blob_id
string | repo_name
string | path
string | length_bytes
int64 | score
float64 | int_score
int64 | text
string |
---|---|---|---|---|---|---|
018fd7991faeacf03e61a1507ce0f610a1d4a668 | activehuahua/python | /pythonProject/base/capitalize.py | 191 | 3.84375 | 4 | import string
def normalize(name):
return name.capitalize()
L1 = ['adam','LISA','barT']
#L2 = list(map(normalize,L1))
L2 = []
for item in L1:
L2.append(item.capitalize())
print(L2) |
6aadee1fb4f03b5d670437f74b278c635e0e1162 | vvakrilov/python_basics | /08. Pre_Exam/01. Moon.py | 226 | 3.6875 | 4 | import math
average_speed = float(input())
fuel_per_100km = float(input())
distance = 384400 * 2
time = math.ceil(distance / average_speed) + 3
fuel = fuel_per_100km * distance / 100
print(f"{time}\n"
f"{int(fuel)}")
|
d6d0137403291e598d5956738617f460063b5d87 | Hozok/HTTPServer | /index.py | 1,036 | 3.671875 | 4 | #coding:utf-8
import cgi
import hashlib
import os
print("Content-type: text/html; charset=utf-8") # Pour préciser que tout ce qui va suivre après dans un print est du code HTML en utf-8.
html = """<!DOCTYPE html>
<head>
<meta charset="utf-8">
<title>Test test</title>
</head>
<body>
"""
# Voici donc le code html au dessus et en dessous, qui doit bien sur respecter la syntaxe. Malheureusement, un des seuls inconvénient c'est que le code html d'au dessus n'est pas la coloration syntaxique normal du html.
print(html)
# Voici l'endroit ou vous écrivez votre code HTML :
print("<h1>Ceci est un gros titre !</h1>")
print("""
<ul>
<li>Ceci</li>
<li>est</li>
<li>une</li>
<li>liste</li>
</ul>
""")
print("<p>Ceci est un texte !</p>")
html = """
</body>
</html>
"""
print(html)
# Donc voila le code principal et simplifié pour créer vos pages HTML, vous pouvez le modifier à votre guise, mais ce script reste un exemple à prendre en compte.
# Pour voir votre page dans votre navigateur web : localhost/index.py
|
ff8aefc5ef0f915ff846e3ca6b4f2c4a1e3dd2b2 | cs-fullstack-fall-2018/python-review-ex2-jpark1914 | /python_review2.py | 657 | 3.9375 | 4 | #====Phase 1=====
import random
randomNumber = random.randint(0,10)
#====Phase 2=====
guessedNum = int(input("Guess a number between 0 - 10"))
print("First guess is always wrong try again")
#====Phase 3=====
while(guessedNum != randomNumber and guessedNum != 'q'):
guessedNum = int(input(""))
if(guessedNum == randomNumber):
print("THAT IS A CORRECT GUESS")
break
elif(guessedNum < randomNumber):
print("Guess a little higher Or press 'q' to quit.")
elif(guessedNum > randomNumber):
print("Aim lower or press 'q' to quit.")
else:
print("Tis an error, try a different number")
continue |
0d8ee3ca062285e1762d040a441c919cac13359b | geekidharsh/elements-of-programming | /primitive-types/reverse-int.py | 417 | 3.96875 | 4 | # given an int, return the reverse of itself.
# inp: 1234
# return: 4321
# perform operation on |x| and return along with the sign of x. using built in function abs()
def reverse_int(x):
rev = 0
x_remaining=abs(x)
while x_remaining:
rev = 10*rev + x_remaining%10
x_remaining //=10
return -rev if x < 0 else rev
# time complexity is O(n) where n is the number of digits in x
print(reverse_int(-1234))
|
504d40da67dda945eeb6b5a0dd07c3276aa95a78 | mircica10/pythonDataStructuresAndAlgorithms | /ds-lists.py | 1,969 | 3.859375 | 4 | class List:
def __init__(self, val, next = None):
self.val = val
self.next = next
def printList(self, list):
res = ''
if list is None:
return ''
while list is not None:
res += str(list.val) + ','
list = list.next
return res[0:len(res) - 1]
def reverseListHelper(self, list):
if list.next is None:
return (list, list)
(prev, root) = self.reverseListHelper(list.next)
prev.next = list
list.next = None
return (list, root)
def reverseList(self, list):
(list, root) = self.reverseListHelper(list)
return root
def sortList(self, list):
swap = True
while swap == True:
swap = False
index = list
while index.next is not None:
if index.val > index.next.val:
aux = index.val
index.val = index.next.val
index.next.val = aux
swap = True
index = index.next
return list
def deleteDuplicates(self, list):
index = list
while index.next is not None:
if index.next is not None and index.val == index.next.val:
index.next = index.next.next
index = index.next
index = index.next
return list
def initTest():
l7 = List(9)
l6 = List(2, l7)
l5 = List(3, l6)
l4 = List(4, l5)
l3 = List(5, l4)
l2 = List(2, l3)
l1 = List(1, l2)
return l1
l1 = initTest()
assert('1,2,5,4,3,2,9' == l1.printList(l1) )
# l1.printList(l1)
l = l1.reverseList(l1)
assert('9,2,3,4,5,2,1' == l1.printList(l))
l1 = initTest()
l = l1.sortList(l1)
assert('1,2,2,3,4,5,9' == l1.printList(l))
l1 = initTest()
l = l1.sortList(l1)
l2 = l.deleteDuplicates(l)
assert('1,2,3,4,5,9' == l2.printList(l2))
|
0a6efc745543a184c93b1d05bb545e983f33c7a6 | whyisee/Hadoop-Cluster-Easy | /python/P201/pc_jjxs.py | 4,089 | 3.515625 | 4 | #!/bin/env python
import urllib.parse #负责url编码处理
import urllib.request
from lxml import etree
import os
def loadPage(url, filename):
"""
作用:根据url发送请求,获取服务器响应文件
url: 需要爬取的url地址
filename : 处理的文件名
"""
#print ("正在下载 " + filename)
headers = {"User-Agent" : "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.62 Safari/537.36"}
request = urllib.request.Request(url, headers = headers)
return urllib.request.urlopen(request).read()
def writePage(html, filename):
"""
作用:将html内容写入到本地
html:服务器相应文件内容
"""
print ("正在保存 " + filename)
# 文件写入
with open(filename, "wb+") as f:
f.write(html)
print ("-" * 30)
def bookDownload(url,filePath,baseUrl):
"""
作用:下载
"""
html = loadPage(url,"33753")
#"/txt/33727.htm"
#writePage(html, "33753")
dom = etree.HTML(html)
a_text = dom.xpath('//li[@class="downAddress_li"]/a/@href')
html = loadPage(baseUrl+a_text[0],"33753")
#writePage(html, "33753_z")
dom = etree.HTML(html)
a_text = dom.xpath('//tr/td/a[@class="strong green"]/@href')
#print(a_text[0])
html = loadPage(baseUrl+a_text[0],"33753")
writePage(html, filePath)
def jiujiuSpider(url, href, filePath):
"""
作用:爬虫调度器,负责组合处理每个页面的url
url : url的前部分
beginPage : 起始页
endPage : 结束页
"""
html = loadPage(url+"/"+href, href)
pathName=href.split("/")[2]
if not os.path.exists(pathName):
os.mkdir(pathName)
writePage(html, filePath+"/"+pathName+"/"+pathName+".html")
beginPage=2
endPage=10
dom = etree.HTML(html)
a_text = dom.xpath('//div[@id="catalog"]/div/a/@href')
b_text = dom.xpath('//div[@id="catalog"]/div/a/@title')
#print(b_text)
#print(a_text)
i=0
for ele_book in a_text:
print(b_text[i])
bookDownload("https://www.jjxsw.la"+ele_book,pathName+"/"+b_text[i]+".txt","https://www.jjxsw.la")
i=i+1
for page in range(beginPage, endPage + 1):
#pn = (page - 1) * 50
filename = "第" + str(page) + "页.html"
fullurl = url+"/"+href + "index_" + str(page)+".html"
#print fullurl
html = loadPage(fullurl, filename)
#print html
dom = etree.HTML(html)
#a_text = dom.xpath('//div[@id="catalog"]/div/a/@href')
a_text = dom.xpath('//div[@id="catalog"]/div/a/@href')
b_text = dom.xpath('//div[@id="catalog"]/div/a/@title')
i=0
for ele_book in a_text:
print(b_text[i])
bookDownload("https://www.jjxsw.la"+ele_book,pathName+"/"+b_text[i]+".txt","https://www.jjxsw.la")
i=i+1
#print(a_text)
#writePage(html, filename)
#print ('谢谢使用')
#url = "https://whyisee.github.io/"
#word = {"wd":"传智播客"}
#word = urllib.parse.urlencode(word) #转换成url编码格式(字符串)
#newurl = url + "?" + word # url首个分隔符就是 ?
#
#headers={ "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108 Safari/537.36"}
#
#request = urllib.request.Request(newurl, headers=headers)
#response = urllib.request.urlopen(request)
#
#print (response.read())
html=loadPage("https://www.jjxsw.la/support/sitemap.html","久久小说")
dom = etree.HTML(html)
#获取 a标签下的文本
#a_text = dom.xpath('/a/text()')
#a_text = dom.xpath('//div/div/div/div/div/a/text()')
a_text = dom.xpath('//div/div/div/div/div/ul/li/a/@href')
#print(dom)
print(a_text)
for ele in a_text:
print(ele)
jiujiuSpider("https://www.jjxsw.la",ele,"./")
#jiujiuSpider("https://www.jjxsw.la",a_text[0],"./")
#bookDownload("https://www.jjxsw.la/txt/33753.htm","","https://www.jjxsw.la")
#writePage(html,"久久小说地图.html") |
20bb7e744f18c0d3cb607f1828025e24f33af802 | Disunito/hello-world | /python_work/Chap_five/hello_admin.py | 1,092 | 4.25 | 4 | #5-8 Make a list of five or more usernames, including the name 'admin'.
#Imagine you are writting code that will print a greeting to each user after
#they log in to a website. Loop through the list, and print a greeting
#each other.
# -If the username 'admin', print a special gretting, such as Hello admin,
# would you like a status report.
# -Otherwise, print a generic greeting, such as Hello Jaden, Thank you for
# logging in agian.
usernames = [ 'admin', 'slutbunny', 'DooMguy', 'iKa', 'thebaron']
#usernames = []
if usernames:
for name in usernames:
if name == 'admin':
print('Welcome back Admin, would you like a system report?\n')
else:
print(f'Welcome back {name.title()}, good to see you.\n')
else:
print('We need more users, Dave...')
current_users = [user.lower() for user in usernames]
new_users = ['disunito', 'ikA', 'audreythorn', 'bbbenson', 'DooMguy']
for user in new_users:
if user.lower() in current_users:
print('Sorry, that username is taken.')
else:
print(f'Welcome {user.title()}!')
|
2c242bc4614f993ebb781cc6bd42a5f008945bc1 | newjokker/PyUtil | /Z_other/Game/LearnPygame/列表转棋盘.py | 1,705 | 3.640625 | 4 | # -*- coding: utf-8 -*-
# -*- author: jokker -*-
import pygame
import sys
import random
def run():
clock = pygame.time.Clock() # 定时器
screen = pygame.display.set_mode([320, 400])
x, y = (0, 0)
heigt, width = (10, 10)
while True:
for event in pygame.event.get():
if event.type == pygame.QUIT: # 当按下关闭按键
pygame.quit()
sys.exit() # 接收到退出事件后退出程序
elif event.type == pygame.KEYDOWN and event.key == pygame.K_RIGHT:
x += 5
elif event.type == pygame.KEYDOWN and event.key == pygame.K_LEFT:
x -= 5
elif event.type == pygame.KEYDOWN and event.key == pygame.K_UP:
y -= 5
elif event.type == pygame.KEYDOWN and event.key == pygame.K_DOWN:
y += 5
screen.fill((0, 0, 0)) # 屏幕中填充颜色
# 创建随机砖块
bricks = []
for i in range(100):
x, y = random.randrange(1, 30), random.randrange(1, 40)
color = (random.randrange(1, 255), random.randrange(1, 255), random.randrange(1, 255))
brick_temp = {'loc': (x*10, y*10), 'height': 10, 'width': 10, 'color': color}
bricks.append(brick_temp)
# 将砖块全部可视化出来
for each_brick in bricks:
x, y = each_brick['loc']
height, width = each_brick['height'], each_brick['width']
color = each_brick['color']
pygame.draw.rect(screen, color, (x, y, heigt, width)) # 画一个矩阵
pygame.display.update()
clock.tick(15)
if __name__ == '__main__':
run() |
0b01d2e7921a6d0c9dfcb0fb39c98b009000cd18 | ahmedmeshref/Leetcode-Solutions | /test.py | 733 | 3.78125 | 4 | def PreorderTraversal(strArr):
preorderArr = []
def preOrderCalculator(node_ind, num_missing_leafs):
# base case
if node_ind >= len(strArr) or strArr[node_ind] == "#":
return 2
preorderArr.append(strArr[node_ind])
left_child = (node_ind * 2) + 1 - num_missing_leafs
val = preOrderCalculator(left_child, num_missing_leafs)
num_missing_leafs += 2 if val else 0
right_child = left_child + 1
preOrderCalculator(right_child, num_missing_leafs)
preOrderCalculator(0, 0)
return ' '.join(preorderArr)
# keep this function call here
print(PreorderTraversal(["5", "2", "6", "1", "9", "10", "#", "#", "#", "#", "#", "4", "#"]))
|
99771f9937180fcdf72db09959efd454a762d6eb | GuilhermeFariasn7/infosatc-lp-avaliativo-02 | /questao7.py | 1,362 | 4.3125 | 4 | #7- Faça 4 listas: Filmes,jogos,livros e esporte ->>
FILMES = ["O poderoso chefão","Parasitas","Fast and Furious", "O menino do pijama listrado","Tá dando onda"]
#A - adicionar itens a lista:
FILMES.append("frozen")
FILMES.append("Diario de um banana")
print(FILMES)
JOGOS = ["Cs go","LOL","Valorant","GTA V","The last of us"]
#A - adicionar itens a lista:
JOGOS.append("need for speed underground 2")
JOGOS.append("Farcry 5")
print(JOGOS)
LIVROS = ["menina traduzida","Diario de um banana","a culpa é das estrelas","O homem de giz","Gelato"]
#A - adicionar itens a lista:
LIVROS.insert(1,"Frozen")
LIVROS.insert(2,"Galinha pintadinha volume 2")
print(LIVROS)
ESPORTES = ["volei","futebol","basquete","handeibol","surf"]
#A - adicionar itens a lista:
ESPORTES.append("Skate")
ESPORTES.append("Atletismo")
print(ESPORTES)
#B - Juntar todas as lista em uma lista só:
listaGeral = [FILMES,JOGOS,LIVROS,ESPORTES]
print("lista com as lista dentro da lista: ",listaGeral)
#C - Acesse (mostrar) algum item da lista livros:
print("Mostrando da lista livros o livro(menina traduzida)",LIVROS[3])
#D - . Remova um item da lista esporte.
del ESPORTES[3]
print(ESPORTES)
#E - Adicione uma lista chamada “disciplinas”, no item b. (sem criar uma lista separada).
DISCIPLINAS = ["Física","Química"]
listaGeral = listaGeral + DISCIPLINAS
print(listaGeral)
|
d37927187ae5ef4fbd630ad10acaca899f7e0ae3 | ljyxy1997/WUST | /4.29/class5-列表操作,多维列表.py | 609 | 3.96875 | 4 | a_list=[1,2,30,30,30,4,2]
print(a_list)
a_list[0]=100#修改列表中第0个元素
print(a_list)
a_list.append(200)#列表最后加元素
print(a_list)
a_list.insert(2,300)#在列表中插入一个元素
print(a_list)
del a_list[2]#删除列表第3个元素
print(a_list)
a_list.remove(30)#删除一个叫30的元素
print(a_list)
a=a_list.pop()#弹出列表中最后一个元素
print(a)
print(a_list)
b=a_list.pop(1)#弹出列表中第二个元素
print(b)
print(a_list)
b_list=[[1,2],[4,5],[7,8]]
print(b_list[1]) #打印第二个元素
print(b_list[2][1]) #打印第三个列表里面第二个元素 |
348b6cf0b4c9584fb8020ee730cd7e84172a53df | mukund7296/python-3.7-practice-codes | /kjson.py | 117 | 3.5 | 4 | import json
# some JSON:
x = '{ "name":"John", "age":30, "city":"New York"}'
y=json.loads(x)
print(y['age']) |
556e3818d1299c7ae4cc156ec68e3221dc0d499e | lll-Mike-lll/botstock | /try_29_random number.py | 372 | 3.859375 | 4 | # -*- coding: utf-8 -*-
"""
Created on Thu Jun 27 15:02:02 2019
@author: Lenovo
"""
import random
nums = [x for x in range(10)]
random.shuffle(nums)
print(nums)
# =============================================================================
# nums = [x for x in range(100)]
# print(nums)
# =============================================================================
|
b62f93479867a32bee366e5193b9490d8ef70384 | A-N-A-R-K-H/Matrix_Factorization-Recommendation_Engine | /best_model.py | 7,333 | 3.703125 | 4 |
"""
Colby Wise
COMS6998 - Homework1
Matrix Factorization
Factorizers a N x M user:item matrix into
U: N x r and V: r X M matrices where:
- U - User : feature matrix
- V - Movie: feature matrix
Calculates mean squared error (MSE) and
mean reciprocal rank (MMR) on test data
after the training data decomposition
"""
import pandas as pd
import numpy as np
import time
import pickle
import math
from preprocessing import *
from model_evaluation import *
"""
Class MatrixFactorize takes train and test data then
factors the training data in U,V matrix decompositions.
Using U,V it then predicts movie ratings on the test
data returning the MSE and MRR on test data
"""
class MatrixFactorize(object):
"""
Initialization
@param:
train - pandas dataframe of training data
test - pandas dataframe of test data
lr - learning rate
r - features to learn
epoch - epochs to run training
lambd - regularization rate (lambda)
"""
def __init__(self, train, test, lr, r, iters, lambd):
self.lr = lr
self.features = r
self.iters = iters
self.lambd = lambd
self.train = train
self.test = test
all_data = pd.concat([train, test])
self.n_items = len(all_data['movieId'].unique())
self.n_users = len(all_data['userId'].unique())
print("Number of users:", self.n_users)
print("Number of movies:", self.n_items)
self.U = np.random.randn(self.n_users, self.features)
self.V = np.random.randn(self.features, self.n_items)
self.loss_record = {"train": [], "test": [], "epoch": [],
"r": self.features,"lr" : self.lr}
"""
Updates loss dictionary that captures training/test
MSE during training
@param:
test_mse - MSE from test data
train_mse - MSE from train data
epoch - current epoch of training
@Return:
None
"""
def record_loss(self, test_mse, train_mse, epoch):
self.loss_record["train"].append(train_mse)
self.loss_record["test"].append(test_mse)
self.loss_record["epoch"].append(epoch)
"""
Predict rating using current U, V matrices
@param:
test_sample - random sample from test data
U - User matrix
V - Movie matrix
show - default(False), prints subset of predict values
@Return:
mse - mean squared error for test sample
"""
def predict(self, test_sample, U, V, show=False):
preds = []
loss = 0
print("Running test validation...")
cntr = 1
for row in test_sample.itertuples():
user, movie, rating = row[2], row[3], row[4]
pred = np.dot(U[user,:], np.transpose(V[:,movie]) )
preds.append(pred)
if not (cntr % 10**5) and show:
print("u: {} \t m: {} \t r: {} \t r_hat: {}".format(user, movie, rating, pred))
err = rating - pred
loss += err**2
cntr += 1
MSE = (loss/len(preds))
return MSE
"""
Punny name ... saves pickle objects during training phase
@param:
out - data structure (dict, etc) to save
fname - filename
@Return:
None
"""
def god_save_the_queen(self, out, fname):
with open(fname, "wb") as f:
pickle.dump(out, f)
"""
Uses train and test data to learn U,V matrix decomposition
"""
def factorizeMatrix(self):
print("Factorizing...")
print("=> learning rate: {}, epochs: {}, r: {}".format(self.lr, self.iters, self.features))
epoch_start = time.time()
for epoch in range(1,self.iters+1):
print("\nStarting iteration {}...".format(epoch))
self.lr = self.lr * .995 # Hacky annealing
best_test_MSE = 50
cntr = 1
_s = time.time()
for row in self.train.itertuples():
user, movie, rating = row[2], row[3], row[4]
err = rating - np.dot( self.U[user,:], np.transpose(self.V[:,movie]) )
train_MSE = err ** 2
dV = self.lr * (err * 2 * self.U[user,:] - self.lambd * self.V[:,movie])
dU = self.lr * (err * 2 * self.V[:,movie] - self.lambd * self.U[user,:])
self.V[:,movie] = self.V[:,movie] + dV
self.U[user,:] = self.U[user,:] + dU
cntr += 1
# Periodically Print Progress
if not (cntr % 10**5):
_e = time.time()
print( "\n {} min runtime to process {:,} rows...\n".format(int((_e-_s)//60), cntr) )
test_sample = self.test.sample(frac=0.05)
U, V = self.U, self.V
test_MSE = calc_MSE(test_sample, U, V, show=False)
self.record_loss(test_MSE, train_MSE, epoch)
print( "Train MSE: {0:0.4f}, Test MSE: {1:0.4f}".format(train_MSE, test_MSE))
# Periodically Check Test MSE
if test_MSE <= best_test_MSE:
best_test_MSE = test_MSE
u_outfile = "U_mat:_r={}_lambda={}_epoch={}.pkl".format(self.features, self.lambd, epoch)
v_outfile = "V_mat:_r={}_lambda={}_epoch={}.pkl".format(self.features, self.lambd, epoch)
loss_file = "loss:{:.3f}_r={}_lambda={}_epoch={}.pkl".format(test_MSE, self.features, self.lambd, epoch)
self.god_save_the_queen(self.U, u_outfile)
self.god_save_the_queen(self.V, v_outfile)
self.god_save_the_queen(self.loss_record, loss_file)
# Track epoch runtime
epoch_end = time.time()
print("\n Epoch {} runtime: {} min".format(epoch, int((epoch_end-epoch_start)//60)))
MRR = calc_MRR(self.test, self.U, self.V)
with open('MRR.txt', 'w') as f:
f.write("log:_MRR={:.3f}:_r={}_lambda={}".format(MRR, self.features, self.lambd))
return self.U, self.V, self.loss_record
if __name__ == "__main__":
def update_movieId(movie):
return item_toKey[movie]
def update_userId(user):
return user_toKey[user]
# Helper method to view class properties
def properties(cls):
return [i for i in cls.__dict__.keys() if i[:1] != '_']
train_file = 'ml-20m/train.csv'
test_file = 'ml-20m/test.csv'
train = get_data(train_file)
test = get_data(test_file)
all_data = pd.concat([train, test])
key_toUser, user_toKey = get_user_dicts(all_data)
key_toItem, item_toKey = get_item_dicts(all_data)
train['userId'] = train['userId'].apply(update_userId)
train['movieId'] = train['movieId'].apply(update_movieId)
test['userId'] = test['userId'].apply(update_userId)
test['movieId'] = test['movieId'].apply(update_movieId)
lr = .01
r = 40
epochs = 3
lamda = .02
MF = MatrixFactorize(train, test, lr, r, epochs, lamda)
U, V, loss_record = MF.factorizeMatrix()
#print( properties(MF) )
|
e3d4bf1b5481690bb35eb1d9f482b1b60543bd7b | nihald16/Python-Programs | /split.py | 145 | 3.71875 | 4 | string="hi i am a programer"
print(type(string))
a=string.split(" ")
print(a,"\n",type(a))
a="-".join(string)
print(a)
print(type(a))
|
717bbb395428edb399c64e9847e90a5820920c08 | Tanmay53/cohort_3 | /submissions/sm_028_sagar/week_13/day_4/session_1/count_occurences_string.py | 327 | 3.78125 | 4 | string = 'masaischool'
occr = {} #occurences of each character
for char in string:
isFound = False
for key in occr:
if(key == char):
isFound = True
occr[key] = occr[key]+1
break
# print(char,isFound)
if(isFound == False):
occr[char] = 1
print(occr) |
6cbc40d5852cb72b56df2596752064108690ef8d | serdardoruk/Bloomberg-Common-DS-Algo-Python-Solutions | /arrayValuesOfIndices.py | 1,223 | 3.640625 | 4 | '''
Input a = [21,5,6,56,88,52], output = [5,5,5,4,-1,-1] . Output array values is made up of indices of the element with value
greater than the current element but with largest index. So 21 < 56 (index 3), 21 < 88 (index 4) but also 21 < 52 (index 5)
so we choose index 5 (value 52). Same applies for 5,6 and for 56 its 88 (index 4). If there is no greater element then use -1
and last element of the array will always have value of -1 in output array since there is no other elment after it. Follow up
to consider the input as a stream, how can we only update smaller element (use specific Data structure), running time and space
complexity discussion.
