blob_id
string | repo_name
string | path
string | length_bytes
int64 | score
float64 | int_score
int64 | text
string |
---|---|---|---|---|---|---|
fd2a85f35be78939583abe8dcd83ef649371b1bb | sangeetha19399/pythonguvipgm | /timemins.py | 58 | 3.578125 | 4 | mins=int(input())
hr=mins//60
mins=mins%60
print(hr,mins)
|
406f9e9d0073c5720fcc0342f52bcb3ec056a31f | lhr0909/SimonsAlgo | /_peuler/001-100/020.py | 83 | 3.5625 | 4 | from math import factorial
print sum(int(digit) for digit in str(factorial(100)))
|
7f2696741019c7a1633681a3b173c48a8941bb8b | cmkemp52/PythonExercises | /upper.py | 55 | 3.703125 | 4 | st = input("Please enter a string: ")
print(st.upper()) |
4e47aaa602764d1da19fbacf7457c948ff175faf | kooshanfilm/Python | /Exercise/numberof_char.py | 408 | 4.375 | 4 | #
#
# Write a Python program to count the number of characters (character frequency)
# in a string. Go to the editor Sample String :
# google.com' Expected Result : {'o': 3, 'g': 2, '.': 1, 'e': 1, 'l': 1, 'm': 1, 'c': 1}
def num_char(str):
count = 0
dic = {}
for i in str:
if i in dic:
dic[i] +=1
else:
dic[i] = 1
print dic
num_char("google.com") |
5bef5f08944cc9bca5eacce62820120dc46366bb | crescent-and-sheezer/python_text1 | /11.1.py | 758 | 3.515625 | 4 | # _*_ coding:utf-8
# 作者:凡
# @Time: 2021/2/12 17:45
# @File: 11.1.py
'''
import unittest
from city_function import city_functions
class test(unittest.TestCase):
def test1(self):
city_country = city_functions('santiago','chile')
self.assertEqual(city_country,'Santiago Chile')
unittest.main()
'''
import unittest
from city_function import city_functions
class test(unittest.TestCase):
def test1(self):
city_country = city_functions('santiago','chile')
self.assertEqual(city_country,'Santiago Chile')
def test2(self):
city_country_population = city_functions('santiago','chile','population=5000000')
self.assertEqual(city_country_population,'Santiago Chile Population=5000000')
unittest.main() |
6ec8d622f4e070d93d1295e7348cf2203c951d76 | danbao571/python- | /64-线程.py | 1,011 | 3.9375 | 4 | # 线程:执行代码的分支,默认程序中只有一个线程
import time
import threading
def AA(count):
for i in range(count):
print('aa')
time.sleep(0.2)
def BB(count):
for i in range(count):
print('bb')
time.sleep(0.2)
if __name__ == '__main__':
# 创建子线程执行对应的代码
# target表示目标函数
# args:表示以元组方式传参
# kwargs:表示以字典方式传参
# sub_thread = threading.Thread(target=aa, args=(3,))
sub_thread = threading.Thread(target=AA, kwargs={'count': 3})
three_thread = threading.Thread(target=BB, args=(2,), daemon=True )
# 设置守护线程,主线程退出子线程会直接销毁不再执行对应代码
# sub_thread.setDaemon(True)
sub_thread.start()
three_thread.start()
time.sleep(2)
print('over')
# 主线程执行bb
# 主线程会等所有子线程代码执行完再退出
# BB()
# 线程执行是无序的,由cpu调度决定
|
d87c075f626ddf41c62d37b094616e1d7f23d024 | monkeylyf/interviewjam | /tree/leetcode_Add_And_Search_Word_Data_Structure_Design.py | 3,121 | 3.6875 | 4 | """Add and search word data structure design
leetcode
Design a data structure that supports the following two operations:
void addWord(word)
bool search(word)
search(word) can search a literal word or a regular expression string containing only letters a-z or .. A . means it can represent any one letter.
For example:
addWord("bad")
addWord("dad")
addWord("mad")
search("pad") -> false
search("bad") -> true
search(".ad") -> true
search("b..") -> true
"""
from collections import deque
class TrieNode(object):
__slots__ = ('val', 'end', 'children')
def __init__(self):
"""
Initialize your data structure here.
"""
self.val = None
self.end = False
self.children = {}
class Trie(object):
def __init__(self):
""""""
self.root = TrieNode()
self.root.val = ''
def insert(self, word):
"""
Inserts a word into the trie.
:type word: str
:rtype: void
"""
node = self.root
for char in word:
try:
child = node.children[char]
except KeyError:
child = TrieNode()
child.val = char
node.children[char] = child
node = child
node.end = True
def search(self, pattern):
"""Return all end nodes whose paths fit given pattern.
Level order traversal. If current char '.', meaning wild card and all
nodes at this level match. Otherwise do exact match.
:param pattern: str
:param return: list, of nodes
"""
queue = deque([self.root])
for char in pattern:
count = len(queue)
while queue and count > 0:
node = queue.popleft()
count -= 1
if char == '.':
queue.extend(node.children.values())
else:
try:
queue.append(node.children[char])
except:
pass
return queue
class WordDictionary(object):
def __init__(self):
"""initialize your data structure here."""
self._trie = Trie()
def addWord(self, word):
"""Adds a word into the data structure.
:type word: str
:rtype: void
"""
self._trie.insert(word)
def search(self, word):
"""Returns if the word is in the data structure.
A word could contain the dot character '.' to represent any one letter.
:type word: str
:rtype: bool
"""
end_nodes = self._trie.search(word)
# Check any of the end nodes has end node flag.
return any(node.end for node in end_nodes)
def main():
# Your WordDictionary object will be instantiated and called as such:
wordDictionary = WordDictionary()
wordDictionary.addWord("word")
assert wordDictionary.search("..rd")
assert wordDictionary.search("word")
assert wordDictionary.search(".o.d")
assert wordDictionary.search(".o..")
if __name__ == '__main__':
main()
|
c531a0a2748d0aeaceb773c56dcd73fc1e0514e8 | gamerwalt/PythonTutorials | /main.py | 441 | 4.0625 | 4 |
#day 1
#test = input("What is your name?")
#print(f"Length of your name is {len(test)}")
#day1 - 1st Challenge
#a = input("a:")
#b = input("b:")
#temp = a
#a = b
#b = temp
#print("a = " + a)
#print("b = " + b)
#day1 - 2nd Challenge
print("Welcome to the Band Name Generator.")
city = input("What's the name of the city you grew up in?\n")
pet = input("What's your pet's name?\n")
print("")
print(f"Your band name could be {city} {pet}") |
f6bc0f1e20d4fd464862abe9619933de78553626 | danieljaouen/dotfiles | /topics/bin/generate_password_hash | 1,017 | 3.734375 | 4 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import division, print_function, unicode_literals
import getpass
from passlib.hash import sha512_crypt
def prompt():
password1, password2 = None, None
prompt1 = 'Enter your desired password: '
prompt2 = 'Once more: '
invalid = "Error: your passwords didn't match. Please try again.\n"
password1 = getpass.getpass(prompt=prompt1)
password2 = getpass.getpass(prompt=prompt2)
while password1 != password2:
print(invalid)
password1 = getpass.getpass(prompt=prompt1)
password2 = getpass.getpass(prompt=prompt2)
return password1
def hash_password(password, rounds=5000):
return sha512_crypt.encrypt(password, rounds=rounds)
def main():
password = prompt()
print()
print('-------------------------------------')
print('-- Your password hash is:')
print(hash_password(password))
print('-------------------------------------')
if __name__ == '__main__':
main()
|
f2490401bf0f1e596887f5a608b14b69e824b69c | andrewnester/python-problem-solutions | /problems/arrays/sum_of_four.py | 1,913 | 3.671875 | 4 | """
Find all four sum numbers
Given an array A of size N,
find all combination of four elements in the array whose sum is equal
to a given value K.
For example, if the given array is {10, 2, 3, 4, 5, 9, 7, 8} and K = 23,
one of the quadruple is "3 5 7 8" (3 + 5 + 7 + 8 = 23).
Input:
The first line of input contains an integer T denoting the no of test cases.
Then T test cases follow. Each test case contains two lines.
The first line of input contains two integers N and K.
Then in the next line are N space separated values of the array.
Output:
For each test case in a new line print all the quadruples present
in the array separated by space which sums up to value of K.
Each quadruple is unique which are separated by a delimeter "$" and
are in increasing order.
Constraints:
1<=T<=100 1<=N<=100 -1000<=K<=1000 -100<=A[]<=100
"""
from itertools import permutations
def get_sum_of_four(arr, K):
sums_of_two = {}
count = len(arr)
for i in range(0, count):
for j in range(i + 1, count):
sums_of_two.setdefault(arr[i] + arr[j], []).append(
(i, j))
possible_sums = set()
for s in sums_of_two.keys():
if s * 2 >= K:
continue
if K - s in sums_of_two:
first_pairs = sums_of_two[s]
second_pairs = sums_of_two[K - s]
for a, b in first_pairs:
for c, d in second_pairs:
if a != c and a != d and b != c and b != d:
need_to_add = True
for p in permutations([a, b, c, d]):
if p in possible_sums:
need_to_add = False
break
if need_to_add:
possible_sums.add((a, b, c, d))
return [(arr[p[0]], arr[p[1]], arr[p[2]], arr[p[3]]) for p in
possible_sums]
|
2ecc3140b883e5a80a0205e522dbc84de439612f | gislaine-a-sa/Python---Estrutura-de-Repeticao | /Estrutura de Repetição 13.py | 387 | 4.0625 | 4 | print ('Estrutura de Repitação - Exercício 13')
base=int(input('Informe a base:'))
valor_base=base
expoente=int(input('\nInforme o expoente:'))
if (expoente==1) or (expoente==0):
if (expoente==1):
print('\nResultado: %s' % (base))
else:
print('\nResultado: 1')
else:
for i in (range(expoente-1)):
base*=valor_base
print('\nResultado: %s' % (base))
|
e51ceed79735fbc316380b29db204f056193120c | ekrueger19/crispycode | /final.py | 564 | 4 | 4 | y = 0
x = raw_input("> ")
print "Hello. Will you help me? Answer y/n"
if x == "y":
print "Thank you. I am a genie and can tell your future."
print "Do you want to know your future? Answer y/n"
if x == "y":
print "You will die in approximately thirty seconds."
elif x == "n":
print "Good choice. You may leave."
else:
print "You have made a mistake with your answer. Please retry."
elif x == "n":
print "Dude. You are literally so rude. Omg."
else:
print "You made a mistake somewhere along the line. Try again."
|
ba41fb7674ef43c6253102da696332e6a8e0ae98 | nervig/Starting_Out_With_Python | /Chapter_2_programming_tasks/task_10.py | 576 | 3.96875 | 4 | #!/usr/bin/python
''' 1,5 glass of sugar }
1 glass of oil } = 48 cookies
2.75 glass of flour }
'''
glass_of_sugar = 0.028
glass_of_oil = 0.021
glass_of_flour = 0.057
amount_of_cookies = int(input("Please, enter the amount of cookies: "))
amount_sugar = amount_of_cookies * glass_of_sugar
amount_oil = glass_of_oil * amount_of_cookies
amount_flour = glass_of_flour * amount_of_cookies
print("For maiking {} amount of cookies you need: \n {} glass of sugar\n {} glass of oil\n {} glass of flour".format(amount_of_cookies, amount_sugar, amount_oil, amount_flour, 1))
|
15e12f2775a5ac2dc968dab50eaeef3e322f2601 | nwweber/time_tagging | /aligners.py | 4,577 | 3.671875 | 4 | import re
__author__ = 'niklas'
"""
Containing different classes implementing the align-interface.
Writing your own:
Recommended method:
Make your own class
Inherit from AbstractAligner
Implement align() method
This would look something like this:
class MyAlignerWhichDoesCoolStuff(AbstractAligner):
def align(self, transcriptions, audio_path=""):
[Logic]
return words_dicts
Then, to use your own aligner:
Go into 'annotate_forrest.py'
Make your aligner available by adding the following to the top of the file:
from aligners import MyAlignerWhichDoesCoolStuff
In the if __name__ == "__main__" block:
Find the "aligner = ..." line
Change it to "aligner = MyAlignerWhichDoesCoolStuff()"
However, inheriting from AbstractAligner is not a necessity. As long as your class has an align() class with the
right signature you are good to go
"""
import abc
class AbstractAligner():
"""
Class defining the align interface. Inherit from this, implement align method in sublcasses
"""
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def align(self, transcriptions, audio_path=""):
"""
Given a pandas DataFrame with transcriptions (columns: t_start, t_end, text) and possibly a path
to a matching audio file, return a list of time-tagged words
:param transcriptions: pd data frame, columns: t_start, t_end, text. text can coin multiple sentences per row
:param audio_path: possible path to audio data
:return: list, each element a dict with t_start, t_end, text, in which 'text' is only one word. words are all
lowercase
"""
return
@staticmethod
def extract_row_data(row):
"""
Given a row of transcription data, return the fields and the time difference. Purely for convenience.
"""
t_start = row["t_start"]
t_end = row["t_end"]
words = AbstractAligner.sentences2words(row["text"])
timediff = t_end - t_start
return t_start, t_end, timediff, words
@staticmethod
def sentences2words(sentence):
"""
In: String possibly containing multiple sentences and special characters
Out: List of words
"""
# splits into words, drops all special characters
words = re.sub("[^\w]", " ", sentence).split()
words = list(words)
return words
class AbstractRowBasedAligner(AbstractAligner):
"""Inherit from this if your aligner does things row-by-row"""
@abc.abstractmethod
def row2words_dicts(self, row):
return
def align(self, transcriptions, audio_path=""):
words_dicts = []
for i in range(transcriptions.shape[0]):
row = transcriptions.iloc[i]
words_dicts.extend(self.row2words_dicts(row))
for word_dict in words_dicts:
word_dict["text"] = word_dict["text"].lower()
return words_dicts
class UniformAligner(AbstractRowBasedAligner):
"""
Gives equal time to each word in a text block
"""
def row2words_dicts(self, row):
print("doing uniform row alignment")
words_dicts = []
t_start, t_end, timediff, words = self.extract_row_data(row)
word_time = timediff / len(words)
# idea: each word in a sentence uses the same amount of time, approximately
for i, word in enumerate(words):
words_dicts.append({"t_start": t_start + i * word_time,
"t_end": t_start + (i + 1) * word_time,
"text": word})
return words_dicts
class WeightedAligner(AbstractRowBasedAligner):
"""
Time in a block is divided according to word weight
"""
def row2words_dicts(self, row):
words_dicts = []
t_start, t_end, timediff, words = self.extract_row_data(row)
weights = [len(word) for word in words]
total = sum(weights)
weight_fractions = [weight / total for weight in weights]
time_fractions = [weight_fraction * timediff for weight_fraction in weight_fractions]
offset = t_start
for i, word in enumerate(words):
words_dicts.append({"t_start": offset,
"t_end": offset + time_fractions[i],
"text": word})
offset += time_fractions[i]
# print("word {}, time fraction: {}".format(word, time_fractions[i]))
return words_dicts |
fea0c4615381d80d8a6c29ac69bf1cb82b26becc | sakshi72000/PythonPrograms | /Program5.py | 199 | 4 | 4 | # Assignment 1
# Program 5 : Program to display the numbers
def Display():
iCnt = 10
while iCnt > 0:
print(iCnt)
iCnt = iCnt - 1
def main():
Display()
if __name__ == "__main__":
main()
|
fa799975c815e8fce239c83696583635b4f2210e | kimmincheol7/ComputerVision | /5.py | 816 | 3.8125 | 4 | Python 3.8.5 (tags/v3.8.5:580fbb0, Jul 20 2020, 15:43:08) [MSC v.1926 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
>>> if x == 3:
print "X equals 3."
elif x == 2:
print "X equals 2."
else:
print "X equals something else."
print "This is outside the ‘if’."
SyntaxError: expected an indented block
>>> x = 3
>>> while x < 5:
print x, "still in the loop"
x = x + 1
3 still in the loop
4 still in the loop
>>> x = 6
>>> while x < 5:
print x, "still in the loop"
SyntaxError: multiple statements found while compiling a single statement
>>> assert(number_of_players < 5)
Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
assert(number_of_players < 5)
NameError: name 'number_of_players' is not defined
>>>
|
64d438c64084e70477b896a1b6f338e90db3c86f | iso1234/majorwork | /website/templateEngine.py | 17,445 | 3.59375 | 4 | import re
import html # Used to stop html injections
import copy # Used to make deepcopys of dictionarys
def renderTemplate(filename:str, context:dict):
""" Renders HTML from a template file """
# Get template string
with open("templates/" + filename, encoding='utf-8') as f:
template = f.read()
template = template.replace('“', '"') # Removes smart quotes
template = template.replace('”', '"') # Ditto
context = copy.deepcopy(context)
# Parse the template string and create node tree
tree = parse(template)
# Render the node tree and return the result
return render(tree, context)
def parse(template:str):
""" Checks the syntax of the template file 'template'
and creates and returns a node tree """
lex = Lexer(template) # Create lexer object and pass it the template string
nodeTree = lex.parse() # Call the parse method that will parse the string and return a node tree
return nodeTree
def render(nodeTree:object, context:dict):
""" Calls the .render() method on the head of the node tree """
return nodeTree.render(context)
def getNodeType(string:str):
""" Returns what type of node 'string' starts with """
if re.match(r'{{.*}}', string) is not None: # Check if is a python expression tag
return "python"
elif re.match(r'{% *include.*%}', string) is not None: # Check if its an include tag
return "include"
elif re.match(r'{% *let.*%}', string) is not None: # Check if its an let tag
return "let"
elif re.match(r'{% *safe.*%}', string) is not None: # Check if its an safe tag
return "safe"
elif re.match(r'{% *if.*%}.*{% *end *if *%}', string, re.DOTALL) is not None: # Check if its a pair of 'if' tags
return "if"
elif re.match(r'{% *comment *%}.*{% *end *comment *%}', string, re.DOTALL) is not None: # Check if its a pair of 'if' tags
return "comment"
elif re.match(r'{% *for.*in.*%}.*{% *end *for *%}', string, re.DOTALL) is not None: # Check if its a pair of 'for' tags
return "for"
# The following two conditions are used in parseIf() and parseFor() but ignored in parse()
elif re.match(r'{% *end *for *%}', string) is not None: # Check if its an 'end for' tag
return "endfor"
elif re.match(r'{% *end *if *%}', string) is not None: # Check if its an 'end if' tag
return "endif"
# This is used in parseIf() but ignored in parse()
elif re.match(r'{% *else *%}', string) is not None:
return "else"
# This is used in parseFor() but ignored in parse()
elif re.match(r'{% *empty *%}', string) is not None:
return "empty"
else:
return "text"
class Lexer: # This checks the syntax and creates a node tree
def __init__(self, template:str):
self.template = template
self.upto = 0
self.nodeTree = GroupNode() # Head node of the tree
def peek(self, amt=1):
""" Returns the next 'amt' character (Returns none if thats past the end of the string) """
if self.upto+amt-1 < len(self.template):
return self.template[self.upto:self.upto+amt]
def next(self):
self.upto += 1
def parse(self):
""" Parses self.template and returns a node tree """
nodeTree = GroupNode()
while self.upto < len(self.template): # While there's still input left
nodeType = getNodeType(self.template[self.upto:])
if nodeType in ["text", "endif", "endfor", "else", "empty"]:
nodeTree.children.append(self.parseText())
elif nodeType == "python":
nodeTree.children.append(self.parsePython())
elif nodeType == "include":
nodeTree.children.append(self.parseInclude())
elif nodeType == "let":
nodeTree.children.append(self.parseLet())
elif nodeType == "safe":
nodeTree.children.append(self.parseSafe())
elif nodeType == "comment":
self.parseComment()
elif nodeType == "if":
nodeTree.children.append(self.parseIf())
elif nodeType == "for":
nodeTree.children.append(self.parseFor())
return nodeTree
def parseText(self, flag=""):
""" This parses a text node. This will continue to parse until it finds another node.
This function usually treats nodes of type "endif" and "endfor" as plain text. When
the flag argument is set to either of these values it will stop pasing when it reaches
a node of said type. This is useful when parsing an if or for block. """
start = self.upto
# While its not the start of another node or the end of the string
nodeType = getNodeType(self.template[self.upto:])
while nodeType == "text" and nodeType != flag and self.peek() is not None:
self.next()
nodeType = getNodeType(self.template[self.upto:])
# Return text node object
return TextNode(self.template[start:self.upto])
def parsePython(self):
start = self.upto
while self.peek(2) != "}}": # While its not the end of the node
self.next()
# Skip the ending brackets
self.next()
self.next()
# Return python node object
return PythonNode(self.template[start:self.upto])
def parseInclude(self):
start = self.upto
while self.peek(2) != "%}": # While its not the end of the node
self.next()
# Skip the ending '%}'
self.next()
self.next()
# Return an include object
return IncludeNode(self.template[start:self.upto])
def parseLet(self):
start = self.upto
while self.peek(2) != "%}": # While its not the end of the node
self.next()
# Skip the ending '%}'
self.next()
self.next()
# Return a let object
return LetNode(self.template[start:self.upto])
def parseSafe(self):
start = self.upto
while self.peek(2) != "%}": # While its not the end of the node
self.next()
# Skip the ending '%}'
self.next()
self.next()
# Return a safe object
return SafeNode(self.template[start:self.upto])
def parseComment(self):
start = self.upto
# Look for the start of the {% end comment %} tag
while re.match(r'{% *end *comment *%}', self.template[self.upto:]) is not None:
self.next()
# Look for the end of the {% end comment %} tag
while self.peek(2) != "%}":
self.next()
# Skip the ending '%}'
self.next()
self.next()
def parseIf(self):
""" This parses an if node. It uses a version of parse() to parse the
inner code block. This is different from the parse function because
the flag "endif" is used when calling the parseText() function to
stop it treating the end if tag as plain text. This version of
parse() also deals with "else" nodes. """
ifNodeObject = IfNode()
start = self.upto
# Look for the end of the 'if' tag
while self.peek(2) != "%}":
self.next()
self.next()
self.next()
# Add the 'if' tag to the ifNode object
ifNodeObject.ifTag = self.template[start:self.upto]
# Create objects and add them to the ifNodeObject's children list
while re.match(r'{% *end *if *%}', self.template[self.upto:]) is None and self.peek():
nodeType = getNodeType(self.template[self.upto:])
if nodeType == "python":
ifNodeObject.children.append(self.parsePython())
elif nodeType == "include":
ifNodeObject.children.append(self.parseInclude())
elif nodeType == "let":
ifNodeObject.children.append(self.parseLet())
elif nodeType == "if":
ifNodeObject.children.append(self.parseIf())
elif nodeType == "for":
ifNodeObject.children.append(self.parseFor())
elif nodeType == "text":
ifNodeObject.children.append(self.parseText("endif"))
elif nodeType == "safe":
ifNodeObject.children.append(self.parseSafe())
elif nodeType == "comment":
self.parseComment()
elif nodeType == "else":
self.parseElse()
ifNodeObject.children.append("else")
if self.peek() is None:
raise SyntaxError("Unexpected EOF while parsing.\n \
This is possibly caused by the absence of an {% end if %} tag")
# Look for the end of the {% end if %} tag
while self.peek(2) != "%}":
self.next()
# Skip the ending '%}'
self.next()
self.next()
# Return an if object
return ifNodeObject
def parseElse(self):
# Look for the end of the {% else %} tag
while self.peek(2) != "%}":
self.next()
# Skip the ending '%}'
self.next()
self.next()
def parseEmpty(self):
# Look for the end of the {% empty %} tag
while self.peek(2) != "%}":
self.next()
# Skip the ending '%}'
self.next()
self.next()
def parseFor(self):
""" This parses an for node. It uses a version of parse() to parse the
inner code block. This is different from the parse function because
the flag "endfor" is used when calling the parseText() function to
stop it treating the end for tag as plain text. This version of
parse() also deals with "empty" nodes. """
forNodeObject = ForNode()
start = self.upto
# Look for the end of the 'for' tag
while self.peek(2) != "%}":
self.next()
self.next()
self.next()
# Add the 'for' tag to the forNode object
forNodeObject.forTag = self.template[start:self.upto]
# Create objects and add them to the forNodeObject's children list
while re.match(r'{% *end *for *%}', self.template[self.upto:]) is None and self.peek() is not None:
nodeType = getNodeType(self.template[self.upto:])
if nodeType == "python":
forNodeObject.children.append(self.parsePython())
elif nodeType == "include":
forNodeObject.children.append(self.parseInclude())
elif nodeType == "let":
forNodeObject.children.append(self.parseLet())
elif nodeType == "if":
forNodeObject.children.append(self.parseIf())
elif nodeType == "for":
forNodeObject.children.append(self.parseFor())
elif nodeType == "text":
forNodeObject.children.append(self.parseText("endfor"))
elif nodeType == "safe":
forNodeObject.children.append(self.parseSafe())
elif nodeType == "comment":
self.parseComment()
elif nodeType == "empty":
self.parseElse()
forNodeObject.children.append("empty")
# If it didn't find a closing tag
if self.peek() is None:
raise SyntaxError("Unexpected EOF while parsing.\n \
This is possibly caused by the absence of an {% end for %} tag")
# Look for the end of the {% end for %} tag
while self.peek(2) != "%}":
self.next()
# Skip the ending '%}'
self.next()
self.next()
# Return an for object
return forNodeObject
class GroupNode:
def __init__(self, children=None):
if children == None:
self.children = []
else:
self.children = children
self.output = []
def render(self, context:dict):
output = []
for child in self.children:
output.append(str(child.render(context)))
return "".join(output)
class PythonNode:
def __init__(self, content):
self.content = content
self.content = self.content[2:-2].strip()
def render(self, context):
try:
return html.escape(str(eval(self.content, {}, context)))
except NameError: # If there is an unknown variable
return ""
class SafeNode:
def __init__(self, content):
self.content = content
def render(self, context):
self.content = self.content[2:-2].replace("safe", "").strip()
try:
return eval(self.content, {}, context)
except NameError: # If there is an unknown variable
return ""
class TextNode:
def __init__(self, content):
self.content = content
def render(self, context):
return self.content
class IncludeNode:
def __init__(self, content):
self.content = content
def render(self, context):
# Create a string for the file name and a string for the arguments (variable assignments)
fileName, *argumentString = self.content[2:-2].replace("include", "", 1).strip().split(" ")
argumentString = " ".join(argumentString)
# Remove any quotation marks
fileName = fileName.strip("'").strip('"')
# Split the arguments up
arguments = []
match = re.match(r'( *\w* *= *\w*)', argumentString)
while match is not None:
arguments.append(match.group(1).replace(" ", ""))
argumentString = argumentString[len(match.group(1)):]
match = re.match(r'( *\w* *= *\w*)', argumentString)
# Call the file with the new arguments (if there are any)
newContext = copy.deepcopy(context)
if len(arguments) >= 1:
for variable in arguments:
key, value = variable.split("=")
newContext[key] = eval(value, {}, context)
return renderTemplate(fileName, newContext)
class LetNode:
def __init__(self, content):
self.content = content
def render(self, context):
var, expression = self.content[2:-2].replace("let", "").strip().split("=")
context[var.strip()] = eval(expression, {}, context)
return ""
class IfNode:
def __init__(self):
self.ifTag = ""
self.children = []
def render(self, context):
ifTrue = [] # Will be returned if the condition is true
ifFalse = []# Will be returned if the condition is false
# Evaluate the condition
try:
condition = eval(self.ifTag[2:-2].replace("if", "").strip(), {}, context)
except NameError: # If a variable in the condition isn't defined
condition = False
# Check for an else node
if "else" in self.children:
index = self.children.index("else")
ifTrue = self.children[:index]
ifFalse = self.children[index+1:]
else:
ifTrue = self.children
# Render
output = []
if condition:
for child in ifTrue:
output.append(str(child.render(context)))
else:
for child in ifFalse:
output.append(str(child.render(context)))
return "".join(output)
class ForNode:
def __init__(self):
self.forTag = ""
self.children = []
def render(self, context):
ifNotEmpty = []
ifEmpty = []
# Split the for node into the iterable and the variables
variables, iterable = self.forTag[2:-2].replace("for", "").split("in")
variables = variables.split(",")
try:
iterable = eval(iterable, {}, context)
except NameError: # If a variable in the iterable isn't defined
return ""
# Check for tuple/string/list unpacking
if len(variables) > 1:
for item in iterable:
if len(item) != len(variables):
return ""
# Check for an empty node
if "empty" in self.children:
index = self.children.index("empty")
ifNotEmpty = self.children[:index]
ifEmpty = self.children[index+1:]
else:
ifNotEmpty = self.children
# Render
output = []
if iterable:
for item in iterable:
# If tuple/list/string unpacking needs to be dealt with
if len(variables) > 1:
# Add multiple new variables to the context
newContext = copy.deepcopy(context)
for index, var in enumerate(variables):
newContext[var.strip()] = item[index]
# If tuple/list/string unpacking doesn't need to be dealt with
else:
# Add the new variable to the context
newContext = copy.deepcopy(context)
newContext[variables[0].strip()] = item
# Render each node in the codeblock with the new context
for child in ifNotEmpty:
output.append(child.render(newContext))
# If the iterable is empty
else:
for child in ifEmpty:
output.append(str(child.render(context)))
return "".join(output) |
d1c08b7aba6fd22593327cc5ccec7a3fb2324f74 | FengZhe-ZYH/CS61A_2020Summer | /debug.py | 1,827 | 3.75 | 4 | # Interactive Debugging
