blob_id
string
repo_name
string
path
string
length_bytes
int64
score
float64
int_score
int64
text
string
2c462db90bac86347ea07ac7e8c1a230d12cab34
dalaAM/month-01
/day19_all/day19/exercise02.py
621
4
4
""" exercise:使用装饰器,为旧功能增加新功能. """ def print_fun(func):# 拦截(调用旧功能,执行内部函数) def wrapper(*args, **kwargs):# 包裹(执行新+旧功能) print("执行了", func.__name__, "函数") return func(*args, **kwargs) return wrapper # 新功能 # def print_func(func): # print("执行了", func.__name__, "函数") # 旧功能 @print_fun def insert(data): # print_func(insert) print("插入", data, "成功") @print_fun def delete(id): # print_func(delete) print("删除", id, "成功") insert("ok") delete(1001)
96546d75487294307a6e49df40e02c3eebbe832c
PunterGit/StructuralProgramming
/Laba3/Z6.py
171
4
4
import math n = int(input("Введите n ")) x = int(input("Введите x ")) s = 1 for i in range(1, n): s += (math.cos(i * x)) / math.factorial(i) print(s)
4fecf598156df9a1fcad61f9d78b66c1705f40b9
aishwarya07g/SpeckbitLaunchpad
/Problem3.py
125
3.734375
4
num1 = eval(input("Enter a list: ")) num2 = [] for i in range(len(num1)): if num1[i]==2: num2.append(i) print(num2)
13e83b663e3e5fcf43505e4a7133701f5d2db97a
yaoayaoflora/gogoyao
/DataStructuresAlgorithms/grokking-the-coding-interview-patterns-for-coding-questions/3_Fast_Slow_Pointers/3_6.py
1,876
4.28125
4
# Given the head of a Singly LinkedList, write a method to modify the LinkedList such that the # nodes from the second half of the LinkedList are inserted alternately to the nodes from the first half # in reverse order. So if the LinkedList has nodes 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> null, # your method should return 1 -> 6 -> 2 -> 5 -> 3 -> 4 -> null. # # Your algorithm should not use any extra space and the input LinkedList should be modified in-place. from __future__ import print_function class Node: def __init__(self, value, next=None): self.value = value self.next = next def print_list(self): temp = self while temp is not None: print(str(temp.value) + ' ', end='') temp = temp.next print() def reorder(head): if head is None or head.next is None: return slow = head fast = head while fast is not None and fast.next is not None: slow = slow.next fast = fast.next.next head_second_half = reverse(slow) head_first_half = head while head_first_half is not None and head_second_half is not None: temp = head_first_half.next head_first_half.next = head_second_half head_first_half = temp temp = head_second_half.next head_second_half.next = head_first_half head_second_half = temp if head_first_half is not None: head_first_half.next = None def reverse(head): prev = None while head is not None: next = head.next head.next = prev prev = head head = next return prev def main(): head = Node(2) head.next = Node(4) head.next.next = Node(6) head.next.next.next = Node(8) head.next.next.next.next = Node(10) head.next.next.next.next.next = Node(12) reorder(head) head.print_list() main()
c8f3c94c82ff4a912740c388cec1b0e1642c19d1
Kyrandis/Zookeeper
/Problems/Difference of times/task.py
331
3.875
4
# put your python code here hours1 = int(input()) minutes1 = int(input()) result1 = int(input()) hours2 = int(input()) minutes2 = int(input()) result2 = int(input()) time1 = (hours1 * 3600) + (minutes1 * 60) + result1 time2 = (hours2 * 3600) + (minutes2 * 60) + result2 # output is in seconds final = time2 - time1 print(final)
47604b124541814122d49bc9c8c21f34572968b5
DishantNaik/kg_DishantNaik_2021
/main.py
811
3.5
4
# -*- coding: utf-8 -*- """ Created on Wed Mar 18 17:16:43 2020 @author: iCule10 (Dishant Naik) """ def run(s1,s2): #Both string must be of same length if(len(s1) == len(s2)): tmp_s1, tmp_s2 = {},{} #Assigning key to each value in s1 for i, val in enumerate(s1): tmp_s1[val] = tmp_s1.get(val,[]) + [i] #Assigning key to each value in s2 for i, val in enumerate(s2): tmp_s2[val] = tmp_s2.get(val,[]) + [i] #Compare if number of distinc values + same same values(all same valses counts as 1 e.g (aab = [[0,1],2]))in s1 is equal to s2 then return true #else return false if sorted(tmp_s1.values()) == sorted(tmp_s2.values()): return("true") else: return("false") else: return("false")
b716b9987677efa593f1ca3370f866328c6753fe
DavidMarquezF/InfoQuadri2
/Practica 7/MergeSort.py
1,046
4.28125
4
#!/usr/bin/env python #-*- coding: utf-8 -*- def mergeSort(l): """ retorna una nova llista ordenada segons el merge sort >>> mergeSort([10,5,25,1,4,3,5,68,2,9]) [1, 2, 3, 4, 5, 5, 9, 10, 25, 68] >>> mergeSort([256,44,32,56,2,134]) [2, 32, 44, 56, 134, 256] """ list = l[:] if len(list)>1: mid=len(list)/2 lefthalf=list[:mid] righthalf=list[mid:] mergeSort(lefthalf) mergeSort(righthalf) i=0 j=0 k=0 while i<len(lefthalf) and j<len(righthalf): if lefthalf[i] < righthalf[j]: list[k]=lefthalf[i] i+=1 else: list[k]=righthalf[j] j+=1 k+=1 while i<len(lefthalf): list[k]=lefthalf[i] i+=1 k+=1 while j<len(righthalf): list[k]=righthalf[j] j+=1 k+=1 return list if (__name__ == "__main__"): l=[54,26,93,17,77,31,44,55,20] print mergeSort(l)
9aef0a377798e58e7813147391b272f1557bae96
Zhaisan/PythonDev
/informatics/int arithmetic/m.py
253
3.671875
4
x = int(input()) y = int(input()) z = int(input()) if x % 2 == 0: x = x // 2 else: x = x // 2 + 1 if y % 2 == 0: y = y // 2 else: y = y // 2 + 1 if z % 2 == 0: z = z // 2 else: z = z // 2 + 1 print(x + y +z)
57736873fa1c9c4d839c61c8a14788e117b163de
JayakumarClassroom/Python-Programs
/code/sample-41.py
1,078
4.375
4
#For loop - Quadratic Equation Solver import cmath #welcome message print("Welcome to Quadratic Equation Solver") print("Quadratic Equation is ax^2 + bx + c = 0 ") print("Your solution can be Real or Imaginary") print("Your complex number is a + bj ") print("Where a is the real portion bi is the imaginary portion") #Get value from user en_num=int(input("\nHow many equation would you like to solve today : ")) #loop through solve the equation for i in range(1,en_num+1): print(f"\nSolving Equation # {i}") print("------------------------------------") a = float(input("Enter the coefficient of x^2 : ")) b = float(input("Enter the coefficient of x : ")) c = float(input("Enter the coefficient : ")) #solving Quadratic Equation formula x1=(-b + cmath.sqrt(b**2 - 4*a*c))/(2*a) x2=(-b - cmath.sqrt(b**2 - 4*a*c))/(2*a) print(f"\nThe Solution to {a}x^2 + {b}x + {c} = 0") print(f"\n\tX1 = {x1}") print(f"\tX2 = {x2}") print("--------------------------------------------------------------------") print("\nThank you for solving the Quadratic Equation. :)")
8e45df8771b20eeef380aa2f4e67dd5608a98e56
HatlessFox/UNIX-labs
/TEST1/t2.py
344
3.734375
4
#!/usr/local/bin/python3 import sys arg = sys.argv[1] def is_pol(st): return st == st[::-1] def substr(st, code): res = [st[i] for i in range(len(st)) if code & 2**i == 0] return "".join(res) max_p = "" for code in range(0, 2**len(arg)): st = substr(arg, code) if is_pol(st) and len(st) > len(max_p): max_p = st print(max_p)
7ac2281b46afc482f38a90ac430e862d66cb255f
bioJain/python_Bioinformatics
/Rosalind/Bioinformatic-textbook-track/BA1I_FreqWordWithMis.py
1,532
3.75
4
# BA1I # Find the Most Frequent Words with Mismatches in a String # Find the most frequent k-mers with mismatches in a string. # Given: A string Text as well as integers k and d. # Return: All most frequent k-mers with up to d mismatches in Text. # to calculate the hamming distance between two strings from BA1G import hamming from ReadnWrite import * def FreqWordWithMis(text, k, d): Set = {} maxcount = 0 for i in range(len(text)-k+1): pattern = text[i:i+k] Neighborpattern = Neighbors(pattern, d) for pt in Neighborpattern : Set[pt] = Set.get(pt, 0) + 1 if Set[pt] >= maxcount : maxcount = Set[pt] for i in Set.keys(): if maxcount == Set[i] : print i, def Neighbors(pattern, d): if d == 0: return pattern if len(pattern) == 1: return ['A', 'C', 'G', 'T'] Neighborhood = [] SuffixNeighbors = Neighbors(pattern[1:], d) for text in SuffixNeighbors : if hamming(pattern[1:], text) < d : for nt in ['A', 'C', 'G', 'T']: Neighborhood.append(nt+text) else : Neighborhood.append(pattern[0]+text) return Neighborhood #print FreqWordWithMis('CACAGTAGGCGCCGGCACACACAGCCCCGGGCCCCGGGCCGCCCCGGGCCGGCGGCCGCCGGCGCCGGCACACCGGCACAGCCGTACCGGCACAGTAGTACCGGCCGGCCGGCACACCGGCACACCGGGTACACACCGGGGCGCACACACAGGCGGGCGCCGGGCCCCGGGCCGTACCGGGCCGCCGGCGGCCCACAGGCGCCGGCACAGTACCGGCACACACAGTAGCCCACACACAGGCGGGCGGTAGCCGGCGCACACACACACAGTAGGCGCACAGCCGCCCACACACACCGGCCGGCCGGCACAGGCGGGCGGGCGCACACACACCGGCACAGTAGTAGGCGGCCGGCGCACAGCC', 10, 2) #Data = readExcLast('rosalind_ba1i.txt') #FreqWordWithMis(Data, 7, 2)
9f313ba2d0b10c4731c82bb81e6af49ee71cdbbd
fuLinHu/python
/learn/set.py
251
3.546875
4
#set={2,4,5} #print(type(set)) set1=set("78yttru") print(set1) a={x for x in ("a","e","3") if x != "3"} print(a) b=set() b.add(1) b.add(2) b.add("4") b.add("5") print(b.discard(2)) print(b) a,b=0,1 while b<1000: a,b=b,a+b print(a,end=",")
ea1d4a64de8bf29793354aa346c7c1b86a99f558
Kimberly07-Ernane/Python
/Pacote para dowloand/Python/ex008( if ,elif e while) receber idade e peso.py
792
3.96875
4
#Crie um programa que receba idade e peso de cinco pessoas e calcule: #A maior idade; #A quantidade de pessoas que pesam mais que 90kg; #Média das idades das pessoas que pesam menos de 50 kg. maior=0 qtd90=0 media=0 qtd=0 soma=0 idade=int(input("Entre com a idade:")) while idade >0: peso=int(input("Entre com o peso: ")) if idade > maior: msior=idade if peso<90: qtd90+=1 if peso <50: soma = soma +idade qtd+=1 idade=int(input("Entre com a idade: ")) if qtd>0: media=soma/qtd print("Maior idade:",maior) print("Quantidade de pessoas que pesam mais que 90kg: ",qtd90) print("Média das idades das pessoas que pasam menos que 50kg: ",media)
9e361efb8a2ecddd5e39dfb6f7dd8c0b285f5dc4
gsourdat/TestRepo
/LogMagasin/Model/user_model.py
663
3.546875
4
print(2) from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String Base = declarative_base() engine = create_engine('sqlite:///:memory:', echo=True) class User(Base): __tablename__ = 'users' id = Column(Integer, primary_key=True) name = Column(String) fullname = Column(String) nickname = Column(String) def __repr__(self): return "<User(name='%s', fullname='%s', nickname='%s')>" % (self.name, self.fullname, self.nickname) Base.metadata.create_all(engine) user = User(id=123, name="greg", fullname="greg", nickname="greg") print(user.name)
78138901da48f3774cd4a58d8600a9090c2f4e8a
franperez022/LMSGI
/Usuarioxml/4.py
552
3.71875
4
#4) Pedir una cadena por teclado y mostrar todos los usarios #cuyo nombre empieza por dicha cadena (Ejemplo: si meto la cadena "A" #mostrará todos los usuarios cuyo nombre empeiza por A...) from lxml import etree arbol = etree.parse('users.xml') usuarios = arbol.findall("user") cadena = input("Introduce una letra: ") for usuario in usuarios: #Que empiece por la cadena introducida if usuario.findtext("firstname").startswith(cadena): #print el campo texto user name cuyo #nombre empieza por cadena print (usuario.find("username").text)
4fc94f85e4cf6c538535f4ae3a06b41e892eb39c
Dirguis/cepbp
/cepbp/common/custom_error_handler.py
402
3.609375
4
class CustomError(Exception): """ Custom error class, to pass a custom message and data to the user as needed Parameters ---------- msg: string Error message data: anything Whatever data is useful to print """ def __init__(self, msg, data=''): self.msg = msg self.data = data def __str__(self): return repr(self.msg, self.data)
ee68fb6ff223f3dae8c9460a6cb54fe27c3447b2
lehuutrung1412/CS112.L21.KHTN
/Homework/Week_6/bestSum.py
663
3.578125
4
def findBestSum(arr, sum, memo = {}): if sum in memo: return memo[sum] elif sum < 0: return None elif sum == 0: return [] min_element = None for num in arr: remain = sum - num sum_remain = findBestSum(arr, remain, memo) if not sum_remain is None: element = [num] element += sum_remain if min_element is None or len(min_element) > len(element): min_element = element memo[sum] = min_element return min_element if __name__ == "__main__": arr = list(map(int, input().split())) k = int(input()) print(*findBestSum(arr, k))
0e7671ccbd45a80c1b7435ccf9f89191f4d2b4c6
NechayevAntonn/---
/исходный.py
1,904
3.9375
4
# http://blog.chapagain.com.np/hash-table-implementation-in-python-data-structures-algorithms/ hash_table = [[] for _ in range(10)] #Создание хеш-таблицы в виде вложенного списка (списки внутри списка). def insert(hash_table, key, value): #hash_table -- [[], [], [], [], [], [], [], [], [], []], key -- 10, value -- Nepal hash_key = hash(key) % len(hash_table) # hash(10) % len([[], [], [], [], [], [], [], [], [], []]), т.е hash_key == 0 key_exists = False bucket = hash_table[hash_key] #назовем каждый отдельный список в списке хеш-таблиц как «bucket», возьмет 0-й элемент, т.е. [] -- пустой список. for i, kv in enumerate(bucket): # выполнится bucket.append((key, value)), при (20, 'India') Цикл по enumerate выполнится и i == 0, kv == (10, 'Nepal'), k == 10, v = Nepal k, v = kv if key == k: key_exists = True break if key_exists: bucket[i] = ((key, value)) else: bucket.append((key, value)) # append() - добавляет элемент в список insert(hash_table, 10, 'Nepal') insert(hash_table, 25, 'USA') insert(hash_table, 20, 'India') def search(hash_table, key): #При поиске любого ключа в хеш-таблице мы должны циклически проходить по каждому отдельному подсписку. hash_key = hash(key) % len(hash_table) bucket = hash_table[hash_key] for i, kv in enumerate(bucket): k, v = kv if key == k: return v print (search(hash_table, 10)) # Output: Nepal print (search(hash_table, 20)) # Output: India print (search(hash_table, 30)) # Output: None
c5e533812ab141ae1bc66bb37147133d937770ac
Carolina1992Assen/SE
/ku.py~
1,371
3.78125
4
#!/usr/bin/env python3 # Author: Carlijn Assen import sys import numpy as np def is_vowel(letter): l = 0 if letter in ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]: l = 0.5 else: l = 1 return l def ls(x, y): if x == y: return 0 elif len(x) == 0: return len(y) elif len(y) == 0: return len(x) lx = len(x) + 1 ly = len(y) + 1 d = np.zeros((lx, ly)) for i in range(len(d[0])): d[0][i] = i for j in range(len(d)): d[j][0] = j for j in range(1, ly): for i in range(1, lx): if y[j - 1] == x[i - 1] or y[j - 1] == x[i - 1]: n = 0 deletion = d[i - 1, j] + n insertion = d[i, j - 1] + n substitution = d[i - 1, j - 1] + n elif x[i - 1] != y[j - 1]: deletion = d[i - 1, j] + is_vowel(x[i - 1]) or is_vowel(y[i - 1]) insertion = d[i, j - 1] + is_vowel(y[j - 1]) or is_vowel(x[i - 1]) substitution = d[i - 1, j - 1] + 1 d[i, j] = min(deletion, substitution, insertion) return d[i, j] def main(): for line in sys.stdin: line = line.strip() line = line.split() w1 = line[0] w2 = line[1] print(w1, w2, ls(w1, w2), line[2]) if __name__ == "__main__": main()
e3fc109f6a9aad31a268998a86e624813b2e4bcd
MatthiasHunt/Project-Euler
/euler-07.py
665
4.0625
4
# -*- coding: utf-8 -*- """ Created on Thu Mar 21 19:23:14 2019 https://projecteuler.net/problem=7 @author: matth By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. What is the 10 001st prime number? """ def main(): print(primes(10001)[-1]) def primes(n): """Returns a list of the first n primes in increasing order - Not useful past 10,000""" prime_list = [2] p = 3 while (len(prime_list) < n): if all (p % prime != 0 for prime in prime_list): prime_list.append(p) p += 1 return prime_list ############################# if __name__ == '__main__': main()
ebd54ff62a5918a42095b205aaa71bd95df9dfb4
YuliuSYK/NLP_Test
/5.NLTK_Tokenize.py
628
3.5625
4
from nltk.tokenize import sent_tokenize from nltk.tokenize import word_tokenize mytext = "Hello Adam, how are you? I hope everything is going well. Today is a good day, see you dude." print(sent_tokenize(mytext)) mytext = "Hello Mr. Adam, how are you? I hope everything is going well. Today is a good day, see you dude." print(sent_tokenize(mytext)) mytext = "Hello Mr. Adam, how are you? I hope everything is going well. Today is a good day, see you dude." print(word_tokenize(mytext)) mytext = "Bonjour M. Adam, comment allez-vous? J'espère que tout va bien. Aujourd'hui est un bon jour." print(sent_tokenize(mytext,"french"))
d6862340307234ad349356f25b5d569d3aafe481
subhi28/python
/hun89.py
87
3.65625
4
str=input() x='' for i in str: if i not in x: x=x+i print(x[::-1])
210101ea57119fd5916d524fd2fcff9ab609c8e5
Mr-Venu/Assignment-WEEK-1
/7.py
125
4
4
print('Printing first m multiples of n') m=int(input('Enter m ')) n=int(input('Enter n ')) i=range(n,m*n+1,n) print(list(i))
02c655efed59f7c923b46e0340f7962a9ba02319
dsluijk/TICT-V1PROG-15
/les-1/perkavic/2-13.py
234
3.671875
4
# Variable assignment s1 = '-'; s2 = '+'; # A print(s1 + s2); # B print(s1 + s2); # C print(s2 + (s1 * 2)); # D print((s2 + (s1 * 2)) * 2); # E print(((s2 + (s1 * 2)) * 10) + s2); # F print((s2 + s1 + (s2 * 3) + (s1 * 2)) * 5);
9ebdaf6a7ee7bfa8cefe855c95c39ec9700a864f
priysha2/concepts
/2.py
287
4.0625
4
def max_of_three(x,y,z): if ((x>y)&(x>z)): print("%d is greater than %d and %d" %(x,y,z)) elif ((y>x) & (y>z)): print("%d is greater than %d and %d" % (y,x,z)) else: print("%d is largest of %d and %d" %(z,x,y)) max_of_three(20,40,10)
908b6fa528a02a36ebceea98b67f695b00884675
ricardo-tapia/CYPJoseMT
/libro/ejemplo1_13.py
360
3.515625
4
CAL1 = float(input("Dame la calificación 1: " )) CAL2 = float(input("Dame la calificación 2: " )) CAL3 = float(input("Dame la calificación 3: " )) CAL4 = float(input("Dame la calificación 4: " )) CAL5 = float(input("Dame la calificación 5: " )) PRO = ( CAL1 + CAL2 + CAL3 + CAL4 + CAL5 ) / 5 imprimir ( f " El promedio es { PRO } " )
2078b677679d7b13749a54455623cc127a9749a8
Nscampa/hw6-costs
/hw6-costs.py
1,312
4.4375
4
# Function Purpose: To sum up all of the money that has been spent this week # Parameters: None # Return: The sum of all money # Algorithm: Use a sentinel-controlled loop to ask the user for a cost to add to the total. # Return the total at the end of the function. # Assume the user only gives values that are > 0, and are numbers. def cost_function(): total_cost = 0 day_count = 0 cost_str = input("Please enter the amount of money of spent on a day here, and enter -999 when finished:") cost = int(cost_str) while cost != -999: day_count += 1 total_cost += cost cost_str = input("Please enter the amount of money of spent on a day here, and enter -999 when finished:") cost = int(cost_str) average = total_cost / day_count print"You have spent", total_cost, "dollars this week." print"You spent on average", average, "dollars per day this week." # Function Purpose: Main # Parameters: # Return: None def main(): # Output the purpose print("This program determines how much money on average you spend in a week") # Find out how much money has been spent this 7-day week # Determine the average amount of money spent each day # Output the total money spent this week and the average per day cost_function() main()
ec014dbb877f8de1b876336c56eb15436960671e
omergamliel3/next.py-course-python
/Unit 2 - OOP/animal.py
1,162
3.71875
4
class Animal: count_animals = 0 def __init__(self, name='Animal', age=0): self._name = name self._age = age Animal.count_animals += 1 def __repr__(self) -> str: return f'Name: {self._name}\nAge: {self._age}' def birthday(self): self._age += 1 def get_age(self): return self._age def set_age(self, age: int): self._age = age def get_name(self): return self._name def set_name(self, name: str): self._name = name @classmethod def my_animal(cls): return cls('Grey', 10) @staticmethod def class_name() -> str: return 'Animal' def main(): animal1 = Animal('Grey', 10) animal2 = Animal('White', 11) animal1.birthday() print(f'Animal1: {animal1.get_age()}') print(f'Animal2: {animal2.get_age()}') print(animal1) print(animal2) animal3 = Animal.my_animal() animal3.birthday() animal3.birthday() print(animal3) print(Animal.class_name()) animal3.set_age(15) animal4 = Animal() print(f'Animals count {Animal.count_animals}') if __name__ == "__main__": main()
7e519039b56f03d97aff251649c75b29b1a11fa8
sds1vrk/Algo_Study
/Programers_algo/sort/pro_2_fail.py
883
3.5625
4
#가장 큰 수 찾기 def solution(numbers): array=[] for i in numbers: array.append(str(i)) if max(numbers)==0: return '0' array.sort(reverse=True) print(array) def bigo(i, j): a = int(i + j) b = int(j + i) if a >= b: return True else: return False for i in range(0,len(array)-1,1): # print(array[i]) result=bigo(array[i],array[i+1]) if result: # new_array.append(array[i]) continue else : # new_array.append(array[i+1]) array[i],array[i+1]=array[i+1],array[i] # new_array.append(array[]) print("swap",array) answer='' for i in array: answer+=i # print(answer) return answer solution([90,908,89,898,10,101,1,8,9]) solution([10, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
e0c26c39a165399b8bb9cf9a81740e4a0b115f6a
Conchristador/python-challange
/PyPoll/main.py
1,933
3.625
4
import os import csv PyPollcsv = os.path.join("Pypoll.csv") #Set Variables and Lists count = 0 canlist = [] unique_can = [] v_count = [] v_percent = [] #Open CSV file with open(PyPollcsv, newline="") as csvfile: csvreader = csv.reader(csvfile, delimiter=",") csv_header = next(csvreader) #Count the variables in the csv file and add it to total count this is the total votes, add row two to canlist to get the canidates in a list for row in csvreader: count = count + 1 canlist.append(row[2]) # Make the varables for the math then put the varibles in the formula # set = makes a unique set and sorted sorts them alphabetically unique can will now have each canidate once for x in sorted(set(canlist)): unique_can.append(x) y = canlist.count(x) #Set the variable to count the amount of variables in canlist v_count.append(y) #Add this to vote count for each canidate and make y the total votes for a canidate z = (y/count)*100 #make vote percenteage v_percent.append(z) winning_vote_count = max(v_count) winner = unique_can[v_count.index(winning_vote_count)] #Get printing print("-------------------------") print("Election Results") print("-------------------------") print("Total Votes :" + str(count)) print("-------------------------") for i in range(len(unique_can)): print(unique_can[i] + ": " + str(round(v_percent[i])) +"% (" + str(v_count[i])+ ")") print("-------------------------") print("The winner is: " + winner) print("-------------------------") # Could not figure out how to print results to a new file. I do not beleive we went over this in class. Ask TA's for help as this is probably important. # Ther is probably a less loop instensive way of doing this with dictionaries but I couldn't figure it out. Would probably make code more efficient.