Input a = [21,5,6,56,88,52], output = [5,5,5,4,-1,-1]
'''
from heapq import heappush, heappop
def find_right_index(nums):
heap = []
for i, val in enumerate(nums):
heappush(heap, (-val, i))
print(heap)
res = [-1]*len(nums)
maxIdx = -1
while heap:
_, curIdx = heappop(heap)
if curIdx > maxIdx or nums[maxIdx] == nums[curIdx]:
maxIdx = max(curIdx, maxIdx)
continue
res[curIdx] = maxIdx
maxIdx = max(curIdx, maxIdx)
return res
print(find_right_index([21,5,6,56,88,52]))
|
fa4024757d899635360db79b14fcb4e3d5e610af | jessy1082/itp_week_1 | /day_3/test.py | 1,012 | 3.8125 | 4 | list_4 = ["abc", 34, True, 40, "male"]
list_5 = [["John", "Smith"], ["Jane", "Doe"]]
print(type(list_5)) # <class 'list'>
print(len(list_5)) # 2
fruits = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"]
print(fruits[0]) # "apple"
print(fruits[-1]) # "mango"
print(fruits[-7]) # "apple"
print(fruits[2:5]) # ['cherry', 'orange','kiwi']
print(fruits[:4]) # "apple", "banana", "cherry", "orange" # NOT INCLUDE KIWI
print(fruits[2:]) # "cherry", "orange", "kiwi", "melon", "mango"
print(fruits[-4:-1]) # "orange" (-4) to, but NOT including "mango" (-1)
fruits = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"]
if "apple" in fruits:
print("Yes, 'apple' is in the fruits list")
fruits[0] = "strawberry"
print(fruits)
fruits[1:3] = ["blackcurrant", "watermelon"]
print(fruits)
more_fruits = ["raspberry", "coconut", "pineapple"]
more_fruits[1:2] = ["grape", "durian"]
print(more_fruits)
sports = ["football","soccer","baseball"]
sports.append("lacrosse")
print(sports)
|
bc9f45158341a38bb908793c649916dd56eb0775 | amcgrat/UCD_DATACAMP | /WEEK_4.py | 1,118 | 3.890625 | 4 | import pandas as pd
import numpy as np
#raad the .csv file
netflix_data = pd.read_csv(r"C:\Users\amcgrat\\Desktop\netflix_titles.csv")
#Take a first look to understand the data
#print(netflix_data.head())
#print(netflix_data.shape)
#Count missing values in each column
missing_values_count = netflix_data.isnull().sum()
#print(missing_values_count[0:])
#Drop rows where data is missing
droprows= netflix_data.dropna()
print(netflix_data.shape,droprows.shape)
print (droprows.head())
#Drop Columns where data is missing
dropcolumns = netflix_data.dropna(axis=1)
print(netflix_data.shape,dropcolumns.shape)
#Fill all missing values with 0
cleaned_data = netflix_data.fillna(0)
#Fill all missing values to the value that comes next in the same column
cleaned_data = netflix_data.fillna(method='bfill', axis=0).fillna(0)
#Drop all rows that are duplicate
drop_duplicates= netflix_data.drop_duplicates()
print(netflix_data.shape,drop_duplicates.shape)
#Drop Duplicate Rows based on specific columns
drop_duplicates= netflix_data.drop_duplicates(subset=['show_id'])
print(netflix_data.shape,drop_duplicates.shape)
|
c286fd68f207fee0d0a91dcd511762eeb75fdc78 | yoyocheknow/leetcode_python | /3_lengthOfLongestSubstring.py | 2,250 | 3.796875 | 4 | # -*- coding:utf-8 -*-
class Solution(object):
# 其实这道题我卡了很久,原因是不知道python从i+1的地方遍历,然后就想到用while的方式,每次for循环一次,就把上一次循环过的字符删掉
def lengthOfLongestSubstring(self, s):
"""
:type s: str
:rtype: int
"""
if not s:
return 0
tmp_list=[]
max_length=1
length=len(s)
s_copy=list(s)
while(length>0):
for i, v in enumerate(s_copy):
if v not in tmp_list:
tmp_list.append(v)
else:
max_length=len(tmp_list) if len(tmp_list)>max_length else max_length
tmp_list = []
s_copy.pop(0)
break
length-=1
return max_length
# 上面那个算法是不知道如何i+1遍历,可以用range(),但是这个o(n^2),会超时,但是和上一个其实是一个思路
def lengthOfLongestSubstring1(self, s):
"""
:type s: str
:rtype: int
"""
if not s:
return 0
tmp_list=[]
max_length=1
s_copy=list(s)
for i in range(len(s_copy)):
for j in range(i, len(s_copy)):
if s_copy[j] not in tmp_list:
tmp_list.append(s_copy[j])
else:
max_length = len(tmp_list) if len(tmp_list) > max_length else max_length
tmp_list = []
break
return max_length
#滑动窗口的思想解决
def lengthOfLongestSubstring2(self, s):
"""
:type s: str
:rtype: int
"""
length, i, j, max_length = len(s), 0, 0, 0
s_copy = list(s)
slide_window=set()
while(i<length and j <length):
if s_copy[j] not in slide_window:
slide_window.add(s_copy[j])
j+=1
max_length=max(max_length, j-i)
else:
slide_window.remove(s_copy[i])
i+=1
return max_length
if __name__ == "__main__":
r = Solution().lengthOfLongestSubstring1('abaabcbb')
print r |
e628908685020e60cc86acd6d4c4e14edd6280a2 | UMBC-CMSC-Hamilton/cmsc201-spring2021 | /files_dir/fileio_slices.py | 7,131 | 4.15625 | 4 | if __name__ == '__main__':
"""
How do you open a file?
There's a built-in-function
File name is a string, literal, or a variable.
"""
if False:
x = 3
# pycharm is reading everything as being based in the main directory.
# because we're in a subdirectory, we need to tell it that.
# two ways to denote directories
# my_file_name = 'files_dir\\blah.txt'
my_file_name = 'files_dir/blah.txt' # this one is best
print(my_file_name)
# reason is, \\ are an escape sequence which stands for one backslash
# backslashes are the windows style directory markings, forward slash is linux/mac style
# you can always use the linux style even in windows, and python generally fixes it up for you.
# \\ like \n \r \t (\a <-- doesn't always work) ...
"""
3 modes in python, read, write, and append
for now, let's talk about read mode.
Accidentally just try to read from the file name string, rather than the file itself.
Open is a function that takes two strings, file_name, mode, returns "file" object
"""
my_file = open(my_file_name) # we're in read MODE, default is 'r'
print(my_file.read())
# .read() reads the entire file at once
# .read() can be dangerous if you don't know that the file will be small. Take a long time.
# most of the time you won't use read, but you should know it exists and use it if it makes sense
my_file.close()
# tells the OS (windows/linux/mac) that we're finished looking at the file
my_file = open(my_file_name, 'r') # we're in read MODE
# the plural one, readlines makes a list of the lines
the_lines = my_file.readlines() # creates a list of each line
print(the_lines[3])
for line in the_lines:
print(line)
# if you haven't stripped the new line, there will be two newlines
print(line.strip('\n'))
print(line, end="")
print('\n\n\n')
# little hiccup in the function. (not a bug, it's a feature)
# my_file.read().split('\n') and my_file.readlines() readlines will still have the newline characters...
# a bit subtle maybe?
my_file.close()
my_file = open(my_file_name, 'r') # we're in read MODE
"""
How can we explain this behavior?
a file has a "cursor"
it's a place where the OS thinks is the current position.
"""
my_line = my_file.readline()
while my_line:
print("here is a line: " + my_line.strip('\n'))
my_line = my_file.readline()
# when my_file.readline() reaches "EOF = end of file" then it'll return empty string
# empty string evaluates to false.
my_file.close()
"""
Elegant, beautiful, great way to do it.
Use python's in-built iteration processes
"""
my_file = open(my_file_name)
# most common way to read
for my_line in my_file:
print('iteration is great\t', my_line.strip())
# python is basically saying to the file "what's next?"
# the file will call readline for you and put that result into the variable.
# not closing a file in read mode == not the end of the world, you're going to be ok
my_file.close()
# not closing a file in write mode == 'unpredictable... scary times'
"""
Write and Append modes
Write mode.
"""
write_file_name = 'files_dir/movies.txt'
write_file = open(write_file_name, 'w')
movie_name = input('Tell me movie: ')
while movie_name != 'quit':
# difference between these two is that write takes a string, writelines takes a List[str]
write_file.write(movie_name + '\n')
# readlines /read/readline does not REMOVE a newline character
# write does not add newline characters
# have to add the new line in
movie_name = input('Tell me movie: ')
# naughty human
write_file.close()
input('This is useless just a placeholder, hang on...')
"""
Massive warning, danger label on 'w' mode.
Write mode will annihilate your file, set it to empty, delete everything, goodbye file contents
"""
write_file = open(write_file_name, 'w')
book_name = input('Tell me book: ')
while book_name != 'quit':
# difference between these two is that write takes a string, writelines takes a List[str]
write_file.write(book_name + '\n')
# readlines /read/readline does not REMOVE a newline character
# write does not add newline characters
# have to add the new line in
book_name = input('Tell me book: ')
write_file.close()
"""
Maybe you don't want that... there's a slight compromise way to do that
mode = 'a' = append mode
Opens the file (just like write mode)
Sets the cursor to the end
Doesn't blank the file
Is ready to write.
"""
append_file = open(write_file_name, 'a') # uber-mega-definitely important to get right.
book_name = input('Tell me game: ')
while book_name != 'quit':
# difference between these two is that write takes a string, writelines takes a List[str]
append_file.write(book_name + '\n')
# readlines /read/readline does not REMOVE a newline character
# write does not add newline characters
# have to add the new line in
book_name = input('Tell me game: ')
append_file.close()
"""
Rule: it takes about 2-3x as long as i think to do any given task. There we go.
"""
new_test = 'files_dir/test.txt'
new_test_file = open(new_test, 'w')
# test.txt didn't exist until i created it with this command.
lines = ['apple', 'bag', 'cheese', 'dog']
for i in range(len(lines)):
# definitely have to add the newlines
lines[i] = lines[i] + '\n'
new_test_file.writelines(lines)
# I didn't think writelines (even though you might think based on the name... ) added the \n characters
# as it turns out i was actually right, huh...
new_test_file.close()
"""
3 things to keep in mind:
1) close your files
2) only use 'w' mode when you want to erase the file, otherwise 'a'
3) newlines, read doesn't strip them, write doesn't add them.
read/write from/to a file needs max control. Python gives you that control.
All you need to know is r, w, a.
You probably won't need byte mode unless I specify.
You won't need the + modes. r+, w+, a+ all kinds of weird partial modes read/write
""" |
d3ee02507c3e1f4e4e559d2b4bc620f04d542247 | Indra-Ratna/LAB9-1114 | /lab9_problem4.py | 216 | 3.515625 | 4 | #Indra Ratna
#CS-UY 1114
#2 Nov 2018
#Lab 9
#Problem 4
def mycount(lst,n):
count=0
for element in lst:
if(element == n):
count+=1
return count
print(mycount([7,2,1,3,7,9],7))
|
70389e06f7d1863e66a43cac9a85cca1be36f290 | upsharma8/Python_Programs | /Python Programs/demo16.py | 551 | 4 | 4 | #File Handling
#How to acess a file
#Step 1- Create a file to be access
#Step 2- Access the file
'''
open('E:\\upmanyu\\Python\\myname.txt','r')
print(r.read())
r=open('E:/upmanyu/Python/myname.txt','w')
r.write('I am a python programmer \n I like to write python code')
r.close()
print('File written succesfully')
'''
#copy a file data
#open old file
oldfile=open('E:\\upmanyu\\Python\\myname.txt','r')
newfile=open('E:\\upmanyu\\Python\\hello.txt','w')
newfile.write(oldfile.read())
newfile.close()
print('Data copied')
|
ff8e7bb527961d2813417f40e5fcc3c03f056b94 | MrHamdulay/csc3-capstone | /examples/data/Assignment_7/mknnit002/util.py | 2,194 | 3.796875 | 4 | #mknnit002
#question2 ass 7
def create_grid(grid):
"""create a 4x4 grid"""
for i in range (4):
grid.append([0]*4) #append each row of the grid one at a time
return grid
def print_grid(grid):
"""print out 4x4 grid in 5-width columns within a box"""
print("+--------------------+") #prints the top of the box
for row in range(4):
print("|", end="") #prints the left side of the box
for col in range (4):
if grid[row][col]==0:
print(" "*5, end="") #prink blank spaces if item is a zero
else:
print(grid[row][col],(5-len(str((grid[row][col]))))*" ", sep="",end="")
print("|") #print left of box
print("+--------------------+") #print bottom of box
def check_lost(grid):
"""return True if there are no 0 values and no adjacent values that are equal; otherwise False"""
for row in range(4):
for col in range (4):
if grid[row][col]==0:
return False
if row!=3:
if gird[row][col]==grid[row+1][col]:
return False
if col!=3:
if grid[row][col]==grid[row][col+1]:
return False
return True
def check_one(grid):
"""return True if a value>=32 is found in the grid; otherwise False"""
for row in range(4):
for col in range(4):
if gird[row][col]>=32:
return True
return False
def copy_grid(grid):
"""return a copy of the grid"""
copygrid=[]
for row in reange(4):
rowlist=[]
for col in range (4):
rowlist.append(grid[row][col])
copygrid.append(rowlist)
return copy_grid
def grid_equal(grid1, grid2):
"""check if two grids are equal- return boolean value"""
for row in range(4):
for col in range (4):
if grid1[row][col]!=grid2[row][col]:
return False
return True
|
ab38e492222ce3e77a98b3dbf9184f2b6e2dc3c6 | anuunnikrishnan/Python | /PYTHON 1/DbconnectPython/Dbconnection2.py | 457 | 3.65625 | 4 | from DbconnectPython.openconnection import *
db=getconnection()
print(db)
# prepare a cursor object using cursor() method
cursor=db.cursor()
# Drop table if it already exists using execute() method
cursor.execute("DROP TABLE IF EXISTS EMPLOYEE")
# Create table as per requirement
sql="""CREATE TABLE EMPLOYEE(
FIRST_NAME CHAR(20),
LAST_NAME CHAR(20),
AGE INT,
SEX CHAR(1),
INCOME FLOAT)"""
cursor.execute(sql) |
1645d55d7dfe1291c84e1ae05e4dbf1262fff745 | AlgorithmStars/Jeongmin | /leetCode/06longestPalindrome.py | 981 | 3.609375 | 4 | class Solution:
def findShortPalindromeIndex(self, s:str) -> tuple[int, int]:
if len(s) == 1:
return
for start in range(len(s) - 2):
if s[start] == s[start + 2]: #odd palindrome
yield start, start + 2
if s[start] == s[start + 1]: # even palindrome
yield start, start + 1
if s[len(s) - 2] == s[len(s) - 1]:
yield len(s) - 2, len(s) - 1
def longestPalindrome(self, s:str) -> str:
palinGenerator = self.findShortPalindromeIndex(s)
result = ""
for start, end in palinGenerator:
while (start >= 1 and end <= len(s) - 2) and (s[start -1] == s[end +1]):
start -= 1
end += 1
result = max(result, s[start:end+1], key=len)
return result if len(result) else s[0]
sol = Solution()
string = ["babad", "cbbd", "fff", "a", "ac"]
for s in string:
print(sol.longestPalindrome(s))
|
4f2158b8fee86e2d4f29765e127f075139e6fbb6 | PetrTimof/pyth2 | /less3.py | 2,841 | 3.546875 | 4 | # 1
def non_zero_del(var1, var2):
try:
result = var1 / var2
except ZeroDivisionError:
return "Вы разделили на ноль и перешли на следующий уровень бытия! Поздравляю!"
else:
return result
temp = non_zero_del(int(input('Введите делимое:\n')), int(input('Введите делитель:\n')))
print(temp)
# 2
def data_printer(**kwargs) -> str:
line = ''
for kw, args in kwargs.items():
line += f'{kw}: {args}, '
return line
user_answer_template = {
'имя': '',
'фамилия': '',
'год рождения': '',
'город проживания': '',
'адрес эл. почты': '',
'номер телефона': ''
}
for key in user_answer_template.keys():
user_answer = input(f'Пожалуйста, введите {key}:\n')
user_answer_template[key] = user_answer
print(data_printer(**user_answer_template))
# 3
def my_func(first_number: int, second_number: int, third_number: int) -> int:
if first_number >= second_number:
if second_number >= third_number:
return first_number + second_number
else:
return first_number + third_number
else:
if first_number >= third_number:
return first_number + second_number
else:
return second_number + third_number
numbers = []
while True:
try:
user_number = int(input('Введите, пожалуйста, целое число:\n'))
except ValueError as e:
print(f'{e}. Это не число, введите число')
else:
numbers.append(user_number)
if len(numbers) > 2:
break
a, b, c = numbers
print(my_func(a, b, c))
# 4
def my_func(x, y):
if y == 0:
return 1
elif y == 1:
return x
result = x
for _ in range(1, my_func(x, abs(y) - 1)):
result += x
return result if y > 0 else 1. / result
# 5
def split_sum():
end_counter = False
int_sum = 0
while not end_counter:
string = input('Введите, пожалуйста, строку чисел, разделенных пробелом. Если вы хотите остановиться, '
'введите ~.\n')
result_list = list(string.split(' '))
for el in range(len(result_list)):
if result_list[el] == '~':
end_counter = True
break
else:
try:
int_sum += int(result_list[el])
except ValueError as e:
print(f'{e} - этот символ не был учтен, поскольку это не число.')
print(int_sum)
if __name__ == '__main__':
split_sum() |
0e05d3777858898a466c080299a6d1b0730b69ae | avanishsingh07/CodeChef_DSA | /»_Factors_Finding.py | 189 | 3.59375 | 4 | n = int(input("Enter the number"))
l = []
count = 0
for i in range(1,n+1):
if n % i == 0:
count = count +1
l.append(i)
print(count)
for j in l:
print(j, end = " ")
|
6653eab81f09a61c4631f8308b38e89679427652 | prithvi020397/awesomeScripts | /yt_clipper/yt_clipper.py | 2,891 | 3.90625 | 4 | #! /usr/bin/env python3
import re
import argparse
import subprocess
def find_url(string):
""" Finds an arbitrary number of URLs in a string and returns them in a list.
Taken from: https://www.geeksforgeeks.org/python-check-url-string/"""
regex = (
r"(?i)\b((?:https?://|www\d{0,3}[.]|[a-z0-9.\-]+[.][a-z]{2,4}/)(?:[^\s"
r"()<>]+|\(([^\s()<>]+|(\([^\s()<>]+\)))*\))+(?:\(([^\s()<>]+|(\([^\s("
r")<>]+\)))*\)|[^\s`!()\[\]{};:'\".,<>?«»“”‘’]))"
)
url = re.findall(regex, string)
return [x[0] for x in url]
# Parse arguments
parser = argparse.ArgumentParser(description="make clips from youtube videos")
parser.add_argument("url", help="video url")
parser.add_argument("start", help="HH:MM:SS")
parser.add_argument("end", help="HH:MM:SS")
parser.add_argument("-s", "--scale", help="scale image vertically (in px)",
type=int, default=-2)
parser.add_argument("-a", "--audio-only", action="store_true",
dest="audio_only")
parser.add_argument("-g", "--gif", action="store_true")
parser.add_argument("-f", "--fps", type=int, default=12, help="gif fps")
parser.add_argument("-o", "--output")
parser.add_argument("-q", "--quiet", action="store_true")
args = parser.parse_args()
# Get video ID to use as default file name
get_id = subprocess.Popen(
["youtube-dl", "--get-id", args.url],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
universal_newlines=True,
)
video_id = None
while not video_id: # Sometimes `get_id` returns nothing
out, err = get_id.communicate()
get_id.wait()
video_id = out.strip() # Remove newlines
# Get video and audio URLs
get_url = subprocess.Popen(
["youtube-dl", "-g", args.url],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
universal_newlines=True,
)
out, err = get_url.communicate()
get_url.wait()
video_url, audio_url = find_url(out)
# Define ffmpeg commands
ffmpeg_cmd = f"ffmpeg -ss {args.start} -to {args.end} -i {video_url} -ss {args.start}\
-to {args.end} -i {audio_url} -map 0:v -map 1:a -c:v libx264 -c:a aac\
-vf scale={args.scale}:-2:flags=lanczos -y {video_id}.mp4"
if args.audio_only:
ffmpeg_cmd = f"ffmpeg -ss {args.start} -to {args.end} -i {audio_url} -c:a aac -y\
{video_id}.aac"
if args.gif:
ffmpeg_cmd = (
f"ffmpeg -ss {args.start} -to {args.end} -i {video_url}"
f" -filter_complex [0:v]fps={args.fps},scale={args.scale}:-2"
":flags=lanczos,split[a][b];[a]palettegen[p];[b][p]paletteuse"
f" -y {video_id}.gif"
)
# Split command in a list to use later with subprocess.Popen
ffmpeg_args = ffmpeg_cmd.split()
if args.output:
ffmpeg_args[-1] = args.output
if args.quiet:
ffmpeg_args = ffmpeg_args + ["-v", "fatal"]
# Run ffmpeg
make_clip = subprocess.Popen(ffmpeg_args)
make_clip.wait()
|
4ee7d820d8f32386cf5b3c0296f0cef7208252c7 | KhanyiMM/Pre-bootcamp-python | /Task 4.py | 183 | 3.984375 | 4 | def three(x,y):
total_sum = x + y
if '3' in str(total_sum):
return True
elif x == 3 or y == 3:
return True
else:
return False
print(three(7,8)) |
cd68ed20c520f22a480d640590feb8c388b3a87d | cedro-gasque/cs-module-project-recursive-sorting | /src/sorting/sorting.py | 2,665 | 4 | 4 | # TO-DO: complete the helper function below to merge 2 sorted arrays
def merge(arrA, arrB):
arr = []
a = b = 0
while a < len(arrA) and b < len(arrB):
l = arrA[a] < arrB[b]
n = not l
arr.append(arrA[a] * l + arrB[b] * n)
a += l
b += n
arr.extend(arrA[a:])
arr.extend(arrB[b:])
return arr
# TO-DO: implement the Merge Sort function below recursively
merge_sort = lambda arr : arr if len(arr) <= 1 else merge(
merge_sort(
arr[:len(arr)//2]
),
merge_sort(
arr[len(arr)//2:]
)
)
# STRETCH: implement the recursive logic for merge sort in a way that doesn't
# utilize any extra memory
# In other words, your implementation should not allocate any additional lists
# or data structures; it can only re-use the memory it was given as input
def merge_in_place(arr, start, mid, end):
if arr[start] > arr[end]:
arr[start:mid], arr[mid:end] = arr[mid:end], arr[start:mid]
