blob_id
string | repo_name
string | path
string | length_bytes
int64 | score
float64 | int_score
int64 | text
string |
---|---|---|---|---|---|---|
4fb087fd599813b8a13554b1530a04edd96a8103 | freddieaviator/my_python_excercises | /ex042/ex02.py | 303 | 3.890625 | 4 |
first_name = "fredrik"
last_name = "hårberg"
course = "Data Engineer"
candidates = 11
print(f"""My name is {first_name.capitalize()} with last name {last_name.capitalize()}.
I am participating in the course {course.lower()}.
There are {candidates} candidates taking the {course.lower()} course.""")
|
dff2db36e5f3cf6b30bd9266221f77f039469301 | CharlesJonah/andela_ex_d1 | /fizz_buzz.py | 365 | 4.1875 | 4 | def fizz_buzz(num):
#Return FizzBuzz if num is divisible by both 3 and 5
if num % 3 == 0 and num % 5 == 0:
return 'FizzBuzz'
#Returns Buzz if num is divisible by 5
elif num % 5 == 0:
return 'Buzz'
#Returns Fizz if num is divisible by 3
elif num % 3 == 0:
return 'Fizz'
#Returns num itself if it is not divisible by either 3 or 5
else:
return num
|
55221d27a289720d001a5e6b612cb6534e8e470a | shubham-dixit-au7/test | /coding-challenges/Week03/Day01_(03-02-2020)/Ques3.py | 585 | 4.28125 | 4 | # Question- Write a Python program to create a dictionary from a string.
# Note: Track the count of the letters from the string.
# Sample string : 'w3resource'
# Expected output: {'3': 1, 's': 1, 'r': 2, 'u': 1, 'w': 1, 'c': 1, 'e': 2, 'o': 1}
# Answer-
# first method-
# user_input = input("Enter a String ->")
# counts= {}
# for i in user_input:
# if not i in counts:
# counts[i] = 1
# else:
# counts[i] += 1
# print(counts)
# Second method-
user_input = input("Enter a String -> ")
counts= {}
for i in user_input:
counts[i]=counts.get(i,0) + 1
print(counts)
|
449cc995d85aceb7296751501136209c535dec42 | maksim-shaidulin/CodeSignalTasks | /LeetCode/plusOne.py | 446 | 3.53125 | 4 | from typing import List
class Solution:
def plusOne(self, digits: List[int]) -> List[int]:
num = int("".join([str(x) for x in digits])) + 1
return [int(x) for x in str(num)]
def test_plusOne():
assert Solution().plusOne([0]) == [1]
assert Solution().plusOne([1]) == [2]
assert Solution().plusOne([9]) == [1, 0]
assert Solution().plusOne([1, 2]) == [1, 3]
assert Solution().plusOne([9, 9]) == [1, 0, 0]
|
43dd7834732752e8c4215516f9fab5c775e5afb4 | Iliaromanov/classroom-examples_gr11 | /arcade/11_lists_motion_01.py | 1,234 | 4 | 4 | """
1. Create parallel lists of rain x and y values.
2. In the draw function, use a for loop with zip() to draw
rain at the x, y co-ordinates.
"""
import arcade
WIDTH = 640
HEIGHT = 480
# Parallel lists to store x and y values for each rain drop
rain_x_positions = [100, 200, 300]
rain_y_positions = [480, 480, 480]
def setup():
arcade.open_window(WIDTH, HEIGHT, "My Arcade Game")
arcade.set_background_color(arcade.color.WHITE)
arcade.schedule(update, 1/60)
# Override arcade window methods
window = arcade.get_window()
window.on_draw = on_draw
window.on_key_press = on_key_press
window.on_key_release = on_key_release
window.on_mouse_press = on_mouse_press
arcade.run()
def update(delta_time):
pass
def on_draw():
arcade.start_render()