# python -i file.py
# python ok -q <question name> -i
# Visualizer
# http://pythontutor.com/composingprograms.html#mode=edit
# python ok -q <question name> --trace
# doctest
# python3 -m doctest file.py
# python3 -m doctest file.py -v
# Note: prefixing debug statements with the specific string "DEBUG: "
# allows them to be ignored by the ok auto grader used by cs61a.
# use a global debug variable
debug = True
def foo(n):
i = 0
while i < n:
i += func(i)
if debug:
print('DEBUG: i is', i)
def func(i):
pass
# Python has a feature known as an assert statement, which lets you test that a condition is true, and print an error
# message otherwise in a single line. This is useful if you know that certain conditions need to be true at certain
# points in your program. For example, if you are writing a function that takes in an integer and doubles it,
# it might be useful to ensure that your input is in fact an integer. You can then write the following code
def double(x):
assert isinstance(x, int), "The input to double(x) must be an integer"
return 2 * x
# One major benefit of assert statements is that they are more than a debugging tool, you can leave them in code
# permanently. A key principle in software development is that it is generally better for code to crash than produce
# an incorrect result, and having asserts in your code makes it far more likely that your code will crash if it has a
# bug in it.
# The reason the error message says "global name" is because Python will start searching for the variable from a
# function's local frame. If the variable is not found there, Python will keep searching the parent frames until it
# reaches the global frame. If it still can't find the variable, Python raises the error. IndexError |
03daefc047af77a8e27364eb145b1a1bcc3ac87e | 520Coder/Python-Programming-for-Beginners-Hands-on-Online-Lab- | /Section 7/Student Resources/Assignment Solution Scripts/assignment_tuples_01_basics.py | 1,861 | 4.53125 | 5 | # Tuples
# Assignment 1
tuple_numbers = (1, 2, 3, 4, 5)
tuple_groceries = ('coconuts', 'bananas', 'onions', 'spinach', 'tomatoes', 'cilantro', 'milk')
groceries_inventory = ('coconuts', 'tomatoes', 'onions', 'coconuts', 'bananas', 'onions', 'spinach', 'tomatoes', 'cilantro', 'milk', 'spinach', 'tomatoes', 'cilantro', 'tomatoes')
tuple_nested =((1, 2, 3), ["Python", "Database", "System"], 'Coding')
tuple_numbers_100s = (100, 200, 300, 400, 500)
# Print 3rd item from tuple_groceries
print("*" * 50)
print("The 3rd item of tuple_groceries :", tuple_groceries[2])
# Print the length of tuple_groceries
print("*" * 50)
print("The length of tuple_groceries :", len(tuple_groceries))
# Print the reverse of tuple_numbers & tuples_names
print("*" * 50)
tuple_groceries_rev = tuple(reversed(tuple_groceries))
print("Reverse of tuple_groceries :", tuple_groceries_rev)
# Print "Python" from "tuple_nested"
print("*" * 50)
print(tuple_nested[1][0])
# Unpack tuple_groceries tuple and print them
print("*" * 50)
print("Unpacking...")
g1, g2, g3, g4, g5, g6, g7, = tuple_groceries
print(g1)
print(g1)
print(g2)
print(g3)
print(g4)
print(g5)
print(g6)
print(g7)
# Swap tuple_numbers and tuple_numbers_100s
print("*" * 50)
print("Swapping...")
tuple_numbers, tuple_numbers_100s = tuple_numbers_100s, tuple_numbers
print("tuple_numbers_100s :", tuple_numbers_100s)
print("tuple_numbers :", tuple_numbers)
# Construct a new tuple "tuples_a" by extracting
# bananas, onions, spinach from tuples_groceries
print("*" * 50)
print("Subset items.... bananas, onions, spinach")
tuples_a = tuple_groceries[1:4]
print("tuples_a :", tuples_a)
# Count the number of times coconuts is listed in groceries_inventory tuple
print("*" * 50)
print("Count the number of times coconuts...")
coconut_count = groceries_inventory.count("coconuts")
print("coconuts :", coconut_count)
|
01cc8af42c78b54f2ebe3989904359c29f5015e8 | paradigmadigital/hackathon-image-processing | /formacion02.py | 889 | 3.890625 | 4 | import cv2
import numpy as np
# Create a black image
img = np.zeros((512, 512, 3), np.uint8)
# Draw a diagonal blue line with thickness of 5 px
# PARAMETERS
# img : The image where you want to draw the shapes
# color : Color of the shape. for BGR, pass it as a tuple, eg: (255,0,0) for blue. For grayscale, just pass the scalar value.
# thickness : Thickness of the line or circle etc. If -1 is passed for closed figures like circles, it will fill the shape. default thickness = 1
# lineType : Type of line, whether 8-connected, anti-aliased line etc. By default, it is 8-connected. cv2.LINE_AA gives anti-aliased line which looks great for curves.
cv2.line(img, (0, 0), (511, 511), (255, 0, 0), 5)
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.rectangle(img, (384, 0), (510, 128), (0, 255, 0), 3)
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
|
bfd843b1547e2d96d87df5fcf36acf426da08b84 | SakuraSa/MyLeetcodeSubmissions | /Jump Game/Accepted-13672434.py | 1,215 | 3.5625 | 4 | #Author : [email protected]
#Question : Jump Game
#Link : https://oj.leetcode.com/problems/jump-game/
#Language : python
#Status : Accepted
#Run Time : 196 ms
#Description:
#Given an array of non-negative integers, you are initially positioned at the first index of the array.
#Each element in the array represents your maximum jump length at that position.
#Determine if you are able to reach the last index.
#For example:
#A = `[2,3,1,1,4]`, return `true`.
#A = `[3,2,1,0,4]`, return `false`.
#Show Tags
#ArrayGreedy
#Code :
class Solution:
# @param A, a list of integers
# @return a boolean
def canJump(self, A):
if len(A) == 0:
return False
elif len(A) == 1:
return True
max_index = 0
max_reach = 0
step = 0
while max_reach < len(A) - 1:
old_max_index = max_index
max_index = max_reach
for i in range(old_max_index, max_reach + 1):
max_reach = max(max_reach, i + A[i])
if max_reach >= len(A):
return True
step += 1
if max_reach <= max_index:
return False
return True |
25ceef79216d5ac68a3d98a724c6f7cad181ae43 | 20171609/programmers | /printer.py | 574 | 3.53125 | 4 | from collections import deque
def solution(priorities, location):
answer = 0
que = deque([i for i in priorities])
maxnum = max(que)
while (que):
if que[0] == maxnum:
que.popleft()
answer += 1
if location == 0:
break
maxnum = max(que)
location -= 1
else:
print(que[0])
if location == 0:
location = len(que)
location -= 1
que.append(que.popleft())
return answer
|
239d2cde02bfe97b25ffa67d7cab9fcd05953e47 | Aries5522/daily | /2021届秋招/leetcode/哈希表/数组中出现次数超过一半的数字.py | 1,118 | 3.640625 | 4 | '''
数组中出现次数超过一半的数字
数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字。
你可以假设数组是非空的,并且给定的数组总是存在多数元素。
'''
from typing import List
class Solution:
def majorityElement(self, nums: List[int]) -> int:
hash_map={}
n=len(nums)
# if n==0:
# return None
for i in nums:
if i not in hash_map:
hash_map[i]=1
if hash_map[i]>int(n/2):
return i
else:
hash_map[i]+=1
if hash_map[i]>int(n/2):
return i
return None
'''
O(1)空间解法
'''
class Solution:
def majorityElement(self, nums: List[int]) -> int:
n=len(nums)
# if n==0:
# return None
ans=nums[0]
t=1
for i in range(1,n):
if nums[i] == ans:
t+=1
else:
t-=1
if t==0:
ans=nums[i]
t=1
return ans |
2016a56b3f902cac5d9e4a88b2b952fd602596bd | ClavinSBU/CSE304 | /hw5/codegen.py | 18,340 | 3.953125 | 4 | import ast
import absmc
# TODO:
# ??
####################################################################################################
# Global vars that hold label objects for different expressions / statements
label_scope = []
# This holds the label used for a `continue` statement in a loop
# For `for` loops, this points to the update expression
# For `while` loops, this points to the condition expression
current_loop_continue_label = None
# This holds the entrance of a loop, or the then part of an if statement
current_enter_then_label = None
# This holds the loop's exit or the else part of an if statement
current_break_out_else_label = None
# Examples:
# if we're in an if stmt where:
#
# if (x < y && x == z) {
# x++;
# } else {
# x--;
# }
# then if x < y BinaryExpr evals to false, we know to jump to the else branch
# and use the label called 'current_break_out_else_label'
# similarly, if we're in a loop where:
#
# while (x < y || x < z) {
# x++;
# }
#
# if x < y evals to true, jump into the body of the loop
# which is the label held by current_enter_then_label
non_static_field_offset = 0
current_method = None
def push_labels():
global label_scope
global current_loop_continue_label, current_enter_then_label, current_break_out_else_label
label_scope.append(current_loop_continue_label)
label_scope.append(current_enter_then_label)
label_scope.append(current_break_out_else_label)
def pop_labels():
global label_scope
global current_loop_continue_label, current_enter_then_label, current_break_out_else_label
current_break_out_else_label = label_scope.pop()
current_enter_then_label = label_scope.pop()
current_loop_continue_label = label_scope.pop()
def calc_nonstatic_offsets(cls):
'''Calculates the offsets for all instance fields of a class.
Walks up the hierarchy and assigns each instance field a unique offset.
At the end, it sets the class's size to number of instance fields.'''
global non_static_field_offset
if cls.superclass is not None:
calc_nonstatic_offsets(cls.superclass)
for field in cls.fields.viewvalues():
if field.storage == 'instance':
field.offset = non_static_field_offset
print '# field {} given {}'.format(field.name, non_static_field_offset)
non_static_field_offset += 1
cls.size = non_static_field_offset
def calc_static_offsets(cls):
for field in cls.fields.viewvalues():
if field.storage == 'static':
field.offset = absmc.machine.static_data
absmc.machine.add_static_field()
def preprocess(cls):
global non_static_field_offset
calc_static_offsets(cls)
non_static_field_offset = 0
calc_nonstatic_offsets(cls)
def generate_code(classtable):
for cls in classtable.viewvalues():
preprocess(cls)
for cls in classtable.viewvalues():
generate_class_code(cls)
def setup_registers(method):
# block 0 are the formals, which go into args
# if static, first arg is a0,
# if instance, first arg is a1, as `this` goes in a0
if isinstance(method, ast.Method) and method.storage == 'static':
absmc.Register.count = 0
else:
absmc.Register.count = 1
for var in method.vars.vars[0].values():
var.reg = absmc.Register('a')
print '# var {} given {}'.format(var.name, var.reg)
absmc.Register.count = 0
# rest of the vars in the method go into t registers
for block in range(1, len(method.vars.vars)):
for var in method.vars.vars[block].values():
var.reg = absmc.Register('t')
print '# var {} given {}'.format(var.name, var.reg)
def generate_class_code(cls):
global current_method
for method in cls.methods:
setup_registers(method)
current_method = method
method.returned = False
absmc.MethodLabel(method.name, method.id)
gen_code(method.body)
if not method.returned:
absmc.ProcedureInstr('ret')
for constr in cls.constructors:
setup_registers(constr)
current_method = constr
constr.returned = False
absmc.ConstructorLabel(constr.id)
gen_code(constr.body)
if not constr.returned:
absmc.ProcedureInstr('ret') # We assume constrs don't have a return
def gen_code(stmt):
global current_loop_continue_label, current_enter_then_label, current_break_out_else_label
# stmt.end_reg is the destination register for each expression
stmt.end_reg = None
push_labels()
if isinstance(stmt, ast.BlockStmt):
for stmt_line in stmt.stmtlist:
gen_code(stmt_line)
elif isinstance(stmt, ast.ExprStmt):
gen_code(stmt.expr)
elif isinstance(stmt, ast.AssignExpr):
gen_code(stmt.rhs)
gen_code(stmt.lhs)
if stmt.lhs.type == ast.Type('float') and stmt.rhs.type == ast.Type('int'):
conv = absmc.ConvertInstr('itof', stmt.rhs.end_reg)
stmt.rhs.end_reg = conv.dst
if not isinstance(stmt.lhs, ast.FieldAccessExpr):
absmc.MoveInstr('move', stmt.lhs.end_reg, stmt.rhs.end_reg)
else:
absmc.HeapInstr('hstore', stmt.lhs.base.end_reg, stmt.lhs.offset_reg, stmt.rhs.end_reg)
elif isinstance(stmt, ast.VarExpr):
stmt.end_reg = stmt.var.reg
elif isinstance(stmt, ast.ConstantExpr):
reg = absmc.Register()
if stmt.kind == 'int':
absmc.MoveInstr('move_immed_i', reg, stmt.int, True)
elif stmt.kind == 'float':
absmc.MoveInstr('move_immed_f', reg, stmt.float, True)
elif stmt.kind == 'string':
pass
elif stmt.kind == 'True':
absmc.MoveInstr('move_immed_i', reg, 1, True)
elif stmt.kind == 'False':
absmc.MoveInstr('move_immed_i', reg, 0, True)
elif stmt.kind == 'Null':
absmc.MoveInstr('move_immed_i', reg, 'Null', True)
stmt.end_reg = reg
elif isinstance(stmt, ast.BinaryExpr):
if stmt.bop not in ['and', 'or']:
gen_code(stmt.arg1)
gen_code(stmt.arg2)
reg = absmc.Register()
flt = ast.Type('float')
intg = ast.Type('int')
if stmt.arg1.type == flt or stmt.arg2.type == flt:
expr_type = 'f'
else:
expr_type = 'i'
if stmt.arg1.type == intg and stmt.arg2.type == flt:
conv = absmc.Convert('itof', stmt.arg1.end_reg)
stmt.arg1.end_reg = conv.dst
elif stmt.arg1.type == flt and stmt.arg2.type == intg:
conv = absmc.Convert('itof', stmt.arg2.end_reg)
stmt.arg2.end_reg = conv.dst
if stmt.bop in ['add', 'sub', 'mul', 'div', 'gt', 'geq', 'lt', 'leq']:
absmc.ArithInstr(stmt.bop, reg, stmt.arg1.end_reg, stmt.arg2.end_reg, expr_type)
elif stmt.bop == 'eq' or stmt.bop == 'neq':
absmc.ArithInstr('sub', reg, stmt.arg1.end_reg, stmt.arg2.end_reg, expr_type)
if stmt.bop == 'eq':
# check if r2 == r3
# 1. perform sub r1, r2, r3 (done above)
# 2. branch to set_one if r1 is zero
# 3. else, fall through and set r1 to zero
# 4. jump out so we don't set r1 to one by accident
ieq_set = absmc.BranchLabel(stmt.lines, 'SET_EQ')
ieq_out = absmc.BranchLabel(stmt.lines, 'SET_EQ_OUT')
absmc.BranchInstr('bz', ieq_set, reg)
absmc.MoveInstr('move_immed_i', reg, 0, True)
absmc.BranchInstr('jmp', ieq_out)
ieq_set.add_to_code()
absmc.MoveInstr('move_immed_i', reg, 1, True)
ieq_out.add_to_code()
if stmt.bop == 'and':
and_skip = absmc.BranchLabel(stmt.lines, 'AND_SKIP')
gen_code(stmt.arg1)
reg = absmc.Register()
absmc.MoveInstr('move', reg, stmt.arg1.end_reg)
absmc.BranchInstr('bz', and_skip, stmt.arg1.end_reg)
gen_code(stmt.arg2)
absmc.MoveInstr('move', reg, stmt.arg2.end_reg)
and_skip.add_to_code()
if stmt.bop == 'or':
or_skip = absmc.BranchLabel(stmt.lines, 'OR_SKIP')
gen_code(stmt.arg1)
reg = absmc.Register()
absmc.MoveInstr('move', reg, stmt.arg1.end_reg)
absmc.BranchInstr('bnz', or_skip, stmt.arg1.end_reg)
gen_code(stmt.arg2)
absmc.MoveInstr('move', reg, stmt.arg2.end_reg)
or_skip.add_to_code()
stmt.end_reg = reg
elif isinstance(stmt, ast.ForStmt):
# for-loop:
# for (i = 0; i < 10; i++) {
# body
# }
# set i's reg equal to 0
# create a label after this, as this is where we jump back to at end of loop
# also create the 'out' label which is what we jump to when breaking out of loop
# generate code for the 'cond' (test if i's reg is less than 10's reg)
# test if the cond evaluated to false with 'bz', if so, break out of loop
# else, fall through into the body of the for-loop
# when body is over, generate code to update the var (i++)
# jump unconditionally back to the cond_label, where we eval if i is still < 10
gen_code(stmt.init)
cond_label = absmc.BranchLabel(stmt.lines, 'FOR_COND')
current_enter_then_label = entry_label = absmc.BranchLabel(stmt.lines, 'FOR_ENTRY')
current_loop_continue_label = continue_label = absmc.BranchLabel(stmt.lines, 'FOR_UPDATE')
current_break_out_else_label = out_label = absmc.BranchLabel(stmt.lines, 'FOR_OUT')
cond_label.add_to_code()
gen_code(stmt.cond)
absmc.BranchInstr('bz', out_label, stmt.cond.end_reg)
entry_label.add_to_code()
gen_code(stmt.body)
continue_label.add_to_code()
gen_code(stmt.update)
absmc.BranchInstr('jmp', cond_label)
out_label.add_to_code()
elif isinstance(stmt, ast.AutoExpr):
gen_code(stmt.arg)
if stmt.when == 'post':
tmp_reg = absmc.Register()
absmc.MoveInstr('move', tmp_reg, stmt.arg.end_reg)
one_reg = absmc.Register()
# Load 1 into a register
absmc.MoveInstr('move_immed_i', one_reg, 1, True)
absmc.ArithInstr('add' if stmt.oper == 'inc' else 'sub', stmt.arg.end_reg, stmt.arg.end_reg, one_reg)
if stmt.when == 'post':
stmt.end_reg = tmp_reg
else:
stmt.end_reg = stmt.arg.end_reg
elif isinstance(stmt, ast.SkipStmt):
pass
elif isinstance(stmt, ast.ReturnStmt):
current_method.returned = True
if stmt.expr is None:
absmc.ProcedureInstr('ret')
return
gen_code(stmt.expr)
# Load the result into a0
absmc.MoveInstr('move', absmc.Register('a', 0), stmt.expr.end_reg)
# Return to caller
absmc.ProcedureInstr('ret')
elif isinstance(stmt, ast.WhileStmt):
current_loop_continue_label = cond_label = absmc.BranchLabel(stmt.lines, 'WHILE_COND')
current_enter_then_label = entry_label = absmc.BranchLabel(stmt.lines, 'WHILE_ENTRY')
current_break_out_else_label = out_label = absmc.BranchLabel(stmt.lines, 'WHILE_OUT')
cond_label.add_to_code()
gen_code(stmt.cond)
absmc.BranchInstr('bz', out_label, stmt.cond.end_reg)
entry_label.add_to_code()
gen_code(stmt.body)
absmc.BranchInstr('jmp', cond_label)
out_label.add_to_code()
elif isinstance(stmt, ast.BreakStmt):
absmc.BranchInstr('jmp', current_break_out_else_label)
elif isinstance(stmt, ast.ContinueStmt):
absmc.BranchInstr('jmp', current_loop_continue_label)
elif isinstance(stmt, ast.IfStmt):
# if (x == y)
# ++x;
# else
# --x;
# generate 2 labels, for the else part, and the out part
# test if x == y
# if not true, jump to the else part
# if true, we're falling through to the then part, then must jump
# out right before hitting the else part straight to the out part
current_enter_then_label = then_part = absmc.BranchLabel(stmt.lines, 'THEN_PART')
current_break_out_else_label = else_part = absmc.BranchLabel(stmt.lines, 'ELSE_PART')
out_label = absmc.BranchLabel(stmt.lines, 'IF_STMT_OUT')
gen_code(stmt.condition)
absmc.BranchInstr('bz', else_part, stmt.condition.end_reg)
then_part.add_to_code()
gen_code(stmt.thenpart)
absmc.BranchInstr('jmp', out_label)
else_part.add_to_code()
gen_code(stmt.elsepart)
out_label.add_to_code()
elif isinstance(stmt, ast.FieldAccessExpr):
gen_code(stmt.base)
cls = ast.lookup(ast.classtable, stmt.base.type.typename)
field = ast.lookup(cls.fields, stmt.fname)
offset_reg = absmc.Register()
ret_reg = absmc.Register()
absmc.MoveInstr('move_immed_i', offset_reg, field.offset, True)
absmc.HeapInstr('hload', ret_reg, stmt.base.end_reg, offset_reg)
stmt.offset_reg = offset_reg
stmt.end_reg = ret_reg
elif isinstance(stmt, ast.ClassReferenceExpr):
stmt.end_reg = absmc.Register('sap')
elif isinstance(stmt, ast.NewObjectExpr):
recd_addr_reg = absmc.Register()
size_reg = absmc.Register()
absmc.MoveInstr('move_immed_i', size_reg, stmt.classref.size, True)
absmc.HeapInstr('halloc', recd_addr_reg, size_reg)
if stmt.constr_id is None:
stmt.end_reg = recd_addr_reg
return
saved_regs = []
saved_regs.append(recd_addr_reg)
# add a0 if the current method is not static
if current_method.storage != 'static':
saved_regs.append(absmc.Register('a', 0))
# for each var in each block of the current method, add to save list
for block in range(0, len(current_method.vars.vars)):
for var in current_method.vars.vars[block].values():
saved_regs.append(var.reg)
# save each reg in the saved list
for reg in saved_regs:
absmc.ProcedureInstr('save', reg)
absmc.MoveInstr('move', absmc.Register('a', 0), recd_addr_reg)
arg_reg_index = 1
for arg in stmt.args:
gen_code(arg)
absmc.MoveInstr('move', absmc.Register('a', arg_reg_index), arg.end_reg)
arg_reg_index += 1
absmc.ProcedureInstr('call', 'C_{}'.format(stmt.constr_id))
# restore regs from the now-reversed save list
for reg in reversed(saved_regs):
absmc.ProcedureInstr('restore', reg)
stmt.end_reg = recd_addr_reg
elif isinstance(stmt, ast.ThisExpr):
stmt.end_reg = absmc.Register('a', 0)
elif isinstance(stmt, ast.MethodInvocationExpr):
gen_code(stmt.base)
cls = ast.lookup(ast.classtable, stmt.base.type.typename)
for method in cls.methods:
if stmt.mname == method.name:
break
saved_regs = []
arg_reg_index = 0
# first arg goes into a1 if desired method is not static
if method.storage != 'static':
arg_reg_index += 1
# add a0 if the current method is not static
if current_method.storage != 'static':
saved_regs.append(absmc.Register('a', 0))
# for each var in each block of the current method, add to save list
for block in range(0, len(current_method.vars.vars)):
for var in current_method.vars.vars[block].values():
saved_regs.append(var.reg)
# save each reg in the saved list
for reg in saved_regs:
absmc.ProcedureInstr('save', reg)
if method.storage != 'static':
absmc.MoveInstr('move', absmc.Register('a', 0), stmt.base.end_reg)
for arg in stmt.args:
gen_code(arg)
absmc.MoveInstr('move', absmc.Register('a', arg_reg_index), arg.end_reg)
arg_reg_index += 1
absmc.ProcedureInstr('call', 'M_{}_{}'.format(method.name, method.id))
# Store the result in a temporary register
stmt.end_reg = absmc.Register()
absmc.MoveInstr('move', stmt.end_reg, absmc.Register('a', 0))
# restore regs from the reversed save list
for reg in reversed(saved_regs):
absmc.ProcedureInstr('restore', reg)
elif isinstance(stmt, ast.UnaryExpr):
gen_code(stmt.arg)
ret = absmc.Register()
if stmt.uop == 'uminus':
zero_reg = absmc.Register()
if stmt.arg.type == ast.Type('float'):
prefix = 'f'
else:
prefix = 'i'
# if uminus, put 0 - <reg> into the return reg
absmc.MoveInstr('move_immed_{}'.format(prefix), zero_reg, 0, True)
absmc.ArithInstr('sub', ret, zero_reg, stmt.arg.end_reg, prefix)
else:
# if it's a 0, branch to set 1
# if it's a 1, we're falling through, setting to 0, and jumping out
set_one_label = absmc.BranchLabel(stmt.lines, 'SET_ONE')
out_label = absmc.BranchLabel(stmt.lines, 'UNARY_OUT')
absmc.BranchInstr('bz', set_one_label, stmt.arg.end_reg)
absmc.MoveInstr('move_immed_i', ret, 0, True)
absmc.BranchInstr('jmp', out_label)
set_one_label.add_to_code()
absmc.MoveInstr('move_immed_i', ret, 1, True)
out_label.add_to_code()
stmt.end_reg = ret
elif isinstance(stmt, ast.SuperExpr):
stmt.end_reg = absmc.Register('a', 0)
elif isinstance(stmt, ast.ArrayAccessExpr):