# "This is also a lot faster (4x) than most of the other solutions,
# for 100k elements on my Core2Duo with Python2.7 (Ubuntu15.10 x86-64).
# It doesn't make any mmap/munmap system calls while running,
# so it's actually swapping in-place instead of making the interpreter
# allocate and free scratch memory."
# - a random stack overflow comment from 2016 so maybe it's still true lol
merge_sort_in_place = lambda arr, l, r : arr if r - l <= 1 else merge_in_place(
merge_sort_in_place(
arr,
l,
(l + r) // 2
),
merge_sort_in_place(
arr,
(l + r) // 2,
r
)
)
|
25ed1ca68b6618791ab658b86940770d02658631 | flyfatty/PythonTutorial | /leetcode/tree/106.py | 845 | 3.65625 | 4 | # @Time : 2020/10/14 13:23
# @Author : LiuBin
# @File : 106.py
# @Description :
# @Software: PyCharm
"""从中序与后序遍历序列构造二叉树
关键字: 后序遍历
思路:
1、利用后序遍历列表定位root
2、利用中序遍历列表定位左右子树,注意是先右再左
3、递归缩减问题规模
"""
from utils import TreeNode
from typing import List
class Solution:
def buildTree(self, inorder: List[int], postorder: List[int]):
if not postorder or not inorder:
return
root_val = postorder.pop()
root = TreeNode(root_val)
idx = inorder.index(root_val)
root.right = self.buildTree(inorder[idx + 1:], postorder)
root.left = self.buildTree(inorder[:idx], postorder)
return root
print(Solution().buildTree([9, 3, 15, 20, 7], [9, 15, 7, 20, 3]))
|
972f8b85276b235ebcfa947435b7de0eb15f65b7 | CompPhysics/MachineLearning | /doc/src/week36/programs/test2.py | 1,727 | 4.09375 | 4 | import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
np.random.seed(2021)
def fit_beta(X, y):
return np.linalg.pinv(X.T @ X) @ X.T @ y
true_beta = [2, 0.5, 3.7]
x = np.linspace(0, 1, 11)
y = np.sum(
np.asarray([x ** p * b for p, b in enumerate(true_beta)]), axis=0
) + 0.1 * np.random.normal(size=len(x))
degree = 3
X = np.zeros((len(x), degree))
# Include the intercept in the design matrix
for p in range(degree):
X[:, p] = x ** p
beta = fit_beta(X, y)
# Intercept is included in the design matrix
clf = LinearRegression(fit_intercept=False).fit(X, y)
print(f"True beta: {true_beta}")
print(f"Fitted beta: {beta}")
print(f"Sklearn fitted beta: {clf.coef_}")
plt.figure()
plt.scatter(x, y, label="Data")
plt.plot(x, X @ beta, label="Fit")
plt.plot(x, clf.predict(X), label="Sklearn (fit_intercept=False)")
# Do not include the intercept in the design matrix
X = np.zeros((len(x), degree - 1))
for p in range(degree - 1):
X[:, p] = x ** (p + 1)
# Intercept is not included in the design matrix
clf = LinearRegression(fit_intercept=True).fit(X, y)
# Use centered values for X and y when computing coefficients
y_offset = np.average(y, axis=0)
X_offset = np.average(X, axis=0)
beta = fit_beta(X - X_offset, y - y_offset)
intercept = np.mean(y_offset - X_offset @ beta)
print(f"Manual intercept: {intercept}")
print(f"Fitted beta (sans intercept): {beta}")
print(f"Sklearn intercept: {clf.intercept_}")
print(f"Sklearn fitted beta (sans intercept): {clf.coef_}")
plt.plot(x, X @ beta + intercept, "--", label="Fit (manual intercept)")
plt.plot(x, clf.predict(X), "--", label="Sklearn (fit_intercept=True)")
plt.grid()
plt.legend()
plt.show()
|
90889eef40379753e32ac7a61da5b49a921e1dac | andigibson93/snake-game | /pysnake/snake.py | 6,055 | 3.5 | 4 | from pygame.locals import *
from random import randint
import pygame
import time
SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SNAKE_SIZE=25
APPLE_SIZE=20
BANANA_SIZE=20
CHERRY_SIZE=20
GRAPE_SIZE=20
class Fruit:
x = 0
y = 0
def __init__(self,x,y):
self.x = x * APPLE_SIZE
self.y = y * APPLE_SIZE
def draw(self, surface, image):
surface.blit(image,(self.x, self.y))
class Player:
x = [0]
y = [0]
direction = 0
length = 3
updateCountMax = 2
updateCount = 0
def __init__(self, length):
self.length = length
for i in range(0,2000):
self.x.append(-100)
self.y.append(-100)
# initial positions, no collision.
self.x[1] = 1*SNAKE_SIZE
self.x[2] = 2*SNAKE_SIZE
def update(self):
self.updateCount = self.updateCount + 1
if self.updateCount > self.updateCountMax:
# update previous positions
# for (i = length -1; i>0; i--)
for i in range(self.length-1,0,-1):
self.x[i] = self.x[i-1]
self.y[i] = self.y[i-1]
# update position of head of snake
if self.direction == 0:
self.x[0] = self.x[0] + SNAKE_SIZE
if self.direction == 1:
self.x[0] = self.x[0] - SNAKE_SIZE
if self.direction == 2:
self.y[0] = self.y[0] - SNAKE_SIZE
if self.direction == 3:
self.y[0] = self.y[0] + SNAKE_SIZE
if self.x[0] > SCREEN_WIDTH:
self.x[0] = 0
if self.y[0] > SCREEN_HEIGHT:
self.y[0] = 0
if self.x[0] < 0:
self.x[0] = SCREEN_WIDTH - SNAKE_SIZE
if self.y[0] < 0:
self.y[0] = SCREEN_HEIGHT - SNAKE_SIZE
self.updateCount = 0
def moveRight(self):
if self.direction != 1:
self.direction = 0
def moveLeft(self):
if self.direction != 0:
self.direction = 1
def moveUp(self):
if self.direction != 3:
self.direction = 2
def moveDown(self):
if self.direction != 2:
self.direction = 3
def draw(self, surface, image):
for i in range(0,self.length):
surface.blit(image,(self.x[i],self.y[i]))
class Game: #checks if the snake and the apple collides, and snake collides with itself
def isCollision(self,x1,y1,x2,y2, asize, bsize):
if x1 + asize > x2 and x1 < x2 + bsize:
if y1 + asize > y2 and y1 < y2 + bsize:
return True
return False
class App:
windowWidth = SCREEN_WIDTH
windowHeight = SCREEN_HEIGHT
player = 0
apple = 0
def __init__(self):
self._running = True
self._display_surf = None
self._image_surf = None
self._apple_surf = None
self._fruit_surf = list()
self._fruit_number = 1
self.game = Game()
self.player = Player(5) #change the size of the player
self.apple = Fruit(5,5)
def on_init(self):
pygame.init()
self._display_surf = pygame.display.set_mode((self.windowWidth,self.windowHeight), pygame.HWSURFACE)
pygame.display.set_caption('Pygame pythonspot.com example')
self._running = True
self._image_surf = pygame.image.load("snake.png").convert()
self._apple_surf = pygame.image.load("apple.png").convert()
self._fruit_surf.append(pygame.image.load("apple.png").convert())
self._fruit_surf.append(pygame.image.load("banana.png").convert())
self._fruit_surf.append(pygame.image.load("grape.png").convert())
self._fruit_surf.append(pygame.image.load("cherry.png").convert())
def on_event(self, event):
if event.type == QUIT:
self._running = False
def on_loop(self):
self.player.update()
# does snake eat apple?
for i in range(0,self.player.length):
if self.game.isCollision(self.apple.x,self.apple.y,self.player.x[i], self.player.y[i],APPLE_SIZE, SNAKE_SIZE):
self.apple.x = randint(2,SCREEN_WIDTH - APPLE_SIZE) #where the apples are placed on the screen
self.apple.y = randint(2,SCREEN_HEIGHT - APPLE_SIZE)
self.player.length = self.player.length + 1
self._fruit_number = randint(0, len(self._fruit_surf)-1)
# does snake collide with itself?
for i in range(2,self.player.length):
if self.game.isCollision(self.player.x[0],self.player.y[0],self.player.x[i], self.player.y[i],SNAKE_SIZE, SNAKE_SIZE):
print("You lose! Collision: ")
print("x[0] (" + str(self.player.x[0]) + "," + str(self.player.y[0]) + ")")
print("x[" + str(i) + "] (" + str(self.player.x[i]) + "," + str(self.player.y[i]) + ")")
exit(0)
pass
def on_render(self):
self._display_surf.fill((0,0,0))
self.player.draw(self._display_surf, self._image_surf)
self.apple.draw(self._display_surf, self._fruit_surf[self._fruit_number])
pygame.display.flip()
def on_cleanup(self):
pygame.quit()
def on_execute(self):
if self.on_init() == False:
self._running = False
clock = pygame.time.Clock()
while( self._running ):
pygame.event.pump()
keys = pygame.key.get_pressed()
if (keys[K_RIGHT]):
self.player.moveRight()
if (keys[K_LEFT]):
self.player.moveLeft()
if (keys[K_UP]):
self.player.moveUp()
if (keys[K_DOWN]):
self.player.moveDown()
if (keys[K_ESCAPE]):
self._running = False
self.on_loop()
self.on_render()
clock.tick(50)
self.on_cleanup()
if __name__ == "__main__" :
print("Hello")
theApp = App()
theApp.on_execute() |
527aef6e93a1966a3f349ed5e79e9d5a34612905 | sgriffith3/2020-12-07-PyNDE | /funcy.py | 405 | 3.953125 | 4 | """
This is an example of a basic function.
"""
def add_111(any_number):
"""
This function adds 111 to any_number
"""
response = any_number + 111
print(f"Your number is: {response}")
return response
add_111(55)
add_111(5)
add_111(89)
add_111(3.14)
print(add_111(42))
x = add_111(add_111(1))
print(x, "coolio")
# def print(*objects, sep=" ", end="\n" ...):
# print("something")
|
ad1ea5d5eaccebf301240d604f66cc34cc9ffa01 | mwroffo/FastCardsOnline | /app/Deck.py | 3,990 | 4.125 | 4 | from Card import Card
"""
Representing a deck of flash`Card`s.
There are plenty of prebaked structures for this purpose, but for the sake
of data structures practice, I built this from scratch.
In data structures terms, this is most like a List. It allows inserts and
removals at head, tail, or anywhere in the middle, in addition to sets and
contains, indexOf, etc.
2018-07-22 mwroffo
"""
class Deck:
""" Models a deck of flash`Card`s.
Knows the deck's name and the cards in it. Iterable. Allows dups.
"""
def __init__(self, name, cards=[]):
""" init a deck with list of cards as arg, or empty list """
self._name = name
self._cards = cards # a `Deck` is a `list` of `Card`s
self._size = len(cards)
def getSize(self):
return self._size
def doesContain(self, other):
for i in range(len(self._cards)):
if self._cards[i] == other:
return True # should `break` automatically with retur
return False
def set(self, index, card):
""" sets the card at index `index` to equal `card` """
self._cards[index] = card
def indexOf(self, card):
""" return index of `card`. if not found, return -1 """
for i in range(len(self._cards)):
if self._cards[i] == card:
return i
return -1
def tailInsert(self, card):
""" add a `Card` to the end of the deck """
self._cards.append(card)
self._size += 1
def headInsert(self, card):
""" add a `Card` to the front of the deck """
self._cards.insert(0, card)
self._size += 1
def insertAt(self, card, index):
""" add a `Card` before index `index` """
self._cards.insert(index, card)
self._size += 1
def remove(self, card):
""" remove the matching `Card` from the deck """
self._cards.remove(card)
self._size -= 1
def clear(self):
""" empties the `Deck` """
self._cards = []
self._size = 0
def getName(self):
""" returns the name of the `Deck` """
return self._name
def setName(self, name):
""" sets the name of the `Deck` """
self._name = name
def getCards(self):
""" returns the `Card`s in the `Deck` as a `list`. """
return self._cards
def setCards(self, cards):
""" sets the `Card`s in the `Deck` to `cards`. """
self._cards = cards
self._size = len(cards)
def __str__(self):
""" returns a str representation of the deck """
cardstrs = []
for card in self.getCards():
cardstrs.append(str(card))
return "{} CARDS IN DECK {}: {}".format(str(self._size),
self.getName().upper(), cardstrs)
def _main():
""" test client """
# test card constructor
card = Card("Who murdered a man for Annagret?",
"Andreas Wolf did. He\'s very charismatic.")
card2 = Card("What is Purity\'s mother\'s name?",
"Anabel.")
deck = Deck("Purity Trivia", [card, card2]) # test constructor: init deck with a list
card3 = Card("Who is it that knows Andreas Wolf\'s great secret?",
"Tom. And his daughter, Purity.")
deck.tailInsert(card3)
# test set:
deck.set(1, Card("I am now", "The second card"))
print(deck)
print()
# test insertAt:
card4 = Card("I will be inserted", "third")
deck.insertAt(card4, 2)
print(deck)
print()
# test index of
index = deck.indexOf(card4)
print("EXPECTED 2, ACTUAL {}".format(str(index)))
# test card set methods:
card4.setTerm("I will be")
card4.setDefinition("gone")
deck.set(index, card4)
print("EXPECTED third card to change, ACTUAL {}".format(str(deck)))
# test removal
deck.remove(card4)
print("EXPECTED third card to be removed, ACTUAL {}".format(deck))
if __name__ == '__main__':
_main()
|
f39ded82b49866952dc9e686639312704c85cf8a | suppressf0rce/ProgramTranslators_Homework1 | /src/Token.py | 1,121 | 4.1875 | 4 | # Token types
#
# EOF (end-of-file) token is used to indicate that
# there is no more input left for lexical analysis
INTEGER, PLUS, MINUS, MUL, DIV, EOF, OPEN_PARENTHESES, CLOSE_PARENTHESES, STRING, ASSIGN, COMMA, EQUALS, LESS, GREATER, LEQUALS, GEQUALS = (
'INTEGER',
'PLUS',
'MINUS',
'MUL',
'DIV',
'EOF',
'OPEN_PARENTHESES',
'CLOSE_PARENTHESES',
'STRING',
'ASSIGN',
'COMMA',
'EQUALS',
'LESS',
'GREATER',
'LEQUALS',
'GEQUALS '
)
class Token(object):
def __init__(self, type, value):
# token type: INTEGER, PLUS, MINUS, MUL, DIV, or EOF
self.type = type
# token value: non-negative integer value, '+', '-', '*', '/', or None
self.value = value
def __str__(self):
"""String representation of the class instance.
Examples:
Token(INTEGER, 3)
Token(PLUS, '+')
Token(MUL, '*')
"""
return 'Token({type}, {value})'.format(
type=self.type,
value=repr(self.value)
)
def __repr__(self):
return self.__str__()
|
854e433fd05d867c6983a63dcc21f038108158a1 | letsgolesco/Project-Euler | /problem_22.py | 1,016 | 3.78125 | 4 | # Names scores
#
# File given: names.txt, containing over 5000 first names
# Begin by sorting the list into alphabetical order
# Then work out the alphabetical value for each name
# (sum of numbers corresponding to each letter)
# Multiply this value by its position in the sorted list
# That's the name score!
#
# What's the total of all name scores?
# Function to find namescore
def namescore(name, index):
score = 0
# Iterate over chars & sum their values
for char in name:
score += ord(char) - 64 # Use unicode value & shift so A = 1
score *= index + 1 # Multiply by spot in list
return score
# Read in names file
f = open('names.txt', 'r')
bigstr = f.readline().replace('"', '') # Remove quotes
names = bigstr.split(',') # Comma split
names.sort() # Thank you based python
# Iterate over names & sum their namescores
total = 0
for j in range(len(names)):
ns = namescore(names[j], j)
total += ns
print total
|
036a4525469b44316dc47bc2caee3e6b03fa8c58 | praneethpeddi/Python-Assignments | /Oct20th-Dictionaries/diff_copy_assignment.py | 377 | 4.28125 | 4 | # assigning using assignment operator
dict1 = {1: 'one', 2: 'two', 3: 'three', 4: 'four'}
dict2 = dict1
dict2.clear()
print(dict1)
print(type(dict1))
print(dict2)
print(type(dict2))
print()
# assigning using the copy method
dict1 = {1: 'one', 2: 'two', 3: 'three', 4: 'four'}
dict2 = dict1.copy()
dict2.clear()
print(dict1)
print(type(dict1))
print(dict2)
print(type(dict2)) |
71c6c990cb067a053461d52af67c6a7f6bfa3c21 | crystalDf/Automate-the-Boring-Stuff-with-Python-Chapter-10-Debugging | /traceback_format.py | 262 | 3.65625 | 4 | import traceback
try:
raise Exception('This is the error message.')
except:
error_file = open('errorInfo.txt', 'w')
print(error_file.write(traceback.format_exc()))
error_file.close()
print('The traceback info was written to errorInfo.txt.')
|
bcf8b2e0750fb6d7d77df4712f801d44404ac7ff | gvolsky/Python-algorithms-practice | /BST.py | 6,268 | 3.625 | 4 | class BSTNode:
def __init__(self, key, val, parent):
self.NodeKey = key
self.NodeValue = val
self.Parent = parent
self.LeftChild = None
self.RightChild = None
class BSTFind:
def __init__(self):
self.Node = None
self.NodeHasKey = False
self.ToLeft = False
class BST:
def __init__(self, node):
self.Root = node
def FindNodeByKey(self, key):
finded_node = BSTFind()
if self.Root is None:
return finded_node
node = self.Root
while node is not None:
if node.NodeKey == key:
finded_node.Node = node
finded_node.NodeHasKey = True
return finded_node
if key < node.NodeKey:
if node.LeftChild is None:
finded_node.Node = node
finded_node.ToLeft = True
return finded_node
node = node.LeftChild
else:
if node.RightChild is None:
finded_node.Node = node
return finded_node
node = node.RightChild
def AddKeyValue(self, key, val):
finded_node = self.FindNodeByKey(key)
if finded_node.NodeHasKey:
return False
if finded_node.Node is None:
self.Root = BSTNode(key, val, None)
elif finded_node.ToLeft:
finded_node.Node.LeftChild = BSTNode(key, val, finded_node.Node)
else:
finded_node.Node.RightChild = BSTNode(key, val, finded_node.Node)
def FinMinMax(self, FromNode, FindMax):
finded_element = BSTFind()
if FromNode is None:
return finded_element
node = FromNode
if FindMax:
while node.RightChild is not None:
node = node.RightChild
finded_element.Node = node
else:
while node.LeftChild is not None:
node = node.LeftChild
finded_element.Node = node
return finded_element
def DeleteNodeByKey(self, key):
removed_node = self.FindNodeByKey(key)
if not removed_node.NodeHasKey:
return False
if removed_node.Node.LeftChild is None and removed_node.Node.RightChild is None:
if removed_node.Node.Parent is None:
self.Root = None
elif removed_node.Node.Parent.LeftChild == removed_node.Node:
removed_node.Node.Parent.LeftChild = None
else:
removed_node.Node.Parent.RightChild = None
removed_node.Node.Parent = None
elif removed_node.Node.RightChild is None:
if removed_node.Node.Parent is None:
self.Root = removed_node.Node.LeftChild
removed_node.Node.LeftChild = None
removed_node.Node.LeftChild.Parent = None
else:
removed_node.Node.LeftChild.Parent = removed_node.Node.Parent
if removed_node.Node.Parent.LeftChild == removed_node.Node:
removed_node.Node.Parent.LeftChild = removed_node.Node.LeftChild
else:
removed_node.Node.Parent.RightChild = removed_node.Node.LeftChild
removed_node.Node.Parent = None
elif removed_node.Node.LeftChild is None:
if removed_node.Node.Parent is None:
self.Root = removed_node.Node.RightChild
removed_node.Node.RightChild = None
removed_node.Node.RightChild.Parent = None
else:
removed_node.Node.RightChild.Parent = removed_node.Node.Parent
if removed_node.Node.Parent.LeftChild == removed_node.Node:
removed_node.Node.Parent.LeftChild = removed_node.Node.RightChild
else:
removed_node.Node.Parent.RightChild = removed_node.Node.RightChild
removed_node.Node.Parent = None
else:
insert_node = self.FinMinMax(removed_node.Node.RightChild, False)
if insert_node.Node.RightChild is None:
if removed_node.Node.RightChild != insert_node.Node:
insert_node.Node.Parent.LeftChild = None
insert_node.Node.Parent = removed_node.Node.Parent
if removed_node.Node.Parent is not None:
if removed_node.Node.Parent.LeftChild == removed_node.Node:
removed_node.Node.Parent.LeftChild = insert_node.Node
else:
removed_node.Node.Parent.RightChild = insert_node.Node
else:
self.Root = insert_node.Node
else:
if insert_node.Node == removed_node.Node.RightChild:
insert_node.Node.Parent = removed_node.Node.Parent
else:
insert_node.Node.RightChild.Parent = insert_node.Node.Parent
insert_node.Node.Parent.LeftChild = insert_node.Node.RightChild
insert_node.Node.Parent = removed_node.Node.Parent
if removed_node.Node.Parent is not None:
if removed_node.Node.Parent.LeftChild == removed_node.Node:
removed_node.Node.Parent.LeftChild = insert_node.Node
else:
removed_node.Node.Parent.RightChild = insert_node.Node
else:
self.Root = insert_node.Node
insert_node.Node.LeftChild = removed_node.Node.LeftChild
insert_node.Node.LeftChild.Parent = insert_node.Node
if insert_node.Node != removed_node.Node.RightChild:
insert_node.Node.RightChild = removed_node.Node.RightChild
insert_node.Node.RightChild.Parent = insert_node.Node
def Count(self):
if self.Root is None:
return 0
left_count = BST(self.Root.LeftChild).Count()
right_count = BST(self.Root.RightChild).Count()
return 1 + left_count + right_count
|
2a53bacaa3ebddac6bff10bef303c2cec25a69ac | s0409/DATA-STRUCTURES-AND-ALGORITHMS | /LONGEST CONSECUTIVE SUBSEQUENCE/main.py | 457 | 3.765625 | 4 | def longestsub(arr,n):
#create hash
s=set()
ans=0
#insert all elements to hash
for ele in arr:
s.add(ele)
#look for arr[i]-1
for i in range(n):
if arr[i]-1 not in s:
j=arr[i]
while j in s:
j+=1
ans=max(ans,j-arr[i])
return ans
#driver code
if __name__=="__main__":
arr=[1,3,5,9,8,4,2]
n=len(arr)
print(longestsub(arr,n)) |
03f2c7f18b203cf6cac51f264e813730ac196cfa | cy275/Statistics_Calculator | /Stat_Calculator/Median.py | 217 | 3.734375 | 4 | def median(a):
a = sorted(a)
list_length = len(a)
num = list_length//2
if list_length % 2 == 0:
median_num = (a[num] + a[num + 1])/2
else:
median_num = a[num]
return median_num
|
2424d4fca4b1c3e51647f3101ee983fbe900a627 | LocNguyenHuu2k/LocNguyen | /list_practice.py | 505 | 3.6875 | 4 | games = ["CSGO", "PUBG", "Leage of Legend", "Star Craft 2"]
print(*games,sep=", ")
new_games = input("What games would you like to add?")
games.append(new_games)
print(*games,sep=", ")
remove_game = input("What game would you like to remove?")
games.remove(remove_game)
print(*games,sep=", ")
for game, index in enumerate(games):
print(game, "." , index)
pos_remove = int(input("Postion to remove = ? "))
games.pop(pos_remove)
for game, index in enumerate(games):
print(game, "." , index)
|
967374a6092bdadf0f75662a1d85e012d208aa00 | kitizl/spongePy | /spongePy.py | 1,103 | 3.78125 | 4 | #! python3
import sys
import random
def spongify(s):
output = ""
for i in range(len(s)):
if i%2 == 0:
output += s[i].upper()
else:
output += s[i].lower()
return output
def sponge_real(s):
output = ""
for i in range(len(s)):
if random.randint(0,1):
output += s[i].upper()
else:
output += s[i].lower()
return output
def usage_text():
print("""
Usage:
python3 spongePy.py [option] < [input-file] > [output-file]
[option]
-r : To activate realistic mode instead of normal (default) mode
Everything after that is optional.