# Draw in here...
# zip() pairs up values from multiple lists for we can
# iterate through multiple lists at once
for x, y in zip(rain_x_positions, rain_y_positions):
arcade.draw_circle_filled(x, y, 25, arcade.color.BLUE)
def on_key_press(key, modifiers):
pass
def on_key_release(key, modifiers):
pass
def on_mouse_press(x, y, button, modifiers):
pass
if __name__ == '__main__':
setup()
|
01406dca128ecd3caf10f7f3c59b81ec94a1bb27 | tektutor/DevOpsJuly2018 | /Day6/Python/inheritance.py | 965 | 4.0625 | 4 | #!/usr/bin/python
class Parent:
def __init__(self):
print ( 'Parent constructor' )
self.x = 0
self.y = 0
def setValues(self, a, b):
self.x = a
self.y = b
def printValues(self):
print ('The value of x is' , self.x )
print ('The value of y is' , self.y )
def __privateMethod(self):
print ('Parent private method')
class Child(Parent):
def __init__(self):
Parent.__init__(self)
print ( 'Child constructor')
self.z = 0
def setValues(self, a, b, c ):
Parent.setValues (self, a, b)
self.z = c
def printValues(self):
Parent.printValues(self)
print ('The value of z is', self.z )
def main():
child = Child()
child.printValues()
child.setValues ( 100, 200, 300 )
child.printValues()
#child.__privateMethod() #if uncommented gives an error as private methods aren't inherited by child
main()
|
38c4f4d57a469bc6575bc82c77ef83eae3529b48 | tuftsceeo/EDL2020 | /student_notebook_root_folder/archive/image_processing/python_scripts/apply_face_detection.py | 2,309 | 3.640625 | 4 |
import cv2
import argparse
def detect_face(img, faceCascade, eyeCascade):
"""
Name: detect_face
Input: image(numpy 3d array), face classifier, eye classifier
Return: n/a
What it does: draws red box around face, draws green box around eye
"""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
flags= cv2.CASCADE_SCALE_IMAGE
)
# Draw a rectangle around the faces
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 0, 255), 2)
# roi stands for region of interest-- eyes always on the face
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
eyes = eyeCascade.detectMultiScale(roi_gray)
for (ex,ey,ew,eh) in eyes:
cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
def face_detect_video(inputVideoPath, outputVideoPath):
"""
Name: face_detect_video
Input: path to video, path to output
Return: none
What it does: detects faces and eyes for an entire video
"""
# read existing video in folder
cap = cv2.VideoCapture(inputVideoPath)
# use face detection classifier in folder
# it's good practice to have paths be variables so they are easily edited
cascPath = '../haarcascades/lbpcascade_frontalface_improved.xml'
eyeCascPath = '../haarcascades/haarcascade_eye.xml'
faceCascade = cv2.CascadeClassifier(cascPath)
eyeCascade = cv2.CascadeClassifier(eyeCascPath)
# output file
fourcc = 0x00000021
out = cv2.VideoWriter(outputVideoPath, fourcc, 20.0, (640,480))
i = 0
while(cap.isOpened()):
if i %40 ==0:
print(i)
i +=1
ret, frame = cap.read()
if ret is False:
break
detect_face(frame, faceCascade, eyeCascade)
out.write(frame)
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("inputPath", help = "path to video")
parser.add_argument("outputPath", help = "path to output as mp4")
args = parser.parse_args()
face_detect_video(args.inputPath, args.outputPath)
|
006fb1c33f5bf0649de9c7da3a761f3a892e3d0f | dark-polar/tech-test | /programmer.py | 483 | 3.890625 | 4 | words = ["pro", "gram", "merit", "program", "it", "programmer"]
patterns = "program"
matching = [s for s in words if patterns in s]
def check(n):
array = ['pro', 'gram', 'merit', 'program', 'it', 'programmer']
result = ''
cut = False
for i in array:
if i in n:
result += '{}, '.format(i)
else:
cut = True
if cut:
pass
else:
print(result)
check('programmerit')
print(matching) |
be2970af9bcb6736ce21f3009bbc1108cbe8d0da | gcrowder/currency_converter | /currency_test.py | 2,051 | 3.578125 | 4 | import unittest
import currency
first_currency_object = currency.Currency('£5.25')
second_currency_object = currency.Currency(currency_code='GBP', amount=5.25)
third_currency_object = currency.Currency(amount=5.25, currency_code='EUR')
fourth_currency_object = currency.Currency('£10.50')
class TestCurrency(unittest.TestCase):
def test_assert_equal(self):
self.assertEqual(first_currency_object, second_currency_object)
def test_assert_not_equal_currency_code(self):
self.assertNotEqual(second_currency_object, third_currency_object)
def test_assert_not_equal_amount(self):
self.assertNotEqual(first_currency_object, fourth_currency_object)
def test_assert_equal_add(self):
self.assertEqual(first_currency_object + second_currency_object, fourth_currency_object)
def test_assert_not_equal_add(self):
self.assertNotEqual(first_currency_object + currency.Currency('£8.75'), fourth_currency_object)
def test_assert_raises_add(self):
self.assertRaises(currency.DifferentCurrencyCodeError, lambda: first_currency_object + third_currency_object)
def test_assert_equal_sub(self):
self.assertEqual(fourth_currency_object - first_currency_object, second_currency_object)
def test_assert_not_equal_sub(self):
self.assertNotEqual(second_currency_object - first_currency_object, fourth_currency_object)