# Create fake register.
stmt.end_reg = absmc.Register('n', 0)
print 'Found an array access. Arrays are not supported.'
elif isinstance(stmt, ast.NewArrayExpr):
# Create fake register.
stmt.end_reg = absmc.Register('n', 0)
print 'Found an array creation. Arrays are not supported.'
else:
print 'need instance ' + str(type(stmt))
pop_labels()
|
dcf80887bbd12d029d545862ac0d188756aa7da3 | WilbertHo/hackerrank | /challenges/algorithms/warmup/maximizing_xor/py/maximizingxor.py | 1,537 | 4.0625 | 4 | #!/usr/bin/env python
import fileinput
import math
def maximize(l, r):
""" Return the maximum value of A XOR B, where L <= A <= B <= R
log2 of n is the number of times n has to be divided
by 2 to be less than or equal to 1, so it can tell us where
the most significant bit is.
ex: int(log2(1)) == 0 meaning 2 ** 0
int(log2(10)) == 3 (1010) 2 ** 3 + 2 ** 1
int(log2(8)) == 3 (1000) 2 ** 3
Test case: 10, 15 -> 7
10: 1010, 15: 1111
10 ^ 15 == 5, or 1010 ^ 1111 == 0101
The most significant bit of 1010 and 1111 are both 1, so
the range between 1010 to 1111 will have a max of 111.
Test case: 1, 10 -> 15
1: 0001, 10: 1010
1 ^ 10 == 11, ie 0001 ^ 1010 == 1111
The log2 will give the position of the most significant bit
of L ^ R.
math.log(10 ^ 15, 2) == 2.3219...
10 ^ 15 == 5 (0101) or (2 ** 2, with the rest being 2 ** 0)
Having the most significant bit, we can calculate the max by
setting all bits smaller than the most significant to 1.
We'll do that by finding the most significant bit's next larger
and subtracting 1 from that.
int(math.ceil(math.log(10 ^ 15, 2))) == 3
and 2 ** 3 == 8
8 - 1 == 7 (0111)
"""
return 2 ** int(math.ceil(math.log(l ^ r, 2))) - 1
def main():
input = [line.strip() for line in fileinput.input()]
print maximize(*map(int, input))
if __name__ == '__main__':
main()
|
cf91aac116f92f699121576242273a7baca84b18 | lelilia/advent_of_code_2020 | /day23.py | 2,424 | 3.609375 | 4 |
def print_list(head):
for _ in range(length):
if not head:
break
print(head.value)
head = head.next
def print_result(head):
while head.value != 1:
head = head.next
res = ""
head = head.next
while head.value != 1:
res += str(head.value)
head = head.next
return res
cups = list("219347865")
length = len(cups)
class LinkedList:
def __init__(self, value):
self.value = value
self.next = None
head = LinkedList(None)
current = head
while cups:
next_cup = LinkedList(int(cups.pop(0)))
current.next = next_cup
current = current.next
current.next = head.next
# pick current
current = head.next
for _ in range(100):
cutout1 = current.next
cutout2 = cutout1.next
cutout3 = cutout2.next
current.next = cutout3.next
next_value = current.value - 1
while next_value in [cutout1.value, cutout2.value, cutout3.value]:
next_value -= 1
if next_value < 1:
next_value = length
searching = current.next
while searching.value != next_value:
if searching == current:
next_value -= 1
if next_value == 0:
next_value = length
searching = searching.next
temp = searching.next
searching.next = cutout1
cutout3.next = temp
current = current.next
print(f'Part 1: {print_result(current)}')
# Part 2
cups = list("219347865")
cup_hash = {}
head = LinkedList(None)
current = head
while cups:
value = int(cups.pop(0))
next_cup = LinkedList(value)
cup_hash[value] = next_cup
current.next = next_cup
current = current.next
for value in range(10, 1_000_001):
next_cup = LinkedList(value)
cup_hash[value] = next_cup
current.next = next_cup
current = current.next
current.next = head.next
current = head.next
for _ in range(10_000_000):
cutout1 = current.next
cutout2 = cutout1.next
cutout3 = cutout2.next
current.next = cutout3.next
next_value = current.value - 1
while next_value in [cutout1.value, cutout2.value, cutout3.value]:
next_value -= 1
if next_value < 1:
next_value = 1_000_000
searching = cup_hash[next_value]
temp = searching.next
searching.next = cutout1
cutout3.next = temp
current = current.next
res2 = cup_hash[1].next.value * cup_hash[1].next.next.value
print(f'Part 2: {res2}')
|
4fce804681a410b5a58f177ab3382e36476b21ab | stefroes/Programming | /5-control-structures/pe5_1.py | 176 | 3.78125 | 4 | score = int(input('Geef je score: '))
if score > 15:
print('Gefeliciteerd!\nMet een score van {} ben je geslaagd!'.format(score))
else:
print('Sorry, je bent gezakt')
|
29b1e05a36678df7b5484bd82bf7134a4e04a6c8 | SteephanSteve/Python | /unique.py | 329 | 3.53125 | 4 | #!usr/bin/python
n=int(raw_input("Enter the no. of elements :"))
a=[]
b=[]
print "Enter the elements :"
for i in xrange(n):
x=int(input())
a.append(x)
for i in xrange(n):
for j in range(i+1,n):
if a[i]==a[j]:
a[i]=a[j]=0
for i in xrange(n):
if not a[i]==0:
print a[i]
|
5b32b0e4e32cb94ac457387f4b282bea1449e983 | Cloud-cover/tf_aws_lambda_s3_trigger | /lambda.py | 2,258 | 3.578125 | 4 | """"
A sample implementation of a Lambda function that is expected to be invoked
by creation of an *.csv file in a specific S3 bucket. The function compresses
it and writes the compressed data into another file in the S3 bucket. The
function usess SNAPPY compression https://github.com/google/snappy and
https://github.com/andrix/python-snappy.
The intent is to demonstrate how to build dependencies and the function
into a zip file targeting the AWS Lambda runtime, and deploy it to AWS
using Terraform.
"""
import json
import urllib
import csv
import boto3
import zlib
def lambda_handler(event, context):
"""
Lambda event handler.
This function will be invoked by AWS when an object is created in the
configured S3 bucket.
Parameters
----------
See AWS Lambda documentation for meaning of these parameters.
"""
# Get the object from the event and show its content type
bucket = event['Records'][0]['s3']['bucket']['name']
key = urllib.unquote_plus(event['Records'][0]['s3']['object']['key'].encode('utf8'))
# read the content, compress it and write it to another file
s3_compress(bucket, key)
def s3_compress(bucket, object):
"""
Sample function that retrieves content of a file in an S3 bucket,
compresses it with the snappy compression algorithm, and saves it
to another file in the same S3 bucket.
Parameters
----------
bucket : str
Name of the bucket where the file is located
object : str
Name of the file to be compressed
"""
s3 = boto3.resource('s3')
fileobj = s3.Object(bucket, object).get()['Body']
archive = ''
while True:
buffer = fileobj.read(1024)
if not buffer:
break
# TODO add chunking/framing in so that larger files can be compressed
archive = archive + buffer
archive = zlib.compress(archive)
new_name = "%s.zlib" % object
client = boto3.client('s3')
client.put_object(Bucket=bucket, Key=new_name, ContentType='application/zlib', Body=archive)
if __name__ == '__main__':
# For local testing and development
# It assumes that you have AWS key/secret configured locally
s3_compress('my-lambda-test-123', 'mlb-stats.csv')
|
486de4df17abe8adb91a8bcfe34429523e20813f | lmorales17/cs61a | /trends/find_centroid.py | 1,918 | 4.34375 | 4 | def find_centroid(polygon):
"""Find the centroid of a polygon.
http://en.wikipedia.org/wiki/Centroid#Centroid_of_polygon
polygon -- A list of positions, in which the first and last are the same
Returns: 3 numbers; centroid latitude, centroid longitude, and polygon area
Hint: If a polygon has 0 area, return its first position as its centroid
>>> p1, p2, p3 = make_position(1, 2), make_position(3, 4), make_position(5, 0)
>>> triangle = [p1, p2, p3, p1] # First vertex is also the last vertex
>>> find_centroid(triangle)
(3.0, 2.0, 6.0)
>>> find_centroid([p1, p3, p2, p1])
(3.0, 2.0, 6.0)
>>> tuple(map(float, find_centroid([p1, p2, p1]))) # Forces result to be floats
(1.0, 2.0, 0.0)
"""
total_a = 0
total_x = 0
total_y = 0
n = len(polygon) - 1
i = 0
j = 0
k = n
area = 0
while k > 0: #calculates the area of the polygon
x1 = polygon[k-1][0]
y1 = polygon[k][1]
x2 = polygon[k][0]
y2 = polygon[k-1][1]
summation = ((x1*y1)-(x2*y2))
total_a += summation
k -= 1
area = (total_a/2)
while i < n: #calculates x-coordinate of the centroid
z1 = polygon[i][0]
w1 = polygon[i+1][1]
z2 = polygon[i+1][0]
w2 = polygon[i][1]
summation1 = (z1+z2)*(z1*w1-z2*w2)
total_x += summation1
i += 1
while j < n: #calculates y-coordinate of the centroid
v1 = polygon[j][0]
n1 = polygon[j+1][1]
v2 = polygon[j+1][0]
n2 = polygon[j][1]
summation2 = (n2+n1)*(v1*n1-v2*n2)
total_y += summation2
j += 1
if area == 0:
return (polygon[0][0], polygon[0][1], abs(area))
else:
area_divider = (1/(6*area))
x_coordinate = total_x*area_divider
y_coordinate = total_y*area_divider
return (x_coordinate, y_coordinate, abs(area))
|
b664b6c6205e4f3841045c5b48ddd9f398dfb069 | michail82/TestMikl | /MIklTest2_Week2_12_ Chess_board.py | 469 | 3.671875 | 4 | a1 = int( input() )
a2 = int( input() )
b1 = int( input() )
b2 = int( input() )
if (a1 + a2 + b1 + b2) % 2 == 0:
print( 'YES' )
else:
print( 'NO' )
# Заданы две клетки шахматной доски.
# Если они покрашены в один цвет,
# то выведите слово YES, а если в разные цвета – то NO.
# Формат ввода
# Вводятся 4 числа - координаты клеток.
|
cc85896c949b6bbf1e53492bf4b770fa2e81039a | weyyifoo/FunProjects | /Palindrome-N-Prime/palindrome-n-prime.py | 1,096 | 4.0625 | 4 | # -*- coding: utf-8 -*-
"""
Created on Sat Feb 10 10:29:26 2018
@author: Wey Yi
"""
# code checks to see if the number is a prime number
def isPrime(s):
s = int(s)
d = 0
for n in range(3,s):
if s % n == 0: # if there is a remainder from dividing s by the counter, n, then the code adds 1 to d
d += 1
else:
d += 0
if d == 0: # if d does not clock up any number at the end of the run, it is a prime number
return True
else:
return False
# code checks to see if the input is a palindrome:
def isPalin(s):
rev = s[::-1]
if s == rev:
return True
else:
return False
s = str(input("Input number to test if Palindrome & Prime: "))
a = isPalin(s)
k = isPrime(s)
if a == 1 and k == 1:
print("Yes. The input is both a Prime Number and a Palindrome")
elif (a == 1) and (k == 0):
print("The input is only a Palindrome. It is not a Prime")
elif (a == 0) and (k == 1):
print("The input is only a Prime. It is not a Palindrome")
else:
print("The input is neither a Prime nor Palindrome") |
8aaefd99032365bb59eb8f5507436e6c8b76e9e0 | xuliucun/first | /bg-python/base_part/test01_studentManage.py | 2,029 | 4 | 4 | #!/usr/bin/python
def showInfo(): # 显示功能列表
print("学生管理系统V1.0")
print("1:addInfo")
print("2:delInfo")
print("3:modifyInfo")
print("4:searchInfo")
print("5:displayInfo")
print("0:quitInfo")
def getInfo():
key = input("请选择序号:")
return int(key)
def addInfo(stuInfoListTemp):
name = input("请输入姓名:")
idlist = input("请输入ID:")
age = input("请输入年龄:")
stuInfo = {}
stuInfo['name'] = name
stuInfo['ID'] = idlist
stuInfo['age'] = age
stuInfoListTemp.append(stuInfo)
def delInfo(stuInfoListTemp):
delNum = int(input("请输入要删除的序号:"))
del stuInfoListTemp[delNum]
def modifyInfo(stuListTemp):
modifyNum = int(input("请输入要修改的序号"))
modifyname = input("请输入姓名")
modifyid = input("请输入ID")
modifyage = input("请输入年龄")
stuListTemp[modifyNum]['name'] = modifyname
stuListTemp[modifyNum]['ID'] = modifyid
stuListTemp[modifyNum]['age'] = modifyage
def searchInfo(stuListTemp):
searchNum = int(input("请输入查找的序号"))
print("id name age")
print("%s %s %s" % (
stuListTemp[searchNum]['ID'], stuListTemp[searchNum]['name'], stuListTemp[searchNum]['age']))
def quitInfo():
print("退出系统")
def displayInfo(students):
print("*" * 20)
print("接下来遍历所有学生信息")
print("id name age")
for temp in students:
print("%s %s %s" % (temp['ID'], temp['name'], temp['age']))
print("*" * 20)
stuInfoList = []
while True:
showInfo()
key = getInfo()
if key == 0:
quitInfo()
break
elif key == 1:
addInfo(stuInfoList)
elif key == 2:
delInfo(stuInfoList)
elif key == 3:
modifyInfo(stuInfoList)
elif key == 4:
searchInfo(stuInfoList)
elif key == 5:
displayInfo(stuInfoList)
else:
print("错误,请重新输入")
|
879a265b8da26a7115f34dfec87bde64cfdb6fef | suddenlykevin/cs550library | /Example 1 - Hello World!/helloworld.py | 6,742 | 4.125 | 4 | """
Kivy Example 1: Hello World!
Kevin Xie CS550
This example files gives a short introduction to programming
Kivy widgets in Python. It uses a number of widgets from popups
to sldiers to buttons to Codeinputs. However, it may seem messy!
This is because Kivy works best when typed in kv, where widget
trees and behavior are easier to follow and edit. Here's a short
flow chart:
Execute Code > Opens MyFirstButton > builds button and slider widgets in
a horizontal Boxlayout (stack)
1. If button > bind behavior (popup) > on_press > opens popup > builds
label (text), exit button, and codeinput in GridLayout and BoxLayout
a. If exit button > dismiss popup > return to MyFirstButton
2. If slider > bind behavior (recolor) > when value changes > recolors
window background color
More comments can be found in the code.
Sources (applies to all example files):
Reference - https://kivy.org/doc/stable/
On my honor, I have neither given nor received unauthorized aid.
Kevin Xie '19
"""
# core framework and behavior
import kivy
from kivy.app import App # for creating and opening "App" window cluster of widgets
from kivy.core.window import Window # for altering window color
# enter your Kivy version to ensure compatibility
kivy.require('1.10.1')
# import ux elements (widgets -- most titles are self explanatory)
from kivy.uix.button import Button
from kivy.uix.codeinput import CodeInput # a text box formatted for code
from kivy.uix.popup import Popup
from pygments.lexers import CythonLexer # used to format the syntax of python text
from kivy.uix.boxlayout import BoxLayout # formats the available space as "boxes" stacking either horizontally or vertically
from kivy.uix.label import Label
from kivy.uix.gridlayout import GridLayout # formats available space as a "grid" with rows and columns of widgets
from kivy.uix.slider import Slider
# content of the popup
content = BoxLayout(orientation="vertical") # in vertical stack
topbar = GridLayout(cols=2,size_hint=(1,0.2)) # create a grid layout (with 2 columns) topbar/menu bar for dismissing popup etc.
btn2 = Button(text='Close Me!',size_hint_x=0.2) # dismiss button with custom text and spacing (size_hint is the fraction of the x axis the widget occupies)
topbar.add_widget(Label(text="How does a button and slider work?")) # adds label (text) for title
topbar.add_widget(btn2) # adds dismiss button (order matters in boxlayout and gridlayout -- typically left to right, top down)
content.add_widget(topbar) # adds topbar to popup
# code input widget to explain the code of slider and button
content.add_widget(CodeInput(lexer=CythonLexer(),text="""# Button and Slider
#
# This simple button and slider was built entirely in Python using no Kv.
# It uses a box layout to arrange the two separate widgets and just two of Kivy's
# many offered widgets.
# Take a look at the code. Does it seem tedious or hard to follow?
# opens the core functionality of the Kivy framework
import kivy
# set this to the version of Kivy you are running to ensure compatibility
kivy.require('1.10.1')
# imports the ability to create "Apps" or groups of widgets to be executed
from kivy.app import App
# imports the abilities to create Buttons, Sliders, manipulate the window properties (color), and arrange widgets
from kivy.uix.button import Button
from kivy.uix.slider import Slider
from kivy.core.window import Window
from kivy.uix.boxlayout import BoxLayout
# executes this popup
# instance is input name (self.btn)
def popup(instance):
print("Popup opened!") # check the console!
code.open() # opens this popup
# recolors the background every time the slider is moved
# instance2 is the value of the slider
def recolor(instance,instance2):
val = float(instance2)/100.0 # retrieves a fraction out of 1 (rgba values from 0-1)
Window.clearcolor = (val,val,val,1) # sets window color
# the "App" or group of widgets that can all be run in one window
class MyFirstButton(App):
# the widgets to build into the app
def build(self):
self.content=BoxLayout(orientation="horizontal") # sets the layout of the window -- in this case, box layout indicates that widgets are "stacked" based on the orientation
self.slider = Slider(orientation='vertical', min=0, max=100, value = 0) # vertical slider from 0-100 with default 0
self.slider.bind(value=recolor) # binds the "recolor" function to every time the value of the slider changes
self.btn = Button(text='Hello World! (this is a button)', font_size = 25) # new button with text property "Hello World!" and font size 25
self.btn.bind(on_press=popup) # sets button behavior (calls function "popup")
self.content.add_widget(self.btn) # adds button to box layout (horizontal "stack")
self.content.add_widget(self.slider) # adds slider to box layout
return self.content # returns the arranged content of the app
# if still in original file
if __name__ == '__main__':
MyFirstButton().run() # runs the "app" in a new window
# Open the hellowworld.py file in Sublime to learn more about how this Popup was
# created!""",size_hint=(1,0.8))) # size_hint dictates the fraction of the screen across (1) and from top to bottom (0.8) the code should occupy
code = Popup(content=content, title="Popup!", auto_dismiss = False) # creates a popup with the aforemmentioned content
btn2.bind(on_press=code.dismiss) # binds behavior that dismisses code on_press of dismiss button
# function to open popup, first argument is always input name (btn in this case)
def popup(instance):
print("Popup opened!") # check your console!
code.open() # opens popup
# function to recolor the background, argument 2 is value of slider
def recolor(instance,instance2):
val = float(instance2)/100.0 # makes slider value a float between 0 and 1
Window.clearcolor = (val,val,val,1) # sets color in rgba from 0-1
# main cluster in the form of an "App" window that opens on run()
class MyFirstButton(App):
# sets widgets to build
def build(self):
self.content=BoxLayout(orientation="horizontal", padding=20) # widgets arranged horizontally, padded with 20% for each widget for visual reasons
self.slider = Slider(orientation='vertical', min=0, max=100, value = 0) # vertical slider from 0-100 with default 0
self.btn = Button(text='Hello World! (click me!)',font_size = 25) # button with text and font size 25
self.btn.bind(on_release=popup) # binds popup summoning behavior to button
# adds widgets to the arrangement of self.content
self.content.add_widget(self.btn)
self.content.add_widget(self.slider)
self.slider.bind(value=recolor) # binds recoloring behavior to slider
return self.content # returns the arranged content to the App
if __name__ == '__main__':
MyFirstButton().run() # runs widget in an "app" window!
|
e887e3183209d538db3950888ffee56b20c3ee7f | DipuKP2001/python_for_ds_coursera | /7.1.py | 137 | 4.0625 | 4 | # Use words.txt as the file name
fname = input("Enter file name: ")
fh = open(fname)
for i in fh:
i = i.strip().upper()
print (i) |
8e3a51e563811504a85a113ad5b8bf5b15075c0c | jayjacobs/csmatrix | /ch2/The_Vector-firstpass.py | 2,213 | 3.609375 | 4 | # version code 0d1e4db3d840
# Please fill out this stencil and submit using the provided submission script.
from GF2 import one
def add2(v, w):
return [v[0]+w[0], v[1]+w[1]]
def minus2(v, w):
return [v[0]-w[0], v[1]-w[1]]
def scalar_vector_mult(alpha, v):
return [ alpha*v[i] for i in range(len(v)) ]
def list_dot(u, v):
return sum([a*b for (a,b) in zip(u,v)])
## 1: (Problem 2.14.1) Vector Addition Practice 1
#Please express each answer as a list of numbers
p1_v = [-1, 3]
p1_u = [0, 4]
p1_v_plus_u = add2(p1_v, p1_u)
p1_v_minus_u = minus2(p1_v, p1_u)
p1_three_v_minus_two_u = minus2(scalar_vector_mult(3, p1_v), scalar_vector_mult(3, p1_u))
def add(v,w):
return [ a+b for (a,b) in zip(v,w) ]
def minus(v,w):
return [ a-b for (a,b) in zip(v,w) ]
## 2: (Problem 2.14.2) Vector Addition Practice 2
p2_u = [-1, 1, 1]
p2_v = [ 2, -1, 5]
p2_v_plus_u = add(p2_v, p2_u)
p2_v_minus_u = minus(p2_v, p2_u)
p2_two_v_minus_u = minus(scalar_vector_mult(2, p2_v), p2_u)
p2_v_plus_two_u = add(p2_v, scalar_vector_mult(2, p2_u))
## 3: (Problem 2.14.3) Vector Addition Practice 3
# Write your answer using GF2's one instead of the number 1
p3v = [0, one, one]
p3u = [one, one, one]
p3_vector_sum_1 = add(p3v, p3u)
p3_vector_sum_2 = add(p3v, add(p3u,p3u))
## 4: (Problem 2.14.4) GF2 Vector Addition A
# Please express your solution as a subset of the letters {'a','b','c','d','e','f'}.
# For example, {'a','b','c'} is the subset consisting of:
# a (1100000), b (0110000), and c (0011000).
# The answer should be an empty set, written set(), if the given vector u cannot
# be written as the sum of any subset of the vectors a, b, c, d, e, and f.
u_0010010 = ...
u_0100010 = ...