If you'd like to use the samples, set [input-file] to sample-inputs/[filename].
""")
def do_the_thing(function_name):
while True:
try:
print(function_name(input()))
except EOFError:
break
if len(sys.argv) == 2 and sys.argv[1] == '-r' :
do_the_thing(sponge_real)
elif len(sys.argv) == 2:
print("Input Error : Please recheck command.")
# add usage text
else:
do_the_thing(spongify)
|
a1838322f123312e2009600c0af5ccac4d968024 | pmheintz/PythonTutorials | /methods/methods_demo2.py | 508 | 4.25 | 4 | """
Working with more methods
Adding documentation
"""
def sum_nums(n1, n2):
"""
Get the sum of 2 numbers
:param n1: first number
:param n2: second number
:return: sum of n1 and n2
"""
return n1 + n2
sum1 = sum_nums(1, 2)
print(sum1)
print(sum_nums(5, 7))
string_add = sum_nums("one", "two")
print(string_add)
print("*" * 20)
def isMetro(city):
l = ["sfo", "nyc", "la"]
if city in l:
return True
else:
return False
x = isMetro("boston")
print(x) |
5e40f7e89c9ea1d4c5e4d7665a8743645b6233db | All3yp/Daily-Coding-Problem-Solutions | /Solutions/179.py | 716 | 4 | 4 | """
Problem:
Given the sequence of keys visited by a postorder traversal of a binary search tree,
reconstruct the tree.
For example, given the sequence 2, 4, 3, 8, 7, 5, you should construct the following
tree:
5
/ \
3 7
/ \ \
2 4 8
"""
from typing import List
from DataStructures.Tree import BinarySearchTree, Node
def bst_from_postorder(postorder: List[int]) -> BinarySearchTree:
tree = BinarySearchTree()
if postorder:
tree.add(postorder[-1])
for val in postorder[-2::-1]:
tree.add(val)
return tree
if __name__ == "__main__":
print(bst_from_postorder([2, 4, 3, 8, 7, 5]))
"""
SPECS:
TIME COMPLEXITY: O(n log(n))
SPACE COMPLEXITY: O(n)
"""
|
f3f46edd2095db1cab58f27d92b568b96a3e9600 | scric/Python3.x-2017 | /begginger/2017-03-07/第四章 - 持久存储 - try/missingFile.py | 926 | 3.953125 | 4 |
# 尝试打开一个不存在的文件
# try:
# data=open('missing.txt')
# print(data.readline(),end='')
# except IOError:
# print('File error')
# finally:
# data.close()
'''
出现错误
Traceback (most recent call last):
File error
File "D:/Python/python-git/begginger/2017-03-07/missingFile.py", line 12, in <module>
data.close()
NameError: name 'data' is not defined
'''
# 修正方法,在finally上添加一个判断语句。
# try:
# data=open('missing.txt')
# print(data.readline(),end='')
# except IOError as err:
# print('File error'+str(err))
# finally:
# if 'data' in locals(): # locals() BIF 会返回当前作用域中定义的所有名的集合
# data.close()
# 不过还是不清楚什么导致了错误
# 使用with
try:
with open('missing.txt',"w") as data:
print("It's...",file=data)
except IOError as err:
print('File error'+str(err))
|
8fc723c6bea4f557dddd68cd1d8fdf78fe61fc27 | stefanolocci/English-Italian-Direct-Translator | /En_It_Translator/utils/NumberUtility.py | 1,657 | 3.703125 | 4 | class NumberUtility:
def is_ordinal_number(self, word):
try:
int(word.replace('th', ''))
return True
except ValueError:
return False
def is_number(self, word):
try:
float(word)
return True
except ValueError:
return False
def __int_to_roman(self, num):
""" Convert an integer to a Roman numeral. """
if not isinstance(num, type(1)):
return False
if not 0 < num < 4000:
return False
ints = (1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1)
nums = ('M', 'CM', 'D', 'CD', 'C', 'XC', 'L', 'XL', 'X', 'IX', 'V', 'IV', 'I')
result = []
for i in range(len(ints)):
count = int(num / ints[i])
result.append(nums[i] * count)
num -= ints[i] * count
return ''.join(result)
def is_roman_number(self, num):
""" Convert a Roman numeral to an integer. """
if not isinstance(num, type("")):
return False
num = num.upper()
nums = {'M': 1000, 'D': 500, 'C': 100, 'L': 50, 'X': 10, 'V': 5, 'I': 1}
sum = 0
for i in range(len(num)):
try:
value = nums[num[i]]
# If the next place holds a larger number, this value is negative
if i + 1 < len(num) and nums[num[i + 1]] > value:
sum -= value
else:
sum += value
except KeyError:
return False
# easiest test for validity...
return self.__int_to_roman(sum) == num
|
700eb342c6eda26665431b0f2b77b34c0d831248 | danrfiuza/learningpython | /datetimeexample.py | 507 | 3.96875 | 4 | import time;
import datetime
import calendar
ticks = time.time()
now = datetime.datetime.now()
# print("Number of ticks since 12:00am, Jan 1,1970: ",ticks,end="\n")
# cal = calendar.month(now.year, now.month)
# print ("Here is the calendar:",end="\n")
# print (cal)
date = input('Wanna see calendar? type a date on this format: dd/mm/yyyy: ')
date = date.split("/")
day = int(date[0])
month = int(date[1])
year = int(date[2])
print ("Here is the calendar:",end="\n")
print (calendar.month(year,month))
|
567f1004a4cd606b6458abd21585abc577350ba3 | iwwxiong/leetcode.python | /5.longest-palindromic-substring/test_longest_palindromic_substring.py | 928 | 3.6875 | 4 | from longest_palindromic_substring import Solution, is_palindrome
def test_is_palindrome():
assert is_palindrome("a") is True
assert is_palindrome("aa") is True
assert is_palindrome("ab") is False
assert is_palindrome("abcb") is False
assert is_palindrome("aba") is True
def test_longestPalindrome():
s = Solution()
assert s.longestPalindrome("a") == "a"
assert s.longestPalindrome("ab") == "a"
assert s.longestPalindrome("abba") == "abba"
assert s.longestPalindrome("aaaa") == "aaaa"
assert s.longestPalindrome("ababa") == "ababa"
def test_longestPalindromeV2():
s = Solution()
assert s.longestPalindromeV2("a") == "a"
assert s.longestPalindromeV2("ab") == "a"
assert s.longestPalindromeV2("aaa") == "aaa"
assert s.longestPalindromeV2("abba") == "abba"
assert s.longestPalindromeV2("aaaa") == "aaaa"
assert s.longestPalindromeV2("ababa") == "ababa"
|
c3a2537add062a6b9a66ba203cfd83874c428f9f | lytr777/EvoGuess | /method/solver/models/option.py | 691 | 3.609375 | 4 | class SolverOption:
def __init__(self, name, value):
self.name = name
self.value = value
def str(self, form):
return form % (self.name, self.value)
def __str__(self):
return self.str('%s=%s')
def __eq__(self, other):
if hasattr(other, 'name'):
return self.name == other.name
return False
def __hash__(self):
return hash(self.name)
__all__ = [
'SolverOption'
]
if __name__ == '__main__':
a = SolverOption('a', 1)
b = SolverOption('b', 1)
c = SolverOption('c', 1)
s = set([a, b, c])
a2 = SolverOption('a', 1)
d = SolverOption('d', 1)
for o in s:
print(o)
|
de93c76ce532000608a092c47b2060192459da58 | dikshaa1702/ml | /mini project/challenge1.py | 573 | 3.90625 | 4 | # -*- coding: utf-8 -*-
"""
Created on Tue May 7 19:30:18 2019
@author: DiPu
"""
import random
guess=random.randrange(1,11)
print("enter number")
no=int(input())
if(guess==no):
print("player wins and computer lose")
else:
print("player lose and computer wins")
print("random no: {0}".format(guess,no))
print("guess no: {1}".format(guess,no))
if no==guess:
print("guess write")
elif ((no<=guess+2) or (no>=guess-2)):
print("too high")
else:
print("too low")
while guess!=no:
print("enter number")
no=int(input())
print("guess matched")
|
d38cdb22f512683edc15a7f2d12cda9c6f4b52f0 | MacJei/pyspark_py | /pyspark_1.py | 47,319 | 4.1875 | 4 | # What is Spark, anyway?
# Spark is a platform for cluster computing. Spark lets you spread data and computations over clusters with multiple nodes (think of each node as a separate computer). Splitting up your data makes it easier to work with very large datasets because each node only works with a small amount of data.
#
# As each node works on its own subset of the total data, it also carries out a part of the total calculations required, so that both data processing and computation are performed in parallel over the nodes in the cluster. It is a fact that parallel computation can make certain types of programming tasks much faster.
#
# However, with greater computing power comes greater complexity.
#
# Deciding whether or not Spark is the best solution for your problem takes some experience, but you can consider questions like:
#
# Is my data too big to work with on a single machine?
# Can my calculations be easily parallelized?
# Using Spark in Python
# The first step in using Spark is connecting to a cluster.
#
# In practice, the cluster will be hosted on a remote machine that's connected to all other nodes. There will be one computer, called the master that manages splitting up the data and the computations. The master is connected to the rest of the computers in the cluster, which are called slaves. The master sends the slaves data and calculations to run, and they send their results back to the master.
#
# When you're just getting started with Spark it's simpler to just run a cluster locally. Thus, for this course, instead of connecting to another computer, all computations will be run on DataCamp's servers in a simulated cluster.
#
# Creating the connection is as simple as creating an instance of the SparkContext class. The class constructor takes a few optional arguments that allow you to specify the attributes of the cluster you're connecting to.
#
# An object holding all these attributes can be created with the SparkConf() constructor. Take a look at the documentation for all the details!
#
# For the rest of this course you'll have a SparkContext called sc already available in your workspace.
# EXERCISE
# Examining The SparkContext
# In this exercise you'll get familiar with the SparkContext.
#
# You'll probably notice that code takes longer to run than you might expect. This is because Spark is some serious software. It takes more time to start up than you might be used to. You may also find that running simpler computations might take longer than expected. That's because all the optimizations that Spark has under its hood are designed for complicated operations with big data sets. That means that for simple or small problems Spark may actually perform worse than some other solutions!
#
# INSTRUCTIONS
# 100 XP
# Get to know the SparkContext.
#
# Call print() on sc to verify there's a SparkContext in your environment.
# print() sc.version to see what version of Spark is running on your cluster.
# Verify SparkContext
print(sc)
# Print Spark version
print(sc.version)
#output:
# Welcome to
# ____ __
# / __/__ ___ _____/ /__
# _\ \/ _ \/ _ `/ __/ '_/
# /__ / .__/\_,_/_/ /_/\_\ version 2.1.0
# /_/
#
# Using Python version 3.5.2 (default, Nov 17 2016 17:05:23)
# SparkSession available as 'spark'.
#
# <script.py> output:
# <pyspark.context.SparkContext object at 0x7fbf72930c18>
# 2.1.0
# Using DataFrames
# Spark's core data structure is the Resilient Distributed Dataset (RDD). This is a low level object that lets Spark work its magic by splitting data across multiple nodes in the cluster. However, RDDs are hard to work with directly, so in this course you'll be using the Spark DataFrame abstraction built on top of RDDs.
#
# The Spark DataFrame was designed to behave a lot like a SQL table (a table with variables in the columns and observations in the rows). Not only are they easier to understand, DataFrames are also more optimized for complicated operations than RDDs.
#
# When you start modifying and combining columns and rows of data, there are many ways to arrive at the same result, but some often take much longer than others. When using RDDs, it's up to the data scientist to figure out the right way to optimize the query, but the DataFrame implementation has much of this optimization built in!
#
# To start working with Spark DataFrames, you first have to create a SparkSession object from your SparkContext. You can think of the SparkContext as your connection to the cluster and the SparkSession as your interface with that connection.
#
# Remember, for the rest of this course you'll have a SparkSession called spark available in your workspace!
#
# Which of the following is an advantage of Spark DataFrames over RDDs?
# Operations using DataFrames are automatically optimized.
# EXERCISE
# Creating a SparkSession
# We've already created a SparkSession for you called spark, but what if you're not sure there already is one? Creating multiple SparkSessions and SparkContexts can cause issues, so it's best practice to use the SparkSession.builder.getOrCreate() method. This returns an existing SparkSession if there's already one in the environment, or creates a new one if necessary!
#
# INSTRUCTIONS
# 100 XP
# Import SparkSession from pyspark.sql.
# Make a new SparkSession called my_spark using SparkSession.builder.getOrCreate().
# Print my_spark to the console to verify it's a SparkSession.
# Import SparkSession from pyspark.sql
from pyspark.sql import SparkSession
# Create my_spark
my_spark = SparkSession.builder.getOrCreate()
# Print my_spark
print(my_spark)
# Using Python version 3.5.2 (default, Nov 17 2016 17:05:23)
# SparkSession available as 'spark'.
#
# <script.py> output:
# <pyspark.sql.session.SparkSession object at 0x7fbf5f08df28>
# EXERCISE
# Viewing tables
# Once you've created a SparkSession, you can start poking around to see what data is in your cluster!
#
# Your SparkSession has an attribute called catalog which lists all the data inside the cluster. This attribute has a few methods for extracting different pieces of information.
#
# One of the most useful is the .listTables() method, which returns the names of all the tables in your cluster as a list.
#
# INSTRUCTIONS
# 100 XP
# See what tables are in your cluster by calling spark.catalog.listTables() and printing the result!
# Print the tables in the catalog
print(spark.catalog.listTables())
# EXERCISE
# Are you query-ious?
# One of the advantages of the DataFrame interface is that you can run SQL queries on the tables in your Spark cluster. If you don't have any experience with SQL, don't worry (you can take our Introduction to SQL course!), we'll provide you with queries!
#
# As you saw in the last exercise, one of the tables in your cluster is the flights table. This table contains a row for every flight that left Portland International Airport (PDX) or Seattle-Tacoma International Airport (SEA) in 2014 and 2015.
#
# Running a query on this table is as easy as using the .sql() method on your SparkSession. This method takes a string containing the query and returns a DataFrame with the results!
#
# If you look closely, you'll notice that the table flights is only mentioned in the query, not as an argument to any of the methods. This is because there isn't a local object in your environment that holds that data, so it wouldn't make sense to pass the table as an argument.
#
# Remember, we've already created a SparkSession called spark in your workspace.
#
# INSTRUCTIONS
# 100 XP
# Use the .sql() method to get the first 10 rows of the flights table and save the result to flights10. The variable query contains the appropriate SQL query.
# Use the DataFrame method .show() to print flights10.
# Don't change this query
query = "FROM flights SELECT * LIMIT 10"
# Get the first 10 rows of flights
flights10 = spark.sql(query)
# Show the results
flights10.show()
# EXERCISE
# Pandafy a Spark DataFrame
# Suppose you've run a query on your huge dataset and aggregated it down to something a little more manageable.
#
# Sometimes it makes sense to then take that table and work with it locally using a tool like pandas. Spark DataFrames make that easy with the .toPandas() method. Calling this method on a Spark DataFrame returns the corresponding pandas DataFrame. It's as simple as that!
#
# This time the query counts the number of flights to each airport from SEA and PDX.
#
# Remember, there's already a SparkSession called spark in your workspace!
#
# INSTRUCTIONS
# 100 XP
# Run the query using the .sql() method. Save the result in flight_counts.
# Use the .toPandas() method on flight_counts to create a pandas DataFrame called pd_counts.
# Print the .head() of pd_counts to the console.
# Don't change this query
query = "SELECT origin, dest, COUNT(*) as N FROM flights GROUP BY origin, dest"
# Run the query
flight_counts = spark.sql(query)
# Convert the results to a pandas DataFrame
pd_counts = flight_counts.toPandas()
# Print the head of pd_counts
print(pd_counts.head())
# EXERCISE
# Put some Spark in your data
# In the last exercise, you saw how to move data from Spark to pandas. However, maybe you want to go the other direction, and put a pandas DataFrame into a Spark cluster! The SparkSession class has a method for this as well.
#
# The .createDataFrame() method takes a pandas DataFrame and returns a Spark DataFrame.
#
# The output of this method is stored locally, not in the SparkSession catalog. This means that you can use all the Spark DataFrame methods on it, but you can't access the data in other contexts.
#
# For example, a SQL query (using the .sql() method) that references your DataFrame will throw an error. To access the data in this way, you have to save it as a temporary table.
#
# You can do this using the .createTempView() Spark DataFrame method, which takes as its only argument the name of the temporary table you'd like to register. This method registers the DataFrame as a table in the catalog, but as this table is temporary, it can only be accessed from the specific SparkSession used to create the Spark DataFrame.
#
# There is also the method .createOrReplaceTempView(). This safely creates a new temporary table if nothing was there before, or updates an existing table if one was already defined. You'll use this method to avoid running into problems with duplicate tables.
#
# Check out the diagram to see all the different ways your Spark data structures interact with each other.
#
#
#
# There's already a SparkSession called spark in your workspace, numpy has been imported as np, and pandas as pd.
#
# INSTRUCTIONS
# 100 XP
# The code to create a pandas DataFrame of random numbers has already been provided and saved under pd_temp.
# Create a Spark DataFrame called spark_temp by calling the .createDataFrame() method with pd_temp as the argument.
# Examine the list of tables in your Spark cluster and verify that the new DataFrame is not present. Remember you can use spark.catalog.listTables() to do so.
# Register spark_temp as a temporary table named "temp" using the .createOrReplaceTempView() method. Rememeber that the table name is set including it as the only argument!
# Examine the list of tables again!
# Create pd_temp
pd_temp = pd.DataFrame(np.random.random(10))
# Create spark_temp from pd_temp
spark_temp = spark.createDataFrame(pd_temp)
# Examine the tables in the catalog
print(spark.catalog.listTables())
# Add spark_temp to the catalog
spark_temp.createOrReplaceTempView("temp")
# Examine the tables in the catalog again
print(spark.catalog.listTables())
# EXERCISE
# Dropping the middle man
# Now you know how to put data into Spark via pandas, but you're probably wondering why deal with pandas at all? Wouldn't it be easier to just read a text file straight into Spark? Of course it would!
#
# Luckily, your SparkSession has a .read attribute which has several methods for reading different data sources into Spark DataFrames. Using these you can create a DataFrame from a .csv file just like with regular pandas DataFrames!
#
# The variable file_path is a string with the path to the file airports.csv. This file contains information about different airports all over the world.
#
# A SparkSession named spark is available in your workspace.
#
# INSTRUCTIONS
# 100 XP
# Use the .read.csv() method to create a Spark DataFrame called airports
# The first argument is file_path
# Pass the argument header=True so that Spark knows to take the column names from the first line of the file.
# Print out this DataFrame by calling .show().
# Don't change this file path
file_path = "airports.csv"
# Read in the airports data
airports = spark.read.csv(file_path, header=True)
# Show the data
airports.show()
# EXERCISE
# Creating columns
# In this chapter, you'll learn how to use the methods defined by Spark's DataFrame class to perform common data operations.
#
# Let's look at performing column-wise operations. In Spark you can do this using the .withColumn() method, which takes two arguments. First, a string with the name of your new column, and second the new column itself.
#
# The new column must be an object of class Column. Creating one of these is as easy as extracting a column from your DataFrame using df.colName.
#
# Updating a Spark DataFrame is somewhat different than working in pandas because the Spark DataFrame is immutable. This means that it can't be changed, and so columns can't be updated in place.
#
# Thus, all these methods return a new DataFrame. To overwrite the original DataFrame you must reassign the returned DataFrame using the method like so:
#
# df = df.withColumn("newCol", df.oldCol + 1)
# The above code creates a DataFrame with the same columns as df plus a new column, newCol, where every entry is equal to the corresponding entry from oldCol, plus one.
#
# To overwrite an existing column, just pass the name of the column as the first argument!
#
# Remember, a SparkSession called spark is already in your workspace.
#
# INSTRUCTIONS
# 70 XP
# INSTRUCTIONS
# 70 XP
# Use the spark.table() method with the argument "flights" to create a DataFrame containing the values of the flights table in the .catalog. Save it as flights.
# Print the output of flights.show(). The column air_time contains the duration of the flight in minutes.
# Update flights to include a new column called duration_hrs, that contains the duration of each flight in hours.
# Create the DataFrame flights
flights = spark.table('flights')
# Show the head
print(flights.show())
# Add duration_hrs
flights = flights.withColumn('duration_hrs', flights.air_time/60)
# EXERCISE
# Filtering Data
# Now that you have a bit of SQL know-how under your belt, it's easier to talk about the analogous operations using Spark DataFrames.
#
# Let's take a look at the .filter() method. As you might suspect, this is the Spark counterpart of SQL's WHERE clause. The .filter() method takes either a Spark Column of boolean (True/False) values or the WHERE clause of a SQL expression as a string.
#
# For example, the following two expressions will produce the same output:
#
# flights.filter(flights.air_time > 120).show()
# flights.filter("air_time > 120").show()
# Remember, a SparkSession called spark is already in your workspace, along with the Spark DataFrame flights.
#
# INSTRUCTIONS
# 100 XP
# Use the .filter() method to find all the flights that flew over 1000 miles two ways:
# First, pass a SQL string to .filter() that checks the distance is greater than 1000. Save this as long_flights1.
# Then pass a boolean column to .filter() that checks the same thing. Save this as long_flights2.
# Print the .show() of both DataFrames and make sure they're actually equal!
# Filter flights with a SQL string
long_flights1 = flights.filter('distance > 1000')
# Filter flights with a boolean column
long_flights2 = flights.filter(flights.distance > 1000)
# Examine the data to check they're equal
print(long_flights1.show())
print(long_flights2.show())
# EXERCISE
# Selecting
# The Spark variant of SQL's SELECT is the .select() method. This method takes multiple arguments - one for each column you want to select. These arguments can either be the column name as a string (one for each column) or a column object (using the df.colName syntax). When you pass a column object, you can perform operations like addition or subtraction on the column to change the data contained in it, much like inside .withColumn().
#
# The difference between .select() and .withColumn() methods is that .select() returns only the columns you specify, while .withColumn() returns all the columns of the DataFrame in addition to the one you defined. It's often a good idea to drop columns you don't need at the beginning of an operation so that you're not dragging around extra data as you're wrangling. In this case, you would use .select() and not .withColumn().
#
# Remember, a SparkSession called spark is already in your workspace, along with the Spark DataFrame flights.
#
# INSTRUCTIONS
# 100 XP
# Select the columns tailnum, origin, and dest from flights by passing the column names as strings. Save this as selected1.
# Select the columns origin, dest, and carrier using the df.colName syntax and then filter the result using both of the filters already defined for you (filterA and filterB) to only keep flights from SEA to PDX. Save this as selected2.