def test_assert_raises_sub(self):
self.assertRaises(currency.DifferentCurrencyCodeError, lambda: fourth_currency_object - third_currency_object)
def test_assert_equal_mul(self):
self.assertEqual(first_currency_object * second_currency_object, currency.Currency('£27.56'))
def test_assert_not_equal_mul(self):
self.assertNotEqual(first_currency_object * second_currency_object, currency.Currency('£900'))
def test_assert_raises_mul(self):
self.assertRaises(currency.DifferentCurrencyCodeError, lambda: first_currency_object * third_currency_object)
if __name__ == '__main__':
unittest.main()
|
9382a54fbddb47a1500e6b4e3f1729b72a24a9f3 | KenOasis/LeetCode | /LeetCode/Algorithm/Longest Palindromic Substring/main.py | 1,748 | 3.671875 | 4 | class Solution:
def palindrome(self , start , end , s ):
while True:
if(start < 0 or end > len(s) - 1 ):
break
if(s[start] != s[end]):
break
start -= 1
end += 1
return end - start - 1
def longestPalindrome(self, s: str) -> str:
if(len(s) == 1):
return s
start = 0
end = 0
#from the middle
for i in range(0,len(s)) :
l = self.palindrome(i , i , s)
l1 = self.palindrome(i , i + 1 , s )
l2 = max(l , l1)
if(l2 > end - start + 1 ):
start = i - (l2-1)//2
end = i + l2 //2
return s[start: end + 1 ]
def test_main():
sobj = Solution()
s = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab"
result = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
assert sobj.longestPalindrome(s) == result |
e5649d2b70a4c7a3e4683d58e11b9a975dad9a3f | hatsem78/practica_python | /ejercicios.py | 601 | 3.828125 | 4 | import math
def anagrama(word, word2):
word = sorted(word)
word2 = sorted(word2[::-1])
if word == word2:
return True
else:
return False
print(print(anagrama('fresa', 'frase')))
def es_polidromo(word):
polidromo = word[::-1]
if word == polidromo:
return True
else:
return False
print(es_polidromo('ana'))
print(es_polidromo('arenera'))
print(es_polidromo('mama'))
def factorial(number):
fac = 1
for element in range(1, number + 1):
fac *= element
return fac
print(math.factorial(5))
print(factorial(5))
|
14db37534f2757c428b5d99eb638d845c077fc01 | harshalms/python | /basics/minimum_difference.py | 743 | 4.1875 | 4 | '''GeeksForGeeks
Find minimum difference between any two elements
Given an unsorted array, find the minimum difference between any pair in given array.
Examples :
Input : {1, 5, 3, 19, 18, 25};
Output : 1
Minimum difference is between 18 and 19
Input : {30, 5, 20, 9};
Output : 4
Minimum difference is between 5 and 9
Input : {1, 19, -4, 31, 38, 25, 100};
Output : 5
Minimum difference is between 1 and -4
'''
def minDifference(A):
A.sort()
mini = max(A)
for i in range(len(A)-1):
diff = A[i+1] - A[i]
mini = min(mini, diff)
return mini
if __name__ == "__main__":
A = [[1, 5, 3, 19, 18, 25], [30, 5, 20, 9], [1, 19, -4, 31, 38, 25, 100]]
for i in range(len(A)):
print(minDifference(A[i]))
|
699b703705e6717dd00c0abb1603fceeb8643d73 | biocatalytic-coatings/pythonScripts | /millis.py | 323 | 3.546875 | 4 | import time
from datetime import datetime, timedelta
interval=1
start_time=datetime.now()
future_time=start_time + timedelta(seconds=60)
dt=datetime.now()
print("Started @",dt)
while (dt < future_time):
#time.sleep(interval)
#print("Millis = ",dt)
dt=datetime.now()
print ("Finished @", datetime.now())
|
5a6c664bc424dd41516b94535695105b1e3a9ec6 | codeAligned/coding-practice | /practicepython.org/exercise20.py | 930 | 3.640625 | 4 | #!/usr/bin/env python3
import random
def binarySearch(value, sample, start, end):
if start > end:
return -1
midIndex = int((start+end) / 2)
if value == sample[midIndex]:
return midIndex
elif value < sample[midIndex]:
return binarySearch(value, sample, start, midIndex - 1)
else:
return binarySearch(value, sample, midIndex + 1, end)
sample = [x for x in range(100)]
value = random.randint(0, 150)
position = binarySearch(value, sample, 0, len(sample) - 1)
print(str(value) + ' is found at index ' + str(position))
import time
print('Python in vs binartSearch time.')
startTime = time.time()
if 20 in sample:
pass
endTime = time.time()
print('Total time for in: ' + str((endTime - startTime) * 1000000))
startTime = time.time()
binarySearch(20, sample, 0, len(sample) - 1)
endTime = time.time()
print('Total time for binary: ' + str((endTime - startTime) * 1000000))
|
3e3f213b14d53a92f3f32a04a2913419b9a7e590 | mantripat/python_programs | /palindrome.py | 402 | 3.90625 | 4 |
#s1=input("enter any string to check if it is palindrome:")
"""
s1="maddsam"
print("reverse string=",s1[::-1])
if s1[0:]==s1[::-1]:
print("String is palindrome")
else:
print("Its not plaindrome")
"""
s="hi ! my name is Alpha ..... u can write it like @lph@ 123%%%6&8^%$#"
s2=""
for i in range(len(s)):
if s[i].isalnum() or s[i].isspace():
s2+=s[i]
print("new string is \t", s2) |
db13bfc35fdca90f2f7d1021fae1de47fca651e2 | Zahidsqldba07/competitive-programming-1 | /Leetcode/August Leetcoding Challenge/vertical_order.py | 1,569 | 4.0625 | 4 | # Vertical Order Traversal of a Binary Tree
'''
Given a binary tree, return the vertical order traversal of its nodes values.
