blob_id
string
repo_name
string
path
string
length_bytes
int64
score
float64
int_score
int64
text
string
80f97992306ea1e9b22767785777097708cd3489
robertomacedo/exerc_python
/palindromo.py
377
4.15625
4
""" Exercicios com strings """ print("*"*40) print("") print("BRINCANDO COM STRING USANDO PALINDROMO") print("") print("*"*40) enter = input("Digite uma palavra ou frase: ") def palindromo(enter): if enter[::-1] == enter: return f"A palavra {enter} é um palindromo" else: return f"A palavra {enter} não é um palindromo" print(palindromo(enter))
3f3707643ecf72b522ee2707df9c78d60ea7853a
zionhjs/algorithm_repo
/1on1/new_course/1074-numberofsubmatrix.py
2,060
3.53125
4
# 这个方法太过于暴力了 遭遇TLE class Solution: def numSubmatrixSumTarget(self, matrix: List[List[int]], target: int) -> int: n, m = len(matrix), len(matrix[0]) self.count = 0 # 1.make the matrix to sum_matrix for i in range(n): for j in range(m): #0, 0 if i == 0 and j != 0: matrix[0][j] += matrix[0][j-1] elif i != 0 and j == 0: matrix[i][0] += matrix[i-1][0] elif i != 0 and j != 0: matrix[i][j] += matrix[i-1][j] + \ matrix[i][j-1] - matrix[i-1][j-1] # 2.traverse the sum_matrix to see if any submatrices that sum to a target for i in range(n): for j in range(m): self.count_target(i, j, matrix, target, n, m) return self.count # this travers is kind of brute/ anyway we can make it memorized? def count_target(self, y, x, matrix, target, n, m): for i in range(y, n): for j in range(x, m): if y != 0 and x != 0: cur_sum = matrix[i][j] - matrix[y-1][j] - \ matrix[i][x-1] + matrix[y-1][x-1] elif y == 0 and x != 0: cur_sum = matrix[i][j] - matrix[i][x-1] elif y != 0 and x == 0: cur_sum = matrix[i][j] - matrix[y-1][j] else: cur_sum = matrix[i][j] if cur_sum == target: self.count += 1 def numSubmatrixSumTarget(self, A, target): m, n = len(A), len(A[0]) for row in A: for i in xrange(n - 1): row[i + 1] += row[i] res = 0 for i in xrange(n): for j in xrange(i, n): c = collections.defaultdict(int) cur, c[0] = 0, 1 for k in xrange(m): cur += A[k][j] - (A[k][i - 1] if i > 0 else 0) res += c[cur - target] c[cur] += 1 return res
d80a8b4c88c8d0851127747cfb717fb85dd1667b
franciscoquinones/Python
/Clase2/ACtividades/Fibona.py
401
3.84375
4
# -*- coding: utf-8 -*- """ @author: Francixco """ #serie de Fibonacci print "Mi primer reto" n=input("Ingrese cantidad de terminos a mostrar: ") i=1 num_ant=0 num_act=1 print num_ant print num_act while i<=n: temp=num_act num_act=num_act+num_ant num_ant=temp print num_act i+=1 print "El valor es :",num_act #0 1 1 2 3 5
3ab17af1e4ede7d43a224284e4894a2c3f3aef2c
nogajaakanksha/AQPG
/gui/login.py
3,604
3.71875
4
from Tkinter import * import sqlite3 import main import register import sys import os #==============================METHODS======================================== def Database(): global conn, cursor conn = sqlite3.connect("pythontut.db") cursor = conn.cursor() cursor.execute("CREATE TABLE IF NOT EXISTS `useraccount` (mem_id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, username TEXT, password TEXT)") cursor.execute("SELECT * FROM `useraccount` WHERE `username` = 'admin' AND `password` = 'admin'") if cursor.fetchone() is None: cursor.execute("INSERT INTO `useraccount` (username, password) VALUES('admin', 'admin')") conn.commit() def helloCallBack(): root.destroy() main.gui() def HomeWindow(): helloCallBack() def Register(event=None): root.destroy() register.gui() def Login(event=None): Database() if USERNAME.get() == "" or PASSWORD.get() == "": print("Please complete the required field!") Register() else: cursor.execute("SELECT * FROM `useraccount` WHERE `username` = ? AND `password` = ?", (USERNAME.get(), PASSWORD.get())) if cursor.fetchone() is not None: HomeWindow() USERNAME.set("") PASSWORD.set("") lbl_text.config(text="") else: print("Invalid username or password") USERNAME.set("") PASSWORD.set("") Register() cursor.close() conn.close() def gui(): global root root = Tk() root.title("Login Application") width = 500 height = 300 screen_width = root.winfo_screenwidth() screen_height = root.winfo_screenheight() x = (screen_width/2) - (width/2) y = (screen_height/2) - (height/2) root.geometry("%dx%d+%d+%d" % (width, height, x, y)) root.resizable(0, 0) #==============================VARIABLES====================================== global USERNAME,PASSWORD USERNAME = StringVar() PASSWORD = StringVar() #==============================FRAMES========================================= Top = Frame(root, bd=2, relief=RIDGE) Top.pack(side=TOP, fill=X) Form = Frame(root, height=200) Form.pack(side=TOP, pady=20) #==============================LABELS========================================= lbl_title = Label(Top, text = "Login Application", font=('arial', 15)) lbl_title.pack(fill=X) lbl_username = Label(Form, text = "Username:", font=('arial', 14), bd=15) lbl_username.grid(row=0, sticky="e") lbl_password = Label(Form, text = "Password:", font=('arial', 14), bd=15) lbl_password.grid(row=1, sticky="e") global lbl_text lbl_text = Label(Form) lbl_text.grid(row=2, columnspan=2) #==============================ENTRY WIDGETS================================== username = Entry(Form, textvariable=USERNAME, font=(14)) username.grid(row=0, column=1) password = Entry(Form, textvariable=PASSWORD, show="*", font=(14)) password.grid(row=1, column=1) #==============================BUTTON WIDGETS================================= btn_login = Button(Form, text="Login", width=45, command=Login) btn_login.grid(pady=25, row=3, columnspan=2) btn_login.bind('<Return>', Login) btn_register = Button(Form, text="Register User", width=45, height=3, command=Register) btn_register.grid(pady=25, row=4, columnspan=2) btn_register.bind('<Return>', Register) root.mainloop()
3bb2c04db1ca5b446287800607c6e13d32b52e4f
pichu0528/Python
/Data Structure/Sorting and Searching/Sorting 6 - Quick Sort.py
1,655
4.09375
4
def quick_sort(arr): quick_sort_help(arr,0,len(arr)-1) def quick_sort_help(arr,first,last): if first < last: splitpoint = partition(arr,first,last) quick_sort_help(arr,first,splitpoint-1) quick_sort_help(arr,splitpoint+1,last) def partition(arr,first,last): # use the first item as the pivot point pivotvalue = arr[first] # left mark starts at one index after the pivot point # and right mark starts at the end of array leftmark = first + 1 rightmark = last done = False while not done: # moving the leftmark to the right until the value is greater # than the pivot value while leftmark <= rightmark and arr[leftmark] <= pivotvalue: leftmark += 1 # moving the rightmark to the left until the value is less than # the pivot value while rightmark >= leftmark and arr[rightmark] >= pivotvalue: rightmark -= 1 if rightmark < leftmark: done = True else: temp = arr[leftmark] arr[leftmark] = arr[rightmark] arr[rightmark] = temp temp = arr[first] arr[first] = arr[rightmark] arr[rightmark] = temp # return the right mark because that is where the pivot value # is in the middle of the partition # considering: [3, 2, 2, 4, 4] # leftmark will result at index 3 # rightmark will result at index 2 # swapping rightmark and the pivot point will be the way to go in # this sense. return rightmark
431c7f7e5cfbfae71e2900cf562ce9fffad2de37
lukihd06/B2-Python
/scripts/1c-moy.py
1,176
3.734375
4
#!/usr/bin/env python3 # nom : 1c-moy.py # auteur : lucas erisset # date : 15/10/18 # script affichant la moyenne des notes et prénoms des personnes et un top 5 des notes # fonction top5 mais je n'arrive pas à la faire #def Top5 (valueDict): # i = 0 # concatVal = "" # valueDict = sorted(valueDict) # for name,score in valueDict.items(): # if i < 5: # print(name + " " + score) # i += 1 # return concatVal # le script de la moyenne : dict_score = {} i = 0 exitWhile = False while exitWhile == False: i+= 1 name_input = input("le nom à insérer dans le dictionnaire : ") if name_input == "q": exitWhile = True else: score_input = input("la note de l'élève : ") try: score_input = int(score_input) if score_input > 20 or score_input < 0: print("la note doit être entre 0 et 20") exit() except ValueError: print("ce n'est pas un chiffre") exit() dict_score[name_input] = score_input score_total = 0 for name in dict_score: score_total += dict_score[name] quotient = len(dict_score) moyenne = score_total/quotient moyenne = str(moyenne) print("la moyenne est de "+moyenne) #Top5(dict_score)
6b6e666d5a8f4e7a122c345abba56b9cdbaf1252
aleenaadnan15/official-assignment
/pattern1.py
317
4.125
4
#Question num 41: ''' The following pattern, using a nested for loop ''' n = int(input("Enter no. of rows: ")) for i in range (0,n): for j in range (0,i): print("*",end="") print("") for i in reversed(range(0,n+1)): for j in range(0,i): print("*",end="") print("")
1e31f026d689e97af4f110c031e9ef3ae3bbde7a
EstherChoi1245/Choi_Esther
/Semester1/Py_Lesson_04/Receipt2.py
757
4.09375
4
def printf (item, price): print ("* {:>20} ........\t{:0.2f}".format(item, price)) item1 = input("Please enter Item 1: ") price1 = float(input("Please enter the price: ")) item2 = input("Please enter Item 2: ") price2 = float(input("Please enter the price: ")) item3 = input("Please enter Item 3: ") price3 = float(input("Please enter the price: ")) subtotal = price1 + price2 + price3 tax = (price1 + price2 + price3)*0.07 total = (price1 + price2 + price3)*1.07 print ("<<<<<<<<<<<<<<<__Recipt__>>>>>>>>>>>>>>>") printf (item1, price1) printf (item2, price2) printf (item3, price3) printf ("Subtotal:", subtotal) printf ("Tax:", tax) printf ("Total:", total) print ("____________________________________") print ("* Thank you for your support *")
645eb53b784ee7972089a913571e307274f5396d
vidun1208/python-projects
/temperature 2.py
89
3.796875
4
value=int(input("enter fahrenheit value")) celsius=((5*(value)-160)/9) print(celsius)
0eb18aa441c32e0b2fe1aeffc23208535403f886
felipemcm3/ExerPython
/Pythonexer/ExerPython/aprendendopython/testepython/aula09a.py
195
3.59375
4
frase: str = ' Olá felipe ' print(frase.replace('Olá', 'Oi')) print(frase.upper()) print('w' in frase) print(frase.find('ipe')) print(frase.split('e')) print(frase.strip()) print('+'.join(frase))
514861cab01147947da232796791bf261a1706c8
tzytammy/requests_unittest
/学习/机器学习/Pandas2.py
290
3.9375
4
from pandas import Series,DataFrame import pandas as pd obj2=Series([4,7,-5,3],index=['d','b','c','a']) print(obj2) obj2['c']=6 print(obj2) print('f' in obj2) #字典变数组 sdata={'beijing':3500,'shanghai':60000} obj3=Series(sdata) print(obj3) obj3.index=['bj','sh'] print(obj3)
0736d194f6328a17483e4f992711fb6017d2dbf8
AndreyIvantsov/PythonBeginner
/Ex23.py
970
4.1875
4
#!/usr/bin/python3 # -*- coding: utf-8 -*- # # Блок finally # # При обработке исключений также можно использовать # необязательный блок finally. Отличительной особенностью # этого блока является то, что он выполняется вне # зависимости, было ли сгенерировано исключение: try: number = int(input("Введите число: ")) print("Введенное число:", number) except ValueError: print("Не удалось преобразовать число") finally: print("Блок try завершил выполнение") print("Завершение программы") # Как правило, блок finally применяется для освобождения # используемых ресурсов, например, для закрытия файлов.
7c6cce33c0f9f8e00e8f5a562ef01600f49b8388
MartinDardis/Algoritmos-2-FIUBA
/TP3/procesar_linea.py
1,166
3.53125
4
def separar(entrada): split = entrada.split(' ') if split [0] == 'viaje': comando = split[0]+' '+split[1] param_1='' for i in range(2,len(split)): param_1 +=split[i] if not i == len(split): param_1 += ' ' param_1 = param_1.rstrip() comando = comando[:-1] return comando , param_1 elif split [0] == 'ir': param_1 ='' param_2 ='' ultimo = 1 for i in range(1,len(split)): ultimo = i param_1 += split[i] if ',' in split[i]: break else: param_1 += ' ' for i in range(ultimo+1,len(split)): param_2 += split[i] param_2 += ' ' param_1 = param_1[:-1] param_2 = param_2[:-1] return split[0],param_1,param_2 else: return split[0],split[1] print('ir moscu, restov del don') print(separar('ir moscu, restov del don')) print(separar('ir restov del don, restov del don')) print(separar('viaje optimo, moscu')) print(separar('itinerario Moscu')) print(separar('reducir_caminos mapa.csv'))
f09a4f269957ef0653f7689469896b34d9eac8c1
akishwary/Portfolio-Tracker
/Stock.py
11,178
3.6875
4
""" @author: Amrin.Kishwary The purpose of this class is to create a single stock portfolio. """ #import libraries import numpy as np #mathematical computation import pandas as pd #dataframe and data structure import matplotlib.pyplot as plt #plot and graph from matplotlib import style #customized plot design import matplotlib.ticker as mticks #customize tick and ticklables import matplotlib.dates as mdates #format dates import aop #cython code pxy file class Stock: ''' the class takes in three arguments: ticker = stritg object transactions = a dataframe object which incls. Date as index, and 2 columns with header Quantity and Price mkt_price = a dataframe object with Date as index and market price of stock ''' def __init__(self, ticker, transactions, mkt_price): self.ticker = ticker #stock ticker symbol self.trans = transactions #as pandas dataframe self.mkt = mkt_price #get market price #get ticker def get_ticker(self): return self.ticker; #get transactions def get_transactions(self): return self.trans; #get mkt_price def get_mkt_price(self): return self.mkt; #get date def get_date(self): df = self.get_mkt_price() return df.index.values #start date def get_start_date(self): df = self.get_date() return df[0]; #end date def get_end_date(self): df = self.get_date() return df[-1]; #get transaction dates def get_transDate(self): df = self.get_transactions() return df.index.values #get tranaction cost in dollars def get_cost(self): df = self.get_transactions() df["Cost"]= df["Quantity"]*df["Price"] return df["Cost"]; #get pnl of single stock portfolio def get_pnl(self, buy_or_sell=True, condition=True, quantity=True, price=True, position=True, ave_open=True, mkt_price=True, realized=True, unrealized=True, total=True): df = self.get_transactions() df1 = self.get_mkt_price() #update positions based on transactions df["Position"]= np.cumsum(df["Quantity"]) #set lagged position df["Lag Position"] = df["Position"].shift(1) df["Lag Position"] = df["Lag Position"].fillna(value=0) #get trade type: open, increase, partially decrease, reverse or close position df["Condition"]=0 #open position df.loc[(df["Lag Position"]==0),"Condition"]= 1 #increase position df.loc[(np.sign(df["Quantity"])==np.sign(df["Lag Position"])), "Condition"]= 2 #partially decrease position df.loc[(np.sign(df["Position"])==np.sign(df["Lag Position"])) & (np.sign(df["Quantity"])!= np.sign(df["Lag Position"])), "Condition"] = 3 #reverse position df.loc[(np.sign(df["Position"])!=np.sign(df["Lag Position"]))& (df["Lag Position"]!=0),"Condition"]= 4 #close position df.loc[df["Position"]==0, "Condition"]= 5 #calculate average open price temp = aop.ave_open_price(df["Condition"].values,df["Quantity"].values, df["Price"].values,df["Lag Position"].values) #add to dataframe df["Ave_Open_Price"]=temp #set tranaction type: buy or sell df["Buy/Sell"]=np.where(df["Quantity"]>0,"B","S") #calculate realized gains df["r_gain"]=0.0 df["q"]=df["Quantity"].abs() #realized gain when position reverse or partially decrease df.loc[(df["Buy/Sell"]=="B") & ((df["Condition"]== 3)| (df["Condition"]==4)),"r_gain"]=((df["Ave_Open_Price"].shift(1)-df["Price"])* df["q"]) df.loc[(df["Buy/Sell"]=="S") & ((df["Condition"]== 3)| (df["Condition"]==4)),"r_gain"] = ((df["Price"]-df["Ave_Open_Price"].shift(1))* df["q"]) #realized gain when position closes df.loc[(df["Buy/Sell"]=="B") & (df["Condition"]== 5),"r_gain"]=( (df["Ave_Open_Price"].shift(1)-df["Price"])*df["q"]) df.loc[(df["Buy/Sell"]=="S") & (df["Condition"]== 5),"r_gain"]=( (df["Price"]-df["Ave_Open_Price"].shift(1))*df["q"]) #add transactions for price and quanity columns df1= df1.join(df, lsuffix="_df1", rsuffix="_df") #replace NaN with zeros df1= df1.fillna(value=0) #update positions df1["Position"]= np.cumsum(df1["Quantity"]) #update realized gains df1["Realized"]=np.cumsum(df1["r_gain"]) #update average open price (cumsum() with reset @ !=0) df1["temp"]=0 df1.loc[df1["Ave_Open_Price"]!=0,"temp"]=1 df1["temp2"]=df1["temp"].cumsum() df1["temp"]=df1.groupby(["temp2"])["Ave_Open_Price"].cumsum() df1["Ave_Open_Price"]=df1["temp"] #drop uncessary columns df1=df1.drop(["Lag Position","q","r_gain","temp","temp2"],axis=1) #rearrange columns df1 = df1[["Buy/Sell","Condition","Quantity","Price", "Position", "Ave_Open_Price","Mkt_Price","Realized"]] #calculate unrealized gains df1["Unrealized"]=(df1["Mkt_Price"]-df1["Ave_Open_Price"])*df1["Position"] #calculate total p&l df1["Total P&L"]=df1["Realized"]+df1["Unrealized"] #customize and returns data based on needs of the user if buy_or_sell==False: df1=df1.drop(["Buy/Sell"],axis=1) if condition == False: df1=df1.drop(["Condition"],axis=1) if quantity == False: df1=df1.drop(["Quantity"],axis=1) if price == False: df1=df1.drop(["Price"],axis=1) if position == False: df1=df1.drop(["Position"],axis=1) if ave_open == False: df1=df1.drop(["Ave_Open_Price"],axis=1) if mkt_price == False: df1=df1.drop(["Mkt_Price"],axis=1) if realized == False: df1=df1.drop(["Realized"],axis=1) if unrealized == False: df1=df1.drop(["Unrealized"],axis=1) if total == False: df1=df1.drop(["Total P&L"],axis=1) return df1; #get percent change in portfolio def get_pct_change(self): df= self.get_pnl() df1= df["Total P&L"] df1= (df1.pct_change())*100 df1= df1.replace([np.nan, np.inf],0) return df1; #calculates beta given two series @staticmethod def calculate_beta(returns,benchmark): #correlateion between returns and benchmark corr = returns.corrwith(benchmark) #standard deviation of percent change pct_returns = (returns.pct_change()) pct_benchmark = (benchmark.pct_change()) std_returns = pct_returns.std() std_benchmark = pct_benchmark() #formula for beta beta = corr*(std_returns/std_benchmark) return beta; #get beta of stock def get_stock_beta(self,benchmark): df = self.get_mkt_price() beta = Stock.calculate_beta(df,benchmark) return beta #get beta of returns def get_returns_beta(self,benchmark): df = self.get_pct_change() beta = Stock.calculate_beta(df,benchmark) return beta #get market value def get_mkt_value(self): df= self.get_pnl() df1 = df["Mkt_Price"]*df["Position"] return df1; #copy pnl to excel file def copy_to_excel(self,filename, sheetname, buy_or_sell=True, condition=True, quantity=True, price=True, position=True, ave_open=True, mkt_price=True, realized=True, unrealized=True, total=True): df = self.get_pnl(buy_or_sell, condition, quantity, price, position, ave_open, mkt_price, realized, unrealized, total) writer = pd.ExcelWriter(filename) df.to_excel(writer,sheetname) writer.save() #plot running position and p&l def plot_stock(self,num=0): style.use("ggplot") #get data tkr = self.get_ticker() date= self.get_date() df= self.get_pnl() total_pnl = df["Total P&L"]/1000000 real_gains= df["Realized"]/1000000 unreal_gains= df["Unrealized"]/1000000 position= df["Position"]/1000 plt.figure(figsize=(10,7)) #create subplots ax1 = plt.subplot2grid((6,1), (0,0), rowspan =5, colspan =1,) plt.title(tkr.upper(),loc='left',color='#8b8b8b',fontsize=20) plt.ylabel("PnL (in millions of US$)", color='#636363', labelpad=10) ax2 = plt.subplot2grid((6,1), (5,0), rowspan=1, colspan=1, sharex=ax1) plt.ylabel("Position" , color='#636363', labelpad=10) #changes made to pnl plot(ax1) ax1.plot_date(date,total_pnl,'-', label="Total", color="#0715FD", linewidth=.7)#totla pnl ax1.plot_date(date,real_gains,'--', label="Realized",color='#0715FD', linewidth=.7)#realized pnl ax1.plot_date(date,unreal_gains,'-', label="Unrealized",color='#aeabab', linewidth=.7)#unrealized pnl ax1.legend(loc=2, frameon=False,ncol=3) ax1.set_facecolor('w')#change background of chart ax1.spines["left"].set_color('#8b8b8b') #formats y axis ticklabels to include commas ax1.get_yaxis().set_major_formatter(mticks.FuncFormatter (lambda x, p:format(int(x), ','))) #max number of tickers ax1.yaxis.set_major_locator(mticks.MaxNLocator(nbins=7, prune='both')) ax1.tick_params(axis='both',labelcolor = '#636363',length=0) ax1.axhline(y=0, color='#636363',linewidth=.7) ax1.grid(False) #changes made to position plot(ax2) ax2.plot_date(date, position, '-', color='w',linewidth='.01') ax2.set_facecolor('w') ax2.spines["left"].set_color('#8b8b8b') ax2.fill_between(date,0,position, facecolor='#aeabab') #format date ax2.xaxis.set_major_formatter(mdates.DateFormatter('%b %y')) ax2.set_xlim(xmin=date[0])#set x-axis minimum ax2.get_yaxis().set_major_formatter(mticks.FuncFormatter (lambda x, p:'{0}K'.format(int(x)))) ax2.xaxis.set_major_locator(mticks.MaxNLocator(nbins=10)) ax2.yaxis.set_major_locator(mticks.MaxNLocator(nbins=5,prune='upper')) ax2.tick_params(axis='both',labelcolor = '#636363',length=0) ax2.grid(False) #hide x axis tick labels for ax1 plt.setp(ax1.get_xticklabels(),visible=False) plt.xticks(rotation=45) plt.tight_layout() plt.show() return;
