y-%m-%d')} up to {plotting_price_recent_x_months.index[-1].strftime('%Y-%m-%d')}:") date_format = mdates.DateFormatter('%m-%d') plt.gca().xaxis.set_major_formatter(date_format) return None # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
ca7a0210475b5004ed5a2b1b06516d480592bba3
marwin-ko/dsp
/python/q8_parsing.py
751
4.21875
4
# The football.csv file contains the results from the English Premier League. # The columns labeled ‘Goals’ and ‘Goals Allowed’ contain the total number of # goals scored for and against each team in that season (so Arsenal scored 79 goals # against opponents, and had 36 goals scored against them). Write a program to read the file, # then print the name of the team with the smallest difference in ‘for’ and ‘against’ goals. import numpy as np data = np.genfromtxt('football.csv',delimiter=',',dtype='S15,int,int,int,int,int,int,int') temp = [] for i,x in enumerate(data): info = (x[0],x[5]-x[6]) temp.append(info) temp = sorted(temp,key=lambda x:x[1]) print 'The team with the smallest point differential is',temp[0][0]
ceb9d87770312344b359564481355bd9b4c9d4aa
statsmodels/statsmodels
/statsmodels/stats/contingency_tables.py
44,247
3.546875
4
""" Methods for analyzing two-way contingency tables (i.e. frequency tables for observations that are cross-classified with respect to two categorical variables). The main classes are: * Table : implements methods that can be applied to any two-way contingency table. * SquareTable : implements methods that can be applied to a square two-way contingency table. * Table2x2 : implements methods that can be applied to a 2x2 contingency table. * StratifiedTable : implements methods that can be applied to a collection of 2x2 contingency tables. Also contains functions for conducting McNemar's test and Cochran's q test. Note that the inference procedures may depend on how the data were sampled. In general the observed units are independent and identically distributed. """ import warnings import numpy as np import pandas as pd from scipy import stats from statsmodels import iolib from statsmodels.tools import sm_exceptions from statsmodels.tools.decorators import cache_readonly def _make_df_square(table): """ Reindex a pandas DataFrame so that it becomes square, meaning that the row and column indices contain the same values, in the same order. The row and column index are extended to achieve this. """ if not isinstance(table, pd.DataFrame): return table # If the table is not square, make it square if not table.index.equals(table.columns): ix = list(set(table.index) | set(table.columns)) ix.sort() table = table.reindex(index=ix, columns=ix, fill_value=0) # Ensures that the rows and columns are in the same order. table = table.reindex(table.columns) return table class _Bunch: def __repr__(self): return "<bunch containing results, print to see contents>" def __str__(self): ky = [k for k, _ in self.__dict__.items()] ky.sort() m = max([len(k) for k in ky]) tab = [] f = "{:" + str(m) + "} {}" for k in ky: tab.append(f.format(k, self.__dict__[k])) return "\n".join(tab) class Table: """ A two-way contingency table. Parameters ---------- table : array_like A contingency table. shift_zeros : bool If True and any cell count is zero, add 0.5 to all values in the table. Attributes ---------- table_orig : array_like The original table is cached as `table_orig`. See Also -------- statsmodels.graphics.mosaicplot.mosaic scipy.stats.chi2_contingency Notes ----- The inference procedures used here are all based on a sampling model in which the units are independent and identically distributed, with each unit being classified with respect to two categorical variables. References ---------- Definitions of residuals: https://onlinecourses.science.psu.edu/stat504/node/86 """ def __init__(self, table, shift_zeros=True): self.table_orig = table self.table = np.asarray(table, dtype=np.float64) if shift_zeros and (self.table.min() == 0): self.table[self.table == 0] = 0.5 def __str__(self): s = ("A %dx%d contingency table with counts:\n" % tuple(self.table.shape)) s += np.array_str(self.table) return s @classmethod def from_data(cls, data, shift_zeros=True): """ Construct a Table object from data. Parameters ---------- data : array_like The raw data, from which a contingency table is constructed using the first two columns. shift_zeros : bool If True and any cell count is zero, add 0.5 to all values in the table. Returns ------- A Table instance. """ if isinstance(data, pd.DataFrame): table = pd.crosstab(data.iloc[:, 0], data.iloc[:, 1]) else: table = pd.crosstab(data[:, 0], data[:, 1]) return cls(table, shift_zeros) def test_nominal_association(self): """ Assess independence for nominal factors. Assessment of independence between rows and columns using chi^2 testing. The rows and columns are treated as nominal (unordered) categorical variables. Returns ------- A bunch containing the following attributes: statistic : float The chi^2 test statistic. df : int The degrees of freedom of the reference distribution pvalue : float The p-value for the test. """ statistic = np.asarray(self.chi2_contribs).sum() df = np.prod(np.asarray(self.table.shape) - 1) pvalue = 1 - stats.chi2.cdf(statistic, df) b = _Bunch() b.statistic = statistic b.df = df b.pvalue = pvalue return b def test_ordinal_association(self, row_scores=None, col_scores=None): """ Assess independence between two ordinal variables. This is the 'linear by linear' association test, which uses weights or scores to target the test to have more power against ordered alternatives. Parameters ---------- row_scores : array_like An array of numeric row scores col_scores : array_like An array of numeric column scores Returns ------- A bunch with the following attributes: statistic : float The test statistic. null_mean : float The expected value of the test statistic under the null hypothesis. null_sd : float The standard deviation of the test statistic under the null hypothesis. zscore : float The Z-score for the test statistic. pvalue : float The p-value for the test. Notes ----- The scores define the trend to which the test is most sensitive. Using the default row and column scores gives the Cochran-Armitage trend test. """ if row_scores is None: row_scores = np.arange(self.table.shape[0]) if col_scores is None: col_scores = np.arange(self.table.shape[1]) if len(row_scores) != self.table.shape[0]: msg = ("The length of `row_scores` must match the first " + "dimension of `table`.") raise ValueError(msg) if len(col_scores) != self.table.shape[1]: msg = ("The length of `col_scores` must match the second " + "dimension of `table`.") raise ValueError(msg) # The test statistic statistic = np.dot(row_scores, np.dot(self.table, col_scores)) # Some needed quantities n_obs = self.table.sum() rtot = self.table.sum(1) um = np.dot(row_scores, rtot) u2m = np.dot(row_scores**2, rtot) ctot = self.table.sum(0) vn = np.dot(col_scores, ctot) v2n = np.dot(col_scores**2, ctot) # The null mean and variance of the test statistic e_stat = um * vn / n_obs v_stat = (u2m - um**2 / n_obs) * (v2n - vn**2 / n_obs) / (n_obs - 1) sd_stat = np.sqrt(v_stat) zscore = (statistic - e_stat) / sd_stat pvalue = 2 * stats.norm.cdf(-np.abs(zscore)) b = _Bunch() b.statistic = statistic b.null_mean = e_stat b.null_sd = sd_stat b.zscore = zscore b.pvalue = pvalue return b @cache_readonly def marginal_probabilities(self): """ Estimate marginal probability distributions for the rows and columns. Returns ------- row : ndarray Marginal row probabilities col : ndarray Marginal column probabilities """ n = self.table.sum() row = self.table.sum(1) / n col = self.table.sum(0) / n if isinstance(self.table_orig, pd.DataFrame): row = pd.Series(row, self.table_orig.index) col = pd.Series(col, self.table_orig.columns) return row, col @cache_readonly def independence_probabilities(self): """ Returns fitted joint probabilities under independence. The returned table is outer(row, column), where row and column are the estimated marginal distributions of the rows and columns. """ row, col = self.marginal_probabilities itab = np.outer(row, col) if isinstance(self.table_orig, pd.DataFrame): itab = pd.DataFrame(itab, self.table_orig.index, self.table_orig.columns) return itab @cache_readonly def fittedvalues(self): """ Returns fitted cell counts under independence. The returned cell counts are estimates under a model where the rows and columns of the table are independent. """ probs = self.independence_probabilities fit = self.table.sum() * probs return fit @cache_readonly def resid_pearson(self): """ Returns Pearson residuals. The Pearson residuals are calculated under a model where the rows and columns of the table are independent. """ fit = self.fittedvalues resids = (self.table - fit) / np.sqrt(fit) return resids @cache_readonly def standardized_resids(self): """ Returns standardized residuals under independence. """ row, col = self.marginal_probabilities sresids = self.resid_pearson / np.sqrt(np.outer(1 - row, 1 - col)) return sresids @cache_readonly def chi2_contribs(self): """ Returns the contributions to the chi^2 statistic for independence. The returned table contains the contribution of each cell to the chi^2 test statistic for the null hypothesis that the rows and columns are independent. """ return self.resid_pearson**2 @cache_readonly def local_log_oddsratios(self): """ Returns local log odds ratios. The local log odds ratios are the log odds ratios calculated for contiguous 2x2 sub-tables. """ ta = self.table.copy() a = ta[0:-1, 0:-1] b = ta[0:-1, 1:] c = ta[1:, 0:-1] d = ta[1:, 1:] tab = np.log(a) + np.log(d) - np.log(b) - np.log(c) rslt = np.empty(self.table.shape, np.float64) rslt *= np.nan rslt[0:-1, 0:-1] = tab if isinstance(self.table_orig, pd.DataFrame): rslt = pd.DataFrame(rslt, index=self.table_orig.index, columns=self.table_orig.columns) return rslt @cache_readonly def local_oddsratios(self): """ Returns local odds ratios. See documentation for local_log_oddsratios. """ return np.exp(self.local_log_oddsratios) @cache_readonly def cumulative_log_oddsratios(self): """ Returns cumulative log odds ratios. The cumulative log odds ratios for a contingency table with ordered rows and columns are calculated by collapsing all cells to the left/right and above/below a given point, to obtain a 2x2 table from which a log odds ratio can be calculated. """ ta = self.table.cumsum(0).cumsum(1) a = ta[0:-1, 0:-1] b = ta[0:-1, -1:] - a c = ta[-1:, 0:-1] - a d = ta[-1, -1] - (a + b + c) tab = np.log(a) + np.log(d) - np.log(b) - np.log(c) rslt = np.empty(self.table.shape, np.float64) rslt *= np.nan rslt[0:-1, 0:-1] = tab if isinstance(self.table_orig, pd.DataFrame): rslt = pd.DataFrame(rslt, index=self.table_orig.index, columns=self.table_orig.columns) return rslt @cache_readonly def cumulative_oddsratios(self): """ Returns the cumulative odds ratios for a contingency table. See documentation for cumulative_log_oddsratio. """ return np.exp(self.cumulative_log_oddsratios) class SquareTable(Table): """ Methods for analyzing a square contingency table. Parameters ---------- table : array_like A square contingency table, or DataFrame that is converted to a square form. shift_zeros : bool If True and any cell count is zero, add 0.5 to all values in the table. Notes ----- These methods should only be used when the rows and columns of the table have the same categories. If `table` is provided as a Pandas DataFrame, the row and column indices will be extended to create a square table, inserting zeros where a row or column is missing. Otherwise the table should be provided in a square form, with the (implicit) row and column categories appearing in the same order. """ def __init__(self, table, shift_zeros=True): table = _make_df_square(table) # Non-pandas passes through k1, k2 = table.shape if k1 != k2: raise ValueError('table must be square') super(SquareTable, self).__init__(table, shift_zeros) def symmetry(self, method="bowker"): """ Test for symmetry of a joint distribution. This procedure tests the null hypothesis that the joint distribution is symmetric around the main diagonal, that is .. math:: p_{i, j} = p_{j, i} for all i, j Returns ------- Bunch A bunch with attributes * statistic : float chisquare test statistic * p-value : float p-value of the test statistic based on chisquare distribution * df : int degrees of freedom of the chisquare distribution Notes ----- The implementation is based on the SAS documentation. R includes it in `mcnemar.test` if the table is not 2 by 2. However a more direct generalization of the McNemar test to larger tables is provided by the homogeneity test (TableSymmetry.homogeneity). The p-value is based on the chi-square distribution which requires that the sample size is not very small to be a good approximation of the true distribution. For 2x2 contingency tables the exact distribution can be obtained with `mcnemar` See Also -------- mcnemar homogeneity """ if method.lower() != "bowker": raise ValueError("method for symmetry testing must be 'bowker'") k = self.table.shape[0] upp_idx = np.triu_indices(k, 1) tril = self.table.T[upp_idx] # lower triangle in column order triu = self.table[upp_idx] # upper triangle in row order statistic = ((tril - triu)**2 / (tril + triu + 1e-20)).sum() df = k * (k-1) / 2. pvalue = stats.chi2.sf(statistic, df) b = _Bunch() b.statistic = statistic b.pvalue = pvalue b.df = df return b def homogeneity(self, method="stuart_maxwell"): """ Compare row and column marginal distributions. Parameters ---------- method : str Either 'stuart_maxwell' or 'bhapkar', leading to two different estimates of the covariance matrix for the estimated difference between the row margins and the column margins. Returns ------- Bunch A bunch with attributes: * statistic : float The chi^2 test statistic * pvalue : float The p-value of the test statistic * df : int The degrees of freedom of the reference distribution Notes ----- For a 2x2 table this is equivalent to McNemar's test. More generally the procedure tests the null hypothesis that the marginal distribution of the row factor is equal to the marginal distribution of the column factor. For this to be meaningful, the two factors must have the same sample space (i.e. the same categories). """ if self.table.shape[0] < 1: raise ValueError('table is empty') elif self.table.shape[0] == 1: b = _Bunch() b.statistic = 0 b.pvalue = 1 b.df = 0 return b method = method.lower() if method not in ["bhapkar", "stuart_maxwell"]: raise ValueError("method '%s' for homogeneity not known" % method) n_obs = self.table.sum() pr = self.table.astype(np.float64) / n_obs # Compute margins, eliminate last row/column so there is no # degeneracy row = pr.sum(1)[0:-1] col = pr.sum(0)[0:-1] pr = pr[0:-1, 0:-1] # The estimated difference between row and column margins. d = col - row # The degrees of freedom of the chi^2 reference distribution. df = pr.shape[0] if method == "bhapkar": vmat = -(pr + pr.T) - np.outer(d, d) dv = col + row - 2*np.diag(pr) - d**2 np.fill_diagonal(vmat, dv) elif method == "stuart_maxwell": vmat = -(pr + pr.T) dv = row + col - 2*np.diag(pr) np.fill_diagonal(vmat, dv) try: statistic = n_obs * np.dot(d, np.linalg.solve(vmat, d)) except np.linalg.LinAlgError: warnings.warn("Unable to invert covariance matrix", sm_exceptions.SingularMatrixWarning) b = _Bunch() b.statistic = np.nan b.pvalue = np.nan b.df = df return b pvalue = 1 - stats.chi2.cdf(statistic, df) b = _Bunch() b.statistic = statistic b.pvalue = pvalue b.df = df return b def summary(self, alpha=0.05, float_format="%.3f"): """ Produce a summary of the analysis. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the interval. float_format : str Used to format numeric values in the table. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. """ fmt = float_format headers = ["Statistic", "P-value", "DF"] stubs = ["Symmetry", "Homogeneity"] sy = self.symmetry() hm = self.homogeneity() data = [[fmt % sy.statistic, fmt % sy.pvalue, '%d' % sy.df], [fmt % hm.statistic, fmt % hm.pvalue, '%d' % hm.df]] tab = iolib.SimpleTable(data, headers, stubs, data_aligns="r", table_dec_above='') return tab class Table2x2(SquareTable): """ Analyses that can be performed on a 2x2 contingency table. Parameters ---------- table : array_like A 2x2 contingency table shift_zeros : bool If true, 0.5 is added to all cells of the table if any cell is equal to zero. Notes ----- The inference procedures used here are all based on a sampling model in which the units are independent and identically distributed, with each unit being classified with respect to two categorical variables. Note that for the risk ratio, the analysis is not symmetric with respect to the rows and columns of the contingency table. The two rows define population subgroups, column 0 is the number of 'events', and column 1 is the number of 'non-events'. """ def __init__(self, table, shift_zeros=True): if type(table) is list: table = np.asarray(table) if (table.ndim != 2) or (table.shape[0] != 2) or (table.shape[1] != 2): raise ValueError("Table2x2 takes a 2x2 table as input.") super(Table2x2, self).