8fa9189e48e1f87b7dfe1fd9fa27f262914cc65a
Malukeh/comp110-21f-workspace
/exercises/ex03/find_duplicates.py
346
3.6875
4
"""Finding duplicate letters in a word.""" __author__ = "730319407" User_string: str = input('Enter a word:') count: int = 0 i: int = 0 result: bool = False while i < len(User_string): x = i + 1 while x < len(User_string): if User_string[i] == User_string[x]: result = True x += 1 i += 1 print(result)
94ecd127e48b1005010906d82e6f6f72fd6eb702
AntonAroche/DataStructures-Algorithms
/arrays/remove-duplicates.py
856
3.765625
4
# Given a sorted array nums, remove the duplicates in-place such that each element # appears only once and returns the new length. Do not allocate extra space # for another array, you must do this by modifying the input array in-place with O(1) extra memory. def removeDuplicates(nums): size = len(nums) idx = 0 while (idx < size - 1): if nums[idx] == nums[idx + 1]: nums.pop(idx) size -= 1 else: idx += 1 return len(nums) # This solution removes duplicates in O(n) time (since array.pop isn't used). def removeDuplicatesIdeal(nums): write = 1 for read in range(1, len(nums)): if nums[read] != nums[read - 1]: nums[write] = nums[read] write += 1 return write nums = [0,0,1,1,1,2,2,3,3,4] print(removeDuplicatesIdeal(nums)) print(nums)
fea3eb8962250ac66a1d519c751f53e1f5119379
luthraG/ds-algo-war
/general-practice/11_09_2019/p6.py
1,163
3.9375
4
''' By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. What is the 10001st prime number? ''' from timeit import default_timer as timer import math def prime_rwh(upper_limit, number): primes = [True]* upper_limit primes[0] = False primes[1] = False i = 3 limit = int(upper_limit ** 0.5) + 1 while i <= limit: primes[i*i::2*i] = [False]*((upper_limit-i*i-1)//(2*i) + 1) i += 2 count = 1 i = 3 nthPrimeNumber = -1 while i < upper_limit: if primes[i]: count += 1 if count == number: nthPrimeNumber = i break i += 2 return nthPrimeNumber number = int(input('Enter which prime number is required :: ')) start = timer() primes = [2,3,5,7,11,13] if number < 7: nthPrimeNumber = primes[number - 1] else: upper_limit = int((number * math.log(number)) + (number * math.log(math.log(number))) + 3) nthPrimeNumber = prime_rwh(upper_limit, number) end = timer() print('{} prime number is {}'.format(number, nthPrimeNumber)) print('Time taken is {}'.format(end - start))
384fdefe028d1c8f714087ac013e75c3f8038716
matt0418/Data-Structures
/queue/queue.py
2,457
4.09375
4
class Node: def __init__(self, value = None, next_node = None): # the value at this linked list Node self.value = value # refernce tot he next node in the list self.next_node = next_node def get_value(self): return self.value def get_next(self): return self.next_node def set_next(self, new_next_node): self.next_node = new_next_node class LinkedList: def __init__(self): #reference to the head of the list self.head = None #reference to the tail of the list self.tail = None def add_to_tail(self, value): # init a node with a value of ValueError new_node = Node(value, None) # check if there is no head( i.e list is empty) if self.tail is None: self.head = new_node self.tail = new_node else: #set the current tails next reference to our new node self.tail.set_next(new_node) self.tail = new_node def remove_head(self): # Return none if there is no head if self.head is None: return None # Check to see if there is only one element elif not self.head.get_next(): head = self.head self.head = None self.tail = None return head.get_value() else: value = self.head self.head = self.head.get_next() return value.get_value() def contains(self, value): # if list of empty if not self.head: return False else: current = self.head while current: if value == current.get_value(): return True else: current = current.get_next() return False def add_to_head(self, value): # inti node wth value of ValueError new_node = Node(value, None) # If list is empty if not self.head: self.head = new_node self.tail = new_node # If list only has one item elif not self.head.get_next(): new_node.set_next = self.head self.head = new_node else: prev_head = self.head self.head = new_node self.head.set_next(prev_head) class Queue: def __init__(self): self.size = 0 # what data structure should we # use to store queue elements? self.storage = LinkedList() def enqueue(self, item): self.size += 1 self.storage.add_to_tail(item) def dequeue(self): if self.size == 0: return None else: self.size -= 1 return self.storage.remove_head() def len(self): return self.size
bf90b1026c3dac839e35a0446a498f03d87a4a96
wuggy-ianw/Project-Euler-py
/problem-0009.py
1,083
4.3125
4
# A Pythagorean triplet is a set of three natural numbers, a < b < c, for which, # a**2 + b**2 = c**2 # For example, 3**2 + 4**2 = 9 + 16 = 25 = 5**2. # There exists exactly one Pythagorean triplet for which a + b + c = 1000. # Find the product abc. from itertools import combinations from utils.generators import first def pythagorean_triplets(length_limit): """ Produces integer triplets a,b,c such that a < b < c and a**2 + b**2 = c**2. Triplets are generated based on Euclid's formula. See https://en.wikipedia.org/wiki/Pythagorean_triple#A_variant :param length_limit: the maximum length of a and b to search up to :return: iterator of tuples (a,b,c) in some arbitrary order """ for n, m in combinations(range(1, length_limit, 2), 2): assert m > n a, b, c = m*n, int((m**2 - n**2)/2), int((m**2 + n**2)/2) if a > b: # ensure ordering of a < b < c a, b = b, a assert a < b < c yield a, b, c a, b, c = first(filter(lambda x: sum(x) == 1000, pythagorean_triplets(1000))) print(a, b, c, a*b*c)
5ba0d9bcdb7e7190fb32b62c507dfa2f75dd62b5
chongin12/Problem_Solving
/acmicpc.net/11966.py
76
3.546875
4
import math n=int(input()) if 2**int(math.log2(n))==n:print(1) else:print(0)
75da13397d080fac035891a136e815b836c07659
Caaaam/Canoe-Polo-Team-Generator-V2
/TeamGenerator.py
855
3.578125
4
# This is our main file import readfromcsv import playerclass import teammakerclass # Returns players dataframe from readfromcsv module players = readfromcsv.readplayers() #define playerlist to contain class instances of players playerlist = [] for row, val in players.iterrows(): playerlist.append(playerclass.player(players['Name'][row],players['Score'][row])) # Uncomment below to see players/score #playerclass.player.showplayer(playerlist[row]) # Calls teammakerclass to sort into even teams Teams = teammakerclass.TeamMaker(playerlist) # Prints teams to screen, in future, update this output print('\nWelcome to the Team Generator V2') teammakerclass.TeamMaker.getteams(Teams) print(f'\nThis attempts the algorithm {teammakerclass.TeamMaker.getiterations(Teams)} times and returns the best result.\n')
bb32a6ff2284110025f78413c8de4dbb3f89d1cd
mikelitu/DSCUSB
/DSCUSBSensor.py
2,598
3.5
4
import ctypes class Sensor(): def __init__(self, COMPort): """ :param COMPort (int): The port where the DSCUSB is located in your computer This function loads the library containing the functions to establish an ASCII connection with the DSCUSB, and opens the port to start sending commands """ print("Creating connection with DSCUSB Sensor at COM", COMPort) self.dll = ctypes.WinDLL("C:\\Windows\\System32\\MantraASCII2Drv.dll") isOpen = self.dll.OPENPORT( ctypes.c_int (COMPort), ctypes.c_long (115200) ) if isOpen==0: print("The connection is established!") else: self.GetErrors(isOpen) def close(self): """ Closes the port and ends the connection """ isClose = self.dll.CLOSEPORT() if isClose==0: print("Connection finished") else: self.GetErrors(isClose) def readvalue(self): """ :return: The value of the load cell This function generates a command to ask for the value in the load cell. In this case, the command will be SYS corresponding to the main output. It automatically transforms the value back to a Python floating variable. """ command = ctypes.create_string_buffer(255) command.value = b"SYS" result = ctypes.c_float(0.0) value = self.dll.READCOMMAND( ctypes.c_int(1), command, ctypes.byref(result) ) if value==0: return result.value else: self.GetErrors(value) def version(self): return self.dll.VERSION() def GetErrors(self, value): """ :param value: The values return by the MantraASCII2Drv.dll :return: Returns the type of error the program has """ if value == -1: raise ValueError("Invalid argument value in function call") elif value == -2: raise ValueError("Cannot open or close serial port") elif value == -100: raise ValueError("No response") elif value == -200: raise ValueError("Invalid station number in response") elif value == -300: raise ValueError("Invalid checksum") elif value == -400: raise ValueError("Not acknowledge (NAK)") elif value == -500: raise ValueError("Invalid reply length")
b9cae5cc0317174a10ebac44b39499bc607dc7ae
stevjain37/Profile
/headTails.py
532
3.578125
4
import numpy as np def coinFlip(p): result = np.random.binomial(1,p) #adds result to numpy array return result probability = .5 inquireFlips = input("How many flips?") n = int(inquireFlips) #initiate array fullResults = np.arange(n) for i in range(0,n): fullResults[i] = coinFlip(probability) i += 1 print("probability is set to ", probability) print("Tails = 0, Heads = 1: ", fullResults) print("Head Count: ", np.count_nonzero(fullResults == 1)) print("Tail Count: ", np.count_nonzero(fullResults == 0))
24264b6d4e5222fb46e3cc7a3ec7f7cac1a6be88
smudugal/ValidPhoneNumber
/test_validphone.py
972
3.765625
4
import unittest import validphone class TestValidPhone(unittest.TestCase): @classmethod def setUpClass(cls): pass def test_valid_phone_num(self): num = "333-333-3333" self.assertTrue(validphone.telephone_check(num)) num = "(123)555-5555" self.assertTrue(validphone.telephone_check(num)) num = "(123) 555-5555" self.assertTrue(validphone.telephone_check(num)) num = "333 333 3333" self.assertTrue(validphone.telephone_check(num)) num = "3333333333" self.assertTrue(validphone.telephone_check(num)) num = "1 333 333 3333" self.assertTrue(validphone.telephone_check(num)) def test_letters(self): num = "333-abc-3333" self.assertFalse(validphone.telephone_check(num)) def test_special_chars(self): num = "$325678908" self.assertFalse(validphone.telephone_check(num)) if __name__ == '__main__': unittest.main()
095cf9940781f4cab04e2ab7914c9ea700824632
mawande21/class-py
/main.py
588
4.125
4
class Bus: '''this class defines how a bus looks like''' count = 0 def __init__(self, driver, color,seats): self.driver= driver self.num_of_seats= seats self.color = color self.bus_count() def set_color(self,color): self.color = color def num_of_seats(self,seats): self.seats=seats def bus_count(self): self.count = self.count + 1 bus = Bus("Masande",66,"Yellow") bus.num_of_seats = 45 #update the seats bus.set_color('Red') #update the bus color print(bus) print(bus.count)
e2a0fb395a65e624c80c58a54332550bc595e7aa
thirihsumyataung/Python_Tutorials
/function_box_rectangle.py
234
4.09375
4
def area_Box(length , width): area = length * width print("Area of the Box is : " + str(area)) area_Box(5,6.0) length = float(input("Length of the box : ")) width = float(input("Width of the box : ")) area_Box(length, width)
99be0a95548104762aae10dac062761d4baac436
Shanil98/haarCascade_Car-Pedestrian_detector
/Detection_Driving.py
1,421
3.5625
4
import cv2 # our image or video #img_file = 'dashCam.jpeg' vid = 'dashcam1.mp4' # our pre-trained car classifier and pre-trained pedestrian classififer car_tracker_file = 'car_detector.xml' pedestrian_tracker_file = 'haarcascade_fullbody.xml' # create opencv image, it reads the image to read it correctly #img = cv2.imread(img_file) # create car and pedestrian classifiers car_tracker = cv2.CascadeClassifier(car_tracker_file) pedestrian_tracker = cv2.CascadeClassifier(pedestrian_tracker_file) video = cv2.VideoCapture(vid) while True: successful_frame_read, frame = video.read() if successful_frame_read: # convert the vid to grayscale black_n_white = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) else: break # detect cars and pedestrians cars = car_tracker.detectMultiScale(black_n_white) pedestrians = pedestrian_tracker.detectMultiScale(black_n_white) for (x, y, w, h) in cars: cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) for (x, y, w, h) in pedestrians: cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 2) # display the square when the car is spotted in the frame cv2.imshow('heres the video', frame) # waitKey is necessary to display the image, till you hit a key key = cv2.waitKey(1) # checking key agains ASCII for Q or q if key == 81 or key == 113: break print('code completed')
74332f358b9fff9d954c0c0329d934c5868f692c
ashwinm2/Challenges
/subsequent_words_binary_add.py
628
3.78125
4
# Implementing the all subsequent words for given basestring # Binary Addition def compute(temp_lt, pointer): flag = 0 check_lt = [1 for x in temp_lt] if temp_lt[pointer] == 0: temp_lt[pointer] = 1 elif temp_lt == check_lt: pass else: temp_lt[pointer] = 0 temp_lt = compute(temp_lt, pointer - 1) return temp_lt def iter(str): temp_lt = [0 for x in str] check_lt = [1 for x in str] while temp_lt != check_lt: temp_lt = compute(temp_lt, len(temp_lt) - 1) words = '' for x in range(0,len(temp_lt)): if temp_lt[x] == 1: words += str[x] print words str = list(raw_input()) print str iter(str)
210740ed5a634c7800f4a52ee49d9b081fab99b4
hydrahs/golden_mine
/exercise_1.py
234
4.0625
4
def myFunction(str): array = list(str) array_1 = array.reverse if (array==array_1): return True else: return False print(myFunction(str = "dsfasdf")) """ str.join(array.reverse) print(str) """
a8cb384dc0440a3f8ae962d3c543af8e179fa9cd
riteshelias/UMC
/ProgramFlow/guessgame.py
1,734
4.125
4
import random answer = random.randint(1, 10) print(answer) tries = 1 print() print("Lets play a guessing game, you can exit by pressing 0") guess = int(input("try count - {}. Please enter a number between 1 and 10: ".format(tries))) while guess != answer: if guess == 0: print("Bye, have a nice day!") break if tries == 5: print("You have reached your guess limit. Bye!") break tries += 1 guess = int(input("try count - {}. Please enter a number between 1 and 10: ".format(tries))) else: if tries == 1: print("Wow, correct guess at the first time!") else: tries += 1 print("You took {} tries to guess right!".format(tries)) # if guess == answer: # print("Woah! You got that right at the first go!") # else: # if guess < answer: # print("Please guess a higher number") # else: # print("Please guess a lower number") # guess = int(input("Try again: ")) # if guess == answer: # print("You get it finally") # else: # print("Oops! Still wrong!") # if guess != answer: # if guess < answer: # print("Please guess a higher number") # else: # print("Please guess a lower number") # guess = int(input("Guess again: ")) # if guess == answer: # print("You finally got it") # else: # print("Sorry, you still didn't get it") # else: # print("Woah! You got it right the first time") # if guess < 1 or guess > 10: # print("The entered number is not in the requested range") # elif guess < answer: # print("Please guess a higher number") # elif guess > answer: # print("Please guess a lower number") # else: # print("You guessed right!")