a068f91c95f9f7e57dd9135ee04abe37d4e97eda
Iam-El/Random-Problems-Solved
/leetcodePractice/easyProblems/Remove Outermost parenthesis.py
476
3.578125
4
def removeOuterParenthesis(s): count1=0 count2=0 val=[] res='' for i in range(0,len(s)): if s[i]==')': count1=count1+1 val.append(s[i]) if s[i]=='(': count2=count2+1 val.append(s[i]) if count1==count2: val=val[1:-1] res=res+''.join(val) count1 = 0 count2 = 0 val=[] return res s='()()' print(removeOuterParenthesis(s))
89111aea568a83e60c894492a56e2bdd11b561f2
ResolveWang/algorithm_qa
/other/q7.py
959
3.875
4
""" 问题描述:有一个机器按自然数序列的方式吐出球(1号球、2号球、3号球...),你有一个 袋子,袋子最多能装K个球,除了袋子外,没有别的可用空间。设计一种方案,使得当机器 吐出第N个球的时候(N>K),你袋子中的球数是K个,同时可以保证从1号球到N号球中的每一 个,被选进袋子的概率都是K/N. """ import random class KNRandomGetter: @classmethod def get_res(cls, k, n): if k < 1 or n < 1: return if n <= k: return list(range(1, n+1)) res = list(0 for _ in range(k)) for i in range(k): res[i] = i + 1 for i in range(k, n-k): value = random.randint(1, i+1) if value <= k: random_index = random.randint(0, k-1) res[random_index] = i return res if __name__ == '__main__': print(KNRandomGetter.get_res(10, 10000))
57b1aa16ae56a639ddb8fbcd617cef833856c4ba
raulgranja/Python-Course
/PythonExercicios/calculadora.py
2,310
4.3125
4
# -*- coding: utf-8 -*- print(" ") print("-----------CALCULADORA v1.0-----------") print(" ") print("Realiza operações de soma, subtração, divisão, multiplicação e exponencial") print("Os sinais de cada uma dessas operações são:") print(" ") print('(+): soma') print("(-): subtração") print("(/): divisão") print("(*): multiplicação") print("(**): exponencial") print(" ") print("Como utilizar:") print("Por exemplo, se eu quero fazer uma soma de 2+2, eu coloco da seguinte forma:") print("Digite o primeiro número: 2") print("Qual é o operador? +") print("Digite o segundo número: 2") print("O resultado é: 4 <-- O resultado aparecerá aqui") print(" ") print(" ") print(" ") sair = False while not sair: valor1 = input("Digite o primeiro número: ") valor1 = int(valor1) operador = input("Qual é o operador? ") valor2 = input("Digite o segundo número: ") valor2 = int(valor2) if operador == "+": print(" ") print("O resultado é: ", (valor1 + valor2)) print(" ") if operador == "-": print(" ") print("O resultado é: ", (valor1 - valor2)) print(" ") if operador == "*": print(" ") print("O resultado é: ", (valor1 * valor2)) print(" ") if operador == "/": print(" ") print("O resultado é: ", (valor1 / valor2)) print(" ") if operador == "**": print(" ") print("O resultado é: ", (valor1 ** valor2)) print(" ") teste = input("Deseja sair? (s/n): ") if teste == "s": sair = True if teste == "n": sair = False print(" ")
aba5c38867bf1f3106d9981090a874e9efe79b4b
mjaitly/LeetCode
/Algorithms/Easy/28_Implement_strStr.py
1,610
4.1875
4
''' Implement strStr(). Return the index of the first occurrence of needle in haystack, or -1 if needle is not part of haystack. Example 1: Input: haystack = "hello", needle = "ll" Output: 2 Example 2: Input: haystack = "aaaaa", needle = "bba" Output: -1 For the purpose of this problem, we will return 0 when needle is an empty string. ''' # Runtime: 44 ms, faster than of Python3 online submissions for Implement strStr(). # Memory Usage: 14 MB, less than of Python3 online submissions for Implement class Solution: def strStr(self, haystack: str, needle: str) -> int: if not needle: return 0 l = len(needle) for i in range(len(haystack)): if haystack[i] == needle[0]: if len(haystack) >= i + l: if haystack[i:i+l] == needle: return i return -1 if __name__ == "__main__": haystack = "heloollollll" needle = "llll" sol = Solution() result = sol.strStr(haystack, needle) print(result) ''' def strStr(self, haystack: str, needle: str) -> int: if needle in haystack: return haystack.index(needle) else: return -1 ''' ''' # Runtime: 36 ms, faster than of Python3 online submissions for Implement strStr(). # Memory Usage: 14 MB, less than of Python3 online submissions for Implement class Solution: def strStr(self, haystack: str, needle: str) -> int: if not needle: return 0 for i in range(len(haystack) - len(needle) + 1): if haystack[i:i + len(needle)] == needle: return i return -1 '''
00ef0929c090c87e1ebfdb39005e5d95a95205be
meysiolio/Collections.OrderedDict
/Collections.OrderedDict.py
273
3.6875
4
from collections import OrderedDict commodities = OrderedDict() for _ in range(int(input())): item, number = input().rsplit(maxsplit=1) commodities[item] = commodities.get(item, 0 ) + int(number) for item,quantity in commodities.items(): print(item,quantity)
11346f1fb81cf64fd30becf83ce3bfa922dc98cf
zoobereq/comp-ling-assignments
/Methods in CompLing I/MP2/fibonacci_numbers.py
1,180
4.125
4
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Oct 13 13:42:21 2019 @author: zub """ """ def fibonacci(number: int) -> int: if number == 0: return 0 elif number == 1: return 1 else: return fibonacci(number-1) + fibonacci(number-2) print(fibonacci(100)) The above was the first attempt, which worked oonlhy for the first handful of numbers, and didn't finish computing the 100th position. """ def fibonacci(number: int) -> int: first_number_in_sequence = 0 second_number_in_sequence = 1 if number <= 0: return("Enter a positive integer.") elif number == 1: return first_number_in_sequence elif number == 2: return second_number_in_sequence for number in range(2, number+1): next_number_in_sequence = first_number_in_sequence + second_number_in_sequence first_number_in_sequence = second_number_in_sequence second_number_in_sequence = next_number_in_sequence return(next_number_in_sequence) print(fibonacci(100)) assert fibonacci(1) == 0 assert fibonacci(2) == 1 assert fibonacci(3) == 2 assert fibonacci(100) == 354224848179261915075
9f25b67229804e00964911da42f0d42a2e733dc7
Charptr0/Kruptos-Encryption
/main.py
6,996
3.84375
4
import tkinter as tk from tkinter import Label, filedialog from encryption import * from constants import * app = tk.Tk() #Start the app app.title("Kruptos Encryption") #Title app.config(bg= darkColor) app.geometry("800x800") #Resolution app.resizable(0,0) def openEncrypt(): #If the user clicked the "encrypted button" decryptButton.place_forget() creditsButton.place_forget() encryptButton.place_forget() chooseFileButton.place(relx=0.16, rely=0.3) chooseFileButton.config(text="Click here to choose a file to encrypt") def askUserForFile():# this lets the user select a file and the user can chose a different file if needed. Also restricts filetypes to .txt and .json global fileName fileName = filedialog.askopenfilename(title="Select a file to encrypt", filetypes=((".txt files", "*.txt"), (".json files", "*.json"))) if(fileName != ""): fileSelectedLabel.place(relx=0.27, rely=0.27) encryptConfirmationButton.place(relx=0.27, rely=0.5) chooseFileButton.config(text="Choose a different file") chooseFileButton.place(relx=0.27, rely=0.7) def askUserForEncryptedtFile(): #User picks file to decrypt and the key. User can change the file if needed. File types are restricted to .txt and .json global encryptedFilePath encryptedFilePath = filedialog.askopenfilename(title="Select a file to decrypt", filetypes=((".txt files", "*.txt"), (".json files", "*.json"))) if(encryptedFilePath != ""): fileSelectedLabel.place(relx=0.27, rely=0.2) chooseKeyButton.place(relx=0.25, rely=0.5) decryptChooseButton.config(text = "Select a new file", padx=112) decryptChooseButton.place(relx=0.25,rely=0.65) def askUserForKey(): #this lets the user decrypt the selected file when you click the decryptButtonFinal global keyFilePath keyFilePath = filedialog.askopenfilename(title="Select the appropriate key", filetypes=((".key files", "*.key"), ("all files", "*"))) if(keyFilePath != ""): keySelectedLabel.place(relx=0.3609, rely=0.36) decryptButtonFinal.place(relx=0.25, rely=0.8) def actualDecrypting(): #this decrypts the file errMsg = decryptFile(encryptedFilePath, keyFilePath) if errMsg != "Error": #put the success label here keySelectedLabel.place_forget() fileSelectedLabel.place_forget() decryptButtonFinal.place_forget() unsuccessfullyDecryptedLabel.place_forget() successfullyDecryptedLabel.place(relx=0.1,rely=0.15) reEncryptButton.place(relx=0.25,rely=0.8) else: #put the unsuccess label here unsuccessfullyDecryptedLabel.place(relx=0.096,rely=0.1) keySelectedLabel.place_forget() fileSelectedLabel.place_forget() decryptButtonFinal.place_forget() def reEncrypt(): reEncryptTheFile() mainMenuButton.place(relx=0.38, rely=0.5) successfullyReEncryptLabel.place(relx=0.06,rely=0.17) successfullyDecryptedLabel.place_forget() chooseKeyButton.place_forget() decryptChooseButton.place_forget() reEncryptButton.place_forget() def encryptFile(): #If the encrypt button has been pressed global fileName keyName = generateNewKey(fileName) keyLabel.config(text="Please do not delete your key!\nYour key is saved in " + keyName) keyLabel.place(relx=0.1, rely=0.8) chooseFileButton.place_forget() fileSelectedLabel.place_forget() encryptConfirmationButton.place_forget() fileEncryptMessage.place(relx=0.14, rely=0.27) mainMenuButton.place(relx=0.38, rely=0.5) def decryptFileMenu(): encryptButton.place_forget() creditsButton.place_forget() decryptButton.place_forget() decryptChooseButton.place(relx=0.25, rely=0.2) def returnToMainMenu(): #Return back to menu names.place_forget() successfullyReEncryptLabel.place_forget() fileEncryptMessage.place_forget() mainMenuButton.place_forget() keyLabel.place_forget() encryptButton.place(relx=0.34, rely=0.3) decryptButton.place(relx=0.34, rely=0.5) creditsButton.place(relx = 0.4, rely=0.8) def contributions(): encryptButton.place_forget() decryptButton.place_forget() creditsButton.place_forget() names.place(relx=0.25, rely=0.3) mainMenuButton.place(relx=0.4, rely=0.8) title = tk.Label(text="Kruptos Encryption", bg=darkColor, fg= whiteTextColor, font=(fontName, 20, "bold")) #Create the title title.place(relx=0.337, rely=0) encryptButton = tk.Button(text="Encrypt a file", padx=50, pady=10, font=(fontName, 20), bg = buttonsColor, fg = whiteTextColor, command=openEncrypt) encryptButton.place(relx=0.34, rely=0.3) decryptButton = tk.Button(text = "Decrypt a file", padx=50, pady=10, font =(fontName, 20), bg = buttonsColor, fg = whiteTextColor, command=decryptFileMenu) decryptButton.place(relx=0.34, rely=0.5) creditsButton = tk.Button(text = "Credits", padx=30, pady=10, font=(fontName, 20 ), bg = darkColor, fg = whiteTextColor, command=contributions) creditsButton.place(relx = 0.4, rely=0.8) chooseFileButton = tk.Button(text="Click here to choose a file to encrypt", padx=60, pady=10, font=(fontName, 20), command=askUserForFile) encryptConfirmationButton = tk.Button(text="Encrypt the selected file", padx=50, pady=10, font=(fontName, 20), command=encryptFile) mainMenuButton = tk.Button(text="Main Menu", padx=20, pady=10, font=(fontName, 20), command=returnToMainMenu) fileEncryptMessage = tk.Label(text="File successfully encrypted", font=(fontName, 30), padx=80, pady=10, bg = darkColor, fg = fileSelectedColor) fileSelectedLabel = tk.Label(text="File selected", font=(fontName, 30), padx=80, pady=10, bg = darkColor, fg = fileSelectedColor) keyLabel = tk.Label(text="",font=(fontName, 20), padx=80, pady=10, bg = darkColor, fg = keyNameColor) chooseKeyButton = tk.Button(text="Choose a appropriate key",padx=60, pady=10, font=(fontName, 20), command=askUserForKey) decryptChooseButton = tk.Button(text="Choose a file to decrypt", padx=58, pady=10, font=(fontName, 20), command=askUserForEncryptedtFile) decryptButtonFinal = tk.Button(text="Decrypt", padx=160, pady=10, font=(fontName, 20), bg="green", command=actualDecrypting) keySelectedLabel = tk.Label(text="Key selected",font=(fontName, 30), bg = darkColor, fg = fileSelectedColor) successfullyDecryptedLabel = tk.Label(text="The file has been successfully decrypted", font=(fontName, 30), bg=darkColor, fg="green") unsuccessfullyDecryptedLabel = tk.Label(text="Something went wrong, wrong key or file", font=(fontName, 30), bg=darkColor, fg="red") reEncryptButton = tk.Button(text="Re-encrypt", font=(fontName, 30), bg="green", command=reEncrypt, padx=113) successfullyReEncryptLabel = tk.Label(text="The file has been successfully re-encrypted", font=(fontName, 30), bg=darkColor, fg="green") names = tk.Label(text="Made by\nChenhao Li\nRiaz Ahmed\nYeiry Chaverra\nRamon Camilo\n\nCUNY Hackathon 2021 ", font=(fontName, 30), bg=darkColor, fg=whiteTextColor) app.mainloop() #Start the app
61751a6a68d6237fec100933916bf9122697e82c
psihanorak/critter-creation
/animals/animal.py
228
3.53125
4
from datetime import date class Animal: def __init__(self, name, species, food, chip_num): self.name = name self.species = species self.food = food self.date_added = date.today() self._chip_num = chip_num
7d245d99a0b417157de27fd129ae475b16beacda
lcppcl/S1
/day3/8函数.py
1,246
3.984375
4
def say(): #定义函数 print('hello, python') return 123 #函数返回值 f = say #把函数名赋给另一个变量,f指向这个函数 f() #执行函数 say() #执行函数 value = f() #拿到返回值 print(value) #默认参数必须放在指定参数后面 def show(a1, a2=1, a3=3): print('ok') #指定参数 def show2(a1, a2): print(a1, a2) show2(a2=1,a1=3) #动态参数 def show(*arg): #一个*把传入的参数当成元祖来处理 print(arg,type(arg)) show(1,2,3) def show(**arg): #两个*把传入的参数当成字典来处理 print(arg,type(arg)) show(n1=99,bb='bb') def show(*args, **kwargs): #两个*必须放在一个*之后 print(args,type(args)) print(kwargs,type(kwargs)) show(11, 22, 33, n1=22, ll='ll') #实参也要一一对应 l = [11, 22, 33, ] d = {'n1': 22, 'll': 'll'} show(*l, **d) #动态参数实现格式化 s1 = '{0} is {1}' s2 = '{name} is {actor}' l = ['lcp', 'ok'] d = {'name': 'lcp', 'actor': 'ok'} result = s1.format(*l) result2 = s2.format(**d) print(result) print(result2) #lambda表达式 #创建形式参数a #函数内容a+1,并把结果return fun = lambda a: a+1 #:前面的为形式参数,后面为函数体 ret = fun(99) print(ret)
19b68a9f81c246c5873563108031c09e9a131eb8
kimxoals/Algorithm_Practice
/07/namu_0723.py
335
3.828125
4
n = int(input()) max = 2*n-1 for i in range(2*n-1): if i < n - 1: space = i else: space = 2*(n-1)-i fill = max - 2 * space print(' ' * space + '*' * fill) ''' OR for i in range(n-1,0,-1): print(('*' * (2 * i + 1)).center(2 * n)) for i in range(n): print(('*' * (2 * i + 1)).center(2 * n)) '''
a12442a56ac007a1c54873f45ae2931e7c0309ee
Seiji-Armstrong/seipy
/seipy/pandas_/base.py
14,195
4
4