__init__(table, shift_zeros) @classmethod def from_data(cls, data, shift_zeros=True): """ Construct a Table object from data. Parameters ---------- data : array_like The raw data, the first column defines the rows and the second column defines the columns. shift_zeros : bool If True, and if there are any zeros in the contingency table, add 0.5 to all four cells of the table. """ if isinstance(data, pd.DataFrame): table = pd.crosstab(data.iloc[:, 0], data.iloc[:, 1]) else: table = pd.crosstab(data[:, 0], data[:, 1]) return cls(table, shift_zeros) @cache_readonly def log_oddsratio(self): """ Returns the log odds ratio for a 2x2 table. """ f = self.table.flatten() return np.dot(np.log(f), np.r_[1, -1, -1, 1]) @cache_readonly def oddsratio(self): """ Returns the odds ratio for a 2x2 table. """ return (self.table[0, 0] * self.table[1, 1] / (self.table[0, 1] * self.table[1, 0])) @cache_readonly def log_oddsratio_se(self): """ Returns the standard error for the log odds ratio. """ return np.sqrt(np.sum(1 / self.table)) def oddsratio_pvalue(self, null=1): """ P-value for a hypothesis test about the odds ratio. Parameters ---------- null : float The null value of the odds ratio. """ return self.log_oddsratio_pvalue(np.log(null)) def log_oddsratio_pvalue(self, null=0): """ P-value for a hypothesis test about the log odds ratio. Parameters ---------- null : float The null value of the log odds ratio. """ zscore = (self.log_oddsratio - null) / self.log_oddsratio_se pvalue = 2 * stats.norm.cdf(-np.abs(zscore)) return pvalue def log_oddsratio_confint(self, alpha=0.05, method="normal"): """ A confidence level for the log odds ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. """ f = -stats.norm.ppf(alpha / 2) lor = self.log_oddsratio se = self.log_oddsratio_se lcb = lor - f * se ucb = lor + f * se return lcb, ucb def oddsratio_confint(self, alpha=0.05, method="normal"): """ A confidence interval for the odds ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. """ lcb, ucb = self.log_oddsratio_confint(alpha, method=method) return np.exp(lcb), np.exp(ucb) @cache_readonly def riskratio(self): """ Returns the risk ratio for a 2x2 table. The risk ratio is calculated with respect to the rows. """ p = self.table[:, 0] / self.table.sum(1) return p[0] / p[1] @cache_readonly def log_riskratio(self): """ Returns the log of the risk ratio. """ return np.log(self.riskratio) @cache_readonly def log_riskratio_se(self): """ Returns the standard error of the log of the risk ratio. """ n = self.table.sum(1) p = self.table[:, 0] / n va = np.sum((1 - p) / (n*p)) return np.sqrt(va) def riskratio_pvalue(self, null=1): """ p-value for a hypothesis test about the risk ratio. Parameters ---------- null : float The null value of the risk ratio. """ return self.log_riskratio_pvalue(np.log(null)) def log_riskratio_pvalue(self, null=0): """ p-value for a hypothesis test about the log risk ratio. Parameters ---------- null : float The null value of the log risk ratio. """ zscore = (self.log_riskratio - null) / self.log_riskratio_se pvalue = 2 * stats.norm.cdf(-np.abs(zscore)) return pvalue def log_riskratio_confint(self, alpha=0.05, method="normal"): """ A confidence interval for the log risk ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. """ f = -stats.norm.ppf(alpha / 2) lrr = self.log_riskratio se = self.log_riskratio_se lcb = lrr - f * se ucb = lrr + f * se return lcb, ucb def riskratio_confint(self, alpha=0.05, method="normal"): """ A confidence interval for the risk ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. """ lcb, ucb = self.log_riskratio_confint(alpha, method=method) return np.exp(lcb), np.exp(ucb) def summary(self, alpha=0.05, float_format="%.3f", method="normal"): """ Summarizes results for a 2x2 table analysis. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence intervals. float_format : str Used to format the numeric values in the table. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. """ def fmt(x): if isinstance(x, str): return x return float_format % x headers = ["Estimate", "SE", "LCB", "UCB", "p-value"] stubs = ["Odds ratio", "Log odds ratio", "Risk ratio", "Log risk ratio"] lcb1, ucb1 = self.oddsratio_confint(alpha, method) lcb2, ucb2 = self.log_oddsratio_confint(alpha, method) lcb3, ucb3 = self.riskratio_confint(alpha, method) lcb4, ucb4 = self.log_riskratio_confint(alpha, method) data = [[fmt(x) for x in [self.oddsratio, "", lcb1, ucb1, self.oddsratio_pvalue()]], [fmt(x) for x in [self.log_oddsratio, self.log_oddsratio_se, lcb2, ucb2, self.oddsratio_pvalue()]], [fmt(x) for x in [self.riskratio, "", lcb3, ucb3, self.riskratio_pvalue()]], [fmt(x) for x in [self.log_riskratio, self.log_riskratio_se, lcb4, ucb4, self.riskratio_pvalue()]]] tab = iolib.SimpleTable(data, headers, stubs, data_aligns="r", table_dec_above='') return tab class StratifiedTable: """ Analyses for a collection of 2x2 contingency tables. Such a collection may arise by stratifying a single 2x2 table with respect to another factor. This class implements the 'Cochran-Mantel-Haenszel' and 'Breslow-Day' procedures for analyzing collections of 2x2 contingency tables. Parameters ---------- tables : list or ndarray Either a list containing several 2x2 contingency tables, or a 2x2xk ndarray in which each slice along the third axis is a 2x2 contingency table. Notes ----- This results are based on a sampling model in which the units are independent both within and between strata. """ def __init__(self, tables, shift_zeros=False): if isinstance(tables, np.ndarray): sp = tables.shape if (len(sp) != 3) or (sp[0] != 2) or (sp[1] != 2): raise ValueError("If an ndarray, argument must be 2x2xn") table = tables * 1. # use atleast float dtype else: if any([np.asarray(x).shape != (2, 2) for x in tables]): m = "If `tables` is a list, all of its elements should be 2x2" raise ValueError(m) # Create a data cube table = np.dstack(tables).astype(np.float64) if shift_zeros: zx = (table == 0).sum(0).sum(0) ix = np.flatnonzero(zx > 0) if len(ix) > 0: table = table.copy() table[:, :, ix] += 0.5 self.table = table self._cache = {} # Quantities to precompute. Table entries are [[a, b], [c, # d]], 'ad' is 'a * d', 'apb' is 'a + b', 'dma' is 'd - a', # etc. self._apb = table[0, 0, :] + table[0, 1, :] self._apc = table[0, 0, :] + table[1, 0, :] self._bpd = table[0, 1, :] + table[1, 1, :] self._cpd = table[1, 0, :] + table[1, 1, :] self._ad = table[0, 0, :] * table[1, 1, :] self._bc = table[0, 1, :] * table[1, 0, :] self._apd = table[0, 0, :] + table[1, 1, :] self._dma = table[1, 1, :] - table[0, 0, :] self._n = table.sum(0).sum(0) @classmethod def from_data(cls, var1, var2, strata, data): """ Construct a StratifiedTable object from data. Parameters ---------- var1 : int or string The column index or name of `data` specifying the variable defining the rows of the contingency table. The variable must have only two distinct values. var2 : int or string The column index or name of `data` specifying the variable defining the columns of the contingency table. The variable must have only two distinct values. strata : int or string The column index or name of `data` specifying the variable defining the strata. data : array_like The raw data. A cross-table for analysis is constructed from the first two columns. Returns ------- StratifiedTable """ if not isinstance(data, pd.DataFrame): data1 = pd.DataFrame(index=np.arange(data.shape[0]), columns=[var1, var2, strata]) data1[data1.columns[var1]] = data[:, var1] data1[data1.columns[var2]] = data[:, var2] data1[data1.columns[strata]] = data[:, strata] else: data1 = data[[var1, var2, strata]] gb = data1.groupby(strata).groups tables = [] for g in gb: ii = gb[g] tab = pd.crosstab(data1.loc[ii, var1], data1.loc[ii, var2]) if (tab.shape != np.r_[2, 2]).any(): msg = "Invalid table dimensions" raise ValueError(msg) tables.append(np.asarray(tab)) return cls(tables) def test_null_odds(self, correction=False): """ Test that all tables have odds ratio equal to 1. This is the 'Mantel-Haenszel' test. Parameters ---------- correction : bool If True, use the continuity correction when calculating the test statistic. Returns ------- Bunch A bunch containing the chi^2 test statistic and p-value. """ statistic = np.sum(self.table[0, 0, :] - self._apb * self._apc / self._n) statistic = np.abs(statistic) if correction: statistic -= 0.5 statistic = statistic**2 denom = self._apb * self._apc * self._bpd * self._cpd denom /= (self._n**2 * (self._n - 1)) denom = np.sum(denom) statistic /= denom # df is always 1 pvalue = 1 - stats.chi2.cdf(statistic, 1) b = _Bunch() b.statistic = statistic b.pvalue = pvalue return b @cache_readonly def oddsratio_pooled(self): """ The pooled odds ratio. The value is an estimate of a common odds ratio across all of the stratified tables. """ odds_ratio = np.sum(self._ad / self._n) / np.sum(self._bc / self._n) return odds_ratio @cache_readonly def logodds_pooled(self): """ Returns the logarithm of the pooled odds ratio. See oddsratio_pooled for more information. """ return np.log(self.oddsratio_pooled) @cache_readonly def riskratio_pooled(self): """ Estimate of the pooled risk ratio. """ acd = self.table[0, 0, :] * self._cpd cab = self.table[1, 0, :] * self._apb rr = np.sum(acd / self._n) / np.sum(cab / self._n) return rr @cache_readonly def logodds_pooled_se(self): """ Estimated standard error of the pooled log odds ratio References ---------- J. Robins, N. Breslow, S. Greenland. "Estimators of the Mantel-Haenszel Variance Consistent in Both Sparse Data and Large-Strata Limiting Models." Biometrics 42, no. 2 (1986): 311-23. """ adns = np.sum(self._ad / self._n) bcns = np.sum(self._bc / self._n) lor_va = np.sum(self._apd * self._ad / self._n**2) / adns**2 mid = self._apd * self._bc / self._n**2 mid += (1 - self._apd / self._n) * self._ad / self._n mid = np.sum(mid) mid /= (adns * bcns) lor_va += mid lor_va += np.sum((1 - self._apd / self._n) * self._bc / self._n) / bcns**2 lor_va /= 2 lor_se = np.sqrt(lor_va) return lor_se def logodds_pooled_confint(self, alpha=0.05, method="normal"): """ A confidence interval for the pooled log odds ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. Returns ------- lcb : float The lower confidence limit. ucb : float The upper confidence limit. """ lor = np.log(self.oddsratio_pooled) lor_se = self.logodds_pooled_se f = -stats.norm.ppf(alpha / 2) lcb = lor - f * lor_se ucb = lor + f * lor_se return lcb, ucb def oddsratio_pooled_confint(self, alpha=0.05, method="normal"): """ A confidence interval for the pooled odds ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. Returns ------- lcb : float The lower confidence limit. ucb : float The upper confidence limit. """ lcb, ucb = self.logodds_pooled_confint(alpha, method=method) lcb = np.exp(lcb) ucb = np.exp(ucb) return lcb, ucb def test_equal_odds(self, adjust=False): """ Test that all odds ratios are identical. This is the 'Breslow-Day' testing procedure. Parameters ---------- adjust : bool Use the 'Tarone' adjustment to achieve the chi^2 asymptotic distribution. Returns ------- A bunch containing the following attributes: statistic : float The chi^2 test statistic. p-value : float The p-value for the test. """ table = self.table r = self.oddsratio_pooled a = 1 - r b = r * (self._apb + self._apc) + self._dma c = -r * self._apb * self._apc # Expected value of first cell dr = np.sqrt(b**2 - 4*a*c) e11 = (-b + dr) / (2*a) # Variance of the first cell v11 = (1 / e11 + 1 / (self._apc - e11) + 1 / (self._apb - e11) + 1 / (self._dma + e11)) v11 = 1 / v11 statistic = np.sum((table[0, 0, :] - e11)**2 / v11) if adjust: adj = table[0, 0, :].sum() - e11.sum() adj = adj**2 adj /= np.sum(v11) statistic -= adj pvalue = 1 - stats.chi2.cdf(statistic, table.shape[2] - 1) b = _Bunch() b.statistic = statistic b.pvalue = pvalue return b def summary(self, alpha=0.05, float_format="%.3f", method="normal"): """ A summary of all the main results. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence intervals. float_format : str Used for formatting numeric values in the summary. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. """ def fmt(x): if isinstance(x, str): return x return float_format % x co_lcb, co_ucb = self.oddsratio_pooled_confint( alpha=alpha, method=method) clo_lcb, clo_ucb = self.logodds_pooled_confint( alpha=alpha, method=method) headers = ["Estimate", "LCB", "UCB"] stubs = ["Pooled odds", "Pooled log odds", "Pooled risk ratio", ""] data = [[fmt(x) for x in [self.oddsratio_pooled, co_lcb, co_ucb]], [fmt(x) for x in [self.logodds_pooled, clo_lcb, clo_ucb]], [fmt(x) for x in [self.riskratio_pooled, "", ""]], ['', '', '']] tab1 = iolib.SimpleTable(data, headers, stubs, data_aligns="r", table_dec_above='') headers = ["Statistic", "P-value", ""] stubs = ["Test of OR=1", "Test constant OR"] rslt1 = self.test_null_odds() rslt2 = self.test_equal_odds() data = [[fmt(x) for x in [rslt1.statistic, rslt1.pvalue, ""]], [fmt(x) for x in [rslt2.statistic, rslt2.pvalue, ""]]] tab2 = iolib.SimpleTable(data, headers, stubs, data_aligns="r") tab1.extend(tab2) headers = ["", "", ""] stubs = ["Number of tables", "Min n", "Max n", "Avg n", "Total n"] ss = self.table.sum(0).sum(0) data = [["%d" % self.table.shape[2], '', ''], ["%d" % min(ss), '', ''], ["%d" % max(ss), '', ''], ["%.0f" % np.mean(ss), '', ''], ["%d" % sum(ss), '', '', '']] tab3 = iolib.SimpleTable(data, headers, stubs, data_aligns="r") tab1.extend(tab3) return tab1 def mcnemar(table, exact=True, correction=True): """ McNemar test of homogeneity. Parameters ---------- table : array_like A square contingency table. exact : bool If exact is true, then the binomial distribution will be used. If exact is false, then the chisquare distribution will be used, which is the approximation to the distribution of the test statistic for large sample sizes. correction : bool If true, then a continuity correction is used for the chisquare distribution (if exact is false.) Returns ------- A bunch with attributes: statistic : float or int, array The test statistic is the chisquare statistic if exact is false. If the exact binomial distribution is used, then this contains the min(n1, n2), where n1, n2 are cases that are zero in one sample but one in the other sample. pvalue : float or array p-value of the null hypothesis of equal marginal distributions. Notes ----- This is a special case of Cochran's Q test, and of the homogeneity test. The results when the chisquare distribution is used are identical, except for continuity correction. """ table = _make_df_square(table) table = np.asarray(table, dtype=np.float64) n1, n2 = table[0, 1], table[1, 0] if exact: statistic = np.minimum(n1, n2) # binom is symmetric with p=0.5 # SciPy 1.7+ requires int arguments int_sum = int(n1 + n2) if int_sum != (n1 + n2): raise ValueError( "exact can only be used with tables containing integers." ) pvalue = stats.binom.cdf(statistic, int_sum, 0.5) * 2 pvalue = np.minimum(pvalue, 1) # limit to 1 if n1==n2 else: corr = int(correction) # convert bool to 0 or 1 statistic = (np.abs(n1 - n2) - corr)**2 / (1. * (n1 + n2)) df = 1 pvalue = stats.chi2.sf(statistic, df) b = _Bunch() b.statistic = statistic b.pvalue = pvalue return b def cochrans_q(x, return_object=True): """ Cochran's Q test for identical binomial proportions. Parameters ---------- x : array_like, 2d (N, k) data with N cases and k variables return_object : bool Return values as bunch instead of as individual values. Returns ------- Returns a bunch containing the following attributes, or the individual values according to the value of `return_object`. statistic : float test statistic pvalue : float pvalue from the chisquare distribution Notes ----- Cochran's Q is a k-sample extension of the McNemar test. If there are only two groups, then Cochran's Q test and the McNemar test are equivalent. The procedure tests that the probability of success is the same for every group. The alternative hypothesis is that at least two groups have a different probability of success. In Wikipedia terminology, rows are blocks and columns are treatments. The number of rows N, should be large for the chisquare distribution to be a good approximation. The Null hypothesis of the test is that all treatments have the same effect. References ---------- https://en.wikipedia.org/wiki/Cochran_test SAS Manual for NPAR TESTS """ x = np.asarray(x, dtype=np.float64) gruni = np.unique(x) N, k = x.shape count_row_success = (x == gruni[-1]).sum(1, float) count_col_success = (x == gruni[-1]).sum(0, float) count_row_ss = count_row_success.sum() count_col_ss = count_col_success.sum() assert count_row_ss == count_col_ss # just a calculation check # From the SAS manual q_stat = ((k-1) * (k * np.sum(count_col_success**2) - count_col_ss**2) / (k * count_row_ss - np.sum(count_row_success**2))) # Note: the denominator looks just like k times the variance of # the columns # Wikipedia uses a different, but equivalent expression # q_stat = (k-1) * (k * np.sum(count_row_success**2) - count_row_ss**2) # / (k * count_col_ss - np.sum(count_col_success**2)) df = k - 1 pvalue = stats.chi2.sf(q_stat, df) if return_object: b = _Bunch() b.statistic = q_stat b.df = df b.pvalue = pvalue return b return q_stat, pvalue, df
32719f446dd7a95bbe88ac400788876377462b36
merimus/coding-bootcamp
/euler/merimus/35/35.py
1,471
3.90625
4