# Select the first set of columns
selected1 = flights.select('tailnum', 'origin', 'dest')
# Select the second set of columns
temp = flights.select(flights.origin, flights.dest, flights.carrier)
# Define first filter
filterA = flights.origin == "SEA"
# Define second filter
filterB = flights.dest == "PDX"
# Filter the data, first by filterA then by filterB
selected2 = temp.filter(filterA).filter(filterB)
# EXERCISE
# Selecting II
# Similar to SQL, you can also use the .select() method to perform column-wise operations. When you're selecting a column using the df.colName notation, you can perform any column operation and the .select() method will return the transformed column. For example,
#
# flights.select(flights.air_time/60)
# returns a column of flight durations in hours instead of minutes. You can also use the .alias() method to rename a column you're selecting. So if you wanted to .select() the column duration_hrs (which isn't in your DataFrame) you could do
#
# flights.select((flights.air_time/60).alias("duration_hrs"))
# The equivalent Spark DataFrame method .selectExpr() takes SQL expressions as a string:
#
# flights.selectExpr("air_time/60 as duration_hrs")
# with the SQL as keyword being equivalent to the .alias() method. To select multiple columns, you can pass multiple strings.
#
# Remember, a SparkSession called spark is already in your workspace, along with the Spark DataFrame flights.
#
# INSTRUCTIONS
# 100 XP
# Create a table of the average speed of each flight both ways.
#
# Calculate average speed by dividing the distance by the air_time (converted to hours). Use the .alias() method name this column "avg_speed". Save the output as the variable avg_speed.
# Select the columns "origin", "dest", "tailnum", and avg_speed (without quotes!). Save this as speed1.
# Create the same table using .selectExpr() and a string containing a SQL expression. Save this as speed2.
# Define avg_speed
avg_speed = (flights.distance/(flights.air_time/60)).alias("avg_speed")
# Select the correct columns
speed1 = flights.select("origin", "dest", "tailnum", avg_speed)
# Create the same table using a SQL expression
speed2 = flights.selectExpr("origin", "dest", "tailnum", "distance/(air_time/60) as avg_speed")
# EXERCISE
# Aggregating
# All of the common aggregation methods, like .min(), .max(), and .count() are GroupedData methods. These are created by calling the .groupBy() DataFrame method. You'll learn exactly what that means in a few exercises. For now, all you have to do to use these functions is call that method on your DataFrame. For example, to find the minimum value of a column, col, in a DataFrame, df, you could do
#
# df.groupBy().min("col").show()
# This creates a GroupedData object (so you can use the .min() method), then finds the minimum value in col, and returns it as a DataFrame.
#
# Now you're ready to do some aggregating of your own!
#
# A SparkSession called spark is already in your workspace, along with the Spark DataFrame flights.
#
# INSTRUCTIONS
# 100 XP
# Find the length of the shortest (in terms of distance) flight that left PDX by first .filter()ing and using the .min() method. Perform the filtering by refrencing the column directly, not passing a SQL string.
# Find the length of the longest (in terms of time) flight that left SEA by filter()ing and using the .max() method. Perform the filtering by refrencing the column directly, not passing a SQL string.
# Find the shortest flight from PDX in terms of distance
flights.filter(flights.origin == "PDX").groupBy().min("distance").show()
# Find the longest flight from SEA in terms of duration
flights.filter(flights.origin == 'SEA').groupBy().max("air_time").show()
# EXERCISE
# Aggregating II
# To get you familiar with more of the built in aggregation methods, here's a few more exercises involving the flights table!
#
# Remember, a SparkSession called spark is already in your workspace, along with the Spark DataFrame flights.
#
# INSTRUCTIONS
# 100 XP
# Use the .avg() method to get the average air time of Delta Airlines flights (where the carrier column has the value "DL") that left SEA. Th place of departure is stored in the column origin. show() the result.
# Use the .sum() method to get the total number of hours all planes in this dataset spent in the air by creating a column called duration_hrs from the column air_time. show() the result.
# Average duration of Delta flights
flights.filter(flights.carrier == 'DL').filter(flights.origin == 'SEA').groupBy().avg('air_time').show()
# Total hours in the air
flights.withColumn("duration_hrs", flights.air_time/60).groupBy().sum("duration_hrs").show()
# EXERCISE
# Grouping and Aggregating I
# Part of what makes aggregating so powerful is the addition of groups. PySpark has a whole class devoted to grouped data frames: pyspark.sql.GroupedData, which you saw in the last two exercises.
#
# You've learned how to create a grouped DataFrame by calling the .groupBy() method on a DataFrame with no arguments.
#
# Now you'll see that when you pass the name of one or more columns in your DataFrame to the .groupBy() method, the aggregation methods behave like when you use a GROUP BY statement in a SQL query!
#
# Remember, a SparkSession called spark is already in your workspace, along with the Spark DataFrame flights.
#
# INSTRUCTIONS
# 0 XP
# Create a DataFrame called by_plane that is grouped by the column tailnum.
# Use the .count() method with no arguments to count the number of flights each plane made.
# Create a DataFrame called by_origin that is grouped by the column origin.
# Find the .avg() of the air_time column to find average duration of flights from PDX and SEA.
# Group by tailnum
by_plane = flights.groupBy("tailnum")
# Number of flights each plane made
by_plane.count().show()
# Group by origin
by_origin = flights.groupBy("origin")
# Average duration of flights from PDX and SEA
by_origin.avg("air_time").show()
# EXERCISE
# Grouping and Aggregating II
# In addition to the GroupedData methods you've already seen, there is also the .agg() method. This method lets you pass an aggregate column expression that uses any of the aggregate functions from the pyspark.sql.functions submodule.
#
# This submodule contains many useful functions for computing things like standard deviations. All the aggregation functions in this submodule take the name of a column in a GroupedData table.
#
# Remember, a SparkSession called spark is already in your workspace, along with the Spark DataFrame flights. The grouped DataFrames you created in the last exercise are also in your workspace.
#
# INSTRUCTIONS
# 100 XP
# Import the submodule pyspark.sql.functions as F.
# Create a GroupedData table called by_month_dest that's grouped by both the month and dest columns. Refer to the two columns by passing both strings as separate arguments.
# Use the .avg() method on the by_month_dest DataFrame to get the average dep_delay in each month for each destination.
# Find the corresponding standard deviation of each average by using the .agg() method with the function F.stddev().
# Import pyspark.sql.functions as F
import pyspark.sql.functions as F
# Group by month and dest
by_month_dest = flights.groupBy("month", "dest")
# Average departure delay by month and destination
by_month_dest.avg(dep_delay).show()
# Standard deviation
by_month_dest.agg(F.stddev("dep_delay")).show()
# EXERCISE
# Joining II
# In PySpark, joins are performed using the DataFrame method .join(). This method takes three arguments. The first is the second DataFrame that you want to join with the first one. The second argument, on, is the name of the key column(s) as a string. The names of the key column(s) must be the same in each table. The third argument, how, specifies the kind of join to perform. In this course we'll always use the value how="leftouter".
#
# The flights dataset and a new dataset called airports are already in your workspace.
#
# INSTRUCTIONS
# 100 XP
# Examine the airports DataFrame by printing the .show(). Note which key column will let you join airports to the flights table.
# Rename the faa column in airports to dest by re-assigning the result of airports.withColumnRenamed("faa", "dest") to airports.
# Join the airports DataFrame to the flights DataFrame on the dest column by calling the .join() method on flights. Save the result as flights_with_airports.
# The first argument should be the other DataFrame, airports.
# The argument on should be the key column.
# The argument how should be "leftouter".
# Print the .show() of flights_with_airports. Note the new information that has been added.
# Examine the data
print(airports.show())
# Rename the faa column
airports = airports.withColumnRenamed("faa", "dest")
# Join the DataFrames
flights_with_airports = flights.join(airports, on="dest", how="leftouter")
# Examine the data again
print(flights_with_airports.show())
# Machine Learning Pipelines
# In the next two chapters you'll step through every stage of the machine learning pipeline, from data intake to model evaluation. Let's get to it!
#
# At the core of the pyspark.ml module are the Transformer and Estimator classes. Almost every other class in the module behaves similarly to these two basic classes.
#
# Transformer classes have a .transform() method that takes a DataFrame and returns a new DataFrame; usually the original one with a new column appended. For example, you might use the class Bucketizer to create discrete bins from a continuous feature or the class PCA to reduce the dimensionality of your dataset using principal component analysis.
#
# Estimator classes all implement a .fit() method. These methods also take a DataFrame, but instead of returning another DataFrame they return a model object. This can be something like a StringIndexerModel for including categorical data saved as strings in your models, or a RandomForestModel that uses the random forest algorithm for classification or regression.
# EXERCISE
# Join the DataFrames
# In the next two chapters you'll be working to build a model that predicts whether or not a flight will be delayed based on the flights data we've been working with. This model will also include information about the plane that flew the route, so the first step is to join the two tables: flights and planes!
#
# INSTRUCTIONS
# 100 XP
# First, rename the year column of planes to plane_year to avoid duplicate column names.
# Create a new DataFrame called model_data by joining the flights table with planes using the tailnum column as the key.
# Rename year column
planes = planes.withColumnRenamed("year", "plane_year")
# Join the DataFrames
model_data = flights.join(planes, on="tailnum", how="leftouter")
# Data types
# Good work! Before you get started modeling, it's important to know that Spark only handles numeric data. That means all of the columns in your DataFrame must be either integers or decimals (called 'doubles' in Spark).
#
# When we imported our data, we let Spark guess what kind of information each column held. Unfortunately, Spark doesn't always guess right and you can see that some of the columns in our DataFrame are strings containing numbers as opposed to actual numeric values.
#
# To remedy this, you can use the .cast() method in combination with the .withColumn() method. It's important to note that .cast() works on columns, while .withColumn() works on DataFrames.
#
# The only argument you need to pass to .cast() is the kind of value you want to create, in string form. For example, to create integers, you'll pass the argument "integer" and for decimal numbers you'll use "double".
#
# You can put this call to .cast() inside a call to .withColumn() to overwrite the already existing column, just like you did in the previous chapter!
# EXERCISE
# String to integer
# Now you'll use the .cast() method you learned in the previous exercise to convert all the appropriate columns from your DataFrame model_data to integers!
#
# To convert the type of a column using the .cast() method, you can write code like this:
#
# dataframe = dataframe.withColumn("col", dataframe.col.cast("new_type")
# INSTRUCTIONS
# 100 XP
# Use the method .withColumn() to .cast() the following columns to type "integer". Access the columns using the df.col notation.
# model_data.arr_delay
# model_data.air_time
# model_data.month
# model_data.plane_year
# Cast the columns to integers
model_data = model_data.withColumn("arr_delay", model_data.arr_delay.cast("integer"))
model_data = model_data.withColumn("air_time", model_data.air_time.cast("integer"))
model_data = model_data.withColumn("month", model_data.month.cast("integer"))
model_data = model_data.withColumn("plane_year", model_data.plane_year.cast("integer"))
# EXERCISE
# Create a new column
# In the last exercise, you converted the column plane_year to an integer. This column holds the year each plane was manufactured. However, your model will use the planes' age, which is slightly different from the year it was made!
#
# INSTRUCTIONS
# 100 XP
# Create the column plane_age using the .withColumn() method and subtracting the year of manufacture (column plane_year) from the year (column year) of the flight.
# Create the column plane_age
model_data = model_data.withColumn("plane_age", model_data.year - model_data.plane_year)
# EXERCISE
# Making a Boolean
# Consider that you're modeling a yes or no question: is the flight late? However, your data contains the arrival delay in minutes for each flight. Thus, you'll need to create a boolean column which indicates whether the flight was late or not!
#
# INSTRUCTIONS
# 100 XP
# Use the .withColumn() method to create the column is_late. This column is equal to model_data.arr_delay > 0.
# Convert this column to an integer column so that you can use it in your model and name it label (this is the default name for the response variable in Spark's machine learning routines).
# Filter out missing values (this has been done for you).
# Create is_late
model_data = model_data.withColumn("is_late", model_data.arr_delay > 0)
# Ceate another column:label and Convert to an integer
model_data = model_data.withColumn("label", model_data.is_late.cast("integer"))
# Remove missing values
model_data = model_data.filter("arr_delay is not NULL and dep_delay is not NULL and air_time is not NULL and plane_year is not NULL")
# Strings and factors
# As you know, Spark requires numeric data for modeling. So far this hasn't been an issue; even boolean columns can easily be converted to integers without any trouble. But you'll also be using the airline and the plane's destination as features in your model. These are coded as strings and there isn't any obvious way to convert them to a numeric data type.
#
# Fortunately, PySpark has functions for handling this built into the pyspark.ml.features submodule. You can create what are called 'one-hot vectors' to represent the carrier and the destination of each flight. A one-hot vector is a way of representing a categorical feature where every observation has a vector in which all elements are zero except for at most one element, which has a value of one (1).
#
# Each element in the vector corresponds to a level of the feature, so it's possible to tell what the right level is by seeing which element of the vector is equal to one (1).
#
# The first step to encoding your categorical feature is to create a StringIndexer. Members of this class are Estimators that take a DataFrame with a column of strings and map each unique string to a number. Then, the Estimator returns a Transformer that takes a DataFrame, attaches the mapping to it as metadata, and returns a new DataFrame with a numeric column corresponding to the string column.
#
# The second step is to encode this numeric column as a one-hot vector using a OneHotEncoder. This works exactly the same way as the StringIndexer by creating an Estimator and then a Transformer. The end result is a column that encodes your categorical feature as a vector that's suitable for machine learning routines!
#
# This may seem complicated, but don't worry! All you have to remember is that you need to create a StringIndexer and a OneHotEncoder, and the Pipeline will take care of the rest.
# EXERCISE
# Carrier
# In this exercise you'll create a StringIndexer and a OneHotEncoder to code the carrier column. To do this, you'll call the class constructors with the arguments inputCol and outputCol.
#
# The inputCol is the name of the column you want to index or encode, and the outputCol is the name of the new column that the Transformer should create.
#
# INSTRUCTIONS
# 100 XP
# Create a StringIndexer called carr_indexer by calling StringIndexer() with inputCol="carrier" and outputCol="carrier_index".
# Create a OneHotEncoder called carr_encoder by calling OneHotEncoder() with inputCol="carrier_index" and outputCol="carrier_fact".
# Create a StringIndexer
carr_indexer = StringIndexer(inputCol="carrier", outputCol="carrier_index")
# Create a OneHotEncoder
carr_encoder = OneHotEncoder(inputCol="carrier_index", outputCol="carrier_fact")
# EXERCISE
# Destination
# Now you'll encode the dest column just like you did in the previous exercise.
#
# INSTRUCTIONS
# 100 XP
# Create a StringIndexer called dest_indexer by calling StringIndexer() with inputCol="dest" and outputCol="dest_index".
# Create a OneHotEncoder called dest_encoder by calling OneHotEncoder() with inputCol="dest_index" and outputCol="dest_fact".
# Create a StringIndexer
dest_indexer = StringIndexer(inputCol="dest", outputCol="dest_index")
# Create a OneHotEncoder
dest_encoder = OneHotEncoder(inputCol="dest_index", outputCol="dest_fact")
# EXERCISE
# Assemble a vector
# Good work so far!
#
# The last step in the Pipeline is to combine all of the columns containing our features into a single column. This has to be done before modeling can take place because every Spark modeling routine expects the data to be in this form. You can do this by storing each of the values from a column as an entry in a vector. Then, from the model's point of view, every observation is a vector that contains all of the information about it and a label that tells the modeler what value that observation corresponds to.
#
# Because of this, the pyspark.ml.feature submodule contains a class called VectorAssembler. This Transformer takes all of the columns you specify and combines them into a new vector column.
#
# INSTRUCTIONS
# 100 XP
# INSTRUCTIONS
# 100 XP
# Create a VectorAssembler by calling VectorAssembler() with the inputCols names as a list and the outputCol name "features".
# The list of columns should be ["month", "air_time", "carrier_fact", "dest_fact", "plane_age"]
# Make a VectorAssembler
vec_assembler = VectorAssembler(inputCols=["month", "air_time", "carrier_fact", "dest_fact", "plane_age"], outputCol="features")
# EXERCISE
# Create the pipeline
# You're finally ready to create a Pipeline!
#
# Pipeline is a class in the pyspark.ml module that combines all the Estimators and Transformers that you've already created. This lets you reuse the same modeling process over and over again by wrapping it up in one simple object. Neat, right?
#
# INSTRUCTIONS
# 100 XP
# Import Pipeline from pyspark.ml.
# Call the Pipeline() constructor with the keyword argument stages to create a Pipeline called flights_pipe.
# stages should be a list holding all the stages you want your data to go through in the pipeline. Here this is just [dest_indexer, dest_encoder, carr_indexer, carr_encoder, vec_assembler]
# Import Pipeline
from pyspark.ml import Pipeline
# Make the pipeline
flights_pipe = Pipeline(stages=[dest_indexer, dest_encoder, carr_indexer, carr_encoder, vec_assembler])
# Test vs Train
# After you've cleaned your data and gotten it ready for modeling, one of the most important steps is to split the data into a test set and a train set. After that, don't touch your test data until you think you have a good model! As you're building models and forming hypotheses, you can test them on your training data to get an idea of their performance.
#
# Once you've got your favorite model, you can see how well it predicts the new data in your test set. This never-before-seen data will give you a much more realistic idea of your model's performance in the real world when you're trying to predict or classify new data.
#
# In Spark it's important to make sure you split the data after all the transformations. This is because operations like StringIndexer don't always produce the same index even when given the same list of strings.
# EXERCISE
# Transform the data
# Hooray, now you're finally ready to pass your data through the Pipeline you created!
#
# INSTRUCTIONS
# 100 XP
# Create the DataFrame piped_data by calling the Pipeline methods .fit() and .transform() in a chain. Both of these methods take model_data as their only argument.
# Fit and transform the data
piped_data = flights_pipe.fit(model_data).transform()
# EXERCISE
# Split the data
# Now that you've done all your manipulations, the last step before modeling is to split the data!
#
# INSTRUCTIONS
# 100 XP
# Use the DataFrame method .randomSplit() to split model_data into two pieces, training with 60% of the data, and test with 40% of the data by passing the list [.6, .4] to the .randomSplit() method.
# Split the data into training and test sets
training, test = piped_data.randomSplit([.6, .4])
# What is logistic regression?
# The model you'll be fitting in this chapter is called a logistic regression. This model is very similar to a linear regression, but instead of predicting a numeric variable, it predicts the probability (between 0 and 1) of an event.
#
# To use this as a classification algorithm, all you have to do is assign a cutoff point to these probabilities. If the predicted probability is above the cutoff point, you classify that observation as a 'yes' (in this case, the flight being late), if it's below, you classify it as a 'no'!
#
# You'll tune this model by testing different values for several hyperparameters. A hyperparameter is just a value in the model that's not estimated from the data, but rather is supplied by the user to maximize performance. For this course it's not necessary to understand the mathematics behind all of these values - what's important is that you'll try out a few different choices and pick the best one.
# Import LogisticRegression
from pyspark.ml.classification import LogisticRegression
# Create a LogisticRegression Estimator
lr = LogisticRegression()
# Cross validation
# In the next few exercises you'll be tuning your logistic regression model using a procedure called k-fold cross validation. This is a method of estimating the model's performance on unseen data (like your test DataFrame).
#
# It works by splitting the training data into a few different partitions. The exact number is up to you, but in this course you'll be using PySpark's default value of three. Once the data is split up, one of the partitions is set aside, and the model is fit to the others. Then the error is measured against the held out partition. This is repeated for each of the partitions, so that every block of data is held out and used as a test set exactly once. Then the error on each of the partitions is averaged. This is called the cross validation error of the model, and is a good estimate of the actual error on the held out data.
#
# You'll be using cross validation to choose the hyperparameters by creating a grid of the possible pairs of values for the two hyperparameters, elasticNetParam and regParam, and using the cross validation error to compare all the different models so you can choose the best one!
#
# What does cross validation allow you to estimate?
# The model's error on held out data.
# EXERCISE
# Create the evaluator
# The first thing you need when doing cross validation for model selection is a way to compare different models. Luckily, the pyspark.ml.evaluation submodule has classes for evaluating different kinds of models. Your model is a binary classification model, so you'll be using the BinaryClassificationEvaluator from the pyspark.ml.evaluation module.
#
# This evaluator calculates the area under the ROC. This is a metric that combines the two kinds of errors a binary classifier can make (false positives and false negatives) into a simple number. You'll learn more about this towards the end of the chapter!
#
# INSTRUCTIONS
# 100 XP
# Import the submodule pyspark.ml.evaluation as evals.
# Create evaluator by calling evals.BinaryClassificationEvaluator() with the argument metricName="areaUnderROC".
# Import the evaluation submodule
import pyspark.ml.evaluation as evals
# Create a BinaryClassificationEvaluator
evaluator = evals.BinaryClassificationEvaluator(metricName="areaUnderROC")
# EXERCISE
# Make a grid
# Next, you need to create a grid of values to search over when looking for the optimal hyperparameters. The submodule pyspark.ml.tuning includes a class called ParamGridBuilder that does just that (maybe you're starting to notice a pattern here; PySpark has a submodule for just about everything!).
#
# You'll need to use the .addGrid() and .build() methods to create a grid that you can use for cross validation. The .addGrid() method takes a model parameter (an attribute of the model Estimator, lr, that you created a few exercises ago) and a list of values that you want to try. The .build() method takes no arguments, it just returns the grid that you'll use later.
#
# INSTRUCTIONS
# 100 XP
# Import the submodule pyspark.ml.tuning under the alias tune.
# Call the class constructor ParamGridBuilder() with no arguments. Save this as grid.
# Call the .addGrid() method on grid with lr.regParam as the first argument and np.arange(0, .1, .01) as the second argument. This second call is a function from the numpy module (imported as np) that creates a list of numbers from 0 to .1, incrementing by .01. Overwrite grid with the result.
# Update grid again by calling the .addGrid() method a second time create a grid for lr.elasticNetParam that includes only the values [0, 1].
# Call the .build() method on grid and overwrite it with the output.
# Import the tuning submodule
import pyspark.ml.tuning as tune
# Create the parameter grid
grid = tune.ParamGridBuilder()
# Add the hyperparameter
grid = grid.addGrid(lr.regParam, np.arange(0, .1, .01))
grid = grid.addGrid(lr.elasticNetParam, [0,1])
# Build the grid
grid = grid.build()
# EXERCISE
# Make the validator
# The submodule pyspark.ml.tuning also has a class called CrossValidator for performing cross validation. This Estimator takes the modeler you want to fit, the grid of hyperparameters you created, and the evaluator you want to use to compare your models.
#
# The submodule pyspark.ml.tune has already been imported as tune. You'll create the CrossValidator by passing it the logistic regression Estimator lr, the parameter grid, and the evaluator you created in the previous exercises.
#
# INSTRUCTIONS
# 100 XP
# Create a CrossValidator by calling tune.CrossValidator() with the arguments:
# estimator=lr
# estimatorParamMaps=grid
# evaluator=evaluator
# Name this object cv.
# Create the CrossValidator
cv = tune.CrossValidator(estimator=lr,
estimatorParamMaps=grid,
evaluator=evaluator
)
# EXERCISE
# Fit the model(s)
# You're finally ready to fit the models and select the best one!
#
# Unfortunately, cross validation is a very computationally intensive procedure. Fitting all the models would take too long on DataCamp.
#
# To do this locally you would use the code
#
# # Fit cross validation models
# models = cv.fit(training)
#
# # Extract the best model
# best_lr = models.bestModel
# Remember, the training data is called training and you're using lr to fit a logistic regression model. Cross validation selected the parameter values regParam=0 and elasticNetParam=0 as being the best. These are the default values, so you don't need to do anything else with lr before fitting the model.
#
# INSTRUCTIONS
# 100 XP
# Create best_lr by calling lr.fit() on the training data.
# Print best_lr to verify that it's an object of the LogisticRegressionModel class.
# Call lr.fit()
best_lr = lr.fit(training)
# Print best_lr
print(best_lr)
# Evaluating binary classifiers
# For this course we'll be using a common metric for binary classification algorithms call the AUC, or area under the curve. In this case, the curve is the ROC, or receiver operating curve. The details of what these things actually measure isn't important for this course. All you need to know is that for our purposes, the closer the AUC is to one (1), the better the model is!