""" helper functions to use with pandas library. Conventions: df -> pd.DataFrame Ideology: - Write functions that do one thing - Try write functions that are idempotent """ from functools import reduce from collections import namedtuple import numpy as np import pandas as pd import re def drop_uniq_cols(df): """ Returns DataFrame with columns that have more than one value (not unique) """ return df.loc[:, df.apply(pd.Series.nunique) > 1] def non_x_cols(df, x): """ Returns DataFrame with columns that contain values other than x. Drops any column that only contains x. """ cond_1 = (df.apply(pd.Series.nunique) == 1) cond_2 = (df.iloc[0] == x) return df.loc[:, ~(cond_1 & cond_2)] def df_duplicate_row(df, row, row_cols): """ (Check logic) Creates numpy array from df (pd.DataFrame), returns non_duplicate rows. """ X = df[row_cols].as_matrix().astype(np.float) fv_ix = [ix for ix, el in enumerate(X) if (el == row.values).all()] df_rows = df.ix[fv_ix] return df_rows def filt(orig_df, **params): """ Filter DataFrame on any number of equality conditions. Example usage: >> filt(df, season="summer", age=(">", 18), sport=("isin", ["Basketball", "Soccer"]), name=("contains", "Armstrong") ) >> a = { 'season': "summer", 'age': (">", 18)} >> filt(df, **a) # can feed in dict with **dict notation notes: any input with single value is assumed to use "equivalent" operation and is modified. numpy.all is used to apply AND operation element-wise across 0th axis. NA values are filled to False for conditions. """ input_df = orig_df.copy() if not params.items(): return input_df def equivalent(a, b): return a == b def greater_than(a, b): return a > b def greater_or_equal(a, b): return a >= b def less_than(a, b): return a < b def less_or_equal(a, b): return a <= b def isin(a, b): return a.isin(b) def notin(a, b): return ~(a.isin(b)) def contains(a, b): return a.str.contains(b) def notcontains(a, b): return ~(a.str.contains(b)) def not_equivalent(a, b): return a != b operation = {"==": equivalent, "!=": not_equivalent, ">": greater_than, ">=": greater_or_equal, "<": less_than, "<=": less_or_equal, "isin": isin, "notin": notin, "contains": contains, "notcontains": notcontains} cond = namedtuple('cond', 'key operator val') filt_on = [(el[0], el[1]) if isinstance(el[1], tuple) else (el[0], ("==", el[1])) for el in params.items()] # enforcing equivalence operation on single vals. conds = [cond(el[0], el[1][0], el[1][1]) for el in filt_on] logic = [operation[x.operator](input_df[x.key], x.val).fillna(False) for x in conds] return input_df[np.all(logic, axis=0)] def filt_read_csv(file_path, chunksize=100000, **filt_conds): """ read a csv in chunks while filtering on conditions wrapper of pd.read_csv and uses pandas_.base.filt """ iter_csv = pd.read_csv(file_path, iterator=True, chunksize=chunksize) return pd.concat([filt(chunk, **filt_conds) for chunk in iter_csv], ignore_index=True) def display_max_rows(max_num=500): """sets number of rows to display (useful in Jupyter environment) """ pd.set_option('display.max_rows', max_num) def assign_index(input_df, index_col='idx'): """Return input DataFrame with id col. """ out_df = input_df.reset_index(drop=True) out_df.loc[:, index_col] = out_df.index return out_df def enumerate_col(input_df, enumerate_over, new_col="newCol"): """ Enumerate unique entries in enumerate_over_col and add new column newCol. """ new_df = input_df.copy() unique_vals = new_df[enumerate_over].unique() enumerated_dict = {vals: ix for ix, vals in enumerate(unique_vals)} new_df.loc[:, new_col] = new_df[enumerate_over].map(lambda x: enumerated_dict[x]) return new_df def concat_df_list(list_csv, comment='#', header='infer', sep=',', nrows=None): """Concatenates list of dataframes first created by list comprehension. """ return pd.concat([pd.read_csv(el, comment=comment, header=header, sep=sep, nrows=nrows) for el in list_csv], ignore_index=True) def merge_dfs(dataframe_list, join_meth='outer', on=None, left_index=False, right_index=False): """ Merge together a list of DataFrames. """ def simple_merge(df1, df2): return pd.merge(left=df1, right=df2, on=on, left_index=left_index, right_index=right_index, how=join_meth) merged_frame = reduce(simple_merge, dataframe_list) return merged_frame def uniq_x_y(X, y, output_index=False): """ Given a X,y pair of numpy arrays (X:2D, y:1D), return unique rows (arrays) of X, with corresponding y values. """ uniq_df = pd.DataFrame(X).drop_duplicates() X_uniq = uniq_df.values y_uniq = y[uniq_df.index] if output_index: return X_uniq, y_uniq, uniq_df.index return X_uniq, y_uniq def gby_count(df, col, col_full_name=False): """ Perform groupby count aggregation, rename column to count, and keep flat structure of DataFrame. Wrapper on pd.DataFrame.groupby """ if col_full_name: col_name = "count_" + col else: col_name = "count" return df.groupby(col).size().reset_index(name=col_name).sort_values(by=col_name, ascending=False) def distribute_rows(df, key_col): """ Distributes rows according to the series found in key_col. Example: >> df = pd.DataFrame([(el+3, el) for el in range(4)], columns=['x', 'n']) >> df.T 0 1 2 3 x 3 4 5 6 n 0 1 2 3 >> df.loc[np.repeat(df.index.values,df.n)].T 1 2 2 3 3 3 x 4 5 5 6 6 6 n 1 2 2 3 3 3 """ distribution_index = np.repeat(df.index.values, df[key_col]) return df.loc[distribution_index] def resample_by_col(df, gby_col='Cluster ID', scale_by='identity'): """ Resample the rows of DataFrame. Groupby is first performed on gby_col, then counts are rescaled by function defined in scale_by (identity, log, sqrt). Groupby DataFrame is then resampled by new distribution, and an outer join is performed with original.drop_duplicates(gby_col). Note: inputting `df` and `df.drop_duplicates(gby_col)` lead to different results in `gby_col_count` col. Always input original. Improvements: create all_n func and do pass function curried like in scala """ gby_df = df.groupby(gby_col).size().reset_index(name=gby_col + "_count") def identity(x): return x def all_one(x): return 1 def all_two(x): return 2 def all_three(x): return 3 scale_funcs = {'log': np.log, 'sqrt': np.sqrt, 'identity': identity, 'all_one': all_one, 'all_two': all_two, 'all_three': all_three} distribution = gby_df[gby_col + "_count"].map(scale_funcs[scale_by]).map(np.ceil).map(np.int) df_new_dist = gby_df.loc[np.repeat(gby_df.index.values, distribution)] return pd.merge(df_new_dist, df.drop_duplicates(gby_col), on=gby_col, how='outer') def convert_all_elements_tuple(input_df): """ If all elements are lists or numpy arrays, these are not hashable. So we can convert to tuples, in order to be able to perform groupbys. """ return input_df.applymap(tuple) def explode_rows_vertically(df): """ For use on DataFrames containing lists in each field. Note: per row, lists in each column must be equal in length. They can, however, differ in length from row to row. Explode lists in each column of input DataFrame vertically, one row at a time. Return DataFrame of exploded elements. Note we could also use `+= zip(*[df[col][ix] for col in df])` """ exploded_list = [] for ix, row in df.iterrows(): exploded_list += zip(*row.values) return pd.DataFrame(exploded_list) def str_list_to_tuple_str_series(col, regex_pattern='[A-Z]\d+'): """ Convert string of lists into tuples of strings, for each row in column. regex_pattern determines string tokens. """ if not isinstance(col[0], str): print("error: str expected, instead {} found.".format(type(col[0]))) return col else: p = re.compile(regex_pattern) return col.apply(p.findall).apply(tuple) def df_to_namedtups(df, name="Pandas"): """ Given a DataFrame, df, return a list of namedtuples """ return list(df.itertuples(index=False, name=name)) def gby_uniqlists(in_df, pivot_col=None, col=None) -> pd.DataFrame: """ Computes aggregates for each unique value in `pivot_col` and returns new DataFrame with list of unique values in col + nunique in col. :param in_df: pd.DataFrame; input DataFrame :param pivot_col: str; column to groupby (pivot) off :param col: str; column to aggregate values on. :return: pd.DataFrame; groupby aggregates DataFrame with unique vals in list + length. """ gby_temp = in_df.groupby(pivot_col)[col].apply(set).apply(list).reset_index() return gby_temp.assign(len_=gby_temp[col].apply(len)).rename( columns={'len_': col + '_uniq_len', col: col + '_uniq'}) def gby_multiframe(in_df, pivot_col=None, cols=None) -> pd.DataFrame: """ wrapper of velpy.helper.pandas_.gby_uniqlists performed over list of cols, then joined on pivot_col. :param in_df: pd.DataFrame; input DataFrame :param pivot_col: str; column to groupby (pivot) off :param cols: list[str]; list of columns to aggregate values on. :return: pd.DataFrame; merged groupby aggregates DataFrame """ cols = [col for col in cols if col in in_df.columns] return merge_dfs([gby_uniqlists(in_df, pivot_col=pivot_col, col=col) for col in cols], on=pivot_col) def nonuniq(orig_df): """ return DataFrame of sorted non-uniq counts of fields (greater than 1). """ return (orig_df.apply(pd.Series.nunique) .sort_values(ascending=False) .reset_index(name='uniq_count') .pipe(lambda x: x[x['uniq_count'] > 1]) ) def update_sub(orig_df, pivot_col=None, pivot_val=None, new_col=None, new_val=None): """ update a subset of DataFrame based on fixed boolean matching. """ out_df = orig_df.copy() out_df.loc[out_df[pivot_col] == pivot_val, new_col] = new_val return out_df def sorted_cols(orig_df): """ sort columns by name and return df """ cols = sorted(orig_df.columns) return orig_df[cols] def ddupe_with_precision(orig_df, precision=10): """ round original DataFrame to a given precision, drop_duplicates, return original dataframe with those rows indexed. """ return orig_df.loc[orig_df.round(precision).drop_duplicates().index] def mapping_2cols(orig_df, colx, coly): """ return dict mapping vals in colx to coly. Order is important. """ return dict(orig_df[[colx, coly]].drop_duplicates().values) def newcol_mapped(orig_df, orig_col, new_col, mapping): """ map a new column from an old column and a mapping dictionary """ new_vals = orig_df[orig_col].map(mapping).values return orig_df.assign(**{new_col: new_vals}) def prepend_comment(orig_df): """ prepend the first column name with a '#' """ input_df = orig_df.copy() first_col = input_df.columns[0] return input_df.rename(columns={first_col: '#' + first_col}) def remove_prepended_comment(orig_df): """ remove the '#' prepend to the first column name Note: if there is no comment, this won't do anything (idempotency). """ input_df = orig_df.copy() first_col = input_df.columns[0] return input_df.rename(columns={first_col: first_col.replace('#', "")}) def remove_double_quotes(orig_df: pd.DataFrame, quote_cols, all_cols=False) -> pd.DataFrame: """ Replace double quotes found in fields with two single quotes. This must be done for SQL queries to correctly parse fields in Hive (and others) """ def replace_quotes(x): if isinstance(x, str): return x.replace("\"", "''") return x out_df = orig_df.copy() if all_cols: return out_df.applymap(replace_quotes) else: out_df[quote_cols] = out_df[quote_cols].applymap(replace_quotes) return out_df def apply_uniq(df, orig_col, new_col, _func): """ Apply func to only unique entries and join with original to fill. Answered for: https://stackoverflow.com/questions/46798532/how-do-you-effectively-use-pd-dataframe-apply-on-rows-with-duplicate-values/ """ out_df = df.copy() if new_col in out_df: out_df = out_df.drop(new_col, axis='columns') return out_df.merge(out_df[[orig_col]] .drop_duplicates() .assign(**{new_col: lambda x: x[orig_col].apply(_func)} ), how='inner', on=orig_col) def mult_types(df): """ Return series of columns with unique number of types per col Can be useful to see which cols have more than 1 type, for example: >> counts = mult_types(df) >> counts[counts != 1] """ return df.applymap(type).drop_duplicates().apply(pd.Series.nunique) def collapse_hierarchy(orig_df: pd.DataFrame): """ this collapses multilevel pandas columns into a single level by joining tokens with underscore. Example: orig_cols = [('a', 'max'), ('a', 'size'), ('b', '')] new_cols = ['a_max', 'a_size', 'b'] """ gby = orig_df.copy() if isinstance(gby.columns, pd.core.indexes.multi.MultiIndex): gby.columns = ['_'.join(col).rstrip('_') for col in gby.columns.values] else: print("columns not MultiIndex, returning original.") return gby
7f385ad49fd391f4d9c4ee8652e72a1e6a44bee0
andylinpersonal/CSX.Python.Class.HW
/src/Lv8.3091.class.py
790
3.921875
4
#!/usr/bin/env python3 #-*- coding:utf8 -*- import os class student: ''' 說明文件區塊必須緊鄰class宣告 This is readme of class student ''' name = '' gender = '' grades = [] def __init__(self): self.name = input() self.gender = input() def avg(self): summ = 0 for i in range(len(self.grades)): summ += self.grades[i] return summ / int(len(self.grades)) def add(self, grade): self.grades.append(int(grade)) def fcount(self): cnt = 0 for i in range(len(self.grades)): if self.grades[i] < 60: cnt += 1 person = student() for i in range(3): person.add(input()) print(student.name) print(student.avg()) print(student.fcount())
3715f21805f93498d8736d1668cea43c7c5cffc4
BelowzeroA/artificial-thinking
/src/simple_train.py
93
3.640625
4
a = 0 f = 1 for i in range(1, 10): if i >= 5: print(f) else: print(a)
fd10658e7d4b2559afea854982342060a166aec2
wedunsto/ContinuedPythonLearning
/testdf.py
567
3.53125
4
import pandas as pd test = dict() value = [] color = [] df = pd.DataFrame() test["1"] = [1,2,3,4,5,6] test["2"] = [7,8,9,10,11,12] for keys in test.keys(): for val in test[keys]: value.append(val) color.append(keys) df["Value"] = value df["Color"] = color df.to_csv("practicedictionary.csv") print(df.columns) #columns = ["Red","Green","Blue"] #df = pd.DataFrame([[1,2,3],[4,5,6]],columns = columns) #print(df,"\n\n") #df['Yellow'] = [2,1] #df.to_csv("testdf.csv") #df = pd.DataFrame() #df["Red"] = [1,2,3,4,5] #df["Blue"] = [] #+print(df)
d96dbc126677fb3b658644c693bf992ec5413ae8
PacktPublishing/Advanced-Deep-Learning-with-Keras
/chapter1-keras-quick-tour/plot-linear-1.1.1.py
668
4.03125
4
'''Utility for plotting a linear function with and without noise ''' import numpy as np import matplotlib.pyplot as plt want_noise = True # grayscale plot, comment if color is wanted plt.style.use('grayscale') # generate data bet -1,1 interval of 0.2 x = np.arange(-1,1,0.2) y = 2*x + 3 plt.xlabel('x') plt.ylabel('y=f(x)') plt.plot(x, y, 'o-', label="y") if want_noise: # generate data with uniform distribution noise = np.random.uniform(-0.2, 0.2, x.shape) xn = x + noise plt.ylabel('y=f(x)') plt.plot(xn, y, 's-', label="y with noised x") plt.legend(loc=0) plt.grid(b=True) plt.savefig("linear_regression.png") plt.show() plt.close('all')
4686fc9649755f93ea2ef8f534bfa39fd37ab726
ranjithsekar/python
/py-core/variables/variables-casting.py
442
4.15625
4
# Declaration my_num = 5 my_string = 'Ranjith' print(my_num) print(my_string) # Casting my_num1 = '4' my_num1_int = int(my_num1) print(my_num1_int) my_num2 = 3 my_num2_str = str(my_num2) print(my_num2_str) my_num3 = '6' my_num3_float = float(my_num3) print(my_num3_float) # Get the type print(type(my_num3)) print(type(my_num3_float)) # Multiple values one, two, three = "Lion", "Tiger", "Elephant" print(one + ' ' + two + ' ' + three)
5fbeb1e7345d98cd35bf1a0552cf82bdc650af89
jsh2333/pyml
/day6/gyudon_keras.py
1,635
3.546875
4
from keras.models import Sequential from keras.layers import Convolution2D, MaxPooling2D from keras.layers import Activation, Dropout, Flatten, Dense from keras.utils import np_utils import numpy as np # 분류 대상 카테고리 root_dir = "./image/" categories = ["normal", "beni", "negi", "cheese"] nb_classes = len(categories) image_size = 50 # 데이터 다운로드하기 --- (※1) def main(): X_train, X_test, y_train, y_test = np.load("./image/gyudon.npy") # 데이터 정규화하기 X_train = X_train.astype("float") / 256 X_test = X_test.astype("float") / 256 y_train = np_utils.to_categorical(y_train, nb_classes) y_test = np_utils.to_categorical(y_test, nb_classes) # 모델을 훈련하고 평가하기 model = model_train(X_train, y_train) model_eval(model, X_test, y_test) # 모델 구축하기 --- (※2) def build_model(in_shape): model = Sequential() model.add(Convolution2D(32, 3, 3, border_mode='same', input_shape=in_shape)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Convolution2D(64, 3, 3, border_mode='same')) model.add(Activation('relu')) model.add(Convolution2D(64, 3, 3)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(nb_classes)) model.add(Activation('softmax')) model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) return model
641038f5b2009b7c769009bca9343deb301e2935
niteesh2268/coding-prepation
/leetcode/Problems/1491--Average-Salary-Excluding-the-Minimum-and-Maximum-Salary-Easy.py
190
3.578125
4
class Solution: def average(self, salary: List[int]) -> float: sal = sum(salary) sal -= max(salary) sal -= min(salary) return sal/(len(salary)-2)
62a8885d420fb0036cb86ef861f3254c01d65414
tarcisiocsn/4epy
/ex_03_02.py
426
3.828125
4
sh=input('Enter Hours: ') sr=input('Enter Rate: ') try: fh=float(sh) # poderia colocar int(sh) mas é melhor assim fr=float(sr) except: print('Error, please enter a numeric input') quit() # não continua mais e não dará outro erro, só testar sem esse quit que verá o erro print(fh, fr) if fh>40: reg=fh*fr ovt=(fh-40.0)*(fr*0.5) pay=reg+ovt else: reg=fh*fr pay=reg print('Pay: ', pay)
9add02e688ea39612ad038b54e3e1e5e8174dfd1
python-13/homework
/04/宫祥瑞/str2int.py
291
3.859375
4
import cmath nums = {'0':0,'1':1,'2':2,'3':3,'4':4,'5':5,'6':6,'7':7,'8':8,'9':9} def char2int(s:str): num = 0 for i in range(len(s)): num += nums[s[i]] if not i == len(s)-1: num *= 10 return num s = '123456789' n = char2int(s) print(n) print(type(n))
8f40cd6705b014f2e2fa2ffd831171c77bd481f2
jamalamar/Python-intro-Functions
/dogclass.py
137
3.53125
4
class Dog: def __init__(self, name, age): self.name = name self.age = age * 7 alf = Dog("Alf", 5) print(alf.name) print(alf.age)
9287691cc3a376cfb3bfff8957b0a84520377f77
harihara-n/nba_draft_lottery
/generate.py
2,884
3.984375
4
from numpy.random import choice class TeamPercentage(object): def __init__(self, team_name, team_lottery_pick_percentage): self.team_name = team_name self.team_lottery_pick_percentage = team_lottery_pick_percentage def generate_draft_order(teams, num_lottery_picks): draft_order = [] while len(draft_order) < num_lottery_picks: chosen_team = choice([team.team_name for team in teams], 1, [team.team_lottery_pick_percentage for team in teams]) if chosen_team in draft_order: continue draft_order.append(chosen_team[0]) remaining_teams = filter(lambda team: team.team_name not in draft_order, teams) return draft_order + [team.team_name for team in remaining_teams] def get_file_input(): teams = [] print '\nInput file should be csv format with team name,lottery pick percentage in each line.' input_file_path = raw_input('Enter file path: ') with open(input_file_path) as file: for line in file: parts = line.strip().split(",") teams.append(TeamPercentage(parts[0], float(parts[1]))) return teams def get_console_input(): num_teams = int(raw_input('\nEnter the number of teams: ')) teams = [] print '\nWill now prompt you to enter the {} teams in draft order'.format(num_teams) for num_team in xrange(num_teams): team_name = raw_input('\nEnter team #{} name: '.format(num_team + 1)) team_lottery_pick_percentage = float(raw_input("Enter {}'s lottery pick percentage: ".format(team_name))) teams.append(TeamPercentage(team_name, team_lottery_pick_percentage)) return teams def verify_and_process_teams_input(teams): sum_lottery_pick_percentages = sum([team.team_lottery_pick_percentage for team in teams]) if sum_lottery_pick_percentages != 100: raise Exception('Lottery pick percentages of teams: {} is not 100'.format(sum_lottery_pick_percentages)) return map(lambda team: TeamPercentage(team.team_name, team.team_lottery_pick_percentage / 100.0), teams) def get_num_lottery_picks_input(num_teams): num_lottery_picks = int(raw_input('\nEnter the number of lottery picks: ')) if num_lottery_picks > num_teams: raise Exception( 'Number of lottery picks: {} cannot be greater than the number of teams: {}'.format( num_lottery_picks, num_teams ) ) return num_lottery_picks if __name__ == '__main__': print 'Welcome to the NBA Lottery Draft Generator' print '###########################################' input_option = raw_input('\nEnter 1 to read team input from a file or anything else to type input into the console: ').strip() if input_option == '1': teams = get_file_input() else: teams = get_console_input() teams = verify_and_process_teams_input(teams) num_lottery_picks = get_num_lottery_picks_input(len(teams)) draft_order = generate_draft_order(teams, num_lottery_picks) print '\nGenerated Draft Order' print '########################' for team in draft_order: print team print '\n'