## 5: (Problem 2.14.5) GF2 Vector Addition B
# Use the same format as the previous problem
v_0010010 = ...
v_0100010 = ...
## 6: (Problem 2.14.6) Solving Linear Equations over GF(2)
#You should be able to solve this without using a computer.
x_gf2 = [...]
## 7: (Problem 2.14.7) Formulating Equations using Dot-Product
#Please provide each answer as a list of numbers
v1 = [...]
v2 = [...]
v3 = [...]
## 8: (Problem 2.14.9) Practice with Dot-Product
uv_a = ...
uv_b = ...
uv_c = ...
uv_d = ...
|
c8a3a22cc9cb74be75e4477082cf56778d5cc80e | deyukong/pycharm-practice | /practice/list_methods.py | 261 | 3.625 | 4 | a = [1,9,2,10,3,4,4,3,3,3,3,6]
b = [100, 101, 102]
a.append(100)
print(a)
a.extend(b)
print(a)
a.insert(1, 99)
print(a)
a.remove(100)
print(a)
a.pop(0)
print(a)
print(a.count(3))
a.sort(reverse = True)
print(a)
c = a.copy()
print(c)
a.clear()
print(a)
|
7a60d9b24e531499d4555936eacd65b836f35aa7 | balloonio/algorithms | /leetcode/problems/621_task_scheduler.py | 3,608 | 3.5 | 4 | # 1. Using sorting
class Solution:
def leastInterval(self, tasks, n):
"""
:type tasks: List[str]
:type n: int
:rtype: int
"""
if not tasks:
return 0
if not n:
return len(tasks)
task2freq = collections.defaultdict(int)
for task in tasks:
task2freq[task] += 1
ordered_tasks = []
for task, freq in task2freq.items():
ordered_tasks.append((-freq, freq, task))
ordered_tasks.sort()
task2cool = {}
workq = []
while ordered_tasks or task2cool:
# pick a task from doable tasks, if no then idel
if not ordered_tasks:
workq.append("idle")
task_done = None
else:
_, freq, task = ordered_tasks[0]
ordered_tasks.pop(0)
workq.append(task)
task2freq[task] -= 1
# move to cool down
task_done = task
if task2freq[task] > 0:
task2cool[task] = n
# check if cooldown finished
for task, cool in list(task2cool.items()):
if task == task_done:
continue
task2cool[task] -= 1
if task2cool[task] == 0:
task2cool.pop(task)
ordered_tasks.append((-task2freq[task], task2freq[task], task))
ordered_tasks.sort()
return len(workq)
# 2. Using heapq
class Solution: # noqa: F811
def leastInterval(self, tasks, n):
"""
:type tasks: List[str]
:type n: int
:rtype: int
"""
if not tasks:
return 0
if not n:
return len(tasks)
task2freq = collections.defaultdict(int)
for task in tasks:
task2freq[task] += 1
freq_heapq = []
for task, freq in task2freq.items():
freq_heapq.append((-freq, freq, task))
heapq.heapify(freq_heapq)
task2cool = {}
workq = []
while freq_heapq or task2cool:
# pick a task from doable tasks, if no then idel
if not freq_heapq:
workq.append("idle")
task_done = None
else:
_, freq, task = heapq.heappop(freq_heapq)
workq.append(task)
task2freq[task] -= 1
# move to cool down
task_done = task
if task2freq[task] > 0:
task2cool[task] = n
# check if cooldown finished
for task, cool in list(task2cool.items()):
if task == task_done:
continue
task2cool[task] -= 1
if task2cool[task] == 0:
task2cool.pop(task)
heapq.heappush(
freq_heapq, (-task2freq[task], task2freq[task], task)
)
return len(workq)
# 3. (There are faster and more concise solutions which doesn't construct workq)
# I'm not bother to write it here, but those should be around the same time complexity
"""
It is important to realize the key to this question:
to optimize the time, we need to assign slots for all occurance for task with
highest frequency first, and then in between the idle, assign other lower priority
tasks
L42 L43 When decrementing cool down cycles, make sure you are not decrementing
cooldown for the task that we just completed in the current cycle
"""
|
0e9871d7e0a74b069152a790ff4a0c38a1005926 | kartik0001/Day7 | /Modules/Q5.py | 117 | 3.953125 | 4 | # Q5.
from datetime import date
x=date(2021,12,24)
print("Date is: ",x.day)
'''
Output:
Date is: 24
''' |
cc81033abc8a9b65e417cb532e678e6effb8acc4 | gschen/where2go-python-test | /1906101001周茂林/2020寒假/力扣171/1.py | 698 | 3.84375 | 4 | '''
「无零整数」是十进制表示中 不含任何 0 的正整数。
给你一个整数 n,请你返回一个 由两个整数组成的列表 [A, B],满足:
A 和 B 都是无零整数
A + B = n
题目数据保证至少有一个有效的解决方案。
如果存在多个有效解决方案,你可以返回其中任意一个。
示例 1:
输入:n = 2
输出:[1,1]
解释:A = 1, B = 1. A + B = n 并且 A 和 B 的十进制表示形式都不包含任何 0 。
示例 2:
输入:n = 11
输出:[2,9]
'''
def getNoZeroIntegers(n):
for i in range(1, n):
if '0' not in str(i) and '0' not in str(n-i):
return [i, n-i]
n = 1010
print(getNoZeroIntegers(n))
|
4554a516ff48f666f950e895e46967388d9d0090 | nidhiatwork/Python_Coding_Practice | /30DayLeetcodeChallenge_April/Week2/11_diameterOfBinaryTree.py | 1,203 | 4.21875 | 4 | '''
Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a binary tree is the length of the longest path between any two nodes in a tree. This path may or may not pass through the root.
'''
import sys
class TreeNode(object):
def __init__(self, val, left=None, right=None):
self.val = val
self.left = left
self.right = right
class Solution(object):
def depth(self, node, ans):
if not node:
return 0
L = self.depth(node.left, ans)
R = self.depth(node.right, ans)
ans[0] = max(ans[0], L+R)
print("Node: ",node.val, " L: ", L, " R: ",R," return: ",1 + max(L, R)," ans: ", ans[0])
return 1 + max(L, R)
def diameterOfBinaryTree(self, root):
ans = [0]
self.depth(root, ans)
return ans[0]
s = Solution()
root = TreeNode(1,TreeNode(2, TreeNode(3), TreeNode(4)), TreeNode(5, TreeNode(6, TreeNode(8, TreeNode(11, TreeNode(15), TreeNode(16)), TreeNode(12)), TreeNode(9, TreeNode(13))), TreeNode(7, TreeNode(14, TreeNode(17), TreeNode(18)), TreeNode(10, TreeNode(19), TreeNode(20, TreeNode(21))))))
print(s.diameterOfBinaryTree(root)) |
67990a9cebe259010e180fe74a6149ae651328ef | Treelovah/Colorado-State-University | /Python-164/chapter.5/lab5.33/TextMsgAbbreviation.py | 778 | 3.78125 | 4 | '''
/*
(1) If a user's input string matches a known text message abbreviation, output the unabbreviated form, else output: Unknown.
Support two abbreviations: LOL -- laughing out loud, and IDK -- I don't know. (4 pts)
Sample input/output:
Input an abbreviation:
LOL
laughing out loud
(2) Expand to also decode these abbreviations. (3 pts)
BFF -- best friends forever
IMHO -- in my humble opinion
TMI -- too much information
*/
'''
# a hacked version of a python switch statement ^_^
def abbrev(i):
switcher = {
"LOL":"Laughing out loud",
"IDK":"I don't know",
"BFF":"best friends forever",
"IMHO":"in my humble opinion",
"TMI":"too much information"
}
return switcher.get(i,"Unkown")
print(abbrev(input())) |
c665b465f0e22ae1d5a2e66a31e32a99b8dc54fd | shreyajarsania/python_training | /git_ass_py_2/question9.py | 609 | 4.1875 | 4 | ##################################################################################################
#
# Write a Python program to sum of two given integers. However, if the sum is between 15 to 20
# it will return 20.
#
##################################################################################################
# take input from user
num1 = input("Enter 1st number")
num2 = input("Enter 2nd number")
# convert string to float
num1 = float(num1)
num2 = float(num2)
# sum
sum_num = num1 + num2
# check if sum is between 15 to 20
if 15 <= sum_num <= 20:
print('20')
else:
print(sum_num)
|
541093f02de52d797169a02ceaec446a12f89eb9 | ResearchInMotion/CloudForce-Python- | /Scrutiny/Dictionary/DictionaryIteration.py | 287 | 3.859375 | 4 | phonebook = {"John" : 938477566,"Jack" : 938377264,"Jill" : 947662781}
for name, number in phonebook.items():
print("Phone number of %s is %d" % (name, number))
check = {"sahil":8,"Nikki":9,"Vmal":9}
for name,number in check.items():
print("Age of %s is %d"%(name,number))
|
76f6ac8c9d551eeb40b78e9d15db3f6c5e2fce77 | Nathanael-L/pw-calc | /pw.py | 1,637 | 3.640625 | 4 | #!/usr/bin/python
import string
from random import randint
import sys
def main(length, passes, mode):
pw = []
sz = ['!','$','%','&','?','@','>','<']
for p in range(passes):
for i in range(length):
r4 = randint(0, mode)
if r4 == 0:
pw.append(randint(0, 9))
elif r4 == 1:
pw.append(string.lowercase[randint(0, 25)])
elif r4 == 2:
pw.append(string.uppercase[randint(0, 25)])
elif r4 == 3:
pw.append(sz[randint(0, 7)])
for letter in pw:
if type(letter) == int: sys.stdout.write(str(letter))
else: sys.stdout.write(letter)
sys.stdout.write('\n')
pw = []
uniqueness = 10;
if mode == 1:
uniqueness += 26
elif mode == 2:
uniqueness += 52
elif mode == 3:
uniqueness += 60
print "Guesability: " + str(uniqueness**length)
def usage():
print "password generator:"
print "usage: pw.py <number of characters> <number of passes> [<mode>]"
print "mode 0: only numbers"
print " 1: numbers and lowercase letters"
print " 2: numbers and letters"
print " 3: numbers, letters and special characters (default)"
exit(1)
if __name__ == '__main__':
for i in range(len(sys.argv)-1):
try:
int(sys.argv[i+1])
except:
print sys.argv[i+1]
print type(sys.argv[i+1])
usage()
if len(sys.argv) == 3:
main(int(sys.argv[1]), int(sys.argv[2]), 3)
elif len(sys.argv) == 4 and int(sys.argv[3]) >= 0 and int(sys.argv[3]) <= 3:
main(int(sys.argv[1]), int(sys.argv[2]), int(sys.argv[3]))
else:
usage()
|
935a2691af5bd1b38bd995201dafe97b09e436e9 | ravipapisetti954/pythonkids-beginners | /examples/02-turtle/03-colors/TiltedMultiColoredSquareSpiralWithBgColor.py | 389 | 3.921875 | 4 | # Drawing square
# Try changing the range value
# Try changing the degrees
import turtle
t = turtle.Pen()
# Visit http://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm for all the supported 03-colors
colors = ["red", "green", "blue", "orange"]
turtle.bgcolor("black")
for x in range(100):
t.pencolor(colors[x%4])
t.forward(x)
t.left(92)
# Excercise - do the same for circle spirals
|
e26e48b36268550b14f91def4aa32e0a5f2400fe | lmacionis/Exercises | /6. Fruitful_functions/Exercise_7.py | 1,056 | 3.859375 | 4 | """
Write a function to_secs that converts hours, minutes and seconds to a total number of seconds. Here are some tests that should pass:
test(to_secs(2, 30, 10) == 9010)
test(to_secs(2, 0, 0) == 7200)
test(to_secs(0, 2, 0) == 120)
test(to_secs(0, 0, 42) == 42)
test(to_secs(0, -10, 10) == -590)
"""
import sys
def to_secs(h, m, s):
time_in_seconds = h * 3600 + m * 60 + s
return time_in_seconds
def test(did_pass):
""" Print the result of a test. """
linenum = sys._getframe(1).f_lineno # Get the caller's line number.
if did_pass:
msg = "Test at line {0} ok.".format(linenum)
else:
msg = ("Test at line {0} FAILED.".format(linenum))
print(msg)
def test_suite():
""" Run the suite of tests for code in this module (this file).
"""
test(to_secs(2, 30, 10) == 9010)
test(to_secs(2, 0, 0) == 7200)
test(to_secs(0, 2, 0) == 120)
test(to_secs(0, 0, 42) == 42)
test(to_secs(0, -10, 10) == -590)
test_suite() # Here is the call to run the tests
print(to_secs(0, 0, 5)) |
27b7bdedcced86dc1ef16abd4e592a3de52372dc | balajisaikumar2000/python_modules | /OOPS'S IN PYTHON/Property Decorators.py | 1,809 | 4.0625 | 4 | """
when we did this ,it works fine but we have to print like this print(emp_1.email())
but we want email as variable(variable is called "property" in javascript
def email(self):
return '{} {}@email.com'.format(self.first,self.last) """
class Employee:
def __init__(self,first,last):
self.first = first
self.last = last
#we can solve above problem by addingn @property to above the def
@property
def email(self):
return '{} {}@email.com'.format(self.first, self.last)
@property
def fullname(self): #we can change the fullname to a attribute by adding @property,so we do not have to metionn like this--print(emp_1.fullname()),,,,,,we have to mention like this print(emp_1.fullname)
return "{} {}".format(self.first,self.last)
@fullname.setter #if we want to alter the function,we have to setter
def fullname(self,name):
first,last = name.split(' ')
self.first = first
self.last = last
@fullname.deleter #if we want to delete property we have to follow like this
def fullname(self):
print("Deleted....!")
self.first = None
self.last = None
emp_1 = Employee("Balaji","Sai Kumar")
emp_1.first = "Shyam"
emp_1.fullname = "swathi munagpati" #we will get error when we do this(AttributeError: can't set attribute) to solve this we have to set @fullname.setter
print(emp_1.first)
print(emp_1.email) #here on output first property changed ,but email didn't changed ,so we will make some minor changes in the code
print(emp_1.fullname)
del emp_1.fullname #here fullname will only deleted because we set the deleter to only fullname
|
36692a4cb3db6f41db9ac7db4547a95a65f3fbc7 | techkids-c4e/c4e5 | /Nhat Linh/btvn 26.6/Assignment 3/3+4.py | 600 | 4.1875 | 4 | from turtle import*
x=int(input('location 1'))
y=int(input('location 2'))
length=int(input('length'))
def draw_star(x,y,length):
penup()
setposition(x,y)
pendown()
for x in range(5):
forward(length)
right(144)
draw_star(x,y,length)
speed(0)
color('blue')
for i in range(100):
import random
x = random.randint(-300, 300)
y = random.randint(-300, 300)
length = random.randint(3, 10)
draw_star(x, y, length)
#random.randint(a, b):Return a random integer N such that a <= N <= b.
#how to use it: import the random module and use random functions needed.
|
f36a31066fcb2f99d8d4ad08722b2342bfcc20e4 | Neha-bora/Python | /argu_parameter.py | 1,688 | 3.75 | 4 | Python 3.8.0 (tags/v3.8.0:fa919fd, Oct 14 2019, 19:21:23) [MSC v.1916 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
>>> def about(name,age,likes):
sentence = "meet{}!they are{}years old and they like {}".format(name,age,likes)
return sentence
>>> about("neha",22,"hangout")
'meetneha!they are22years old and they like hangout'
>>>
>>>
>>> aboout(age=23,name="jack",likes="python")
Traceback (most recent call last):
File "<pyshell#7>", line 1, in <module>
aboout(age=23,name="jack",likes="python")
NameError: name 'aboout' is not defined
>>> about(age=23,name="jack",likes="python")
'meetjack!they are23years old and they like python'
>>>
>>>
>>> about("neha",22)
Traceback (most recent call last):
File "<pyshell#11>", line 1, in <module>
about("neha",22)
TypeError: about() missing 1 required positional argument: 'likes'
>>>
>>>
>>> def about(name,age,likes):
sentence = "meet {}!They are {}years old and they like {}".format(name,age,likes)
return sentence
>>>
>>> def about(name,age,likes= "java"):
sentence = "meet{}!they are{}years old and they like {}".format(name,age,likes)
return sentence
>>>
>>> about(anju,22)
Traceback (most recent call last):
File "<pyshell#20>", line 1, in <module>
about(anju,22)
NameError: name 'anju' is not defined
>>> about("anju",23)
'meetanju!they are23years old and they like java'
>>> about("ashu",18,"nothing")
'meetashu!they are18years old and they like nothing'
>>>
>>>
>>> about()
Traceback (most recent call last):
File "<pyshell#25>", line 1, in <module>
about()
TypeError: about() missing 2 required positional arguments: 'name' and 'age'
>>>
|
abef0d17164eaf292ce45ff9a8bee32b62404907 | yanbinkang/problem-bank | /ik_problems/linked_lists_stacks_queues/pair_wise_swap.py | 1,029 | 4.0625 | 4 | """
solution: http://www.geeksforgeeks.org/pairwise-swap-elements-of-a-given-linked-list-by-changing-links/
initial: 1->2->3->4->5->6->7->None
result: 2->1->4->3->6->5->7->None
# 1 -> 2 -> 3 -> 4 => 2 -> 1 -> 4 -> 3
"""
from sll import *
def pair_wise_swap(head):
if head == None or head.next == None:
return head
prev = head
current = head.next
head = current
while True:
next_node = current.next
current.next = prev
if next_node == None or next_node.next == None:
prev.next = next_node
break
prev.next = next_node.next
prev = next_node
current = prev.next
return head
if __name__ == '__main__':
a = Node(1)
b = Node(2)
c = Node(3)
d = Node(4)
e = Node(5)
f = Node(6)
g = Node(7)
a.next = b
b.next = c
c.next = d
d.next = e
e.next = f
f.next = g
res = pair_wise_swap(a)
while res != None:
print str(res.data) + "\n"
res = res.next
|
5f2f8f3b9df8f70f5db6690d26e981709a4cf3a6 | distractedpen/datastructures | /queue.py | 1,454 | 4.15625 | 4 | #queue implementation
class Queue():
def __init__(self, MAXSIZE):
self.q = [0] * MAXSIZE
self.MAXSIZE = MAXSIZE
self.front = 0
self.rear = -1
self.itemCount = 0
def peek(self):
return self.q[self.front]
def isFull(self):
return self.itemCount == self.MAXSIZE
def isEmpty(self):
return self.itemCount == 0
def enqueue(self, data):
if self.isFull():
return 0
else:
if self.rear == (self.MAXSIZE - 1):
self.rear = -1
self.rear += 1
self.q[self.rear] = data
self.itemCount += 1
def dequeue(self):
if self.isEmpty():
return "Error"
else:
if self.front == self.MAXSIZE:
self.front = 0
data = self.q[self.front]
self.front += 1
self.itemCount -= 1
return data
def debug(self):
print("Front: {0}".format(self.front))
print("Rear: {0}".format(self.rear))
print("Queue: {0}".format(self.q))
def main():
q = Queue(5)
q.enqueue(3)
q.enqueue(4)
q.enqueue(5)
while(not q.isEmpty()):
print(q.dequeue(), end=" ")
print("\n")
i = 10
while(not q.isFull()):
q.enqueue(i)
i += 1
while(not q.isEmpty()):
print(q.dequeue(), end=" ")
if __name__ == "__main__":
main()
|
6bf3d331f60bcc04da9739e3cbbfaface350503c | kaushalaneesha/Coding-Practice | /PythonPractice/src/interview_questions/pharm_easy/insert_elem_middle.py | 1,681 | 4.09375 | 4 | """
Insert element at the middle of a circular linked list
"""
class Node:
"""
Node of a linked list
"""
def __init__(self, val: int):
self.val = val
self.prev = None
self.next = None
class CircularLinkedList:
def __init__(self, h: Node):
self.head = h
self.last = h
if h:
self.head.next = h
self.last.next = h
def append(self, elem):
new_node = Node(elem)
new_node.next = self.head
self.last.next = new_node
self.last = new_node
def insert_elem_at_middle(self, elem):
if not self.head:
self.head = Node(elem)
self.head.next = self.head
return
fast = self.head
slow = self.head
while fast.next != self.head and fast.next.next != self.head:
print(slow.val)
slow = slow.next
fast = fast.next.next
# Add new node
new_node = Node(elem)
new_node.next = slow.next
slow.next = new_node
if new_node.next == head:
# update the last pointer as well
self.last = new_node
def print(self):
if not self.head:
return
print(self.head.val)
h = self.head.next
while h != self.head:
print(h.val)
h = h.next
# Test case
head = Node(10)
l = CircularLinkedList(head)
l.append(2)
l.append(3)
l.append(4)
l.print()
l.insert_elem_at_middle(6)
l.print()
l.insert_elem_at_middle(18)
l.print()
l.insert_elem_at_middle(20)
l.print()
head = None
l = CircularLinkedList(head)
l.print()
l.insert_elem_at_middle(6)
l.print()
|
a96e3cd4d0a42850413cf4c3540da72f87b5fbfa | rafaelperazzo/cc0003 | /codigo/calculadora.py | 1,009 | 4.375 | 4 | '''
Escrever uma função que represente uma máquina de calcular,
com as opções das operações fundamentais, fatorial, potência e raiz quadrada.
'''
def fatorial(n):
fat = 1
for i in range(1,n+1,1):
fat = fat * i
return (fat)
def calculadora(operacao,a,b):
if (operacao=='+'):
return(a+b)
elif (operacao=='-'):
return(a-b)
elif (operacao=='*'):
return(a*b)
elif (operacao=='/'):
return(a/b)
elif (operacao=='r'):
return(a**(0.5))
elif (operacao=='p'):
return(a**b)
else:
return(fatorial(a))
#PROGRAMA PRINCIPAL
#ENTRADA: operação e os números
while (True):
operacao = input('Digite a operacao (r)aiz, (p)otencia (f)atorial (+,-,*,/) fundamental (s)air: ')
if (operacao=='s'):
break
else:
a = float(input('Digite o primeiro numero: '))
b = float(input('Digite o segundo numero (0) se nao houver: '))
print(calculadora(operacao,a,b))
|
69d251e73e0443cc61908081f589ac5de4ec0dfd | summershaaa/Data_Structures-and-Algorithms | /剑指Offer/剑指24_反转链表.py | 798 | 3.625 | 4 | # -*- coding: utf-8 -*-
"""
Created on Sat Apr 20 16:57:45 2019
@author: WinJX
"""
#剑指offer-24 : 反转链表
class ListNode:
def __init__(self, x):
self.val = x
self.next = None
class Solution:
# 返回ListNode
def ReverseList(self, pHead):
#三指针交换
pReversedHead = None
pNode = pHead
pPrev = None
while pNode:
pNext = pNode.next
if not pNext:
pReversedHead = pNode
pNode.next = pPrev
pPrev = pNode
pNode = pNext
return pReversedHead
n1 = ListNode(1)
tmp = n1
for i in range(2,7):
tmp.next = ListNode(i)
tmp = tmp.next
rst = Solution()
print(rst.ReverseList(n1)) |
96a584c4e016e7f73e9d0e023b74a5be59f147ac | sungwooman91/python_code | /01.jump_to_python/chapter5/5_5 내장함수/234_abs.py | 168 | 3.921875 | 4 | print(abs(-3))
print(abs(3))
int_list=[1,2,3,4,5]
for i, name in enumerate(['body','foo','bar']):
print(i,name)
print(list(filter(lambda x:x>0,[1,-3,2,0,-5,6]))) |
27211fb2171c086a1e4fce8ac5d583aae209c2bf | claudio-unipv/pvml | /pvml/normalization.py | 6,414 | 3.59375 | 4 | import numpy as np
def meanvar_normalization(X, *Xtest):
"""Normalize features using moments.
Linearly normalize each input feature to make it have zero mean
and unit variance. Test features, when given, are scaled using
the statistics computed on X.
Parameters
----------
X : ndarray, shape (m, n)
input features (one row per feature vector).
Xtest : ndarray, shape (mtest, n) or None
zero or more arrays of test features (one row per feature vector).
Returns
-------
ndarray, shape (m, n)
normalized features.
ndarray, shape (mtest, n)
normalized test features (one for each array in Xtest).
"""
X = np.asarray(X)
Xtest = [np.asarray(XX) for XX in Xtest]
_check_all_same_size(X, *Xtest)
mu = X.mean(0)
sigma = X.std(0)
X = X - mu
X /= np.maximum(sigma, 1e-15) # 1e-15 avoids division by zero
if not Xtest:
return X
Xtest = tuple((Xt - mu) / np.maximum(sigma, 1e-15) for Xt in Xtest)
return (X,) + Xtest
def minmax_normalization(X, *Xtest):
"""Scale features in the [0, 1] range.