#
# If you've created a perfect binary classification model, what would the AUC be?
# 1
#
Evaluate the model
Remember the test data that you set aside waaaaaay back in chapter 3? It's finally time to test your model on it! You can use the same evaluator you made to fit the model.
INSTRUCTIONS
100 XP
Use your model to generate predictions by applying best_lr.transform() to the test data. Save this as test_results.
Call evaluator.evaluate() on test_results to compute the AUC. Print the output.
# Use the model to predict the test set
test_results = best_lr.transform(test)
# Evaluate the predictions
print(evaluator.evaluate(test_results))
# Conclusion
# Congrats on making it to the end of the course! You went from knowing nothing about Spark to doing advanced machine learning. Cool huh?
#
# The next steps are learning how to create large scale Spark clusters and manage and submit jobs so that you can use models in the real world.
#
# And remember, Spark is still being actively developed, so there's new features coming all the time!
#
# Did you have a great time taking this course?
|
91be2e2437046bd4dba1aeec273c6ebabd7462f5 | MamontRussel/2019_PPO_sociology | /Seminar_6_7.py | 26,824 | 4.09375 | 4 | '''
Недели 5-7 Сoursera.
Чтение файлов, множества, словари, обработка ошибок, дополнительные методы работы со строками.
'''
'''
МЕТОДЫ РАБОТЫ СО СПИСКАМИ
Списки в Python поддерживают множество методов для взаимодействия с ними.
Стоит отметить, что эти методы изменяют исходный список.
'''
test_list = list(range(10))
print(test_list)
# Добавляет в список указанный элемент (в конец)
test_list.append(11)
print(test_list)
# Сформируем другой список
sublist = [12, 12]
# И добавим его в существующий (в конец)
test_list.extend(sublist)
print(test_list)
# Добавим в список строку "ABC" на позицию "1". Отличие от test_list[1] = 'ABC' в том, что сейчас элемент,
# стоявший под индексом 1 не перезапишется, а все элементы сдвинутся вправо.
test_list.insert(1, 'ABC')
print(test_list)
# Удалим из списка первое вхождение указанного элемента (по значению).
test_list.remove('ABC')
print(test_list)
# Найдём позицию указанного элемента в списке. Если элемент встречается несколько раз,
# то метод вернёт наименьшую позицию повторяющегося элемента.
print(test_list.index(12))
# Метод возвращает количество указанных элементов в списке
print(test_list.count(12))
# Метод возвращает элемент списка с указанным индексом и одновременно убирает его.
popped_element = test_list.pop(5)
print(popped_element)
print(test_list)
# Если индекс не указан - метод убирает последний элемент списка.
popped_element = test_list.pop()
print(popped_element)
print(test_list)
# Метод меняет порядок расположения элементов в списке на противоположный
test_list.reverse()
print(test_list)
'''
УПРАЖНЕНИЯ
1. Напишите програму, которая считает количество строк с длиной 4 или больше и в которых первый и последний символы
совпадают.
Sample List : ['abca', 'xydz', 'aba', '12321', 'dd']
Ожидаемый результат : 2
2. Напишите код, который удаляет дубликаты из списка.
3. Напишите функцию, которая сравнивает два списка и возвращает True, если у них есть хотя бы один общий член.
4. Напишите программу, которая удаляет все четные числа из списка.
5. Напишите программу, которая в каждом подлисте находит максмум и суммирует их.
'''
# 1
test_list = ['abca', 'xydz', 'aba', '12321', 'dd']
count = 0
for item in test_list:
if (len(item) > 3) and (item[0] == item[-1]):
count += 1
print(count)
# 2
def common_data(list1, list2):
common = False
for x in list1: # итеририуемся по первому списку
for y in list2: # итерируемся по второму списку
if x == y:
common = True
return common
print(common_data([1, 2, 3, 4, 5], [5, 6, 7, 8, 9]))
print(common_data([1, 2, 3, 4, 5], [6, 7, 8, 9]))
# 3
test_list = [2, 3, 6, 8, 19, 21, 22, 3, 3, 5, 20, 21]
new_list = [] # создаем пустой списко
for item in test_list:
if item not in new_list:
new_list.append(item) # если элемент еще не в списке, то добавляем его
print(new_list)
# 4
test_list = [2, 3, 6, 8, 19, 21, 22]
new_list = []
for item in test_list:
if item % 2 != 0:
new_list.append(item)
print(new_list)
# 5
sum = 0
test_list = [[1,2,3], [4,5,6], [10,11,12], [7,8,9]]
for list in test_list: # итерируемся по элементам большого списка
max = 0
for element in list: # итерируемся по элементам каждого вложенного списка
if element > max:
max = element
sum += max
print(sum)
'''
Отдельно следует рассказать про метод sort(). Метод производит сортировку списка.
Задачи сортировки - очень распространены в программировании.
В общем случае, они сводятся к выстроению элементов списка в заданном порядке.
В Python есть встроенные методы для сортировки объектов для того, чтобы программист
мог не усложнять себе задачу написанием алгоритма сортировки.
Метод list.sort() - как раз, один из таких случаев.
'''
test_list = [5, 8, 1, 4, 3, 7, 2]
print(test_list) # Элементы списка расположены в хаотичном порядке
test_list.sort()
print(test_list) # Теперь элементы списка теперь расположены по возрастанию
'''
Таким образом, метод list.sort() упорядочил элементы списка test_list
Если нужно отсортировать элементы в обратном порядке, то можно использовать:
'''
test_list.sort(reverse=True) # параметр reverse указывает на то, что нужно отсортировать список в обратном порядке
print(test_list)
'''
Следует обратить внимание, что метод list.sort() изменяет сам список, на котором его вызвали.
Таким образом, при каждом вызове метода "sort()", наш список "test_list" изменяется.
Это может быть удобно, если нам не нужно держать в памяти исходный список.
Однако, в противном случае, или же - в случае неизменяемого типа данных (например, кортежа или строки) -
этот метод не сработает. В таком случае, на помощь приходит встроенная в питон функция sorted()
'''
print(sorted(test_list)) # Сам список при сортировке не изменяется
'''
У функции sorted(), как и у метода list.sort() есть параметр key,
с помощью которого можно указать функцию, которая будет применена к каждому элементу
последовательности при сортировке.
'''
test_string = 'A string With upper AND lower cases'
print(sorted(test_string.split()))
print(sorted(test_string.split(), key=str.upper))
'''
Имеем строку из слов, начинающихся с заглавных и строчных букв.
test_strng.split() формирует список из элементов строки, разделённых пробелом.
Далее, функция "sorted()" уже сортирует этот список, меняя регистр всех входящих в него элементов на верхний.
'''
'''
ДОПОЛНИТЕЛЬНО
Однако, в некоторых случаях, встроенных функций Python для сортировки недостаточно,
и нужно реалиовать алгоритм самим. Поэтому, рассмотрим сортировку подсчётом (без использования sorted())
Например, это эффективнее в случаях, когда в списке много однотипных значений и нам нужно узнать,
сколько раз встречается каждое
'''
marks = [1, 2, 2, 5, 7, 4, 2, 10, 7, 10]
# Создаём список, заполненный нулям длины, равной значению наибольшего элемента исходного списка + 1
# Потому что возможные значения от 0 до этого максимума (11 штук в данном случае).
cntMarks = [0] * 11
for mark in marks: # проходим по каждому значению в исходном списке с оценками
cntMarks[mark] += 1 # обновляем счетчик оценки в списке с нулями, если такой элемент встречается
print(cntMarks)
for nowMark in range(11): # выводим результаты подсчета
print((str(nowMark) + ' ') * cntMarks[nowMark], end=' ')
'''
МНОЖЕСТВА
Еще одна важная структура данных в python - множества. Если вы знакомы с логикой или теорией множеств,
то это собрания уникальных элементов. Главное отличие множеств - то, что элемент в них может встречаться только
один раз (в отличие от списков и кортежей).
Создаются фигурными скобками или функцией set().
Множества часто используются, когда нам нужен перечень уникальных элементов (например, чтобы проверить,
если в данных ответ с определенным значением). Это экономит память хранения такого списка.
Множества могут содержать объекты разных типов, но только неизменяемые (числа, строки).
'''
set1 = {1, 2, 2, 3, 4, 4, 4, 5}
print(set1)
'''
Множества можно сравнивать между собой. К традиционным операциям добавляются дополнительные.
'''
firstSet = {1, 2, 1, 3}
secondSet = {3, 2, 1}
print(firstSet == secondSet) # Все элементы совпадают
print(firstSet != secondSet) # Есть различные элементы
print(firstSet <= secondSet) # Все элементы А входят в B
print(firstSet < secondSet) # Все элементы А входят в Б и есть различные элементы
'''
Количество элементов можно так же узнать с помощью функции len()
'''
len(set1)
'''
Мы можем применять к множествам логические операции, чтобы смотреть имеют ли они общие или разные элементы.
'''
firstSet = {1, 2, 1, 3, 5, 9}
secondSet = {3, 2, 1, 4}
print(firstSet)
print(secondSet)
print(firstSet | secondSet) # Объединение множеств
print(firstSet & secondSet) # Пересечение множеств
print(firstSet - secondSet) # Множество, элементы которого входят в A, но не входят в B
print(firstSet ^ secondSet) # Элементы входят в A | B, но не входят в A & B
'''
Давайте теперь напишем программу, которая удаляет дубликаты из списка.
'''
test_list = [2, 3, 6, 8, 19, 21, 22, 3, 3, 5, 20, 21]
new_list = list(set(test_list)) # cоздаем множество из списка - дубликаты удаляются, делаем из множества список
print(new_list)
'''
СЛОВАРИ
Словарь - это такая структура данных, когда мы хотим хранить данные не по индексу, а чтобы какому-то
ключю соответствовало какое-то значение (например, как в телефонной книге).
Ключом (именем в телефонной книге) может быть любой неизменяемый объект(число, строка), а значением -
любой (в т.ч. список, словарь, кортеж).
Создать словарь можно с помощью фигурных скобок или функции dict(). Ниже обратите внимание на синтаксис.
'''
phone_book = {'Tanya': '243-352', 'Oleg': ['242-212', '242-251']}
print(phone_book)
'''
Словарь - неупорядоченная структура. Мы не можем обратиться к объекту по индексу, но зато можем по ключу.
'''
print(phone_book['Tanya'])
'''
Чтобы узнать, какие ключи (keys) или значения (values) есть в словаре - можно воспользоваться соответствующими
методами.
'''
print(phone_book.keys())
print(phone_book.values())
print(phone_book.items()) # возвращает объект с ключами и значениями, по которому можно итерироваться
'''
Мы можем вывести ключи и соответсвующие им значения с помощью цикла for
'''
for key in phone_book.keys(): # выведем все ключи
print(key, phone_book[key])
for key, value in phone_book.items(): # выведем все пары ключ-значение
print(key, value)
'''
Добавлять пары ключ значение в словарь очень просто: это делается по аналогии со списками.
Удаление происходит с помощью функции del.
Также можем проверить наличие ключа в словаре.
'''
phone_book['Alex'] = '242-325'
phone_book['Tanya'] = '25321-311' # перезаписываем значение
print(phone_book)
del phone_book['Oleg']
print(phone_book)
print('Oleg' in phone_book.keys())
'''
Помните, мы сортировали список с оценками? Можем собрать два списка в словарь, где ключ - оценка,
а значение - сколько раз она встречается в списке.
'''
print(marks)
print(cntMarks)
marksDict = dict(zip(range(11), cntMarks))
# смотрит, что делает функция zip - она упаковывает два списка одинаковой длины попарно в кортежи
# первый объект с первым и так далее. Функция dict() в свою очередь, может распаковать такую структуру
# в словарь
print(list(zip(range(11), cntMarks)))
print(marksDict)
'''
Напишите программу, которая объединяет значения из двух списков.
Sample data: [{'item': 'item1', 'amount': 400}, {'item': 'item2', 'amount': 300}, {'item': 'item1', 'amount': 750}]
Expected Output: Counter({'item1': 1150, 'item2': 300})
'''
sample_data = [{'item': 'item1', 'amount': 400}, {'item': 'item2', 'amount': 300}, {'item': 'item1', 'amount': 750}]
new_dictionary = {} # создаем пустой словарь
for dictionary in sample_data: # итерируемся по списку - заходим в каждый вложенный словарь
if dictionary['item'] in new_dictionary.keys(): # проверяем, есть ли в нашем новом словаре такой ключ
# если такой ключ там есть, то обновляем его значение
new_dictionary[dictionary['item']] = new_dictionary[dictionary['item']] + dictionary['amount']
else:
# если такого ключа нет - создаем его и присваиваем ему соответствующее значение
new_dictionary[dictionary['item']] = dictionary['amount']
print(new_dictionary)
'''
Вариант условия этой задачи для практики.
У вас есть выгрузка оставшегося количества фруктов из базы данных магазинов. Каждый словарь в списке - магазин.
Какие-то фрукты есть в разных магазинах, какие-то только в одном. Нужно сделать словарь, в котором ключами
будут фрукты, а их количество - значениями. Если фрукт есть в наличии в нескольких магазинах -
сложите эти значения.
Ввод:
[{'фрукт': 'банан', 'количество': 400}, {'фрукт': 'яблоко', 'количество': 300},
{'фрукт': 'банан', 'количество': 750}, {'фрукт' : 'груша', 'количество' : 20}, {'фрукт': 'яблоко', 'количество': 150}]
Вывод: фрукты и их общее количество, список упорядочен по алфавиту.
банан 1150
груша 20
яблоко 450
'''
'''
Словари очень удобно использовать для подсчета числа элементов.
Давайте попробуем открыть файл и решить небольшую задачку.
Мы открываем файл с помощью функции open(), которой передаем адрес файла,
форму работы с файлом (только чтение r, запись w, запись и чтение r+) и кодировку
(utf8 в нашем случае). Этот файл загружается в память.
Затем мы можем загружать его по строкам.
Обратите внимание, что файл нужно положить в папку вышего проекта, если вы не хотите прописывать
к нему полный путь.
'''
file = open('romeo.txt', 'r', encoding='utf8') # загружаем файл в память
lines = file.readlines() # считываем строки из файла в память
file.close() # мы уже сохранили информацию из файла, можем закрыть его
for line in lines:
print(line)
'''
Давайте посчитаем, какие слова и как часто встрачаются в нашем файле.
Создадим словарь, в котором ключом будет слово, а значением - количество раз, которое оно встречается.
'''
words = dict() # создаем пустой словарь
for line in lines: # итерируемся по строкам файла
templst = list(map(lambda x: x.lower(), line.split())) # cохраняем все слова из строки в список в нижнем регистре
print(templst)
for word in templst: # итерируемся по списку, созданному на основе строки
if word in words.keys(): # проверяем наличие ключа в словаре
words[word] += 1 # если ключ в словаре - прибавляем 1
else:
words[word] = 1 # если такого ключа нет - сохраняем ключ со значением один
print(word, words[word])
print(words)
print(words['pale'])
'''
Теперь давайте найдем самое часто встречающееся слово. К сожалению словарь неупорядоченная структура данных
и нам придется отсортировать его в ручную. Сделаем этот код функцией, потому что он нам пригодится в следующей задаче.
'''
def dict_max_value(x):
# будем считать, что по умолчанию максимульное значение равно одному, потому что в наших словарях
# каждое слово встречается минимум 1 раз
max_value = 1
# значение максимальное ключа мы пока не знаем, поэтому создаем пустую переменную
max_key = None
for key, value in x.items(): # итерируемся по парам ключ-значение
if value > max_value: # проверяем, больше ли значение, чем максимум
max_key = key # обновляем ключ, если да
max_value = value # обновляем значение
if max_value == 1: # если нет ни одного значения больше одного, давайте выведем эту информацию
print('No max value, all 1')
else:
print('Max value is', max_value, 'for', max_key)
dict_max_value(words)
'''
ЗАДАЧА НА АВТОРА, КОТОРЫЙ ПИШЕТ БОЛЬШЕ ВСЕГО ПИСЕМ.
Файл mbox.txt содержит метаданные почтового сервера.
Мы знаем, что строка с адресом автора письма начинается с "From " (посмотрите в самом файле,
какие там еще есть варианты). Мы хотим найти адреса всех авторов сообщений и найти того из них, кто пишет
больше всех писем.
'''
handle = open('mbox.txt', 'r', encoding='utf8')
emails = {}
for line in handle:
if line.startswith('From '): # работаем только со строками, которые нас интересуют
email = line.split()[1] # разбиваем строку и берем из нее email
if email not in emails.keys(): # проверяем, есть ли уже такой адрес в нашем словаре
emails[email] = 1 # если нет, то создаем такой ключ со значением 1
else:
emails[email] += 1 # если да, то обновляем значение на 1
print(emails)
handle.close() # закрываем файл, когда закончили работать с ним
dict_max_value(emails) # воспользуемся нашей функцией, чтобы найти максимальное значение
'''
ЗАДАЧА НА ПАРСИНГ ДАННЫХ
В том же файле есть строка, которая обозначает, насколько спам фильтр уверен, что данное письмо не спам.
Давайте найдем среднее значение X-DSPAM-Confidence для всей переписки.
Нас интересуют только строки, начинающиеся с 'X-DSPAM-Confidence: '
(посмотрите в файле структуру метаданных хотя бы одного письма).
'''
fhand = open('mbox.txt', 'r', encoding='utf8')
count = 0 # создаем счетчик писем
total = 0 # cоздаем переменную, в которой будем обновлять суммарное значение X-DSPAM-Confidence
for line in fhand:
if line.startswith('X-DSPAM-Confidence:'): # работаем только с интересующим нас строками
print(line)
x = line.find(':') # ищем местоположение символа, по которому будем срезать строку
confidence = line[x+2:x+7] # ищем индексы, по которым будем доставать значение X-DSPAM-Confidence
y = float(confidence) # переводим значение из строки в дробь
print(y)
count = count + 1 # обновляем count
total = total + y # обновляем total
average = total/count # находим среднее
print('Average spam confidence: ', round(average, 2))
fhand.close()
'''
МЕТОДЫ ДЛЯ РАБОТЫ СО СТРОКАМИ
Словари очень часто используются для работы с текстом, поэтому давайте посмотрим,
какие еще методы для строк есть в Python.
'''
# isalpha - проверяет, что все символы строки являются буквами.
print('Ask me a question!'.isalpha())
print('Ask'.isalpha())
# isdigit - проверяет, что все символы строки являются цифрами.
print('13242'.isdigit())
# isalnum - проверяет, что все символы строки являются буквами или цифрами.
print('Ask me a question!'.isalnum())
print('Ask232'.isalnum())
# islower - проверяет, что все символы строки являются маленькими (строчными) буквами.
print('ssk me a question!'.islower())
# isupper - проверяет, что все символы строки являются большими (заглавными, прописными) буквами.
print('ssk me a question!'.isupper())
# lstrip - обрезает все пробельные символы в начале строки.
print(' ssk me a question! ')
print(' ssk me a question! '.lstrip())
# rstrip - обрезает все пробельные символы в конце строки.
print(' ssk me a question! '.rstrip())
# strip - обрезает все пробельные символы в начале и конце строки.
print(' ssk me a question! '.strip())
|
7c2c2b3a2892a75a2d4640626e922e8b2aae8566 | pakoy3k/MoreCodes-Python | /Basics9.py | 339 | 3.6875 | 4 | #Basics of Functions
def function1():
print "Hello there!"
def function2(num):
print "That number is ", num
def function3():
num_sum = 1 + 1
return num_sum
def function4(firstName, lastName):
fullName = firstName + " " + lastName;
return fullName;
function1();
function2(5);
print function3();
print function4("More", "Codes");
|
e029d0a0956ad8294d039763f3b14e548494c702 | syurskyi/Python_Topics | /125_algorithms/_examples/_algorithms_challenges/pybites/topics/Collections/45/fifo.py | 442 | 4.15625 | 4 | from collections import deque
def my_queue(n=5):
return deque(maxlen=n)
if __name__ == '__main__':
mq = my_queue()
for i in range(10):
mq.append(i)
print((i, list(mq)))
"""Queue size does not go beyond n int, this outputs:
(0, [0])
(1, [0, 1])
(2, [0, 1, 2])
(3, [0, 1, 2, 3])
(4, [0, 1, 2, 3, 4])
(5, [1, 2, 3, 4, 5])
(6, [2, 3, 4, 5, 6])
(7, [3, 4, 5, 6, 7])
(8, [4, 5, 6, 7, 8])
(9, [5, 6, 7, 8, 9])
"""
|
589e1196bcadd87bce66d0755e4694dd91651da3 | TobiasYin/LeetCodeKotlin | /src/answer/leetcode/LeetCode1.py | 410 | 3.53125 | 4 | class Solution1:
def twoSum(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: List[int]
"""
nums_set = set(nums)
for i in nums_set:
if target-i in nums_set:
index_1=nums.index(i)
nums[index_1]=None
index_2=nums.index(target-i)
return [index_1,index_2] |
92243ca39cd61c370a56c294c065dc7cd79a964d | alightwing/advent-code-2019 | /day_2.py | 2,195 | 3.953125 | 4 | # Advent of Code Day 2 solution - https://adventofcode.com/2019/day/2
# TEST DATA
# raw_program = "1,0,0,0,99" # output 2,0,0,0,99
# raw_program = "2,3,0,3,99" # output 2,3,0,6,99
# raw_program = "2,4,4,5,99,0" # 2,4,4,5,99,9801
# raw_program = "1,1,1,4,99,5,6,0,99" # output 30,1,1,4,2,5,6,0,99
# ACTUAL DATA
raw_program = "1,0,0,3,1,1,2,3,1,3,4,3,1,5,0,3,2,10,1,19,2,19,6,23,2,13,23,27,1,9,27,31,2,31,9,35,1,6,35,39,2,10,39,43,1,5,43,47,1,5,47,51,2,51,6,55,2,10,55,59,1,59,9,63,2,13,63,67,1,10,67,71,1,71,5,75,1,75,6,79,1,10,79,83,1,5,83,87,1,5,87,91,2,91,6,95,2,6,95,99,2,10,99,103,1,103,5,107,1,2,107,111,1,6,111,0,99,2,14,0,0"
input_program = [int(n) for n in raw_program.split(',')]
# need to comment these lines out if testing
input_program[1] = 12
input_program[2] = 2
# Part 1
def run_program(program):
current_pos = 0
while True:
# each operation is four parameters
program_chunk = program[current_pos:current_pos+4]
opcode = program_chunk[0]
# opcode 99 is end of program
if opcode == 99:
break
input_one = program[program_chunk[1]]
input_two = program[program_chunk[2]]
if opcode == 1:
output = input_one + input_two
elif opcode == 2:
output = input_one * input_two
else:
raise AttributeError('unrecognised opcode: {}'.format(opcode))
program[program_chunk[3]] = output
current_pos += 4
return program
output_program = run_program(input_program.copy())
print(output_program[0])
# Part 2
def find_noun_verb(program_base):
# have to check all combinations
for noun in range(100):
for verb in range(100):
# make a copy for each
program_iter = program_base.copy()
program_iter[1] = noun
program_iter[2] = verb
program_iter = run_program(program_iter)
if program_iter[0] == 19690720:
print('Noun: ', noun)
print('Verb: ', verb)
print('Product: ', noun * 100 + verb)
return
find_noun_verb(input_program)
|
95188332c3276d0089f90f34121cd5280bab8892 | kexinl/test_github | /test4.py | 1,015 | 4.09375 | 4 | from datetime import datetime
def is_leap_year(year):
is_leap = False
if (year % 400 == 0) or ((year % 100 !=0) and (year % 400 == 0)):
is_leap = True
return is_leap
def main():
input_date_str = input('请输入日期(yyyy/mm/dd/): ')
input_date = datetime.strptime(input_date_str, '%Y/%m/%d')
print(input_date)
year = input_date.year
month = input_date.month
day = input_date.day
month_day_dict = {1: 31,
2: 28,
3: 31,
4: 30,
5: 31,
6: 30,
7: 31,
8: 31,
9: 30,
10: 31,
11: 30,
12: 31}
days = 0
days += day
for i in range(1, month):
days += month_day_dict[i]
if is_leap_year(year) and month > 2:
days += 1
print('这是第几{}天.'.format(days))
if __name__ == '__main__':
main() |
5dd29e321f43b2f9be08fabcd81a27a63d353cdc | laobadao/Deep-Learning | /homework/01_neural_network_deeplearning/week_2/part_1_1.py | 3,207 | 4.96875 | 5 | """
吴恩达Coursera深度学习课程 DeepLearning.ai 编程作业(1-2)
Part 1:Python Basics with Numpy (optional assignment)
1 - Building basic functions with numpy
Numpy is the main package for scientific computing in Python.