0b503bd6eab4a7b2513b0265dab27b3c6abe3a4d
Will-Bailey/co
/coursework/SimulatedAnnealing.py
1,778
3.671875
4
from Ranking import Ranking import random import math class SimulatedAnnealing: tournament = None initial_ranking = None initial_temp = None temp_length = None cooling_ratio = None num_non_improve = None def __init__(self, tournament=None, initial_ranking=None, initial_temp=None, temp_length=None, cooling_ratio=None, num_non_improve=None): self.tournament = tournament self.initial_ranking = initial_ranking self.initial_temp = initial_temp self.temp_length = temp_length self.cooling_ratio = cooling_ratio self.num_non_improve = num_non_improve def search(self): stagnant_iterations = 0 current_ranking = self.initial_ranking best_ranking = self.initial_ranking current_temp = self.initial_temp while stagnant_iterations < self.num_non_improve: for i in range(1, self.temp_length): new_ranking = Ranking(neighbour=current_ranking, swap_index=random.randint(0, len(current_ranking)-2)) delta_score = new_ranking.get_kemeny_score()-current_ranking.get_kemeny_score() if new_ranking.get_kemeny_score() < best_ranking.get_kemeny_score(): best_ranking = new_ranking stagnant_iterations = -1 if delta_score <= 0: current_ranking = new_ranking print("Making downhill move") elif random.uniform(0,1) < math.e**((-delta_score)/current_temp): print("Making uphill move") current_ranking = new_ranking stagnant_iterations += 1 current_temp *= self.cooling_ratio return best_ranking
b5fc6718662c77c3d7cf9a07c4047cc122418f98
LizaChelishev/class1310
/page32_11.py
160
4
4
a = int(input('Enter 1st number: ')) b = int(input('Enter 2nd number: ')) for i in range (a, b+1, 1): print(i) for t in range (b, a-1, -1): print(t)
fe82faabfd06e204c1ff3d696862302cb5a1f16e
vdakinshin/learn1
/list.py
480
4.03125
4
mylist = ['Вася', 'Маша', 'Петя', 'Саша'] #print(mylist) #print(len(mylist)) mylist.append('Маша') #print(mylist) #print(len(mylist)) #a = mylist.count('Ольга') #print('Сколько Маш в списке? Ответ:{}' .format(a)) #print(mylist) #print(mylist[-2]) #mylist.sort() #print(mylist) #c = mylist.index('Петя') #print(c) #d = 'Вася' in mylist #print(d) #del mylist[3] print(mylist) mylist.remove('Маша') print(mylist)
977c8624759726001ac752c1f2b734abf6d9144c
calvinsettachatgul/cara
/algorithms/test/test_count.py
779
3.75
4
from count import count # sum up all the numbers from 1 to input_num # if its less than 1 then return 0 def test_input_0(): '''testing input 0''' assert count(0) == 0 def test_input_None(): '''testing input None''' assert count(None) == 0 def test_input_1(): '''testing input 1''' assert count(1) == 1 def test_input_2(): '''testing input 2''' assert count(2) == 3 def test_input_5(): '''testing input 2''' assert count(5) == 15 def test_input_neg3(): '''testing input 2''' assert count(-3) == 0 ''' count(-1) => 0 count(None) => 0 count(0) => 0 count(1) => 1 count(2) => 3 count(3) => 6 count(4) => 10 count(5) => 15 ''' ''' from sample import func def test_answer(): assert func(3) == 5 '''
e7f57109d7751d446a5507cf1ecc12506f53be60
squeakus/bitsandbytes
/astar/graph.py
340
3.5
4
all_nodes = [] for x in range(20): for y in range(5): all_nodes.append((y, x)) def neighbors(node): dirs = [[1, 0], [0, 1], [-1, 0], [0, -1]] result = [] for dir in dirs: neighbor = (node[0] + dir[0], node[1] + dir[1]) if neighbor in all_nodes: result.append(neighbor) return result
8f442a1871283ed5ed4c882b83d82710ec2ed10f
edunoodt/CFP_tkinter
/Tkinter Ej.2.a.py
3,657
4.03125
4
from tkinter import * # Define la ventana principal main = Tk() main.title('Calculadora de Financiación') C = StringVar() F = StringVar() I = StringVar() # Función convocada desde el boton de cálculo de la financiacón. # Utiliza la formula de calculo de valor actual de una renta fija prepaga: # Va=R * {[1-(1+tasa)^(-n)]/tasa} * (1+tasa) donde: # tasa: es el valor de la tasa anual por año, de interés compuesto # y es el informado por el enunciado # n: Es el número de períodos seleccionados que no puede exceder de 18 # R: es la renta o cuota, que despejada de esta formula y # nos permite encontrar el valor buscado) def valor_cuota (): total = float(monto_Entry.get()) num_cuotas = float(cuotas_Entry.get()) int_dic = {'0-2': 0, '3-6': 0.1, '7-12': 0.2, '13-18': 0.3} if num_cuotas < 19: if num_cuotas > 2: if 3 <= num_cuotas < 7: int = int_dic['3-6'] elif num_cuotas < 13: int = int_dic['7-12'] else: int = int_dic['13-18'] cuota = round((total / (1 - (1 + int) ** (-num_cuotas))) * int / (1 + int), 2) else: cuota = round(total / num_cuotas, 2) pagoTotal = round(cuota * num_cuotas, 2) intereses = round(pagoTotal-total, 2) C.set('$'+str(cuota)) F.set('$'+str(pagoTotal)) I.set('$'+str(intereses)) else: C.set('18 cuotas màximo') # Funcion ejecutada por el boton borrar def borrar(): monto_Entry.delete(first=0,last=22) monto_Entry.focus() cuotas_Entry.delete(first=0,last=22) ValorCuota_Entry.delete(first=0,last=22) ValorFinal_Entry.delete(first=0,last=22) ValorIntereses_Entry.delete(first=0,last=22) # Funcion para salir del loop y cerrar la ventana def salir(): main.destroy() #Ingreso del monto total del producto o total a financiar (texto y ventana de entrada) monto_Lbl=Label(text='Pago Total').grid(row=0,column=0) monto_Entry = Entry(main) monto_Entry.grid(row=0,column=1, padx=20, pady=20) # Ingreso de la acntidad de cuotas (texto y ventana de entrada) cuotas_Lbl=Label(text='Cantidad de cuotas').grid(row=1,column=0) cuotas_Entry = Entry(main) cuotas_Entry.grid(row=1, column=1, padx=20, pady=20) # Presentación del valor de la cuota ValorCuotaTxt_Lbl = Label(main, text='Valor de la cuota:').grid(row=2 , column=0) ValorCuota_Entry = Entry(main, textvariable=C) ValorCuota_Entry.grid(row=2, column=1, padx=20, pady=20) # Pago total o suma de todas las cuotas. No tiene significación financiera, ya que son # pagos realizados en distintos momentos. # Para poder sumarlos habría que llevarlos al mismo momento. ValorFinalTxt_Lbl= Label(main,text='Valor final pagado:') ValorFinalTxt_Lbl.grid(row=3, column=0) ValorFinal_Entry = Entry(main, textvariable=F) ValorFinal_Entry.grid(row=3, column=1, padx=20, pady=20) # Intereses Pagados. Diferencia entre el monto por unica vez y la suma de todos los pagos ValorInteresesTxt_Lbl= Label(main, text='Intereses:') ValorInteresesTxt_Lbl.grid(row=4, column=0) ValorIntereses_Entry = Entry(main, textvariable=I) ValorIntereses_Entry.grid(row=4, column=1, padx=20, pady=20) # Botón para ejecutar los cálculos de la función "valor_cuota" monto_BTN = Button(main, text = 'calcule la Financiación', command = valor_cuota, width=50) monto_BTN.grid(row=5, columnspan=2, pady=20) # Boton para limpiar y reiniciar el cálculo nuevo_BTN = Button(main, text='Borrar', command=borrar).grid(row=6, column=0) # Boton para salir del loop y cerrar la ventana Salir_BTN = Button(main, text='Cerrar la ventana', command=salir).grid(row=6, column=1) mainloop()
10de64eadd037bdc642913d773eff0d6af7748f1
tatsuya4559/ClassicComputerScienceProblemsInPython
/chap1/dna_search.py
1,111
3.609375
4
from enum import IntEnum from typing import Tuple, List import bisect Nucleotide: IntEnum = IntEnum("Nucleotide", ("A", "C", "G", "T")) Codon = Tuple[Nucleotide, Nucleotide, Nucleotide] Gene = List[Codon] def str2gene(s: str) -> Gene: gene: Gene = [] for i in range(0, len(s), 3): if (i + 2) >= len(s): return gene codon: Codon = (Nucleotide[s[i]], Nucleotide[s[i + 1]], Nucleotide[s[i + 2]]) gene.append(codon) return gene def bisect_contains(gene: Gene, key_codon: Codon) -> bool: i = bisect.bisect_left(gene, key_codon) if i != len(gene) and gene[i] == key_codon: return True return False def main() -> None: gene_str: str = "AGCAATACGGGTAAGCTAGTGTTGAAAATCGTTGACCCCATGATGGTGGG" my_gene: Gene = str2gene(gene_str) acg: Codon = (Nucleotide.A, Nucleotide.C, Nucleotide.G) gat: Codon = (Nucleotide.G, Nucleotide.A, Nucleotide.T) print(acg in my_gene) print(gat in my_gene) print(bisect_contains(sorted(my_gene), acg)) print(bisect_contains(sorted(my_gene), gat)) if __name__ == "__main__": main()
454762aa7fd392bdc68ed3048b675393ac6a364b
Om-krishna/Tkinter_GUI_python
/bind_function.py
324
3.859375
4
# -*- coding: utf-8 -*- """ Created on Fri Jun 5 20:28:18 2020 @author: Om Krishna """ from tkinter import* root = Tk() def printName(event): print("Hello my Name is Turners") button_1=Button(root, text="Print my name") button_1.bind("<Button-1>",printName) button_1.pack() root.mainloop()
045bce7a658dfe085de8f8899af6a53c5905a910
Kortemme-Lab/klab
/klab/pymath/discrete.py
1,127
3.78125
4
#!/usr/bin/python # encoding: utf-8 """ A module for discrete mathematics. Not that this is something we should do in Python. Created by Shane O'Connor 2016 """ import fractions dumb_relative_prime_const = { 6 : 5, 5 : 2, 4 : 3, 3 : 2, 2 : 1, # yep, I know 1 : 0, # yadda yadda } def dumb_relative_half_prime(n, divisor = None): '''A dumb brute-force algorithm to find a relative prime for n which is approximately n/2 through n/5. It is used for generating spaced colors. Written on a Friday evening. Do not judge! ''' if n < 1 or not isinstance(n, int): raise Exception('n must be a positive non-zero integer.') elif n < 7: return dumb_relative_prime_const[n] elif n < 10: divisor = 2.0 if not divisor: if n <= 20: divisor = 3.0 elif n <= 30: divisor = 4.0 else: divisor = 5.0 m = int(n / divisor) while m > 1: if fractions.gcd(n, m) == 1: return m m -= 1 if divisor > 2.0: return dumb_relative_half_prime(n, divisor - 1.0) # e.g. 12
0643dba567afa8728eaedcf63df771f10da83178
Bilsteen/Axenous_test
/Quest-2.py
727
4.1875
4
#Question 2: #Find number of small and capital letters in a string and replace all capital letters by same small letter and all #small letters by same capital letters def capital_small(word): new_word = [] cap = 0 small = 0 for char in word: if char == " ": new_word.append(char) if char == char.upper(): cap += 1 new_word.append(char.lower()) else: small += 1 new_word.append(char.upper()) return cap,small,"".join(new_word) cap,small,output = capital_small("EduCatiON") print(f"Number of capital letters are {cap}") print(f"Number of small letters are {small}") print(f"Output is {output}")
11e8a3fbc5670bc8428bf6457eca782aa37b87f2
managorny/python_basic
/homework/les04/file6.py
677
4.15625
4
""" 6. Реализовать два небольших скрипта: а) бесконечный итератор, генерирующий целые числа, начиная с указанного, б) бесконечный итератор, повторяющий элементы некоторого списка, определенного заранее. Подсказка: использовать функцию count() и cycle() модуля itertools. """ from itertools import count, cycle from time import sleep # a) start = 1 for i in count(start): print(int(i)) # sleep(1) # b) lst = [1, 2, 3] for i in cycle(lst): print(i) # sleep(1)
ac611914e59a93523a5c2946947adcbba9a50d78
Jongy/knesset-committees-data
/make_wordcloud.py
732
3.53125
4
from typing import List from wordcloud import WordCloud def make_wordcloud(words: List[str], filename: str) -> None: # reverse all words, because wordcloud doesn't handle rtl words = list(map(lambda w: w[::-1], words)) font_path = "NotoSansHebrew-Regular.ttf" # copied from /usr/share/fonts wordcloud = WordCloud(font_path=font_path, width=2000, height=2000, background_color='white', collocations=False).generate(' '.join(words)) wordcloud.to_file(filename) if __name__ == "__main__": import sys f = sys.argv[1] name = sys.argv[2] import json j = json.load(open(f)) print("Total number of words:", len(j[name])) make_wordcloud(j[name], name + ".png")
0561162acbe75d2d1693babb2c65601471afe0b6
prathamtandon/g4gproblems
/Arrays/min_steps_to_desired_array.py
1,529
4.21875
4
import unittest """ Given an array with n elements, value of all the elements is zero. We can perform following operations on the array: 1. Incremental operations:Choose 1 element from the array and increment its value by 1. 2. Doubling operation: Double the values of all the elements of array. The desired array target[] contains n elements. Compute and return smallest possible number of operations needed to change the array from all zeros to desired array. Input: 2 3 Output: 4 (increment both zeros by 1 (2 ops), double them (1 op), increment 2nd 2 by 1 (1 op). """ """ Approach: 1. Approach in reverse direction: make target array to an array of all zeros. 2. Decrement all odd elements by 1, increment count of operations for each such decrement. 3. Divide all elements by 2. Repeat from step 2 until all elements are zero. """ def min_steps_to_desired_array(target): num_ops = 0 while True: for i in range(len(target)): if target[i] % 2 != 0: target[i] -= 1 num_ops += 1 if target.count(0) == len(target): break target = [x / 2 for x in target] num_ops += 1 return num_ops class TestMinSteps(unittest.TestCase): def test_min_steps(self): target = [2, 3] self.assertEqual(min_steps_to_desired_array(target), 4) target = [2, 1] self.assertEqual(min_steps_to_desired_array(target), 3) target = [16, 16, 16] self.assertEqual(min_steps_to_desired_array(target), 7)
d25907e014e9c425b00e242c82f6718abeb70f39
kraktos/SimpleSearch
/Main.py
1,372
3.5
4
""" This is the single inception point for running the search mechanism. This file primarily performs (a) indexing the input file (b) persisting the indices locally (c) using indices to return search results for a given query """ import time import sys from optparse import OptionParser import utils.Utility as utility from core.Indexing import BuiltFileIndex from core.Searching import SearchIndex if __name__ == "__main__": startTime = time.time() print("Starting: {}".format(utility.get_date_time(startTime))) try: parser = OptionParser() parser.add_option("-f", "--file", dest="file") # parse the input (options, args) = parser.parse_args() # get the to be indexed file input_file = options.file # if not present throw exception if input_file is None: raise Exception("Missing Input File!") # index the file indexer = BuiltFileIndex() indexer.create_inverted_index(input_file) # query the index, searcher = SearchIndex(indexer) var = None while var != 'q': var = raw_input("Enter search item (press q to exit). ") if var.lower() == 'q': sys.exit() # fire the index search searcher.search(var) except Exception as ex: raise Exception(ex)
491b066f5e174c096d13c1ea6a4669f0bea0238c
xxwqlee/pylearn
/pydemo/mypy09.py
522
3.8125
4
# 嵌套函数(内部函数) def print_name(is_chinese, name, family_name): c = 10 def inner_print(a, b): print("{0} {1}".format(a, b)) nonlocal c print(c) if is_chinese: inner_print(family_name, name) else: inner_print(name, family_name) print_name(True, "xx", "高") print_name(False, "George", "Bush") # 测试LEGB # str = 'global' def outer(): # str = 'outer' def inner(): # str = 'inner' print(str) inner() outer()
1ea82a86d5bc8ee8ad291009c1ea54e6827e6035
CaoZhens/ML_Learning
/study/4_PythonFoundation/numpyBasics/flatx.py
698
3.90625
4
# coding: utf-8 ''' Created on Oct 16, 2017 @author: CaoZhen @desc: Basic Usage of numpy.chararray.flat numpy.chararray.flatten numpy.flatiter (class) numpy.ravel @reference: ''' import numpy as np x = np.arange(1, 7).reshape(2, 3) print x try: print x[3] except Exception,e: print e print x.flat[3] print x.T print x.T.flat[3] print type(x.flat) # flatier for item in x.flat: print item print x.flat[2:4] # flatten a = np.array([[1,2], [3,4]]) print a print a.flatten() print a.flatten('F') # np.ravel a = np.array([[1,2,3],[4,5,6]]) print a print a.ravel() # ravel is equivalent to reshape(-1, order=order) print a.reshape(-1)
05d67ef3b5d13c5b8fc968fa393bf75f68634486
manuelduarte12/iniciaci-n
/david aroesti/curso inicial/calendario.py
215
3.921875
4
contadorYear = 0 contadorMonths = 0 while contadorYear < 13: while contadorMonths < 31: print(f"{contadorYear}, { contadorMonths}") contadorMonths += 1 contadorYear += 1 contadorMonths =1
14285cbd0273acd06045cca30c723a210a104de1
tlvb25/AirBnB_clone
/tests/test_models/test_city.py
1,447
3.59375
4
#!/usr/bin/python3 """Unittest for City class""" import unittest from models.city import City from models.base_model import BaseModel import os class TestCity(unittest.TestCase): """Runs tests for City class""" def setUp(self): """Sets up the testing environment""" self.c1 = City() self.c2 = City() self.c2.name = "Santa_Cruz" def tearDown(self): """Breaks down the testing environment""" del self.c1 del self.c2 if os.path.exists("file.json"): os.remove("file.json") def test_checks_attributes(self): """Checks for class specific attributes""" self.assertTrue(hasattr(City(), "state_id")) self.assertTrue(hasattr(City(), "name")) def test_new_instances(self): """Checks that new instances were created""" self.assertTrue(self.c1) self.assertTrue(self.c2) def test_new_instances_attribute_creation(self): """Checks that new instances have designated attributes""" self.assertIn("name", self.c2.__dict__) self.assertEqual(self.c2.name, "Santa_Cruz") def test_non_existant_instance(self): """Checks for a non-existant instance""" self.c3 = City() self.assertIsInstance(self.c3, City) def test_inheritence(self): """Checks to make sure City inherits from BaseModel""" self.assertTrue(issubclass(City, BaseModel))
668c4ccc2f619bb7d86307b1320f85928fef9421
KiraGol/Hillel
/homework_3/3.3.py
386
4.0625
4
friends = ["John", "Marta", "James"] enemies = ["John", "Johnatan", "Artur"] for friend in friends: if friend in enemies: print(friend + ', we are not the friends anymore') elif friend in friends and friend != 'James': print(friend + ', we are the best friends') # This pring is excess. Try to look on logical operators to cobine several conditions in one line.