Linearly normalize each input feature in the [0, 1] range. Test
features, when given, are scaled using the statistics computed on
X.
Parameters
----------
X : ndarray, shape (m, n)
input features (one row per feature vector).
Xtest : ndarray, shape (mtest, n) or None
zero or more arrays of test features (one row per feature vector).
Returns
-------
ndarray, shape (m, n)
normalized features.
ndarray, shape (mtest, n)
normalized test features (one for each array in Xtest).
"""
X = np.asarray(X)
Xtest = [np.asarray(XX) for XX in Xtest]
_check_all_same_size(X, *Xtest)
xmin = X.min(0)
xmax = X.max(0)
X = X - xmin
X = X / np.maximum(xmax - xmin, 1e-15) # 1e-15 avoids division by zero
if not Xtest:
return X
Xtest = tuple((Xt - xmin) / np.maximum(xmax - xmin, 1e-15) for Xt in Xtest)
return (X,) + Xtest
def maxabs_normalization(X, *Xtest):
"""Scale features in the [-1, 1] range.
Linearly normalize each input feature in the [-1, 1] range by
dividing them by the maximum absolute value. Test features, when
given, are scaled using the statistics computed on X.
Parameters
----------
X : ndarray, shape (m, n)
input features (one row per feature vector).
Xtest : ndarray, shape (mtest, n) or None
zero or more arrays of test features (one row per feature vector).
Returns
-------
ndarray, shape (m, n)
normalized features.
ndarray, shape (mtest, n)
normalized test features (one for each array in Xtest).
"""
X = np.asarray(X)
Xtest = [np.asarray(XX) for XX in Xtest]
_check_all_same_size(X, *Xtest)
# 1e-15 avoids division by zero
amax = np.maximum(np.abs(X).max(0), 1e-15)
X = X / amax
if not Xtest:
return X
Xtest = tuple(Xt / amax for Xt in Xtest)
return (X,) + Xtest
def l2_normalization(X, *Xtest):
"""L2 normalization of feature vectors.
Scale feature vectors to make it have unit Euclidean norm. Test
features, when given, are scaled as well.
Parameters
----------
X : ndarray, shape (m, n)
input features (one row per feature vector).
Xtest : ndarray, shape (mtest, n) or None
zero or more arrays of test features (one row per feature vector).
Returns
-------
ndarray, shape (m, n)
normalized features.
ndarray, shape (mtest, n)
normalized test features (one for each array in Xtest).
"""
X = np.asarray(X)
Xtest = [np.asarray(XX) for XX in Xtest]
_check_all_same_size(X, *Xtest)
q = np.sqrt((X ** 2).sum(1, keepdims=True))
X = X / np.maximum(q, 1e-15) # 1e-15 avoids division by zero
if not Xtest:
return X
Xtest = tuple(l2_normalization(Xt) for Xt in Xtest)
return (X,) + Xtest
def l1_normalization(X, *Xtest):
"""L1 normalization of feature vectors.
Scale feature vectors to make it have unit L1 norm. Test
features, when given, are scaled as well.
Parameters
----------
X : ndarray, shape (m, n)
input features (one row per feature vector).
Xtest : ndarray, shape (mtest, n) or None
zero or more arrays of test features (one row per feature vector).
Returns
-------
ndarray, shape (m, n)
normalized features.
ndarray, shape (mtest, n)
normalized test features (one for each array in Xtest).
"""
X = np.asarray(X)
Xtest = [np.asarray(XX) for XX in Xtest]
_check_all_same_size(X, *Xtest)
q = np.abs(X).sum(1, keepdims=True)
X = X / np.maximum(q, 1e-15) # 1e-15 avoids division by zero
if not Xtest:
return X
Xtest = tuple(l1_normalization(Xt) for Xt in Xtest)
return (X,) + Xtest
def whitening(X, *Xtest):
"""Whitening transform.
Linearly transform features to make it have zero mean, unit
variance and null covariance. Test features, when given, are
trandformed using the statistics computed on X.
Parameters
----------
X : ndarray, shape (m, n)
input features (one row per feature vector).
Xtest : ndarray, shape (mtest, n) or None
zero or more arrays of test features (one row per feature vector).
Returns
-------
ndarray, shape (m, n)
normalized features.
ndarray, shape (mtest, n)
normalized test features (one for each array in Xtest).
"""
X = np.asarray(X)
Xtest = [np.asarray(XX) for XX in Xtest]
_check_all_same_size(X, *Xtest)
mu = X.mean(0)
sigma = np.cov(X.T)
evals, evecs = np.linalg.eigh(sigma)
w = (np.maximum(evals, 1e-15) ** -0.5) * evecs # 1e-15 avoids div. by zero
X = (X - mu) @ w
if not Xtest:
return X
Xtest = tuple((Xt - mu) @ w for Xt in Xtest)
return (X,) + Xtest
def _check_all_same_size(*X):
for x in X:
if x.ndim != 2:
msg = "Features must form a bidimensional array ({} dimension(s) found)"
raise ValueError(msg.format(x.ndim))
for x in X[1:]:
if x.shape[1] != X[0].shape[1]:
msg = "The number of features does not match ({} and {})"
raise ValueError(msg.format(X[0].shape[1], x.shape[1]))
|
c127abb838950cef5942239a4a52504277db7f0d | sneezydwarf2107/Python | /SiebDesEratosthenes/set_up_and_calculation.py | 528 | 3.5 | 4 | def get_List(grenze):
my_list = list(range(2, grenze+1))
return(my_list)
def calculation(my_list, grenze):
for x in range(0, len(my_list)):
if x >= len(my_list):
break
if my_list[x] != 0:
term = my_list[x]
for y in range(x+1, len(my_list)):
if y >= len(my_list):
break
if (my_list[y] % term) == 0:
my_list.pop(y)
return(my_list) |
89f12ea1a42558a73b536857984ebf39f452b902 | SebastianAthul/pythonprog | /DATACOLLECTIONS/list/present_notpresent.py | 222 | 3.765625 | 4 |
a=[1,2,3,4,5,6,8,9,10,22]
def present(a):
user=int(input("enter the element tocheck: "))
for i in a:
if i == user:
print("present")
break
else:
print("not present")
present(a)
|
ab2712e51dc9c0bf8860050792a3799a6b88d278 | senku-kz/cv-pa2 | /Canny.py | 9,056 | 3.8125 | 4 | # credit: Juan Carlos Niebles and Ranjay Krishna
import numpy as np
def conv(image, kernel):
""" An implementation of convolution filter.
This function uses element-wise multiplication and np.sum()
to efficiently compute weighted sum of neighborhood at each
pixel.
Args:
image: numpy array of shape (Hi, Wi)
kernel: numpy array of shape (Hk, Wk)
Returns:
out: numpy array of shape (Hi, Wi)
"""
Hi, Wi = image.shape
Hk, Wk = kernel.shape
out = np.zeros((Hi, Wi))
# For this assignment, we will use edge values to pad the images.
# Zero padding as used in the previous assignment can make
# derivatives at the image boundary very big.
pad_width0 = Hk // 2
pad_width1 = Wk // 2
pad_width = ((pad_width0, pad_width0), (pad_width1, pad_width1))
padded = np.pad(image, pad_width, mode='edge')
#####################################
# START YOUR CODE HERE #
#####################################
kernel = np.fliplr(np.flipud(kernel))
for i in range(Hi):
for j in range(Wi):
out[i, j] = np.sum(padded[i:i + Hk, j:j + Wk] * kernel)
######################################
# END OF YOUR CODE #
######################################
return out
def gaussian_kernel(size, sigma):
""" Implementation of Gaussian Kernel.
This function follows the gaussian kernel formula,
and creates a kernel matrix.
Hints:
- Use np.pi and np.exp to compute pi and exp
Args:
size: int of the size of output matrix
sigma: float of sigma to calculate kernel
Returns:
kernel: numpy array of shape (size, size)
"""
kernel = np.zeros((size, size))
#####################################
# START YOUR CODE HERE #
#####################################
k = (size - 1) / 2
for i in range(size):
for j in range(size):
kernel[i, j] = (1.0 / (2.0 * np.pi * sigma ** 2)) * \
np.exp(-((i - k) ** 2 + (j - k) ** 2) / (2.0 * sigma ** 2))
######################################
# END OF YOUR CODE #
######################################
return kernel
def partial_x(img):
""" Computes partial x-derivative of input img.
Hints:
- You may use the conv function which is defined in this file.
Args:
img: numpy array of shape (H, W)
Returns:
out: x-derivative image
"""
out = None
#####################################
# START YOUR CODE HERE #
#####################################
d_x = np.array([[0.5, 0.0, -0.5]])
out = conv(img, d_x)
######################################
# END OF YOUR CODE #
######################################
return out
def partial_y(img):
""" Computes partial y-derivative of input img.
Hints:
- You may use the conv function which is defined in this file.
Args:
img: numpy array of shape (H, W)
Returns:
out: y-derivative image
"""
out = None
#####################################
# START YOUR CODE HERE #
#####################################
d_y = np.array([[0.5], [0.0], [-0.5]])
out = conv(img, d_y)
######################################
# END OF YOUR CODE #
######################################
return out
def gradient(img):
""" Returns gradient magnitude and direction of input img.
Args:
img: Grayscale image. Numpy array of shape (H, W)
Returns:
G: Magnitude of gradient at each pixel in img.
Numpy array of shape (H, W)
theta: Direction(in degrees, 0 <= theta < 360) of gradient
at each pixel in img. Numpy array of shape (H, W)
"""
G = np.zeros(img.shape)
theta = np.zeros(img.shape)
#####################################
# START YOUR CODE HERE #
#####################################
g_x = partial_x(img)
g_y = partial_y(img)
G = np.sqrt(g_x ** 2 + g_y ** 2)
theta = np.arctan2(g_y, g_x)
theta = (np.rad2deg(theta) + 180) % 360
######################################
# END OF YOUR CODE #
######################################
return G, theta
def non_maximum_suppression(G, theta):
""" Performs non-maximum suppression
This function performs non-maximum suppression along the direction
of gradient (theta) on the gradient magnitude image (G).
Args:
G: gradient magnitude image with shape of (H, W)
theta: direction of gradients with shape of (H, W)
Returns:
out: non-maxima suppressed image
"""
H, W = G.shape
out = np.zeros((H, W))
# Round the gradient direction to the nearest 45 degrees
theta = np.floor((theta + 22.5) / 45) * 45
#####################################
# START YOUR CODE HERE #
#####################################
theta = theta % 360
for i in range(1, H - 1):
for j in range(1, W - 1):
current_angle = theta[i, j]
if current_angle == 0 or current_angle == 180:
neighbors = [G[i, j - 1], G[i, j + 1]]
elif current_angle == 45 or current_angle == 225:
neighbors = [G[i - 1, j - 1], G[i + 1, j + 1]]
elif current_angle == 90 or current_angle == 270:
neighbors = [G[i - 1, j], G[i + 1, j]]
elif current_angle == 135 or current_angle == 315:
neighbors = [G[i - 1, j + 1], G[i + 1, j - 1]]
else:
raise RuntimeError(
"Wrong theta value {}- should be one of the following[0,45,90,135,180,225,270,315]".format(
current_angle))
if G[i, j] >= np.max(neighbors):
out[i, j] = G[i, j]
# else:
# out[i, j] = 0
######################################
# END OF YOUR CODE #
######################################
return out
def double_thresholding(img, high, low):
"""
Args:
img: numpy array of shape (H, W) representing NMS edge response
high: high threshold(float) for strong edges
low: low threshold(float) for weak edges
Returns:
strong_edges: Boolean array representing strong edges.
Strong edeges are the pixels with the values above
the higher threshold.
weak_edges: Boolean array representing weak edges.
Weak edges are the pixels with the values below the
higher threshould and above the lower threshold.
"""
strong_edges = np.zeros(img.shape)
weak_edges = np.zeros(img.shape)
strong_edges = img >= high
weak_edges = (img < high) & (img > low)
return strong_edges, weak_edges
def get_neighbors(y, x, H, W):
""" Return indices of valid neighbors of (y, x)
Return indices of all the valid neighbors of (y, x) in an array of
shape (H, W). An index (i, j) of a valid neighbor should satisfy
the following:
1. i >= 0 and i < H
2. j >= 0 and j < W
3. (i, j) != (y, x)
Args:
y, x: location of the pixel
H, W: size of the image
Returns:
neighbors: list of indices of neighboring pixels [(i, j)]
"""
neighbors = []
for i in (y - 1, y, y + 1):
for j in (x - 1, x, x + 1):
if i >= 0 and i < H and j >= 0 and j < W:
if (i == y and j == x):
continue
neighbors.append((i, j))
return neighbors
def link_edges(strong_edges, weak_edges):
""" Find weak edges connected to strong edges and link them.
Iterate over each pixel in strong_edges and perform breadth first
search across the connected pixels in weak_edges to link them.
Here we consider a pixel (a, b) is connected to a pixel (c, d)
if (a, b) is one of the eight neighboring pixels of (c, d).
Args:
strong_edges: binary image of shape (H, W)
weak_edges: binary image of shape (H, W)
Returns:
edges: numpy array of shape(H, W)
"""
H, W = strong_edges.shape
indices = np.stack(np.nonzero(strong_edges)).T
edges = np.zeros((H, W), dtype=np.bool)
#####################################
# START YOUR CODE HERE #
#####################################
for i, j in indices:
neighbors = get_neighbors(i, j, H, W)
edges[i, j] = 1.0
viewed = set()
while neighbors:
y, x = neighbors.pop(0)
if (y, x) not in viewed and weak_edges[y, x]:
edges[y, x] = 1.0
neighbors.extend(get_neighbors(y, x, H, W))
viewed.add((y, x))
######################################
# END OF YOUR CODE #
######################################
return edges
|
5624a9ec0cb14a608cfd4e1dc26ab476a4b79084 | korosaiki/pyewq | /strip 用法 isalnum检验字符串.py | 196 | 3.8125 | 4 | user = input("请输入用户名:")
移除前后空格
add = user.strip()
print(add)
if add.isalnum():
注意:isalnum = isnum+isalpha
print("注册成功")
else:
print("注册失败")
|
2c55d1f2f16380739ba6684804d3f77835566a63 | Ivaylo-Atanasov93/The-Learning-Process | /Python Advanced/Comprahensions-Exercises/Word Filter.py | 79 | 3.84375 | 4 | string = input().split()
[print(word) for word in string if len(word) % 2 == 0] |
a3f18d464a1c66146d1064969a4c701968475e59 | michelejolie/PDX-Code-Guild | /bankaccount_3.py | 421 | 3.796875 | 4 | class BankAccount:
def __init__(self, f_name, l_name, balance):
self.f_name = f_name
self.l_name = l_name
self.full_name = self.f_name + ' ' + self.l_name
self.balance = balance
self.setup()
def setup(self):
print('You have create an account for {}.'.format(self.full_name))
account1 = BankAccount('Chris', 'Jones',60)
account2 = BankAccount('No', 'Name',5000)
|
85c181bf96bf6e0b52638c61657966b43e0ae850 | Ilhamw/practicals | /prac_03/that_name_thing.py | 312 | 3.84375 | 4 | def main():
"""Get name thing, without functions."""
name = get_name()
print_name(name, 3)
def print_name(name, step=2):
print(name[::step])
def get_name():
name = input("Name: ")
while name == "":
print("Invalid name.")
name = input("Name: ")
return name
main() |
71c027aab9ffc237127e8102a13e1aad5f9bcdb4 | zchenkui/MySimpleDNNLib-v1.0 | /time_series.py | 41,469 | 3.765625 | 4 | import numpy as np
import sys, os
from word2vector import Embedding
from basic_functions import softmax, sigmoid
from basic_layers import Softmax
class RNN:
""" Recurrent Neural Network model (single block)
A single block of RNN, which is the base of time series nerual network.
"""
def __init__(self, Wx, Wh, b):
""" Initialize RNN
Parameters:
Wx: affine matrix for x(t)
Wh: affine matrix for h(t-1)
b: bias vector
"""
self.params = [Wx, Wh, b]
self.grads = [np.zeros_like(Wx), np.zeros_like(Wh), np.zeros_like(b)]
self.cache = None
def forward(self, x, h_prev):
""" Forward propagation of RNN
Parameters:
x: x(t) is the tth item in time series. The size of x(t) is (1 * D) (a vector) or (N * D) (a mini-batch)
h_pre: h(t-1) is the previous output of RNN. The size of h(t-1) is (1 * H) (a vector) or (N * H) (a mini-batch)
Note that N is the batch size.
Size of weights matrices:
Wx: (D * H)
Wh: (H * H)
b: (1 * H)
Return:
h_next: h(t) is the output of the current RNN block, which will be sent to the next RNN block.
the size of h_next: (1 * H) (a vector) or (N * H) (a mini-batch)
how to calculate h_next: h(t) = tanh(h(t-1).Wh + x(t).Wx + b)
"""
Wx, Wh, b = self.params
t = np.dot(h_prev, Wh) + np.dot(x, Wx) + b
h_next = np.tanh(t)
self.cache = (x, h_prev, h_next)
return h_next
def backward(self, dh_next):
""" Back propagation of RNN
Parameter
dh_next: the derivative matrix of h_next (i.e. h(t)). The size of dh_next is (N * H), which is identical to h_next.
The size of matrices in each step:
dt: (N * H)
db: (1 * H)
dWh: (H * H)
dh_prev: (N * H)
dWx: (D * H)
dx: (N * D)
Procedure:
step 1. dt = dh_next * (1 - h_next^2). Note that [tanh(x)]' = 1 - [tanh(x)]^2
step 2. db = np.sum(dt, axis=0). Add all rows togethor, dt (N * H) ---> db (1 * H)
step 3. dWh = transpose(h_prev).dt. h_prev (N * H) ---> transpose(h_prev) (H * N) ---> (H * N).(N * H) ---> (H * H)
step 4. dh_prev = dt.transpose(Wh). transpose(Wh) (H * H) ---> dt (N * H) ---> (N * H).(H * H) ---> (N * H)
step 5. dWx = transpose(x).dt. x (N * D) ---> transpose(x) (D * N) ---> dt (N * H) ---> (D * N).(N * H) ---> (D * H)
step 6. dx = dt.transpose(Wx). dt (N * H) ---> transpose(Wx) (H * D) ---> (N * H).(H * D) ---> (N * D)
"""
Wx, Wh, _ = self.params
x, h_prev, h_next = self.cache
dt = dh_next * (1 - h_next**2)
db = np.sum(dt, axis=0)
dWh = np.dot(np.transpose(h_prev), dt)
dh_prev = np.dot(dt, np.transpose(Wh))
dWx = np.dot(np.transpose(x), dt)
dx = np.dot(dt, np.transpose(Wx))
self.grads[0][...] = dWx
self.grads[1][...] = dWh
self.grads[2][...] = db
return dx, dh_prev
class TimeRNN:
""" Time RNN combines RNN blocks and learns time series
"""
def __init__(self, Wx, Wh, b, stateful=False):
""" Initialize TimeRNN
Parameters:
Wx: (D * H) matrix
Wh: (H * H) matrix
b: (1 * H) vector
stateful: use h_prev or not (if not, set h_prev to 0)
"""
self.params = [Wx, Wh, b]
self.grads = [np.zeros_like(Wx), np.zeros_like(Wh), np.zeros_like(b)]
self.layers = None
self.h, self.dh = None, None
self.stateful = stateful
def set_state(self, h):
""" Set hidden state to h
Paramter:
h: a hidden state matrix (size: (N * H))
Return:
None
"""
self.h = h
def reset_state(self):
""" Reset hidden state to None
"""
self.h = None
def forward(self, xs):
""" Forward propagation of TimeRNN
Parameter:
xs: a time series input. The size of xs is (N * T * D) where N is the batch size, T is the time, and D is the length of word vector
Return:
hs: a time series hidden state. The size of hs is (N * T * H) where H is the length of hidden vector
Note:
if stateful is False or h is None, the input h is set to an (N * H) zero matrix.
"""
Wx, _, _ = self.params
N, T, _ = np.shape(xs)
_, H = np.shape(Wx)
self.layers = []
hs = np.empty((N, T, H), dtype="f")
if not self.stateful or self.h is None:
self.h = np.zeros((N, H), dtype="f")
for t in range(T):
layer = RNN(*self.params)
self.h = layer.forward(xs[:, t, :], self.h)
hs[:, t, :] = self.h
self.layers.append(layer)
return hs
def backward(self, dhs):
""" Back propagation of TimeRNN
Parameter:
dhs: the derivative matrix of hs. dhs has the same size with hs (N * T * H)
Return:
dxs: the derivative matrix of xs. dxs has the same size with xs (N * T * D)
Note that the initial dh is always 0.
"""
Wx, _, _ = self.params
N, T, _ = np.shape(dhs)
D, _ = np.shape(Wx)
dxs = np.empty((N, T, D), dtype="f")
dh = 0
grads = [0, 0, 0]
for t in reversed(range(T)):
layer = self.layers[t]
dx, dh = layer.backward(dhs[:, t, :] + dh)
dxs[:, t, :] = dx
for i, grad in enumerate(layer.grads):
grads[i] += grad
for i, grad in enumerate(grads):
self.grads[i][...] = grad
self.dh = dh
return dxs
class TimeEmbedding:
""" Extend Embedding layer to time series
"""
def __init__(self, W):
""" Initialize TimeEmbedding class
Parameter:
W: an embedding matrix with size (V * D) where V is the vocabulary size
"""
self.params = [W]
self.grads = [np.zeros_like(W)]
self.layers = None
self.W = W
def forward(self, xs):
""" Forward propagation of TimeEmbedding
Parameter:
xs: a time series batch with size (N * T) and each element is a word id. If N = 2 and T = 5,
xs may look like:
[
batch 0: [0, 1, 4, 8, 35],
batch 1: [3, 6, 15, 7, 6],
]
Return:
out: convert each element in xs to a word vector with fixed length D. The size of out is (N * T * D)
"""
N, T = np.shape(xs)
_, D = np.shape(self.W)
out = np.empty((N, T, D))
self.layers = []
for t in range(T):
layer = Embedding(self.W)
out[:, t, :] = layer.forward(xs[:, t])
self.layers.append(layer)
return out
def backward(self, dout):
""" Back propagation of TimeEmbedding
Paramter:
dout: the derivative matrix of out (see forward function). The size of dout is (N * T * D)
Return:
None
Note that we add all grads togethor
"""
T = np.shape(dout)[1]
grad = 0
for t in range(T):
layer = self.layers[t]
layer.backward(dout[:, t, :])
grad += layer.grads[0]
self.grads[0][...] = grad
class TimeAffine:
""" Extend Affine layer to time series
"""
def __init__(self, W, b):
""" Initialize TimeAffine class
Paramters:
W: an affine matrix with size (H * V) where H is the length of hidden vector and V is the vocabulary size
b: a bias vector with V elements.