For each node at position (X, Y), its left and right children respectively will be at positions (X-1, Y-1) and (X+1, Y-1).
Running a vertical line from X = -infinity to X = +infinity, whenever the vertical line touches some nodes, we report the values of the nodes in order from top to bottom (decreasing Y coordinates).
If two nodes have the same position, then the value of the node that is reported first is the value that is smaller.
Return an list of non-empty reports in order of X coordinate. Every report will have a list of values of nodes.
'''
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def verticalTraversal(self, root: TreeNode) -> List[List[int]]:
dic = defaultdict(list)
self.min_l, self.max_l = float("inf"), -float("inf")
def dfs(root, lvl_h, lvl_v):
self.min_l = min(lvl_h, self.min_l)
self.max_l = max(lvl_h, self.max_l)
dic[lvl_h].append((lvl_v, root.val))
if root.left:
dfs(root.left, lvl_h - 1, lvl_v + 1)
if root.right:
dfs(root.right, lvl_h + 1, lvl_v + 1)
dfs(root, 0, 0)
res = []
for i in range(self.min_l, self.max_l + 1):
res += [[j for i, j in sorted(dic[i])]]
return res
|
4bdc92c7596158a48862c14f9cced649638575ab | dhootha/nGramBabbler | /Babbler.py | 4,282 | 3.828125 | 4 | # Babbler: reads in a corpus and uses conditional probabilities to
# write out a string of words, with each word generated based off of
# the probability that it occurred after the previous n words in the corpus.
#
# Boyang Niu
# [email protected]
# 11-13-2013
#
#
import random
import collections
class Babbler(object):
def __init__(self, filename, ngram_count):
"""
Populates the dictionary of word counts that make up the babbler
with counts based on [ngram_count] previous words when given a
[filename] file that acts as a corpus.
"""
word_table = {}
phrase_counts = {}
totalwords = 0
# deque automatically evicts the first entry when over maxlen
tempwords = collections.deque(maxlen=ngram_count)
with open(filename) as f:
for line in f:
for word in line.strip().split(" "):
word = word.lower()
# if this is the first word in the corpus
if not len(tempwords) == ngram_count:
tempwords.append(word)
continue
# otherwise we use the previous words to generate the next
tempword = " ".join(tempwords)
if tempword not in word_table:
word_table[tempword] = {}
phrase_counts[tempword] = 1
else:
phrase_counts[tempword] += 1
# add counts to the word table
if word not in word_table[tempword]:
word_table[tempword][word] = 1
else:
word_table[tempword][word] += 1
# add the current word to the previous words and evict one
tempwords.append(word)
# add to the total count of words
totalwords += 1
self.total_words = totalwords
self.word_table = word_table
self.ngram_size = ngram_count
self.phrase_counts, self.phrase_sum = self.generate_list_for_rng(
phrase_counts)
def get_frequencies(self, words):
"""
Given a list of words, gives back a list of tuples of
(float frequencies, string word) that dictate the probabilities
of the next word.
"""
if words not in self.word_table:
return []
return {word2: (float(self.word_table[words][word2]) /
sum(self.word_table[words].values()))
for word2 in self.word_table[words]}
def generate_next_word(self, words):
"""
Given the words that have already occurred, generate the next word.
"""
# truncate the word list to the given number of ngrams of this babbler
trunc_words = " ".join(" ".join(words).split(" ")[-1 *
self.ngram_size:])
# if we encounter a string that we haven't ever seen, generate random
if trunc_words not in self.word_table:
return self.generate_random_word()
# generate the number that we use to pick the next word
rng_table, rng_sum = self.generate_list_for_rng(
self.get_frequencies(trunc_words))
rng_num = random.random() * rng_sum
for freq, word in rng_table:
if rng_num > freq:
continue
else:
return word
def generate_random_word(self):
# partial dict for holding values temporarily
rng_num = random.random() * self.phrase_sum
for freq, word in self.phrase_counts:
if rng_num > freq:
continue
else:
return word
def generate_list_for_rng(self, rng_dict):
"""
Takes a dictionary from word to word count and returns
a tuple (a list of tuples from word frequency to word, sum of
frequencies)
"""
# rng_table is a list of tuples (freq, word) of probabilities
rng_table = []
rng_sum = 0
for v in rng_dict:
rng_sum += rng_dict[v]
rng_table.append((rng_sum, v))
return rng_table, rng_sum
|
2f992cfead04dfcddcd717a63c9eb512b4617d31 | daniel-reich/turbo-robot | /QN4RMpAnktNvMCWwg_12.py | 961 | 4.375 | 4 | """
An identity matrix is defined as a square matrix with **1s** running from the
top left of the square to the bottom right. The rest are **0s**. The identity
matrix has applications ranging from machine learning to the general theory of
relativity.