eac6431a44f9e9bdb23808cee245cdcd62462f22
kwura/python-projects
/Foundations of Programming/phone.py
880
4.15625
4
def isPhoneNumber(text): # Check if phone number is correct length if( len(text) != 12 ): return False # Check for hyphens and numeric digits for i in range(3): if( text[i].isdigit() == False ): return False if(text[3] != "-"): return False for i in range(4,7): if( text[i].isdigit() == False ): return False if( text[7] != "-"): return False for i in range(8, 12): if( text[i].isdigit() == False ): return False return True message = "Hi my name is lillian co you can contact me at 512-555-3434 or call my secretary at 712-555-3432 detectNum = False def main(): for i in range len(message): clump = message[i:i+12] if isPhoneNumber(clump): detectNum = True print("Phone number found:", clump) if detectNum = False: print("No phone number could be found!") main()
431d2f5111eb1ed266c777c04d448afd35c96165
Bharadwaja92/HackerRank10DaysStats
/Day1_InterQuartileRange.py
1,856
4.25
4
"""""" """ The interquartile range of an array is the difference between its first (Q1) and third (Q3) quartiles (i.e., Q3-Q1). Given an array, X, of n integers and an array, F, representing the respective frequencies of X's elements, construct a data set, S, where each xi occurs at frequency fi. Then calculate and print 's interquartile range, rounded to a scale of 1 decimal place (i.e., 12.3 format). Tip: Be careful to not use integer division when averaging the middle two elements for a data set with an even number of elements, and be sure to not include the median in your upper and lower data sets. """ n = int(input()) l1 = list(map(int, input().split())) l2 = list(map(int, input().split())) nums = [] for i in range(n): nums.extend([l1[i]]*l2[i]) nums = sorted(nums) def calc_median_uh_lh(n, nums): if n % 2 == 0: median = (nums[n//2] + nums[n//2 - 1]) / 2 lh, uh = nums[: n//2], nums[n//2:] else: median_index = n // 2 # print('Median index =', median_index) median = nums[median_index] lh, uh = nums[:median_index], nums[median_index+1: ] return median, lh, uh def get_q1_q3(nums): n = len(nums) if n % 2 == 0: q = (nums[n // 2] + nums[n // 2 - 1]) / 2 else: median_index = n // 2 q = nums[median_index] return q median, lh, uh = calc_median_uh_lh(len(nums), nums) q1, q3 = get_q1_q3(lh), get_q1_q3(uh) print(q1, q3) print('%.1f'%(q3-q1)) """ import statistics as st n = int(input()) data = list(map(int, input().split())) freq = list(map(int, input().split())) s = [] for i in range(n): s += [data[i]] * freq[i] N = sum(freq) s.sort() if n%2 != 0: q1 = st.median(s[:N//2]) q3 = st.median(s[N//2+1:]) else: q1 = st.median(s[:N//2]) q3 = st.median(s[N//2:]) ir = round(float(q3-q1), 1) print(ir) """
39e0ff679a137244b15157e4b72215710e7a436e
maggielaughter/tester_school_dzien_6_v2
/good_range.py
329
3.640625
4
def good_range(number1, number2): while number 1 > number2: try: number1=int(input("Podaj liczbę :")) number2=int(input("Podaj liczbę :")) except ValueError: print('Liczba nr 2 jest za mała w stosunku do liczby nr 1!') return number1, number2 print(good_range(5,1))
93d98545748f35a2897631cdc1f85ac4a9680831
freeOcen/algori
/algoriDiagram/charpter3/tail.py
102
3.765625
4
def fact(x,y): if x==0: return y else : return fact(x-1,y+1) print(fact(3,0))
ab9bee7386b61a163e419c849482b574ecc2856e
TrellixVulnTeam/Demo_933I
/leetcode/994.py
597
3.59375
4
def main(grid): l1, l2, l0 = [], [], [] for num, value in enumerate(grid): for n, v in enumerate(value): if v == 2: l2.append([num, n]) elif v == 1: l1.append([num, n]) elif v == 0: l0.append([num, n]) if not l2: return -1 for i in l2: print(i) if grid[i[0]+1][i[1]] or grid[i[0]][i[1]+1] or grid[i[0]-1][i[1]] or grid[i[0]][i[1]-1] == 1: print(11111) if __name__ == '__main__': a = main([[2,1,1],[0,1,1],[1,0,1]]) print(a)
55044e243dea9823e3f620b2d58f56af43757731
holod2020/Laborator
/Lab1/1. calculator.py
396
4.1875
4
def calculator(a, b, c): if c == "+": return a + b elif c == "-": return a - b elif c == "*": return a*b elif c == "/": return a/b else: return "operation" result = calculator (int(input("Enter number: ")), int(input("Enter number: ")), input("Enter operation:")) print("Result : ", result)
12097ef43fbf1387aae8880acb6f8c9c366295b7
sornaami/luminarproject
/functionalprogramming/employeelist.py
865
3.75
4
class Employee: def __init__(self,id,name,salary,desig): self.id=id self.name=name self.salary=salary self.desig=desig def printEmployee(self): print("id=", self.id) print("name=", self.name) print("salary=", self.salary) print("desig=", self.desig) def __str__(self): return self.name f=open("employee","r") lst=[] for lines in f: data=lines.rstrip("\n").split(",") print(data) id=data[0] name=data[1] salary=int(data[2]) desig=data[3] obj=Employee(id,name,salary,desig) lst.append(obj) #find all emplo desig developer result=[obj.name for obj in lst if obj.desig=="developer"] print(result) nam=[obj.name.upper() for obj in lst] print(nam) ot=sum([obj.salary for obj in lst]) print(ot) high=max([obj.salary for obj in lst]) print(high)
d6ba610db8415ed6469d26e7667d485060825a76
xxxzc/public-problems
/PythonBasic/BasicGrammar/OOP/3_Point/solution.py
393
3.5
4
'''TESTCASE 3.0 4.0 6.0 0 - 1.4 -2.0 1.5 4.2 - -1 1.2 -3.2 5 - 0 0 0 0 ''' class Point: def __init__(self, x, y): self.x = x self.y = y def __sub__(self, rhs): return ((self.x-rhs.x)**2+(self.y-rhs.y)**2)**0.5 x1, y1 = map(float, input().split()) x2, y2 = map(float, input().split()) p1 = Point(x1, y1) p2 = Point(x2, y2) print('{:.2f}'.format(p2 - p1))
3cc56898b36957ecd4da5dba46487cba571e2080
karenahuang/BackUp_PythonClassCode
/in_class2/test1.py
1,623
4.3125
4
#asks user to input year year = input("Enter the year: ") #asks user to input name name = input("Enter your name: ") #asks user to input age age = input("Enter your age: ") #asks user if they already had their birthday bday = input("Did you already have your bday this year? (Y or N): ") #casts the input from years into an int year = int(year) #casts the input from age into an int age = int(age) try: #if user inputs with the bday variable any of these strings, do this if (bday == "N" or bday == "n" or bday == "no" or bday == "No"): #create new variable yearBorn calculate year born without factoring in #this year, so add 1 yearBorn = year - (age + 1) #cast yearBorn into a string so it's possible to include in print statement #later yearBorn = str(yearBorn) #print out what we need print("Hello " + name + ", you were born in the year " + yearBorn + "\n" + "Have a great birthday this year!") #if user inputs with the bday variable any of these strings, do this elif (bday == "Y" or bday == "y" or bday == "yes" or bday == "Yes"): #declare new variable yearBorn calculate yearborn factoring in #current year yearBorn = year - age #cast yearBorn as string to include in print statement later yearBorn = str(yearBorn) #print what we need print("Hello " + name + ", you were born in the year " + yearBorn + "\n" + "Happy delayed birthday.") #if user inputs anything else into the bday variable, print out wrong answer except: print("Wrong answer")
523bdfc9afc82cd5198016181f4acb2cebe334e7
juliansmoller/images
/timeline.py
3,123
3.765625
4
''' Julian Smoller ~ 2017 This module contains a Timeline class, which can plot time ranges as horizontal lines on an image. ''' from PIL import Image import pandas as pd import numpy as np from datetime import datetime class Timeline: def __init__(self,time_ranges,x_pixels=1000): '''Given a dataframe of time ranges with start times and end times, create a timeline image with horizontal lines for each time range: Initialize with min time (time_0), max time (time_1), and the number of pixels in the x dimension (x_pixels) that we can use for the width of the image''' self.time_ranges = time_ranges[['start_time','end_time']].copy().reset_index(drop=True) self.time_0 = self.time_ranges['start_time'].min() self.time_1 = self.time_ranges['end_time'].max() self.x_pixels = x_pixels self.time_range = self.time_1-self.time_0 self.time_per_pixel = self.time_range/self.x_pixels self.time_ranges_mapped = False # flag def log(self): '''Print out the object properties''' print(self.time_0) print(self.time_1) print(self.x_pixels) print(self.time_range) print(self.time_per_pixel) def map_time_to_x(self,t): '''Given a time within the timeline range, convert to x pixel coordinates''' if t>=self.time_0 and t<=self.time_1: x = int(((t-self.time_0)/self.time_range)*self.x_pixels) return x else: print(t) raise Exception('Time value outside of timeline range') def map_time_ranges(self,y_pixel_increment = 3,y_pixel_width=2): '''Iterate through the set of time ranges and map each start time and end time to corresponding pixel coordinates (x0 and x1); set y values to space out the time ranges vertically, and give each line some width (y_pixel_width)''' self.y_pixel_increment = y_pixel_increment self.y_pixel_width = y_pixel_width self.time_ranges['x0'] = self.time_ranges['start_time'].map(lambda t: self.map_time_to_x(t)) self.time_ranges['x1'] = self.time_ranges['end_time'].map(lambda t: self.map_time_to_x(t)) self.time_ranges['y0'] = self.time_ranges.index.map(lambda i: (i+1)*self.y_pixel_increment+i*self.y_pixel_width) self.time_ranges['y1'] = self.time_ranges['y0'].map(lambda y: y+self.y_pixel_width) self.time_ranges_mapped = True def plot(self): '''Generate a timeline image and plot the time ranges as horizontal lines''' if not self.time_ranges_mapped: self.map_time_ranges() x_max = self.x_pixels y_max = self.time_ranges['y1'].max()+self.y_pixel_increment self.image = Image.new('RGB',(x_max,y_max),'white') for time_range in self.time_ranges.iterrows(): for x in range(time_range[1]['x0'],time_range[1]['x1']): for y in range(time_range[1]['y0'],time_range[1]['y1']): self.image.putpixel((x,y),(0,0,0)) return self.image
728d94b3b8684c581ba068742ee48326df829d55
JiaquanYe/LeetCodeSolution
/Array/leetcode164.py
712
3.796875
4
''' 给定一个无序的数组,找出数组在排序之后,相邻元素之间最大的差值。 如果数组元素个数小于 2,则返回 0。 示例 1: 输入: [3,6,9,1] 输出: 3 解释: 排序后的数组是 [1,3,6,9], 其中相邻元素 (3,6) 和 (6,9) 之间都存在最大差值 3。 示例 2: 输入: [10] 输出: 0 解释: 数组元素个数小于 2,因此返回 0。 ''' class Solution: def maximumGap(self, nums): """ :type nums: List[int] :rtype: int """ if len(nums)<2: return 0 nums.sort() store = [] for idx in range(len(nums)-1): store.append(nums[idx+1]-nums[idx]) return max(store)
438767e8fe6e3f7315da5a5d276fa7dc8241ef14
FiberJW/hsCode
/guess_my_number_v3.py
3,930
3.96875
4
def guess_user_num(): import random, time print('\t\t\tGuess My Number!\nI will think of a number between 1 and 100 (Inclusive)\n\nTell me what you think the number is. I\'ll give you hints\n\n') def main(): #define main instructions as function for calling later num = random.randint(0, 100) print('\nI\'m thinking of a number...') def con(): response = str(input("Do you want to try again? Type 'yes' to continue or press the enter key to exit\n\t=>")).lower() if response == 'yes' or response == 'y': main() elif response == '': print('\nThanks for playing!') time.sleep(2) raise SystemExit else: print('Invalid Response', end='\n') con() def dec(): # Gets input and decides upon it what to do nonlocal num try: guess = int(input('What am I thinking of?\n\t=>')) except ValueError: print('I don\'t think you entered a number-- try again.\n') guessNum() if guess == num: con() elif guess > num: print('Too high') guessNum() elif guess < num: print('Too low') guessNum() def guessNum(): time.sleep(1) dec() guessNum() main() def guess_cpu_num(): from random import randint import time print("\tEnter a number from 1 - 100. I'll try to guess it. Bring it on!") num = 0 # Init Sentry Variable # Checks if number is in proper range while num < 1 or num >100: try: num = int(input("\n\t\tInput your number (I'm not looking):\n\t=>")) except ValueError: print('\n\t\t\tYou didn\'t input an integer') continue if num > 100: print("Number is too high!") if num < 1: print("Number is too low!") cpu_guess = randint(1, 100) print('I think that your number is: ', cpu_guess) sentry = 0 while cpu_guess != num: res = input('\nType (1) if my guess is too high, or (2) if my guess is too low:\n\t=>') if res == '1': high_guess = cpu_guess cpu_guess = randint(1, high_guess) elif res == '2': low_guess = cpu_guess cpu_guess = randint(low_guess, 100) else: print('\nInvalid input.') res = input('\nType (1) if my guess is too high; or (2) if my guess s too low:\n\t=>') print("I'll try again...", cpu_guess) time.sleep(0.1) sentry += 1 if sentry > 4: print('FINE. I\'LL DO IT BY MYSELF') time.sleep(0.2) while cpu_guess != num: if cpu_guess > num: high_guess = cpu_guess - 10 cpu_guess = randint(1, high_guess) print("\nI'll try again...", cpu_guess) elif cpu_guess < num: low_guess = cpu_guess + 10 cpu_guess = randint(low_guess, 100) print("\nI'll try again...", cpu_guess) else: break print("FINALLY! I got it!\n") print('Your number is: ', cpu_guess) print('\n\tI was actually looking after all...') def menu(): res = input('Do you want to [1] Have the computer guess your number, ' \ '[2] Guess the computer\'s number, or [3] Exit the program?\n\t=>') if res == '1': guess_user_num() elif res == '2': guess_cpu_num() elif res == '3': raise SystemExit else: print('\nBad choice.\n') menu() def main(): print('Welcome to the Guess My Number program!\n') menu() main()
70a5d68acbef715c691971e001abdcb60301905a
doomnonius/advent-of-code
/2017/day03.py
2,795
4.09375
4
class Coord: def __init__(self, x, y): self.x = x self.y = y def __repr__(self): return f"{(self.y, self.x)}" def __add__(self, other): return Coord(self.x + other.x, self.y + other.y) def full_neighbors(self): return [self + Coord(0, 1), self + Coord(0, -1), self + Coord(1, 0), self + Coord(-1, 0), self + Coord(1, 1), self + Coord(1, -1), self + Coord(-1, -1), self + Coord(-1, 1)] def neighbors(self): return [self + Coord(0, 1), self + Coord(0, -1), self + Coord(1, 0), self + Coord(-1, 0)] def __eq__(self, other): return self.x == other.x and self.y == other.y def __hash__(self): return hash((self.x, self.y)) def manhattan(point: Coord) -> int: """ Takes a list of cross points and calculates the taxicab distance for each. """ return abs(point.y) + abs(point.x) def part1(inp: int) -> int: x = 0 square = 1 total = 1 while square**2 < inp: x += 1 square += 2 total = square**2 m = square // 2 y = m - 1 total = (square - 2)**2 + 1 if (inp - total) <= (y + m): y -= (inp - total) print(f"Coord: {Coord(x, y)}") return manhattan(Coord(x, y)) else: total += y + m y = -m if (inp - total) <= (x + m): x -= (inp - total) print(f"Coord: {Coord(x, y)}") return manhattan(Coord(x, y)) else: total += x + m x = -m if (inp - total) <= (abs(y) + m): y += (inp - total) print(f"Coord: {Coord(x, y)}") return manhattan(Coord(x, y)) else: total += abs(y) + m y = m if (inp - total) <= (abs(x) + m): x += (inp - total) print(f"Coord: {Coord(x, y)}") return manhattan(Coord(x, y)) else: print("Something has gone wrong here...") def part2(inp: int) -> int: value = 1 square = 1 total = square**2 index = 1 x = y = 0 side_length = 1 side_progress = 1 side = 0 points = {(x, y): 1} while value < inp: ## this part handles increasing x and y properly if index == total: # ie square is completed x += 1 square += 2 side_length = (square**2 - total)//4 side_progress = 1 side = 0 total = square**2 index += 1 elif side_progress < side_length: side_progress += 1 index += 1 if side == 0: y -= 1 if side == 1: x -= 1 if side == 2: y += 1 if side == 3: x += 1 elif side_progress == side_length: if side == 3: x += 1 index += 1 else: side += 1 side_progress = 0 continue next_val = 0 p = Coord(x, y) for n in p.full_neighbors(): # print(n) if (n.x, n.y) in points.keys(): next_val += points[(n.x, n.y)] points[(p.x, p.y)] = next_val value = next_val # print(value) return value if __name__ == "__main__": import timeit DATA = 289326 print(f"Part one: {part1(DATA)}") print(f"Part two: {part2(DATA)}") # print(f"Time: {timeit.timeit('', setup='from __main__ import ', number = 1)}")
e610b93b76fcf4b5a5bb489ac781a51049fa93bd
rjc89/LeetCode_medium
/unique_paths.py
651
3.671875
4
#https://leetcode.com/problems/unique-paths/discuss/959838/12-MS-oror-EASY-oror-PYTHON-oror-RECURSION-oror-MEMOISATION-oror-DP class Solution(object): def uniquePaths(self, m, n, cache = dict()): """ :type m: int :type n: int :rtype: int """ if (m,n) in cache: return cache[(m,n)] if m == 1 and n == 1: return 1 if m == 0 or n == 0: return 0 cache[(m, n)] = self.uniquePaths(m - 1, n, cache) + self.uniquePaths(m, n - 1, cache) return cache[(m, n)] s = Solution() print(s.uniquePaths(m = 3, n = 7))
b8a5a8f67384aee0caa6940c04c55ac1e246829d
7Biscuits/Calculator_Tkinter
/app.py
3,621
4.15625
4