"""
self.params = [W, b]
self.grads = [np.zeros_like(W), np.zeros_like(b)]
self.x = None
def forward(self, x):
""" Forward propagation of TimeAffine
Parameter:
x: in RNN, x is identical to hs (see TimeRNN class). The size of x is (N * T * H)
Return:
out: a time series "score" matrix with size (N * T * V)
"""
N, T, _ = np.shape(x)
W, b = self.params
rx = np.reshape(x, newshape=(N * T, -1))
out = np.dot(rx, W) + b
out = np.reshape(out, newshape=(N, T, -1))
self.x = x
return out
def backward(self, dout):
""" Backward propagation of TimeAffine
Parameter:
dout: the derivative matrix of out (i.e. the score matrix, see forward function) with size (N * T * V)
Return:
dx: the derivative matrix of x. Here dx and x are dhs and hs respectively (see TimeRNN class). The size of x (hs) and dx (dhs) is (N * T * H)
"""
x = self.x
N, T, H = np.shape(x)
W, _ = self.params
dout = np.reshape(dout, newshape=(N * T, -1))
rx = np.reshape(x, newshape=(N * T, -1))
db = np.sum(dout, axis=0)
dW = np.dot(np.transpose(rx), dout)
dx = np.dot(dout, np.transpose(W))
dx = np.reshape(dx, newshape=(N, T, H))
self.grads[0][...] = dW
self.grads[1][...] = db
return dx
class TimeSoftmaxWithLoss:
""" TimeSoftmaxWithLoss class
We combine softmax layer and loss layer togethor and then convert them to time series version
"""
def __init__(self):
""" Initialize TimeSoftmaxWithLoss class
There is no input argument
self.ingore_label is used in dropout algorithm
"""
self.params, self.grads = [], []
self.cache = None
self.ignore_label = -1
def forward(self, xs, ts):
""" Forward propagation of TimeSoftmaxWithLoss
Parameters:
xs: a score matrix from TimeAffine layer. The size of xs is (N * T * V), where V is the vocabulary size.
ts: a label matrix. ts may have two various sizes:
1. (N * T * V), each label is given as a one-hot vector with length V
2. (N * T), each label is given as the target word id (a scalar)
Return:
loss: the loss of xs (a scalar)
Note:
how to calculate the loss of time series.
batch N-1 batch N-2 ...... batch 0
t = 0 score_vec(N-1, 0) score_vec(N-2, 0) ...... score_vec(0, 0) ---> ts(0, 0) ---> Softmax and Cross Entropy Layer ---> loss 0 ---|
t = 1 score_vec(N-1, 1) score_vec(N-2, 1) ...... score_vec(0, 1) ---> ts(0, 1) ---> Softmax and Cross Entropy Layer ---> loss 1 ---|
. . . . . . |
. . . . . . | ---> Average ---> loss
. . . . . . |
. . . . . . |
t = T-1 score_vec(N-1, T-1) score_vec(N-2, T-1) ...... score_vec(0, T-1) ---> ts(0, T-1) ---> Softmax and Cross Entropy Layer ---> loss T-1 ---|
Size of matrices:
xs: (N * T * V) ---> ((N * T) * V) (3D to 2D)
ts: (N * T * V) ---> (N * T) ---> (1 * (N * T)) (3D (argmax)---> 2D (reshape) ---> 1D vector)
ys: ((N * T) * V) (2D)
ls: (1 * (N * T)) (1D vector)
loss: scalar
"""
N, T, V = np.shape(xs)
if np.ndim(ts) == 3:
ts = np.argmax(ts, axis=2)
mask = (ts != self.ignore_label)
xs = np.reshape(xs, newshape=(N * T, V))
ts = np.reshape(ts, newshape=(N * T))
mask = np.reshape(mask, newshape=(N * T))
ys = softmax(xs)
ls = np.log(ys[np.arange(N * T), ts])
ls *= mask
loss = -1 * np.sum(ls)
loss /= np.sum(mask)
self.cache = (ts, ys, mask, (N, T, V))
return loss
def backward(self, dout=1):
""" Back propagation of TimeSoftmaxWithLoss
Parameter:
dout: the derivative of loss (a scalar)
Return:
dx: the derivative matrix of xs (see forward function). Size of dx is (N * T * V)
"""
ts, ys, mask, (N, T, V) = self.cache
dx = ys
dx[np.arange(N * T), ts] -= 1
dx *= dout
dx /= np.sum(mask)
dx *= mask[:, np.newaxis]
dx = np.reshape(dx, newshape=(N, T, V))
return dx
class LSTM:
""" LSTM single block
"""
def __init__(self, Wx, Wh, b):
""" Initialize LSTM class
Parameters:
Wx: (D * 4H) matrix
Wh: (H * 4H) matrix
b: a vector with length 4H
"""
self.params = [Wx, Wh, b]
self.grads = [np.zeros_like(Wx), np.zeros_like(Wh), np.zeros_like(b)]
self.cache = None
def forward(self, x, h_prev, c_prev):
"""Forward propagation of LSTM
Parameters:
x: (N * D) matrix
h_prev: (N * H) matrix
c_prev: (N * H) matrix
Return:
h_next: (N * H) matrix
c_next: (N * H) matrix
Steps of forward propagation:
Sizes of matrices:
x: (N * D)
Wx: (D * 4H)
h_prev: (N * H)
Wh: (H * 4H)
b: a vector with length 4H
f, g, i, o: (N * H)
c_next, h_next: (N * H)
Step 1. A = x.Wx + h_prev.Wh + b
Step 2. f = A[:, 0:H], g = A[:, H:2H], i = A[:, 2H:3H], o = A[:, 3H:]
step 3. f = sigmoid(f) (forget gate)
g = tanh(g)
i = sigmoid(i) (input gate)
o = sigmoid(o) (output gate)
step 4. c_next = c_prev * f + g * i
h_next = o * tanh(c_next)
"""
Wx, Wh, b = self.params
_, H = np.shape(h_prev)
A = np.dot(x, Wx) + np.dot(h_prev, Wh) + b
f = A[:, 0 : H]
g = A[:, H : 2 * H]
i = A[:, 2 * H : 3 * H]
o = A[:, 3 * H : ]
f = sigmoid(f)
g = np.tanh(g)
i = sigmoid(i)
o = sigmoid(o)
c_next = c_prev * f + g * i
h_next = np.tanh(c_next) * o
self.cache = (x, h_prev, c_prev, i, f, g, o, c_next)
return h_next, c_next
def backward(self, dh_next, dc_next):
""" Back propagation of LSTM
Parameters:
dh_next: the derivative matrix of h_next (size: (N * H))
dc_next: the derivative matrix of c_next (size: (N * H))
Return:
dx: the derivative matrix of x (size: (N * D))
dh_prev: the derivative matrix of h_prev (size: (N * H))
dc_prev: the derivative matrix of c_prev (size: (N * H))
"""
Wx, Wh, _ = self.params
x, h_prev, c_prev, i, f, g, o, c_next = self.cache
ds = dc_next + dh_next * o * (1 - np.tanh(c_next)**2)
dc_prev = ds * f
do = dh_next * np.tanh(c_next)
di = ds * g
dg = ds * i
df = c_prev * ds
do *= o * (1 - o)
di *= i * (1 - i)
dg *= (1 - g**2)
df *= f * (1 - f)
dA = np.hstack((df, dg, di, do))
db = np.sum(dA, axis=0)
dWh = np.dot(np.transpose(h_prev), dA)
dh_prev = np.dot(dA, np.transpose(Wh))
dWx = np.dot(np.transpose(x), dA)
dx = np.dot(dA, np.transpose(Wx))
self.grads[0][...] = dWx
self.grads[1][...] = dWh
self.grads[2][...] = db
return dx, dh_prev, dc_prev
class TimeLSTM:
""" Apply LSTM to time series data
"""
def __init__(self, Wx, Wh, b, stateful=False):
""" Initialize TimeLSTM class
Parameters:
Wx: (D * 4H) matrix
Wh: (H * 4H) matrix
b: a vector with length 4H
stateful: set False so that c and h are initialize with 0
(see forward function of LSTM to get for information)
"""
self.params = [Wx, Wh, b]
self.grads = [np.zeros_like(Wx), np.zeros_like(Wh), np.zeros_like(b)]
self.layers = None
self.h, self.c = None, None
self.dh = None
self.stateful = stateful
def forward(self, xs):
""" Forward propagation of TimeLSTM
Parameter:
xs: (N * T * D) matrix
Return:
hs: (N * T * H) matrix
"""
Wx, Wh, b = self.params
N, T, _ = np.shape(xs)
H = np.shape(Wh)[0]
self.layers = []
hs = np.empty(shape=(N, T, H), dtype="f")
if (not self.stateful) or (self.h is None):
self.h = np.zeros(shape=(N, H), dtype="f")
if (not self.stateful) or (self.c is None):
self.c = np.zeros(shape=(N, H), dtype="f")
for t in range(T):
layer = LSTM(Wx, Wh, b)
self.h, self.c = layer.forward(xs[:, t, :], self.h, self.c)
hs[:, t, :] = self.h
self.layers.append(layer)
return hs
def backward(self, dhs):
""" Back propagation of TimeLSTM
Parameter:
dhs: the derivative matrix of hs (size: (N * T * H))
Return:
dxs: the derivative matrix of xs (size: (N * T * D))
"""
Wx, _, _ = self.params
N, T, _ = np.shape(dhs)
D = np.shape(Wx)[0]
dxs = np.empty(shape=(N, T, D), dtype="f")
dh, dc = 0, 0
grads = [0, 0, 0]
for t in reversed(range(T)):
layer = self.layers[t]
dx, dh, dc = layer.backward(dh + dhs[:, t, :], dc)
dxs[:, t, :] = dx
for i, grad in enumerate(layer.grads):
grads[i] += grad
for i, grad in enumerate(grads):
self.grads[i][...] = grad
self.dh = dh
return dxs
def set_state(self, h, c=None):
self.h, self.c = h, c
def reset_state(self):
self.h, self.c = None, None
class TimeDropout:
""" Dropout layer used in time series
"""
def __init__(self, dropout_rate=0.5):
""" Initialize TimeDropout class
Parameter:
dropout_rate: the proportion of nodes that will be dropout
"""
self.params, self.grads = [], []
self.dropout_rate = dropout_rate
self.mask = None
self.train_flag = True
def forward(self, xs):
""" Forward propagation of TimeDropout
Parameter:
xs: (N * T * D) matrix
Return:
xs: some elements are set to 0 (i.e. dropout)
Note:
Dropout is only used in training process but NOT used in evaluating process.
"""
if self.train_flag:
flag = np.random.randn(*xs.shape) > self.dropout_rate
scale = 1 / (1.0 - self.dropout_rate)
self.mask = flag.astype("f") * scale
return xs * self.mask
else:
return xs
def backward(self, dout):
""" Backward propagation of TimeDropout
Parameter:
dout: a derivative matrix of xs (size: (N * T * D))
Return:
dout * mask: (N * T * D) matrix
Note:
In the returned matrix, the (elements) nodes that are dropout in
forward propagation will also be set to 0.
"""
return dout * self.mask
class Encoder:
""" Encoder part (seq2seq)
"""
def __init__(self, vocab_size, wordvec_size, hidden_size):
""" Building Encoder block of seq2seq
Parameters:
vocab_size: vocabulary size of a given corpus
wordvec_size: the length of word vector (embedding layer)
hidden_size: the length of hidden vector (LSTM layer)
Matrices and their sizes:
1. Used in TimeEmbedding layer
embed_W: (V * D)
2. Used in TimeLSTM layer
lstm_Wx: (D * 4H)
lstm_Wh: (H * 4H)
lstm_b: a vector with length 4H
Model:
xs (N * T) ---> TimeEmbedding layer --- xs (N * T * D) ---> TimeLSTM layer --- hs (N * T * H)
|
|
|
v
hs[:, -1, :] (The last result will be sent to Decode part)
"""
V, D, H = vocab_size, wordvec_size, hidden_size
embed_W = (np.random.randn(V, D) / 100).astype("f")
lstm_Wx = (np.random.randn(D, 4 * H) / np.sqrt(D)).astype("f")
lstm_Wh = (np.random.randn(H, 4 * H) / np.sqrt(H)).astype("f")
lstm_b = np.zeros(4 * H).astype("f")
self.embed = TimeEmbedding(embed_W)
self.lstm = TimeLSTM(lstm_Wx, lstm_Wh, lstm_b, stateful=False)
self.params = self.embed.params + self.lstm.params
self.grads = self.embed.grads + self.lstm.grads
self.hs = None
def forward(self, xs):
""" Forward propagation of Encoder
Parameters:
xs: the input mini-batch with size (N * T)
Return:
hs[:, -1, :]: the last hidden result will be sent to Decoder part (size: (N * H))
(see the comment of __init__ function)
"""
xs = self.embed.forward(xs)
hs = self.lstm.forward(xs)
self.hs = hs
return hs[:, -1, :]
def backward(self, dh):
""" Back propagation of Encoder
Parameter:
dh: the derivative matrix of hs[:, -1, :] (size: (N * H))
"""
dhs = np.zeros_like(self.hs)
dhs[:, -1, :] = dh
dout = self.lstm.backward(dhs)
self.embed.backward(dout)
class Decoder:
""" Decoder part (seq2seq)
"""
def __init__(self, vocab_size, wordvec_size, hidden_size):
""" Initialize Decoder class
Parameter:
vocab_size: vocabulary size of a given corpus
wordvec_size: the length of word vector (embedding layer)
hidden_size: the length of hidden vector (LSTM layer)
Matrices and their sizes:
1. Used in TimeEmbedding layer
embed_W: (V * D)
2. Used in TimeLSTM layer
lstm_Wx: (D * 4H)
lstm_Wh: (H * 4H)
lstm_b: a vector with length 4H
3. Used in Affine layer
affine_W: (H * V)
affine_b: a vector with length V
Model:
xs (mini-batch of output, size: (N * T)) ---> TimeEmbedding layer --- xs (N * T * D)--|
|--> TimeLSTM --- hs (N * T * H) ---> TimeAffine ---> score (N * T * V)
h (N * H, from Encoder part)--|
"""
V, D, H = vocab_size, wordvec_size, hidden_size
embed_W = (np.random.randn(V, D) / 100).astype("f")
lstm_Wx = (np.random.randn(D, 4 * H) / np.sqrt(D)).astype("f")
lstm_Wh = (np.random.randn(H, 4 * H) / np.sqrt(H)).astype("f")
lstm_b = np.zeros(4 * H).astype("f")
affine_W = (np.random.randn(H, V) / np.sqrt(H)).astype("f")
affine_b = np.zeros(V).astype("f")
self.embed = TimeEmbedding(embed_W)
self.lstm = TimeLSTM(lstm_Wx, lstm_Wh, lstm_b, stateful=True)
self.affine = TimeAffine(affine_W, affine_b)
self.params, self.grads = [], []
for layer in (self.embed, self.lstm, self.affine):
self.params += layer.params
self.grads += layer.grads
def forward(self, xs, h):
""" Forward propagation of Decoder
Parameters:
xs: mini-batch of output (size: (N * T))
h: hidden matrix from Encoder (size: (N * H))
Return:
score: score matrix with size (N * T * V)
Note that we do not calculate loss here. Loss value will be calculate in seq2seq class.
See Example06 to get more detail.
"""
self.lstm.set_state(h)
out = self.embed.forward(xs)
out = self.lstm.forward(out)
score = self.affine.forward(out)
return score
def backward(self, dscore):
""" Back propagation of Decoder
Parameter:
dscore: the derivative matrix of score (size: (N * T * V))
Return:
dh: the derivative matrix of h (size: (N * H)).
Note that dh will be used in back propagation of Encoder part
(See backward function of Encoder class)
"""
dout = self.affine.backward(dscore)
dout = self.lstm.backward(dout)
self.embed.backward(dout)
dh = self.lstm.dh
return dh
def generate(self, h, start_id, sample_size):
""" Generate text automatically with trained model
Paramters:
h: hidden matrix (size: (N * H))
start_id: the start word id
sample_size: the size that how many words will be selected
Return:
sample: an automatically generated text
"""
sample = []
sample_id = start_id
self.lstm.set_state(h)
for _ in range(sample_size):
x = np.array(sample_id).reshape((1, 1))
out = self.embed.forward(x)
out = self.lstm.forward(out)
score = self.affine.forward(out)
sample_id = np.argmax(score.flatten())
sample.append(int(sample_id))
return sample
class PeekyDecoder:
""" PeekyDecoder is an improved Decoder class
The difference between Decoder and PeekyDecoder is as follows:
Decoder: h, the hidden matrix with size (N * H) from Encoder part,
is only used by the first LSTM block.
PeekyDecoder: h is used in all LSTM block and all Affine block
See this paper to get more detail:
Kyunghyun Cho, et al: "Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Mochine Translation",
arXiv: 1406.1078v3, 2014 (link: https://arxiv.org/abs/1406.1078)
"""
def __init__(self, vocab_size, wordvec_size, hidden_size):
""" Initialize
Parameters:
vocab_size: vocabulary size of a given corpus
wordvec_size: the length of word vector (embedding layer)
hidden_size: the length of hidden vector (LSTM layer)
Matrices and their sizes:
1. Used in Embedding layer
embed_W: (V * D)
2. Used in LSTM layer
lstm_Wx: ((H + D) * (4H))
lstm_Wh: (H * 4H)
lstm_b: a vector with length 4H
3. Used in Affine layer
affine_W: ((H + H) * V)
affine_b: a vector with length V
Note:
1. The size of lstm_Wx in Decoder is (D * 4H) while the size of lstm_Wx in PeekyDecoder
is ((H + D) * 4H). This is because in PeekyDecoder, we conbime xs and h together as
the input of LSTM
2. h is not only used in LSTM layer but is also used in Affine layer. The size of input
of Affine layer in Decoder is (H * V) while it is ((H + H) * V) in PeekyDecoder
Model:
The PeekyDecoder model is identical to Decoder model.
"""
V, D, H = vocab_size, wordvec_size, hidden_size
embed_W = (np.random.randn(V, D) / 100).astype("f")
lstm_Wx = (np.random.randn(H + D, 4 * H) / np.sqrt(H + D)).astype("f")
lstm_Wh = (np.random.randn(H, 4 * H) / np.sqrt(H)).astype("f")
lstm_b = np.zeros(4 * H).astype("f")
affine_W = (np.random.randn(H + H, V) / np.sqrt(H + H)).astype("f")
affine_b = np.zeros(V).astype("f")
self.embed = TimeEmbedding(embed_W)
self.lstm = TimeLSTM(lstm_Wx, lstm_Wh, lstm_b, stateful=True)
self.affine = TimeAffine(affine_W, affine_b)
self.params, self.grads = [], []
for layer in (self.embed, self.lstm, self.affine):
self.params += layer.params
self.grads += layer.grads
self.cache = None
def forward(self, xs, h):
""" Forward propagation of PeekyDecoder
Parameters:
xs: (N * T) matrix (input mini-batch)
h: (N * H) matrix (from Encoder part)
Return:
score: the score matrix with size (N * T * V)
"""
N, T = np.shape(xs)
N, H = np.shape(h)
self.lstm.set_state(h)
out = self.embed.forward(xs)
hs = np.repeat(h, T, axis=0).reshape((N, T, H))
out = np.concatenate((hs, out), axis=2)
out = self.lstm.forward(out)
out = np.concatenate((hs, out), axis=2)
score = self.affine.forward(out)
self.cache = H
return score
def backward(self, dscore):
""" Back propagation of PeekyDecoder
Parameter:
dscore: the derivative matrix of score (size: (N * T * V))
Return:
dh: the derivative matrix of h (size: (N * H))
"""
H = self.cache
dout = self.affine.backward(dscore)
dout, dhs0 = dout[:, :, H:], dout[:, :, :H]
dout = self.lstm.backward(dout)
dembed, dhs1 = dout[:, :, H:], dout[:, :, :H]
self.embed.backward(dembed)
dhs = dhs0 + dhs1
dh = self.lstm.dh + np.sum(dhs, axis=1)
return dh
def generate(self, h, start_id, sample_size):
""" Generate text automatically with trained model
Paramters:
h: hidden matrix (size: (N * H))
start_id: the start word id
sample_size: the size that how many words will be selected
Return:
sample: an automatically generated text
"""
sample = []
char_id = start_id
self.lstm.set_state(h)
H = np.shape(h)[1]
peeky_h = np.reshape(h, newshape=(1, 1, H))
for _ in range(sample_size):
x = np.array([char_id]).reshape((1, 1))
out = self.embed.forward(x)
out = np.concatenate((peeky_h, out), axis=2)
out = self.lstm.forward(out)
out = np.concatenate((peeky_h, out), axis=2)
score = self.affine.forward(out)
char_id = np.argmax(score.flatten())
sample.append(char_id)
return sample
class WeightSum:
""" WeightSum class (part of Attention)
WeightSum class is used to calculate the weigh sum of hidden matrix given by LSTM
and probability vector a.
For a single input time series:
hs: (T * H) hidden matrix given by TimeLSTM layer
a: a weight vector with length T
Then, the calculation is as follows:
a (length T) ----> ar (T * 1) matrix (reshape) ----> t = hs * ar (numpy broadcast) ----> c = sum(t, axis=0) (c is a content vector with lengyth H)
For a mini-batch:
hs: (N * T * H)
a: (N * T)
The calculation is identical to above one and the result c is an (N * H) content matrix
"""
def __init__(self):
""" Initialize WeightSum class
There is no parameter
"""
self.params, self.grads = [], []
self.cache = None
def forward(self, hs, a):
""" Forward propagation of WeightSum class
Parameters:
hs: (N * T * H) hidden matrix
a: (N * T) weight matrix
Return:
c: (N * H) content matrix
"""
N, T, _ = np.shape(hs)
ar = np.reshape(a, newshape=(N, T, 1))
t = hs * ar
c = np.sum(t, axis=1)
self.cache = (hs, ar)
return c
def backward(self, dc):
""" Back propagation of WeightSum class
Parameter:
dc: the derivative matrix of content matrix c (size: (N * H))
Return:
dhs: the derivative matrix of hs (size: (N * T * H))
da: the derivative matrix of a (size: (N * T))
"""
hs, ar = self.cache
N, T, H = np.shape(hs)
dt = np.reshape(dc, newshape=(N, 1, H))
dt = np.repeat(dt, repeats=T, axis=1)
dar = dt * hs
dhs = dt * ar
da = np.sum(dar, axis=2)
return dhs, da
class AttentionWeight:
""" AttentionWeight class
AttentionWeight is used to calculate the weight matrix a.
Given the matrix hs from TimeLSTM in Encoder and the matrix
h from TimeLSTM in Decoder, weight matrix a is calculated by:
Step 1. Reshape h to hr (size: h (N * H), hr (N * 1 * H))
Step 2. hr is reshaped to (N * T * H)
Step 3. t = hr * hs (element-wise product)
Step 4. s = sum(t, axis=2) (s: (N * T))
Step 5. a = softmax(s) (convert score s to weight a) (a: (N * T))
"""
def __init__(self):
""" Initialize AttentionWeight class
There is no parameter
"""
self.params, self.grads = [], []
self.softmax = Softmax()
self.cache = None
def forward(self, hs, h):
""" Forward propagation of AttentionWeight
Parameters:
hs: (N * T * H) matrix
h: (N * H) matrix
Return:
a: (N * T) weight matrix
"""
N, T, H = np.shape(hs)
hr = np.reshape(h, newshape=(N, 1, H))
hr = np.repeat(hr, repeats=T, axis=1)
t = hs * hr
s = np.sum(t, axis=2)
a = self.softmax.forward(s)
self.cache = (hs, hr)
return a
def backward(self, da):
""" Back propagation of AttentionWeight class
Paramter:
da: the derivative matrix of weight matrix a (size: (N * T))
Return:
dhs: the derivative matrix of hs (size: (N * T * H))
dh: the derivative matrix of h (size: (N * H))
"""
hs, hr = self.cache
N, T, H = np.shape(hs)
ds = self.softmax.backward(da)
dt = np.reshape(ds, newshape=(N, T, 1))
dt = np.repeat(dt, repeats=H, axis=2)
dhr = dt * hs
dhs = dt * hr
dh = np.sum(dhr, axis=1)
return dhs, dh
class Attention:
""" Single Attention block
A single Attention block is just constructed by AttentionWeight block and WeightSum block.
"""
def __init__(self):
""" Initialize Attention class
"""
self.params, self.grads = [], []
self.attention_weight_layer = AttentionWeight()
self.weight_sum_layer = WeightSum()
self.attention_weight = None
def forward(self, hs, h):
""" Forward propagation of Attention
Parameters:
hs: (N * T * H) matrix (from Encoder TimeLSTM block)
h: (N * H) matrix (from Decoder LSTM block)
Return:
out: (N * H) content matrix
"""
a = self.attention_weight_layer.forward(hs, h)
out = self.weight_sum_layer.forward(hs, a)
self.attention_weight = a
return out
def backward(self, dout):
""" Back propagation of Attention
Parameter:
dout: the derivative matrix of content matrix out (size: (N * H))
Return:
dhs: the derivative matrix of hs (size: (N * T * H))
dh: the derivative matrix of h (size: (N * H))
"""
dhs0, da = self.weight_sum_layer.backward(dout)
dhs1, dh = self.attention_weight_layer.backward(da)
dhs = dhs0 + dhs1
return dhs, dh
class TimeAttention:
""" TimeAttention class
TimeAttention class convert single Attention block to time series
"""
def __init__(self):
self.params, self.grads = [], []
self.layers = None
self.attention_weights = None
def forward(self, hs_enc, hs_dec):
_, T, _ = np.shape(hs_dec)
out = np.empty_like(hs_dec)
self.layers = []
self.attention_weights = []
for t in range(T):
layer = Attention()
out[:, t, :] = layer.forward(hs_enc, hs_dec[:, t, :])
self.layers.append(layer)
self.attention_weights.append(layer.attention_weight)
return out
def backward(self, dout):
_, T, _ = np.shape(dout)
dhs_enc = 0
dhs_dec = np.empty_like(dout)
for t in range(T):
layer = self.layers[t]
dhs, dh = layer.backward(dout[:, t, :])
dhs_enc += dhs
dhs_dec[:, t, :] = dh
return dhs_enc, dhs_dec
def eval_perplexity(model, corpus, batch_size=10, time_size=35):
""" Evaluate perplexity of current model
Perplexity is used to evaluate a language model. It is defined as
perplexity = exp(L)
where L is the average loss of model.