ceb4632cb6d2ddd46ac1c532f18a5e6fea6bc1fc
oreqizer/pv248
/12/frames.py
1,711
3.9375
4
import pandas as pd import math # The data for this exercise is in ‹frames.csv›. The data represents # grading of this very subject (with made-up names and numbers, of # course). The columns are names, number of points from weekly # exercises, from assignments and from reviews. Implement the # following functions: # Return a DataFrame which only contains rows of students, which # achieved the best result among their peers in one of the # categories (weekly, assignments, reviews). If there are multiple # such students for a given category, include all of them. def best( data ): pass # Return a DataFrame which contains the name and the total score (as # the only 2 columns). Don't forget that the weekly exercises # contribute at most 9 points to the total. def compute_total( data ): pass # Return a dictionary with 4 keys ('weekly', 'assignments', 'reviews' # and 'total') where each value is the average number of points in # the given category. Consider factoring out a helper function from # compute_total to get a DataFrame with 5 columns. def compute_averages( data ): pass # Test utilities and tests follow. def eq( data, student, col, val ): matches = data[ data[ 'student' ] == student ][ col ] return ( matches == val ).all() def test_main(): df = pd.read_csv( 'frames.csv' ) assert len( best( df ) ) == 5 tot = compute_total( df ) assert eq( tot, 'Věra Hrbáčková', 'total', 18 ) assert eq( tot, 'Blanka Pichrtová', 'total', 17.4 ) avg = compute_averages( df ) assert math.isclose( avg['weekly'], 61/9 ) assert math.isclose( avg['assignments'], 245/36 ) assert math.isclose( avg['reviews'], 87/90 ) if __name__ == '__main__': test_main()
7320010cead35e71307e2da7aa6093e7a49d4503
ajgrinds/adventOfCode
/2020/day05.py
1,125
3.765625
4
# Advent Of Code 2020 Day 5 Answer # Code by: Andrew Grindstaff # https://adventofcode.com/2020/day/5 def main(): file = open("input.txt").read().splitlines() a = set() part_2 = 0 # Part 1: Converts the string of F, B, L and R to a binary number, then gets the decimal version - saves # it in a list and stores the highest one for x in file: string = x.replace("F", "0").replace("B", "1").replace("L", "0").replace("R", "1") num = int(string, 2) a.add(num) part_1 = len(a) # Part 2: A simple for loop to go through the list and find which value is not in it for y in a: if y - 1 not in a and y - 2 in a: part_2 = y - 1 print(f"Part 1: {part_1}") print(f"Part 2: {part_2}") def one_line(): print("Part 1: (one line)") print(max(int(x.translate({70:48,66:49,76:48,82:49}),2) for x in open("input.txt").readlines())) print("Part 2: (one line)") print((max(y:=[int(x.translate({70:48,66:49,76:48,82:49}),2) for x in open("input.txt").readlines()])**2+max(y)-min(y)**2+min(y))/2-sum(y)) if __name__ == '__main__': main()
400526da0cf90a4bae999cf9c503fa3b985f8fc0
pau1fang/learning_notes
/数据结构与算法/剑指offer_python语言/question36_二叉搜索树与双向链表.py
1,107
3.984375
4
class Node: def __init__(self, val): self.val = val self.left = None self.right = None def convert(root): last_node = [None] convert_node(root, last_node) head_of_list = last_node[0] while head_of_list is not None and head_of_list.left is not None: head_of_list = head_of_list.left return head_of_list def convert_node(node, last_node): if node is None: return if node.left is not None: convert_node(node.left, last_node) node.left = last_node[0] if last_node[0]: last_node[0].right = node last_node[0] = node if node.right is not None: convert_node(node.right, last_node) tree = Node(10) tree.left = Node(6) tree.right = Node(14) tree.left.left = Node(4) tree.left.right = Node(8) tree.right.left = Node(12) tree.right.right = Node(16) head = convert(tree) print() rear = None while head: print(head.val, end=' ') head = head.right if head is not None and head.right is None: rear = head print() while rear: print(rear.val, end=' ') rear = rear.left
4cf6cade9d4aefe4399ddbbd278290a0f2723c02
Ramune6110/Machine-learnig
/Logistic-Regression.py
4,668
3.625
4
#!/usr/bin/env python # coding: utf-8 # In[17]: # ニュートン法 import numpy as np import matplotlib.pyplot as plt class Newton: def __init__(self, n, w, lamda, iteration): # parameter self.n = n self.w = w self.lamda = lamda self.iteration = iteration def draw(self, w_stack, eval_stack): plt.figure(1) plt.plot(w_stack, eval_stack, 'ro-', linewidth=0.5, markersize=0.5, label='newton') plt.legend() plt.xlabel('wight') plt.ylabel('loss') plt.figure(2) show_iter = 50 plt.plot(np.abs(w_stack[:show_iter] - self.w), 'ro-', linewidth=0.5, markersize=1, label='seepest') plt.legend() plt.yscale('log') plt.xlabel('iter') plt.ylabel('diff from the gold weight') def main(self): # noise omega = np.random.randn() noise = np.random.randn(self.n) # 2次元入出力データ x = np.random.randn(self.n, 2) y = 2 * (omega * x[:, 0] + x[:, 1] + noise > 0) - 1 # 値格納用メモリ w_stack = np.zeros(self.iteration) eval_stack = np.zeros(self.iteration) # main loop for t in range(self.iteration): # 事後確率 posterior = 1 / (1 + np.exp(-y * (self.w * x[:, 0] + x[:, 1]))) # 勾配方向(**a1) 評価関数をwについて一回微分したもの grad = 1 / self.n * np.sum((1 - posterior) * y * x[:, 0]) + 2 * self.lamda * self.w # ヘッセ行列(**a1) 評価関数をwについて二回微分したもの hess = 1 / self.n * np.sum(posterior * (1 - posterior) * x[:, 0] ** 2) + 2 * self.lamda # 評価関数の値(p22) J = 1 / self.n * np.sum(np.log(1 + np.exp(-y * (self.w + x[:, 0] + x[:, 1])))) + self.lamda * (self.w ** 2) # 値の格納 w_stack[t] = self.w eval_stack[t] = J # 重み更新のための勾配方向 d (p35) d = - grad / hess # step size s = 1.0 / np.sqrt(t + 10) # 重み更新 self.w = self.w + s * d # draw graph self.draw(w_stack, eval_stack) # data number, weight, lamda, iteration number, step size newton = Newton(100, 3, 0.1, 300) newton.main() # In[18]: # 最急降下法 import numpy as np import matplotlib.pyplot as plt class Steepest: def __init__(self, n, w, lamda, iteration, alpha): # parameter self.n = n self.w = w self.lamda = lamda self.alpha = alpha self.iteration = iteration def draw(self, w_stack, eval_stack): plt.figure(1) plt.plot(w_stack, eval_stack, 'bo-', linewidth=0.5, markersize=0.5, label='steepest') plt.legend() plt.xlabel('wight') plt.ylabel('loss') plt.figure(2) show_iter = 50 plt.plot(np.abs(w_stack[:show_iter] - self.w), 'bo-', linewidth=0.5, markersize=1, label='seepest') plt.legend() plt.yscale('log') plt.xlabel('iter') plt.ylabel('diff from the gold weight') def main(self): # noise omega = np.random.randn() noise = np.random.randn(self.n) # 2次元入出力データ x = np.random.randn(self.n, 2) y = 2 * (omega * x[:, 0] + x[:, 1] + noise > 0) - 1 # 値格納用メモリ w_stack = np.zeros(self.iteration) eval_stack = np.zeros(self.iteration) # main loop for t in range(self.iteration): # 事後確率 posterior = 1 / (1 + np.exp(-y * (self.w * x[:, 0] + x[:, 1]))) # 勾配方向(**a1) 評価関数をwについて一回微分したもの grad = 1 / self.n * np.sum((1 - posterior) * y * x[:, 0]) + 2 * self.lamda * self.w # 評価関数の値(p22) J = 1 / self.n * np.sum(np.log(1 + np.exp(-y * (self.w + x[:, 0] + x[:, 1])))) + self.lamda * (self.w ** 2) # 値の格納 w_stack[t] = self.w eval_stack[t] = J # step size s = 1.0 / np.sqrt(t + 10) # 重み更新 self.w = self.w - self.alpha * s * grad # draw graph self.draw(w_stack, eval_stack) # data number, weight, lamda, iteration number, step size steepest = Steepest(100, 3, 0.1, 300, 1) steepest.main() # In[ ]:
d2cd61433e3264f38f57ba81166f941a15f7b91e
pcomo24/DigitalCrafts-work
/part1ex5.py
201
4.03125
4
day = int(input('Day (0-6)? ')) #print({day}).format("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday") if day == 0 or 6: print("Sleep in") else: print("Go to work")
5d38b8b3ce98f10d0c2bbb92ea808cfdee0277a4
daniel-reich/ubiquitous-fiesta
/CD5nkQ6ah9xayR3cJ_4.py
77
3.75
4
def add_odd_to_n(n): return sum([i for i in range(n + 1) if i % 2 != 0])
5e694a438d68a89d264bcbc8dcba06bc1aa4c6e8
Elixeus/BigData
/project/bigDataFinal.py
2,524
3.6875
4
from string import punctuation, maketrans import sys def eventWordCount(index, lines): ''' author: Xia Wang This function maps the candidates of each election cycle and return a tuple of (candidate name, media attitude). It first makes sure the encoding is utf-8 because there are characters like e' that cannot be decoded by the ancsii codec. Then it parse the http string (last column of the input files) to find out if the last name of a candidate is present. For the rows where candidate names are present, the name of the candidate and the media attitude towards it will be output as a tuple. TODO: The function uses a list of corresponding candidate names. Decide whether to create this list internally to each map script and use a different map script for each election cycle, or to create a csv file with the list provided. Also modify the __main__ part, specify how the map takes place. parameters: ---------------------- index: the index of the input file lines: the content of the row ''' ls = set(['clinton', 'sanders', 'trump', 'cruz', 'rubio']) # do something about this list import csv from string import punctuation, maketrans import itertools if index == 0: lines.next() reader = csv.reader(itertools.imap(lambda x: x.encode('utf-8'), lines), delimiter='\t') for row in reader: (day, score, url) = (row[1], row[34], row[-1]) # find the corresponding info # change all punctuations to comma, change all # letter case to lower, and split the words words = set(url.lower() .translate(maketrans(punctuation, ',' * len(punctuation))) .split(',')) if len(ls.intersection(words)) == 1: # ls is a set that contains all the relevant candidate names for candidate in list(ls.intersection(words)): yield (candidate, float(score), day) if __name__ == '__main__': # sc = pyspark.SparkContext() events = sc.textFile('20160425.export.CSV') # !!!!!!!do something here!!!!!!! events is the textFile RDD attitude = events.mapPartitionsWithIndex(eventWordCount).mapValues(lambda x: (x, 1)) \ .reduceByKey(lambda x, y: (x[0] + y[0], x[1] + y[1])) # print counts attitude.saveAsTextFile('output3.txt')
15eda0a573fd5c355da02c34506a8e6cc7532fac
dwkang707/BOJ
/python3/(18238)BOJ.py
467
3.671875
4
input_data = input() location = int(ord('A')) time = 0 # ord 내장 함수는 ASCII code를 반환하는 함수 # abs(int(ord(i)) - location)는 시계방향 # abs(26 - abs(int(ord(i)) - location))는 반시계방향 for i in input_data: if abs(int(ord(i)) - location) < abs(26 - abs(int(ord(i)) - location)): time += abs(int(ord(i)) - location) else: time += abs(26 - abs(int(ord(i)) - location)) location = int(ord(i)) print(time)
e02942eb84a9eadceec5b9d3faaf68693aabdb7b
AswiniSankar/pattern
/pattern1.py
731
3.5
4
''' * * * * * * * * * * ''' n=int(input()) for i in range(1,n+1): for j in range(i,n): print(end=" ") for k in range(1,i+1): print("*",end=" ") print("\r") ''' 1 1 2 1 2 3 1 2 3 4 ''' n=int(input()) for i in range(1,n+1): for j in range(i,n): print(end=" ") for k in range(1,i+1): print(k,end=" ") print("\r") ''' 1 2 3 4 5 6 7 8 9 10 ''' n=int(input()) t=1 for i in range(1,n+1): for j in range(i,n): print(end=" ") for k in range(1,i+1): print(t,end=" ") t=t+1 print("\r") ''' A B C D E F G H I J ''' n= int(input()) t=65 for i in range(1,n+1): for j in range(i,n): print(end=" ") for k in range(1,i+1): u=chr(t) print(u,end=' ') t=t+1 print("\r")
c21881534c9c6fa6627404561cc57291bd261f8a
dvalp/coding-practice
/hackerrank/python_intro.py
522
4.21875
4
def print_to_N(): ''' The challenge was to write a function that could take a given integer and print all the numbers leading up to it without any spaces. Two interesting things are happening here. First, the '*' is unpacking the generator created by range and passing the elements individually. Second, I find it interesting that you can tell print how to separate the elements, and in this case not separate them at all. ''' N = int(input()) print(*range(1, N + 1), sep='')
52b28892a10c6c1e4ca943050dd5f2b5bc653ba3
luisalourenco/AdventOfCode2019
/24/part2.py
5,683
3.53125
4
import time def timer(func): def wrapper(*args, **kwargs): start = time.time() f = func(*args, **kwargs) print(f'The function ran for {time.time() - start} s') return f return wrapper def printMap(map, level = None, iteration = None, fileMode = True): if fileMode: file1 = open("MyFileAll.txt","a") if iteration != None: file1.write("Time: "+str(iteration)) file1.write("\n") if level != None: file1.write("Level "+str(level)) file1.write("\n") for l in map: for j in range(len(l)): file1.write(l[j]) file1.write("\n") file1.write("\n") file1.write("\n") file1.close() def bugsInAdjacentTilesLowerLevel(map, border): # -1, 0 - lower border # 0, -1 - upper border # -1, -1 - right border # -2, -2 - left border bugs = 0 if border == 'DOWN': for i in range(5): if map[4][i] == '#': bugs += 1 if border == 'UP': for i in range(5): if map[0][i] == '#': bugs += 1 if border == 'RIGHT': for i in range(5): if map[i][4] == '#': bugs += 1 if border == 'LEFT': for i in range(5): if map[i][0] == '#': bugs += 1 return bugs def bugsInAdjacentTilesUpperLevel(map, x, y): bugs = 0 if map != None: left = map[2][1] right = map[2][3] up = map[1][2] down = map[3][2] if x == 0: if left == '#': bugs += 1 if y == 0: if up == '#': bugs += 1 if x == 4: if right == '#': bugs += 1 if y == 4: if down == '#': bugs += 1 return bugs def bugsInAdjacentTiles(map, x, y, levels, level): bugs = 0 size = 5 upperMap = levels.get(level + 1) bugs += bugsInAdjacentTilesUpperLevel(upperMap, x, y) lowerLevel = levels.get(level-1) if lowerLevel != None: if (x,y) == (2,1): # upper bugs += bugsInAdjacentTilesLowerLevel(lowerLevel, 'UP') if (x,y) == (1,2): # left bugs += bugsInAdjacentTilesLowerLevel(lowerLevel, 'LEFT') if (x,y) == (3,2): # right bugs += bugsInAdjacentTilesLowerLevel(lowerLevel, 'RIGHT') if (x,y) == (2,3): # down bugs += bugsInAdjacentTilesLowerLevel(lowerLevel, 'DOWN') if y != 0: if map[y-1][x] == '#': bugs += 1 if y != size -1: if map[y + 1][x] == '#': bugs += 1 if x != 0: if map[y][x - 1] == '#': bugs += 1 if x != size -1: if map[y][x + 1] == '#': bugs += 1 return bugs def mutation(levels, levelSize, iteration): size = 5 newLevels = {} for level in range(-levelSize, levelSize): # current map map = levels.get(level) # map after mutation newMap = [ [ '.' for i in range(5) ] for j in range(5) ] for y in range(size): for x in range(size): unchanged = True if (x,y) != (2,2): # count bugs in adjacent tiles, including edge cases with lower and upper level numBugs = bugsInAdjacentTiles(map, x, y, levels, level) # bug dies unless there is exactly one bug adjacent to it if map[y][x] == '#' and numBugs != 1: newMap[y][x] = '.' unchanged = False # empty space becomes infested with a bug if exactly one or two bugs are adjacent to it if map[y][x] == '.' and (numBugs == 1 or numBugs == 2): newMap[y][x] = '#' unchanged = False # otherwise, nothing changes if unchanged: newMap[y][x] = map[y][x] #end for #end for # update current level's map newLevels[level] = newMap.copy() # printing map for debugging if level == -levelSize: printMap(newMap, level, iteration+1) else: printMap(newMap, level) return newLevels def countBugsAllLevels(levels): bugs = 0 for map in levels.values(): for y in range(5): for x in range(5): if map[y][x] == '#': bugs += 1 return bugs @timer def part2(map, iterations, size): levels = {} # init levels maps for -size..size for i in range(-size, size): level = [ [ '.' for i in range(5) ] for j in range(5) ] level[2][2] = '?' levels[i] = level levels[0] = map newLevels = levels.copy() for i in range(iterations): # feed next iteration with resulting levels maps newLevels = mutation(newLevels, size, i) # count bugs for all levels print(countBugsAllLevels(newLevels)) filepath = 'input.txt' with open(filepath) as fp: line = fp.readline().strip() map = [ [ '.' for i in range(5) ] for j in range(5) ] j = 0 while line: map[j] = list(line) j += 1 line = fp.readline().strip() #end while # part2(map, iterations, size) part2(map, 200, 110)
097270984b4389d5dc12526d5977aa657a0e4528
UtkuAraal/Mini-Python-Projects
/Kayıt Ve Giriş/Arayüz.py
1,349
3.984375
4
from Kullanıcı import * app = App() def valudation(email): if email.find("@") != -1 and email.endswith(".com"): return True else: return False print("Welcome to our program!") while True: print("1- Login\n2- Register") choose = input("Your choose: ") if choose == "q": print("See you!") app.diconnect() break elif choose == "1": email = input("E-mail: ").strip() password = input("Password: ").strip() app.login(email, password) elif choose == "2": username = input("Username: ").strip() email = input("E-mail: ").strip() if not (valudation(email)): print("İt isn't real email! Try again!") continue password = input("Password: ").strip() app.register(username, email, password) while app.who != "": print("1- List of all user\n2- Delete an account\n3- Find an account") choose = input("Would you like to see? (yes, no) (quit = 'q')") if choose == "yes": app.all_user() elif choose == "q": app.who = "" elif choose == "2": username = input("Username: ") app.delete_account(username) elif choose== "3": username = input("Username: ") app.find_account(username)
1635448cfe9e94d5830a564d91047ceee4e1805b
JamesLawrence30/FinancialExploration
/mongoQuotesDB/oldVersions/firstVersion.py
1,154
3.625
4
import requests; import collections; """import json;""" alphaVantageKey = "0ZU6NM5CMUSMR7DO" def makeRequest(symbol): #create api call string below. receive time series from api request = "https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol="+symbol+"&outputsize=compact&datatype=json&apikey="+alphaVantageKey response = requests.get(request) #my own key used. output size compact is last 100 datapoints..full is last 20+ yrs of data responseBody = response.content; #remove header from time series return responseBody; def updateMongo(responseBody): print(responseBody); #this needs to connect to mongodb #for every day in response body, add the data to collection timeSeries #wil then be able to filter for the close prices from each day's data ###each day is a "file"?? in the collection def main(): responseBody = makeRequest("MSFT"); #structure api call by passing in a ticker symbol #evenrually pull hidden secret api key from another file that won't go on git. updateMongo(responseBody); #Tell python to call main function first if __name__ == "__main__": main()