Create a function that takes an integer `n` and returns the identity matrix of
`n x n` dimensions. For this challenge, if the integer is negative, return the
mirror image of the identity matrix of `n x n` dimensions.. It does not matter
if the mirror image is left-right or top-bottom.
### Examples
id_mtrx(2) ➞ [
[1, 0],
[0, 1]
]
id_mtrx(-2) ➞ [
[0, 1],
[1, 0]
]
id_mtrx(0) ➞ []
### Notes
Incompatible types passed as `n` should return the string `"Error"`.
"""
def id_mtrx(n):
if type(n)!=int:
return 'Error'
else:
lst= [[1 if x==y else 0 for y in range(abs(n))]for x in range(abs(n))]
return lst if n>0 else lst[::-1]
|
3b5f2c02635ce0a3f0a9bf38ae5d2cea625e475a | gabriellaec/desoft-analise-exercicios | /backup/user_035/ch37_2020_03_23_23_14_07_056409.py | 168 | 3.890625 | 4 | Senha = False
resposta = input("Qual é a senha")
while Senha:
if resposta!="desisto":
print("tenta denovo")
else:
Senha = True
print("Você acertou a senha!") |
cfd1bf81e1e7b6c0e8c8c5c8845627f963bd3e15 | jakehoare/leetcode | /python_1_to_1000/812_Largest_Triangle_Area.py | 961 | 3.9375 | 4 | _author_ = 'jake'
_project_ = 'leetcode'
# https://leetcode.com/problems/largest-triangle-area/
# You have a list of points in the plane. Return the area of the largest triangle that can be formed by any
# 3 of the points.
# For each 3 points, use shoelace formula as per https://en.wikipedia.org/wiki/Shoelace_formula to calculate area.
# Time - O(n**3)
# Space - O(1)
class Solution(object):
def largestTriangleArea(self, points):
"""
:type points: List[List[int]]
:rtype: float
"""
n = len(points)
largest = 0
for i in range(n - 2):
for j in range(i + 1, n - 1):
for k in range(j + 1, n):
x1, y1 = points[i]
x2, y2 = points[j]
x3, y3 = points[k]
area = 0.5 * abs(x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2))
largest = max(largest, area)
return largest |
9eba62f84d960868a5b699765b204f4f0047eb64 | passion4energy/Elyane | /losses/multi_class_cross_entropy.py | 972 | 3.671875 | 4 | """ The Multi-Class Cross-Entropy Loss Function """
import numpy as np
from .loss import Loss
class MultiClassCrossEntropy(Loss):
""" The Multi-class CrossEntropy that contains everything needed to calculate the loss. """
def fct(self, labels, preds):
""" The loss function formula.
Args:
labels (array): The true labels of our dataset.
preds (array): The predictions made by our neural networ.
Returns:
array: Returns the loss according to A and Y.
"""
return - np.sum(labels * np.log(preds))
def deriv(self, labels, preds):
""" Calculates the derivative of the CrossEntropy loss function.
Args:
labels (array): The true labels of our dataset.
preds (array): The predictions made by our neural network.
Returns:
array: Returns the derivative loss according to A and Y.
"""
return preds - labels
|
6bf953d8ba77379b13fd0162be89c54d3ac31e56 | dingshuangdian/lsqPython | /day2/format.py | 601 | 3.96875 | 4 | # 格式化输出
# %s d
name = input('请输入姓名:')
age = input('请输入年龄:')
height = input('请输入身高:')
job = input('请输入工作:')
hobbie = input('你的爱好:')
# msg = "我叫%s,今年%s 身高%s" % (name, age, height)
msg = '''-------------info of %s --------------
Name:%s
age:%s
height:%s
job:%s
hobbie:%s
学习进度为:3%%
''' % (name, name, age, height, job, hobbie)
print(msg)
# while else
count = 0
while count <= 5:
count += 1
if count == 3:
break
print("Loop", count)
else:
print("没被break打断循环正常执行完成!")
|
d8f3de21f3aa99da8c9d894ba048342db39dd486 | ThompsonHe/LeetCode-Python | /Leetcode0111.py | 1,680 | 4 | 4 | """
111. 二叉树的最小深度
给定一个二叉树,找出其最小深度。
最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
说明:叶子节点是指没有子节点的节点。
示例:
给定二叉树[3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
返回它的最小深度 2.