It is maintained by a large community (www.numpy.org).
In this exercise you will learn several key numpy functions such as np.exp,
np.log, and np.reshape.
You will need to know how to use these functions for future assignments.
1.1 - sigmoid function, np.exp()
Exercise: Build a function that returns the sigmoid of a real number x.
Use math.exp(x) for the exponential function.
Reminder:
sigmoid(x)= 1/(1+e ^ -x) is sometimes also known as the logistic function.
It is a non-linear function used not only in Machine Learning (Logistic Regression),
but also in Deep Learning.
To refer to a function belonging to a specific package you could
call it using package_name.function().
Run the code below to see an example with math.exp().
"""
# GRADED FUNCTION: basic_sigmoid
import math
def basic_sigmoid(x):
"""
Compute sigmoid of x.
Arguments:
x -- A scalar
Return:
s -- sigmoid(x)
"""
### START CODE HERE ### (≈ 1 line of code)
# math.exp(x) -> e ^ x ,e 的 x 次方
s = 1.0 / (1 + 1/ math.exp(x))
### END CODE HERE ###
return s
# Actually, we rarely use the “math” library in deep learning
# because the inputs of the functions are real numbers.
# In deep learning we mostly use matrices and vectors.
# This is why numpy is more useful.
# 不常用 math 这个库,因为因为它的输入参数为实数,而实际上,在 deep learning 中,我们常用到的训练数据
# 都是 矩阵 或向量的形式,所以 numpy 这个库,非常的有用
import numpy as np # this means you can access numpy functions by writing np.function() instead of numpy.function()
def sigmoid1(x):
"""
Compute the sigmoid of x
Arguments:
x -- A scalar (标量) or numpy array of any size.
Return:
s -- sigmoid1(x)
"""
### START CODE HERE ### (≈ 1 line of code)
s = 1.0/(1+1/np.exp(x))
### END CODE HERE ###
return s
# GRADED FUNCTION: sigmoid_derivative
def sigmoid_derivative(x):
"""
Compute the gradient (also called the slope or derivative) of the sigmoid function with respect to its input x.
You can store the output of the sigmoid function into variables and then use it to calculate the gradient.
Arguments:
x -- A scalar or numpy array
Return:
ds -- Your computed gradient.
"""
### START CODE HERE ### (≈ 2 lines of code)
s = 1.0 /(1 + 1/np.exp(x))
ds = s*(1-s)
### END CODE HERE ###
return ds
if __name__ == '__main__':
print(basic_sigmoid(3))
### One reason why we use "numpy" instead of "math" in Deep Learning ###
x = [1, 2, 3]
# you will see this give an error when you run it, because x is a vector.
# basic_sigmoid(x)
# TypeError: must be real number, not list
print(sigmoid_derivative(0))
# 0.25
print(sigmoid_derivative(x))
# [ 0.19661193 0.10499359 0.04517666]
|
a109aabea2626c986f6d6ac3835c7cbfba826d34 | anilachacko/python | /CO2/C002.py | 157 | 3.859375 | 4 | n=int(input("enter the limit"))
a=0
b=1
print("fibonacci series")
print(a)
print(b)
for i in range(1,n-1):
c=a+b
print(c)
a=b
b=c
|
d504f75cf01c29b1a096215477aae8f7d6f55ec9 | kamojiro/atcoderall | /beginner/176/B2.py | 44 | 3.671875 | 4 | print("Yes" if int(input())%9==0 else "No")
|
92129c31f56378d915ac4d2f576d70cd8fe2bd8d | mwrouse/Python | /Chapter 10/challenge10_1.py | 4,563 | 4.03125 | 4 | """
Program......: challenge10_1.py
Author.......: Michael Rouse
Date.........: 3/5/14
Description..: Create your own version of the Mad Lib Program
"""
from tkinter import *
class Application(Frame):
""" GUI application that creates a story based on user input. """
def __init__(self, master):
""" Initialize Frame. """
super(Application, self).__init__(master)
self.grid()
self.create_widgets()
def create_widgets(self):
""" Create widgets to get story information and to display story. """
# create instruction label
Label(self, text="Enter information for a new story").grid(row=0, column=0, columnspan=2, sticky=W)
# create a label and text entry for the name of a person
Label(self, text="Person: ").grid(row=1, column=0, sticky=W)
self.person_ent = Entry(self)
self.person_ent.grid(row=1, column=1, sticky=W)
# create a label and text entry for a plural noun
Label(self, text="Plural Noun:").grid(row=2, column=0, sticky=W)
self.noun_ent = Entry(self)
self.noun_ent.grid(row=2, column=1, sticky=W)
# create a label and text entry for a verb
Label(self, text="Verb:").grid(row=3, column=0, sticky=W)
self.verb_ent = Entry(self)
self.verb_ent.grid(row=3, column=1, sticky=W)
# create a label for adjectives check buttons
Label(self, text="Adjective(s):").grid(row=1, column=2, sticky=W)
# create itchy check button
self.is_itchy = BooleanVar()
Checkbutton(self, text="itchy", variable=self.is_itchy).grid(row=1, column=3, sticky=W)
# create joyous check button
self.is_joyous = BooleanVar()
Checkbutton(self, text="joyous", variable=self.is_joyous).grid(row=1, column=4, sticky=W)
# create electric check button
self.is_electric=BooleanVar()
Checkbutton(self, text="electric", variable=self.is_electric).grid(row=1, column=5, sticky=W)
# create a label for body parts radio buttons
Label(self, text="Body Part:").grid(row=2, column=2, sticky=W)
# create variable for single, body part
self.body_part = StringVar()
self.body_part.set(None)
# create body part radio buttons
body_parts = ["bellybutton", "big toe", "medulla oblongata"]
column = 3
for part in body_parts:
Radiobutton(self,
text=part,
variable=self.body_part,
value=part
).grid(row=2, column=column, sticky=W)
column += 1
# create a submit button
Button(self,
text="Click for story",
command=self.tell_story
).grid(row=3, column=2, sticky=W)
self.story_txt = Text(self, width=75, height=10, wrap=WORD)
self.story_txt.grid(row=7, column=0, columnspan=6, pady=5)
def tell_story(self):
""" Fill text box with new story based on user input. """
# get values from the GUI
person=self.person_ent.get()
noun=self.noun_ent.get()
verb=self.verb_ent.get()
adjectives=""
if self.is_itchy.get():
adjectives += "itchy, "
if self.is_joyous.get():
adjectives += "joyous, "
if self.is_electric.get():
adjectives += "electric, "
body_part=self.body_part.get()
# create the story
story="The famous explorer "
story += person
story += " had nearly given up a life-long quest to find The Lost City of "
story += noun.title()
story += " when one day, the "
story += noun
story += " found "
story += person + ". "
story += "A strong, "
story += adjectives
story += "peculiar feeling overwhelmed the explorer. "
story += "After all this time, the quest was finally over. A tear came to "
story += person + "'s "
story += body_part + ". "
story += "And then, the "
story += noun
story += " promptly devoured "
story += person + ". "
story += "The moral of the story? Be careful what you "
story += verb
story += " for."
# display the story
self.story_txt.delete(0.0, END)
self.story_txt.insert(0.0, story)
# main
root = Tk()
root.title("Mad Lib")
app=Application(root)
root.mainloop()
|
0c47464c0b7e249f89c517ba2a03c16d25551ebd | nitsuga/mrplan | /src/mrplan_auctioneer/src/mrplan_auctioneer/item.py | 1,073 | 4.03125 | 4 | """item.py
This module defines the Item class used in MRPlan experiments.
Eric Schneider <[email protected]>
"""
from enum import Enum
class Material(Enum):
""" Materials are composed to make up Items. At first, this class
just identifies and distinguishes one material from another via an
enumeration pattern. In future, this class may implement material
properties as described in mrplan_msgs/msg/Item.msg
"""
GREY = 0
RED = 1
BLUE = 2
GREEN = 3
WHITE = 4
BLACK = 5
class Item(object):
def __init__(self, _item_id='1', _materials=[0, 0, 0, 0, 0, 0], _site=''):
# A unique identifier for this item.
self.item_id = _item_id
# The numbers of each type of material needed to construct
# this Item. An index of this list represents a Material type
# (an enumeration, above) with an integer values that represents
# the number of units of that material required.
self.materials = _materials
self.site = _site
self.completed = False
self.awarded = False
|
4a1ea738d3d4eb866346b25aee832f31ae1540f6 | porala/python | /practice/88.py | 385 | 3.875 | 4 | #Create a script that uses countries_by_area.txt file as data sourcea and prints out the top 5 most densely populated countries
import pandas
data = pandas.read_csv("countries_by_area.txt")
data["density"] = data["population_2013"] / data["area_sqkm"]
data = data.sort_values(by="density", ascending=False)
for index, row in data[:5].iterrows():
print(row["country"])
|
62c5a065fedcfae0f79abff797ba06b21b46bd9c | cmirza/cs_work | /Unit_2/module_3.py | 1,447 | 3.671875 | 4 |
def validBracketSequence(sequence):
# define opening and closing chars
open_char = ("(", "[", "{")
close_char = (")", "]", "}")
stack = []
# iterate over chars in sequence
for char in sequence:
if char in open_char:
stack.append(char)
elif char in close_char:
pos = close_char.index(char)
if len(stack) > 0 and open_char[pos] == stack[len(stack) - 1]:
stack.pop()
else:
return False
if len(stack) == 0:
return True
else:
return False
class Stack:
def __init__(self):
self.items = []
def isEmpty(self):
return self.items == []
def push(self, item):
self.items.append(item)
def pop(self):
return self.items.pop()
def queueOnStacks(requests):
left = Stack()
right = Stack()
def insert(x):
left.push(x)
def remove():
# check if right stack is empty
if len(right.items) == 0:
while len(left.items) > 0:
right.push(left.pop())
if len(right.items) == 0:
return None
# then return right stack item
return right.pop()
ans = []
for request in requests:
req = request.split(" ")
if req[0] == 'push':
insert(int(req[1]))
else:
ans.append(remove())
return ans
|
b1efd564425abb04f08f754e34ec7bb01dcce28e | CptnSteve/prime_viz | /prime_viz.py | 1,254 | 3.59375 | 4 | import numpy as np
import matplotlib.pyplot as plt
def move_right(x,y):
return x+1, y
def move_left(x,y):
return x-1, y
def move_up(x,y):
return x,y+1
def move_down(x,y):
return x,y-1
def gen_points(end):
from itertools import cycle
moves = [move_right, move_down, move_left, move_up]
_moves = cycle(moves)
n = 1
pos = 0,0
times_to_move = 1
yield prime_check(n), pos[0], pos[1], n
while True:
for _ in range(2):
move = next(_moves)
for _ in range(times_to_move):
if n >= end:
return
pos = move(*pos)
n+=1
yield prime_check(n), pos[0], pos[1], n
times_to_move+=1
def plotting(x, y):
plt.scatter(x,y)
plt.show()
def prime_check(num):
prime_status = 1
if (num==1):
prime_status = 0
for i in range(2,num):
if (num % i == 0):
prime_status = 0
break
return prime_status
def main():
GRID_LEN = 150
grid_area = GRID_LEN * GRID_LEN
x = []
y = []
for val in gen_points(grid_area):
if val[0] == 1:
x.append(val[1])
y.append(val[2])
if val[3] % 100 == 0:
print("Eval: ", val[3], " out of ", grid_area)
plotting(x,y)
main()
|
074cf3c8a34d270d0e1c06462c2c637d54058e37 | ianbooth12/python_crash_course | /chapter_2/2lesson.py | 420 | 3.96875 | 4 | inches_in_foot = 12_000_000
print(inches_in_foot) # Although Python removes underscores in print, makes more readable.
x, y, z = 0, 0 ,0
print(x) # You can define multiple variables in one line of code with commas
name1, name2, name3 = "mason", "jad", "kadin"
print(name2) # Multiple variables can also be defined with different information
BIRTHYEAR = 2001 # Constant variables can be indicated by typing in caps.
|
1c3fe91750ccb3f3873aba3d36fe7bcb302993ac | JosephLevinthal/Research-projects | /5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/224/users/4352/codes/1650_2450.py | 127 | 4.03125 | 4 | a = input("digite um nome:")
b = input("digite outro nome:")
if (a > b.upper()):
print(b)
print(a)
else:
print(a)
print(b) |
2e8181335d92a1f63aa6e07a865110d74d52a66d | LucasOJacintho/Curso_em_video_python | /Exercícios/ex84.py | 913 | 3.734375 | 4 | pessoas = []
dados = []
maior = menor = 0
while True:
dados.append(str(input('Digite o nome: ')))
dados.append((float(input('Digite o peso em kg: '))))
##teste para definir qual é o peso maior e menor
if len(pessoas) == 0:
maior = menor = dados[1]
else:
if dados[1] > maior:
maior = dados[1]
if dados[1] < menor:
menor = dados[1]
pessoas.append(dados[:])
dados.clear()
opcao = input('Quer continuar cadastrando? [S/N]: ')
if opcao in 'Nn':
break
print('*' * 30)
print(f'Foram cadastradas {len(pessoas)} pessoas na lista.')
print(f'O maior peso da lista é {maior} kg que é o peso de ', end='')
for i in pessoas:
if i[1] == maior:
print(f'[{i[0]}] ', end='')
print(f'\nE o menor peso da lista é {menor} kg que é o peso de ', end='')
for i in pessoas:
if i[1] == menor:
print(f'[{i[0]}] ', end='')
|
e148b845fbc45964a0d3de23b60f704e60386933 | T-o-s-s-h-y/Learning | /Python/progate/python_study_2/page2/script.py | 360 | 3.640625 | 4 | # 変数fruitsに、複数の文字列を要素に持つリストを代入してください
fruits = ['apple', 'banana', 'orange']
# インデックス番号が0の要素を出力してください
print(fruits[0])
# インデックス番号が2の要素を文字列と連結して出力してください
print("好きな果物は" + fruits[2] + "です")
|
257ef0e3cc3999e05789c38a8d071e839127fdd7 | mattsuri/unit3 | /quiz3.py | 298 | 3.609375 | 4 | #Matthew Suriawinata
#3/5/18
#quiz3.py
num = -15
while num < -8:
print(num)
num += 1
for i in range(50, 17, -4):
print(i)
total = 0
for i in range(-100, 1000, 2):
total += i
print(total)
while True:
text = input("Enter text: ")
if "alpaca" in text:
break |
e095fcff239d4f6e7781b37f32fc0b828b6b0ed8 | santhoshbabu4546/GUVI-9 | /set7/prime1.py | 197 | 3.875 | 4 | import math
a2=int(input())
x=0
if a2 == 2 and a2 == 3:
print("yes")
for i in range(2,int(math.sqrt(a2))+1):
if a2%i==0:
print("no")
x=x+1
break
if x==0:
print("yes")
|
3437e33328dff4970cd7df338f4ff914ec55fb32 | NidhoggZe/LeetCode | /py/1.两数之和2.py | 486 | 3.59375 | 4 | #用hashmap记录是否出现过(字典同时还能将索引存为值)O(n)
class Solution:
def twoSum(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: List[int]
"""
hashmap = {}
for i in range(0, nums.__len__()):
if target - nums[i] in hashmap:
return [hashmap[target - nums[i]], i]
else:
hashmap[nums[i]] = i
return None
|
8304a0454f11294a1e9a36f410c6806da5260cb8 | chetanpv/python-snippets | /LevelTwo/square_odd_numbers.py | 558 | 4.25 | 4 | # Question:
# Use a list comprehension to square each odd number in a list. The list is input by a sequence
# of comma-separated numbers.
# Suppose the following input is supplied to the program:
# 1,2,3,4,5,6,7,8,9
# Then, the output should be:
# 1,3,5,7,9
print "\nEnter sequence of numbers: "
numbers = raw_input().split(",")
output = []
for i in numbers:
n = int(i)
if n % 2 != 0:
output.append(str(n*n))
print ",".join(output)
output = [str(int(i)*int(i)) for i in numbers if int(i) % 2 != 0]
print ",".join(output)
|
97aa9934fd753069b47ffa1518c5945a031dc0e0 | WellingtonTorres/PythonExercicios | /ex009.py | 182 | 3.859375 | 4 | n = int(input('Digite um numero para ver sua tabuada: '))
i = 1
print('-' * 11)
while i <= 10:
r = n * i
print('{} x {:2} = {:3}'.format(n, i, r))
i += 1
print('-' * 11)
|
8ffe034bda17bdde0d334ead9424d4e2589a8bb4 | rkpatra201/python-practice | /python-basics/109_tuples.py | 268 | 4 | 4 | # tuples are same as list but are immutable
item = (1, 1, "test", 3.2, {'a': 'b'})
print(item)
print(type(item))
print(item[0])
print(item[2:])
print(len(item))
print(item.index(1))
print(item.count(1))
#item[2] = 20 #'tuple' object does not support item assignment
|
fd4e3cb4a2cd28da6ba2e5a1657df44ed81421a2 | nickyfoto/lc | /python/tests/1345_jump_game_iv.py | 10,674 | 3.5 | 4 | #
# @lc app=leetcode id=1345 lang=python3
#
# [1345] Jump Game IV
#
# https://leetcode.com/problems/jump-game-iv/description/
#
# algorithms
# Hard (27.33%)
# Likes: 37
# Dislikes: 1
# Total Accepted: 1.4K
# Total Submissions: 5.1K
# Testcase Example: '[100,-23,-23,404,100,23,23,23,3,404]'
#
# Given an array of integers arr, you are initially positioned at the first
# index of the array.
#
# In one step you can jump from index i to index:
#
#
# i + 1 where: i + 1 < arr.length.
# i - 1 where: i - 1 >= 0.
# j where: arr[i] == arr[j] and i != j.
#
#
# Return the minimum number of steps to reach the last index of the array.
#
# Notice that you can not jump outside of the array at any time.
#
#
# Example 1:
#
#
# Input: arr = [100,-23,-23,404,100,23,23,23,3,404]
# Output: 3
# Explanation: You need three jumps from index 0 --> 4 --> 3 --> 9. Note that
# index 9 is the last index of the array.
#
#
# Example 2:
#
#
# Input: arr = [7]
# Output: 0
# Explanation: Start index is the last index. You don't need to jump.
#
#
# Example 3:
#
#
# Input: arr = [7,6,9,6,9,6,9,7]
# Output: 1
# Explanation: You can jump directly from index 0 to index 7 which is last
# index of the array.
#
#
# Example 4:
#
#
# Input: arr = [6,1,9]
# Output: 2
#
#
# Example 5:
#
#
# Input: arr = [11,22,7,7,7,7,7,7,7,22,13]
# Output: 3
#
#
#
# Constraints:
#
#
# 1 <= arr.length <= 5 * 10^4
# -10^8 <= arr[i] <= 10^8
#
#
# @lc code=start
from collections import defaultdict, deque
from collections.abc import Mapping, Set
from itertools import combinations
class AtlasView(Mapping):
__slots__ = ('_atlas',)
def __getstate__(self):
return {'_atlas': self._atlas}
def __setstate__(self, state):
self._atlas = state['_atlas']
def __init__(self, d):
self._atlas = d
def __len__(self):
return len(self._atlas)
def __iter__(self):
return iter(self._atlas)
def __getitem__(self, key):
return self._atlas[key]
def copy(self):
return {n: self[n].copy() for n in self._atlas}
def __str__(self):
return str(self._atlas) # {nbr: self[nbr] for nbr in self})
def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, self._atlas)
class AdjacencyView(AtlasView):
__slots__ = () # Still uses AtlasView slots names _atlas
def __getitem__(self, name):
return AtlasView(self._atlas[name])
def copy(self):
return {n: self[n].copy() for n in self._atlas}
class NodeView(Mapping, Set):
def __getstate__(self):
return {'_nodes': self._nodes}
def __setstate__(self, state):
self._nodes = state['_nodes']
def __init__(self, graph):
self._nodes = graph._node
# Mapping methods
def __len__(self):
return len(self._nodes)
def __iter__(self):
return iter(self._nodes)
def __getitem__(self, n):
return self._nodes[n]
# Set methods
def __contains__(self, n):
return n in self._nodes
@classmethod
def _from_iterable(cls, it):
return set(it)
# DataView method
def __call__(self, data=False, default=None):
if data is False:
return self
return NodeDataView(self._nodes, data, default)
def data(self, data=True, default=None):
if data is False:
return self
return NodeDataView(self._nodes, data, default)
def __str__(self):
return str(list(self))
def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, tuple(self))
class Graph:
node_dict_factory = dict
node_attr_dict_factory = dict
adjlist_outer_dict_factory = dict
adjlist_inner_dict_factory = dict
edge_attr_dict_factory = dict
graph_attr_dict_factory = dict
def __init__(self, incoming_graph_data=None, **attr):
self.graph_attr_dict_factory = self.graph_attr_dict_factory
self.node_dict_factory = self.node_dict_factory
self.node_attr_dict_factory = self.node_attr_dict_factory
self.adjlist_outer_dict_factory = self.adjlist_outer_dict_factory
self.adjlist_inner_dict_factory = self.adjlist_inner_dict_factory
self.edge_attr_dict_factory = self.edge_attr_dict_factory
self.graph = self.graph_attr_dict_factory() # dictionary for graph attributes
self._node = self.node_dict_factory() # empty node attribute dict
self._adj = self.adjlist_outer_dict_factory() # empty adjacency dict
# attempt to load graph with data
if incoming_graph_data is not None:
convert.to_networkx_graph(incoming_graph_data, create_using=self)
# load graph attributes (must be after convert)
self.graph.update(attr)
def __iter__(self):
return iter(self._node)
@property
def adj(self):
return AdjacencyView(self._adj)
def add_nodes_from(self, nodes_for_adding, **attr):
for n in nodes_for_adding:
# keep all this inside try/except because
# CPython throws TypeError on n not in self._node,
# while pre-2.7.5 ironpython throws on self._adj[n]
try:
if n not in self._node:
self._adj[n] = self.adjlist_inner_dict_factory()
attr_dict = self._node[n] = self.node_attr_dict_factory()
attr_dict.update(attr)
else:
self._node[n].update(attr)
except TypeError:
nn, ndict = n
if nn not in self._node:
self._adj[nn] = self.adjlist_inner_dict_factory()
newdict = attr.copy()
newdict.update(ndict)
attr_dict = self._node[nn] = self.node_attr_dict_factory()
attr_dict.update(newdict)
else:
olddict = self._node[nn]
olddict.update(attr)
olddict.update(ndict)
def add_edges_from(self, ebunch_to_add, **attr):
for e in ebunch_to_add:
ne = len(e)
if ne == 3:
u, v, dd = e
elif ne == 2:
u, v = e
dd = {} # doesn't need edge_attr_dict_factory
else:
raise NetworkXError(
"Edge tuple %s must be a 2-tuple or 3-tuple." % (e,))
if u not in self._node:
self._adj[u] = self.adjlist_inner_dict_factory()
self._node[u] = self.node_attr_dict_factory()
if v not in self._node:
self._adj[v] = self.adjlist_inner_dict_factory()
self._node[v] = self.node_attr_dict_factory()
datadict = self._adj[u].get(v, self.edge_attr_dict_factory())
datadict.update(attr)
datadict.update(dd)
self._adj[u][v] = datadict
self._adj[v][u] = datadict
@property
def nodes(self):
nodes = NodeView(self)
self.__dict__['nodes'] = nodes
return nodes
def is_directed(self):
"""Returns True if graph is directed, False otherwise."""