import tkinter from tkinter import * root = tkinter.Tk() root.title("Calculator") user_entry = Entry(root, width=35, borderwidth=5) user_entry.grid( row=0, column=0, columnspan=3, padx=10, pady=10) def on_button_click(number): current = user_entry.get() user_entry.delete(0, END) user_entry.insert(0, str(current) + str(number)) def clear(): user_entry.delete(0, END) def equal(): second_num = user_entry.get() user_entry.delete(0, END) if math == 'addition': user_entry.insert(0, f_num + int(second_num)) elif math == 'substraction': user_entry.insert(0, f_num - int(second_num)) elif math == 'multiplication': user_entry.insert(0, f_num * int(second_num)) elif math == 'division': user_entry.insert(0, f_num / int(second_num)) def addition(): first_num = user_entry.get() global f_num global math math = 'addition' f_num = int(first_num) user_entry.delete(0, END) def subtraction(): first_num = user_entry.get() global f_num global math math = 'substraction' f_num = int(first_num) user_entry.delete(0, END) def multiplication(): first_num = user_entry.get() global f_num global math math = 'multiplication' f_num = int(first_num) user_entry.delete(0, END) def division(): first_num = user_entry.get() global f_num global math math = 'division' f_num = int(first_num) user_entry.delete(0, END) button_1 = Button(root, text="1", padx=40, pady=20, borderwidth=3, command=lambda: on_button_click(1)) button_2 = Button(root, text="2", padx=40, pady=20, borderwidth=3, command=lambda: on_button_click(2)) button_3 = Button(root, text="3", padx=40, pady=20, borderwidth=3, command=lambda: on_button_click(3)) button_4 = Button(root, text="4", padx=40, pady=20, borderwidth=3, command=lambda: on_button_click(4)) button_5 = Button(root, text="5", padx=40, pady=20, borderwidth=3, command=lambda: on_button_click(5)) button_6 = Button(root, text="6", padx=40, pady=20, borderwidth=3, command=lambda: on_button_click(6)) button_7 = Button(root, text="7", padx=40, pady=20, borderwidth=3, command=lambda: on_button_click(7)) button_8 = Button(root, text="8", padx=40, pady=20, borderwidth=3, command=lambda: on_button_click(8)) button_9 = Button(root, text="9", padx=40, pady=20, borderwidth=3, command=lambda: on_button_click(9)) button_0 = Button(root, text="0", padx=40, pady=20, borderwidth=3, command=lambda: on_button_click(0)) button_1.grid(row=3, column=0) button_2.grid(row=3, column=1) button_3.grid(row=3, column=2) button_4.grid(row=2, column=0) button_5.grid(row=2, column=1) button_6.grid(row=2, column=2) button_7.grid(row=1, column=0) button_8.grid(row=1, column=1) button_9.grid(row=1, column=2) button_0.grid(row=4, column=0) equal_button = Button(root, text="=", padx=91, pady=20, command=equal) clear_button = Button(root, text="Clear", padx=79, pady=20, command=clear) equal_button.grid(row=5, column=1, columnspan=2) clear_button.grid(row=4, column=1, columnspan=2) add_button = Button(root, text="+", padx=39, pady=20, borderwidth=3, command=addition) substract_button = Button(root, text="-", padx=42, pady=20, borderwidth=3, command=subtraction) multiply_button = Button(root, text="*", padx=42, pady=20, borderwidth=3, command=multiplication) divide_button = Button(root, text="/", padx=42, pady=20, borderwidth=3, command=division) add_button.grid(row=5, column=0) substract_button.grid(row=6, column=0) multiply_button.grid(row=6,column=1) divide_button.grid(row=6, column=2) root.mainloop()
65790b34649ab12dd0015b0b17c02fd9f95c6b70
CircularWorld/Python_exercise
/month_01/test_01/test_05.py
564
3.953125
4
''' 5.需求:在终端中录入5个疫情省份的确诊人数, 打印最大值、最小值、平均值.(使用内置函数实现) 步骤:循环获取信息,使用列表记录,使用内置函数计算。 ''' list_num = [] for __ in range(5): confirm_num = int(input("请输入确诊人数:")) list_num.append(confirm_num) print(list_num) print('最多的有%d人' % max(list_num)) print('做少的有%d人' % min(list_num)) print("平均有%d人'" % (sum(list_num) / len(list_num))) # print(sum(list_num) / len(list_num))
360819013e0ba377002ccac046e9809bc1a9226c
CodecoolBP20161/python-data-visualisation-sf
/connection.py
808
3.5625
4
import psycopg2 class Database(object): def __init__(self, dbname, user, password): self.dbname = dbname self.user = user self.password = password def connect(self): connect_str = "dbname=%s user=%s host='localhost' password=%s" % ( self.dbname, self.user, self.password) return psycopg2.connect(connect_str) def execute(self, sql_command): cursor = self.connect().cursor() try: cursor.execute("""%s""" % (sql_command)) rows = cursor.fetchall() return rows except Exception as e: print("PROBLEM!!!!") print(e) mydb = Database(input('What is your database name? '), input('What is your user name? '), input('What is your password? '))
60ad65bf86370b48796546ebbf53e4f88748f9f6
Sonatrix/Sample-python-programs
/temp.py
233
3.96875
4
def reverse(a,start,stop): if start>=stop: return a else: a[start],a[stop-1] = a[stop-1],a[start] reverse(a,start+1,stop-1) if __name__ == '__main__': a = reverse([3,7,198,32],0,3) print a #print reverse([1,2,3,4],0,3)
af68e75fa3e9cd2d2c4f77edf992f07677cdb555
kli99/python_challenge
/PyPoll/main.py
5,814
4.0625
4
<<<<<<< HEAD #load csv import os import csv #Path to collect data election_data_csv="C:/Users/Keke/git/python_challenge/PyPoll/Resources/election_data.csv" #define variables totalvotes= 0 #define column 3 as a dict to refer to occurence number of votes candidates={} #define value in column 3 as a list to cross reference to values candidate= [] percentage=0 #read csv file with open(election_data_csv)as csvfile: csvreader=csv.reader(csvfile,delimiter=",") #skip header row csv_header = next(csvfile) print(f"Election Results") print("\n------------------------------------") for row in csv.reader(csvfile): #total casts totalvotes += 1 candidate = row[2] #voterid=row[0] #calculate each candidate votes,if candidate name is not in the list if candidate not in candidates: #then the candidate will equal to it's name only candidates[candidate]=1 else: #otherwise each appearance will add to next appearance of the same candidate name candidates[candidate]+=1 print(f"Total Votes:{totalvotes}") print("\n------------------------------------") #print(f"{candidates}") # vote%= votes/totalvotes *100 for candidate in candidates: #define a shorter name to refer in below function votes=candidates[candidate] #percentage= float(votes)/ float(totalvotes) * 100 for key in candidates: percentage= candidates[key]/totalvotes*100 #print(key +':'+ str("{0:.3f}%".format(percentage))+'('+str(candidates[key])+')') #print(f"{percentage:,.3f}%".format(percentage)) print(f"{key}:{percentage:,.3f}% ({str(candidates[key])})") #the highest votes Winner= max(candidates,key=candidates.get) print("\n------------------------------------") print(f"Winner:{Winner}") print("\n------------------------------------") text =( f"Election Results\n" f"------------------------------------\n" f"Total Votes:{totalvotes}\n" f"------------------------------------\n") #set a new STRING variable to loop different names in the list ''is to including numbers, text,etcs stringer='' #set a new for statement to search for string of names for key in candidates: percentage= candidates[key]/totalvotes*100 stringer+= f"{key}:{percentage:,.3f}% ({str(candidates[key])})\n" text2 =( f"------------------------------------\n" f"Winner:{Winner}\n" f"------------------------------------\n") #split the answer into 2 parts and combine at the end Finaltext=text+stringer+text2 # Export the results to text file Final= open('C:/Users/Keke/git/python_challenge/PyPoll/analysis/Final.text', 'w') #the final answer should be output into the text file Final.write(Finaltext) Final.close() ======= #load csv import os import csv #Path to collect data election_data_csv="C:/Users/Keke/git/python_challenge/PyPoll/Resources/election_data.csv" #define variables totalvotes= 0 #define column 3 as a dict to refer to occurence number of votes candidates={} #define value in column 3 as a list to cross reference to values candidate= [] percentage=0 #read csv file with open(election_data_csv)as csvfile: csvreader=csv.reader(csvfile,delimiter=",") #skip header row csv_header = next(csvfile) print(f"Election Results") print("\n------------------------------------") for row in csv.reader(csvfile): #total casts totalvotes += 1 candidate = row[2] #voterid=row[0] #calculate each candidate votes,if candidate name is not in the list if candidate not in candidates: #then the candidate will equal to it's name only candidates[candidate]=1 else: #otherwise each appearance will add to next appearance of the same candidate name candidates[candidate]+=1 print(f"Total Votes:{totalvotes}") print("\n------------------------------------") #print(f"{candidates}") # vote%= votes/totalvotes *100 for candidate in candidates: #define a shorter name to refer in below function votes=candidates[candidate] #percentage= float(votes)/ float(totalvotes) * 100 for key in candidates: percentage= candidates[key]/totalvotes*100 #print(key +':'+ str("{0:.3f}%".format(percentage))+'('+str(candidates[key])+')') #print(f"{percentage:,.3f}%".format(percentage)) print(f"{key}:{percentage:,.3f}% ({str(candidates[key])})") #the highest votes Winner= max(candidates,key=candidates.get) print("\n------------------------------------") print(f"Winner:{Winner}") print("\n------------------------------------") text =( f"Election Results\n" f"------------------------------------\n" f"Total Votes:{totalvotes}\n" f"------------------------------------\n") #set a new STRING variable to loop different names in the list ''is to including numbers, text,etcs stringer='' #set a new for statement to search for string of names for key in candidates: percentage= candidates[key]/totalvotes*100 stringer+= f"{key}:{percentage:,.3f}% ({str(candidates[key])})\n" text2 =( f"------------------------------------\n" f"Winner:{Winner}\n" f"------------------------------------\n") #split the answer into 2 parts and combine at the end Finaltext=text+stringer+text2 # Export the results to text file Final= open('C:/Users/Keke/git/python_challenge/PyPoll/analysis/Final.text', 'w') #the final answer should be output into the text file Final.write(Finaltext) Final.close() >>>>>>> 97012a5334b31988da5776f6a60bc53f1646e686
bdda6bbe7a59096b4acdc3dc5a0a64a1c9a60fa0
edgardeng/design-patterns-in-python
/Command/stock_buy_sell.py
1,305
4.03125
4
from __future__ import annotations from abc import ABC, abstractmethod class Order(ABC): """ Order: The Command interface to execute buy or sell command """ @abstractmethod def execute(self) -> None: pass class Stock: def __init__(self, name=None, q=None): self.name = name or 'ABC' self.quantity = q or 10 def buy(self): print("Stock [ Name: %s , Quantity: %d] bought" % (self.name, self.quantity)) def sell(self): print("Stock [ Name: %s , Quantity: %d] sold" % (self.name, self.quantity)) class BuyStock(Order): def __init__(self, s): self.stock = s def execute(self): self.stock.buy() class SellStock(Order): def __init__(self, s): self.stock = s def execute(self): self.stock.sell() class Broker: def __init__(self): self.orderList = [] def add_order(self, order): self.orderList.append(order) def place_all_order(self): for order in self.orderList: order.execute() self.orderList.clear() if __name__ == '__main__': abcStock = Stock() buy = BuyStock(abcStock) sell = SellStock(abcStock) broker = Broker() broker.add_order(buy) broker.add_order(sell) broker.place_all_order()
e3c29413e3797a6840c964d573e9e424209e5d0a
jabedude/0x2
/graduation.py
134
3.796875
4
#!/usr/bin/env python from datetime import date t = date(2018,2,16) -date.today() print('{} days until graduation!'.format(t.days))
398123f4f74e9425725a0ae3a92ac3295a225c60
bestchanges/hello_python
/sessions/4/konstantin_shrayber/main.py
695
3.828125
4
import rates current_rates = rates.load_current_rates() print(current_rates) is_continue = True while is_continue: input_string = input("input: ") if input_string == 'quit': is_continue = False else: if " " in input_string: for s in rates.calculate_currency_values(current_rates, input_string): print(s) elif r"/" in input_string and "=" in input_string: current_rates = rates.update_currency_rates(current_rates, input_string) print("updated!") print(current_rates) else: print("Use only allowed notation! <amount> <currency> to convert; <cur1>/<cur2>=<rate> to setup")
80f96519529e8434b05c2202c6e6094770e521a9
jedzej/tietopythontraining-basic
/students/synowiec_krzysztof/lesson_01_basics/sum_of_digits.py
242
3.65625
4
def main(): givenNumber = int(input()) lastDigit = givenNumber % 10 tensDigit = givenNumber // 10 % 10 hundredDigit = givenNumber // 100 print (lastDigit + tensDigit + hundredDigit) if __name__ == '__main__': main()
17eba7bcc0b449eaba26161f2d231300c98036a4
MrRa1n/Python-Learning
/Random.py
524
3.921875
4
# The 'random' module can generate pseudo-random numbers from random import * # Random floating point number between 0 and 1 print(random()) # Random whole number between 1 and 100 print(randint(1,100)) x = randint(1,100) print(x) # Random floating point number between 1 and 10 print(uniform(1,10)) # Fun with lists items = [1,2,3,4,5,6,7,8,9,10] shuffle(items) print(items) x = sample(items, 1) # Pick a random item from list print(x[0]) y = sample(items, 4) # Pick 4 random items from list print(y)
8d6bb266015f82879680df4140dd6dde8b3a97c8
harundemir918/Python-Samples
/02-basic_algorithms/02-reverse_text.py
230
4.59375
5
# Author: harundemir918 # Reverse text print("The Program That Reverse The Text That Entered") # Enter the text text = input("Enter a text: ") # The text will be reversed using indexes print("Reversed: ", text[::-1])
06ffb2cdb079f0f10b1484d86a62a028baf44f08
Brian-West/eclipse
/LearnPython/advanced/functional.py
4,065
3.875
4
# -*- coding: utf-8 -*- # 高阶函数就是可以接受函数参数的函数 import math def add(x, y, f): return f(x) + f(y) print add(25, 9, math.sqrt) def format_name(s): newS = '' newS += s[0:1].upper() newS += s[1:len(s)].lower() return newS print map(format_name, ['adam', 'LISA', 'barT']) # List的每一个元素作为定义域,返回值域的List def prod(x, y): return x * y print reduce(prod, [2, 4, 5, 7, 12]) # 2*4*5*7*12 def is_not_empty(s): return s and len(s.strip()) > 0 print filter(is_not_empty, ['test', None, '', 'str', ' ', 'END']) # Python把0、空字符串''和None看成 False,其他数值和非空字符串都看成 True def test(s): return s and len(s.strip()) > 0 print test(' ') # 请利用filter()过滤出1~100中平方根是整数的数 def is_sqr(x): return math.sqrt(x) % 1 == 0 print filter(is_sqr, range(1, 101)) # 自定义排序规则 def reversed_cmp(x, y): if x > y: return -1 if x < y: return 1 return 0 print sorted([36, 5, 12, 9, 21], reversed_cmp) def cmp_ignore_case(s1, s2): return cmp(s1.lower(), s2.lower()) # if s1.upper()<s2.upper(): # return -1 # if s1.upper()>s2.upper(): # return 1 # return 0 print sorted(['bob', 'about', 'Zoo', 'Credit'], cmp_ignore_case) # 返回函数,可以延迟调用 def f(): print 'call f()...' # 定义函数g: def g(): print 'call g()...' # 返回函数g: return g x = f() print x x() def calc_sum(lst): def lazy_sum(): return sum(lst) return lazy_sum f = calc_sum([1, 2, 3, 4, ]) print f() def calc_prod(lst): def lazy_prod(): p = 1 for x in lst: p *= x return p return lazy_prod f = calc_prod([1, 2, 3, 4]) print f() # 希望一次返回3个函数,分别计算1x1,2x2,3x3: # 返回函数不要引用任何循环变量,或者后续会发生变化的变量。 def count(): fs = [] for i in range(1, 4): def f(m=i): return m * m fs.append(f) return fs f1, f2, f3 = count() print f1(), f2(), f3() # 匿名函数 print map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9]) print sorted([1, 3, 9, 5, 0], lambda x, y:-cmp(x, y)) myabs = lambda x:-x if x < 0 else x print myabs(-1) print myabs(2) print filter(lambda s:s and len(s.strip()) > 0, ['test', None, '', 'str', ' ', 'END']) # 装饰器 # 无参装饰器 def log(f): def fn(*args, **kw): print 'call ' + f.__name__ + '()...' return f(*args, **kw) return fn @log def factorial(n): return reduce(lambda x, y: x * y, range(1, n + 1)) print factorial(10) @log def adds(x, y): return x + y print adds(1, 2) import time def performance(f): def fn(*args): print 'call factorial_2() in', time.clock() return f(*args) return fn @performance def factorial_2(n): return reduce(lambda x, y: x * y, range(1, n + 1)) print factorial_2(10) # 有参装饰器 def log_2(prefix): def log_decorator(f): def wrapper(*args, **kw): print '[%s] %s()...' % (prefix, f.__name__) return f(*args, **kw) return wrapper return log_decorator @log_2('DEBUG') def test_2(): pass print test_2() import functools def performance_2(unit): def per_decorator(f): @functools.wraps(f) # 把原函数的属性全复制到新函数wrapper_2上 def wrapper_2(*args, **kw): sec = time.time() if unit == 's' else 1000 * time.time() print 'call ' + f.__name__ + '() in ' + str(sec) + unit return f(*args, **kw) return wrapper_2 return per_decorator @performance_2('s') def factorial_3(n): return reduce(lambda x, y: x * y, range(1, n + 1)) print factorial_3(10) print factorial_3.__name__ # 偏函数 print int('12345') # 当仅传入字符串时,int()函数默认按十进制转换 sorted_ignore_case = functools.partial(sorted, cmp=cmp_ignore_case) print sorted_ignore_case(['bob', 'about', 'Zoo', 'Credit'])
836d31f3017a92bea77c2157a37799da087dde51
TopaGeor/Hamiltonian-cycle-and-Plain-Graph
/hamilton_cycle_and_plain_graph.py
6,665
3.765625
4