import math class GenPrime(object): def __init__(self): self.primes = [2, 3, 5, 7] def Primes(self): for p in self.primes: yield p while True: yield self.GenPrime() def IsPrime(self, n): cuttoff = math.sqrt(n) for p in self.primes: if p > cuttoff: return True if n % p == 0: return False def GenPrime(self, n): c = n + 1 while not self.IsPrime(c): c += 1 self.primes.append(c) return c class Primes(object): def __init__(self): self.primes = set([2, 3, 5, 7]) self.lastprime = 7 self.gp = GenPrime() def IsPrime(self, p): while self.lastprime < p: self.lastprime = self.gp.GenPrime(self.lastprime) self.primes.add(self.lastprime) return p in self.primes def digits(n): tmp = n result = [] while tmp > 0: result.append(tmp % 10) tmp /= 10 result.reverse() return result def number(d): tmp = map(lambda x:str(x), d) return int(''.join(tmp)) def test(p, n): d = digits(n) for i in range(len(d)): if not p.IsPrime(number(d)): return False tmp = d[0] d = d[1:] d.append(tmp) return True num = 0 p = Primes() for i in range(2, 1000000): if test(p, i): print i num += 1 print "ANSWER:", num
569a527462bbfbdd06b23a2a18f309fd728ba545
tamily-duoy/pyfile
/2017-5/DS/eightde/select_sortde.py
345
3.828125
4
#!/usr/bin/python # -*- coding:utf-8 -*- def select_sort(a): # 选择排序 for i in range(0, len(a)): pos = i for j in range(i + 1, len(a)): if a[pos] > a[j]: pos = j a[pos], a[i] = a[i], a[pos] return a if __name__=='__main__': a=[4,3,1,7] c=select_sort(a) print(c)
8a7fba97f2e5895d65f3181d82455883cbe5eeee
zuxinlin/leetcode
/leetcode/204.CountPrimes.py
741
3.828125
4
#! /usr/bin/env python # coding: utf-8 ''' 题目: 统计素数 https://leetcode-cn.com/problems/count-primes/ 主题: hash table & math 解题思路: 1. 利用数组缓存是否素数 ''' class Solution(object): def countPrimes(self, n): """ :type n: int :rtype: int """ no_prime = [False] * n count = 0 for i in range(2, n): if not no_prime[i]: count += 1 for j in range(i, n/i+1): if i * j < n: no_prime[i*j] = True else: break return count if __name__ == '__main__': solution = Solution() print ord('0') - ord('P')
925cc5e42f6e746f24bc7e5d6488186e53754097
gavjan/py_data_struct
/trie.py
1,677
3.640625
4
class TrieNode: def __init__(self, char): self.char = char self.is_end = False self.children = {} """ Trie that returns the first 3 suggestions for a given query """ class Trie(object): output = [] def __init__(self): self.root = TrieNode("") def insert(self, word): node = self.root for char in word: if char in node.children: node = node.children[char] else: new_node = TrieNode(char) node.children[char] = new_node node = new_node node.is_end = True def dfs(self, node, prefix): if len(self.output) >= 3: return if node.is_end: self.output.append(prefix + node.char) for child in node.children.values(): self.dfs(child, prefix + node.char) def query(self, query): self.output = [] node = self.root for char in query: if char in node.children: node = node.children[char] else: return [] self.dfs(node, query[:-1]) return self.output class Suggester: prods = [] trie = Trie() def __init__(self): f = open("words.txt", "r") for word in f.read().split("\n"): self.trie.insert(word) f.close() def suggest(self, test_case): return self.trie.query(test_case) def test(self): for test_case in ["Sta", "Rec", "Pick"]: ans = self.suggest(test_case) print(f"For '{test_case}' suggestions are: {ans}") suggester = Suggester() suggester.test()
824853a3c83f0d2c46cf43fbe34b86372f85b772
Sgrives/Python-Class
/using_numpy.py
9,806
4.53125
5
# Crash Course in Python # Author: Breanna McBean # Select functions from the NumPy package # May 28, 2019 ############################################## # Using the NumPy Package (especially NumPy Arrays) # importing a package (adding "as np" allows us to shorten what we type in the future) import numpy as np # Why use numpy arrays? # - less memory used # - faster run-time # observations height = [1.87, 1.87, 1.82, 1.91, 1.90, 1.85] print("height:", height) weight = [81.65, 97.52, 95.25, 92.98, 86.18, 88.45] print("weight:", weight) # creating numpy arrays # Use "np" to tell Python what package to check for the function np_height = np.array(height) print("np_height:", np_height) np_weight = np.array(weight) print("np_weight:", np_weight) # Print the data type of the variable print("np_height type:", type(np_height)) # Print the type of elements held in the array print("np_height element type:", np_height.dtype) # Create a multi-dimensional np array np_data = np.array([height, weight]) print("np_data:") print(np_data) # Note: NumPy arrays must have the same data type for each entry. # You can print the dimensions of the data print("dimensions of np_data:", np_data.shape) # You can print the number of elements in the array print("number of elements in np_data:", np_data.size) # There are also many ways to create an array # You can read in data from a file using "np.genfromtxt("file.type", skip_header=1, delimiter="x")" populations = np.genfromtxt("city.csv", skip_header=1, delimiter=",") # Since NumPy arrays must have the same data type for each element, if there is a title on the column, # use the argument "skip_header=1" to skip the first line. # There is also an argument "unpack" that you can set to "True" if you want to save each column to a separate # variable. You would set x,y,...=np.genfromtxt(..., unpack=True). # Note: If there are string values in numerical data, they will be changed to nan when converted into a # NumPy array. Since there are non-numerical entries "city.csv", we need to address this. populations[np.isnan(populations)] = 0 # The "isnan(np.array)" function will return a boolean array where ones indicate that the entry in that position in # np.array is not a number. In line 61, we use this to set the non-numerical values to 0. Depending on what your # application is, you could also set the value to be the average of the other data points in that column, or # whatever makes the most sense. print(populations) # You can create an array and specify the data type of the elements a = np.array([[1, 2, 4], [5, 8, 7]], dtype='int') print("creating an np array with lists:", a.dtype) # Instead of lists, you can also use tuples to create an np array # Creating a 3X4 array with all zeros b = np.zeros((3, 4)) print("initializing np array full of zeros:") print(b) # You can create the identity matrix eye = np.identity(3) print("identity matrix:") print(eye) # You can also choose a number to initialize all of the elements to (if you don't want 0) c = np.full((3, 3), 6, dtype='complex') print("initializing np array with a specific value:") print(c) # You can also randomize inputs from the distribution of your choice d = 5 * np.random.random_sample((3, 2)) print("initializing np array from a random sample in [0,5):") print(d) # Check out https://docs.scipy.org/doc/numpy/reference/routines.random.html for more information # on how to sample from different distributions # Create a sequence of integers from 0 to 30 with steps of 5 e = np.arange(0, 30, 5) print("creates a np array using arange:", e) # Like range, this is not inclusive on the second endpoint # Create a sequence of 10 values in range 0 to 5 f = np.linspace(0, 5, 10) print("creates np array using linspace:") print(f) # This is like the linspace command from MATLAB # You can reshape arrays. Here, we will reshape 3X4 array to 2X2X3 array arr = np.array([[1, 2, 3, 4], [5, 2, 4, 2], [1, 2, 0, 1]]) # Reshape the array to 3 dimensions new_arr = arr.reshape(2, 2, 3) print("original array:") print(arr) print("reshaped array:") print(new_arr) # You can also flatten numpy arrays # Flatten array arr = np.array([[1, 2, 3], [4, 5, 6]]) fl_arr = arr.flatten() print("original array:") print(arr) print("flattened array:") print(fl_arr) # You can also look at only certain portions of arrays # Arrange elements from 0 to 19 g = np.arange(20) print("np array with elements 0-19:", g) # Here, we are "slicing" the array. The format is arr[start:stop:step] h = g[8:17:1] print("creates np array of the 8th-17th element of g:", h) # Choosing one of the indices as negative starts counting from the end of the array rather than the start i = g[-8:17:1] print("creates np array of 8th element from the end of g to the 17th element of g:", i) # Like in MATLAB, the : operator when indexing means all elements. j = g[10:] print("creates np array of 10th-last elements of g:", j) # You can also look at portions of an array which meet a given condition. arr = np.array([[-1, 2, 0, 4], [4, -0.5, 6, 0], [2.6, 0, 7, 8], [3, -7, 4, 2.0]]) print("original array:") print(arr) cond = arr > 0 # Here, "cond" is a boolean array. print("boolean array of which elements in the original array meet the condition:") print(cond) temp = arr[cond] print("flat array of elements that met the condition:") print(temp) # You can also perform many operations on arrays k = np.array([1, 2, 5, 3]) print("original array:", k) # You can add 1 to every element print("original array +1:", k+1) # You can subtract 3 from each element print("original array -3:", k-3) # You can multiply each element by 10 print("original array times 10:", k*10) # You can square each element print("square each element of the original array:", k**2) # It is nice that we can do these operations for NumPy arrays, because we cannot do this for lists. # Note: The +=, -=, *=, /= operators work for NumPy arrays. # You can take the transpose of numpy array m = np.array([[1, 2, 3], [3, 4, 5], [9, 6, 0]]) print("original array:") print(m) print("transpose array:") print(m.T) # NumPy arrays also support unary operators arr = np.array([[1, 5, 6], [4, 7, 2], [3, 1, 9]]) print("original array:") print(arr) # You can get the maximum element of array print("max element:", arr.max()) # You can find the maximum element in a row print("np array of max elements by row:", arr.max(axis=1)) # Choosing axis=0 gives the maximum of each columns # You can get the minimum element in each column print("np array of min elements by column", arr.min(axis=0)) # Choosing axis=1 gives minimum of each row # You can get the sum of array elements print("sum of each element in the array:", arr.sum()) # You can get the cumulative sum along each row print("np array of cumulative sum of elements going across each row:") print(arr.cumsum(axis=1)) # Choosing axis=0 gives teh cumulative sum along each column # NumPy arrays also support binary operations a = np.array([[1, 2], [3, 4]]) b = np.array([[4, 3], [2, 1]]) print("array 1:") print(a) print("array 2:") print(b) # You can add arrays print("array 1 + array 2:") print(a + b) # You can perform element-wise multiplication print("element wise multiplication of arrays 1 and 2:") print(a * b) # You can perform matrix multiplication print("matrix multiplication of array 1 * array 2:") print(a.dot(b)) # NumPy also contains many common mathematical functions that can be performed on arrays # You can perform trig operations c = np.array([0, np.pi / 2, np.pi]) print("original array:", c) print("sin of each element:", np.sin(c)) # You can exponentiate array values d = np.array([0, 1, 2, 3]) print("original array:", d) print("exponentiate each element:", np.exp(d)) # You can take the square root of array values print("square root each element:", np.sqrt(d)) # You can also sort arrays. We will sort the following array: e = np.array([[1, 4, 2], [3, 4, 6], [0, -1, 5]]) print("original array:") print(e) # Sort the array (returns a flat array of sorted values if axis=None) print("flattened sorted array:", np.sort(e, axis=None)) # If you set "axis=0" or "axis=1", you will get an array sorted along either the columns or rows, respectively. # Note: Adding an extra argument, "kind= 'sort_algo'", you can choose the sorting algorithm. # If you're familiar with sorting algorithms and have a large array this may be beneficial to you. # Default sorting algorithm is quicksort. The other two options are merge sort and heap sort. # You can also sort an array by certain values # Fist, set alias names for dtypes dtypes = [('name', object), ('grad_year', int), ('cgpa', float)] # np array requires strings to have a fixed length, so use 'object' for the data type and it can store a # string of any length # Values to be put in array values = [('Hrithik', 2009, 8.5), ('Ajay', 2008, 8.7), ('Pankaj', 2008, 7.9), ('Aakash', 2009, 9.0)] # Creating array arr = np.array(values, dtype=dtypes) print("original array:") print(arr) # You can sort the array by name print("array sorted by name:") print(np.sort(arr, order='name')) # You can also sort the array by grad year first then by the cumulative gpa print("array sorted by grad year then GPA:") print(np.sort(arr, order=['grad_year', 'cgpa'])) # You can access elements of a numpy array using square brackets print(arr[0])
c2024f2269216f8e794d010ea11b9d3d2a04fc24
LeslieHor/woof-tile
/lib/src/helpers.py
861
4.03125
4
def join_and_sanitize(list_): """Join a list of items into a single string""" if isinstance(list_, str): return list_ new_list = [] for item in list_: if isinstance(item, str): new_list.append(item) elif isinstance(item, int): new_list.append(str(item)) elif isinstance(item, float): new_list.append(str(item)) else: raise Exception('Invalid type when attempting to join and sanitize') return ' '.join(new_list) def cut_off_rest(arg): """ Cuts of the comment of the args """ return arg.split(' : ')[0] def combine_lists(list_1, list_2): if (list_1, list_2) == (None, None): return [] elif list_1 is None: return list_2 elif list_2 is None: return list_1 else: return list_1 + list_2
ec70e4d94a405465763d739bdbf1728e90559075
mtucker91/Intro_to_Python
/past_assignments/Prog Assignment 5 - 2_ Print Even numbers + indexes/even_numbers.py
1,037
4.0625
4
# This part is to ask the user to input the list items. # It works, don't change or delete. # The way it works is not the scope of this question, we will cover it later #commented this out for testing #list_string = input('Enter list items (all int):\n') list_string = "7 5 6 5 4 9" my_list = [int(elem) for elem in list_string.split()] #my_list = [7, 5, 6, 5, 4, 9] print('The list entered is:') print(my_list) # FIXME: complete the program after this line print('The even numbers in the list with their indexes:') # for index, x in enumerate(my_list): if(x % 2) == 0: #print('my_list[%s]: %d' % (index, elem)) print('my_list[' + str(index) + ']: ' + str(x)) #print('my_list[' + index + ']: ' + x) #placeholder k = 1 for j in my_list: #adding to said placeholder k += 1 print('the amount of indexes = ' + str(k)) i = 0 while(i < k): #compare i (iteration) to my placeholder k x = my_list[i] if(x % 2) == 0: print('my_list[' + str(i) + ']: ' + str(x)) i += 1
a8eee36c673c6081ad3c57b84ea9e371bb068c50
zuobing1995/tiantianguoyuan
/第一阶段/day04/exercise/square.py
553
3.921875
4
# 练习: # 输入一个整数代表正方形的宽度,用变量n绑定, # 打印指定宽度的正方形 # 如: # 请输入: 5 # 打印如下: # 1 2 3 4 5 # 1 2 3 4 5 # 1 2 3 4 5 # 1 2 3 4 5 # 1 2 3 4 5 # 如: # 请输入: 3 # 打印如下: # 1 2 3 # 1 2 3 # 1 2 3 n = int(input("请输入: ")) line = 1 # 代表当前行 while line <= n: # print('打印第%d行' % line) i = 1 while i <= n: print(i, end=' ') i += 1 print() # 一行打印完,换行 line += 1
45181810d2d51ed8df8b5a6dc7f61c9d30888b6d
Dragos-n/Composite_design
/01_Python/Submenu.py
562
3.609375
4
class Submenu: """ Class for leaf/submenu """ def __init__(self, name): """" 'Constructor' (init) method for a new leaf/submenu object Input parameter: the name of new class object """ self.name = name def __del__(self): """" Destructor method for a new object - inherited also in Menu """ del self.name def print_method(self): """" Method that prints out the leaf/submenu objects """ print("\t", end="") print(self.name)
7768feee6a59b972a085a5fba4bb50053dbcc4d7
mohammedaasem/PythonBasicPrograms
/26_operator_identity.py
166
4.09375
4
# is & is not a=10 if a is 10: print("Equal") else: print("Not Equal") b=5 if b is not a: print("Both are different") else: print("Both are Equal")
d64bbe00e52430cce530be00a42fd62ae17aeed2
Ricky-Hu5918/Python-Lab
/sortedSquares.py
1,191
3.6875
4
#!/usr/bin/python # -*- coding: UTF-8 -*- #Leetcode.num = 977 """ Given an array of integers A sorted in non-decreasing order, return an array of the squares of each number,  also in sorted non-decreasing order. Example 1: Input: [-4,-1,0,3,10] Output: [0,1,9,16,100] """ '''以下两种方式均借助了排序方法,耗时在250ms左右''' ''' #1 def sortedSquares(A): for i in range(len(A)): A[i] *= A[i] A.sort() return A ''' ''' #2 def sortedSquares(A): return sorted([i**2 for i in A]) ''' ''' #3: 用了冒泡排序,但timeout了 def sortedSquares(A): for i in range(len(A)): A[i] *= A[i] for i in range(len(A)): for j in range(i+1, len(A)): if (A[i]>A[j]): A[i], A[j] = A[j], A[i] return A ''' '''用了所谓的双指针,首尾比较,将最大的放在最前面,最后再排序''' def sortedSquares(A): i, j = 0, len(A)-1 res = [] while (i <= j): if (A[i]*A[i]>A[j]*A[j]): res.append(A[i]*A[i]) i += 1 else: res.append(A[j]*A[j]) j -= 1 return res[::-1] l1 = [-5,-2,1,3,6] print(sortedSquares(l1))
8ebaac53f31fa9bee0a8c5ab169bedf614255483
andyworkingholiday/Operating_System
/Lab02/Safety_Algorithm.py
4,838
3.59375
4