return False
def _bidirectional_pred_succ(G, source, target):
# does BFS from both source and target and meets in the middle
if target == source:
return ({target: None}, {source: None}, source)
# handle either directed or undirected
if G.is_directed():
Gpred = G.pred
Gsucc = G.succ
else:
Gpred = G.adj
Gsucc = G.adj
# predecesssor and successors in search
pred = {source: None}
succ = {target: None}
# initialize fringes, start with forward
forward_fringe = [source]
reverse_fringe = [target]
while forward_fringe and reverse_fringe:
if len(forward_fringe) <= len(reverse_fringe):
this_level = forward_fringe
forward_fringe = []
for v in this_level:
for w in Gsucc[v]:
if w not in pred:
forward_fringe.append(w)
pred[w] = v
if w in succ: # path found
return pred, succ, w
else:
this_level = reverse_fringe
reverse_fringe = []
for v in this_level:
for w in Gpred[v]:
if w not in succ:
succ[w] = v
reverse_fringe.append(w)
if w in pred: # found path
return pred, succ, w
raise nx.NetworkXNoPath("No path between %s and %s." % (source, target))
def bidirectional_shortest_path(G, source, target):
if source not in G or target not in G:
msg = 'Either source {} or target {} is not in G'
raise nx.NodeNotFound(msg.format(source, target))
# call helper to do the real work
results = _bidirectional_pred_succ(G, source, target)
pred, succ, w = results
# build path from pred+w+succ
path = []
# from source to w
while w is not None:
path.append(w)
w = pred[w]
path.reverse()
# from w to target
w = succ[path[-1]]
while w is not None:
path.append(w)
w = succ[w]
return path
class Solution:
# def minJumps(self, arr: List[int]) -> int:
def minJumps(self, arr):
d = defaultdict(list)
[d[x].append(i) for i, x in enumerate(arr)]
q = [(0,0)]
num_met, pos_met = set(), set()
while q:
i, steps = q.pop(0) # state: position, step
if i == len(arr) - 1: return steps
num = arr[i]
pos_met.add(i) # track explored positions
print(d[num], (num not in num_met))
for p in [i - 1, i + 1] + d[num] * (num not in num_met):
if p in pos_met or not 0 <= p < len(arr): continue
q.append((p, steps + 1))
num_met.add(num) # track explored values
def minJumps_tle(self, arr):
d = defaultdict(list)
for i, val in enumerate(arr):
d[val].append(i)
# print(d)
n = len (arr)
edges = []
for _, v in d.items():
edges += list(combinations(v, 2))
for i in range(1, n - 1):
edges += [(i-1,i), (i,i+1)]
# print(edges, n)
# import networkx as nx
# g = nx.Graph()
g = Graph()
g.add_nodes_from(range(n))
g.add_edges_from(edges)
return len(bidirectional_shortest_path(g, 0, n - 1)) - 1
# @lc code=end
|
96b3f2f8175545ecf04a3dd05fd61d21a8a15f3b | NathanPaceydev/MadLibs-Oh-The-Places-You-Will-Go | /Rewrite_story_scrape.py | 1,974 | 3.71875 | 4 | #!/usr/bin/env python
# coding: utf-8
# In[1]:
#first time scraping program
## I wanted to do something static to start and just have fun with the outcome
# import libraries
import requests
from bs4 import BeautifulSoup
# In[2]:
# scraping the staic website
URL = "http://denuccio.net/ohplaces.html"
page = requests.get(URL)
soup = BeautifulSoup(page.content, "html.parser")
#print(page.text) # prints the text obj, ie the html code
# In[3]:
result = soup.find_all("p")
StringDict = []
#print(result)
for results in result:
StringDict.append(str(results.get_text()))
print("Oh the Places You Will Go\nDr.Suess")
print(StringDict[1])
#iteratable container
#job_elements = results.find_all("p")
# In[4]:
#User Input
print("Enter a Body part")
NounB = input()
print("\nEnter a Verb")
Verb1 = input()
print("\nEnter a 2nd Verb")
Verb2 = input()
print("\nEnter Your Name")
YourName = input()
print("\nEnter a Place")
place = input()
print("Enter an Adjective")
Adjective1 = input()
print("Enter a number")
num = input()
stringPrint = "\n"+YourName+" Entered a noun: "+NounB+", a verb of: "+Verb1+" and "+Verb2+", in a location of "+ place
print(stringPrint)
# In[5]:
stringT = (StringDict[1].strip()).split("***")
string = stringT[0]
#print(Noun)
string = string.replace("brain",NounB)
string = string.replace("foot",NounB)
string = string.replace("the guy", YourName)
string = string.replace("You", YourName)
string = string.replace("town",place)
string = string.replace("head straight",Verb1)
string = string.replace("fliers",Verb2)
string = string.replace("prowl",Verb2)
string = string.replace("The Waiting Place",place)
string = string.replace("Great",Adjective1)
string = string.replace("Buxbaum",str(YourName[0]+"uxbaum"))
string = string.replace("Bixby",str(YourName[0]+"ixby"))
string = string.replace("Bray",str(YourName[0]+"ray"))
string = string.replace("98",num)
print("The New Updated Story Just for You:\n\n")
print(string)
|
e0e5b303749671f617a28d8c84a3bacd00fb24f7 | moguzozcan/HackerrankSolutions | /Python/scripts/while_loop.py | 300 | 3.6875 | 4 | c = 5
while c != 0:
print(c)
c -= 1
c = 5
while c:
print(c)
c -= 1
#Zen of Python explicit is better than implicit, use the first one
#Infinite loops, if divisible by 7, exit the loop
while True:
response = input()
if int(response) % 7 == 0:
break
|
6bbc0fa9537921344976be8d802b5a21e4542f93 | 5l1v3r1/crypto_utils | /morse/main.py | 714 | 3.6875 | 4 | #!/usr/bin/python
"Morse encoder/decoder with option of custom charset, CC-BY: hasherezade"
import argparse
from morse import *
def main():
parser = argparse.ArgumentParser(description="Morse Encoder/Decoder")
parser.add_argument('--charset', dest="charset", default='.- ', help="Charset in format: 'DitDashBreak', i.e '.- '")
parser.add_argument('--decode', dest="decode", default=False, action='store_true', help="Decode or encode the given input?")
args = parser.parse_args()
m = Morse(args.charset)
print "Enter a message:"
raw = raw_input()
if args.decode:
print m.morse_dec(raw)
else:
print m.morse_enc(raw)
if __name__ == "__main__":
main()
|
bb5dd5eee44a3a59bd9371bf65bcfd293df34cec | avenet/hackerrank | /algorithms/implementation/repeated_string.py | 268 | 3.59375 | 4 | s = input().strip()
n = int(input().strip())
a_count = s.count('a')
whole_str_reps = n // len(s)
partial_str_length = n % len(s)
partial_str = s[:partial_str_length]
partial_str_a_count = partial_str.count('a')
print(a_count * whole_str_reps + partial_str_a_count)
|
a070a1d91a9d2cb4ddaf5fcae2c3ae6dd7251844 | chauhanvishu/shiny-dollop | /ab/1.py | 247 | 3.796875 | 4 | # -*- coding: utf-8 -*-
"""
Created on Tue Jun 12 23:52:15 2018
@author: aksha
"""
our_list = []
first_num = int(input('Enter first number: '))
second_num = int(input('Enter second number: '))
third_num = int(input('Enter third number: '))
|
a2978b664b22a741f9200cf18cbf12afa8167e7d | EricMoura/Aprendendo-Python | /Exercícios de Introdução/Ex030.py | 152 | 4 | 4 | num = int(input('Digite um número inteiro qualquer: '))
if num%2 == 0:
print('Esse número é par')
else:
print('Esse número é ímpar') |
3d9c924be611582a9b609dff66c250c143326f03 | cdiebold/python-class | /longest_word.py | 327 | 4.03125 | 4 | def longest_word(sen):
for ch in sen:
if not char.isalnum():
sen = sen.replace(char, ' ')
return max(sen.split(), key = len)
if __name__ == "__main__":
sen1 = "fun&!! time"
sen2 = "I love dogs"
res1 = longest_word(sen1)
print(res1)
res2 = longest_word(sen2)
print(res2)
|
f4dd5068593579ae03d92f59e53fc6349086e556 | choiseoungho/ssafy | /Day2/3장/ex2.py | 728 | 3.578125 | 4 | # 사용자가 시청한 작품의 리스트를 저장합니다. 수정하지 마세요.
user_to_titles = {
1: [271, 318, 491],
2: [318, 19, 2980, 475],
3: [475],
4: [271, 318, 491, 2980, 19, 318, 475],
5: [882, 91, 2980, 557, 35],
}
def get_user_to_num_titles(user_to_titles):
'''
사용자가 시청한 작품의 수를 리턴합니다.
>>> get_user_to_num_titles({1: [271, 318, 491]})
{1: 3}
'''
user_to_num_titles = {}
for user, titles in user_to_titles.items():
user_to_num_titles[user] = len(titles)
return user_to_num_titles
# 아래 주석을 해제하고 결과를 확인해보세요.
print(get_user_to_num_titles(user_to_titles))
|
b5f1a6dbd33e6dc74106a9b38fee73f9c4058b5e | Prasanna0708/forloop-task | /while.py | 119 | 4.3125 | 4 | print("By using While Loop Printing values reverse from 10 to 1")
x = 10
while(x>0):
print(x)
x = x-1
|
fdfaac9f6b17907935bdfd2f2d23652b9ea22f4c | A-Chornaya/Python-Programs | /Other tasks/dejkstra.py | 3,492 | 3.75 | 4 | # Algorithm Dejkstry
# search for the shortest path from one knot of the graph to all others
# Matrix as a list of lists
from collections import deque
def dejkstra(matrix, start):
n = len(matrix)
distance = [None] * n
path = [0] * n
distance[start] = 0
nonvisited = [start]
visited = []
while nonvisited:
current = min(nonvisited, key=lambda x: distance[x])
current_dist = distance[current]
for i, weight in enumerate(matrix[current]):
if i in visited:
continue
if weight:
if distance[i] is None or distance[i] > weight + current_dist:
distance[i] = weight + current_dist
path[i] = current
nonvisited.append(i)
visited.append(current)
nonvisited.remove(current)
return distance, path
def recreate_path(path_list, node):
path = deque()
current = node
path.append(node)
while path_list[current] != current:
path.appendleft(path_list[current])
current = path_list[current]
return list(path)
Matrix = [
[0, 1, 3, 5, 1],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 1],
[0, 4, 2, 0, 0],
[1, 0, 1, 3, 0]
]
start = 0
dist, path = dejkstra(Matrix, start)
print(dist, path) # [0, 1, 2, 4, 1] [0, 0, 4, 4, 0]
node = 2
path_list = recreate_path(path, node)
print(f'path from start={start} to node={node}: {path_list}') # path from start=0 to node=2: [0, 4, 2]
print('')
Matrix2 = [
[0, 7, 9, 0, 0, 14],
[7, 0, 10, 15, 0, 0],
[9, 10, 0, 11, 0, 2],
[0, 15, 11, 0, 6, 0],
[0, 0, 0, 6, 0, 9],
[14, 0, 2, 0, 9, 0]
]
start2 = 0
dist2, path2 = dejkstra(Matrix2, start)
print(dist2, path2) # [0, 7, 9, 20, 20, 11] [0, 0, 0, 2, 5, 2]
node2 = 4
path_list2 = recreate_path(path2, node2)
print(f'path from start={start2} to node={node2}: {path_list2}') # path from start=0 to node=4: [0, 2, 5, 4]
####################################################
# Matrix as a dict
import operator
def dejk(matrix, start):
dist = dict.fromkeys(matrix.keys(), None)
dist[start] = 0
nonvisited = dist.copy()
path = dist.copy()
path[start] = start
visited = []
elements = len(matrix.keys())
while nonvisited:
knot, weight = min(list(filter(lambda item: item[1] is not None, nonvisited.items())), key=operator.itemgetter(1))
for child in matrix[knot].keys():
if child not in nonvisited:
continue
if dist[child] is None or dist[child] > matrix[knot][child] + weight:
dist[child] = matrix[knot][child] + weight
path[child] = knot
nonvisited[child] = dist[child]
del nonvisited[knot]
return dist, path
G = {
'A': {'B': 5, 'D': 3, 'E': 12, 'F': 5},
'B': {'A': 5, 'D': 1, 'G': 2},
'C': {'G': 2, 'E': 1, 'F': 16},
'D': {'B': 1, 'G': 1, 'E': 1, 'A': 3},
'E': {'A': 12, 'D': 1, 'C': 1, 'F': 2},
'F': {'A': 5, 'E': 2, 'C': 16},
'G': {'B': 2, 'D': 1, 'C': 2},
}
dist, path = dejk(G, 'B')
print(dist)
print(path)
# {'A': 4, 'B': 0, 'C': 3, 'D': 1, 'E': 2, 'F': 4, 'G': 2}
# {'A': 'D', 'B': 'B', 'C': 'E', 'D': 'B', 'E': 'D', 'F': 'E', 'G': 'B'}
|
6652cea1f27b477a57b8732b31db418c88ed5c67 | thrama/coding-test | /python/gradingStudents.py | 1,384 | 4.09375 | 4 | import math
import os
import random
import re
import sys
#
# HackerLand University has the following grading policy:
# - Every student receives a grades in the inclusive range from 0 to 100.
# - Any grade less than 40 is a failing grade.
#
# Sam is a professor at the university and likes to round each student's grade
# according to these rules:
# - If the difference between the grade and the next multiple of 5 is less
# than 3, round grade up to the next multiple of 5.
# - If the value of grade is less than 38, no rounding occurs as the result
# will still be a failing grade.
#
# For example, grade = 84 will be rounded to 85 but grade 29 will not be
# rounded because the rounding would result in a number that is less than 40.
# Given the initial value of grade for each of Sam's n students, write code
# to automate the rounding process.
#
# Link: https://www.hackerrank.com/challenges/grading/problem
#
def gradingStudents(grades):
r = []
for i in range(len(grades)):
if grades[i] < 38:
r.append(grades[i])
else:
if grades[i] % 5 < 3:
r.append(grades[i])
else:
r.append(grades[i] + (5 - (grades[i] % 5)))
return r
if __name__ == '__main__':
# simple test case
grades = [ 73, 67, 38, 33 ]
result = gradingStudents(grades)
print(result) |
17a2aa1badf14781162aa8c3bf172de640cbaea8 | vimkaf/Learning-Python | /comment_break.py | 205 | 3.796875 | 4 | # This is a single line commment
""" This is a multiline
comment
"""
num = 15
for x in range(100):
if x is num:
print('x is the number')
break
else:
print(x)
|
bd9572157e1c093764b8b1ebd0c0b9f0119fc871 | Daria706/Lab | /Task 2.py | 217 | 3.953125 | 4 | a = float(input("Введите основание a"))
h = float(input("Введите высоту h"))
S = 0.5 * a * h
if S%2 == 0:
S=S/2
print("S=",S)
else:
print("Не могу делить на 2!")
|
afc23bc1cd715817243dde7acdf39c00570c6472 | mepujan/IWAssignment_1_python | /data_types/data_type_21.py | 353 | 4.375 | 4 | # Write a Python program to get a list, sorted in increasing order by the last
# element in each tuple from a given list of non-empty tuples.
def last(n): return n[-1]
def sort_list_last(tuples):
return sorted(tuples, key=last)
def main():
print(sort_list_last([(2, 5), (1, 2), (4, 4), (2, 3), (2, 1)]))
if __name__ == '__main__':
main()
|
cfd730b4343cc845beae838a576d06d08c83f6c9 | RhysMurage/alx-higher_level_programming | /0x07-python-test_driven_development/4-print_square.py | 418 | 4.375 | 4 | #!/usr/bin/python3
"""
Module that has the function print_square
"""
def print_square(size):
"""Prints a square using the character '#'
Args:
size (int): dimensions of the square
"""
if not isinstance(size, int):
raise TypeError('size must be an integer')
if size < 0:
raise ValueError('size must be >= 0')
h = 0
for h in range(0, size):
print('#'*size)
|
e1ddc5442fae207bd82bece5723465c1d6257ced | ArpitSharma2800/Algorithms-and-Basic-Programmes | /Python/Algorithms/LeftSumArray.py | 1,048 | 3.65625 | 4 | # Given, an array of size n. Find an element that divides the array into two sub-arrays with equal sum.
def naive_method(arr):
# slower method
# O(n^2)
n = len(arr)
counter = 0
for x in range(n):
# calculating sum of left and right part and comparing values
if sum(arr[:x]) == sum(arr[x + 1:]):
counter += 1
return counter
def fast_method(arr):
# faster method
# O(n)
left_sum_array = []
right_sum_array = []
temp_sum = 0
for x in arr:
temp_sum += x
left_sum_array.append(temp_sum)
temp_sum = 0
for x in reversed(arr):
temp_sum += x
right_sum_array.append(temp_sum)
counter = 0
# comparing left_sum_array and right_sum_array
# incrementing counter whenever the values collide
for x, y in zip(left_sum_array, right_sum_array):
if x == y:
counter += 1
return counter
# Test Code
arr = [2, 3, 4, 1, 5, 4]
# Output : 1
# Subarrays are : {2, 3, 4} and {4, 5}
print(fast_method(arr))
|
3c254824529fc639c8a3bd47fc9fe772329f9a5a | perext5528/Python_2019 | /repl.it Example/3. If & Else/H. Queen move.py | 186 | 3.75 | 4 | x1 = int(input())
y1 = int(input())
x2 = int(input())
y2 = int(input())
dx = abs(x1 - x2)
dy = abs(y1 - y2)
if (x1==x2) or (y1==y2) or (dx == dy):
print("YES")
else:
print("NO")
|
b57ecc5edda54252e5c44e2eda6dea963029124b | seanchen513/leetcode | /bits/0260_single_numer_iii.py | 2,381 | 3.984375 | 4 | """
260. Single Number III
Medium
Given an array of numbers nums, in which exactly two elements appear only once and all the other elements appear exactly twice. Find the two elements that appear only once.
Example:
Input: [1,2,1,3,2,5]
Output: [3,5]
Note:
The order of the result is not important. So in the above example, [5, 3] is also correct.
Your algorithm should run in linear runtime complexity. Could you implement it using only constant space complexity?
"""
from typing import List
import collections
###############################################################################
"""
Solution: use dict to count numbers.
O(n) time
O(n) space
"""
class Solution:
def singleNumber(self, nums: List[int]) -> List[int]:
d = collections.Counter(nums)
res = []
for x in d:
if d[x] == 1:
res.append(x)
return res
###############################################################################
"""
Solution: use set.
O(n) time
O(n) space
"""
class Solution:
def singleNumber(self, nums: List[int]) -> List[int]:
s = set()
for x in nums:
if x in s:
s.remove(x)
else:
s.add(x)
return list(s)
###############################################################################
"""
Solution: use bits.
O(n) time
O(1) space
"""
import functools
class Solution:
def singleNumber(self, nums: List[int]) -> List[int]:
# Find XOR of the two unique numbers. If we can find one of the two
# unique numbers (say "a"), then the other one will be "a ^ mask".
mask = 0
for x in nums:
mask ^= x
# mask = functools.reduce(operator.xor, nums)
# Find rightmost 1-bit of xor.
# ie, the rightmost bit where the two unique numbers differ
diff = mask & -mask
# Use "diff" to filter for the unique number that has a 1-bit in
# the position of the 1-bit of diff.
# This unique number will be "a".
# The other unique number will be "a ^ xor".
# All the other numbers either (1) have x & diff == 0, or
# (2) have x & diff == 1, but get XOR'd into "a" twice, thus
# cancelling itself out.
a = 0
for x in nums:
if x & diff:
a ^= x
return [a, a ^ mask]
|
135093a5d17b5e01e05b613e63ed425b17954229 | rorochaudhary/sudoku | /sudoku_verifier.py | 3,241 | 4.21875 | 4 | # Name: Rohit Chaudhary
# Course: CS 325 - Analysis of Algorithms
# HW 8: Portfolio Project
# Date: 12/7/20
# Description: For this project I chose to implement a 9x9 Sudoku solution verifier. The verifier takes as input a user-submitted solution.txt and determines whether solution.txt is a valid solution certifiate according to the rules of Sudoku. solution.py contains a 9x9 multi-dimensional array containing digit values 0-9 (where 0 denotes an empty position).
def check_solution(certificate):
"""iterates over certificate and determines whether certificate is a valid solution according to Sudoku rules: each row, each column, and each non-overlapping 3x3 grid must contain values between 1 and 9. returns True if certificate is a valid solution or False otherwise"""
# check for 9x9 size solution
r = len(certificate)
if r != 9:
return False
else:
for i in range(r):
if len(certificate[i]) != 9:
return False
# verify according to sudoku rules
if check_rows(certificate) and check_columns(certificate) and check_subboxes(certificate):
return True
else:
return False
def check_rows(certificate):
"""intermediate function called by check_solution in order to determine whether each row of sudoku solution contains digits 1-9 exactly once"""
r = len(certificate)
for i in range(r):
row = set(certificate[i])
if sum(row) != 45 or len(row) != 9:
return False
return True
def check_columns(certificate):
"""intermediate function called by check_solution in order to determine whether each column of sudoku solution contains digits 1-9 exactly once"""
r = len(certificate)
# list of sets, each set is a column
col_grid = [set() for x in range(r)]
for i in range(r):
for j in range(r):
col_grid[j].add(certificate[i][j])
# verify columns
for i in range(r):
if sum(col_grid[i]) != 45 or len(col_grid[i]) != 9:
return False
return True
def check_subboxes(certificate):
"""intermediate function called by check_solution in order to determine whether each 3x3 sub-box of the sudoku solution contains digits 1-9 exactly once"""
r = len(certificate)
boxes = [[set() for k in range(3)] for l in range(3)]
# get the subboxes
for i in range(r):
for j in range(r):
row = i // 3
col = j // 3
boxes[row][col].add(certificate[i][j])
# verify subboxes
for i in range(3):
for j in range(3):
if sum(boxes[i][j]) != 45 or len(boxes[i][j]) != 9:
return False
return True
# # code below grabs board in solution.txt and verifies the solution
# if __name__ == "__main__":
# with open('solution.txt', 'r') as f:
# board = []
# for line in f.readlines():
# str_row = list(line)
# row_len = len(str_row)
# row = []
# for i in range(row_len):
# if str_row[i].isdigit():
# row.append(int(str_row[i]))
# board.append(row)
# decision = check_solution(board)
# print("decision:", decision)
|
ffda8b9cf42dfc4167698f5de1e4bc69c3db92fd | kariesta/Euler | /p30.py | 577 | 3.859375 | 4 | '''
Surprisingly there are only three numbers that can
be written as the sum of fourth powers of their
digits:
1634 = 14 + 64 + 34 + 44
8208 = 84 + 24 + 04 + 84
9474 = 94 + 44 + 74 + 44
As 1 = 14 is not a sum it is not included.
The sum of these numbers is
1634 + 8208 + 9474 = 19316.
Find the sum of all the numbers that can be
written as the sum of fifth powers of their digits.
'''
x = 0
for a in range(10):
print(a, a*(9**5))
for a in range(33,999999):
ars = str(a)
s = sum([int(r)**5 for r in ars])
if s==a:
x+=a
print(a)
print("rr ",x)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.