dfa37f5383aeb294e3729f44264d9020cd22d808
laippmiles/Leetcode
/20_有效的括号.py
1,469
3.875
4
''' 给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效。 有效字符串需满足: 1.左括号必须用相同类型的右括号闭合。 2.左括号必须以正确的顺序闭合。 注意空字符串可被认为是有效字符串。 示例 1: 输入: "()" 输出: true 示例 2: 输入: "()[]{}" 输出: true 示例 3: 输入: "(]" 输出: false 示例 4: 输入: "([)]" 输出: false 示例 5: 输入: "{[]}" 输出: true ''' class Solution(object): def isValid(self, s): """ :type s: str :rtype: bool """ #应该是第一次做了栈相关的题? #还算好理解 #循环字符串,遇左括号入栈。 #遇右括号,从栈顶取元素然后配对,判断配对结果。 #最后再判断栈是否不为空。 res = [] left = ['(', '[', '{'] right = [')', ']', '}'] pair = ['()', '[]', '{}'] for i in s: if i in left: res.append(i) #左括号入栈 else: if res == []: return False #防止栈是空的,写一个判断 tep = res.pop() + i #右括号出栈配对 if tep not in pair: return False if len(res) != 0: return False #最后判断是否是空栈 return True
5da053e7f13052d6790ecec2f497ada2d06ec4a0
quartox/AXA-Driver-Telemetrics
/loopTiming.py
890
4
4
"""Computes the estimate when a loop will be finished.""" __author__="Jesse Lord" __date__="March 14, 2015" import time def timeInit(): return time.time() def extrapolateEnd(inittime,totaliter,index): current = time.time() secperiter = (current-inittime)/float(index) remainingsec = (totaliter-index)*secperiter return time.localtime(remainingsec+current) def loopTiming(inittime,totaliter,index): if index == 1 or index == 2 or index == 10: endingtime = extrapolateEnd(inittime,totaliter,index) print "After,",index,"iteration(s) the loop expected to finish at",time.strftime('%X',endingtime),"on",time.strftime('%x',endingtime) if index == totaliter/2: endingtime = extrapolateEnd(inittime,totaliter,index) print "Halfway done. The loop expected to finish at",time.strftime('%X',endingtime),"on",time.strftime('%x',endingtime)
d19778411d4451d09d3a9d53f7521731e4387e8f
sCAIwalker/InterviewPreparation
/TreeRepresentations.py
317
3.65625
4
#Regular Tree class Node(object): def __init__(self, data): self.data = data self.children = [] def add_child(self, obj): self.children.append(obj) #Binary Tree class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None
f490a789fca3e73effb87b210dec0145c8256316
sambapython/batch78
/log.py
976
3.90625
4
import logging logging.info("strt the program")# it's already configured the default basic Config. It will not consider # any config later #NOTE: what ever the basic config writing it, make sure that will execute before executing any log message. logging.basicConfig(level=logging.DEBUG, filename="log.txt", format="%(asctime)s->%(levelname)s==>%(message)s") n1=input("Entere a number:") n2=input("Enter a numebr:") logging.debug(f"before conversion: n1={n1}, n2={n2}") try: n1=int(n1) n2=int(n2) logging.debug(f"after conversion: n1={n1}, n2={n2}") res=n1/n2 print(f"result={res}") logging.debug(f"result={res}") except ZeroDivisionError as err: logging.error("ERROR: %s"%err) print("expecting second number not equals to zero") except ValueError as err: logging.error("ERROR: %s"%err) print("expecting only the digits.") except Exception as err: logging.error("ERROR:some issue") print("ERROR: %s"%err) logging.info("end")
4f61b26e71cc54bd599364c19e9413227d7c6586
sagarnikam123/learnNPractice
/hackerEarth/practice/dataStructures/advancedDataStructures/suffixArrays/catsSubstrings.py
1,604
3.796875
4
# Cats Substrings ####################################################################################################################### # # There are two cats playing, and each of them has a set of strings consisted of lower case English letters. # The first cat has N strings, while the second one has M strings. Both the first and the second cat will choose # one of it's strings and give it to you. After receiving two strings, you will count the number of pairs of # equal substrings that you can choose in both strings, and send this number back to the cats. (Note that two # occurences of the same substring are considered different. For example, strings "bab" and "aba" have 6 such pairs.) # The cats are going to give you all N * M possible pairs. They are interested in the total sum of numbers # received from you. Your task is to find this number. # # Input format # The first line of the input contains the integer N. The next N lines contain the first cat's strings, # one string per line. The next line contain the integer M, and after that the next M lines contain the second # cat's strings, one string per line as well. # # Output format # In one line print the answer to the problem. # # Constraints # 1 <= N, M <= 100,000 , the total length of each cat strings set will not exceed 100,000. # All strings in the input will be non-empty. # # SAMPLE INPUT # 2 # ab # bab # 2 # bab # ba # # SAMPLE OUTPUT # 18 # #######################################################################################################################
1b06ebb55b9210a3d863aadf9256a34098996f9e
drewplant-MIDS/W205
/exercise_2/scripts/histogram.py
2,284
3.65625
4
""" Python source code - search through postgresql table to find number of occurrences of particular word Usage: python histogram k1 k2 ========================= where: k1, k2 Bin limits for number of occurrences for words where k1 > k2 Output: all words occurring between k1 and k2 times in the database. """ # Import code: import psycopg2 import sys import pprint import argparse # For easy argument parsing # Usage parser = argparse.ArgumentParser(description='Locate words with wordcount in given bin range') parser.add_argument("k1", type=int, help='k1 is min bin count for word' ) parser.add_argument("k2", type=int, help='k2 is max bin count for word and k1 <= k2' ) # Produce an args object args = parser.parse_args() Usage = 'Usage: python histogram.py k1 k2\n\ where k1, k2 = bin values for word counts in database\n\ and 0 < k1 <= k2' # vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4 # Error checking: if not (args.k1 <= args.k2): print "\n" print "Error: k1 must be < or = to k2!" print Usage print "\n" exit() elif not (args.k1 > 0): print "\n" print "Error: k1 and k2 must be greater than 0!" print Usage print "\n" exit() # Setup cursor object for doing postgresql querying # # Create a new connect object conn = psycopg2.connect(database="tcount", user="postgres", password="", host="localhost", port="5432") # # Create a cursor cur = conn.cursor() # Either search for all words in table or only one word in table... if args.k1 == args.k2: cur.execute("SELECT word, count from Tweetwordcount WHERE count=%s ORDER BY count desc;", (args.k1,)) else: cur.execute("SELECT word, count from Tweetwordcount WHERE (count>=%s) AND (count<=%s) ORDER BY count desc;", (args.k1,args.k2)) ReturnRecords = cur.fetchall() if len(ReturnRecords) > 0: print "\n" OutString = "" for Tuple in ReturnRecords: OutString += " " + Tuple[0] + ": " + str(Tuple[1]) + "\n" print OutString print "\n" else: print "\n" print "No words found in database with counts of k1 = %d and k2 = %d" %(args.k1,args.k2) print "\n" # # Close the cursor conn.close()
14c9636420c5db250525c7ed26bfd380841300db
DanMayhem/project_euler
/058.py
1,620
4.0625
4
#!python """ Starting with 1 and spiralling anticlockwise in the following way, a square spiral with side length 7 is formed. 37 36 35 34 33 32 31 38 17 16 15 14 13 30 39 18 5 4 3 12 29 40 19 6 1 2 11 28 41 20 7 8 9 10 27 42 21 22 23 24 25 26 43 44 45 46 47 48 49 It is interesting to note that the odd squares lie along the bottom right diagonal, but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of 8/13 ≈ 62%. If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both diagonals first falls below 10%? """ from functools import lru_cache from math import floor, sqrt def nw_diags(n): for i in range(3, n+1, 2): yield i*i - 2*i + 2 def sw_diags(n): for i in range(3,n+1,2): yield i*(i-1)+1 def se_diags(n): for i in range(1,n+1,2): yield i*i def ne_diags(n): for i in range(3, n+1, 2): yield (i-2)**2 + i - 1 @lru_cache(maxsize=None) def is_prime(n): if n < 2: return False for i in range(2,floor(sqrt(n))+1): if n%i==0: return False return True if __name__=="__main__": diags = set([1]) prime_count = 0 diags_count = 1 for i in range(3, 100001, 2): if is_prime(i*i -2*i +2): prime_count += 1 if is_prime(i*(i-1)+1): prime_count += 1 if is_prime((i-2)**2 + i - 1): prime_count += 1 diags_count += 4 prime_pcnt = prime_count / diags_count print("{0}: {1}".format(i, prime_pcnt)) if prime_pcnt <= .1: exit()
ec0e131b746d2bd8093d91236ab43c7702bb7053
ZL4746/Basic-Python-Programming-Skill
/Second_Part/Practice_Assignment/01_Dice.py
1,285
3.796875
4
def graphy(list1): list2 = [] larggest = max(list1) for h in range(larggest): inlist = "|" for i in range (len(list1)): if list1[i] > 0: inlist += " *" list1[i] -= 1 else: inlist += " " list2.append(inlist) list2.reverse() list2.append("+--+--+--+--+--+--+--+--+--+--+--+-\n"+" 2 3 4 5 6 7 8 9 10 11 12") return list2 import random def main(): random.seed(1314) times = eval(input("How many times do you want to roll the dice? ")) #0,1,2,3,4,5,6,7,8,9,0 #2,3,4,5,6,7,8,9,0,1,2 results = [0,0,0,0,0,0,0,0,0,0,0] for i in range(times): dice1 = random.randint(1,6) dice2 = random.randint(1,6) diceSum = dice1 + dice2 #print (dice1,dice2,diceSum) results[diceSum-2] += 1 print("Results: ", results) if times <= 100: list_in = results else: list_in = [] for item in results: x = int( round( item/(times/100) ) ) list_in.append(x) graph = graphy(list_in) for line in graph: print (line) main()
c98a38057b4e420cca442a17f501bf397926e0ae
s-kimmer/tesp2016
/demo/camcapture_demo.py
884
3.546875
4
from __future__ import print_function # with this, print behaves like python 3.x even if using python 2.x import cv2 camera_device_index = 1 #choose camera device [0,N-1], 0 for first device, 1 for second device etc. cap = cv2.VideoCapture(camera_device_index) if cap.isOpened(): # try to get the first frame print("Opened camera stream!") ret, frame = cap.read() if ret == True: width = cap.get(3) height = cap.get(4) print("Frame width x height: {} x {} ".format( width, height )) print("Press 'Esc' to close application") window_name = "webcam_demo" else: ret = False while ret: cv2.imshow(window_name, frame) ret, frame = cap.read() key = cv2.waitKey(20) if key == 27: # exit on ESC break # When everything is done, release the capture device cap.release() cv2.destroyWindow(window_name) #%%
bbf8b432ddf101d3e6986c2a09695773abd47c98
JosevanyAmaral/Exercicios-de-Python-Resolvidos
/Exercícios/ex091.py
559
3.671875
4
from random import randint from time import sleep from operator import itemgetter jogadores = {'Jogador 1': randint(1, 6), 'Jogador 2': randint(1, 6), 'Jogador 3': randint(1, 6), 'Jogador 4': randint(1, 6)} ranking = list() print('Valores sorteados: ') for c, j in jogadores.items(): print(f' O {c} tirou {j} no dado.') sleep(1) print(f'{" RANKING DOS JOGADORES ":=^30}') ranking = sorted(jogadores.items(), key=itemgetter(1), reverse=True) for i, v in enumerate(ranking): print(f' {i+1}º lugar: {v[0]} com {v[1]}') sleep(1)
d127705f9dd239922fbb76363c5cc3ca519736c3
refeed/StrukturDataA
/meet1/F_max3Angka.py
549
3.65625
4
''' Max 3 angka Batas Run-time: 1 detik / test-case Batas Memori: 32 MB DESKRIPSI SOAL Buatlah program yang menerima 3 buah input nilai, outputkan nilai paling besar diantara ketiga input tersebut. PETUNJUK MASUKAN Input terdiri atas 3 angka dalam 1 baris PETUNJUK KELUARAN Outputkan angka terbesar dari 3 angka yang dimasukkan CONTOH MASUKAN 10 9 11 CONTOH KELUARAN 11 ''' input_int_list = list(map(int, input().split())) biggest = input_int_list[0] for num in input_int_list: if num > biggest: biggest = num print(biggest)
7737bc3a3753c7641c3d418ec6e0ba50c979c69a
DanMayhem/project_euler
/024.py
939
3.96875
4
#!python """ A permutation is an ordered arrangement of objects. For example, 3124 is one possible permutation of the digits 1, 2, 3 and 4. If all of the permutations are listed numerically or alphabetically, we call it lexicographic order. The lexicographic permutations of 0, 1 and 2 are: 012 021 102 120 201 210 What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9? """ def _find_k(a): k=-1 for i in range(len(a)-1): if a[i] < a[i+1]: k = i return k def _find_l(a, k): l = -1 for i in range(k+1,len(a)): if a[k] < a[i]: l=i return l def permutations(l): a = l[:] a.sort() yield a k=0 while k>-1: k = _find_k(a) l = _find_l(a, k) x = a[k] a[k] = a[l] a[l] = x a[k+1:] = reversed(a[k+1:]) yield a if __name__=="__main__": l = [0,1,2,3,4,5,6,7,8,9] i=1 for p in permutations(l): if i==1000000: print("".join(map(str,p))) exit() i+=1
e6a6567a742d646ffce0638931e93eac0bbe801d
bpotten7198/code-change-test
/greenBottles.py
466
3.96875
4
import time bottles=10 #Sets bottles to 10 for x in range(bottles,0,-1): #Creates a loop which loops 10 times print("{0} green bottles, hanging on the wall\n{0} green bottles, hanging on the wall".format(x)) #Prints out how many bottles there are print("And if 1 green bottle should accidently fall,\nThere'll be {0} green bottles hanging on the wall.".format(x-1)) #Prints out how many bottles there will be time.sleep(1) #Pauses the code for 1 second
6a8c50c79564dbaf30b72f7f17641782c71b8e24
punyanishivam/Cracking-the-Coding-Interview
/2.2.py
226
3.6875
4
import Linked Lists def nthToLast(self, n): p1 = self.head p2 = self.head for i in range(n): if p1 is None: return p1 = p1.next while p1 is not None: p1 = p1.next p2 = p2.next return p2
21b5a20e826dbf86648762e4b7b4a7782369ec35
Ashleshk/Python-For-Everybody-Coursera
/Course-1-Programming-for-Everybody-Getting-Started-with-Python/Codes/compute_gross_pay_py3.py
185
3.859375
4
hrs = input('Enter Hours: ') hrs = float(hrs) hourly_rate = input('Enter Hourly Rate: ') hourly_rate = float(hourly_rate) gross_pay = hourly_rate * hrs print("Gross pay:", gross_pay)
e6efecc8e0521bfbe6519713f8d0b19410b43c76
keshavmusunuri/Isolation_Game_Agent
/my_custom_player.py
3,733
3.71875
4
from sample_players import DataPlayer import random class CustomPlayer(DataPlayer): """ Implement customized agent to play knight's Isolation """ def get_action(self, state): """ Employ an adversarial search technique to choose an action available in the current state calls self.queue.put(ACTION) at least This method must call self.queue.put(ACTION) at least once, and may call it as many times as you want; the caller is responsible for cutting off the function after the search time limit has expired. See RandomPlayer and GreedyPlayer in sample_players for more examples. ********************************************************************** NOTE: - The caller is responsible for cutting off search, so calling get_action() from your own code will create an infinite loop! Refer to (and use!) the Isolation.play() function to run games. ********************************************************************** """ depth_limit = 20 if state.ply_count < 4 and self.data is not None: if state in self.data: self.queue.put(self.data[state]) else: self.queue.put(random.choice(state.actions())) else: for depth in range(1, depth_limit+1): best_move = self.alpha_beta_search(state, depth) if best_move is not None: self.queue.put(best_move) def alpha_beta_search(self, state, depth): def min_value(state, depth, alpha, beta): val = float("inf") if state.terminal_test(): return state.utility(self.player_id) if depth <= 0 : return self.score(state) for action in state.actions(): val = min(val, max_value(state.result(action), depth - 1, alpha, beta)) if val <= alpha: return val beta = min(beta, val) return val def max_value(state, depth, alpha, beta): val = float("-inf") if state.terminal_test(): return state.utility(self.player_id) if depth <= 0 : return self.score(state) for action in state.actions(): val = max(val, min_value(state.result(action), depth - 1, alpha, beta)) if val >= beta: return val alpha = max(alpha, val) return val return max(state.actions(), key=lambda x: min_value(state.result(x), depth - 1, float('-inf'), float('inf'))) def score(self, state): width = 11 height = 9 borders = [ [(0, widths) for widths in range(width)], [(heights, 0) for heights in range(height)], [(height - 1, widths) for widths in range(width)], [(width - 1, heights) for heights in range(height)] ] player_loc = state.locs[self.player_id] opponent_loc = state.locs[1 - self.player_id] player_liberties = state.liberties(player_loc) opponent_liberties = state.liberties(opponent_loc) if self.at_border(player_loc, borders): next_opponent_liberties = [len(state.liberties(next_move)) for next_move in opponent_liberties] return len(player_liberties) - 3 * (len(opponent_liberties) + sum(next_opponent_liberties)) else: return len(player_liberties) - 3 * (len(opponent_liberties)) def at_border(self, locs, borders): for border in borders: return locs in border
0fc2f839ca636ef43f39f6174ff4f42c8a4c8daa
karim-aboelazm/PyCheckio_ScientificExpedition
/Striped Words/mission.py
939
4.09375
4
def checkio(line: str) -> str: Vowels = 'AEIOUY' Consonants = 'BCDFGHJKLMNPQRSTVWXZ' cont = 0 newline = '' for c in line: if c.upper() in Vowels: newline += 'a' elif c.upper() in Consonants: newline += 'b' elif not c.isalnum(): newline += ' ' else: newline += c for word in newline.split(): if 'aa' not in word and 'bb' not in word and word.isalpha() and len(word)>1: cont += 1 return cont if __name__ == '__main__': print("Example:") print(checkio('My name is ...')) # These "asserts" are used for self-checking and not for an auto-testing assert checkio('My name is ...') == 3 assert checkio('Hello world') == 0 assert checkio('A quantity of striped words.') == 1 assert checkio('Dog,cat,mouse,bird.Human.') == 3 print("Coding complete? Click 'Check' to earn cool rewards!")