import sys def print_safe_sequence(allocations, needs, availables, sequence): global process_count, instance_count if(len(sequence) == process_count): print("시작", end=" => ") for process_num in sequence: print("process{}".format(process_num), end=" => ") print("종료") else: for i in range(process_count): if i not in sequence: is_safe = True for j in range(instance_count): if availables[j] < needs[i][j]: is_safe = False break if is_safe: new_availables = availables[:] new_sequence = sequence[:] for j in range(instance_count): new_availables[j] = availables[j] + allocations[i][j] new_sequence.append(i) print_safe_sequence(allocations, needs, new_availables, new_sequence) print("[입력]") print("\n====== Process 갯수 입력 ====== ") process_count = int(input("process 갯수를 입력해주세요(2~10) : ")) if process_count < 2 or process_count > 10: print("[Error] process 갯수를 잘못 입력하셨습니다. 프로그램을 종료합니다.") sys.exit() print("\n====== Resource 갯수 입력 ======") resource_count = int(input("resource 갯수를 입력해주세요(2~5) : ")) if resource_count < 2 or resource_count > 5: print("[Error] resource 갯수를 잘못 입력하셨습니다. 프로그램을 종료합니다.") sys.exit() print("====== Instance 입력 ====== ") instances = [] instance_count = 0 while(instance_count<resource_count): instance = int(input("{}번째 자원의 instance 갯수를 입력해주세요(0~99) : ".format(instance_count + 1))) if instance == 0: break if instance < 0 or instance > 99: print("[Error] instance 갯수를 잘못 입력하셨습니다. 프로그램을 종료합니다.") sys.exit() instances.append(instance) instance_count += 1 if instance_count < 2: print("[Error] 자원 종류는 2개 이상만 가능합니다. 프로그램을 종료합니다.") sys.exit() print("\n====== Allocation 입력 ====== ") allocations = [] availables = instances[:] for i in range(process_count): allocation = input("process{}의 자원을 할당해주세요(띄어쓰기로 구분 ex) 0 1 2 ...) : ".format(i)).split(" ") if len(allocation) != instance_count: print("[Error] 자원 종류와 입력된 자원의 갯수가 같지 않습니다. 프로그램을 종료합니다.") sys.exit() for j in range(instance_count): allocation[j] = int(allocation[j]) availables[j] = availables[j] - allocation[j] if allocation[j] < 0 or allocation[j] > instances[j] or availables[j] < 0: print("[Error] 자원 입력이 잘못되었습니다. 프로그램을 종료합니다.") sys.exit() allocations.append(allocation) print("\n====== Max 입력 ====== ") maxes = [] needs = [] for i in range(process_count): max_row = input("process{}의 자원의 최대치를 입력해주세요(띄어쓰기로 구분 ex) 0 1 2 ...) : ".format(i)).split(" ") need = [] if len(max_row) != instance_count: print("[Error] 자원 종류와 입력된 자원의 개수가 같지 않습니다. 프로그램을 종료합니다.") sys.exit() for j in range(instance_count): max_row[j] = int(max_row[j]) if max_row[j] < 0 or max_row[j] > instances[j] or max_row[j] < allocations[i][j]: print("[Error] 자원 입력이 잘못되었습니다. 프로그램을 종료합니다.") sys.exit() need.append(max_row[j] - allocations[i][j]) maxes.append(max_row) needs.append(need) print("\n[출력]") print("====== Instance ====== ") print("Instances : ", end="") for i in range(instance_count): print(instances[i], end=" ") print("") print("Available : ", end="") for i in range(instance_count): print(availables[i], end=" ") print("") print("\n====== Allocation ====== ") for i in range(process_count): print("process{} : ".format(i), end="") for j in range(instance_count): print(allocations[i][j], end=" ") print("") print("\n====== Max ====== ") for i in range(process_count): print("process{} : ".format(i), end="") for j in range(instance_count): print(maxes[i][j], end=" ") print("") print("\n====== Need ======") for i in range(process_count): print("process{} : ".format(i), end="") for j in range(instance_count): print(needs[i][j], end=" ") print("") print("\n====== 가능한 Safety sequence 종류 ======") print_safe_sequence(allocations, needs, availables, [])
cb5163b3b2e95e5dd417ab5cc51b4031e4665e7a
BreakZhu/nltk_start
/start05/class5_7.py
1,067
3.671875
4
# -*- coding: utf-8 -*- import nltk # 如何确定一个词的分类 """ 形态学线索 ness 是一个后缀,与形容词结合产生一个名词,如 happy→happiness,ill→illness。因此,如果我们遇到的一个 以-ness 结尾的词,很可能是一个名词。同样的,-ment 是与一些动词结合产生一个名词的后缀,如 govern→government 和 establish→establishment一个动词的现在分词以-ing 结尾,表示正在进行的还没有结束的行动(如:falling,eating) 的意思。-ing 后缀也出现在从动词派生的名词中,如:the falling of the leaves(这被称为动名词)。 句法线索 另一个信息来源是一个词可能出现的典型的上下文语境。例如:假设我们已经确定了名词类。那么我们可以说, 英语形容词的句法标准是它可以立即出现在一个名词前,或紧跟在词 be 或 very 后。根据这些测试,near 应该被归类为形容词: (2) a. the near window b. The end is (very) near """
623f6218b656df8ef6480ea17321355fc2a53e16
TomGardoni/ExamPython
/Eval v3.py
744
3.5
4
from colorama import init init() from colorama import Fore, Back, Style print("Bienvenue dans motus sans ami") essais=4 chances=4 l=6*[0] for i in range(len(l)): l[i]=6*[0] l[0][0]=1 print(l) list = ["castor","cinema","cypres","citron","camion","webcam","ajoute","aligne","bronze","brutal"] motadeviner = list [random.randmint (0,5)] choice(list) = motadeviner = list(motadeviner.lower()) while plusdechances or mottrouve: if len(essaimotlist) != len(motadeviner): print("Vous devez entrer un mot de" , len(motadeviner), "lettres! Réessayez!") if plusdechances: print("Vous avez perdu, le mot etait: ",motadeviner ) if mottrouve: print("Bravo vous avez trouvé le mot avec", essais-chances , "essais !") input()
2296eaff433b8cf81cc7207108640b12ddc39ce3
NishiMaliya/Analyzer
/analyzer.py
1,035
3.5
4
import argparse import requests from lxml import html def parse(link: str) -> str: """Function for extracting path to element""" page = requests.get(link) root = html.fromstring(page.text) tree = root.getroottree() element_path = root.xpath("//div[@id='page-wrapper']//a[contains(@class,'btn-success') " "or contains(@class, 'test-link-ok')]") for element in element_path: return tree.getpath(element) def write_to_file(file_name: str, path: str) -> None: """Function for writing exctracted path to the file""" with open(f'{file_name}.txt', "w") as file: file.write(str(path)) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Parser") parser.add_argument("-l", "--link", help="Input link") parser.add_argument("-o", "--output", help="Output file") args = parser.parse_args() input_link = args.link output_file = args.output result = parse(str(input_link)) write_to_file(output_file, result)
d5eb5285fe5cc8b8fbb666fd9fe536dd8f45ad53
gschen/sctu-ds-2020
/1906101052-曾倩/day0310.py/test01.py
853
3.953125
4
class Student(object): def __init__(self,name,age,score): self.name=name self.age=age self.score=score def personInfo(self): print(("name:%s,age:%s,score:%s")%(self.name, self.age,self.score)) yi=Student("张三",20,'语文:92,数学:90,英语:90') yi.personInfo() class Student(): def __init__(self,name,age,chinese,math,english): self.name=name self.age=age self.chinese=chinese self.math=math self.english=english def get_name(self): print(self.name) def get_age(self): print(self.age) def get_course(self): list1=[] list1.append(self.chinese) list1.append(self.math) list1.append(self.english) print(max(list1)) a=Student("bob",20,'67,56,34') a.get_name() a.get_age() a.get_course()
bdc4696c30161f6f07776d66f87a649fdd4a02f7
C-SON-TC1028-001-2113/listas-tarea5-A01252527
/assignments/17MenoresANumero/src/exercise.py
263
3.671875
4
def main(): a = int(input('')) aa = int(input('')) aaa = a*aa lista=[] i=1 while i<=aaa: i=i+1 aaaa = int(input('')) if aaaa<10: lista.append(aaaa) print(lista) if __name__=='__main__': main()
5d107f5830efc12296b21b86f84b3616dbcd2512
mwhit74/interpreter
/rbi/inte3.py
4,141
3.984375
4
#Token types # #EOF (end-of-file) token is used to indicate that #there is no more input left for lexical analysis INTEGER, PLUS, MINUS, MULTI, DIV, EOF = ('INTEGER', 'PLUS', 'MINUS', 'MULTI', 'DIV', 'EOF') class Token(object): def __init__(self, type, value): #token type: INTEGER, PLUS, MINUS, or EOF self. type = type #token value: non-negative integer value, '+', '-', '*', '/', or None self.value = value def __str__(self): """String representation of class. Examples: Token(INTEGER, 3) Token(PLUS, '+') """ return 'Token({type}, {value})'.format(type=self.type, value=repr(self.value)) def __repr__(self): return self.__str__() class Interpreter(object): def __init__(self, text): #client string input, e.g. 3+5 self.text = text #self.pos is an index into self.text self.pos = 0 self.current_token = None self.current_char = self.text[self.pos] def error(self): raise Exception('Error parsing input') def advance(self): """Advance the 'pos' pointer and set the 'current_char'""" self.pos += 1 if self.pos > len(self.text) - 1: self.current_char = None #EOF else: self.current_char = self.text[self.pos] def skip_whitespace(self): while self.current_char is not None and self.current_char.isspace(): self.advance() def integer(self): result = '' while self.current_char is not None and self.current_char.isdigit(): result += self.current_char self.advance() return int(result) def get_next_token(self): """Lexical analyzer (also known as scanner or tokenizer) This method is reponsible for breaking a sentence apart into tokens. On token at a time. """ while self.current_char is not None: if self.current_char.isspace(): self.skip_whitespace() continue if self.current_char.isdigit(): return Token(INTEGER, self.integer()) if self.current_char == '+': self.advance() return Token(PLUS, '+') if self.current_char == '-': self.advance() return Token(MINUS, '-') if self.current_char == '*': self.advance() return Token(MULTI, '*') if self.current_char == '/': self.advance() return Token(DIV, '/') self.error() return Token(EOF,None) def check_type(self, token_type): #compare the current token type with token_type #and if they match get the next token #essentially type checking for the language if self.current_token.type == token_type: self.current_token = self.get_next_token() else: self.error() def term(self): token = self.current_token self.check_type(INTEGER) return token.value def expr(self): """expr -> INTEGER PLUS INTEGER expr -> INTEGER MINUS INTEGER""" #set current token to first token taken from the input self.current_token = self.get_next_token() result = self.term() while self.current_token.type in (PLUS, MINUS): token = self.current_token if token.type == PLUS: self.check_type(PLUS) result = result + self.term() elif token.type == MINUS: self.check_type(MINUS) result = result - self.term() return result def main(): while True: try: text = raw_input('calc> ') except EOFError: break if not text: continue interpreter = Interpreter(text) result = interpreter.expr() print(result) if __name__ == "__main__": main()
9cfd285e5d2ce31a169e523d1baff1c21db64581
maihan040/Python_Random_Scripts
/courseList.py
1,288
4.25
4
#!/usr/bin/python3 # #module name: courseList.py # #purpose: determine the order of courses that need to be taken based on their prerequisites of them. # The courses, along with their prerequisites will be passed a as a dictionary # #date created: 10/03/2019 # #version: 1.0 # ################################################################# # function definition # ################################################################# def prerequisites(course): #validation check if courses == None: print("No courses were passed") #local variables course_list = [] #iterate through the dicionary until there are no more classes left #based on the prerequisites for i in range(0, len(courses)): print() for k,v in courses.items(): if v == course_list: course_list.append(k) #print the order to take the courses print("Courses should be taken in the following order: " + str(course_list)) ################################################################# # Main # ################################################################# #local variable courses = { 'csc400' : ['csc100', 'csc200', 'csc300'], 'csc300' : ['csc100', 'csc200'], 'csc200' : ['csc100'], 'csc100' : [] } #call function to print the list in order prerequisites(courses)
6f6e6df2f1784aedbacd777244d0e72fc02ec096
LuisGabrielZamora/python_first_steps
/02_functions/01_my_first_function.py
1,766
4.34375
4
# PRACTICE TITLE: Function Definition # DESCRIPTION: Code structure that enable to execute an specific process # NOTATION: def my_first_function(): # NOTES: # 1. All the code that corresponds to the function has to be with tabulation # 2. To execute the function we have to call it with the same "def" tabulation # Definition to my function def my_first_function(): print('Hello from my First Function') # Function which receives arguments def arguments_function(name, year): print('') print(f'My name is: {name} and this year is: {year}') # Returns result def add_arguments(a, b): return a + b # Default arguments with the data type to return def default_minus_arguments(a=100, b=100) -> int: return a - b # Python consider a dynamic parameters that receives like a tuple # IMPORTANT NOTE: For dynamic arguments in a function have to use with * def name_list(*names): for name in names: print(name) def add_all_arguments(*args: int) -> int: total = 0 for arg in args: total = total + arg return total def multiply_all_arguments(*args: int) -> int: total = 1 for arg in args: total = total * arg return total # Call the function my_first_function() # Call the function with parameters arguments_function('Gabriel Zamora', 2030) # Add function print('') print(add_arguments(10, 96)) # Minus function print('') print(default_minus_arguments(120)) print(default_minus_arguments()) # Function with dynamic parameters print('') name_list('Juan', 'Karla', 'Maria', 'Ernesto', 'Javier') # Function with dynamic add parameters print('') print(f'Sum total is: {add_all_arguments(10, 15, 20, 15, 202, 4, 5)}') print(f'Multiply total is: {multiply_all_arguments(10, 15, 20, 15, 202, 4, 5)}')
0f795408aaf68709488def037ec03aa4836df30d
urvib3/ccc-exercises
/herding.py
1,563
3.515625
4
def onespace(x,y,z): if(x+2 == y): return True elif(x+2 == z): return True elif(y+2 == x): return True elif(y+2 == z): return True elif(z+2 == x): return True elif(z+2 == y): return True def maxmoves(nums): nums.sort() firstgap = nums[1] - nums[0] secondgap = nums[2] - nums[1] return max(firstgap, secondgap)-1 def main(): try: filein = open("herding.in", "r") file = open("herding.out", "w") print("files opened") # initialize nums with positions of cows nums = filein.readline().split(' ') nums = [int(i) for i in nums] print("nums: ", nums) # if all positions are consecutive, output min = 0, max = 0 print("case 1: ", nums[0]+1 == nums[1] and nums[1]+1 == nums[2]) print("case 2: ", nums[0]-1 == nums[1] and nums[1]-1 == nums[2]) if((nums[0]+1 == nums[1] and nums[1]+1 == nums[2]) or (nums[0]-1 == nums[1] and nums[1]-1 == nums[2])): file.write("0\n0") return print("first if loop good") # elif 2 positions only have one space set = onespace(nums[0], nums[1], nums[2]) if(set): file.write("1\n") # if the other gap is also 1 space, max = 1 print("second if loop good") else: file.write("2\n") file.write(str(maxmoves(nums))) file.close() except: print("exception") if __name__=="__main__": main()
65492a228dd46eed5bafc725dae2bdb07fb2baaf
nuno-21902803/pw-python
/pw-python-03/exercicio_3/main.py
667
3.6875
4
import os def pede_pasta(): while True: try: nome = input("Introduza o caminho para pasta: ") if os.path.isdir(nome): return os.path.realpath(nome) except IOError: print("Pasta não existente") def calcula_tamanho_pasta(pasta): if os.path.isfile(pasta): return os.path.getsize(pasta) sizes = [calcula_tamanho_pasta(os.path.join(pasta, file)) for file in os.listdir(pasta)] return sum(sizes) def main(): nome = pede_pasta() size = calcula_tamanho_pasta(nome) print(f"Tamanho da pasta: {9.537*0.00000010 * size}MB") if __name__ == "__main__": main()
e32e0355e5083c19e78c6648192bb82e8d3ab6fe
bainco/bainco.github.io
/course-files/tutorials/tutorial05/warmup/b_while_termination_condition.py
511
4.03125
4
import time ''' A few things to note here: 1. A counter is initialized before the while loop begins. 2. The counter is updated each time the code block within the while loop executes. 3. If counter is less than 5, the block executes, otherwise, the while loop terminates. 4. The condition is always checked before each iteration. ''' counter = 0 while counter < 5: print('Hello! How are you doing today?') time.sleep(0.5) counter += 1 print('Program terminated')
e62f2c08aa364a46e29d6bbf702281c4fe70122c
perfect-song/LeetCode
/剑指66/二维数组查找.py
391
3.609375
4
# -*- coding:utf-8 -*- class Solution: # array 二维列表 def Find(self, target, array): m, n = len(array), 0 m -= 1 while (m >= 0 and n < len(array[0])): if array[m][n] == target: return True elif array[m][n] > target: m -= 1 else: n += 1 return False
de2696aff3a6fd645c769228e2aee6db27aa8de2
L200180034/praktikum-ASD
/MODUL 5/No 1.py
1,033
3.5
4
class Mahasiswa(object): def __init__(self,nama,nim,kota,us): self.nama = nama self.nim = nim self.kotaTinggal = kota self.uangSaku = us class MhsTIF (Mahasiswa): def katakanPy(self): print('Python is cool.') listan = [MhsTIF ('Vara',34,'Surakarta', 255000), MhsTIF('Aisyah',42,'Wonosobo', 255000), MhsTIF('Goe',15,'Yogyakarta', 155000), MhsTIF('Septia',26,'Semarang', 175000), MhsTIF('Waku',18,'Lembang', 200000), MhsTIF('Fiita',31,'Magelang', 980000), MhsTIF('Septin',10,'Tegal', 265000), MhsTIF('Iqbal',45,'Kutoarjo', 185000), MhsTIF('Justin',11,'Bekasi', 245000), MhsTIF('Febrian',21,'Depok', 235000), MhsTIF('Rio',18,'Bogor', 195000)] #1 def urutkannim(l): n = len(l) for i in range (n -1) : for k in range (n-i-1) : if l[k].nim > l[k+1].nim : swap(l,k,k+1) def checknim (l): for i in l : print (i.nim) def swap (a, p, q) : tmp = a[p] a[p] = a[q] a[q] = tmp
d570bcea6b0fd5ad4447c90973c2776e5a9eddfe
IriW/rock_paper_scissors_v2
/main.py
980
3.96875
4
import random rock = ''' _______ ---' ____) (_____) (_____) (____) ---.__(___) ''' paper = ''' _______ ---' ____)____ ______) _______) _______) ---.__________) ''' scissors = ''' _______ ---' ____)____ ______) __________) (____) ---.__(___) ''' imgs = [rock, paper, scissors] comp_choice = random.randint(0, 2) usr_choice = int(input("What do you choose? Type 0 for Rock, 1 for Paper or 2 for Scissors.\n")) if usr_choice < 0 or usr_choice >=3: print("You provided wrong value. Bye") elif usr_choice >= 0 or usr_choice <=2: print(f"You chose: {imgs[usr_choice]}\nComputer chose: {imgs[comp_choice]}") choices_matrix = [["It's a draw.", "You lose!", "You win!"],["You win", "It's a draw.", "You lost"],["You lost", "You win", "It's a draw"]] print(choices_matrix[usr_choice][comp_choice]) else: print("How did you even get here?")