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-depth-of-binary-tree
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
"""
import collections
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution:
def minDepth(self, root: TreeNode) -> int:
if not root:
return 0
if not root.left and not root.right:
return 1
min_depth = 10 ** 9
if root.left:
min_depth = min(self.minDepth(root.left), min_depth)
if root.right:
min_depth = min(self.minDepth(root.right), min_depth)
return min_depth + 1
class Solution1:
def minDepth(self, root: TreeNode) -> int:
if not root:
return 0
if not root.left and not root.right:
return 1
queue = collections.deque()
queue.append([(root, 1)])
while queue:
top, depth = queue.popleft()
if not top.left and not top.right:
return depth
if top.left:
queue.append((root.left, depth + 1))
if top.right:
queue.append((root.right, depth + 1))
return 0
|
fa1bc157d60353f35b17187d63444fafd026bd29 | jeach27/IPC2_Proyecto1_201903873 | /lista.py | 2,467 | 3.90625 | 4 |
class Lista:
def __init__(self, codigo, nombre, n, m, g):
self.codigo = codigo
self.nombre = nombre
self.n = n
self.m = m
class Nodo:
def __init__(self, Lista=None, next = None):
self.Lista = Lista
self.next = next
class ListaCircular:
def __init__(self, head=None):
self.head = head
self.size = 0
def insertar(self, valor):
new_nodo = Nodo(Lista = valor, next = self.head)
if self.size == 0:
self.head = new_nodo
new_nodo.next = self.head
else:
cur = self.head
while cur.next is not self.head:
cur = cur.next
cur.next = new_nodo
new_nodo.next = self.head
self.size +=1
def palabra(self):
if self.head is None:
return
aux = self.head
palabra=''
palabra = palabra + aux.Lista.codigo
while aux.next != self.head:
aux = aux.next
palabra = palabra + aux.Lista.codigo
return palabra
def imprimir(self):
if self.head is None:
return
Nodo = self.head
print('\n'+Nodo.Lista.codigo)
while Nodo.next != self.head:
Nodo = Nodo.next
print( '\n'+Nodo.Lista.codigo)
def imprimir1(self):
if self.head is None:
return
Nodo = self.head
print('\n'+Nodo.Lista.codigo , end = "=>")
while Nodo.next != self.head:
Nodo = Nodo.next
if Nodo.next == self.head:
print(Nodo.Lista.codigo+'\n')
else:
print( Nodo.Lista.codigo , end = "=>")
def ultimo(self):
if self.head is None:
return
Nodo = self.head
while Nodo != self.head:
if Nodo.next == self.head:
return Nodo.Lista.codigo
def eliminar(self, dato):
if self.head is None:
return
elif dato == self.head.Lista.codigo:
Nodo = self.head
while Nodo.next != self.head:
Nodo = Nodo.next
Nodo.next = self.head.next
self.head = self.head.next
else:
Nodo = self.head
pre = None
while Nodo.Lista.codigo != dato:
pre = Nodo
Nodo = Nodo.next
pre.next = Nodo.next
|
7c5b6f7faa46e2c99e469729e22227e0b9104227 | kimgy0/Python_Practice | /CLASS/10_7_Polymorphism.py | 535 | 4.1875 | 4 | class Animal:
def __init__(self,name):
self.name=name
def talk(self):
raise NotImplementedError("Subclass must implement abstract method")
#해당 자식 객체를 제외한 다른 클래스가 이 메서드를 쓰지 못하게 함.
class Dog(Animal):
def talk(self):
return "woof! woof!"
class Cat(Animal):
def talk(self):
return "meow!"
animals=[Cat("missy"),Dog("mistoffelees"),Cat("lassie")]
for animal in animals:
print(animal.name,":",animal.talk()) |
2f4642e62b7b9739a119763968ef0e5a1acab35e | guoweifeng216/python | /python_design/pythonprogram_design/Ch5/5-1-E35.py | 436 | 3.96875 | 4 | def main():
## Display the largest number in the file Numbers.txt
max = getMax("Numbers.txt")
print("The largest number in the \nfile Numbers.txt is",
str(max) + ".")