e3a0151735dbb748d5ce32b674e95bacdf73a09a
JinJianyuCSlover/MLBoBo
/Chapter6_GradientDescent/ML61a.py
1,157
3.875
4
import numpy as np import matplotlib.pyplot as plt plot_x = np.linspace(-1,6,141)#绘制的x点均匀取值 plot_y=(plot_x-2.5)**2-1#模拟损失函数 #绘制图像 # plt.plot(plot_x,plot_y) # plt.show() def dJ(theta): """导数""" return 2*(theta)-5 def J(theta): """损失函数""" try: return (theta-2.5)**2-1 except: return float('inf')#异常处理,防止过大的值 """封装梯度下降""" initial_theta = 0.0 def gradient_descent(initial_theta,eta,epsilon=1e-8,n_iterations=1e4): theta=initial_theta theta_history.append(theta) i_iter=0 while i_iter<n_iterations: gradient = dJ(theta) last_theta = theta theta = theta - (gradient * eta) theta_history.append(theta) if (abs(J(theta) - J(last_theta)) < epsilon): break i_iter+=1 def plot_theta_history(): plt.plot(plot_x,J(plot_x)) plt.plot(np.array(theta_history), J(np.array(theta_history)), color='r', marker='+') plt.show() eta=1.1 theta_history=[] gradient_descent(0.0,eta,n_iterations=10) plot_theta_history() print(len(theta_history)) print(theta_history[-1])
7c119286b9eeadbfa532e9a016266fa9512b93b3
Chidinma-U/Personal_Tutorials
/dynamic.py
460
3.578125
4
import time stored_results = {} def sum_to_n (n): start_time = time.perf_counter() result = 0 for i in reversed (range(n)): if i + 1 in stored_results: print ('Stopping sum at %s because we have previously computed it' %str(i+1)) result += stored_results [i + 1] break else: result += i + 1 stored_results [n] = result print(time.perf_counter() - start_time, "seconds")
1f39ae582667b7a12e07d832ea04b6643431fdb3
skanwat/python
/learnpython/fibonacciseries.py
218
3.625
4
def fibo(x): if x == 1: return 1 elif x == 0: return 0 else: return (fibo(x-1) + fibo(x-2)) list=[] for x in range(1,10): z=fibo(x) list.append(z) print(z)
4d869cbc3693ffcd8843a6f939cbc4f1daabcf48
renukadeshmukh/Leetcode_Solutions
/1072_FlipColumnsForMaximumNumberofEqualRows.py
1,959
4.3125
4
''' 1072. Flip Columns For Maximum Number of Equal Rows Given a matrix consisting of 0s and 1s, we may choose any number of columns in the matrix and flip every cell in that column. Flipping a cell changes the value of that cell from 0 to 1 or from 1 to 0. Return the maximum number of rows that have all values equal after some number of flips. Example 1: Input: [[0,1],[1,1]] Output: 1 Explanation: After flipping no values, 1 row has all values equal. Example 2: Input: [[0,1],[1,0]] Output: 2 Explanation: After flipping values in the first column, both rows have equal values. Example 3: Input: [[0,0,0],[0,0,1],[1,1,0]] Output: 2 Explanation: After flipping values in the first two columns, the last two rows have equal values. Note: 1 <= matrix.length <= 300 1 <= matrix[i].length <= 300 All matrix[i].length's are equal matrix[i][j] is 0 or 1 ''' ''' ALGORITHM: 1. Convert each row into a tuple and store the number of times the same row occues in the given matrix. 2. Now find the largest value of row + row_complement for this matrix. RUNTIME COMPLEXITY: O(M*N) for m rows and n cols. SPACE COMPLEXITY: O(M*N) ''' from collections import defaultdict class Solution(object): def maxEqualRowsAfterFlips(self, matrix): """ :type matrix: List[List[int]] :rtype: int """ max_equal = -1 store = defaultdict(int) for row in matrix: t = tuple(row) store[t] += 1 for key in store: c = store[key] t_inv = self.invert(key) if t_inv in store: c += store[t_inv] max_equal = max(max_equal, c) return max_equal def invert(self, tup): t_inv = [] for t in tup: if t == 0: t_inv.append(1) else: t_inv.append(0) return tuple(t_inv)
df53ce2d187cd33ea26398e5c5f4c1c8ba9d1782
ghxuan/leetcode
/py/calculate.py
1,761
3.796875
4
def calculate(s): """ :type s: str :rtype: int """ s = s.replace(' ', '') fix = postfix(s) print(fix) temp = [] sign = { '+': lambda x, y: x + y, '-': lambda x, y: x - y, '/': lambda x, y: x / y, '*': lambda x, y: x * y, '×': lambda x, y: x * y, '%': lambda x, y: x % y, } while fix: i = fix[0] fix.pop(0) if i not in '+-×*/%': temp.append(int(i)) else: b, a = temp.pop(), temp.pop() temp.append(sign[i](a, b)) return temp[0] def postfix(s): """ 字符串转后缀表达式 :param s: str :return: list """ res = [] temp = [] # 优先级 priority = { '+': 1, '-': 1, '*': 2, '×': 2, '/': 2, '%': 2, } for i in s: if i not in '*×/%+-()': res.append(i) elif i == ')': for j in temp[::-1]: if j == '(': temp.pop() break res.append(temp.pop()) else: while True: # 判断优先级 if not temp or temp[-1] == '(' or i == '(' or priority[i] > priority[temp[-1]]: temp.append(i) break else: res.append(temp.pop()) pass res += temp[::-1] return res print(calculate('1 + 1')) print(calculate(' 2-1 + 2 ')) print(calculate('(1+(4+5+2)-3)+(6+8)')) print(calculate('1+((2-3+2)×4)-5')) # ['1', '1', '+'] # 2 # ['2', '1', '-', '2', '+'] # 3 # ['1', '4', '5', '+', '2', '+', '+', '3', '-', '6', '8', '+', '+'] # 23 # ['1', '2', '3', '-', '2', '+', '4', '×', '+', '5', '-'] # 0
c1a508753c8441bbf76d4f6b9768e3b261b6e6f4
vishalkarda/DailyPracticeProblems
/October/06Oct2019_tree_at_height_h.py
695
3.890625
4
""" Given a binary tree, return all values given a certain height h. """ class Node: def __init__(self, value, left=None, right=None): self.value = value self.left = left self.right = right val = list() def values_at_height(root, height): if root is None: return None if height == 1: val.append(root.value) else: values_at_height(root.left, height-1) values_at_height(root.right, height-1) return val a = Node(1) a.left = Node(2) a.right = Node(3) a.left.left = Node(4) a.left.right = Node(5) a.right.right = Node(7) print(values_at_height(a, 3)) # [4, 5, 7] # 1 # / \ # 2 3 # / \ \ # 4 5 7
99aef96df8226b8ecee48251e9aa270a05097fd9
theo-l/theo-l.github.io
/hacking_python_class_python_source/builtin_call_expression_demo.py
356
3.53125
4
class CallableInstanceClass: def __init__(self, name): print(f'calling class:<{self.__class__.__name__}>') self.name = name def __call__(self, *args, **kwargs): print(f'calling instance:<{self.name}>') if __name__ == '__main__': callable_instance = CallableInstanceClass('callable instance') callable_instance()
37e0f0c22fe9c50f30981ce55cb95992dc531c59
Mike1604/MIPS
/Proyecto_D13E02/Decodificador.py
11,709
3.625
4
#Decodificador import os, sys, subprocess from io import open def inicio(): os.system("cls") print("Bienvenido") print("Equipo 02") print("Fʟᴏʀᴇs Esᴛʀᴀᴅᴀ Aʙʀᴀʜᴀᴍ Mɪɢᴜᴇʟ Aɴɢᴇʟ") print("Guerra Lopez Paulina Estefania") print("Pᴇʀᴇᴢ ᴅᴇ ʟᴀ Tᴏʀʀᴇ Lᴇᴏɴᴀʀᴅᴏ Oᴄᴛᴀᴠɪᴏ\n") print("Este algoritmo resuelve las combinaciones posibles al escoger N elementos del total de N elementos\n") print("Para obtener el numero de combinatorias posibles se resta el a - b a el resultado despues se le obtendra") print("el factorial al igual que a y b. Despues b se multplicara por el factorial de la resta y el resultado") print("se usara para dividir el factorial de a por este") input("\nPresione enter para iniciar") def DB (opc): numero_binario = 0 multiplicador = 1 while opc != 0: numero_binario = numero_binario + opc % 2 * multiplicador opc //= 2 multiplicador *= 10 return numero_binario def MEMD(opc,sel): archivo_texto=open("MEMD.txt","w") opcs=str(opc) sels=str(sel) salt="\n" uno="1\n" archivo_texto.write(opcs) archivo_texto.write(salt) archivo_texto.write(sels) archivo_texto.write(salt) archivo_texto.write(uno) for i in range(29): archivo_texto.write("0\n") archivo_texto.close() def MEMIns(opc,sel): archivo_texto=open("MEMIns.txt","w") salt="\n" nop="00000000\n" lw="100011" dirb0="00\n000" dirb0_1="00000" dirb1="00\n001" dirb1_1="00001\n" dirb1_0="00001" dirb4="00\n100" dirb4_1="00100" dirb4_2="001\n00" dirb5="00101\n" dirb5_0="00101" dirb5_1="00\n101" dirb2="00\n010" dirb2_1="00010" dirb3="00011\n" dirb3_1="00\n011" dirb6="00110" dirb6_1="00\n110" R="000000" shif="000\n00" mul="011000" sub="100010" beq="000100" j="000010" jnop="00\n00000000" j1="00001010" j2="00010011" j3="00011100" beq1="00000101" div="011010" sw="101011" #Instruccion 0 NOP for i in range(4): archivo_texto.write(nop) #instruccion 1 Carga el primer operando al banco de registros archivo_texto.write(lw) archivo_texto.write(dirb2) archivo_texto.write(dirb0_1) archivo_texto.write(salt) archivo_texto.write(nop) archivo_texto.write(nop) #instruccion 2 Carga el segundo operando al banco de registros archivo_texto.write(lw) archivo_texto.write(dirb2) archivo_texto.write(dirb1_1) archivo_texto.write(nop) archivo_texto.write(nop) #instruccion 3 Carga el primer operando al banco de registros en otra direccion archivo_texto.write(lw) archivo_texto.write(dirb0) archivo_texto.write(dirb4_1) archivo_texto.write(salt) archivo_texto.write(nop) archivo_texto.write(nop) #instruccion 4 Carga el segundo operando al banco de registros en otra direccion archivo_texto.write(lw) archivo_texto.write(dirb1) archivo_texto.write(dirb5) archivo_texto.write(nop) archivo_texto.write(nop) #Instruccion 5 Carga el numero 1 al banco de registros archivo_texto.write(lw) archivo_texto.write(dirb2) archivo_texto.write(dirb2_1) archivo_texto.write(salt) archivo_texto.write(nop) archivo_texto.write(nop) #Instruccion 6 Carga el numero 1 al banco de registros archivo_texto.write(lw) archivo_texto.write(dirb2) archivo_texto.write(dirb3) archivo_texto.write(nop) archivo_texto.write(nop) #Instruccion 7 for i in range(4): archivo_texto.write(nop) #Instruccion 8 for i in range(4): archivo_texto.write(nop) """ Primer Factorial """ #Instruccion 9 se resta un operando por el otro archivo_texto.write(R) archivo_texto.write(dirb4) archivo_texto.write(dirb5) archivo_texto.write(dirb6) archivo_texto.write(shif) archivo_texto.write(sub) archivo_texto.write(salt) #Instruccion 10 multiplica los operandos para calcular el factorial archivo_texto.write(R) archivo_texto.write(dirb0) archivo_texto.write(dirb4_1) archivo_texto.write(salt) archivo_texto.write(dirb0_1) archivo_texto.write(shif) archivo_texto.write(mul) archivo_texto.write(salt) #Instruccion 11 resta el operando por 1 archivo_texto.write(R) archivo_texto.write(dirb4) archivo_texto.write(dirb2_1) archivo_texto.write(salt) archivo_texto.write(dirb4_1) archivo_texto.write(shif) archivo_texto.write(sub) archivo_texto.write(salt) #Instruccion 12 BEQ archivo_texto.write(beq) archivo_texto.write(dirb4) archivo_texto.write(dirb2_1) archivo_texto.write(salt) archivo_texto.write(nop) archivo_texto.write(beq1) archivo_texto.write(salt) #Instruccion 13 NOP for i in range(4): archivo_texto.write(nop) #Instruccion 14 NOP for i in range(4): archivo_texto.write(nop) #Instruccion 15 NOP for i in range(4): archivo_texto.write(nop) #Instruccion 16 J archivo_texto.write(j) archivo_texto.write(jnop) archivo_texto.write(salt) archivo_texto.write(nop) archivo_texto.write(j1) archivo_texto.write(salt) #Instruccion 17 NOP for i in range(4): archivo_texto.write(nop) #Instruccion 18 NOP for i in range(4): archivo_texto.write(nop) """ Segundo Factorial """ #Instruccion 19 multiplica los operandos para calcular el factorial archivo_texto.write(R) archivo_texto.write(dirb1) archivo_texto.write(dirb5) archivo_texto.write(dirb1_0) archivo_texto.write(shif) archivo_texto.write(mul) archivo_texto.write(salt) #Instruccion 20 resta el operando por 1 archivo_texto.write(R) archivo_texto.write(dirb5_1) archivo_texto.write(dirb3) archivo_texto.write(dirb5_0) archivo_texto.write(shif) archivo_texto.write(sub) archivo_texto.write(salt) #Instruccion 21 BEQ archivo_texto.write(beq) archivo_texto.write(dirb3_1) archivo_texto.write(dirb5) archivo_texto.write(nop) archivo_texto.write(beq1) archivo_texto.write(salt) #Instruccion 22 NOP for i in range(4): archivo_texto.write(nop) #Instruccion 23 NOP for i in range(4): archivo_texto.write(nop) #Instruccion 24 NOP for i in range(4): archivo_texto.write(nop) #Instruccion 25 J archivo_texto.write(j) archivo_texto.write(jnop) archivo_texto.write(salt) archivo_texto.write(nop) archivo_texto.write(j2) archivo_texto.write(salt) #Instruccion 26 NOP for i in range(4): archivo_texto.write(nop) #Instruccion 27 NOP for i in range(4): archivo_texto.write(nop) """ Tercer Factorial """ #Instruccion 28 multiplica los operandos para calcular el factorial archivo_texto.write(R) archivo_texto.write(dirb2) archivo_texto.write(dirb6) archivo_texto.write(salt) archivo_texto.write(dirb2_1) archivo_texto.write(shif) archivo_texto.write(mul) archivo_texto.write(salt) #Instruccion 29 resta el operando por 1 archivo_texto.write(R) archivo_texto.write(dirb6_1) archivo_texto.write(dirb3) archivo_texto.write(dirb6) archivo_texto.write(shif) archivo_texto.write(sub) archivo_texto.write(salt) #Instruccion 30 BEQ archivo_texto.write(beq) archivo_texto.write(dirb3_1) archivo_texto.write(dirb6) archivo_texto.write(salt) archivo_texto.write(nop) archivo_texto.write(beq1) archivo_texto.write(salt) #Instruccion 31 NOP for i in range(4): archivo_texto.write(nop) #Instruccion 32 NOP for i in range(4): archivo_texto.write(nop) #Instruccion 33 NOP for i in range(4): archivo_texto.write(nop) #Instruccion 34 J archivo_texto.write(j) archivo_texto.write(jnop) archivo_texto.write(salt) archivo_texto.write(nop) archivo_texto.write(j3) archivo_texto.write(salt) #Instruccion 35 NOP for i in range(4): archivo_texto.write(nop) #Instruccion 36 NOP for i in range(4): archivo_texto.write(nop) """ Multiplicacion de factoriales """ #Instruccion 37 Mul archivo_texto.write(R) archivo_texto.write(dirb1) archivo_texto.write(dirb2_1) archivo_texto.write(salt) archivo_texto.write(dirb4_1) archivo_texto.write(shif) archivo_texto.write(mul) archivo_texto.write(salt) """ Division de Factoriales """ #Instruccion 38 NOP for i in range(4): archivo_texto.write(nop) #Instruccion 39 NOP for i in range(4): archivo_texto.write(nop) #Instruccion 40 Div archivo_texto.write(R) archivo_texto.write(dirb0) archivo_texto.write(dirb4_1) archivo_texto.write(salt) archivo_texto.write(dirb5_0) archivo_texto.write(shif) archivo_texto.write(div) archivo_texto.write(salt) """ Guarda el resultado en la memoria """ #Instruccion 41 NOP for i in range(4): archivo_texto.write(nop) #Instruccion 42 NOP for i in range(4): archivo_texto.write(nop) #Instruccion 43 Sw swoff="00000010" archivo_texto.write(sw) archivo_texto.write(dirb3_1) archivo_texto.write(dirb5) archivo_texto.write(nop) archivo_texto.write(swoff) archivo_texto.close() def Ens(): archivo_texto=open("AlgoritmoEns.txt","w") Ens1="Nop $0 $0 #0\n Lw $0 $2 #0\n Lw $1 $2 #0\nLw $4 $0 #0\nLw $5 $1 #0\nLw $2 $2 #0\nLw $3 $2 #0\nNop $0 $0 $0\n" Ens2="Nop $0 $0 $0\nSub $6 $4 $5\nMul $0 $0 $4\nSub $4 $4 $2\nBeq $4 $2 #5\nNop $0 $0 $0\nNop $0 $0 $0\nNop $0 $0 $0\n" Ens3="J $10 \nNop $0 $0 $0\nNop $0 $0 $0\nMul $1 $1 $5\nSub $5 $5 $3\nBeq $3 $5 #5\nNop $0 $0 $0\nNop $0 $0 $0\n" Ens4="Nop $0 $0 $0\nJ $19 \nNop $0 $0 $0\nNop $0 $0 $0\nMul $2 $2 $6\nSub $6 $6 $3\nBeq $3 $6 #5\nNop $0 $0 $0\n" Ens5="Nop $0 $0 $0\nNop $0 $0 $0\nJ $28 \nNop $0 $0 $0\nNop $0 $0 $0\nMul $4 $1 $2b\nNop $0 $0 $0\nNop $0 $0 $0\n" Ens6="Div $5 $0 $4\nNop $0 $0 $0\nNop $0 $0 $0\nSw $5 $3 #2" archivo_texto.write(Ens1) archivo_texto.write(Ens2) archivo_texto.write(Ens3) archivo_texto.write(Ens4) archivo_texto.write(Ens5) archivo_texto.write(Ens6) archivo_texto.close() def deco(): print(inicio()) os.system("cls") try: print("Para este algoritmo unicamente se pueden usar numeros enteros, el numero de opciones posibles maximo es 10\n") opc=int(input("\nIngrese el numero de opciones posibles: \n")) sel=int(input("Ingrese que opciones fueron seleccionadas: \n")) if ((opc<0) or (sel<0)): print("Las opciones no pueden ser negativas") input("Presiona enter para continuar") deco() if(opc>10): print("Recuerda que el algoritmo unicamente soporta hasta factoriales de 10....") input("Presiona enter para continuar") deco() if (opc>sel): opcM=DB(opc) selM=DB(sel) MEMD(opcM,selM) MEMIns(opc,sel) Ens() print("Archivo de instrucciones, Ensamblador, Memoria de datos generados correctamente......") input("Presiona enter para salir") else: print("El numero de elementos seleccionados no puede ser menor que el numero de elementos totales") input("Presiona enter para continuar") deco() except: print("Debes ingresar numeros enteros") input("Presiona enter para continuar") deco() deco()
ce923c095efc5afeb210150989cf4ca4dad36935
rmzturkmen/Python_assignments
/Assignment-13_1-Find-largest-number.py
234
4.1875
4
# Find Largest Number in a List with function, for and if. def max_num(lst): max = lst[0] for i in lst: if i > max: max = i else: return max lst = [-6, 8, 12, 5, 13, -4] print(max_num(lst))
84aa8557cd98423577a6b35b8e1747d09d693755
michakomo/aisd.py
/linked_list.py
1,851
3.890625
4
class LinkedList: def __init__(self): self.head = None class Node: def __init__(self, val = None, next = None): self.val = val self.next = next def __repr__(self): return str(self.val) def push(self, val): ### O(1) self.head = self.Node(val, self.head) def pop(self): if not self.head: return None ret = self.head self.head = self.head.next return ret def search(self, val): ### O(n) # bez wartownika node = self.head while node.val != val: node = node.next return node def inject(self, val): ### O(n) if not self.head: self.push(val) return node = self.head while node.next != None: node = node.next node.next = self.Node(val) def front(self): ### O(1) return self.head def max(self): node = self.head max_node = self.head while node != None: if node.val > max_node.val: max_node = node return max_node def remove(self, val): if not self.head: raise Exception("empty list") if self.head.val == val: self.head = self.head.next return prev = self.head node = self.head while node != None: if node.val == val: prev.next = node.next return prev = node def __repr__(self): ### O(n) nodes = [] node = self.head while node != None: nodes.append(str(node.val)) node = node.next nodes.append("None") return " -> ".join(nodes)
0b36554bc801daff7196db982eb3a875343241a3
stefifm/trabajos-practicos-utn
/tp/2020_AED_TP3_Bruera_59149[1K10]_Tanchiva_82179[1K10]/funciones_participantes.py
10,989
3.640625
4