baacbb690b743547203ce29e62012c8db4801a14
Keegan-Ross/it-python
/Rock, Paper, Scissors.py
1,471
4.09375
4
import random from banner import banner banner("ROCK, PAPER, SCISSORS", "Keegan Ross") print("We are going to play a game of Rock, Paper, Scissors. The first to win two times out of 3 rounds is the winner.") cpu_score = 0 player_score = 0 while player_score < 2 and cpu_score < 2: print(f"SCORE: Player: {player_score} Computer: {cpu_score}") print("1. Rock") print("2. Paper") print("3. Scissors") players_choice = int(input("What is your choice? ")) cpu_choice = random.randint(1,3) if players_choice == 1: if cpu_choice == 1: print("Tie") if cpu_choice == 2: print("Lose") cpu_score += 1 if cpu_choice == 3: print("Win") player_score += 1 if players_choice == 2: if cpu_choice == 1: print("Win") if cpu_choice == 2: print("Tie") cpu_score += 1 if cpu_choice == 3: print("Lose") player_score += 1 if players_choice == 3: if cpu_choice == 1: print("Lose") if cpu_choice == 2: print("Win") cpu_score += 1 if cpu_choice == 3: print("Tie") player_score += 1 if player_score == 2: print("Congratulations you have defeated the computer! Your robotic overlords tremble in fear!") if cpu_score ==2: print("Sorry for your loss, but the computer reigns superior!")
9d02a0916fd49a09cbf01475d04730514eda231d
sadieh0ugh/12-balls-problem
/balls.py
2,043
3.640625
4
import random balls =[1,1,1,1,1,1,1,1,1,1,1] place = random.randint(0,11) num02 = (random.randint(0,1))*2 balls.insert((place),(num02)) print(balls) ball_label=[["ball 1","normal"],["ball 2","normal"],["ball 3","normal"],["ball 4","normal"],["ball 5","normal"],["ball 6","normal"], ["ball 7","normal"],["ball 8","normal"],["ball 9","normal"],["ball 10","normal"],["ball 11","normal"],["ball 12","normal"]] #passed through fucntion compare1 as n def compare1(n): add1 = balls[0]+balls[1]+balls[2]+balls[3] add2 = balls[4]+balls[5]+balls[6]+balls[7] if add1 == add2: for i in range(8,12): n[i][1] = "different" # more efficient compare2(ball_label) elif add def compare2(n): if balls[8]+balls[9]+balls[10] > balls[0]+balls[1]+balls[2]: n[8][1], n[9][1], n[10][1] = "heavier","heavier","heavier" n[11][1] = "normal" if balls[8] > balls[9]: n[9][1], n[10][1] = "normal","normal" if balls[8] < balls[9]: n[8][1], n[10][1] = "normal","normal" elif balls[8] == balls[9]: n[8][1], n[9][1] = "normal","normal" elif balls[8]+balls[9]+balls[10] < balls[0]+balls[1]+balls[2]: n[8][1], n[9][1], n[10][1] = "lighter","lighter","lighter" n[11][1] = "normal" if balls[8] > balls[9]: n[8][1], n[10][1] = "normal","normal" if balls[8] < balls[9]: n[9][1], n[10][1] = "normal","normal" elif balls[8] == balls[9]: n[8][1], n[9][1] = "normal","normal" elif balls[8]+balls[9]+balls[10] == balls[0]+balls[1]+balls[2]: n[8][1], n[9][1], n[10][1] = "normal","normal","normal" if balls[0] > balls[11]: n[11][1] = "lighter" elif balls[0] < balls[11]: n[11][1] = "heavier" compare1(ball_label) for i in ball_label: if i[1] == "heavier" or i[1] == "lighter": print(i[0],"is",i[1])
dc7ac81da2551298e74f1a073ec101c7963eb28a
super-penguin/Data_Projects
/Test_Perceptual_Phenomenon/stroop.py
5,308
3.53125
4
# -*- coding: utf-8 -*- """ P1: Test a Perceptual Phenomenon Stroop data analysis and visualization in python 04/20/16 """ import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy import stats ########################################################################## ## 1. Read stroop dataset into a dataframe:data. data = pd.read_csv ('stroopdata.csv', sep =',', header = 0) ########################################################################## ## 2. Descriptive statistics and statistical test ## 2.1 Save the descriptive statistics into a dataframe: D_data. D_data = data.describe() D_data.to_csv('Descriptive_stat.csv', sep=',') t, p = stats.ttest_rel(data['Congruent'],data['Incongruent']) print('t-statistic = %6.3f\np-value = %6.4f' % (t,p),sep=',') if p <0.05: print('The null hypothesis is rejected;') print('Conclusion: the average time used to name the colors of incongruent words is significant longer than the congruent words.') else: print('The null hypothesis is not rejected;') print('Conclusion: the average time used to name the colors of incongruent words is the same as the congruent words.') ########################################################################## ## 3. Visualization of the dataset. # These are the "Tableau 10" colors as RGB. (Modified yellow) tableau10 = [(114,158,206), (255,158,74), (103,191,92), (237,102,93), (173,139,201), (168,120,110), (237,151,202), (162,162,162), (255,221,113), (109,204,218)] for i in range(len(tableau10)): r, g, b = tableau10[i] tableau10[i] = (r / 255., g / 255., b / 255.) ########################################################################## ## 3.1. Boxplot ########################################################################## ## combine dataset into a list data_to_plot = [data['Congruent'],data['Incongruent']] ## plot fig1 = plt.figure(1, figsize=(12, 9)) ax1 = fig1.add_subplot(111) bp = ax1.boxplot(data_to_plot) plt.subplots_adjust(left=0.075, right=0.95, top=0.9, bottom=0.25) plt.setp(bp['boxes'], color=tableau10[7]) # Modify the color of box plot bp = ax1.boxplot(data_to_plot, patch_artist=True) bp['boxes'][0].set(facecolor =tableau10[0]) bp['boxes'][1].set(facecolor =tableau10[3]) for whisker in bp['whiskers']: whisker.set(color=tableau10[7], linewidth=2) for cap in bp['caps']: cap.set(color=tableau10[7], linewidth=2) for median in bp['medians']: median.set(color=tableau10[8], linewidth=2) ## add labels ax1.set_xticklabels(['Congruent', 'Incongruent'],fontsize=16) ax1.get_xaxis().tick_bottom() ax1.get_yaxis().tick_left() ax1.spines["top"].set_visible(False) ax1.spines["right"].set_visible(False) ax1.set_ylabel('Time(ms)',fontsize=16) ax1.set_title('Comparison of Congruent & Incongruent',fontsize=22) fig1.savefig('boxplot.png', bbox_inches='tight') ########################################################################## ## 3.2. Histogram ########################################################################## fig2= plt.figure(2,figsize=(12, 9)) bins = np.linspace(0, 40, 21) ## histogram for Congruent ax21 = fig2.add_subplot(2,1,1) ax21.spines["top"].set_visible(False) ax21.spines["right"].set_visible(False) ax21.get_xaxis().tick_bottom() ax21.get_yaxis().tick_left() ax21.hist(data['Congruent'],bins,color=tableau10[0],alpha=0.5) ax21.set_ylabel('Count',fontsize=14) ax21.set_xlabel('Time (ms) to name the colors',fontsize=14) ax21.legend(fontsize=16) ## histogram for Incongruent ax22 = fig2.add_subplot(2,1,2) ax22.spines["top"].set_visible(False) ax22.spines["right"].set_visible(False) ax22.get_xaxis().tick_bottom() ax22.get_yaxis().tick_left() ax22.hist(data['Incongruent'],bins,color=tableau10[3],alpha=0.5) ax22.set_ylabel('Count',fontsize=14) ax22.set_xlabel('Time (ms) to name the colors',fontsize=14) ax22.legend(fontsize=16) # Save the figure fig2.savefig('histogram.png', bbox_inches='tight') ########################################################################## ## 3.3. Bar figure ########################################################################## mu_Congruent, sig_Congruent = np.mean(data['Congruent']), np.std(data['Congruent']) mu_Incongruent, sig_Incongruent = np.mean(data['Incongruent']), np.std(data['Incongruent']) width = 0.2 fig3 = plt.figure(3,figsize=(12, 9)) ax3 = fig3.add_subplot(111) bar1 = ax3.bar(0.2, mu_Congruent, width, color =tableau10[0],alpha=0.5) err_bar1 = ax3.errorbar(0.3, mu_Congruent,yerr= sig_Congruent,capsize =20, markeredgewidth =2, elinewidth =2, ecolor=tableau10[7]) bar2 = ax3.bar(0.6, mu_Incongruent, width, color =tableau10[3], alpha=0.5) err_bar2 = ax3.errorbar(0.7,mu_Incongruent, yerr=sig_Incongruent,capsize =20,markeredgewidth =2, elinewidth =2, ecolor=tableau10[7] ) ax3.set_ylabel('Time(ms)',fontsize=16) ax3.set_xlabel('Conditions',fontsize=16) ax3.set_title('Comparison of Congruent & Incongruent',fontsize=22) ax3.set_xlim([0,1]) ax3.spines["top"].set_visible(False) ax3.spines["right"].set_visible(False) plt.setp(ax3.get_xticklabels(), visible=False) ax3.get_xaxis().tick_bottom() ax3.get_yaxis().tick_left() ax3.legend((bar1[0], bar2[0]), ('Congruent', 'Incongruent'),bbox_to_anchor=(1, 0.9), loc=2, borderaxespad=0.,fontsize=16) fig3.savefig('bar_graph.png', bbox_inches='tight')
13e77f023c93620347735b3d00537b911f7cf1e5
kns94/algorithms_practice
/powerofthree.py
613
3.625
4
import sys class Solution(object): def isPowerOfThree(self, n): """ :type n: int :rtype: bool """ if n == 0: return False if n == 1: return True if n < 0: return False if (math.log10(n)/math.log10(3)).is_integer(): return True return False #largest = pow(3,20) #if largest % n == 0: # return True #return False if __name__ == "__main__": print Solution().isPowerOfThree(int(sys.argv[1]))
b57bab273d091434ed43a76c04a3a8c3fcbedb62
boknowswiki/mytraning
/lintcode/python/0085_insert_node_in_a_binary_search_tree.py
1,722
4.40625
4
#!/usr/bin/python -t # iteration way """ Definition of TreeNode: class TreeNode: def __init__(self, val): self.val = val self.left, self.right = None, None """ class Solution: """ @param: root: The root of the binary search tree. @param: node: insert this node into the binary search tree @return: The root of the new binary search tree. """ def insertNode(self, root, node): # write your code here if root == None: return node cur = root while cur != node: if cur.val < node.val: if cur.right == None: cur.right = node cur = cur.right else: if cur.left == None: cur.left = node cur = cur.left return root # dfs, traversal way """ Definition of TreeNode: class TreeNode: def __init__(self, val): self.val = val self.left, self.right = None, None """ class Solution: """ @param: root: The root of the binary search tree. @param: node: insert this node into the binary search tree @return: The root of the new binary search tree. """ def insertNode(self, root, node): # write your code here if root == None: return node if node.val < root.val: if root.left: self.insertNode(root.left, node) else: root.left = node else: if root.right: self.insertNode(root.right, node) else: root.right = node return root
0496105f3d578bf727c4e1ebc01d6f94fadd73e8
jmvazquezl/programacion
/Prácticas Phyton/P5/P5E11 - PROGRAMA QUE PIDA UN NÚMERO E IMPRIMA SUS DIVISORES.py
249
3.828125
4
# JOSE MANUEL - P5E11 - PROGRAMA QUE PIDA UN NÚMERO E IMPRIMA SUS DIVISORES num = int(input('Dame un número: ')) print('Los divisores de', num, 'son', end=': ') for i in range(num): i = i + 1 if (num % i == 0): print(i, '', end='')
533b524df2134a52a702cfa92c58a8825505ca74
dubian98/Cursos-Python
/100 ejercicios/ejercicio10.py
195
3.65625
4
def sum_pos_divisor(num): sum=0 for i in range(1,num): if num%i == 0: sum+=i if sum==num: n=True else: n=False return n sum_pos_sivisor(28)
b67c2c6499f38c88511594c1c7aae8d813ea84b8
ansoncoding/CTCI
/Python/01_Strings_Arrays/IsPermutation.py
1,427
4
4
#1.2 is one string a permutation of another string? def is_permutation(str1, str2): if len(str1) != len(str2): return False counts = {} for i in range(0, len(str1)): if str1[i] not in counts: counts[str1[i]] = 1 #print(counts) else: counts[str1[i]] = counts[str1[i]] + 1 #print(counts) for i in range(0, len(str1)): if ((str2[i] not in counts) or (counts[str2[i]] <= 0)): #print(counts) return False else: counts[str2[i]] = counts[str2[i]] - 1 #print(counts) return True # use sorting to save space def is_permutation_2(str1, str2): if len(str1) != len(str2): return False str1_sorted = sorted(str1) str2_sorted = sorted(str2) for i in range(0, len(str1)): if (str1_sorted[i] != str2_sorted[i]): return False return True # instead of dictionary use list # this will save some space # assume ascii charset of 128 def is_permutation_3(str1, str2): if len(str1) != len(str2): return False counts = [0]*128 for i in range(0, len(str1)): index = ord(str1[i]) #print(index) counts[index] += 1 for i in range(0, len(str2)): index = ord(str2[i]) #print(index) counts[index] -= 1 if counts[index] < 0: return False return True
789ae00a7540e9d1894b966d11a0f1e0e4065f41
rAndrewNichol/random
/Python/hackerrank/stats2.py
639
3.515625
4
# Weighted Mean N = int(input()) values = input().split() weights = input().split() weighted_values = [] for i in range(N): values[i] = int(values[i]) weights[i] = int(weights[i]) weighted_values.append(values[i]*weights[i]) weighted_mean = round(sum(weighted_values)/sum(weights),1) print(weighted_mean) # Input shortcut(works in executable and not in console) # X = list(map(int, input().split())) # short method: n = int(input()) nums = [int(x) for x in input().split()] weight = [int(x) for x in input().split()] print (round(float(sum([nums[i]*weight[i] for i in range(n)]))/sum(weight), 1))
cfd7b1f6ec51e586c0e58bcd37c2361b8ab95379
FarzamHejaziK/DyLoc
/KNNCNN/Indoor/MakeADPgrid.py
5,281
3.578125
4