The smaller the perplexity is, the better the model is
Parameters:
model: a given language model
corpus: a given corpus
batch_size: the batch size
time_size: time size
Return:
ppl: perplexity
"""
print("evaluating perplexity ... ")
corpus_size = len(corpus)
total_loss = 0
max_iters = (corpus_size - 1) // (batch_size * time_size)
jump = (corpus_size - 1) // batch_size
for iters in range(max_iters):
xs = np.zeros(shape=(batch_size, time_size), dtype=np.int32)
ts = np.zeros(shape=(batch_size, time_size), dtype=np.int32)
time_offset = iters * time_size
offsets = [time_offset + (i * jump) for i in range(batch_size)]
for t in range(time_size):
for i, offset in enumerate(offsets):
xs[i, t] = corpus[(offset + t) % corpus_size]
ts[i, t] = corpus[(offset + t + 1) % corpus_size]
try:
loss = model.forward(xs, ts, train_flag=False)
except TypeError:
loss = model.forward(xs, ts)
total_loss += loss
sys.stdout.write('\r%d / %d' % (iters, max_iters))
sys.stdout.flush()
print("")
ppl = np.exp(total_loss / max_iters)
return ppl
def eval_seq2seq(model, question, correct, id_to_char, verbos=False, is_reverse=False):
correct = correct.flatten()
start_id = correct[0]
correct = correct[1:]
guess = model.generate(question, start_id, len(correct))
question = "".join([id_to_char[int(c)] for c in question.flatten()])
correct = "".join([id_to_char[int(c)] for c in correct])
guess = "".join([id_to_char[int(c)] for c in guess])
if verbos:
if is_reverse:
question = question[::-1]
colors = {"ok": "\033[92m", "fail": "\033[91m", "close": "\033[0m"}
print("Q", question)
print("T", correct)
is_windows = os.name == "nt"
if correct == guess:
mark = colors["ok"] + "☑" + colors["close"]
if is_windows:
mark = "O"
print(mark, " ", guess)
else:
mark = colors["fail"] + "☒" + colors["close"]
if is_windows:
mark = "X"
print(mark, " ", guess)
print("----")
return 1 if guess == correct else 0 |
48e188ba605cb201653ac47f2d4d297f142dcb5f | Yelimbert/Registro | /registrov2.py | 1,823 | 3.65625 | 4 | import os
nombreArchivo = "registro.txt"
def agregar():
print("Ingrese los siguientes datos")
nombre = input("Nombre: ")
ape = input("Apellido: ")
edad = input("Edad: ")
cedula = input("Cedula: ")
registro = nombre + ", " + ape + ", " + edad + ", " + cedula
y = input("Desea guardar los datos/(si/no): ")
if y == "si":
with open(nombreArchivo, "a") as reg:
datos = "\n" + registro
reg.write(datos)
def header():
reg = open(nombreArchivo, "w+")
escribir = False
primera_linea= "Nombre, Apellido, Edad, Cedula"
if not os.path.isfile(nombreArchivo):
escribir = True
else:
print(reg.read())
escribir = len(reg.readlines()) == 0
if escribir:
reg.write(primera_linea)
reg.close()
def buscar():
with open(nombreArchivo, "r") as reg:
texto = input("Por favor, inserta la cedula: ")
for linea in reg.readlines():
if linea.find(texto) > -1:
print("Encontrado: " + linea)
def inicio():
header()
agregar()
preg = input(
"(y) Deseo ingresar mas datos\n(n) No deseo ingresar mas datos\n")
if preg == "y":
while preg == "y":
agregar()
preg = input(
"(y) Deseo ingresar mas datos\n(n) No deseo ingresar mas datos: ")
print(preg)
elif preg == "n":
print("No se almacenaran mas datos")
interfaz()
def interfaz():
print("Que desea realizar?")
q = input("(1) Deseo ingresar datos\n(2) Deseo realizar una busqueda\n(3) No deseo hacer nada\n")
if q == "1":
inicio()
elif q == "2":
buscar()
else:
print("Ha salido del programa")
interfaz()
|
bf1d745241860c52b9ebf11db521c4ea1851bd3a | danqiye1/bandit | /bandits/epsilon_greedy.py | 3,542 | 3.578125 | 4 | import random
from bandits import BernoulliBandit
class EpsilonGreedy:
def __init__(self, bandits: list, epsilon=0.05):
"""
Constructor for the epsilon-greedy algorithm
:param bandits: A list of bandits to play
:type bandits: list
:param epsilon: Exploration vs exploitation tradeoff parameter
:type epsilon: float
"""
self.bandits = bandits
self.epsilon = epsilon
# Container for sample mean of each bandit
self.sample_means = [0] * len(bandits)
# Container for the number of plays of each bandit
self.counts = [0] * len(bandits)
# Internally track the number of steps run
self.num_steps = 0
def run(self, num_steps=10000):
"""
Run the epsilon-greedy algorithm
"""
total_rewards = 0
for _ in range(num_steps):
p = random.random()
if p < self.epsilon:
# Exploration. Select a random bandit.
j = random.randint(0, len(self.bandits)-1)
else:
# Exploitation. Select the bandit with largest sample mean
j = self._argmax(self.sample_means)
bandit = self.bandits[j]
reward = bandit.pull()
total_rewards += reward
# Update sample mean
self._update_means(j, reward)
self.num_steps += 1
return total_rewards
def recommend_bandit(self):
""" Recommend the best bandit to play with the best reward """
bandit_idx = self._argmax(self.counts)
return self.counts[bandit_idx], bandit_idx
def _argmax(self, l: list):
""" Helper function for finding argmax of list l """
max_i, max_v = 0, 0
for i, v in enumerate(l):
if v > max_v:
max_i = i
max_v = v
return max_i
def _update_means(self, idx: int, reward: float):
""" Update the sample mean and counts of the i_th bandit """
self.counts[idx] += 1
self.sample_means[idx] = self.sample_means[idx] + 1 / \
self.counts[idx] * (reward - self.sample_means[idx])
if __name__ == "__main__":
# Do a 3 bandit experiment
bandits = [BernoulliBandit(0.2), BernoulliBandit(0.6), BernoulliBandit(0.8)]
algo = EpsilonGreedy(bandits)
# Run 10 times
rewards = algo.run(num_steps=10)
count, i = algo.recommend_bandit()
print("Total rewards is {} after {} steps".format(rewards, algo.num_steps))
print("Bandit {} is played {} times after {} steps".format(
i, count, algo.num_steps))
print('')
# Run 100 times
rewards = algo.run(num_steps=90)
count, i = algo.recommend_bandit()
print("Total rewards is {} after {} steps".format(rewards, algo.num_steps))
print("Bandit {} is played {} times after {} steps".format(
i, count, algo.num_steps))
print('')
# Run 1000 times
rewards = algo.run(num_steps=900)
count, i = algo.recommend_bandit()
print("Total rewards is {} after {} steps".format(rewards, algo.num_steps))
print("Bandit {} is played {} times after {} steps".format(
i, count, algo.num_steps))
print('')
# Run 10000 times
rewards = algo.run(num_steps=9000)
count, i = algo.recommend_bandit()
print("Total rewards is {} after {} steps".format(rewards, algo.num_steps))
print("Bandit {} is played {} times after {} steps".format(
i, count, algo.num_steps))
print('')
|
c77b1236b87919920a769469b80a6f085c27c30a | reviakin/SICP | /coins_exchange.py | 540 | 3.609375 | 4 | def first_denomination(kinds_of_coins):
if kinds_of_coins == 1: return 1
if kinds_of_coins == 2: return 5
if kinds_of_coins == 3: return 10
if kinds_of_coins == 4: return 25
if kinds_of_coins == 5: return 50
return 0
def cc(amount, kinds_of_coins):
if amount == 0: return 1
if amount < 0 or kinds_of_coins == 0: return 0
return cc(amount, kinds_of_coins - 1) + cc(amount - first_denomination(kinds_of_coins), kinds_of_coins)
def count_change(amount):
return cc(amount, 5)
print(count_change(100))
|
8de599c8c16b4c629e12543cd0d8a4003285afcd | wangxiao4/programming | /Num5/5.3_GuessNumber.py | 291 | 3.921875 | 4 | import random
rand_number=random.randint(1,100)
guess_number=-1
while guess_number != rand_number:
guess_number=eval(input("enter your number\n"))
if guess_number>rand_number:
print("too high\n")
elif guess_number<rand_number:
print("too low\n")
print("you win") |
26ea01e211cc0a6d69cb4f07a77fa39cc9b7eaa9 | kingking888/2019- | /python学习/实训/nine/c1.py | 2,066 | 4 | 4 | class Student():
# name='aaa'
# age=0
sum1=0
# name='s'
def __init__(self,name11,age):
self.name=name11
self.age=age
self.__score=0
# print(self.__dict__)
# print(name) 访问的是形参的name,所以将形参的名字改了之后就会报错
# self.__class__.sum1+=1
# print(Student.sum1)
# print('当前班级学生总数为:'+str(self.__class__.sum1))
# print(age)
# print('student:',name,age)
# print(score)
def do_homework(self):
print('homework')
print(self.name)
@classmethod
def plus_sum(cls):
cls.sum1+=1
# print(cls.sum1)
# print(self.name)
print(self.name)
@staticmethod
def add(x,y):
print('This is a static method')
print(x+y)
print(self.name)
def __scoring__(self,score):
if score<0:
return '不能够给别人打负分'
self.__score=score
print(self.name+"同学本次考试分数为:"+str(self.__score))
class Printer():
def print_file(self):
print('name:'+self.name)
print('age:'+str(self.age))
class StudentHomework():
homework_name=''
student1= Student('石敢当',18)
student2=Student('dfd',90)
# result=student1.__scoring__(59)
# print(result)
# result=student1.__scoring__(-1)
# print(result)
# student1.__score=-1
# student2.__score=-2
# print(student1.__score)
print(student2._Student__score)
# r=student1.__score
# print(r)
# print(student1.__dict__)
# student1.do_homework()
# student1.plus_sum()
# Student.plus_sum()
# print(student1.__dict__)
# print(student1.age)
# print(student1.name)
# print(Student.__dict__)
# student2=Student('dhdshg',15)
# Student.plus_sum()
# student3=Student('sdfassdf',45)
# Student.plus_sum()
# student.print_file()
# student1.plus_sum()
# student2.plus_sum()
# student3.plus_sum()
# student1.add(1,2)
# print(id(student1))
# print(id(student2))
# print(id(student3))
# a=student1.__init__()
# print(a)
# print(type(a))
|
0c282384e4d79b96af8cf505e6cf441655d341ab | SNBhushan/BASICS-OF-PYTHON | /py2.py | 282 | 3.953125 | 4 | #palimdrome
# def ispalindrome(s):
# s=s.lower()
# for item in range(len(s)//2):
# if s[item]!=s[len(s)-item-1]:
# return False
# return True
def ispalindrome(s):
s=s.lower()
return s==s[::-1]
s="madam"
print(ispalindrome(s))
|
42c6e46eae1222ca6332c52353ee7dfbafd5a512 | aaron6347/leetcode_April30Days | /venv/day10_min_stack.py | 1,684 | 3.6875 | 4 | """day10_min_stack.py
Created by Aaron at 10-Apr-20"""
class MinStack:
# app1
# def __init__(self):
# """
# initialize your data structure here.
# """
# self.ar = []
# def push(self, x: int) -> None:
# self.ar.append(x)
# def pop(self) -> None:
# self.ar.pop()
# def top(self) -> int:
# return self.ar[-1]
# def getMin(self) -> int:
# return min(self.ar)
# app2
def __init__(self):
"""
initialize your data structure here.
"""
self.ar = []
def push(self, x: int) -> None:
# min = self.getMin()
# if min == None or min > x:
# min = x
# self.ar.append((x, min))
if len(self.ar)==0:
self.ar.append((x,x))
else:
self.ar.append((x, min(self.ar[-1][1], x)))
def pop(self) -> None:
self.ar.pop()
def top(self) -> int:
if len(self.ar) == 0:
return None
return self.ar[-1][0]
def getMin(self) -> int:
if len(self.ar) == 0:
return None
return self.ar[-1][1]
# Your MinStack object will be instantiated and called as such:
# obj = MinStack()
# obj.push(x)
# obj.pop()
# param_3 = obj.top()
# param_4 = obj.getMin()
a=["MinStack","push","push","push","getMin","pop","top","getMin"]
b=[[None],[-2],[0],[-3],[None],[None],[None],[None]]
run=MinStack()
x=1
ar=[]
while x<len(a):
if b[x][0]!= None:
ar.append(eval('run.{0}({1})'.format(a[x], b[x][0])))
else:
ar.append(eval('run.{0}()'.format(a[x])))
x+=1
print(ar)
# app1 using list with min O(n k)
# app2 using tuple in list O(n) |
9a4838ccabcbd419526d9cc5efbfd83e7101607b | meher1087/learn_ros_python | /ros_ws/src/jarvis/Calendar/archive/w2n_full_text.py | 6,489 | 3.703125 | 4 |
# a mapping of digits to their names when they appear in the
# relative "ones" place (this list includes the 'teens' because
# they are an odd case where numbers that might otherwise be called
# 'ten one', 'ten two', etc. actually have their own names as single
# digits do)
class my_w2n:
__ones__ = { 'one': 1, 'eleven': 11,
'two': 2, 'twelve': 12,
'three': 3, 'thirteen': 13,
'four': 4, 'fourteen': 14,
'five': 5, 'fifteen': 15,
'six': 6, 'sixteen': 16,
'seven': 7, 'seventeen': 17,
'eight': 8, 'eighteen': 18,
'nine': 9,
'ten':10 , 'nineteen': 19,
'half':0.5 }
# a mapping of digits to their names when they appear in the 'tens'
# place within a number group
__tens__ = { 'nhalf': 30,
'twenty': 20,
'thirty': 30,
'forty': 40,
'fifty': 50,
'sixty': 60,
'seventy': 70,
'eighty': 80,
'ninety': 90 }
# an ordered list of the names assigned to number groups
__groups__ = { 'hundred':100,
'thousand': 1000,
'million': 1000000,
'billion': 1000000000,
'trillion': 1000000000000 }
def __init__(self):
self.info = "This will convert words to numbers"
# find
def find_grands(self,s):
if type(s) is str:
words = s.split()
elif type(s) is list:
words=s
words.append('d')
new_value=0
count=0 # count to know starta and end of numbers
old_value=0
start = None
got_and = False
try:
while(count<len(words)):
not_one = True
not_ten = True
not_grand = True
if words[count] in self.__ones__.keys():
if start is None: start = count
not_one=False
new_value = self.__ones__.get(words[count])
count+=1
if count==len(words):
if old_value>new_value:
old_value = old_value+new_value
# else:
# non_currency = True
# #old_value = old_value*100 + new_value
# old_value = str(old_value)+' h '+str(new_value)+' m '
# end = count
# break
if words[count] in self.__groups__.keys():
if start is None: start = count
not_grand = False
new_value *= self.__groups__.get(words[count])
count+=1
old_value=old_value+new_value
elif words[count] in self.__groups__.keys():
if start is None: start = count
not_grand = False
start = count
new_value =self.__groups__.get(words[count])
count+=1
old_value=old_value+new_value
if words[count] in self.__tens__.keys():
if start is None: start = count
not_ten = False
if new_value>99:
old_value = old_value + self.__tens__.get(words[count])
count+=1
else:
non_currency = True
#old_value = old_value+new_value*100 + self.__tens__.get(words[count])
old_value = str(new_value)+' h '+str(self.__tens__.get(words[count]))+' m '
count+=1
if not_grand and not_ten and not not_one:
if got_and:
old_value = old_value+new_value
got_and = False
else:
old_value = new_value
not_one = True
# if not_grand and not_ten and not not_one:
# old_value = old_value+new_value
if not_grand and not_ten and not_one:
if start is not None and words[count]!='and':
end = count
words = words[:start] + [str(old_value)] + words[end:]
new_value = 0
start = None
old_value=0
elif words[count]=='and':
got_and=True
count+=1
else: count+=1
if start is not None:
end = count
words = words[:start] + [str(old_value)] + words[end:]
return words[:-1]
except IndexError:
end = count
words = words[:start] + [str(old_value)] + words[end:]
return words[:-1]
def find_time(self,s):
short = False
'''
Three hour twenty minutes - 3h20m
three and half hour- 3h30m
three hours - 3h
an hour - 1h
half an hour - 30m
'''
if type(s) is list:
n = ' '
s = n.join(s)
if 'half an hour' in s:
s = s.replace('half an hour','0 h 30 m')
short = True
if 'in an hour' in s:
s = s.replace('an hour','1 h')
short = True
if 'and half' in s:
s = s.replace('and half', 'nhalf')
short=True
if ' hours' in s or 'minutes' in s:
short = True
# if 'half hour' in s or 'half hours' in s:
# s = s.replace('half hour','halfhour')
new_value = self.find_grands(s)
found=True
if new_value is None: found = False
return new_value,found,short
# a = my_w2n()
# s = "let check if this works for remind me in ten to pay three hundred"
# new_value=a.find_time(s)
# new_value = a.find_grands(new_value)
# if new_value is not None:
# print(new_value)
# else: print("No numbers found")
# print(" ")
# print(s)
# print(" ")
|
0dd552d23bf21038145704d58045d6a3f1a66705 | CoderJuan21/C-106 | /codeIcecream.py | 697 | 3.53125 | 4 | import csv
import numpy as np
import plotly.express as px
def getData():
icecream_sales = []
colddrink_sales = []
with open ("dataIce.csv") as f:
csv_reader = csv.DictReader(f)
for row in csv_reader :
icecream_sales.append(float(row["Temperature"]))
colddrink_sales.append(float(row["Ice-cream Sales"]))
return {"x":icecream_sales, "y": colddrink_sales}
def findCorrelation(dataSource):
correlation = np.corrcoef(dataSource["x"],dataSource["y"])
print("Correlation between tempeture and icecream sales ==>", correlation[0,1])
def setup():
dataSource = getData()
findCorrelation(dataSource)
setup() |
c3146fd800333020f7521454c247b010330784c8 | chayankathuria/Feature_Engineering- | /Categorical.py | 5,820 | 3.546875 | 4 | import pandas as pd
import numpy as np
# Transforming Nominal Data
'''
Nominal data consists of names as labels and we need to transform these labels into numbers so that the algortithm can understand.
One such technique is Label Encoding which converts labels into integers starting from 1.
'''
vg_df = pd.read_csv('datasets/vgsales.csv', encoding='utf-8')
vg_df[['Name', 'Platform', 'Year', 'Genre', 'Publisher']].iloc[1:7]
# Preparing dataframe for label encoding
genres = np.unique(vg_df['Genre'])
genres
from sklearn.preprocessing import LabelEncoder
gle = LabelEncoder()
genre_labels = gle.fit_transform(vg_df['Genre'])
genre_mappings = {index: label for index, label in enumerate(gle.classes_)} # Dsiplaying all the categories and their labels
genre_mappings
vg_df['GenreLabel'] = genre_labels
vg_df[['Name', 'Platform', 'Year', 'Genre', 'GenreLabel']].iloc[1:7] # Adding the Label Encoded column to the DF
# Transforming Ordinal Data
'''
Ordinal Data is another type of categorical data where the labels cannot be quantized but an order can be set.
For ex. Unhappy < OK < Happy < Verry Happy , but we cannot quantize how much.
'''
poke_df = pd.read_csv('datasets/Pokemon.csv', encoding='utf-8')
poke_df = poke_df.sample(random_state=1, frac=1).reset_index(drop=True)
np.unique(poke_df['Generation'])
# array(['Gen 1', 'Gen 2', 'Gen 3', 'Gen 4', 'Gen 5', 'Gen 6'], dtype=object)
gen_ord_map = {'Gen 1': 1, 'Gen 2': 2, 'Gen 3': 3,
'Gen 4': 4, 'Gen 5': 5, 'Gen 6': 6}
poke_df['GenerationLabel'] = poke_df['Generation'].map(gen_ord_map)
poke_df[['Name', 'Generation', 'GenerationLabel']].iloc[4:10]
'''
Using map function is just another way to label encode categorical features, ordinal or nominal. But it is recommended only when the number
of features is less because it requires hard-coding.
Name Generation GenerationLabel
4 Octillery Gen 2 2
5 Helioptile Gen 6 6
6 Dialga Gen 4 4
7 DeoxysDefense Forme Gen 3 3
8 Rapidash Gen 1 1
9 Swanna Gen 5 5
'''
# One-Hot Encoding
'''
Label Encoding Encodes labels with value between 0 and n_classes-1.
OHE, on the other hand, Encodes categorical integer features using a one-hot aka one-of-K scheme.
The input to the transformer should be a matrix of integers, denoting
the values taken on by categorical (discrete) features. The output will be
a sparse matrix where each column corresponds to one possible value of one
feature. It is assumed that input features take on values in the range
[0, n_values).
'''
# Let's take a look at our df
poke_df[['Name', 'Generation', 'Legendary']].iloc[4:10]
'''
Name Generation Legendary
4 Octillery Gen 2 False
5 Helioptile Gen 6 False
6 Dialga Gen 4 True
7 DeoxysDefense Forme Gen 3 True
8 Rapidash Gen 1 False
9 Swanna Gen 5 False
'''
# Running label encoder first
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
# transform and map pokemon generations
gen_le = LabelEncoder()
gen_labels = gen_le.fit_transform(poke_df['Generation'])
poke_df['Gen_Label'] = gen_labels
# transform and map pokemon legendary status
leg_le = LabelEncoder()
leg_labels = leg_le.fit_transform(poke_df['Legendary'])
poke_df['Lgnd_Label'] = leg_labels
poke_df_sub = poke_df[['Name', 'Generation', 'Gen_Label', 'Legendary', 'Lgnd_Label']]
poke_df_sub.iloc[4:10]
'''
Name Generation Gen_Label Legendary Lgnd_Label
4 Octillery Gen 2 1 False 0
5 Helioptile Gen 6 5 False 0
6 Dialga Gen 4 3 True 1
7 DeoxysDefense Forme Gen 3 2 True 1
8 Rapidash Gen 1 0 False 0
9 Swanna Gen 5 4 False 0
'''
# encode generation labels using one-hot encoding scheme
gen_ohe = OneHotEncoder()
gen_feature_arr = gen_ohe.fit_transform(poke_df[['Gen_Label']]).toarray()
gen_feature_labels = list(gen_le.classes_)
gen_features = pd.DataFrame(gen_feature_arr, columns=gen_feature_labels)
# encode legendary status labels using one-hot encoding scheme
leg_ohe = OneHotEncoder()
leg_feature_arr = leg_ohe.fit_transform(poke_df[['Lgnd_Label']]).toarray()
leg_feature_labels = ['Legendary_'+str(cls_label) for cls_label in leg_le.classes_]
leg_features = pd.DataFrame(leg_feature_arr, columns=leg_feature_labels)
# Next we have to concatenate the new dfs into the original df
poke_df_ohe = pd.concat([poke_df_sub, gen_features, leg_features], axis=1)
columns = sum([['Name', 'Generation', 'Gen_Label'],gen_feature_labels,
['Legendary', 'Lgnd_Label'],leg_feature_labels], [])
poke_df_ohe[columns].iloc[4:10]
# Dummy Coding Scheme
'''
Another way of one hot encoding the categorical data is by dummy encoding.
'''
gen_dummy_features = pd.get_dummies(poke_df['Generation'], drop_first=True)
pd.concat([poke_df[['Name', 'Generation']], gen_dummy_features], axis=1).iloc[4:10]
# Feature Hashing scheme
unique_genres = np.unique(vg_df[['Genre']])
print("Total game genres:", len(unique_genres))
print(unique_genres)
from sklearn.feature_extraction import FeatureHasher
fh = FeatureHasher(n_features=6, input_type='string')
hashed_features = fh.fit_transform(vg_df['Genre'])
hashed_features = hashed_features.toarray()
pd.concat([vg_df[['Name', 'Genre']], pd.DataFrame(hashed_features)], axis=1).iloc[1:7]
'''
Name Genre 0 1 2 3 4 5
1 Super Mario Bros. Platform 0.0 2.0 2.0 -1.0 1.0 0.0
2 Mario Kart Wii Racing -1.0 0.0 0.0 0.0 0.0 -1.0
3 Wii Sports Resort Sports -2.0 2.0 0.0 -2.0 0.0 0.0
4 Pokemon Red/Pokemon Blue Role-Playing -1.0 1.0 2.0 0.0 1.0 -1.0
5 Tetris Puzzle 0.0 1.0 1.0 -2.0 1.0 -1.0
6 New Super Mario Bros. Platform 0.0 2.0 2.0 -1.0 1.0 0.0
'''
|
e9aabe0b86722a82aa5836d9d50cb4063613be9b | JoaquinRodriguez2006/Roboliga_2021 | /Robot_movement.py | 1,892 | 3.578125 | 4 | from controller import Robot
import time
timeStep = 32 # Set the time step for the simulation
max_velocity = 6.28 # Set a maximum velocity time constant
nothing = 0
# Make robot controller instance
robot = Robot()
# Define the wheels
wheel1 = robot.getDevice("wheel1 motor") # Create an object to control the left wheel
wheel2 = robot.getDevice("wheel2 motor") # Create an object to control the right wheel
# Set the wheels to have infinite rotation
wheel1.setPosition(float("inf"))
wheel2.setPosition(float("inf"))
# Define distance sensors
s5 = robot.getDevice("ps5") # adelante izquierda
s7 = robot.getDevice("ps7") # costado izquierda
s0 = robot.getDevice("ps0") # adelante derecha
s2 = robot.getDevice("ps2") # costado derecha
# Enable distance sensors N.B.: This needs to be done for every sensor
s5.enable(timeStep)
s7.enable(timeStep)
s0.enable(timeStep)
s2.enable(timeStep)
def avanzar(vel):
speed1 = vel
speed2 = vel
def girar_derecha(vel):
speed1 = vel
speed2 = -vel
def girar_izquierda(vel):
speed1 = -vel
speed2 = vel
def quieto(seg):
time.sleep(seg)
start = robot.getTime()
while robot.step(timeStep) != -1:
speed1 = max_velocity
speed2 = max_velocity
if (s7.getValue() > 0.1 and s0.getValue() > 0.1): # Pregunta si ve algo con alguno de los sensores de adelante. En ese caso, avanza.
avanzar(max_velocity)
print("avanzar")
else:
quieto(5)
print("Quieto")
# if (s7.getValue() < 0.1 and s0.getValue() < 0.1): # Si detecta algo con los sensores de adelante, pregunta si ve algo con los sensores de los costados
# if (s2.getValue() < 0.1):
# girar_derecha(vel)
# if (s5.getValue() < 0.1):
# girar_izquierda(vel)
# Set the wheel velocity
wheel1.setVelocity(speed1)
wheel2.setVelocity(speed2) |
a65617a5d14ea6e61b6a55bc01ca2b3f23d91ea3 | kodsnack/advent_of_code_2019 | /machalvan-python/utils.py | 689 | 3.59375 | 4 | def read_input():
input_file = open("../../input.txt", "r")
lines = input_file.readlines()
input_file.close()
return lines
def write_output(result):
output_file = open("../../output.txt", "w")
output_file.write(result)
output_file.close()
def check_result(result):
answer_file = open("../../answer.txt", "r")
answer = answer_file.read()
if result == answer:
print('CORRECT')
else:
if answer:
print('EXPECTED')
print(answer)
print('ACTUAL')
print(result)
else:
print('GUESS')
print(result)
answer_file.close()
|
ca0948d560615339cf62c20f98c87f875c3cc46f | 596050/DSA-Udacity | /practice/data-structures/stacks/stack.py | 378 | 3.71875 | 4 | class Stack:
def __init__(self):
self.items = []
def size(self):
return len(self.items)
def push(self, value):
self.items.append(value)
def pop(self):
return self.items and self.items.pop()
def top(self):
if self.items:
return self.items[0]
def is_empty(self):
return len(self.items) == 0
|
1783baaf6e9a35bf53f833d37af41abef53b7ea8 | lernerbruno/python-trainning-itc | /one_liners/filter_dividable.py | 427 | 3.90625 | 4 | """
It makes one liners functions
Author: Bruno Lerner
"""
def filter_dividable(numbers, divisors):
'''
for each number in the list provided, it checks if it is divisible by any of the divisor
:param numbers:
:param divisors:
:return:
'''
return [x for x in numbers if any([x % divisor == 0 for divisor in divisors])]
if __name__ == "__main__":
print(filter_dividable([1, 2, 3, 4, 5, 6], [2, 3]))
|
6be67c7b175f4166a8180c4c11edfb0dfca836d5 | LogicalFish/DiscordBot | /python/modules/reminders/reminder_manager.py | 1,056 | 3.5625 | 4 | from datetime import datetime
class ReminderManager:
def __init__(self):
self.reminders = []
def add_reminder(self, delta, message_string, target):
self.reminders.append((datetime.now() + delta, message_string, target))
self.reminders.sort(key=lambda tup: tup[0])
def pop_reminder(self):
"""
Method to request a reminder.