import random print("Para la carga de los participantes") #Aquí se encuentran las clases Participantes y Fixture class Participantes: def __init__(self, nom, conti, rank): self.nombre = nom self.continente = conti self.ranking = rank def to_string(participantes): """ Genera una cadena que representa el contenido del registro Participantes :param participantes: convertir en string :return: un string representando a participantes """ r = " " r += "{:<6}".format("Nombre: " + participantes.nombre) r += "{:<10}".format(" | Continente: " + str(participantes.continente)) r += "{:<10}".format(" | Ranking: " + str(participantes.ranking)) return r class Fixture: def __init__(self, participantes, punt): self.nombre = participantes.nombre self.puntos = punt def to_string_fixture(fixture): """ Genera una cadena que representa el contenido del registro Fixture :param fixture: a convertir en string :return: un string representando a fixture """ r = " " r += "{:<6}".format("Nombre: " + fixture.nombre) r += "{:<10}".format(" | Puntos: " + str(fixture.puntos)) return r def mostrar_participantes(participantes): """ Muestra los elementos de un vector de registros de tipo Participantes :param participantes: El vector de registros de tipo Participantes :return: None """ for i in range(len(participantes)): print(to_string(participantes[i])) #------------------------------------------------------------------------------ # Primera parte del ejercicio: Carga manual y automática del vector de # participantes # Validación para que no se repitan los nombres def buscar_nombre(nom, participantes): """ Busca en el vector participantes si un nombre se repite :param nom: El nombre que se ingresará :param participantes: vector de registro Tipo Participantes :return: True si ya existe el nombre. Y False si no está """ for reg in participantes: if reg.nombre == nom: return True return False # Validar el rango para continente y ranking def validar_rango(inf, sup, mensaje): n = inf - 1 while n < inf or n > sup: n = int(input(mensaje)) if n < inf or n > sup: print("Valor no válido. Ingrese un valor entre",str(inf),"y", str(sup)) return n #Carga manual del vector def carga_manual(participantes): """ Genera el vector de registros tipo Participantes de forma manual :return: vector de participantes con datos cargados manualmente """ for i in range(16): nombre = input("Ingrese el nombre de los participantes: ") while buscar_nombre(nombre, participantes): nombre = input("Ingrese el nombre de los participantes: ") continente = validar_rango(0, 4, "Ingrese el continente [0-América. " "1-Europa. 2-Asia. 3-África. " "4-Oceanía") ranking = validar_rango(1, 100, "Ingrese el ranking: ") reg1 = Participantes(nombre, continente, ranking) participantes.append(reg1) # Esta sección es para la carga automática # Una tupla para que nombre lo use en el random.choice nom = ("Mercedes", "Red Bull", "Ferrari", "McLaren", "Williams", "Racing Point", "Renault", "Alpha Tauri", "Haas", "Alfa Romeo", "Team Penske", "Toyota Gazoo Racing", "Peugeot Sport Team", "Chip Ganassi Racing", "RLL Racing", "Action Express") def carga_automatica(participantes): """ Genera el vector de registros tipo Participantes de forma automática :return: vector de participantes con datos aleatorios """ for i in range(16): nombre = random.choice(nom) while buscar_nombre(nombre, participantes): nombre = random.choice(nom) continente = random.randint(0, 4) ranking = random.randint(1, 100) reg1 = Participantes(nombre, continente, ranking) participantes.append(reg1) # Ordenamiento de mayor a menor def orden_sort(participantes): """ Algoritmo de Selección Directa para ordenar de mayor a menor el arreglo :param participantes: El vector de registros de tipo Participantes :return: El vector ordenado """ n = len(participantes) for i in range(n-1): for j in range(i+1, n): if participantes[i].ranking < participantes[j].ranking: participantes[i], participantes[j] = participantes[j], \ participantes[i] #Estadística participante por continente def estadistica_continente(participantes): """ Arma y muestra el vector de conteo de continente :param participantes: El vector de registros de tipo Participantes :return: El vector de conteo de participantes por continente """ conteo_continente = [0] * 16 for i in range(len(participantes)): cont = int(participantes[i].continente) conteo_continente[cont] += 1 for i in range(16): if conteo_continente[i] != 0: print("Continente:",i,"| Cantidad de participantes:", conteo_continente[i]) #------------------------------------------------------------------------------ # Función para armar y mostrar el fixture de octavos def fixture(fixture): """ Genera y muestra los elementos de un vector de registros de tipo Fixture solo para octavos :param fixture: El vector de registros de tipo Fixture :return: El vector de registros Tipo Fixture ya mostrando los enfrentamientos y por elección nuestra, los puntos. Solo sirve para octavos """ n = len(fixture) // 2 posicion = len(fixture) - 1 c = 0 for i in range(n): fixture[i].puntos = random.randint(100, 1000) fixture[posicion - c].puntos = random.randint(100, 1000) e1 = Fixture(fixture[i],fixture[i].puntos) e2 = Fixture(fixture[posicion-c], fixture[posicion - c].puntos) c += 1 print(to_string_fixture(e1), "vs", to_string_fixture(e2)) def mostrar_fixture(fixture): """ Muestra los cruces de cuartos, semis, tercero y final :param fixture: El vector de registros de tipo Fixture :return: Muestra de los cruces + puntos de cuartos, semis, tercero y final """ n = len(fixture) // 2 posicion = len(fixture) - 1 c = 0 for i in range(n): e1 = fixture[i] e2 = fixture[posicion-c] c += 1 print(to_string_fixture(e1), "vs", to_string_fixture(e2)) #Función para determinar los ganadores de cada cruce def ganador(fixture): """ Determina el ganador de cada ronda :param fixture: El vector de registros de tipo Fixture :return: El vector ronda con los que pasaron a la siguiente instancia """ n = len(fixture) // 2 posicion = len(fixture) - 1 c = 0 ronda = [] for i in range(n): if fixture[i].puntos > fixture[posicion-c].puntos: ronda.append(fixture[i]) else: ronda.append(fixture[posicion-c]) c += 1 return ronda #Función para armar el vector de la final def final(fixture): """ Genera el vector de la final :param fixture: El vector de registros de tipo Fixture :return: el vector con los finalistas """ n = len(fixture) // 2 posicion = len(fixture) - 1 c = 0 ronda_final = [] for i in range(n): if fixture[i].puntos > fixture[posicion - c].puntos: ronda_final.append(fixture[i]) else: ronda_final.append(fixture[posicion - c]) c += 1 return ronda_final #Función para armar el vector del tercer puesto def tercer(fixture): """ Genra el vector con los que compiten por el tercer puesto :param fixture: El vector de registros de tipo Fixture :return: vector con los que van por el tercer puesto """ n = len(fixture) // 2 posicion = len(fixture) - 1 c = 0 ronda_tercero = [] for i in range(n): if fixture[i].puntos < fixture[posicion - c].puntos: ronda_tercero.append(fixture[i]) else: ronda_tercero.append(fixture[posicion - c]) c += 1 return ronda_tercero # Función para calcular el promedio def estadistica_promedio_ronda(fixture): """ Función para el cálculo de promedio de puntos por partcipantes en octavos, cuartos y semis :param fixture: el vector de registros de tipo Fixture :return: promedio de los puntos por participantes """ suma = 0 contador = 0 for reg in fixture: suma += reg.puntos contador += 1 prom = round(suma / contador, 2) return prom #------------------------------------------------------------------------------ # Función para determinar el campeón y subcampeón def top2(final): """ Determina quién fue campeón y subcampeón :param final: El vector de finalistas antes creado :return: ganador y segundo """ posicion = len(final) - 1 c = 0 for i in range(len(final)): if final[i].puntos > final[posicion - c].puntos: ganador = final[i] segundo = final[posicion-c] else: ganador = final[posicion-c] segundo = final[i] c += 1 return ganador, segundo # Función para el tercer lugar def tercero(ter): """ Determina quién termina en el tercer lugar :param ter: El vector de tercer_puesto antes creado :return: tercer lugar """ posicion = len(ter) - 1 c = 0 for i in range(len(ter)): if ter[i].puntos > ter[posicion - c].puntos: tercer_lugar = ter[i] else: tercer_lugar = ter[posicion-c] c += 1 return tercer_lugar #------------------------------------------------------------------------------ # Está función se ubica al último de porque suma los puntos al ranking # de los tres primeros de la competencia y luego va a parar al nuevo arreglo def nuevo_arreglo(pri, seg, ter, participantes): """ Suma los puntos del ranking (25 al 1º, 15 al 2º y 5 al 3º) :param pri, seg, ter, participantes: primero, segundo, tercero y el vector de registros del tipo Participantes :return: El nuevo vector de registro de tipo Participantes con las modificaciones en el ranking """ pri.ranking += 25 seg.ranking += 15 ter.ranking += 5 return participantes
a9c81ba963c8a3c9426971edfc9ac3dfeac00d01
LeleCastanheira/cursoemvideo-python
/Exercicios/ex047.py
100
3.625
4
for n in range(2, 51, 2): print(n, end=' ') #end = é pra escrever um número do lado do outro
7f5f33b40f1a8d3acc72c889bef1accf9432abb7
rubenvdham/Project-Euler
/euler009/__main__.py
833
4.4375
4
""" A Pythagorean triplet is a set of three natural numbers, a < b < c, for which, a2 + b2 = c2 For example, 32 + 42 = 9 + 16 = 25 = 52. There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product abc. """ def find_triplet_with_sum_of(number): sum = number number = int(number/2) for a in range(1,number): for b in range (a,number): for c in range(b,number): if (a**2 +b**2) == c**2: if a+b+c == sum: return a,b,c def multiply(list): answer = 1 for i in range (0,len(list)): answer*=result[i] return answer if __name__ == '__main__': result = find_triplet_with_sum_of(1000) print("Triplet %s %s %s"%(result[0],result[1],result[2])) print("product:%s"%(multiply(result)))
359773269fee557d0a513abace1283ac871af2a9
BrickMyself/Python
/2020_5_24Test.py
2,193
3.921875
4
#任务一:设计一个 Circle 类来表示圆, # 这个类包含圆的半径以及求面积和周长的函数。 # 再 使用这个类创建半径为 1~10 的圆,并计算出相应的面积和周长。 # 运行结果如下: #半径为 1 的圆,面积: 3.14 周长: 6.28 # 半径为 2 的圆,面积: 12.57 周长: 12.57 # 半径为 3 的圆,面积: 28.27 周长: 18.85 # 半径为 4 的圆,面积: 50.27 周长: 25.13 # 半径为 5 的圆,面积: 78.54 周长: 31.42 # 半径为 6 的圆,面积: 113.10 周长: 37.70 # 半径为 7 的圆,面积: 153.94 周长: 43.98 # 半径为 8 的圆,面积: 201.06 周长: 50.27 # 半径为 9 的圆,面积: 254.47 周长: 56.55 # 半径为 10 的圆,面积: 314.16 周长: 62.83 #class Circle: # def __init__(self, r): # self.r = r # def printSquare(self): # print("半径为"+str(self.r)+"的圆,面积: "+'%.2f' %(3.1415*(self.r**2))+"周长: "+'%.2f' %(2*3.1415*self.r)) #for i in range(1, 11): # c = Circle(i) # c.printSquare() #任务二:设计一个 Account 类表示账户,自行设计该类中的属性和方法, #并利用这个类创 建一个账号为 998866,余额为 2000, #年利率为 4.5%的账户,然后从该账户中存 入 150,取出 1500。 #打印出帐号、余额、年利率、月利率、月息。 class Account: def __init__(self, number, money): self.number = number self.money = money def storage(self, m): self.money = self.money+m print("存入" + '%d' %m + "元"+"你的余额为: " + '%d' % self.money) def get(self, m): self.money = self.money-m print("取出" + '%d' % m + "元"+"你的余额为: " + '%d' % self.money) def Print(self): year = str(0.045) month = str(0.00375) anthony = str(self.money*0.00375) print("您的账户: "+'%d' % self.number+" 的余额为: "+'%d' % self.money) print("年利率为: " + str(year)+"月利率为 :" + str(month)+" 月息为:" + anthony) person = Account(998866, 2000) person.storage(150) person.get(1500) person.Print()
963ce62e914916093f6c07e47a1d63d5ce195dc2
stevengonsalvez/python_training
/04_ListsTuplesDictionariesAndSets/Exercises_SourceCode/primes_alt_D.py
1,872
3.890625
4
# -*- coding:utf-8; -*- '''A module providing some functions generating prime numbers.''' __author__ = 'Russel Winder' __date__ = '2013-03-03' __version__ = '1.1' __copyright__ = 'Copyright © 2012, 2013 Russel Winder' __licence__ = 'GNU Public Licence (GPL) v3' from math import sqrt class Prime(object): def __init__(self, value): self.value = value self.next = None def process(self, value): if value % self.value != 0: if self.next is None: self.next = Prime(value) else: self.next.process(value) def deliver(self, result): result.append(self.value) return self.next.deliver(result) if self.next is not None else tuple(result) def primesLessThan(maximum): '''Return a tuple containing the primes less than maximum in ascending order.''' if maximum <= 2: return () start = Prime(2) for i in range(3, maximum, 2): start.process(i) return start.deliver([]) def firstNPrimes(count): '''Return a tuple containing the first count primes in ascending order''' if count < 1: return () start = Prime(2) i = 3 while len(start.deliver([])) < count: # Horrendously inefficient. start.process(i) i += 2 return start.deliver([]) def sieveOfEratosthenes(maximum): '''Return a tuple containing the primes less than maximum in ascending order.''' # Actually this is not a Sieve algorithm, but we use the symbol improperly to try out this functional # style list trimming algorithm. It will be horrendously slow but… #### TODO: This works in Python 2 but not Python 3. if maximum <= 2: return () primes = range(2, maximum) for i in range(2, int(sqrt(maximum)) + 1): primes = filter(lambda x: x == i or x % i != 0, primes) return tuple(primes)
64ba84d0a6089267233573ee1d4edfe9d04128b1
timurridjanovic/data-structures
/graph/graph_depth_first.py
905
3.828125
4
### Not done #### graph = { 1: [2, 4], 2: [1, 3, 5], 3: [2, 11], 4: [1, 5, 7], 5: [2, 4, 6, 8], 6: [5, 9, 10], 7:[4, 13], 8: [5, 14], 9: [6, 12], 10: [6, 11], 11: [3, 10], 12: [9], 13: [7, 14], 14: [8, 13] } class Graph(object): def find_path(self, start, end, graph): open = [start] closed = [] while len(open) > 0: currentNode = open.pop() closed.append(currentNode) if currentNode == end: print 'yay' print closed break neighbors = graph[currentNode] for neighbor in neighbors: if neighbor not in closed: open.append(neighbor) g = Graph() g.find_path(1, 12, graph) print graph
a14474e5a769a60119b78ae772effd5b9d25343e
MohamedELfeky44/Tic-tac-toe
/Tic tac toe/Tic tac toe pygame.py
10,378
3.734375
4
import pygame pygame.init() #initiate pygame win = pygame.display.set_mode((800,550)) #set the window pygame.display.set_caption("Tic tac toe") # set title win.fill((255,255,255)) #set backgroud start_button = pygame.draw.rect(win,(250,200,100),(550,30,200,150)) result_board = pygame.draw.rect(win,(250,200,100),(550,200,200,150)) score_board = pygame.draw.rect(win,(250,200,100),(550,370,200,150)) font = pygame.font.SysFont(None, 80) start = font.render('Start', True, (0,0,255)) win.blit(start, (580,80)) #Create buttons x = 30 #x position y = 30 #Y position h = 150 #height w = 150 #wedith #a variable to store in the value of the buttons board = [[0,1,2],[3,4,5],[6,7,8]] lst=[] #a list contains all buttons for i in range(3): for j in range(3): lst.append(pygame.draw.rect(win,(0,0,0),((x+(w*j)+(20*j)),(y+(h*i)+(20*i)),w,h))) def draw_x(x,y): #this function draws X shape pygame.draw.line(win,(255,0,0),(x,y),(x+100,y+100),15) pygame.draw.line(win,(255,0,0),(x+100,y),(x,y+100),15) def draw_o(x,y): #this function draws O shape pygame.draw.circle(win,(0,255,0),(x,y),50) def reset(): lst=[] for i in range(3): for j in range(3): lst.append(pygame.draw.rect(win,(0,0,0),((x+(w*j)+(20*j)),(y+(h*i)+(20*i)),w,h))) def is_winner(p): if board[0][0]== board[0][1] == board[0][2] == p or board[1][0]== board[1][1] == board[1][2] ==p or \ board[2][0]== board[2][1] == board[2][2] == p or board[0][0]== board[1][0] == board[2][0] ==p or \ board[1][1]== board[0][1] == board[2][1] == p or board[2][2]== board[1][2] == board[0][2] ==p or \ board[0][0]== board[1][1] == board[2][2] == p or board[0][2]== board[1][1] == board[2][0] ==p: print("{} player wins".format(p)) return True else : return False first_choice = True lst_of_choices = [True for i in range(9)] # list of choices for every cell draw_object = "circle" run = True while run: pygame.time.delay(10) for event in pygame.event.get(): #checks the events and get them if event.type == pygame.QUIT: #checks the exit button run = False if event.type == pygame.KEYDOWN: #checks the space button if event.key == pygame.K_SPACE: #space button used to reset the screen reset() lst_of_choices = [True for i in range(9)] result_board = pygame.draw.rect(win,(250,200,100),(550,200,200,150)) used_cells = 0 if event.type == pygame.MOUSEBUTTONUP: #checks the mouse click pos = pygame.mouse.get_pos() #gets the position of the click of the mouse #print(pos) if start_button.collidepoint(pos): s = True used_cells=0 x_scoore = 0 o_scoore = 0 try: if s: print(x_scoore) # # # asks if the click inside first button if lst[0].collidepoint(pos) and lst_of_choices[0]: used_cells += 1 if draw_object == "circle" : draw_o(100,100) draw_object = "line" board[0][0] = "o" else : draw_x(50,50) draw_object = "circle" board[0][0] = "x" lst_of_choices[0] = False if lst[1].collidepoint(pos) and lst_of_choices[1] : used_cells += 1 if draw_object == "circle": draw_o(270,100) draw_object = "line" board[0][1] = "o" else: draw_x(220,50) draw_object = "circle" board[0][1] = "x" lst_of_choices[1] = False if lst[2].collidepoint(pos) and lst_of_choices[2]: used_cells += 1 if draw_object == "circle": draw_o(440,100) draw_object = "line" board[0][2] = "o" else: draw_x(390,50) draw_object = "circle" board[0][2] = "x" lst_of_choices[2] = False if lst[3].collidepoint(pos) and lst_of_choices[3]: used_cells += 1 if draw_object == "circle": draw_o(100,270) draw_object = "line" board[1][0] = "o" else: draw_x(50,220) draw_object = "circle" board[1][0] = "x" lst_of_choices[3]= False if lst[4].collidepoint(pos) and lst_of_choices[4] : used_cells += 1 if draw_object == "circle": draw_o(270,270) draw_object = "line" board[1][1] = "o" else: draw_x(220,220) draw_object = "circle" board[1][1] = "x" lst_of_choices[4]= False if lst[5].collidepoint(pos) and lst_of_choices[5]: used_cells += 1 if draw_object == "circle": draw_o(440,270) draw_object = "line" board[1][2] = "o" else: draw_x(390,220) draw_object = "circle" board[1][2] = "x" lst_of_choices[5] = False if lst[6].collidepoint(pos) and lst_of_choices[6] : used_cells += 1 if draw_object == "circle": draw_o(100,440) draw_object = "line" board[2][0] = "o" else: draw_x(50,390) draw_object = "circle" board[2][0] = "x" lst_of_choices[6] = False if lst[7].collidepoint(pos) and lst_of_choices[7] : used_cells += 1 if draw_object == "circle": draw_o(270,440) draw_object = "line" board[2][1] = "o" else: draw_x(220,390) draw_object = "circle" board[2][1] = "x" lst_of_choices[7] = False if lst[8].collidepoint(pos) and lst_of_choices[8] : used_cells += 1 if draw_object == "circle": draw_o(440,440) draw_object = "line" board[2][2] = "o" else: draw_x(390,390) draw_object = "circle" board[2][2] = "x" lst_of_choices[8] = False if is_winner("x"): x_scoore +=1 score_board = pygame.draw.rect(win,(250,200,100),(550,370,200,150)) board = [[0,1,2],[3,4,5],[6,7,8]] show_X="X wins" result_x = font.render(show_X, True, (0,0,255)) win.blit(result_x, (560,250)) lst_of_choices = [False for i in range(9)] elif is_winner("o"): o_scoore +=1 score_board = pygame.draw.rect(win,(250,200,100),(550,370,200,150)) board = [[0,1,2],[3,4,5],[6,7,8]] show="O wins" result = font.render(show, True, (0,0,255)) win.blit(result, (560,250)) lst_of_choices = [False for i in range(9)] elif used_cells == 9 : draw = font.render("Draw", True, (0,0,255)) win.blit(draw, (560,250)) board = [[0,1,2],[3,4,5],[6,7,8]] used_cells = 0 xstring= str(x_scoore) + "for x" ostring = str(o_scoore) + "for o" scored = font.render(xstring, True, (0,0,255)) win.blit(scored, (580,380)) scored2 = font.render(ostring, True, (0,0,255)) win.blit(scored2, (580,440)) else: continue except NameError: pass pygame.display.update() #update the surface pygame.quit()