def getMax(fileName):
infile = open("Numbers.txt", 'r')
max = int(infile.readline())
for line in infile:
num = int(line)
if num > max:
max = num
infile.close()
return max
main()
|
89e2eb44c6a27362d91c2b349f35f3b781891f42 | Django-Lessons/lesson-41-argparse-module | /draw.py | 1,620 | 3.921875 | 4 | import argparse
CIRCLE = 'circle'
SQUARE = 'square'
class Square:
def __init__(self, p1, p2):
print("Square")
class Circle:
def __init__(self, p1, radius):
print(f"Circle center=({p1[0]}, {p1[1]}) radius={radius}")
def circle_func(args):
Circle(args.center, args.radius)
def square_func(args):
Square(args.point1, args.point2)
def handle_circle_args(subparsers):
parser = subparsers.add_parser(CIRCLE)
parser.add_argument(
"radius"
)
parser.add_argument(
"-c", "--center", nargs=2,
help="Center of the circle",
default=(0, 0),
metavar=("x", "y")
)
parser.set_defaults(func=circle_func)
def handle_square_args(subparsers):
parser = subparsers.add_parser(SQUARE)
parser.add_argument(
"-p1", "--point1",
nargs=2,
help="Upper left coordinate, specified as X Y",
default=(0, 0),
metavar=("x", "y")
)
parser.add_argument(
"-p2", "--point2",
nargs=2,
help="Lower right coordinate, specified as X Y",
default=(600, 600)
)
parser.set_defaults(func=square_func)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'-o', '--optimize',
action="store_true",
default=False
)
subparsers = parser.add_subparsers()
handle_circle_args(subparsers)
handle_square_args(subparsers)
args = parser.parse_args()
args.func(args)
if args.optimize:
print("Optimized algorithm")
else:
print("...")
if __name__ == '__main__':
main()
|
34007ec1cc22bbc359d08c5d553c45e1d55f80a6 | logan-lach/Algos | /max_contiguous_sum/kadanes.py | 2,740 | 3.84375 | 4 | def kadanes_1(A):
# Whoohoo! this is the alt branch!
total = gcs_value = A[0]
total_list = [A[0]]
gcs = [A[0]]
for i in range(1, len(A)):
'''
The opening step. Our combination between everything we seen this far and our new item
We will check if this contributes something to our growth, we will see shortly
'''
t = total + A[i]
'''
So, if the combination of everything we have so far is greater than the item itself
WHAT THIS CAN BE THOUGHT OF IS 'Does the rest of the list weigh this item down?'
'''
if t > A[i]:
'''
If it doesn't weight it down, then our biggest out of the current items we have seen
is just the conglomeration of all the items so far.
We will adjust both our current total and total_list to account for this
'''
total = t
total_list += [A[i]]
else:
'''
Else if the rest of the list DOES hold our current item back(more negatives than positives)
WE NO LONGER HAVE TO CONSIDER THAT PART OF OUR ARRAY AS BEING THE MAX, SO we leave it behind
in the dust and start anew at our newest member
'''
total = A[i]
total_list = [A[i]]
'''
Now, here's the mac daddy step
Throughout it all, we collect our greatest array up to our index i. This array will always
grow throughout every iteration, as to gauge if our previous list helps/hurts the cause
Now, this is where A[i] gets gauged. We previously only checked if the rest of the list
helped/hurt our total. If it didn't, we added A[i] to the list with no questions asked
Now, if adding A[i] HURT THE TOTAL, our variable total will feel it. As such, when we assigned total to our
total += A[i] in our previous step, and engage in our comparison now, A[i] will have been revealed
to have lowered the total, and therefore the addition to A[i] cannot be greater than the gcs_value
This also helps differentiate between our i-sized list and the actual max. Just because
we have added some positive numbers to our total, does that really mean it outweighs the
negatives you have picked up so far?
The negatives will always be picked up as long as we don't hit a A[i] that is greater than our
previous list. We have to be mindful of that when considering the real gcs_value
'''
if total > gcs_value:
gcs_value = total
gcs = total_list[:]
return gcs
print(kadanes_1([1,3,-5,2,3])) |
cebb81f80c0a4f307b9e752723001df4b7a0055d | GKPSingh/Functions-Practice | /siminterest.py | 173 | 3.625 | 4 | # Python Program for simple interest
def si(p, r, t):
simple_interest = (p * r * t)/100
print(f'The value of simple interest is {simple_interest}')
si(100, 10, 1) |
f42e5e6e0a1ea2789493606a517180446e6c6d9f | Nirali0029/Algorithms-in-python | /Algorithms/Sorting/selection_sort.py | 216 | 3.578125 | 4 | def selection(a):
n=len(a)
for i in range(n):
min=i
for j in range(i,n):
if a[j]<a[min]:
min=j
if i!=min:
a[i],a[min]=a[min],a[i]
return a
a=[2,7,4,6,1,8,5]
print(selection(a))
|
f553a41fac58e9cca0b4dccbf7317b29df55ce00 | RohanDeySarkar/DSA | /linked_lists/linked_list_palindrome/linkedListPalindrome.py | 965 | 3.828125 | 4 | # This is an input class. Do not edit.