import numpy as np # Define x and y grid size. Must match xnum and ynum in "Train.py" xnum = 18 ynum = 55 # Function calculates class of each ADP based on the loc data # Inputs: raw validation data (ADP, location), and size of (x,y) grid # t - handles name of location dataset. Can be removed if name of location column is known # Outputs: (ADP, class) pairs and new location based on classes (similar to get_data in tarin.py) def get_valid_data(data,xnum,ynum,t): # Calculate total number of classes num_classes = xnum*ynum adp = data['ADP'] print('adp shape ',adp.shape) # Get ADP and (x,y) location from dataset M = np.reshape(adp,(-1,32,32)) if t ==0 : loc = data['Location'] elif t ==1: loc = data['Loc'] x = loc[:,0] y = loc[:,1] # Create placeholders for class (grid) and new (X,Y) coordiantes which are at the center of each grid. # Example: If the user is in the mth segment in x-direaction and nth segment in y-direction, the new coordinates are (m,n) and the sample belongs to class c = m*n. cnew = np.zeros((len(loc),num_classes)) c = np.zeros(len(loc)) xnew = np.zeros(len(x)) ynew = np.zeros(len(y)) # Calculate step size based on the grid xmax = max(x) xmin = min(x) xstep = (xmax-xmin)/xnum ymax = max(y) ymin = min(y) ystep = (ymax-ymin)/ynum # Convert x coordinate to grid segment in x for i in range(len(x)): for j in range(1,xnum+1): low = xmin + (j-1)*xstep high = xmin + j * xstep if(x[i]>=low and x[i]<high): xnew[i] = j if(x[i] == xmax): xnew[i] = xnum if (xnew[i] == 0): print(x[i]) print(xmax) print(xmin) sys.exit() # Convert y coordinate to grid segment in y for i in range(len(y)): for j in range(1,ynum+1): low = ymin + (j-1)*ystep high = ymin + (j*ystep) if(y[i]>=low and y[i]<high): ynew[i] = j if(y[i] == ymax): ynew[i] = ynum if (ynew[i] == 0): print(y[i]) print(ymax) print(ymin) sys.exit() # Assign classes to dataset based on grid starting with grid (1,1) assigned to class c=1 # and grid (m,n) assigned to class c = m*n. for i in range(len(loc)): c[i] = (xnew[i]-1)+xnum*(ynew[i]-1) c = np.reshape(c,(len(c),1)) # M - ADP # c - class # new location (x,y) based on grid return loc,c, M # For any grid, collect and group all ADP samples from the training set that belong to that grid # This means that by calling this function for for each grid there will be a collection of ADPs that belong to that grid. # This collection will later be used for KNN alogirthm to search within. # Input: # subclass - that class for which you want to collect all the ADPs. If you want all the ADPs in the training data beloning to class m, then subclass = m. # M - All ADPs in the training data # c - total number of class # (x,y)- loc from training data for all ADPs # Outputs: # Mnew - All ADPs beloning to the selected subclass m # c1 - class m # (xlocnew,ylocnew) - new (x,y) location coordinates based on the grid def get_sub(subclass,M,c,x,y): xnum = 18 ynum = 55 n = 0 for i in range(len(c)): if (c[i]==subclass): n+=1 M = np.reshape(M,[-1,64,64]) Mnew = np.zeros([n,64,64]) xlocnew = np.zeros(n) ylocnew = np.zeros(n) j=0 # Search for all (ADP, loc) beloning to the subclass for i in range((len(c))): if (c[i]==subclass): Mnew[j,:,:]=M[i,:,:] xlocnew[j] = x[i] ylocnew[j] = y[i] j+=1 c1 = np.zeros(n) xnew = np.zeros(n) ynew = np.zeros(n) xmax = max(xlocnew) xmin = min(xlocnew) xstep = (xmax-xmin)/xnum ymax = max(ylocnew) ymin = min(ylocnew) ystep = (ymax-ymin)/ynum # Compute new x and y location based on the grid for i in range(n): for j in range(1,xnum+1): low = xmin + (j-1)*xstep high = xmin + j * xstep if(xlocnew[i]>=low and x[i]<high): xnew[i] = j if(xlocnew[i] == xmax): xnew[i] =xnum for i in range(n): for j in range(1,ynum+1): low = ymin + (j-1)*ystep high = ymin + (j*ystep) if(ylocnew[i]>=low and ylocnew[i]<high): ynew[i] = j if(y[i] == ymax): ynew[i] = ynum #Compute class based on grid for i in range(len(c1)): c1[i] = (xnew[i]-1)+xnum*(ynew[i]-1) c1 = np.reshape(c1,(n,1)) # Mnew -ADP # c1- class #xlocnew and ylocnew are x and y coordinates return Mnew, c1,xlocnew,ylocnew # Loads Train Dataset data_path1 ='Data/TrainDCNNI1.npz' data1 = np.load(data_path1) # Takes the dataset and grid size as input and outputs ADP, class, and location (x,y) loc_t, c_t, ADP_t= get_valid_data(data1,xnum,ynum,1) num_classes = xnum*ynum x_loc = loc_t[:,0] y_loc = loc_t[:,1] for sub in range(num_classes): # For every class on the grid it creates a dataset of (ADP, class, location) train_ADP, train_c, xtrain, ytrain = get_sub(sub,ADP_t,c_t,x_loc,y_loc) np.save('ADP/ADP'+str(sub),train_ADP) np.save('ADP/class'+str(sub),train_c) np.save('ADP/xtrain'+str(sub),xtrain) np.save('ADP/ytrain'+str(sub),ytrain)
692073825a339d2aa4b412bd4a18c61a873919b6
dannyhollman/holbertonschool-higher_level_programming
/0x0C-python-almost_a_circle/tests/test_models/test_rectangle.py
3,157
3.5
4
#!/usr/bin/python3 """unittest for Rectangle""" import unittest import pep8 from models.rectangle import Rectangle class TestRectangle(unittest.TestCase): """class to test Rectangle""" def test_pep8(self): """tests PEP8 format""" pep8style = pep8.StyleGuide(quiet=True) result = pep8style.check_files(['models/rectangle.py']) self.assertEqual(result.total_errors, 0, "Found code style errors (and warnings).") def test_rec(self): """test rectangle class""" test = Rectangle(10, 2) self.assertEqual(test.width, 10) self.assertEqual(test.height, 2) def test_rec_id(self): """test rectangle id""" test = Rectangle(10, 2, 1, 1, 10) self.assertEqual(test.id, 10) def test_rec_area(self): """test rectangle area""" test = Rectangle(10, 2) self.assertEqual(test.area(), 20) def test_rec_set_width(self): """test setting width""" test = Rectangle(10, 2) test.width = 5 self.assertEqual(test.width, 5) def test_rec_set_height(self): """test setting height""" test = Rectangle(10, 2) test.height = 5 self.assertEqual(test.height, 5) def test_rec_set_x(self): """test setting x""" test = Rectangle(10, 2) test.x = 5 self.assertEqual(test.x, 5) def test_rec_set_y(self): """test setting y""" test = Rectangle(10, 2) test.y = 5 self.assertEqual(test.y, 5) def test_rec_width_type(self): """test width with wrong type""" test = Rectangle(10, 2) with self.assertRaises(TypeError): test.width = "10" def test_rec_height_type(self): """test height with wrong type""" test = Rectangle(10, 2) with self.assertRaises(TypeError): test.width = "2" def test_rec_x_type(self): """test x with wrong type""" test = Rectangle(10, 2) with self.assertRaises(TypeError): test.x = "10" def test_rec_y_type(self): """test y with wrong type""" test = Rectangle(10, 2) with self.assertRaises(TypeError): test.y = "10" def test_rec_width_value(self): """test width with wrong value""" test = Rectangle(10, 2) with self.assertRaises(ValueError): test.width = 0 def test_rec_height_value(self): """test height with wrong value""" test = Rectangle(10, 2) with self.assertRaises(ValueError): test.height = 0 def test_rec_x_value(self): """test x with wrong value""" test = Rectangle(10, 2) with self.assertRaises(ValueError): test.x = -1 def test_rec_y_value(self): """test y with wrong value""" test = Rectangle(10, 2) with self.assertRaises(ValueError): test.y = -1 def test_rec_to_dic(self): """test to_dictionary function""" test = Rectangle(10, 2, 1, 1, 1) self.assertEqual(test.to_dictionary(), {'width': 10, 'height': 2, 'x': 1, 'y': 1, 'id': 1})
507ca68d0a97543a429dc3d53116a52d79d7ad24
sindhu819/Array-2
/Problem-31.py
731
4.09375
4
# Finding minimum and maximum element in an array # time complexity =O(N) #space complexity =O(1) # Approach : we compare two elements in an array then find the max and min element between and simultaneously update the max and min values. def min_max(nums): min_num=nums[0] max_num=nums[0] n=len(nums) for i in range(0,n,2): if i==n-1: max_num=max(max_num,nums[i]) min_num=min(min_num,nums[i]) else: if nums[i]>nums[i+1]: max_num=max(max_num,nums[i]) min_num=min(min_num,nums[i+1]) else: max_num=max(max_num,nums[i+1]) min_num=min(min_num,nums[i]) return ( [min_num,max_num])
728d75b7e5c2e70da464a8c8d5645a5fd77dd319
ndjenkins85/Code
/Frisbee Golf/Hole.py
1,140
3.5
4
from Utilities import show_pic from Wind import * class Hole: def __init__(self): self.zones = [] self.starting_position = (0.0, 0.0) self.goal_position = (0.0, 0.0) self.goal_zone = [] self.name = "" self.number = 0 self.par = 0 self.wind = Wind() def is_in_goal(self, the_frisbee_coordinate): for zone in self.goal_zone: if zone.has_coord(the_frisbee_coordinate): return True return False def get_current_zone(self, the_frisbee_coordinate): for zone in self.zones: if zone.has_coord(the_frisbee_coordinate): return zone return None # gives tour of the hole, says wind, player says something def tour(self): print("Next hole is hole number " + str(self.number) + ", " + self.name + ". It is par " + str(self.par) + ".") raw_input("Press enter to see a tour of the hole: ") for zone in self.zones: show_pic(zone.picture) # time.sleep(0.6) show_pic(self.zones[0].picture) print(self.wind.to_string())
aae67bc984f347a23394cba0dd74c8dd272c57c0
yukijuki/Statistics
/test.py
95
3.609375
4
arr = [2,4,6,7,8] sum = 0 i = 0 while(i < 5): sum = sum + arr[i] i = i+1 print(sum)
0c793c93c551048e0fbd38abbed63122d8958c8a
Jribbit/GenCyber-2016
/hex64.py
1,269
3.953125
4
# -*- coding: utf-8 -*- """ Created on Thu Jul 21 09:08:22 2016 Cryptopals Set 1 Challenge 1 This program converts a hexadecimal string into base64. """ # -*- coding: utf-8 -*- """ Created on Tue Jul 19 12:54:08 2016 @author: student """ def hex64(string): """ Converts hex string to binary string """ num = str(bin(int(string, 16))) num = num.replace("b", "") # print(num) """ Makes string evenly divisible by 6 """ while not((len(num) - 2) % 6 == 0): num = num + "0" for x in range(0, len(num) - 2, 6): """ Each new character in string will be made up of 3 bits """ index = num[x:x+6] # print(index, end = " ") """ Converts binary strings to decimal number""" index = int(index, 2) # print(index, end = " ") """ Decides what character the integer will be """ if index <= 25: index = chr(index + 65) elif index <= 52: index = chr(index + 71) elif index <= 61: index = str(index - 52) elif index == 62: index = "+" else: index = "/" print(index, end = "") #hex64("49276d206b696c6c696e6720796f757220627261696e206c696b65206120706f69736f6e6f7573206d757368726f6f6d")
a5e9f3cb25c2bcc948f24db3ae277676d2170d40
RaduMatees/Python
/Algorithms/ghicire.py
414
3.796875
4
"""Ghicirea unui numar generat aleator intre 1 si 1000""" from random import randint numar = randint(1,1000) ghici = int(input("Introduceti un numar intreg ")) contor = 1 while ghici != numar: if ghici > numar: print("Numarul tau este mai mare ") else: print("Numarul tau este mai mic ") ghici = int(input("Introduceti alt numar ")) contor += 1 print ("Ati ghicit numarul din ",contor, "incercari")
f7e17cda5e487615c7ab9c88a5e2796feb8f0d5d
itsolutionscorp/AutoStyle-Clustering
/all_data/exercism_data/python/sum-of-multiples/4b069fd846384561ad59a168d2253577.py
219
3.734375
4
def sum_of_multiples(value, bases = None): if bases is None: bases = [3, 5] while 0 in bases: bases.remove(0) return sum(set([i * b for b in bases for i in range(1, round(value / b) + 1) if i * b < value]))
41a869c8e930a3cf526a9760ca2197619b948f01
Monisha1892/Practice_Problems
/car game.py
2,381
4.34375
4
print("""Welcome to the car game. Type commands to start and stop the car. List of commands will be available when you type help. Enjoy the game.""") command = input(">") while command != 'quit': if command == 'help': print("""start - to start the car stop - to stop the car quit - to exit""") command = input(">") elif command == 'start': print("car started.....ready to go") command = input(">") elif command == 'stop': print("car stopped") command = input(">") else: print("i dont understand that.....") command = input(">") else: print("game ended. thanks for playing") # print("""Welcome to the car game. # Type commands to start and stop the car. # List of commands will be available when you type help. # Enjoy the game.""") # # def game_function(command): # while command != 'quit': # if command == 'help': # print("""start - to start the car # stop - to stop the car # quit - to exit""") # command = input(">") # game_function(command) # elif command == 'start': # print("car started.....ready to go") # command = input(">") # game_function(command) # elif command == 'stop': # print("car stopped") # command = input(">") # game_function(command) # else: # print("game ended. thanks for playing") # # command = input(">") # game_function(command) # print("""Welcome to the car game. # Type commands to start and stop the car. # List of commands will be available when you type help. # Enjoy the game.""") # # def game_function(command): # while command != 'quit': # if command == 'help': # print("""start - to start the car # stop - to stop the car # quit - to exit""") # command = input(">") # elif command == 'start': # print("car started.....ready to go") # command = input(">") # elif command == 'stop': # print("car stopped") # command = input(">") # else: # print("i dont understand that....") # command = input(">") # else: # print("game ended. thanks for playing") # # command = input(">") # game_function(command)
8a883ac2bafa871568cba967278310730742b04e
OliverMD/TPOP
/theory/hw1.py
898
3.5625
4
def gcd(a,b): #gdc(int,int) -> int #Recursive implementation of GCD if a > b: c = a a = b b = c def internal(a,b): if a % b == 0: return b return internal(b,a%b) return internal(a,b) def altGcd(a,b): #altGcd(int,int) -> int #A more literal interpretation of #the algorithm in the work sheet. while True: r = a % b if r == 0: return b a = b b = r def divide(a,b): #divide(int,int) -> (quotient int, remainder int) #Divides a by b and returns quotient and remainder. #performed 200,000 divisions of 60034 by 234 in 2.947s #compared with 0.014s for the normal python divide. #Tested using cProfile from command line. q = 0 while a - b >= 0: a = a - b q += 1 return q, a for i in range(0,200000): 60034/234
3fcdc9d71501c9d51166795ac3227d4ce3dd737e
jeremiedecock/snippets
/python/opencv/opencv_2/drawing_functions/drawing_functions.py
2,737
3.96875
4
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2015 Jérémie DECOCK (http://www.jdhp.org) """ OpenCV - Drawing functions: draw lines, circles, rectangles, ellipses and text Required: opencv library (Debian: aptitude install python-opencv) See: https://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_gui/py_drawing_functions/py_drawing_functions.html """ from __future__ import print_function import cv2 as cv import numpy as np def main(): # Common arguments: # - points : (0,0) is at the top left # - color : use a tuple for BGR, eg: (255,0,0) for blue. For grayscale, just pass the scalar value. # - thickness : thickness of the line. If -1 is passed for closed figures like circles, it will fill the shape. # - lineType : type of line, whether 8-connected, anti-aliased line etc. By default, it is 8-connected. cv2.LINE_AA gives anti-aliased line which looks great for curves. # CREATE A BLACK IMAGE img_np = np.zeros((512, 512, 3), np.uint8) # DRAW A LINE point_1 = (0, 0) point_2 = (256, 256) color = (0, 0, 255) thickness = 3 cv.line(img_np, point_1, point_2, color, thickness) # DRAW A RECTANGLE point_1 = (300, 100) point_2 = (400, 400) color = (255, 0, 0) thickness = -1 cv.rectangle(img_np, point_1, point_2, color, thickness) # DRAW A CIRCLE center_point = (100, 300) radius = 64 color = (0, 255, 0) thickness = 2 cv.circle(img_np, center_point, radius, color, thickness) line_type = cv.CV_AA # Anti-Aliased cv.circle(img_np, center_point, radius + 20, color, thickness, line_type) # DRAW A ELLIPSE center_point = (200, 400) axes_length = (100, 50) angle = 45 # the angle of rotation of ellipse in anti-clockwise direction start_angle = 0 end_angle = 180 color = (255, 255, 0) thickness = 3 line_type = cv.CV_AA # Anti-Aliased cv.ellipse(img_np, center_point, axes_length, angle, start_angle, end_angle, color, thickness, line_type) # DRAW A POLYGON pts = np.array([[32,87], [124,81], [75,43], [60,11]], np.int32) pts = pts.reshape((-1,1,2)) is_closed = True color = (255, 0, 255) thickness = 3 line_type = cv.CV_AA # Anti-Aliased cv.polylines(img_np, [pts], is_closed, color, thickness, line_type) # ADD TEXT text = "Hello!" start_point = (150, 500) font = cv.FONT_HERSHEY_SIMPLEX font_scale = 4 color = (255, 0, 255) thickness = 3 line_type = cv.CV_AA # Anti-Aliased cv.putText(img_np, text, start_point, font, font_scale, color, thickness, line_type) # SAVE THE IMAGE cv.imwrite("drawing_functions.png", img_np) if __name__ == '__main__': main()
71b18e371270cdc1b998b86dad6146f71f942194
randiaz95/nysom
/utils.py