dde19b935c765c4368f5c1970ea2b010247519ba
TwisterMike15/Python-Projects
/CarrolaGorseMarietta.py
944
4.09375
4
#Python Program 1- Compound Interest #Michael Gorse, Anthony Carrola, and Brittany Marietta #Prints out a description of what the program does for user print('This is a compound interest calculator. Enter the values for the variables') print('in the compund interest equation, and this will produce the result for A') print('(the amount of money in the account ater a specified number of years)\n') #Reads in data for each variable as a string, then converts it to a float, so it can be manipulated p = float(input('Enter P. It is the principle amount deposited into the account.')) r = float(input('Enter r. This is the anual interest rate. Enter this value as a percentage \n(ie: 2.5 for 2.5% interest)')) r = r/100 n = float(input('Enter n. This is the number of times per year the interest is compounded.')) t = float(input('Enter t. This is the number of years.')) #equation used to calculate a a = p*(1+(r/n))**(n*t) print('\nA is', a)
b4b27dfb0d7c88afd95ce1bda1c214a62191b7be
Jiaget/LeetCode-Python3
/并查集模板.py
886
3.828125
4
class DisjointSet: def __init__(self, length): self.father = {i: i for i in range(1, length + 1)} self.depth = 0 def add(self, x): # 添加一个节点,该节点父节点应该为空 if x not in self.father: self.father[x] = None def find(self, x): # 查找根节点 root = x while self.father[root] != root: root = self.father[root] # 路径压缩,将x到root节点之间的所有节点直接和root节点相连 while x != root: origFather = self.father[x] self.father[x] = root x = origFather return root def isConnected(self, x, y): return self.find(x) == self.find(y) def merge(self, x, y): xRoot, yRoot = self.find(x), self.find(y) if xRoot != yRoot: self.father[xRoot] = yRoot
cec0f9cf86a0a2f563b0dfe415fd5c97195d5749
Dan-Teles/URI_JUDGE
/1255 - Frequência de Letras.py
383
3.53125
4
for _ in range(int(input())): s = input().lower() res = "" l = [0] for letra in s: if letra.isalpha(): if s.count(letra) >= max(l): l.append(s.count(letra)) for letra in s: if s.count(letra) == max(l): if not letra in res: res += letra print(''.join(sorted(res)).strip())
10655a3b1d978fb5760af7ddeb8a8287a566e8ee
TimMunday/BootCamp2018
/ProbSets/Comp/Week1/PS_1/ComplexNumbertesting.py
1,549
3.59375
4
# -*- coding: utf-8 -*- """ Created on Thu Jun 21 14:29:19 2018 @author: Tim """ from object_oriented import ComplexNumber def test_ComplexNumber(): a=3 b=4 py_cnum, my_cnum = complex(a, b), ComplexNumber(a, b) #Validate the constructor if my_cnum.real != a or my_cnum.imag != b: print("__init__() set self.real and self.imag incorrectly") #Validate conjugate() by checking the new number's imag attribute if py_cnum.conjugate().imag != my_cnum.conjugate().imag: print('conjugate() failed for', py_cnum) #Validate __str__() if str(py_cnum) != str(my_cnum): print("__str__() failed for", py_cnum) #Validate __abs__() if abs(py_cnum) != abs(my_cnum): print('absolute value failed for', py_cnum) #Validate __eq__() if py_cnum != my_cnum: print('equality failed') #Validate __add__() if py_cnum + py_cnum.conjugate() != my_cnum + my_cnum.conjugate(): print('Addition failed') #Validate __sub__() if py_cnum - py_cnum.conjugate() != my_cnum - my_cnum.conjugate(): print('Substituion failed') print(py_cnum - py_cnum.conjugate()) print(my_cnum - my_cnum.conjugate()) #Validate__mul__() if py_cnum*py_cnum.conjugate() != my_cnum*my_cnum.conjugate(): print('Mult failed') #Validate__truediv__() if py_cnum/py_cnum.conjugate() != my_cnum/my_cnum.conjugate(): print('Div failed') print('test ended') test_ComplexNumber()
3f28fc6d3b9ac9b6bbd109f1f9d2ceae5eec3b3b
jaydicine/Python
/POTW Sum of Digits.py
563
3.828125
4
total = 0 #function to sum digits of a number def digsum(number): number=str(number) sum=0 for i in range(0,len(number)): digit = number[i] sum += int(digit) return(sum) # loop function for all 3 digit integers for n in range(100,999): # check if sum is 5 if digsum(n) == 5: print(n, digsum(n)) total += 1 # if sum is not 5, check if sum of sum digits is 5 ex. 14, 23 elif digsum(digsum(n)) == 5: print(n, digsum(n)) total += 1 print(total)
2c43eba9b426653ed42a69d751e1873b89b51976
chanyoonzhu/leetcode-python
/1482-Minimum_Number_of_Days_to_Make_m_Bouquets.py
1,765
3.640625
4
class Solution: """ - binary search + greedy - O(nlogK), O(1) - K is the largest bloom day """ def minDays(self, bloomDay: List[int], m: int, k: int) -> int: days = max(bloomDay) def binary_search(l, r): if l == r: return l mid = l + (r - l) // 2 if can_make(mid): return binary_search(l, mid) else: return binary_search(mid + 1, r) def can_make(target_day): bouquets = 0 flowers = 0 for day in bloomDay: if day > target_day: flowers = 0 else: bouquets += (flowers + 1) // k if bouquets == m: return True flowers = (flowers + 1) % k return False """ my initial solution for can_make function def can_make(target_day): is_consecutive = True bouquets = 0 current_bloom = 0 for day in bloomDay: if day <= target_day: if is_consecutive: current_bloom += 1 else: current_bloom = 1 is_consecutive = True if current_bloom == k: bouquets += 1 if bouquets >= m: return True current_bloom = 0 else: is_consecutive = False return False """ if m * k > len(bloomDay): return -1 return binary_search(1, days)
e6b8dd911d626ecb9989f5e538b2df1fe7325975
aviadba/eureka_signalprocessing
/udemySignalProcessing.py
40,488
3.5
4
""" udemysignal - Udemy Signal Processing course root file - contains all the implemented signal processing classes. For GUI, use through udemysignal tabs classes and generic GUI framework """ import numpy as np import scipy.signal from scipy.interpolate import interp1d from scipy.signal import * #welch, spectrogram, firwin, butter, filtfilt, morlet, ricker # Base Signal generating class class Signal: def __init__(self): self.time = None self.signal = None self.sample_frequency = None self.domain = 'time' def create_signal(self, stype='poles', sample_frequency=1000, time=3, poles=15, interp='linear', amplitude=1): """Create a simulated signal Parameters: stype : {'poles', 'spikes', 'white noise', 'lintrend', 'polytrend', 'events', 'sum_frequencies', 'guassian', 'brownian'} type of signal to create sample_frequency : float signal rate in Hz time : float signal length in seconds poles : int number of random poles in 'poles' signal, or number of spikes in spikes mode or deg of polynomial interp {'linear', 'cubic'} modes of interpolation amplitude : float amplitude of max pole signal """ # create time vector self.time = np.arange(0, time, 1/sample_frequency) self.sample_frequency = sample_frequency # save amplitude as an object property self.amplitude = amplitude if stype == 'poles': # create a signal by interpolating values between randomly selected # poles if interp == 'linear': self.signal = np.interp(np.linspace(0, poles-1, len(self.time)), # interpolate at these values # define poles np.arange(0, poles), np.random.rand(poles)*amplitude) elif interp == 'cubic': signal_fun = interp1d(np.arange(0, poles), np.random.rand(poles)*amplitude, kind='cubic') signal_x = np.linspace(0, poles-1, len(self.time)) self.signal = signal_fun(signal_x) elif stype == 'spikes': # create randomly distributes spikes inter_spike_distance = np.exp(np.random.randn(poles)) inter_spike_distance = \ np.round(sample_frequency*time/inter_spike_distance.sum() * inter_spike_distance) distribution_tail = inter_spike_distance.sum() - \ (sample_frequency*time - 1) if distribution_tail > 0: inter_spike_distance[0] = inter_spike_distance[0] -\ distribution_tail signal = np.zeros(int(sample_frequency*time)) idx = 0 for distance in inter_spike_distance: idx += int(distance) signal[idx] = 1 self.signal = signal * amplitude elif stype == 'white noise': self.signal = amplitude*np.random.randn(int(sample_frequency*time)) elif stype == 'lintrend': trend = 10*amplitude*np.random.random() self.signal = np.linspace(-trend, trend, int(sample_frequency*time)) elif stype == 'polytrend': base_signal = np.zeros(int(sample_frequency*time)) for deg in range(poles): base_signal += np.random.randn()*self.time**deg self.signal = base_signal elif stype == 'events': # create and scale an event event_ratio = 0.3 # ratio of signal occupied by 'events' event_length = int(sample_frequency*time/poles*event_ratio) event = np.diff(np.exp(np.linspace(-2, 2, event_length+1)**2)) event = event/max(event)*amplitude event_start_idx = \ np.random.permutation( range(int(sample_frequency*time)-event_length))[:poles] base_signal = np.zeros(int(sample_frequency*time)) for idx in event_start_idx: base_signal[idx:idx+event_length] = event self.signal = base_signal elif stype == 'sum_frequencies': base_signal = np.zeros(int(sample_frequency*time)) freqs = np.linspace(0, time, time*sample_frequency) # select frequencies to include selected_signal_frequencies = \ np.random.permutation( range(1, int(sample_frequency/2)))[:poles] for instance_freq in selected_signal_frequencies: base_signal += np.random.randn()*np.sin(2*np.pi*instance_freq*freqs) self.signal = base_signal elif stype == 'guassian': # create randomly distributes centers guass_center_distance = np.exp(np.random.randn(poles)) if len(guass_center_distance) == 1: guass_center_distance = \ np.round(sample_frequency*time/3 * abs(guass_center_distance)) else: guass_center_distance = \ np.round(sample_frequency*time/guass_center_distance.sum() * guass_center_distance) distribution_tail = guass_center_distance.sum() - \ (sample_frequency*time - 1) if distribution_tail > 0: guass_center_distance[0] = guass_center_distance[0] -\ distribution_tail guass_center_distance = np.cumsum(guass_center_distance) base_signal = np.zeros(int(sample_frequency*time)) signal_idx = range(int(sample_frequency*time)) for distance in guass_center_distance: instance_signal_idx = [ i_idx - distance for i_idx in signal_idx] instance_signal_idx = np.array(instance_signal_idx) instance_sigma = 0.1*sample_frequency*time*np.random.random() instance_guassian = \ 1/(instance_sigma*(2*np.pi)**0.5) * \ np.exp(-0.5*(instance_signal_idx/instance_sigma)**2) base_signal += instance_guassian self.signal = base_signal elif stype == 'brownian': base_signal = np.random.randn(int(sample_frequency*time)) base_signal = np.cumsum(base_signal) self.signal = base_signal # Base load signal class class Loadsignal: def __init__(self): self.time = None self .signal = None self.source_signal = None self.sample_frequency = None self.domain = 'time' def load_signal(self, path_to_signal, sigtype='orig', domain='time'): """ Load saved signal from .npy files. Supports loading a reference file to practice cascade processing with a reference target. Parameters path_to_signal : string relative path to data file sigtype : {'orig', 'ref'} the type of signal being loaded. Can take the value of 'orig' (original signal) or 'ref' (reference signal after corrections) """ raw_signal = np.squeeze(np.load(path_to_signal)) if len(raw_signal.shape) == 2: # array with time and counts # find smaller dimension main_data_axis = np.argmin(raw_signal.shape) if main_data_axis == 0: time = np.squeeze(raw_signal[0, :]) signal = np.squeeze(raw_signal[1, :]) else: time = np.squeeze(raw_signal[:, 0]) signal = np.squeeze(raw_signal[:, 1]) else: # time vector not available, default to 1 sec per data4TFnpy signal = raw_signal time = np.arange(0, signal.shape[0]) if domain == 'time': sample_frequency = 1/np.mean(np.diff(time)) if sigtype == 'orig': self.signal = signal self.time = time self.domain = domain self.sample_frequency = sample_frequency elif sigtype == 'ref': self.source_signal = Signal() self.source_signal.signal = signal self.source_signal.time = time self.source_signal.domain = domain self.source_signal.sample_frequency = sample_frequency # Add simulated noise of several types to a base signal class Noise: def __init__(self, source_signal): self.source_signal = source_signal self.signal = source_signal.signal.copy() self.time = source_signal.time.copy() self.domain = 'time' self.sample_frequency = source_signal.sample_frequency def add_noise(self, noise_amplitude=1, ntype='rand', noise_sample_ratio=0.1): """ Add noise or other kind of signal interference to the signal Parameters: ntype : {'rand', 'normal' , 'pink'} Noise type to add. 'rand' for randomly distributed noise, 'nrand' for normally distributed noise 'pink' noise distributed with 1/alpha*f distribution (pink noise) 'irregular' downsample the data in irregular intervals 'gap' create a gap in the data noise_amplitude : float noise max level in 'standard deviation' units noise_sample_ratio : float ratio of point final/points original in creating irregular sequence or the ratio of gapped data to total signal length """ # get standard deviation of signal noise_amplitude = noise_amplitude*np.std(self.source_signal.signal) # create noise if ntype in {'rand', 'normal', 'pink'}: if ntype == 'rand': noise = \ noise_amplitude * \ np.random.rand(len(self.source_signal.signal)) elif ntype == 'normal': noise = \ noise_amplitude * \ np.random.randn(len(self.source_signal.signal)) elif ntype == 'pink': # create frquency vector frequency = np.linspace(-len(self.source_signal.signal)//2, len(self.source_signal.signal)//2, len(self.source_signal.signal)) pink = 1/frequency # set pink nan to zero phase = 2 * np.pi * \ np.random.rand(len(self.source_signal.signal)//2) # pink = pink * np.exp(-1j self.signal = self.source_signal.signal + noise elif ntype == 'irregular': num_points = \ np.round(irregular_sample_ratio*len(self.source_signal.signal)) intervals = np.exp(np.random.randn(int(num_points))) intervals = np.cumsum(intervals) intervals = intervals * \ (len(self.source_signal.signal)-1)/intervals[-1] intervals = (np.ceil(intervals)).astype(int) intervals[-1] = len(self.source_signal.signal)-1 self.signal = self.source_signal.signal[intervals] self.time = self.source_signal.time[intervals] self.sample_frequency = \ self.sample_frequency*irregular_sample_ratio elif ntype == 'gap': gap_length = int(len(self.source_signal.time)*noise_sample_ratio) gap_start_idx = int(len(self.source_signal.time)/2 - gap_length/2) gap_end_idx = int(len(self.source_signal.time)/2 + gap_length/2) time = self.source_signal.time signal = self.source_signal.signal time = np.delete(time, range(gap_start_idx, gap_end_idx)) signal = np.delete(signal, range(gap_start_idx, gap_end_idx)) self.time = time self.signal = signal # Time domain filters class Filter: def __init__(self, source_signal): self.source_signal = source_signal self.signal = source_signal.signal.copy() self.time = source_signal.time.copy() self.domain = 'time' self.sample_frequency = source_signal.sample_frequency def running_filter(self, ftype='mean', order=3, edge='copy'): """Sets the value in a filtered signal according to the values of neighbors Arguments --------- ftype <str> type of filter. Options are: 'mean' 'gaussian' , tkeo (Teager-Kaiser energy operator), 'median' order <int> the number of neighbors to consider when calculating the mean value edge <string> - defines how to deal with edges. possibilities are 'copy', 'crop' """ # find length of signal signal_length = len(self.source_signal.time) # allocate memory for for signals and time signal = np.zeros(signal_length) if ftype == 'mean': for idx in range(order, signal_length-order): signal[idx] = np.mean( self.source_signal.signal[idx-order:idx+order+1]) elif ftype == 'gaussian': gaussain_ker = np.arange(-(order), (order+1), 1) gaussain_ker = np.exp(-(4*np.log(2)*gaussain_ker**2) / (order)**2) gaussain_ker = gaussain_ker/gaussain_ker.sum() for idx in range(order, signal_length-order): signal[idx] = \ (self.source_signal.signal[idx - order:idx+order+1]*gaussain_ker).sum() elif ftype == 'tkeo': # set order to 1 for edge effect actions order = 1 for idx in range(1, signal_length-1): signal[idx] = self.source_signal.signal[idx]**2 -\ self.source_signal.signal[idx-1] * \ self.source_signal.signal[idx+1] signal = signal/np.max(signal)*np.max(self.source_signal.signal) elif ftype == 'median': for idx in range(order, signal_length-order): signal[idx] = np.median( self.source_signal.signal[idx-order:idx+order+1]) if edge == 'copy': signal[:order] = self.source_signal.signal[:order] signal[signal_length-order:] = \ self.source_signal.signal[signal_length-order:] self.signal = signal self.time = self.source_signal.time elif edge == 'crop': self.signal = signal[order:signal_length-order] self.time = self.source_signal.time[order:signal_length-order] # Linear and polynomial detrending of time domain data class Detrend: def __init__(self, source_signal): self.source_signal = source_signal self.signal = source_signal.signal.copy() self.time = source_signal.time.copy() self.domain = 'time' self.sample_frequency = source_signal.sample_frequency def detrend(self, method='linear'): """detrend signals Arguments --------- method <str> detrending method. Allowed