import copy import sys alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # For a graph, we calculate the neighbors of every point # alphabet, every point has a character of the alphabet as id # Returns a list that for every point in graph has another list # that represents the neighbors of point def neighbors(graph): neighbors_table = [] for index, line in enumerate(graph): neighbors_list = [] alphabet_pos = 0 for ch in line: if(ch == "1" and index != alphabet_pos): neighbors_list.append(alphabet[alphabet_pos]) if(ch != " "): alphabet_pos += 1 neighbors_table.append(neighbors_list) return neighbors_table # Returns a list that for every point in graph has another list # that holds vertices of the point def vertices(M): table = copy.deepcopy(M) for index, neighbors_list in enumerate(table): for index2, ch in enumerate(neighbors_list): table[index][index2] = alphabet[index] + ch return table # creates a set so you can start working on checking if # the graph is plain def create_set(hamiltonian_cycle, updated_neighbors_table): vertices_set = [] done = True pos_hamilton = 0 # the first check at while is in case that no one has a second neighbor # if the first node has no extra neighbors then go to the next node # until you find a node with neighbors or reach the end of hamilton ccycleircle while (pos_hamilton < len(hamiltonian_cycle) and done): ch_in_ham = hamiltonian_cycle[pos_hamilton] pos_in_alphabet = alphabet.find(ch_in_ham) if (len(updated_neighbors_table[pos_in_alphabet]) > 0): done = False # Create set of vertices for ch in updated_neighbors_table[pos_in_alphabet]: vertices_set.append(ch_in_ham + ch) updated_neighbors_table[alphabet.find(ch)].remove(ch_in_ham) else: pos_hamilton += 1 return (done, vertices_set, pos_hamilton) def should_go(path, at_set, i, j): for a in at_set: # check 00, # if one side of vertice is inside from j to i path # check 01 and 02 # if the other side of vertice has anything to do with # the path check00 = (path.find(a[0]) >= 0) check01 = (a[1] == alphabet[i]) check02 = (a[1] == j) # checks10, 11 12 do the same as 00, 01, 02 for the other side check10 = (path.find(a[1]) >= 0) check11 = (a[0] == alphabet[i]) check12 = (a[0] == j) if ((check00) and not (check01 or check02) or (check10) and not (check11 or check12)): return False return True def main(): graph = open("graph.txt", "r") neighbors_table = neighbors(graph) path_table = vertices(neighbors_table) repeats = 0 while (repeats < len(path_table) - 2): graph_path = [] for vertices_list in path_table: temp_path = [] for path in vertices_list: for ch in neighbors_table[alphabet.find(path[len(path) - 1])]: if(path.find(ch) < 0): temp_path.append(path + ch) graph_path.append(temp_path) path_table = copy.deepcopy(graph_path) repeats += 1 # check if you can have a cycle for vertices_list in path_table: cycle = [] for path in vertices_list: for ch in neighbors_table[alphabet.find(path[len(path) - 1])]: if(path[0] == ch): cycle.append(path + ch) if (len(cycle) == 0): print("No Hamiltonian cycle. Exit program") sys.exit() hamiltonian_cycle = cycle[0] print("A Hamiltonian cycle is:") print(hamiltonian_cycle) # start the proccess to find if the graph is a plain updated_neighbors_table = copy.deepcopy(neighbors_table) # remove the paths from hamiltonian cycle for i, j in zip(hamiltonian_cycle[:len(hamiltonian_cycle) - 1], hamiltonian_cycle[1:]): try: updated_neighbors_table[alphabet.find(i)].remove(j) updated_neighbors_table[alphabet.find(j)].remove(i) except ValueError: print("There was an error") print("The graph should be undirected") print("Exiting") sys.exit() # Creates group A and B A = [] B = [] a_done, A, pos_hamilton = create_set( hamiltonian_cycle, updated_neighbors_table) if (a_done): print("There is no possible path for creating group A." + "The graph is a level graph") sys.exit() # remove the vertices from neighbors_table updated_neighbors_table[ alphabet.find(hamiltonian_cycle[pos_hamilton])] = [] b_done, B, pos_hamilton = create_set( hamiltonian_cycle, updated_neighbors_table) if (b_done): print("There is no possible path for creating the group B." + "This is a level graph ") sys.exit() # remove the vertices from neighbors_table updated_neighbors_table[alphabet.find( hamiltonian_cycle[pos_hamilton])] = [] i = 0 while i < len(updated_neighbors_table): if (len(updated_neighbors_table[i]) > 0): for j in updated_neighbors_table[i]: # find the path between j and one of his neighbors # at hamiltonian path a = hamiltonian_cycle.find(alphabet[i]) b = hamiltonian_cycle.find(j) if a < b: j_to_i = hamiltonian_cycle[a + 1: b] else: j_to_i = hamiltonian_cycle[b + 1: a] # try to put j_to_i at A a_done = True b_done = True a_done = should_go(j_to_i, A, i, j) if (a_done): A.append(alphabet[i] + j) updated_neighbors_table[alphabet.find(j)].remove( alphabet[i]) else: b_done = should_go(j_to_i, B, i, j) if(b_done): B.append(alphabet[i] + j) updated_neighbors_table[alphabet.find(j)].remove( alphabet[i]) if(not a_done and not b_done): print("This is not level graph ") sys.exit() i += 1 print("This is a level graph, the two groups of edges are: ") print(A) print(B) if (__name__ == "__main__"): main() # ABCDEFGHI
71bfcef2ff9305dd8313c1c89b9f266291f279c1
maulita291/UAS_SMT2_2021
/UAS_SMT2_2021.py
2,242
3.546875
4
ulang = 'y' while ulang == 'y': #Format UANG def rp(uang): x = str(uang) if len(x) <= 3: return 'Rp. ' + x else: a = x[:-3] b = x[-3:] return rp(a) + '.' + b #SiapkanVar kode = ['1','2','3'] uang = [2500000, 4500000, 6500000] tunjanganIstri = [0.01, 0.03, 0.05] tunjanganAnak = 0.02 biayaJabatan = 0.005 biayaPensiun = 15500 biayaOrganisasi = 3500 #Tampilkan inputan nama = input('Masukkan Nama = ') gol = input('Golongan Anda = ') gender = input('Jenis Kelamin(L/P) = ') sts = input('Status Kawin(S/B) = ') print() #Hitung gaji i = 0 while i<len(uang): if kode[i] == gol: gaji = uang[i] tunj = tunjanganIstri[i] i+=1 #TunjanganIstri if gender == 'l' and sts =='s': istri = tunj * gaji else: istri = 0 #Tunjangan anak if sts == 's': anak = tunjanganAnak * gaji else: anak = 0 #Gaji bruto bruto = gaji + istri + anak #Biaya jabatan jbtn = biayaJabatan * bruto #Gaji netto netto = bruto - biayaJabatan - biayaPensiun - biayaOrganisasi #Tampilkan Hasil print('SLIP GAJI'.center(50)) #Input tanggal from datetime import date x = date.today() print(' Tanggal :', x.strftime('%d %B %Y')) print('=============================================') print('Gaji Pokok :', rp (str(gaji))) print('Tunjangan Istri :', rp (str(istri))) print('Tunjangan Anak :', rp (str(anak))) print('--> Gaji Bruto :', rp (str(bruto))) print('---------------------------------------------') print('Biaya Jabatan :', rp (str(jbtn))) print('Iuran Pensiun :', rp (str(biayaPensiun))) print('Iuran Organisasi :', rp (str(biayaOrganisasi))) print('--> Gaji Netto :', rp (str(netto))) ulang = input('Ulangi Program? Y/T:') print() if ulang == 't': break
e069c7bff3bbf2f8833e6e44effb9052f5ee864b
dpaneda/code
/jams/advent/2021/5/solve.py
931
3.546875
4
#! /usr/bin/env python import sys from dataclasses import dataclass def step(a, b): if a == b: return 0 else: return 1 if a < b else -1 @dataclass(frozen=True) class Point: x : int y : int def parse(s): return Point(*map(int, s.split(','))) @dataclass class Line: a : Point b : Point def parse(s): points = s.split(' -> ') return Line(*map(Point.parse, points)) def inner_points(self): xstep = step(self.a.x, self.b.x) ystep = step(self.a.y, self.b.y) p = self.a l = [p] while p != self.b: p = Point(p.x + xstep, p.y + ystep) l.append(p) return l lines = map(Line.parse, sys.stdin) grid = {} for line in lines: for point in line.inner_points(): grid.setdefault(point, 0) grid[point] += 1 count = sum(value > 1 for value in grid.values()) print(count)
5670860d909ed651cfaef4c3f67654b0c2870b68
leslie-toone/Cat-or-Dog
/wk 1 Transfer Learning Programming Assignment.py
15,565
4.15625
4
# # Programming assignment: Customising your Models TensorFlow 2 # ## Transfer learning # ### Instructions # Create a neural network model to classify images of cats and dogs, using transfer # learning: use part of a pre-trained image classifier model (trained on ImageNet) # as a feature extractor,and train additional new layers to perform the cats and # dogs classification task. # #### PACKAGE IMPORTS #### import tensorflow as tf from tensorflow.keras.models import Sequential, Model import numpy as np import pandas as pd from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import seaborn as sns from tensorflow.keras.layers import Conv2D, Input, MaxPooling2D, Flatten, Dense, Dropout from tensorflow.keras.models import Model, load_model # #### The Dogs vs Cats dataset # # Use the [Dogs vs Cats dataset](https://www.kaggle.com/c/dogs-vs-cats/data), # which was used for a 2013 Kaggle competition. It consists of 25000 images containing either a cat or a dog. We will # only use a subset of 600 images and labels. The dataset is a subset of a much larger dataset of 3 million photos # that were originally used as a CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans # Apart), referred to as “Asirra” or Animal Species Image Recognition for Restricting Access. # # * J. Elson, J. Douceur, J. Howell, and J. Saul. "Asirra: A CAPTCHA that Exploits Interest-Aligned Manual Image # Categorization." Proceedings of 14th ACM Conference on Computer and Communications Security (CCS), October 2007. # # Goal: train a classifier model using part of a pre-trained image classifier, using the principle of # transfer learning. # #### Load and preprocess the data images_train = np.load('Customising your Models TensorFlow 2/Data/images_train.npy') / 255. images_valid = np.load('Customising your Models TensorFlow 2/Data/images_valid.npy') / 255. images_test = np.load('Customising your Models TensorFlow 2/Data/images_test.npy') / 255. labels_train = np.load('Customising your Models TensorFlow 2/Data/labels_train.npy') labels_valid = np.load('Customising your Models TensorFlow 2/Data/labels_valid.npy') labels_test = np.load('Customising your Models TensorFlow 2/Data/labels_test.npy') print("{} training data examples".format(images_train.shape[0])) print("{} validation data examples".format(images_valid.shape[0])) print("{} test data examples".format(images_test.shape[0])) print(images_train.shape, images_valid.shape, images_test.shape) # #### Display sample images and labels from the training set # Display a few images and labels class_names = np.array(['Dog', 'Cat']) plt.figure(figsize=(15, 10)) inx = np.random.choice(images_train.shape[0], 15, replace=False) for n, i in enumerate(inx): ax = plt.subplot(3, 5, n + 1) # nrows,ncols, index (plot number starts at 1 increments across rows first and has a max # of nrow*ncols) plt.imshow(images_train[i]) plt.title(class_names[labels_train[i]]) plt.axis('off') # #### Create a benchmark model # # We will first train a CNN classifier model as a benchmark model before implementing the transfer learning approach. # Using the functional API, build the benchmark model according to the following specifications: # # * The model should use the `input_shape` in the function argument to set the shape in the Input layer. # * The first and second hidden layers should be Conv2D layers with 32 filters, 3x3 kernel size and ReLU activation. # * The third hidden layer should be a MaxPooling2D layer with a 2x2 window size. # * The fourth and fifth hidden layers should be Conv2D layers with 64 filters, 3x3 kernel size and ReLU activation. # * The sixth hidden layer should be a MaxPooling2D layer with a 2x2 window size. # * The seventh and eighth hidden layers should be Conv2D layers with 128 filters, 3x3 kernel size and ReLU activation. # * The ninth hidden layer should be a MaxPooling2D layer with a 2x2 window size. # * This should be followed by a Flatten layer, and a Dense layer with 128 units and ReLU activation # * The final layer should be a Dense layer with a single neuron and sigmoid activation. # * All of the Conv2D layers should use `'SAME'` padding. # # In total, the network should have 13 layers (including the `Input` layer). # # The model should then be compiled with the RMSProp optimiser with learning rate 0.001, binary cross entropy loss # and and binary accuracy metric. def get_benchmark_model(input_shape): inputs = Input(shape=input_shape, name='input_layer') h = Conv2D(32, (3, 3), activation='relu', name='Conv2D_layer1', padding='same')(inputs) h = Conv2D(32, (3, 3), activation='relu', name='Conv2D_layer2', padding='same')(h) h = MaxPooling2D((2, 2), name='maxpool2d_layer3')(h) h = Conv2D(64, (3, 3), activation='relu', name='Conv2D_layer4', padding='same')(h) h = Conv2D(64, (3, 3), activation='relu', name='Conv2D_layer5', padding='same')(h) h = MaxPooling2D((2, 2), name='maxpool2d_layer6')(h) h = Conv2D(128, (3, 3), activation='relu', name='Conv2D_layer7', padding='same')(h) h = Conv2D(128, (3, 3), activation='relu', name='Conv2D_layer8', padding='same')(h) h = MaxPooling2D((2, 2), name='maxpool2d_layer9')(h) h = Flatten(name='flatten_layer10')(h) h = Dense(128, activation='relu', name='Dense_layer11')(h) outputs = Dense(1, activation='sigmoid', name='Out_Dense_sigmoid_layer12')(h) model = Model(inputs=inputs, outputs=outputs) model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001), loss='binary_crossentropy', metrics=["acc"]) '''According to tf.keras.Model.compile() documentation: When you pass the strings 'accuracy' or 'acc', we convert this to one of tf.keras.metrics.BinaryAccuracy, tf.keras.metrics.CategoricalAccuracy, tf.keras.metrics.SparseCategoricalAccuracy based on the loss function used and the model output shape. We do a similar conversion for the strings 'crossentropy' and 'ce' as well. thus we can keep metric=acc rather than binary accuracy''' return model # Build and compile the benchmark model, and display the model summary benchmark_model = get_benchmark_model(images_train[0].shape) # use the binary crossentropy loss since this is a binary classification problem benchmark_model.summary() # #### Train the CNN benchmark model # # We will train the benchmark CNN model using an `EarlyStopping` callback. # Fit the benchmark model and save its training history earlystopping = tf.keras.callbacks.EarlyStopping(patience=2) history_benchmark = benchmark_model.fit(images_train, labels_train, epochs=10, batch_size=32, validation_data=(images_valid, labels_valid), callbacks=[earlystopping]) # #### Plot the learning curves # Run this cell to plot accuracy vs epoch and loss vs epoch plt.figure(figsize=(15, 5)) plt.subplot(121) try: plt.plot(history_benchmark.history['accuracy']) plt.plot(history_benchmark.history['val_accuracy']) except KeyError: plt.plot(history_benchmark.history['acc']) plt.plot(history_benchmark.history['val_acc']) plt.title('Accuracy vs. epochs') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['Training', 'Validation'], loc='lower right') plt.subplot(122) plt.plot(history_benchmark.history['loss']) plt.plot(history_benchmark.history['val_loss']) plt.title('Loss vs. epochs') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Training', 'Validation'], loc='upper right') plt.show() # #### Evaluate the benchmark model # Evaluate the benchmark model on the test set benchmark_test_loss, benchmark_test_acc = benchmark_model.evaluate(images_test, labels_test, verbose=0) print("Test loss: {}".format(benchmark_test_loss)) print("Test accuracy: {}".format(benchmark_test_acc)) # #### Load the pretrained image classifier model # #We will now begin to build our image classifier using transfer learning. Use the pre-trained MobileNet V2 # model, available to download from [Keras Applications](https://keras.io/applications/#mobilenetv2). def load_pretrained_MobileNetV2(path): model = load_model(path) return model # Call the function loading the pretrained model and display its summary base_model = load_pretrained_MobileNetV2('Customising your Models TensorFlow 2/models/MobileNetV2.h5') base_model.summary() # #### Use the pre-trained model as a feature extractor # # Remove the final layer of the network and replace it with new, untrained classifier layers for our task. # First create a new model that has the same input tensor as the MobileNetV2 model, and use the output # tensor from the layer with name `global_average_pooling2d_6` as the model output. def remove_head(pretrained_model): model = Model(inputs=pretrained_model.input, outputs=pretrained_model.get_layer('global_average_pooling2d_6').output) return model feature_extractor = remove_head(base_model) feature_extractor.summary() # Construct new final classifier layers for your model. Using the Sequential API, create a new model # according to the following specifications: # # * The new model should begin with the feature extractor model. # * This should then be followed with a new dense layer with 32 units and ReLU activation function. # * This should be followed by a dropout layer with a rate of 0.5. # * Finally, this should be followed by a Dense layer with a single neuron and a sigmoid activation function. # # In total, the network should be composed of the pretrained base model plus 3 layers. def add_new_classifier_head(feature_extractor_model): model = Sequential([ feature_extractor_model, Dense(32, activation='relu'), Dropout(0.5), Dense(1, activation='sigmoid') ]) return model # Call the function adding a new classification head and display the summary new_model = add_new_classifier_head(feature_extractor) new_model.summary() # #### Freeze the weights of the pretrained model # Freeze the weights of the pre-trained feature extractor (defined as the first layer of the model), # so that only the weights of the new layers added will change during the training. # # Compile model as before: use the RMSProp optimiser with learning rate 0.001, binary cross # entropy loss and and binary accuracy metric. def freeze_pretrained_weights(model): model.layers[0].trainable = False model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001), loss='binary_crossentropy', metrics=["acc"]) return model # Call the function freezing the pretrained weights and display the summary print(new_model.layers) frozen_new_model = freeze_pretrained_weights(new_model) frozen_new_model.summary() n_trainable_variables = len(frozen_new_model.trainable_variables) n_non_trainable_variables = len(frozen_new_model.non_trainable_variables) print("\n After freezing:\n\t Number of trainable variables: ", len(frozen_new_model.trainable_variables), "\n\t Number of non trainable variables: ", len(frozen_new_model.non_trainable_variables)) # #### Train the model # # Train the new model on the dogs vs cats data subset. We will use an `EarlyStopping` callback # with patience set to 2 epochs, as before. # Train the model and save its training history earlystopping = tf.keras.callbacks.EarlyStopping(patience=2) history_frozen_new_model = frozen_new_model.fit(images_train, labels_train, epochs=10, batch_size=32, validation_data=(images_valid, labels_valid), callbacks=[earlystopping]) # #### Plot the learning curves # Run this cell to plot accuracy vs epoch and loss vs epoch plt.figure(figsize=(15, 5)) plt.subplot(121) try: plt.plot(history_frozen_new_model.history['accuracy']) plt.plot(history_frozen_new_model.history['val_accuracy']) except KeyError: plt.plot(history_frozen_new_model.history['acc']) plt.plot(history_frozen_new_model.history['val_acc']) plt.title('Accuracy vs. epochs') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['Training', 