911
3.6875
4
import os def create_directory(root, folder): if folder is str: path = os.path.join(root, folder) if not os.path.exists(path): os.mkdir(path) return path elif folder is list: path = os.path.join(root, *folder) if not os.path.exists(path): os.mkdir(path) return path else: return "Error while creating directory; folder argument is not string or list of strings." class Conceptor: def __init__(self, name): self.name = name self.columns = [] def addColumn(name, type, primary_key=False): self.columns.append({"name": name, "type": type, "primary_key": primary_key}) def createController(): pass def createModel(): pass def createComponent(): pass
359e01605ec43e181ec70e4389a79192696a4b19
Researching-Algorithms-For-Us/4.Implementation
/source/python/시각.py
535
3.890625
4
#source code ''' 21:08~21:17 정수 N입력 00:00:00 ~ N:59:59초 3이하나라도 포함되는 모든 경우의수를 작성하시오 ''' def set_input(): clock = int(input()) #roads.append(0) return clock def main(): clock = set_input() count = 0 for hour in range(clock+1): for minute in range(60): for second in range(60): time = f'{hour}:{minute}:{second}' if '3' in time: count += 1 if __name__ == '__main__': main()
108c4caded59a4d9b5be66f627dd9f07cdb4cdeb
sikendershahid91/SoftwareDesign
/assign3/src/fibonacci_iterative.py
259
3.875
4
from functools import reduce def fibonacci_iterative(number): if number < 0: raise ValueError("Negative number!") return reduce( lambda previous, index: [previous[1], sum(previous)], range(number + 1), [1, 0]) [1]
c54de7736befcbf4569c8a1758b452a1ba3001de
croot95/BMGT404_FInal
/analyze_cuisines.py
1,927
3.96875
4
#!/usr/bin/python import pandas as pd #create dataframe column names col_names = ['Cuisine' , 'Avg Sentiment','Avg Rating','Restaraunts','Ratings'] #choose the file with the data file_path = "/Users/christopherroot 1/Desktop/cuisines.csv" df = pd.read_csv(file_path, header = None, names = col_names) #find mean and sdev for each metric analyze_these = ['Avg Sentiment','Avg Rating','Restaraunts','Ratings'] for i in analyze_these: avg = df[i].mean() sdev = df[i].std() print i, " Avg: ", avg, " Sdev: ", sdev avg_rating = df["Ratings"].mean() sdev_rating = df["Ratings"].std() avg_sent = df["Avg Sentiment"].mean() sdev_sent = df["Avg Sentiment"].std() top_rating = [] top_sent = [] #find cuisines with above avg rating print "Here are all the cuisines with above average rating" for index, row in df.iterrows(): if row["Ratings"] >= avg_rating: top_rating.append(row["Cuisine"]) print row["Cuisine"] #find cuisines in top 33% print "Here are all the cuisines with ratings greater than 1 sdev + mean:" top_33 = avg_rating + sdev_rating for index, row in df.iterrows(): if row["Ratings"] >= top_33: print row["Cuisine"] #find cuisines with above avg sentiment print "Here are all the cuisines with above average sentiment" for index, row in df.iterrows(): if row["Avg Sentiment"] >= avg_sent: top_sent.append(row["Cuisine"]) print row["Cuisine"] #find cuisines in top 33% print "Here are all the cuisines with sentiments greater than 1 sdev + mean:" top_33_sent = avg_sent + sdev_sent for index, row in df.iterrows(): if row["Avg Sentiment"] >= top_33_sent: print row["Cuisine"] #print a list of cuisines that are in top 50% of both avg rating and avg sent in_both = [] for rest in top_sent: if rest not in in_both: in_both.append(rest) list_len = len(in_both) print "Here is a list of " , list_len , " restaurants that are in both the top 50% of rating and sentiment: " print in_both
d0b45a622ed42d3074ae0e469e165bf603d01721
brityboy/python-workshop
/day2/src/substring.py
1,078
4.125
4
from collections import defaultdict def substring_old(words, substrings): ''' INPUT: list, list OUTPUT: list Given two lists of strings, return the list of strings from the second list that are a substring of a string in the first list. The strings in the substrings list are all 3 characters long. ''' result = [] for word in words: for substring in substrings: if word.find(substring) != -1: result.append(substring) return result def substring_new(words, substrings): ''' INPUT: list, list OUTPUT: list Given two lists of strings, return the list of strings from the second list that are a substring of a string in the first list. The strings in the substrings list are all 3 characters long. ''' # in the old method, i was going through the substring list 5 times dict = defaultdict(str) for word in words: for substring in substrings: if word.find(substring) != -1: dict[word]=substring return dict.values()
7739a1d442d28c210c44b22fb841f25ab9d31efc
dehvCurtis/NSA_Py3_COMP3321
/Lesson_02/lesson02_sec4_ex2.py
164
3.65625
4
def all_the_snacks(snack, spacer): print((snack + spacer) * num) num = 42 spacer = '! ' my_snack = input('Pick a snack > ') all_the_snacks(my_snack, spacer)
5c19ce06f65e92b4c5642e75fbe2581b29e99423
geeks121/TriangularArbitrage-1
/Events.py
488
3.5625
4
from abc import ABCMeta, abstractmethod from threading import Timer, Thread import time import queue class HelloEvent(Thread): def __init__(self, string_arg): self.string_arg = string_arg Thread.__init__(self) def run(self): print('hello world!') time.sleep(3) print(self.string_arg) class AnotherEvent(Thread): def __init__(self): Thread.__init__(self) def run(self): print('THIS IS A DIFFERENT KIND OF EVENT!')
2ab80870c38bee607444dfafe88ff926fe192ede
tejapenugonda/pythonIcp2
/Source/FIRST.py
257
3.875
4
n = int(input("How many numbers do you have? ")) s = 0 obs = list(map(int, input().split())) if len(obs) != n: print("Did not enter "+str(n)+" values") else: for i in range(0,len(obs)): s = s+obs[i] avg = s / float(n) print (avg)
b73de30be801bfc88bad65a118ebf93ba4cd1e11
MrAaaah/fractals_basics
/sierpinski_triangle.py
1,549
3.5
4
# -*- coding: utf-8 -*- # noinspection PyPackageRequirements from PIL import Image, ImageDraw from datetime import datetime # each vertices is represented by a tupple (x, y) # define some params WIDTH = HEIGHT = 800 ITERATIONS = 7 # vertices of the sierpinski triangle A = (400, 68) B = (10, 760) C = (790, 760) BACKGROUND_COLOR = '#020104' TRIANGLE_COLOR = '#A4B1F2' # return the coordinates of the middle of the segment [ab] def middle_of_segment(a, b): return (a[0] + b[0]) / 2, (a[1] + b[1]) / 2 # draw a triangle abc def draw_triangle(a, b, c, color): canvas.polygon([a, b, c], fill=color) # Main function who calculate the sierpinski triangle # a, b and c are the vertices of the triangle # n is the number of remaining iterations def generate_triangle(a, b, c, n): if n > 1: # calculate the middle of each segments p1 = middle_of_segment(a, b) p2 = middle_of_segment(a, c) p3 = middle_of_segment(b, c) # repeat the process for each subtriangle generate_triangle(a, p1, p2, n - 1) generate_triangle(b, p1, p3, n - 1) generate_triangle(c, p2, p3, n - 1) else: draw_triangle(a, b, c, TRIANGLE_COLOR) if __name__ == "__main__": # init the canvas img = Image.new("RGB", (WIDTH, HEIGHT), BACKGROUND_COLOR) canvas = ImageDraw.Draw(img) generate_triangle(A, B, C, ITERATIONS) # save the fractal now = datetime.now() filename = now.strftime("%Y-%m-%d-%H:%M:%S") + '_sierpinski_triangle.png' img.save(filename, "PNG")
c447c31b37e3085dc5d9a0c6243aa37a0706ffc0
siyam04/python_problems_solutions
/Siyam Solved/Problem Set -1/Solutions - 1/8.py
132
3.78125
4
print("Enter 1st String:") a = str(input()) print("Enter 2nd String:") b = str(input()) print("the two strings are", a, 'and', b)
33033fee63afe069bddc05b9f0f09a082fb3722a
ClaraKim2002/cs110-connect-four
/connect_four.py
3,045
3.78125
4
import pygame import sys import ai class Board(): def __init__(self): self.spots = [None]*7 for col in xrange(0, 7): self.spots[col] = [None]*6 def get_spot_status(self, col, row): return self.spots[col][row] def add_piece(self, col, player): """ Add a piece to the correct row in the column. If there are no spaces left in the column return False. If the piece is added return True """ pass def get_game_result(self): """ If there is currently a winner, return "R" or "B" depending on who won the game. Otherwise return None """ pass def draw_board(b): screen.fill((0, 0, 0)) pygame.draw.rect(screen, (255, 255, 0), (50, 50, 700, 600), 0) for row in xrange(0, 6): for col in xrange(0, 7): x = (col * 100) + 100 y = 700 - ((row * 100) + 100) if b.get_spot_status(col, row) == "R": pygame.draw.circle(screen, (255, 0, 0), (x, y), 50) elif b.get_spot_status(col, row) == "B": pygame.draw.circle(screen, (0, 0, 0), (x, y), 50) else: pygame.draw.circle(screen, (255, 255, 255), (x, y), 50) if __name__ == '__main__': screen = pygame.display.set_mode((800, 700)) board = Board() move = "R" while True: change_move = False for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() elif event.type == pygame.KEYDOWN: if move == "R": valid = False if event.key == pygame.K_1: valid = board.add_piece(0, "R") elif event.key == pygame.K_2: valid = board.add_piece(1, "R") elif event.key == pygame.K_3: valid = board.add_piece(2, "R") elif event.key == pygame.K_4: valid = board.add_piece(3, "R") elif event.key == pygame.K_5: valid = board.add_piece(4, "R") elif event.key == pygame.K_6: valid = board.add_piece(5, "R") elif event.key == pygame.K_7: valid = board.add_piece(6, "R") if valid: change_move = True if move == "B": valid = False ai_col = ai.choose_move(board, "B") valid = board.add_piece(ai_col, "B") if valid: change_move = True if change_move: if move == "B": move = "R" elif move == "R": move = "B" if board.get_game_result() == "R": exit("Red Wins!") elif board.get_game_result() == "B": exit("Black Wins!") draw_board(board) pygame.display.flip()
f83e3c398374ff243c036ea0b0cef5e5104cbc67
supriyashahane/TIC-TAC-TOE-game
/tic-tac-toe.py
21,826
3.671875
4
import os import random #os.system("clear") class Board(): def __init__(self): self.blocks = [" ", " ", " ", " ", " ", " ", " ", " ", " "] def display(self): print("\t\t\t\t ===============") print ("\t\t\t\t || %s | %s | %s ||" %(self.blocks[0], self.blocks[1], self.blocks[2])) print("\t\t\t\t ===============") print ("\t\t\t\t || %s | %s | %s ||" %(self.blocks[3], self.blocks[4], self.blocks[5])) print("\t\t\t\t ===============") print ("\t\t\t\t || %s | %s | %s ||" %(self.blocks[6], self.blocks[7], self.blocks[8])) print("\t\t\t\t ===============") def update_blocks(self, x_player, player): try: if self.blocks[x_player] == " ": self.blocks[x_player] = player elif player == "X": x_player = int(raw_input("\nblock is not empty Please chosse 0-8 > ") ) self.update_blocks(x_player, player) else: self.ai_move(x_player) except IndexError: x_player = int(raw_input("\nblock is not empty Please chosse 0-8 > ") ) self.update_blocks(x_player, player) def winner_player(self, player): if self.blocks[0] == player and self.blocks[1] == player and self.blocks[2] == player: return True if self.blocks[3] == player and self.blocks[4] == player and self.blocks[5] == player: return True if self.blocks[6] == player and self.blocks[7] == player and self.blocks[8] == player: return True if self.blocks[0] == player and self.blocks[3] == player and self.blocks[6] == player: return True if self.blocks[1] == player and self.blocks[4] == player and self.blocks[7] == player: return True if self.blocks[2] == player and self.blocks[5] == player and self.blocks[8] == player: return True if self.blocks[0] == player and self.blocks[4] == player and self.blocks[8] == player: return True if self.blocks[2] == player and self.blocks[4] == player and self.blocks[6] == player: return True return False def tie_found(self): used_blocks = 0 for block in self.blocks: if block != " ": used_blocks += 1 if used_blocks == 9: return True else: return False def reset(self): self.blocks = [] self.blocks = [" ", " ", " ", " ", " ", " ", " ", " ", " "] ### Inheritance Concept class player_show(Board): def __init__(self, name, class_a): self.name = name self.blocks = class_a.blocks #Board.__init__(self) ####Polymorphism def update_blocks(self, x_player, player): if self.blocks[x_player] == " ": self.blocks[x_player] = player elif player != "": x_player = int(raw_input("\nblock is not empty Please chosse 0-8 > ") ) self.update_blocks(x_player, player) def player_move(self,player): print("player {} is".format( self.name)) refresh_screen() x_player = raw_input("\n{} Please chosse 0-8 > ".format(self.name)) if x_player in ["0","1","2","3","4","5","6","7","8"]: self.update_blocks(int(x_player), player) refresh_screen() elif x_player not in ["0","1","2","3","4","5","6","7","8"]: print("Incorrecr") self.player_move(player) #### Inheritance Concept AI_Build class ai_build(Board): def __init__(self, name, class_a): self.name = name self.blocks = class_a.blocks def ai_move(self, player): #cnt = cnt + 1 #if player == "X": # enemy = "O" #if player == "O": # enemy = "X" #choose center if self.blocks[4] == " ": self.update_blocks(4, player) else: for i in range(0,8): #print(cnt) i = random.randint(0, 8) if self.blocks[i] == " ": self.update_blocks(i, player) #self.ai_move_sucess(player) break #AI win player def ai_move_sucess(self, player): enemy = "X" if self.blocks[0] == player and self.blocks[3] == player and self.blocks[6] == " ": board.update_blocks(6, "O") #return 6 elif self.blocks[3] == player and self.blocks[6] == player and self.blocks[0] == " ": board.update_blocks(0, "O") #return 0 elif self.blocks[0] == player and self.blocks[6] == player and self.blocks[3] == " ": board.update_blocks(3, "O") #return 3 elif self.blocks[1] == player and self.blocks[4] == player and self.blocks[7] == " ": board.update_blocks(7, "O") #return 7 elif self.blocks[4] == player and self.blocks[7] == player and self.blocks[1] == " ": board.update_blocks(1, "O") #return 1 elif self.blocks[7] == player and self.blocks[1] == player and self.blocks[4] == " ": board.update_blocks(4, "O") #return 4 elif self.blocks[2] == player and self.blocks[5] == player and self.blocks[8] == " ": board.update_blocks(8, "O") #return 8 elif self.blocks[5] == player and self.blocks[8] == player and self.blocks[2] == " ": board.update_blocks(2, "O")# #return 2 elif self.blocks[8] == player and self.blocks[2] == player and self.blocks[5] == " ": board.update_blocks(5, "O") #return 5 elif self.blocks[0] == player and self.blocks[1] == player and self.blocks[2] == " ": board.update_blocks(2, "O") #return 2 elif self.blocks[1] == player and self.blocks[2] == player and self.blocks[0] == " ": board.update_blocks(0, "O") #return 0 elif self.blocks[2] == player and self.blocks[0] == player and self.blocks[1] == " ": board.update_blocks(1, "O") #return 1 elif self.blocks[3] == player and self.blocks[4] == player and self.blocks[5] == " ": board.update_blocks(5, "O") #return 5 elif self.blocks[4] == player and self.blocks[5] == player and self.blocks[3] == " ": board.update_blocks(3, "O") #return 3 elif self.blocks[5] == player