:return: The first reminder in the queue, if it is ready. False if no reminder is ready.
"""
if self.reminders and self.reminders[0][0] < datetime.now():
return self.reminders.pop(0)
else:
return False
def get_all_reminders(self):
"""
This method will check if any reminders need to be sent.
:return: A list of reminders that need to be sent.
"""
list_of_reminders = []
next_reminder = self.pop_reminder()
while next_reminder:
list_of_reminders.append(next_reminder)
next_reminder = self.pop_reminder()
return list_of_reminders
|
5848eb28061158df60002a40ed1dd7889cef2236 | roechi/advent_of_code_2019 | /day_1/fuel_calc.py | 635 | 3.5625 | 4 | from functools import reduce
from math import floor
def calculate_fuel(weight: int) -> int:
return floor(weight / 3) - 2
def calculate_fuel_for_many(weights: [int]) -> int:
fuel_results = list(map(calculate_fuel, weights))
return reduce(lambda l, r: l + r, fuel_results, 0)
def calculate_fuel_recursively(weight: int) -> int:
fuel = calculate_fuel(weight)
return 0 if fuel <= 0 else fuel + calculate_fuel_recursively(fuel)
def calculate_fuel_for_many_recursively(weights: [int]) -> int:
fuel_results = list(map(calculate_fuel_recursively, weights))
return reduce(lambda l, r: l + r, fuel_results, 0)
|
0ac8ee75c140e24ac2470b9a23cc9bb07f6fd4af | batra98/Mario_Testing | /20171114_assignment3/20171114_part1/Refactored/start_screen.py | 2,200 | 3.78125 | 4 | """gaurav"""
import color
class Start(object):
"""gaurav"""
def __init__(self, height, width):
self.height = height
self.width = width
self.start_screen = \
[" ____ ___ ___ ___", \
"| | || || | | Instructions:", \
"|____ | ||___||___ |___|", \
" || || | | \\ 1) Press E to start the Easy mode" \
+"or H to start the Hard mode", \
" ____||___|| |___ | \\ 2) Press R to restart the Game", \
" 3) Press Q to quit the Game", \
" ___ ___ ___ ___", \
"|\\ /|| || | | | | Controls:", \
"| \\/ ||___||___| | | |", \
"| || || \\ | | | 1) Use WAD to move the player", \
"| || || \\ _|_ |___| 2) Use F to shoot"+ \
"(can be used in super mode)", ""]
self.mario_start = []
def initialize(self):
"""gaurav"""
temp = []
temp_2 = []
for i in range(0, self.height-1):
for j in range(0, self.width):
j = j
if i == 0:
temp.append("*")
elif i >= self.height-3:
temp.append("#")
else:
temp.append(" ")
self.mario_start.append(temp)
temp = []
for i in range(0, self.width):
temp_2.append("*")
self.mario_start.append(temp_2)
def draw(self):
"""gaurav"""
for gabru in range(0, self.height):
print(color.getcolor("*"), end="")
for hello in range(0, self.width):
print(color.getcolor(self.mario_start[gabru][hello]), end="")
print(color.getcolor("*"))
def label(self):
"""gaurav"""
for i in range(0, 11):
for j in range(0, len(self.start_screen[i])):
self.mario_start[int(
self.height/4)+i][int(self.width/12)+j] = self.start_screen[i][j]
|
139547a2a8793101bdd8d6cb8b57190a9e9118a6 | peterwj/advent-of-code-2015 | /day11.py | 2,259 | 3.6875 | 4 | #!/usr/bin/python
import sys
import unittest
class TestDay11(unittest.TestCase):
def test_check_validity(self):
assert(includes_run('hijklmmn'))
self.assertFalse(no_verboten_letters('hijklmmn'))
assert(includes_two_pairs('abbceffg'))
self.assertFalse(includes_run('abbceffg'))
def test_next_password(self):
assert(next_password('xz') == 'ya')
assert(next_password('xx') == 'xy')
def test_find_new_password(self):
assert(find_new_password('abcdefgh') == 'abcdffaa')
assert(find_new_password('ghijklmn') == 'ghjaabcc')
def check_validity(password):
return (
includes_run(password) and
no_verboten_letters(password) and
includes_two_pairs(password)
)
def no_verboten_letters(password):
return (
'i' not in password and
'o' not in password and
'l' not in password
)
def includes_run(password):
for i in range(len(password) - 2):
if (
ord(password[i]) == ord(password[i+1]) - 1 and
ord(password[i]) == ord(password[i+2]) - 2
):
return True
return False
def includes_two_pairs(password):
first = find_pair(password)
if not first:
return False
second = find_pair(password, forbidden=first)
if not second:
return False
return True
def find_pair(password, forbidden=None):
for i in range(len(password) - 1):
if password[i] == password[i+1] and password[i] != forbidden:
return password[i]
return None
def find_new_password(password):
password = next_password(password)
while not check_validity(password):
password = next_password(password)
return password
def next_password(password):
password = list(password)
carry = False
i = len(password) - 1
c = ord(password[i]) + 1
while i >= 0:
if c <= ord('z'):
password[i] = chr(c)
break
else:
password[i] = 'a'
i -= 1
c = ord(password[i]) + 1
return "".join(password)
if __name__ == '__main__':
if len(sys.argv) < 2:
unittest.main()
print(find_new_password(sys.argv[1]))
|
69f18d8c28ec972c7d7ec1285548d288b0448374 | priscilafraser/AtividadesModulo1 | /Exercicio 11.05.2021/exercicio6.py | 599 | 3.8125 | 4 | """ def ficha(jogador='Não informado', gols=-1):
print('-'*40)
print(f'{"Jogador":<20}{"Gols":<20}')
if gols == -1:
print(f'{jogador:<20}{"Não informado":<20}')
else:
print(f'{jogador:<20}{gols:<20}')
ficha()
ficha('ana')
ficha(gols=5)
ficha('marta', 3) """
""" def notas(a,b,c):
med=(a+b+c)/3
print('a media das 3 notas')
lista=[a,b,c]
min(lista)
medaltas=((a+b+c)-(min(lista)))/2
max(lista)
print('a nota mais alta{max(lista)}')
print('a nota mais alta{max(lista)}')
print('a nota mais alta{max(lista)}') """
def calculadora(notas)
|
39f094b71fee416dc5694c1b7c9e07e184af423f | niki1729/AutoCar | /Tests/FirstAttempt/MotorsWork/turn.py | 391 | 3.65625 | 4 | import os
class Turn:
"""
This class works or with arduino or with the motors directly through relays and turn right or left
"""
def __init__(self):
self.IN1 = 6 # IN1
self.IN2 = 13 # IN2
self.IN3 = 19 # IN3
self.IN4 = 26 # IN4
def turn_right(self):
print('turn_right')
def turn_left(self):
print('turn_left')
|
067b9ed55f2223cf4cf7a480db4fbf6408b566dc | kuroitenshi9/Xmass-python | /10/10.py | 569 | 3.890625 | 4 |
'''
Zaznacz prawidłowe odpowiedz/i:
The first snippet leaves the file open whereas the second does not.
The second snippet iterates more efficiently through the file.
The second snippet opens the file for reading and writing blocks whereas the first only for reading.
The second snippet opens the file for reading and writing blocks whereas the first only for reading.
None of above
'''
#first snippet
with open('file.txt', 'r') as f:
for line in f:
print(line)
#second snipped
f = open('file.txt', 'rb')
for line in f.xreadlines():
print(line)
f.close()
|
faa61d915b009e4748001eff219c448c16228dc6 | encdec2020/Python-BlockPy | /bouncingballrevised.py | 1,035 | 3.765625 | 4 | import pygame
import time
pygame.init()
# set up the drawing window
screen = pygame.display.set_mode((500, 300))
y = 0
x = 0
running = True
increment = 1
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
else:
while y <= 300:
screen.fill((255, 255, 0))
# draw a circle of colour (red=255,0,0 and x =255,y =0,1,.. radius=13,thickness=0
pygame.draw.circle(screen, (255, 0, 0), (250, y), 13, 0)
pygame.display.update()
# increment y to move ahead
y = y + increment
# add sleep to reduce speed of ball
time.sleep(0.006)
# when y hits border decrement
if y == 300:
increment = -1
break
# else increment
elif y == 0:
increment = 1
break
else:
y = y + increment
break
pygame.display.flip()
pygame.quit()
|
4ec4f2c4e8a152d1340fd911cf2d561c2b22561a | DavidStoilkovski/python-fundamentals | /text-processing-fundamentals/activation_keys.py | 1,180 | 3.71875 | 4 | key = input()
line = input()
while not line == "Generate":
line = line.split(">>>")
command = line[0]
if command == "Contains":
substring = line[1]
if substring in key:
print(f'{key} contains {substring}')
else:
print("Substring not found!")
elif command == "Flip":
action = line[1]
start = int(line[2])
end = int(line[3])
if action == "Upper":
original = [key[i] for i in range(start, end)]
original = "".join(original)
to_replace = original.upper()
key = key.replace(original, to_replace)
print(key)
else:
original = [key[i] for i in range(start, end)]
original = "".join(original)
to_replace = original.lower()
key = key.replace(original, to_replace)
print(key)
elif command == "Slice":
start = int(line[1])
end = int(line[2])
remove = [key[i] for i in range(start, end)]
remove = "".join(remove)
key = key.replace(remove, "")
print(key)
line = input()
print(f"Your activation key is: {key}") |
dd7d4cb8b051a5a455d64bb394bb12032360c12a | RaulNinoSalas/Programacion-practicas | /Practica7/P7E7.py | 619 | 4.03125 | 4 | """RAUL NIO SALAS DAW 1
Ejercicio_07
Escribe un programa que lea una frase, y la pase como parmetro a un procedimiento. El
procedimiento contar el nmero de vocales (de cada una) que aparecen, y lo imprimir por
pantalla.
"""
nombre=raw_input("Dime una frase ")
def cuantos ():
conta1=nombre.count("a")
conta2=nombre.count("e")
conta3=nombre.count("i")
conta4=nombre.count("o")
conta5=nombre.count("u")
print "Hay "+str(conta1)+" a"
print "Hay "+str(conta2)+" e"
print "Hay "+str(conta3)+" i"
print "Hay "+str(conta4)+" o"
print "Hay "+str(conta5)+" u"
cuantos()
|
cd0ac69ca101c22ecd6053681c4e76a43ff3575b | doer001/Programs66 | /58.2左旋转字符串.py | 723 | 3.796875 | 4 | ''' ********************************************************************
题目描述
对于一个给定的字符序列S,请你把其循环左移K位后的序列输出。例如,
字符序列S=”abcXYZdef”,要求输出循环左移3位后的结果,即“XYZdefabc”。
******************************************************************** '''
# -*- coding:utf-8 -*-
class Solution:
def LeftRotateString(self, s, n):
if not s:
return ''
if n > len(s):
n %= len(s)
return s[n:]+s[:n]
''' ********************************************************************
解题思路:
******************************************************************** '''
|
2f3c1479763fcb5c63c3ae3d48885b51b08e46c7 | bjknbrrr/hillel_kiseev | /lesson_04/op_continue.py | 304 | 4.15625 | 4 | # i = 0
# while i < 100:
# i += 1
# if i % 3 == 0:
# continue
#
# print(i)
num = int(input('Please enter a number: '))
while num != 0:
if num < 0:
break
print('Your number:', num)
num = int(input('Please enter a number: '))
else:
print('No negative value.')
|
d9c6923b80d8faeabbd9bdd0387b6c1d703a5196 | rahuljngr/My-Projects | /A4_GUI_App/frontend.py | 2,928 | 4.03125 | 4 | '''
A program that stores this book information:
Title, Author
Year , ISBN
User can:
View all records
Search an Entry
Add entry
Update entry
Delete
Close
'''
from tkinter import *
import backend
def get_selected_row(event):
try:
global selected_tuple
index=list1.curselection()[0]
selected_tuple=list1.get(index)
e1.delete(0,END)
e1.insert(END,selected_tuple[1])
e2.delete(0,END)
e2.insert(END,selected_tuple[2])
e3.delete(0,END)
e3.insert(END,selected_tuple[3])
e4.delete(0,END)
e4.insert(END,selected_tuple[4])
except IndexError:
pass
def view_command():
list1.delete(0,END)
for row in backend.view():
list1.insert(END,row)
def search_command():
list1.delete(0,END)
for row in backend.search(title_text.get(),author_text.get(),year_text.get(),isbn_text.get()):
list1.insert(END,row)
def add_command():
backend.insert(title_text.get(),author_text.get(),year_text.get(),isbn_text.get())
list1.delete(0,END)
list1.insert(END,(title_text.get(),author_text.get(),year_text.get(),isbn_text.get()))
def delete_command():
backend.delete(selected_tuple[0])
def update_command():
backend.update(selected_tuple[0],title_text.get(),author_text.get(),year_text.get(),isbn_text.get())
window = Tk()
window.wm_title("BookStore")
l1 = Label(window, text = "Tilte")
l1.grid(row=0,column=0)
l2 = Label(window, text = "Author")
l2.grid(row=0,column=2)
l3 = Label(window, text = "Year")
l3.grid(row=1,column=0)
l4 = Label(window, text = "ISBN")
l4.grid(row=1,column=2)
title_text = StringVar()
e1 = Entry(window, textvariable =title_text)
e1.grid(row=0,column =1)
author_text = StringVar()
e2 = Entry(window, textvariable =author_text)
e2.grid(row=0,column =3)
year_text = StringVar()
e3 = Entry(window, textvariable =year_text)
e3.grid(row=1,column =1)
isbn_text = StringVar()
e4 = Entry(window, textvariable =isbn_text)
e4.grid(row=1,column =3)
list1 = Listbox(window, height =6, width =35)
list1.grid(row=2,column=0, rowspan =6, columnspan =2)
list1.bind('<<ListboxSelect>>',get_selected_row)
sb1 = Scrollbar(window)
sb1.grid(row =2,column =2,rowspan =6)
list1.configure(yscrollcommand = sb1.set)
sb1.configure(command = list1.yview)
b1 = Button(window, text = "View all",width =12,command =view_command)
b1.grid(row = 2, column =3)
b2 = Button(window, text = "Search entry",width =12,command = search_command)
b2.grid(row = 3, column =3)
b3 = Button(window, text = "Add entry",width =12, command = add_command)
b3.grid(row = 4, column =3)
b4 = Button(window, text = "Update",width =12, command = update_command)
b4.grid(row = 5, column =3)
b5 = Button(window, text = "Delete",width =12,command = delete_command)
b5.grid(row = 6, column =3)
b6 = Button(window, text = "Close",width =12,command = window.destroy)
b6.grid(row = 7, column =3)
window.mainloop()
|
a7d54b3a0ae666bcbd3c3d141029b1576956413c | philwade/Euler | /euler7.py | 441 | 3.890625 | 4 | #By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.
#What is the 10001st prime number?
start = 3
count = 2
import math
def is_prime(num):
start = 2
end = int(math.ceil(math.sqrt(num)))
for n in range(start, end + 1):
if num % n == 0:
return False
return True
while count < 10001:
start += 2
if is_prime(start):
count += 1
print start
|
9901363aec80b3b3f452b1096b841e1badd34ec1 | gabrieltren/urionline | /1257.py | 1,649 | 3.609375 | 4 | def posicaoN(letra):
if letra == 'A':
return 0
elif letra == 'B':
return 1
elif letra == 'C':
return 2
elif letra == 'D':
return 3
elif letra == 'E':
return 4
elif letra == 'F':
return 5
elif letra == 'G':
return 6
elif letra == 'H':
return 7
elif letra == 'I':
return 8
elif letra == 'J':
return 9
elif letra == 'K':
return 10
elif letra == 'L':
return 11
elif letra == 'M':
return 12
elif letra == 'N':
return 13
elif letra == 'O':
return 14
elif letra == 'P':
return 15
elif letra == 'Q':
return 16
elif letra == 'R':
return 17
elif letra == 'S':
return 18
elif letra == 'T':
return 19
elif letra == 'U':
return 20
elif letra == 'V':
return 21
elif letra == 'W':
return 22
elif letra == 'X':
return 23
elif letra == 'Y':
return 24
elif letra == 'Z':
return 25
return 0
def valorTotal(hash, elem):
valor = 0
for i in range(len(hash)):
valor += posicaoN(hash[i]) + elem + i
return valor
def vrec(hash, elem, e):
if hash == []:
return 0
else:
return posicaoN(hash.pop(0)) + elem + e + vrec(hash,elem,(e+1))
n = int(input())
total = 0
for i in range(n):
a = int(input())
for k in range(a):
hash = input()
total += vrec(list(hash), k, 0)
print(total)
total = 0
|
5c860a1e82d09dbf352992b597a60963560b4aa0 | telelvis/projecteuler | /projecteuler/problem4.py | 497 | 3.734375 | 4 | #!/usr/bin/python
"""
(c) projecteuler.net
Largest palindrome product
Problem 4
A palindromic number reads the same both ways. The largest palindrome made
from the product of two 2-digit numbers is 9009 = 91 x 99.
Find the largest palindrome made from the product of two 3-digit numbers.
"""
for i in range(999, 900, -1):
num = int(str(i)+ str(i)[::-1])
for j in range(999, 900, -1):
if num%j == 0 and num/j<1000:
print num
break
|
2f831d5efaf0c47929f86681239d7b3255d22677 | alinemitri/Python_para_zumbis | /Lista_II/L2E2.py | 280 | 3.796875 | 4 | ano = int( input ('Digite o ano: '))
if ano % 4 != 0 :
print ('O ano %d não é bissexto!' %ano)
elif ano % 100 != 0 :
print ('O ano %d é bissexto!' %ano)
elif ano % 400 != 0 :
print ('O ano %d não é bissexto!' %ano)
else :
print ('O ano %d é bissexto!' %ano)
|
ca3fc1769382eb8a55ae6b15f0086266d81102f9 | duong22/Test_Task_Neuro | /Test_Task_LD_Flask/src/yandex_geocoder.py | 3,555 | 3.53125 | 4 | from decimal import Decimal
from typing import Tuple
import requests
import json
from math import sin, cos, sqrt, atan2, radians
from src.exceptions import InvalidKey, NothingFound, UnexpectedResponse
class YandexGeocoder(object):
def __init__(self, api_key):
self.api_key = api_key
self.long_moscow_ring_road, self.lat_moscow_ring_road = self.find_coordinates(address="Moscow Ring Road")
def request_geocoder(self, location):
"""Send request to yandex_geocoder API
Args:
location: str, location could be address or 'longitude, latitude'
Returns:
json response from yandex_geocoder API
"""
response = requests.get(
"https://geocode-maps.yandex.ru/1.x/",
params=dict(format="json", apikey=self.api_key, geocode=location, lang='en_RU'),
)
if response.status_code == 200:
return response.json()["response"]
elif response.status_code == 400:
raise InvalidKey()
else:
raise UnexpectedResponse(
f"status_code={response.status_code}, body={response.content}"
)
def find_coordinates(self, address=None) -> Tuple[Decimal]:
"""Find coordinates from address using request_geocoder function
Args:
address: str, address that want to find coordinates
Returns:
longitude, latitude
"""
data = self.request_geocoder(address)["GeoObjectCollection"]["featureMember"]
if not data:
raise NothingFound(f'Nothing found for "{address}"')
coordinates = data[0]["GeoObject"]["Point"]["pos"] # type: str
longitude, latitude = tuple(coordinates.split(" "))
return Decimal(longitude), Decimal(latitude)
def find_address(self, longitude=None, latitude=None) -> str:
"""Find address from coordinates using request_geocoder function
Args:
longitude: str
latitude: str
Returns:
address from coordinates
"""
coordinates = str(longitude) + ',' + str(latitude)
data = self.request_geocoder(coordinates)["GeoObjectCollection"]["featureMember"]
if not data:
raise NothingFound(f'Nothing found for "{longitude}, {latitude}"')
return data[0]["GeoObject"]["metaDataProperty"]["GeocoderMetaData"]["text"]
def calculate_distance(self, address=None):
"""Find distance from Moscow Ring Road to some address
Args:
longitude: str
latitude: str
address: str
Returns:
distance calculated in miles
"""
# find longitude and latitude from given address
if address is not None:
longitude, latitude = self.find_coordinates(address=address)
address = self.find_address(longitude=longitude, latitude=latitude)
# check is address in MKAD or not
if "MKAD" in address:
return 0
else:
R = 6373.0
lat1 = radians(self.lat_moscow_ring_road)
lon1 = radians(self.long_moscow_ring_road)
lat2 = radians(latitude)
lon2 = radians(longitude)
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
distance = R * c
return distance |
bd914ec7b2550d6c1aae0509a9b68702aaf5ee11 | Musokeking/projects | /dictionary.py | 84 | 3.828125 | 4 | x=0
dict={}
for x in range(x,15):
sqrt= x**2
dict[x]=sqrt
print(dict) |
ab0e6193637d06ff7f25c911df386258cb71c031 | fxpxzh/pythonStu | /PythonTest/src/com/fangxp/func/sortedFucTest.py | 379 | 3.59375 | 4 | # -*- coding: utf-8 -*-
'''
Created on Mar 22, 2016
@author: xianpanfang
'''
L = [('Bob', 75), ('Adam', 92), ('Bart', 66), ('Lisa', 88),('adb',99)]
def by_score(t):
return t[1]
L2 = sorted(L, key=by_score,reverse=True)
print(L2)
def by_name(t):
return t[0].lower() #str.lower(t[0])
L3 = sorted(L,key=by_name,reverse = True)
print(L3)
print('hello') |
10f93d2044eda8d6840069224491a862dc71dcff | gaoxuboy/cs | /questionnaire/x1.py | 1,700 | 3.875 | 4 | # 什么是可迭代对象?其中含有__iter__方法,返回迭代器
# 什么是迭代器?
"""
1. 自定义可迭代对象
class Foo(object):
def __init__(self,arg):
self.arg = arg
def __iter__(self):
return iter([11,22,33,44,55])
obj = Foo("as")
for row in obj:
print(row)
"""
# class Foo(object):
#
# def __init__(self,arg):
# self.arg = arg
#
# def __iter__(self):
# yield '开始'
# for item in self.arg:
# yield item
# yield '结束'
# obj = Foo([11,22,33,44])
#
# # 去循环一个含有__iter__方法的对象时,会执行__iter__方法,获取返回值
# # 在进行for循环:next...
# for row in obj:
# print(row)
# 什么是可迭代对象?其中含有__iter__方法,返回迭代器
# 什么是迭代器? 含有__next__方法
# iter([1,2,3,4,54])
# 什么是生成器? 函数中含有yield关键字的函数,被执行后是生成器;含有__next__方法
# def func():
# yield 1
# yield 2
# 什么是可迭代对象?其中含有__iter__方法,返回【迭代器;生成器】
# class Foo(object):
# def __iter__(self):
# return iter([11,22,3,4])
# def __iter__(self):
# yield 1
# yield 2
# yield 3
# import requests
#
#
# requests.get(
# url='http://127.0.0.1:8001/score/1/1/'
# )
#
# requests.post(
# url='http://127.0.0.1:8001/score/1/1/',
# data={'username':'alex','pwd':123}
# )
#
class Foo(object):
def __add__(self, other):
return 999
obj1 = Foo()
obj2 = Foo()
obj3 = obj1 + obj2 # 自动触发 obj1的 __add__方法(obj2)
print(obj3)
# c = 1 + 2
# print(c)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.