'Validation'], loc='lower right') plt.subplot(122) plt.plot(history_frozen_new_model.history['loss']) plt.plot(history_frozen_new_model.history['val_loss']) plt.title('Loss vs. epochs') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Training', 'Validation'], loc='upper right') plt.show() # #### Evaluate the new model # Evaluate the benchmark model on the test set new_model_test_loss, new_model_test_acc = frozen_new_model.evaluate(images_test, labels_test, verbose=0) print("Test loss: {}".format(new_model_test_loss)) print("Test accuracy: {}".format(new_model_test_acc)) # #### Compare both models # # Finally, we will look at the comparison of training, validation and test metrics between the benchmark and transfer # learning model. # Gather the benchmark and new model metrics benchmark_train_loss = history_benchmark.history['loss'][-1] benchmark_valid_loss = history_benchmark.history['val_loss'][-1] try: benchmark_train_acc = history_benchmark.history['acc'][-1] benchmark_valid_acc = history_benchmark.history['val_acc'][-1] except KeyError: benchmark_train_acc = history_benchmark.history['accuracy'][-1] benchmark_valid_acc = history_benchmark.history['val_accuracy'][-1] new_model_train_loss = history_frozen_new_model.history['loss'][-1] new_model_valid_loss = history_frozen_new_model.history['val_loss'][-1] try: new_model_train_acc = history_frozen_new_model.history['acc'][-1] new_model_valid_acc = history_frozen_new_model.history['val_acc'][-1] except KeyError: new_model_train_acc = history_frozen_new_model.history['accuracy'][-1] new_model_valid_acc = history_frozen_new_model.history['val_accuracy'][-1] # Compile the metrics into a pandas DataFrame and display the table comparison_table = pd.DataFrame([['Training loss', benchmark_train_loss, new_model_train_loss], ['Training accuracy', benchmark_train_acc, new_model_train_acc], ['Validation loss', benchmark_valid_loss, new_model_valid_loss], ['Validation accuracy', benchmark_valid_acc, new_model_valid_acc], ['Test loss', benchmark_test_loss, new_model_test_loss], ['Test accuracy', benchmark_test_acc, new_model_test_acc]], columns=['Metric', 'Benchmark CNN', 'Transfer learning CNN']) comparison_table.index = [''] * 6 print(comparison_table) # Plot confusion matrices for benchmark and transfer learning models plt.figure(figsize=(15, 5)) preds = benchmark_model.predict(images_test) preds = (preds >= 0.5).astype(np.int32) cm = confusion_matrix(labels_test, preds) df_cm = pd.DataFrame(cm, index=['Dog', 'Cat'], columns=['Dog', 'Cat']) plt.subplot(121) plt.title("Confusion matrix for benchmark model\n") sns.heatmap(df_cm, annot=True, fmt="d", cmap="YlGnBu") plt.ylabel("Predicted") plt.xlabel("Actual") preds = frozen_new_model.predict(images_test) preds = (preds >= 0.5).astype(np.int32) cm = confusion_matrix(labels_test, preds) df_cm = pd.DataFrame(cm, index=['Dog', 'Cat'], columns=['Dog', 'Cat']) plt.subplot(122) plt.title("Confusion matrix for transfer learning model\n") sns.heatmap(df_cm, annot=True, fmt="d", cmap="YlGnBu") plt.ylabel("Predicted") plt.xlabel("Actual") plt.show()
3865cc98acc46cf0f33c6ff8ccb756f795ccbe70
csams/python_examples
/examples/functional/cons.py
1,689
4.125
4
""" Lists can represent uncertainty in calculations. They allow functions to return several values instead of just one. Each of those values get fed to the next function, which returns it's own list of possible values for each input. """ from monad import Monad class List(Monad): @classmethod def unit(cls, x): return Cons(x) def join(self, x): """ x is Nil or a List(List a). Flatten it out. """ if isinstance(x, Nil): return Nil() if isinstance(x.head, Nil): return Nil() return Cons.mappend(x.head, self.join(x.tail)) @classmethod def from_list(cls, l): if not l: return Nil() return Cons(l[0], List.from_list(l[1:])) def to_list(self): p = self results = [] while not isinstance(p, Nil): results.append(p.head) p = p.tail return results class Nil(List): def fmap(self, func): return Nil() def mappend(self, value): return value def __repr__(self): return "Nil" class Cons(List): def __init__(self, head, tail=None): self.head = head self.tail = tail or Nil() def fmap(self, func): return Cons(func(self.head), self.tail.fmap(func)) def mappend(self, y): return Cons(self.head, self.tail.mappend(y)) def __repr__(self): return repr(self.to_list()) # Just collect all combinations of x, y, and z. combinations = List.from_list([1, 2, 3]).bind(lambda x: List.from_list([5, 6, 7]).bind(lambda y: List.from_list([8, 9, 0]).bind(lambda z: List.unit((x, y, z)))))
11fb8a5fc1afc0866601643bea669d18eb872b28
thebiochemguy/sre-class
/Python_101/medium_exercise/box.py
264
4.03125
4
#Exercise 4: Print a box w=int(input("Width? ")) h=int(input("Height? ")) for y in range(h): for x in range(w): if(x == 0 or x == w-1 or y == 0 or y == h-1): print("*", end ='') else: print(" ", end='') print("")
2175c555d52ed7b48114f168fb784944145c6bce
vpisaruc/Python
/Программирование 2 сем/Лабараторные Python/Tkinter.py
3,020
4.25
4
# Бутолин Александер ИУ7-22 # Задано множество окружностей. # Определить ту, которая пересекает больше всего окружностей. from math import sqrt from tkinter import * try: def distance(x1,y1,x2,y2): return sqrt((x2 - x1)**2 + (y2 - y1)**2) def pifagor(r): return (sqrt((2*r)**2 + (2*r)**2))/2 ## r = [0, 0, 0, 0, 0] # Радиусы ## x = [0, 0, 0, 0, 0] # Координаты центра по оси абцис ## y = [0, 0, 0, 0, 0] # Коорждинаты центра по оси оординат ## I = [0] * len(r) # Intersections(пересечения) ## r = [3, 2, 2, 1, 1] # Радиусы ## x = [5, 5, 8, 9, 10] # Координаты центра по оси абцис ## y = [4, 4, 4, 6, 1] # Коорждинаты центра по оси оординат ## I = [0] * len(r) # Intersections(пересечения) ## r = [2, 3, 4, 5, 6] # Радиусы ## x = [3, 3, 3, 3, 3] # Координаты центра по оси абцис ## y = [3, 3, 3, 3, 3] # Коорждинаты центра по оси оординат ## I = [0] * len(r) # Intersections(пересечения) ## r = [2, 2, 2] # Радиусы ## x = [0, 2, 3] # Координаты центра по оси абцис ## y = [0, 2, 0] # Коорждинаты центра по оси оординат ## I = [0] * len(r) # Intersections(пересечения) x = [] y = [] r = [] n = int(input(('Введите количество окружностей: '))) for i in range(n): z = float(input('Введите кооридану Х центра окружности: ')) x.append(z) z = float(input('Введите кооридану Y центра окружности: ')) y.append(z) z = float(input('Введите радиус окружности: ')) r.append(z) I = len(r)*[0] for i in range(len(r)-1): for j in range(i+1,len(r)): if (distance(x[i],y[i],x[j],y[j]) <= (r[i] + r[j])) and (distance(x[i],y[i],x[j],y[j]) >= abs(r[i] - r [j])): #and ((x[i] != x[j]) and (y[i] != y[j])): I[i] += 1 I[j] += 1 print('Intersections = ',I) root=Tk() max = I[0] for i in range(len(I)): if I[i] > max: max = I[i] canv = Canvas(root,width = 500, height = 500, bg = "white", cursor = "pencil") for i in range(len(r)): if I[i] == max: canv.create_oval([100 + (x[i] - r[i])*30,100 + (y[i] - r[i])*30],[100 + (x[i] + r[i])*30, 100 + (y[i] + r[i])*30], outline='red') else: canv.create_oval([100 + (x[i] - r[i])*30,100 + (y[i] - r[i])*30],[100 + (x[i] + r[i])*30, 100 + (y[i] + r[i])*30], outline='black') canv.pack() root.mainloop() except ValueError: print('Неправильный ввод')
237c013d753d26cbe6210315978d3f7e87777ae5
viralmehta9/Web-Scraping
/NFL_Weekly.py
1,634
3.546875
4
# -*- coding: utf-8 -*- """ Created on Mon Apr 11 01:35:34 2016 @author: viral """ import urllib from bs4 import BeautifulSoup import csv import os #path and output data file os.getcwd() directoryPath = "..\.." os.chdir(directoryPath) f = csv.writer(open("NFL_Weekly.csv","w")) f.writerow(['Team Rank','Team Name','Team Points','Team Comments']) url = 'http://espn.go.com/college-football/powerrankings' testUrl = urllib.request.urlopen(url) readData = testUrl.read() testUrl.close() soup = BeautifulSoup(readData,'lxml') # Using to track the no of movies count = 0 # Fetchning the values present within the tags results teams = soup.findChildren('table','tablehead') # Changing movies into an iterator iterableTeams = iter(teams[0].findAll('tr')) # Skipping the first value of the iterator as it does not have the required data next(iterableTeams) next(iterableTeams) # to count n=0 # Finding the tr tag of iterableMovies. Every tr contains information of the movies. for trItem in iterableTeams: n += 1 #print(trItem) teamRank = trItem.findChildren('td','pr-rank')[0].get_text() #print(teamRank) teamName = trItem.findAll('a')[1].contents[0] #print(teamName) #teamRecord = trItem.find('span','pr-record').contents[0] #print(teamRecord) teamPoints = trItem.findChildren('td')[3].contents[0] #print(teamPoints) teamComments = trItem.findChildren('td')[4].contents[0] #print(teamComments) f.writerow([teamRank,teamName,teamPoints,teamComments]) if n==25: break
ae759ef6446371e39b537ef2e9a5a39e0bd33e44
alcebytes/Phyton-Estudo
/Prandiano_Python I/03_estruturas_de_decisao/exemplos_de_ifs.py
350
4.1875
4
a = 3 if a > 0: print("Você digitou um valor POSITIVO") b = 3 if b>0: print("Você digitou um valor POSITIVO") else: print("Você digitou um valor NÃO POSITIVO") c = -3 if c>0: print("Você digitou um valor POSITIVO") elif c==0: print("Você digitou um valor NULO") else: print("Você digitou um valor NEGATIVO")
9862d57ff5a87f7e2f4749b9d603dfbd6f0d8173
Nkugsw/python-notes
/10152018.py
242
3.765625
4
Restaurant = ('rice','noodles','pizza','orange','ice cream') for food in Restaurant: print(food) #Restaurant[0]='cake' print('\n') NewRestaurant = ('cake','falafel','pizza','orange','ice cream') for food in NewRestaurant: print(food)
a3985cc785da63b45670fe5d96c96d75fa4889ac
GuoYunZheSE/Leetcode
/Easy/1475/1475.py
658
3.578125
4
# @Date : 23:13 04/26/2022 # @Author : ClassicalPi # @FileName: 1475.py # @Software: PyCharm class Solution: def finalPrices(self, prices: [int]) -> [int]: order_dic = {} mono_stack = [] for index, price in enumerate(prices): while mono_stack and mono_stack[-1][1] >= price: order_dic.setdefault(mono_stack[-1][0], price) mono_stack.pop() mono_stack.append((index, price)) for index, price in enumerate(prices): prices[index] -= order_dic.get(index, 0) return prices if __name__ == '__main__': S = Solution() print(S.finalPrices([]))
818a80a935b3fb76bcdeeb5fb28a4309bf495d3d
kojuki/python_intense
/lesson4.3.py
839
3.859375
4
def attack(atacker, victim): victim['health'] = victim['health'] - atacker['damage'] return victim # для игрока сделаем изменение значения существующего ключа player = { 'name' : None, 'health' : 100, 'damage' : 50 } # А для противниа сделаем ввод нового ключа со значением enemy = { 'health' : 100, 'damage' : 50 } player['name'] = input('введите имя игрока: ') enemy['name'] = input('введите имя противника: ') print(f'исходные параметры игрока: {player}') print(f'исодные параметры врага: {enemy}') attack(player, enemy) print(f'параметры "{enemy["name"]}" после атаки "{player["name"]}": {enemy}')
bd50afd20753a90868d11916d15f54f9c5211743
mikeehun/codewars
/kyu7/the-old-switcheroo/vowel_2_index.py
593
3.96875
4
def vowel_2_index(string): switched_string = '' position_in_string = 0 vowels = set('aeiouAEIOU') for letter in string: position_in_string += 1 if any((v in vowels) for v in letter): switched_string += str(position_in_string) else: switched_string += letter return switched_string #vowel_2_index('this is my string') #== 'th3s 6s my str15ng' print(vowel_2_index('this is my string')) #== 'th3s 6s my str15ng' print(vowel_2_index('Codewars is the best site in the world')) #,'C2d4w6rs 10s th15 b18st s23t25 27n th32 w35rld')
40530c42b95e71a34858fa30860298450fcfb094
mgundogan20/semester-1-Problem-Set-1
/ps1d.py
1,559
3.953125
4
# Your solution for part d # Your solution for part d import math monthly_salary = float(input("What is your monthly salary? ")) total_cost = float(input("What is the cost of your dream car? ")) percentage_increase = float(input("Enter the increase in said car's price in decimals: ")) salary_raise= float(input("Enter the percentage salary raise, as a decimal: ")) interest_rate = 0.01 def estimate(percentage_saved,): """ calculates the difference of savings and total cost at the end of 24 months for a given saving rate """ global monthly_salary, salary_raise global total_cost, percentage_increase cost = total_cost salary = monthly_salary percentage_saved /= 10000 current_savings = 0 time_estimate = 0 while True: for x in range(1,13): current_savings *= 1.01 current_savings += salary*percentage_saved time_estimate += 1 #print(time_estimate, salary, current_savings) if x%6 == 0: salary *= 1 + salary_raise if time_estimate == 24: break if time_estimate == 24: break else: cost += cost*percentage_increase return(current_savings-cost) def binarySearch(): high = 10000 low = 0 mid = (high + low)/2 steps=0 if estimate(high) < 0: print("It is not possible to buy the car in two years") else: while abs(estimate(mid)) > 1000: if estimate(mid) >= 0: steps += 1 high = mid else: steps += 1 low = mid mid = math.ceil((high + low)/2) print("Best savings rate: {:.3f}".format(mid/10000)) print("Steps in bisection search: {:d}".format(steps)) binarySearch()
39cc60f18fa35bc0206229fb9fedc82ec5c9d230
suyundukov/LIFAP1
/TD/TD2/Code/Python/7.py
410
3.875
4
#!/usr/bin/python # Calculer les racines rééles d'un polymer du second degré from math import sqrt print('Donne moi trois entiers, un par un : ', end='') a = float(input()) b = float(input()) c = float(input()) d = b * b - 4 * a * c if d < 0: print('Pas de racine réels.') elif d == 0: print('Une racine double', -b / (2 * a)) else: print((-b + sqrt(d)) / (2 * a), (-b - sqrt(d)) / (2 * a))
4a1f020ae889c7b6fa482726e811b2af33018ad0
renaldyresa/Kattis
/oktalni.py
520
3.703125
4
biner = input() while len(biner)%3!=0 : biner = "0"+biner hls = "" for i in range(0,len(biner),3): if biner[i:i+3] == "000" : hls+="0" elif biner[i:i+3] == "001" : hls+="1" elif biner[i:i+3] == "010" : hls+="2" elif biner[i:i+3] == "011" : hls+="3" elif biner[i:i+3] == "100" : hls+="4" elif biner[i:i+3] == "101" : hls+="5" elif biner[i:i + 3] == "110": hls += "6" elif biner[i:i+3] == "111" : hls+="7" print(int(hls))
7547ec70fea92c6d820293f47ae5c95c8446de38
timsergor/StillPython
/068.py
1,330
3.84375
4
#1123. Lowest Common Ancestor of Deepest Leaves. Medium. 64.4%. #Given a rooted binary tree, return the lowest common ancestor of its deepest leaves. #Recall that: #The node of a binary tree is a leaf if and only if it has no children #The depth of the root of the tree is 0, and if the depth of a node is d, the depth of each of its children is d+1. #The lowest common ancestor of a set S of nodes is the node A with the largest depth such that every node in S is in the subtree with root A. # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def lcaDeepestLeaves(self, root: TreeNode) -> TreeNode: def hieght(Node): if Node == None: return(-1) if not (Node.right or Node.left): return(0) else: return(1 + max(hieght(Node.left), hieght(Node.right))) def solution(Node): L = hieght(Node.left) R = hieght(Node.right) if L == R: return(Node) elif L > R: return(solution(Node.left)) else: return(solution(Node.right)) return(solution(root)) # 15 min
e79778d274e9bf89b4ea4fa5fbb9780cbe6cbd4d
MihailMihaylov75/algorithms
/linked_lists.py
2,282
3.984375
4
__author__ = 'Mihail Mihaylov' # Singly linked list class Node(object): def __init__(self, value): self.value = value self.next_node = None @staticmethod def cycle_check(node): """Check if linked list contains cycle""" marker1, marker2 = node, node # If link is None break -> it is not cycle while marker1 and marker1.next_node: marker1 = marker1.next_node # Check if previous link is the same if marker1 == marker2: return True marker1 = marker1.next_node marker2 = marker2.next_node return False @staticmethod def reverse(head): current = head previous = None while current: nextnode = current.next_node current.next_node = previous previous = current current = nextnode return previous @staticmethod def get_nth_to_last_node(n, head): left_pointer, right_pointer = head, head for i in range(n-1): if not right_pointer.next_node: raise Exception('Error: n is larger than size of the linked list.') right_pointer = right_pointer.next_node while right_pointer.next_node: left_pointer = left_pointer.next_node right_pointer = right_pointer.next_node return left_pointer a = Node(1) b = Node(2) c = Node(3) # a.next_node.value has value 2 a.next_node = b # b.next_node.value has value 3 b.next_node = c """ Linked Lists have constant-time insertions and deletions in any position, in comparison, arrays require O(n) time to do the same thing. Linked lists can continue to expand without having to specify their size ahead of time. To access an element in a linked list, you need to take O(k) time to go from the head of the list to the kth element. In contrast, arrays have constant time operations to access elements in an array """ class DoublyLinkedListNode(object): def __init__(self, value): self.value = value self.next_node = None self.prev_node = None a = DoublyLinkedListNode(1) b = DoublyLinkedListNode(2) c = DoublyLinkedListNode(3) a.next_node = b b.prev_node = a b.next_node = c c.prev_node = b
d8bc298b18d557b73c482a4990eade3fa8a9ea88
marciofleitao/ifpi-ads-algoritmos2020
/04 - Lista Fábio 01 - Parte 2 - Entrada, Saída e Operadores/f1_p2_q20_eq_linear.py
457
3.921875
4
# 20. Um sistema de equações lineares do tipo , pode ser resolvido segundo mostrado abaixo: # ENTRADA a = int(input('Insira o a: ')) b = int(input('Insira o b: ')) c = int(input('Insira o c: ')) d = int(input('Insira o d: ')) e = int(input('Insira o e: ')) f = int(input('Insira o f: ')) # PROCESSAMENTO x = ((c*e - b*f) / (a*e - b*d)) y = ((a*f - c*d) / (a*e - b*d)) # SAIDA print(f'O valor de x é {x:.2f} e o valor de y é {y:.2f}.')