values are' 'linear' (least square fit of the data, 'polynomial' polynomial fitting with Bayes information criterion to find best deg """ if method == 'linear': self.signal = scipy.signal.detrend( self.source_signal.signal, type='linear') self.time = self.source_signal.time elif method == 'polynomial': # use Bayes information criterion deg_max = 10 bic = [] bic_score = [] signal_l = len(self.source_signal.time) for deg in range(deg_max): ifit = np.polyfit(self.source_signal.time, self.source_signal.signal, deg=deg, full=True) score = signal_l*np.log(ifit[1])+(deg+1)*np.log(signal_l) bic.append(ifit) bic_score.append(score) # find indices of min val deg = np.argmin(bic_score) # get fitting polynomial coeffecients pol_coeff = bic[deg][0] detrend = np.zeros(len(self.source_signal.signal)) for idx, coef in enumerate(pol_coeff): detrend += coef*self.source_signal.time**(deg-idx) self.signal = self.source_signal.signal - detrend self.time = self.source_signal.time # FFT class FFTsignal: def __init__(self, source_signal): self.source_signal = source_signal self.signal = source_signal.signal.copy() self.time = source_signal.time.copy() self.domain = source_signal.domain self.sample_frequency = source_signal.sample_frequency self.time_scaling = 1 # for dealing with frequency sub sampling def fft_signal(self): """Create the frequency domain representation of a time domain or the time domain representation f a frequency domain signal """ if self.source_signal.domain == 'time': # create time vector self.signal = np.fft.fft(self.source_signal.signal, norm='ortho') frequencies = np.fft.fftfreq(self.time.size, d=np.gradient(self.time).mean()) self.time = frequencies self.domain = 'frequency' elif self.source_signal.domain == 'frequency': self.signal = np.fft.ifft(self.source_signal.signal, norm='ortho') self.signal = self.signal.real time = np.linspace(0, len(self.time)/(2*max(abs(self.time))) * self.source_signal.time_scaling, len(self.time)) self.time = time self.domain = 'time' # save amplitude as an object property self.amplitude = None def welch_signal(self, window_size=1024): """calculate the Fourier Transform using Welch's method of averaging multiple spectra Arguments --------- window_size <int> the size of window over which a FFT is calculated """ welch_freq, welch_signal = welch(self.source_signal.signal, window='hanning', nperseg=window_size, return_onesided=False) frequencies = np.fft.fftfreq(welch_signal.size, d=np.gradient(self.time).mean()) self.signal = welch_signal self.time = frequencies self.time_scaling = self.source_signal.time.size/window_size self.domain = 'frequency' def spectrogram_signal(self, window_size=1024): """Copute the time dependant spectrogram of a signal Arguments --------- window_size <int> size of window to use """ spectro_freq, spectro_time, spectro_vals = \ spectrogram(x=self.source_signal.signal, nperseg=window_size) self.signal = spectro_vals self.time = spectro_time self.spectrogram_frequencies = spectro_freq self.domain = 'spectrogram' def wavelet_cwt(self, wavelet='morlet'): """ Preform a continuous wavelet transform of the data Parameters wavelet : {'morlet', 'ricker'} the type of wavelet to use. Morlet or Ricker (mexican hat) """ # define frequency resolution if wavelet == 'morlet': wavelet = morlet elif wavelet == 'ricker': wavelet = ricker widths = np.arange(2, self.source_signal.sample_frequency//2) cwt_matr = np.abs(cwt(self.source_signal.signal, wavelet, widths))**2 self.signal = cwt_matr self.spectrogram_frequencies = widths self.domain = 'spectrogram' # Filters operating in the frequency domain class Freqfilter: def __init__(self, source_signal): """Filters defined in the frequency domain. Operate in the time domain. Class allows comparing the resulting filter to the expected filter. Filters are then applied using filtfilt (zero phase shift) to the source_signal data""" self.source_signal = source_signal self.signal = source_signal.signal.copy() self.time = source_signal.time.copy() self.domain = 'time' self.sample_frequency = source_signal.sample_frequency self.filter = None # the filter representation in the time domain self.filterfreq = None # the filter representation in the frequqnecy domain def fir_filter(self, window='boxcar', order=73, frange=[None, None]): """Apply the FIR (Finite impulse response) filter using the specified method Arguments --------- window <str> - tapering window to use. Allowed values are 'none', 'hann', 'hamming', 'guassian' order <int> - size of filter frange <lst(2)>: band pass rise and fall or rise/fall for high/low pass """ # create window if window == 'gaussian': window = ('guassian', order/6) # create filter if frange[0]: if frange[1]: # bandpass filter if frange[0] > frange[1]: fir_filter = firwin(numtaps=order, cutoff=[frange[1], frange[0]], pass_zero=True, window=window, scale=True) elif frange[1] > frange[0]: fir_filter = firwin(numtaps=order, cutoff=frange, pass_zero=False, window=window, scale=True) self.filterfreq = ['bandpass', frange] else: # highpass filter fir_filter = firwin( numtaps=order, cutoff=frange[0], pass_zero=False, window=window, scale=True) self.filterfreq = ['highpass', frange[0]] else: if frange[1]: # lowpass filter fir_filter = firwin( numtaps=order, cutoff=frange[1], pass_zero=True, window=window, scale=True) self.filterfreq = ['lowpass', frange[1]] # save filter self.filter = fir_filter # filtered signal self.signal = np.convolve( self.source_signal.signal, fir_filter, mode='same') self.time = self.source_signal.time def iir_filter(self, order=9, frange=[None, None]): """Implemetation of IIR filter Arguments --------- order <int> - the order of the filter frange <lst(2)>: band pass rise and fall or rise/fall for high/low pass ftype <str> - filter tyepe. Allowed options are 'lowpass' , 'highpass', 'bandpass' """ # create filter if frange[0]: if frange[1]: # bandpass filter if frange[0] > frange[1]: iir_filter = butter( N=order, Wn=[frange[1], frange[0]], btype='bandstop') elif frange[1] > frange[0]: iir_filter = butter(N=order, Wn=frange, btype='bandpass') self.filterfreq = ['butterpass', frange] else: # highpass filter iir_filter = butter(N=order, Wn=frange[0], btype='highpass') self.filterfreq = ['butterhigh', frange[0]] else: if frange[1]: # lowpass filter iir_filter = butter(N=order, Wn=frange[1], btype='lowpass') self.filterfreq = ['butterlow', frange[1]] # create impulse impulse = np.zeros(len(iir_filter[0])*len(iir_filter[1])) impulse[(len(iir_filter[0])*len(iir_filter[1]))//2] = 1 impulse_response = filtfilt(iir_filter[0], iir_filter[1], impulse) # save filter self.filter = impulse_response # filtered signal self.signal = filtfilt(iir_filter[0], iir_filter[1], self.source_signal.signal) self.time = self.source_signal.time # Convolution class Convolution: def __init__(self, source_signal): """Convolve signal with a kernel """ self.source_signal = source_signal self.signal = source_signal.signal.copy() self.time = source_signal.time.copy() self.domain = 'time' self.filter = None # the filter representation in the time domain self.sample_frequency = source_signal.sample_frequency def convolve(self, ktype='guassian', kradius=None): """Apply a convolution kernel on the signal Parameters: ktype : {'guassian', 'mean', 'linear'} The convolution kernel type. 'guassian', 'linear' (linear decay function), 'mean', 'morlet' (real), 'ricker' (mexican hat) kradius : int radius of convolution kernel in sampling units. Actual width is 2*kradius+1 """ kernel_base = np.arange(-kradius, kradius+1) # create the convolution kernel if ktype == 'guassian': kernel = np.exp(- (kernel_base**2)/(2 * (0.3*kradius)**2)) # normalize kernel self.filter = kernel/np.sum(kernel) elif ktype == 'mean': self.filter = np.ones(2*kradius+1)/(2*kradius+1) elif ktype == 'linear': kernel = np.linspace(start=1, stop=0.1, num=(2*kradius+1), endpoint=True) kernel = kernel - np.mean(kernel) self.filter = kernel elif ktype == 'morlet': self.filter = morlet(M=(2*kradius+1)) elif ktype == 'ricker': self.filter = ricker(points=(2*kradius+1), a=0.3*kradius) # apply convolution self.signal = np.convolve(self.source_signal.signal, np.real(self.filter), mode='same') # Resample class Resample: def __init__(self, source_signal): """Resample signal """ self.source_signal = source_signal self.signal = source_signal.signal.copy() self.time = source_signal.time.copy() self.sample_frequency = source_signal.sample_frequency self.domain = 'time' def resample(self, factor=None, new_sample_rate=None, method='linear'): """Resample data Parameters factor : int new data sampling rate will be factor * sampeling. if factor>1 data is upsampled, if factor<1 data is downsampled. If data is downsampled, original if initially low-pass filtered at the new nyquist freq to avoid aliasing. Use this value or new_sample_rate new_sample_rate : float new target sampling rate. User either this value or factor method : {'linear', 'cubic', 'nearest'} method of interpolation """ if factor: new_sample_rate = self.source_signal.sample_frequency * factor elif new_sample_rate: factor = new_sample_rate/self.source_signal.sample_frequency else: # default to max sample rate in data delta_time = np.diff(self.source_signal.time) new_sample_rate = 1/np.min(delta_time) factor = 1 self.sample_frequency = new_sample_rate #downsampling: anitaliasing if self.sample_frequency < self.source_signal.sample_frequency: num_samples_resample = \ int(self.sample_frequency/self.source_signal.sample_frequency * len(self.source_signal.signal)) self.signal, self.time = resample(x=self.source_signal.signal, num=num_samples_resample, t=self.source_signal.time) else: # create new time series self.time = np.arange(self.source_signal.time[0], self.source_signal.time[-1], 1/new_sample_rate) # interpolate new points interpolation_function = interp1d(self.source_signal.time, self.source_signal.signal, kind=method) # calculate new signal self.signal = interpolation_function(self.time) def fill_gaps(self): """fill gaps in data fill_gaps for gapped data, uses the mean power spectrum of data before gap and after gap (representing sequences the same length of the gap, detrending and adding a trend to represent last/first known points """ # find of gap time_gaps = np.diff(self.source_signal.time) gap_start_idx = np.argmax(time_gaps) # find gap border values gap_start_value = self.source_signal.signal[gap_start_idx] gap_end_value = self.source_signal.signal[gap_start_idx+1] # gap_length = self.source_signal.time[gap_start_idx + # 1] - self.source_signal.time[gap_start_idx] # create time sequence simulated_series_time = np.arange(start=self.source_signal.time[gap_start_idx], stop=self.source_signal.time[gap_start_idx+1], step=1/self.source_signal.sample_frequency) len_gap = len(simulated_series_time) # get FFT of sequence before gap pre_gap_fft = \ np.fft.fft(self.source_signal.signal[gap_start_idx-len_gap:gap_start_idx], norm='ortho') # get FFT of sequences after the gap post_gap_fft = \ np.fft.fft(self.source_signal.signal[gap_start_idx+1:gap_start_idx+1+len_gap], norm='ortho') # find mean spectrum mean_gap_spectrum = (pre_gap_fft + post_gap_fft)/2 gap_sequence = np.abs(np.fft.ifft(mean_gap_spectrum, norm='ortho')) # detrend gap sequence gap_sequence = detrend(gap_sequence, type='linear') # add trend to data base_gap_signal = np.linspace(gap_start_value-gap_sequence[0], gap_end_value-gap_sequence[-1], len(simulated_series_time)) gap_sequence += base_gap_signal self.signal = np.concatenate((self.source_signal.signal[:gap_start_idx-1], gap_sequence, self.source_signal.signal[gap_start_idx+2:])) self.time = \ np.concatenate((self.source_signal.time[:gap_start_idx-1], simulated_series_time, self.source_signal.time[gap_start_idx+2:])) def remove_nan(self): """remove nan values from signal and time data""" nan_bool = np.isnan(self.source_signal.signal) # keep only non nan self.signal = self.source_signal.signal[~nan_bool] self.time = self.source_signal.time[~nan_bool] class Outliers: def __init__(self, source_signal): """Outliers """ self.source_signal = source_signal self.signal = source_signal.signal.copy() self.time = source_signal.time.copy() self.sample_frequency = source_signal.sample_frequency self.domain = 'time' def remove_outliers(self, method='static', metric='std', factor=3, kind='linear', window_ratio=0.05): """remove outliesrs from data Parameters method : {'static', 'rolling'} method of outlier identification metric : {'std', 'rms'} factor : int outlier definition boundary factor (SD or RMS units) kind : {'linear', 'nearest', 'previous', 'cubic', 'quadratic'} interpolation method window : float the relative size of window for rolling calculations """ if method == 'static': if metric == 'std': metric = np.std(self.source_signal.signal) elif metric == 'rms': metric = self.source_signal.signal - \ np.mean(self.source_signal.signal) metric = (np.mean(metric**2))**0.5 mean = np.mean(self.source_signal.signal) outliers = np.logical_or(self.source_signal.signal > mean+factor*metric, self.source_signal.signal < mean-factor*metric) elif method == 'rolling': window = int(len(self.source_signal.signal)*window_ratio) outliers = np.array([False]*len(self.source_signal.signal)) last_data_idx = len(self.source_signal.signal)-1 for idx in range(len(self.source_signal.signal)): upper_limit = np.amin((idx+window, last_data_idx)) lower_limit = np.amax((idx-window, 0)) instance_range = self.source_signal.signal[lower_limit:upper_limit] # np.concatenate([self.source_signal.signal[idx-window:idx], # self.source_signal.signal[idx+1:idx+window]]) value = self.source_signal.signal[idx] if metric == 'std': upper_b = np.mean(instance_range) + \ factor*np.std(instance_range) lower_b = np.mean(instance_range) - \ factor*np.std(instance_range) elif metric == 'rms': metric = instance_range - np.mean(instance_range) metric = (np.mean(metric**2))**0.5 upper_b = np.mean(instance_range) + factor*metric lower_b = np.mean(instance_range) - factor*metric if value > upper_b or value < lower_b: outliers[idx] = True interpolator = interp1d(self.source_signal.time[~outliers], self.source_signal.signal[~outliers], kind=kind, bounds_error=False, fill_value='extrapolate') for idx in np.nditer(np.argwhere(outliers)): idx = int(idx) self.signal[idx] = interpolator(self.time[idx]) self.domain = 'time' def map_noise_regions(self, metric='rms'): """Create a map of RMS values vs window size used. Calculations are carried out for windows ranging from 0.01 to 0.2 of the data length in 0.01 increments Parameters metric : {'rms', 'std'} """ # get rms for the entire data signal num_test_windows = 20 window_increment = 0.01 ratio_ranges = np.arange(start=0.01, stop=(num_test_windows+1)*window_increment, step=window_increment) # initialize empty results window result_map = np.full((num_test_windows, len(self.source_signal.signal)), np.nan) last_data_idx = len(self.source_signal.signal)-1 window_selection_idx = num_test_windows-1 for win_size_ratio in np.nditer(ratio_ranges): window = int(len(self.source_signal.signal)*win_size_ratio) for idx in range(len(self.source_signal.signal)): upper_limit = np.amin((idx+window, last_data_idx)) lower_limit = np.amax((idx-window, 0)) instance_range = self.source_signal.signal[lower_limit:upper_limit] value = self.source_signal.signal[idx] if metric == 'std': result_map[window_selection_idx, idx] = np.std(instance_range) elif metric == 'rms': # mean center instance range instance_range = instance_range - np.mean(instance_range) result_map[window_selection_idx, idx] = ( np.mean(instance_range**2))**0.5 window_selection_idx -= 1 self.domain = 'spectrogram' self.spectrogram_frequencies = ratio_ranges self.signal = result_map class Features: def __init__(self, source_signal): """Features """ self.source_signal = source_signal self.signal = source_signal.signal.copy() self.time = source_signal.time.copy() self.sample_frequency = source_signal.sample_frequency self.domain = 'time' def find_extrema(self, extrema='max', method='global', order=100): """Find maxima/minima in signal Parameters extrema : {'max', 'min'} method : {'global', 'local'} method of extrema detection order : int how many points on each side to consider for local extrema """ if method == 'global': if extrema == 'max': extremaindx = np.argmax(self.source_signal.signal) elif extrema == 'min': extremaindx = np.argmin(self.source_signal.signal) self.signal = np.array([self.source_signal.signal[extremaindx]]) self.time = np.array([self.source_signal.time[extremaindx]]) elif method == 'local': if extrema == 'max': comparator = np.greater elif extrema == 'min': comparator = np.less # signal.signal.argrelextrema extremaindx = argrelextrema(data=self.source_signal.signal, comparator=comparator, order=order) # create a point set signal of extrema self.signal = self.source_signal.signal[extremaindx] self.time = self.source_signal.time[extremaindx] def find_envelope(self, method='hilbert_transform', order=99, cutoff=0.1): """find the envelope of a signal. Note: to asses the different envelopes, calculate R^2 with the rectified signal. Parameters method : {'hilbert_transform', 'varaince_envelope'} cutoff : float the cutoff of the low pass filter in nyquist rate ratio order : float the size of the lowpass filter """ if method == 'hilbert_transform': # Hilbert transform - rectify, lowpass filter hilbert_transform = hilbert(self.source_signal.signal) self.signal = np.abs(hilbert_transform) self.time = self.source_signal.time elif method == 'variance_envelope': # rectify signal signal = np.abs(self.source_signal.signal) # create low pass filter fir_filter = firwin( numtaps=order, cutoff=cutoff, pass_zero=True, window='hamming', scale=True) self.signal = np.convolve(fir_filter, signal, mode='same') self.time = self.source_signal.time def feature_by_wavelets(self, wavelet='DoG'): """Convolve signal with a wavelet to find features Parameters wavelet : {'DoG'} name of wavelet width: int fwhm """ if wavelet == 'DoG': breakpoint() wavelet_time = np.linspace(-3, 3, int(self.source_signal.sample_frequency/2)) wavelet = np.diff(np.exp(-wavelet_time**2)) elif wavelet == 'ricker': wavelet = ricker(100, width)