and self.blocks[3] == player and self.blocks[4] == " ": board.update_blocks(4, "O") #return 4 elif self.blocks[6] == player and self.blocks[7] == player and self.blocks[8] == " ": board.update_blocks(8, "O") #return 8 elif self.blocks[7] == player and self.blocks[8] == player and self.blocks[6] == " ": board.update_blocks(6, "O") #return 6 elif self.blocks[8] == player and self.blocks[6] == player and self.blocks[7] == " ": board.update_blocks(7, "O") #return 7 elif self.blocks[0] == player and self.blocks[4] == player and self.blocks[8] == " ": board.update_blocks(8, "O") #return 8 elif self.blocks[4] == player and self.blocks[8] == player and self.blocks[0] == " ": board.update_blocks(0, "O") #return 0 elif self.blocks[8] == player and self.blocks[0] == player and self.blocks[4] == " ": board.update_blocks(4, "O") #return 4 elif self.blocks[2] == player and self.blocks[4] == player and self.blocks[6] == " ": board.update_blocks(6, "O") #return 6 elif self.blocks[4] == player and self.blocks[6] == player and self.blocks[2] == " ": board.update_blocks(2, "O") #return 2 elif self.blocks[6] == player and self.blocks[2] == player and self.blocks[4] == " ": board.update_blocks(4, "O") elif self.blocks[0] == enemy and self.blocks[3] == enemy and self.blocks[6] == " ": board.update_blocks(6, "O") #return 6 elif self.blocks[3] == enemy and self.blocks[6] == enemy and self.blocks[0] == " ": board.update_blocks(0, "O") #return 0 elif self.blocks[0] == enemy and self.blocks[6] == enemy and self.blocks[3] == " ": board.update_blocks(3, "O") #return 3 elif self.blocks[1] == enemy and self.blocks[4] == enemy and self.blocks[7] == " ": board.update_blocks(7, "O") #return 7 elif self.blocks[4] == enemy and self.blocks[7] == enemy and self.blocks[1] == " ": board.update_blocks(1, "O") #return 1 elif self.blocks[7] == enemy and self.blocks[1] == enemy and self.blocks[4] == " ": board.update_blocks(4, "O") #return 4 elif self.blocks[2] == enemy and self.blocks[5] == enemy and self.blocks[8] == " ": board.update_blocks(8, "O") #return 8 elif self.blocks[5] == enemy and self.blocks[8] == enemy and self.blocks[2] == " ": board.update_blocks(2, "O") #return 2 elif self.blocks[8] == enemy and self.blocks[2] == enemy and self.blocks[5] == " ": board.update_blocks(5, "O") #return 5 elif self.blocks[0] == enemy and self.blocks[1] == enemy and self.blocks[2] == " ": board.update_blocks(2, "O") #return 2 elif self.blocks[1] == enemy and self.blocks[2] == enemy and self.blocks[0] == " ": board.update_blocks(0, "O") #return 0 elif self.blocks[2] == enemy and self.blocks[0] == enemy and self.blocks[1] == " ": board.update_blocks(1, "O") #return 1 elif self.blocks[3] == enemy and self.blocks[4] == enemy and self.blocks[5] == " ": board.update_blocks(5, "O") #return 5 elif self.blocks[4] == enemy and self.blocks[5] == enemy and self.blocks[3] == " ": board.update_blocks(3, "O") #return 3 elif self.blocks[5] == enemy and self.blocks[3] == enemy and self.blocks[4] == " ": board.update_blocks(4, "O") #return 4 elif self.blocks[6] == enemy and self.blocks[7] == enemy and self.blocks[8] == " ": board.update_blocks(8, "O") #return 8 elif self.blocks[7] == enemy and self.blocks[8] == enemy and self.blocks[6] == " ": board.update_blocks(6, "O") #return 6 elif self.blocks[8] == enemy and self.blocks[6] == enemy and self.blocks[7] == " ": board.update_blocks(7, "O") #return 7 elif self.blocks[0] == enemy and self.blocks[4] == enemy and self.blocks[8] == " ": board.update_blocks(8, "O") #return 8 elif self.blocks[4] == enemy and self.blocks[8] == enemy and self.blocks[0] == " ": board.update_blocks(0, "O") #return 0 elif self.blocks[8] == enemy and self.blocks[0] == enemy and self.blocks[4] == " ": board.update_blocks(4, "O") #return 4 elif self.blocks[2] == enemy and self.blocks[4] == enemy and self.blocks[6] == " ": board.update_blocks(6, "O") #return 6 elif self.blocks[4] == enemy and self.blocks[6] == enemy and self.blocks[2] == " ": board.update_blocks(2, "O") #return 2 elif self.blocks[6] == enemy and self.blocks[2] == enemy and self.blocks[4] == " ": board.update_blocks(4, "O") #return 4 else : self.ai_move("O") #choose random def ai_move_sucess1(self, player): if self.blocks[0] == player and self.blocks[3] == player and self.blocks[6] == " ": board.update_blocks(6, "O") #return 6 elif self.blocks[3] == player and self.blocks[6] == player and self.blocks[0] == " ": board.update_blocks(0, "O") #return 0 elif self.blocks[0] == player and self.blocks[6] == player and self.blocks[3] == " ": board.update_blocks(3, "O") #return 3 elif self.blocks[1] == player and self.blocks[4] == player and self.blocks[7] == " ": board.update_blocks(7, "O") #return 7 elif self.blocks[4] == player and self.blocks[7] == player and self.blocks[1] == " ": board.update_blocks(1, "O") #return 1 elif self.blocks[7] == player and self.blocks[1] == player and self.blocks[4] == " ": board.update_blocks(4, "O") #return 4 elif self.blocks[2] == player and self.blocks[5] == player and self.blocks[8] == " ": board.update_blocks(8, "O") #return 8 elif self.blocks[5] == player and self.blocks[8] == player and self.blocks[2] == " ": board.update_blocks(2, "O")# #return 2 elif self.blocks[8] == player and self.blocks[2] == player and self.blocks[5] == " ": board.update_blocks(5, "O") #return 5 elif self.blocks[0] == player and self.blocks[1] == player and self.blocks[2] == " ": board.update_blocks(2, "O") #return 2 elif self.blocks[1] == player and self.blocks[2] == player and self.blocks[0] == " ": board.update_blocks(0, "O") #return 0 elif self.blocks[2] == player and self.blocks[0] == player and self.blocks[1] == " ": board.update_blocks(1, "O") #return 1 elif self.blocks[3] == player and self.blocks[4] == player and self.blocks[5] == " ": board.update_blocks(5, "O") #return 5 elif self.blocks[4] == player and self.blocks[5] == player and self.blocks[3] == " ": board.update_blocks(3, "O") #return 3 elif self.blocks[5] == player and self.blocks[3] == player and self.blocks[4] == " ": board.update_blocks(4, "O") #return 4 elif self.blocks[6] == player and self.blocks[7] == player and self.blocks[8] == " ": board.update_blocks(8, "O") #return 8 elif self.blocks[7] == player and self.blocks[8] == player and self.blocks[6] == " ": board.update_blocks(6, "O") #return 6 elif self.blocks[8] == player and self.blocks[6] == player and self.blocks[7] == " ": board.update_blocks(7, "O") #return 7 elif self.blocks[0] == player and self.blocks[4] == player and self.blocks[8] == " ": board.update_blocks(8, "O") #return 8 elif self.blocks[4] == player and self.blocks[8] == player and self.blocks[0] == " ": board.update_blocks(0, "O") #return 0 elif self.blocks[8] == player and self.blocks[0] == player and self.blocks[4] == " ": board.update_blocks(4, "O") #return 4 elif self.blocks[2] == player and self.blocks[4] == player and self.blocks[6] == " ": board.update_blocks(6, "O") #return 6 elif self.blocks[4] == player and self.blocks[6] == player and self.blocks[2] == " ": board.update_blocks(2, "O") #return 2 elif self.blocks[6] == player and self.blocks[2] == player and self.blocks[4] == " ": board.update_blocks(4, "O") else : self.ai_move("O") #choose random board = Board() def print_header(): print("\t\t\t WELCOME TO TIC_TAC_TOE\n") def refresh_screen(): os.system("clear") print_header() board.display() def main(play_again1,choose_leval): cnt = 0 refresh_screen() board.reset() while True: refresh_screen() if play_again1 == "Y": player1 = player_show("John",board) player1.player_move("X") if board.winner_player("X"): print("\nJohn wins!!\n") play_again = raw_input("would you like to play again? (Y/N) >").upper() if play_again == "Y": board.reset() cnt = 0 continue else: break if board.tie_found(): print("\nTie Game!!\n") play_again = raw_input("would you like to play again? (Y/N) >").upper() if play_again == "Y": board.reset() cnt = 0 continue else: break cnt = cnt + 1 player2 = ai_build("Computer",board) if choose_leval == "E": player2.ai_move("O") refresh_screen() elif choose_leval == "H": if cnt > 1: player2.ai_move_sucess("O") #board.update_blocks(x, "O") refresh_screen() #board.winner_player("O") else: player2.ai_move("O") refresh_screen() else: if cnt > 1: player2.ai_move_sucess1("O") #board.update_blocks(x, "O") refresh_screen() #board.winner_player("O") else: player2.ai_move("O") refresh_screen() if board.winner_player("O"): print("\nComputer wins!!\n") play_again = raw_input("would you like to play again? (Y/N) >").upper() if play_again == "Y": cnt = 0 board.reset() continue else: break if board.tie_found(): print("\nTie Game!!\n") play_again = raw_input("would you like to play again? (Y/N) >").upper() if play_again == "Y": cnt = 0 board.reset() continue else: break elif play_again1 == "N": player1 = player_show("John",board) player1.player_move("X") if board.winner_player("X"): print("\nJohn wins!!\n") play_again = raw_input("would you like to play again? (Y/N) >").upper() if play_again == "Y": board.reset() cnt = 0 continue else: break if board.tie_found(): print("\nTie Game!!\n") play_again = raw_input("would you like to play again? (Y/N) >").upper() if play_again == "Y": board.reset() cnt = 0 continue else: break player2 = player_show("Joe",board) player2.player_move("O") # winner if board.winner_player("O"): print("\nJoe wins!!\n") play_again = raw_input("would you like to play again? (Y/N) >").upper() if play_again == "Y": cnt = 0 board.reset() continue else: break # tie if board.tie_found(): print("\nTie Game!!\n") play_again = raw_input("would you like to play again? (Y/N) >").upper() if play_again == "Y": cnt = 0 board.reset() continue else: break elif play_again1 is not ["Y" or "N"]: main(play_again1,choose_leval) if __name__ == "__main__": try: while True: os.system("clear") play_again2 = raw_input("would you like to play TIC TAC TOE? (Y/N) >").upper() if play_again2 == "Y": print("If you don't have a friend to play beside computer will play with you") play_again1 = raw_input("would you like to play with computer (Y/N) >").upper() choose_leval = "H" while(True): if play_again1 == "Y": choose_leval = raw_input("Choose leval (E/M/H) >").upper() while(True): if choose_leval in ["H","E","M"]: print("All d best") break elif choose_leval is not ["H","E","M"] : choose_leval = raw_input("Choose leval (E/M/H) >").upper() main(play_again1,choose_leval) break if play_again1 == "N": main(play_again1,choose_leval) break if play_again1 is not ["Y" or "N"]: play_again1 = raw_input("would you like to play with computer (Y/N) >").upper() elif play_again2 == "N": break elif play_again2 is not ["Y" or "N"]: os.system("clear") play_again1 = raw_input("would you like to play TIC TAC TOE? (Y/N) >").upper() except KeyboardInterrupt: # do nothing here print("\n") pass
ae19f46702080a4b284b9c4ee7fa6875d3aa8278
askiefer/practice-code-challenges
/sentence_reversal.py
408
4.125
4
def sentence_reversal(strg): # remove the whitespace before and after the string strg = strg.strip() # split the string on each space lst = strg.split(' ') new_lst = [] for word in lst: if word == '': continue new_lst.insert(0, word) return ' '.join(new_lst) if __name__ == '__main__': print(sentence_reversal(' Hello John how are you ')) print(sentence_reversal(' space before'))
793ac06bd2f228e546ef40ff13bad8b6c7099c11
keshav304/DSC-SIST-CP-QUESTIONS
/DAY-5/ClosestNumbers.py
523
3.578125
4
# Closest Numbers: https://www.hackerrank.com/challenges/closest-numbers # Complete the closestNumbers function below. def closestNumbers(arr): arr.sort() result = min([arr[i]-arr[i-1] for i in range(1,len(arr))]) print(arr) print(result) summ=[] for i in range(1,len(arr)): if (arr[i]-arr[i-1])==result: summ.append(str(arr[i-1])) summ.append(str(arr[i])) return summ n = int(input()) arr = list(map(int, input().rstrip().split())) print(closestNumbers(arr))
67a7b667f16e9f55d85a07adf4337ba8fa5f40bc
MYMSSENDOG/leetcodes
/111. Minimum Depth of Binary Tree.py
670
3.71875
4
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None from tree_node_lib import * class Solution: def minDepth(self, root: TreeNode) -> int: def helper(root): if not root: return 0 l = helper(root.left) r = helper(root.right) if not l and not r: return 1 elif r and l: return min(l,r) + 1 else: return max(l,r) + 1 return helper(root) sol = Solution() p = makeTree([-10,-3,0,5,9]) print(sol.minDepth(p))
1f40c8a2f302fd2158bf4714e649089544e810b0
tinsleyzzz/Field_Control_Score
/Field Control Cutton.py
3,046
3.6875
4
from tkinter import Tk, W, E from tkinter.ttk import Frame, Button, Label, Style from tkinter.ttk import Entry #from tkinter import * #from tkinter import ttk #class Frame: #frame = Frame(self, relief=RAISED, borderwidth=1) #frame.pack(fill=BOTH, expand=1) class Calculator(Frame): def __init__(self, parent): Frame.__init__(self, parent) self.parent = parent self.initUI() def initUI(self): self.parent.title("Calculator") Style().configure("TButton", padding=(0, 5, 0, 5), font='serif 10') self.columnconfigure(0, pad=3) self.columnconfigure(1, pad=3) self.columnconfigure(2, pad=3) self.columnconfigure(3, pad=3) self.columnconfigure(4, pad=3) self.columnconfigure(5, pad=3) self.rowconfigure(0, pad=3) entry1 = Entry(self) #entry.grid(row=0, columnspan=4, sticky=W+E) entry1.insert(0, "0") entry2 = Entry(self) entry2.insert(0, "0") Team_1_Score = 0 Team_2_Score = 0 def Addition_1(): nonlocal Team_1_Score Team_1_Score += 1 entry1.delete(0, 3) entry1.insert(0, Team_1_Score) F = open("Team1.txt", "w") F.write(str(Team_1_Score)) F.close() def Substraction_1(): nonlocal Team_1_Score Team_1_Score -= 1 entry1.delete(0, 3) entry1.insert(0, Team_1_Score) F = open("Team1.txt", "w") F.write(str(Team_1_Score)) F.close() def Addition_2(): nonlocal Team_2_Score Team_2_Score += 1 entry2.delete(0, 3) entry2.insert(0, Team_2_Score) F = open("Team2.txt", "w") F.write(str(Team_2_Score)) F.close() def Substraction_2(): nonlocal Team_2_Score Team_2_Score -= 1 entry2.delete(0, 3) entry2.insert(0, Team_2_Score) F = open("Team2.txt", "w") F.write(str(Team_2_Score)) F.close() def display_1(): return Team_1_Score def display_2(): return Team_2_Score One_Pls = Button(self, text="+", command = Addition_1) One_Pls.grid(row=0, column=0) One_Mns = Button(self, text="-", command = Substraction_1) One_Mns.grid(row=0, column=1) #One_Display = Button(self, text="=", command = display_1) entry1.grid(row=0, column=2) Two_Pls = Button(self, text="+", command = Addition_2) Two_Pls.grid(row=0, column=3) Two_Mns = Button(self, text="-", command = Substraction_2) Two_Mns.grid(row=0, column=4) #Two_Display = Button(self, text="=", command = display_2) entry2.grid(row=0, column=5) self.pack() def main(): root = Tk() app = Calculator(root) root.mainloop() if __name__ == '__main__': main()