class LinkedList:
def __init__(self, value):
self.value = value
self.next = None
# Recursion
def linkedListPalindrome(head):
isEqual, _ = isPalindrome(head, head)
return isEqual
def isPalindrome(leftNode, rightNode):
if rightNode is None:
return (True, leftNode)
nodesAreEqual, leftNodeToCompare = isPalindrome(leftNode, rightNode.next)
isEqual = nodesAreEqual and leftNodeToCompare.value == rightNode.value
return (isEqual, leftNodeToCompare.next)
# Reverse linkedList check
def linkedListPalindrome(head):
reverseListHead = reverseLinkedList(head)
while head is not None and reverseListHead is not None:
if head.value != reverseListHead.value:
return False
head = head.next
reverseListHead = reverseListHead.next
return True
def reverseLinkedList(head):
prev = None
while head is not None:
temp = head.next
head.next = prev
prev = head
head = temp
return prev |
1a72ce540701c897939e3a1339dcdf4de0adf631 | amiraHag/python-basic-course2 | /database/database3.py | 1,165 | 3.71875 | 4 | # ------------------------------------------------------
# -- Databases => SQLite => Insert Data Into Database --
# ------------------------------------------------------
# - cursor => All Operation in SQL Done By Cursor Not The Connection Itself
# - commit => Save All Changes
# ------------------------------------------------------
# Import SQLite Module
import sqlite3
# Create Database And Connect
db = sqlite3.connect("app.db")
# Setting Up The Cursor
cr = db.cursor()
# Create The Tables and Fields
cr.execute("create table if not exists users (user_id integer, name text)")
cr.execute(
"create table if not exists skills (name text, progress integer, user_id integer)")
#Inserting Data
cr.execute("insert into users(user_id, name) values(1, 'Amira')")
cr.execute("insert into users(user_id, name) values(2, 'Ahmed')")
cr.execute("insert into users(user_id, name) values(3, 'Sara')")
# my_list = ["Ahmed", "Amira", "Sara", "Fatema", "Aya", "Mohamed", "Omar"]
# for key, user in enumerate(my_list):
# cr.execute(f"insert into users(user_id, name) values({key + 1}, '{user}')")
# Save (Commit) Changes
db.commit()
# Close Database
db.close()
|
927122669494c4c749257820ff4f0ae734eb1b4a | WebDevExpertise/Notes_For_Python | /unit_4/lecture_4.py | 1,865 | 4.59375 | 5 | # Unit 4: For Loops, Working with Lists & Other Ways of Storing Mutliple Pieces of Information
# 4.1 - 4.2 - Using For Loops on Lists
movies = ['Avengers: End Game', 'Ralph Breaks the Internet']
for movie in movies:
print(movie) # prints "Avengers: End Game", and "Ralph Breaks the Internet" in seperate lines onto the console/terminal
# 4.3 - Using For Loops to "get from point A to point B"
for i in range(5, 11):
print(i) # prints numbers 5-10 onto the console/terminal
# 4.4 & 4.5 - Creating a List Based on Ranges
numbers = list(range(1, 6))
for num in numbers:
print(num) # prints numbers 1-5 onto the console/terminal
print(min(numbers)) # executes after the for loop is done iterating over the list
print(max(numbers)) # executes after the print(min(numbers)) runs
print(sum(numbers)) # prints the sum of all of the numbers in the list
# 4.6 - Finding Even or Odd Numbers in a Range
for even_num in range(0, 15, 2):
print(even_num) # prints all the even numbers that fall between 0 (inclusive) & 15 (exclusive)
# 4.7 - Cubing Numbers Within a Range
for cubed_num in range(10, 21):
print(cubed_num ** 3) # prints every number ranging from 10 (inclusive) to 21 (exclusive) cubed onto the console/terminal
# 4.8 - Printing More Than One Item From a List
candies = ['hershey', 'snickers', 'twix', 'milky way']
print(f'My favorite candies are {candies[slice(2)]}') # prints "My favorite candies are ['hershey', 'snickers']" onto the console/terminal
# 4.9 - Using Tuples
cars = ('bmw', 'ferrari', 'lamborghini', 'volkswagen')
print(cars) # prints ('bmw', 'ferrari', 'lamborghini', 'volkswagen') onto the console/terminal
print(cars[1]) # prints "ferrari" onto the console/terminal
for car in cars:
print(car) # prints "bmw", "ferrari", "lamborghini", "volkswagen" onto the terminal/console
|
9c48662077fcc74d7382c74f218cea427d110f10 | moeburney/2040 | /scripts/classes/colors.py | 1,172 | 3.6875 | 4 | '''
Created on Jul 14, 2011
@file: colors.py
@author: jake bolton
Usage:
Feel free to use code as you want!
functions:
random_color(search=None):
search_color(name)
'''
import pygame
from pygame.locals import *
from pygame.color import THECOLORS
from random import choice
VERSION = '0.1'
#
def random_color(search=None):
"""get a single random Color(), with Optional search filter.
search='green' will return 'seagreen', 'bluegreen', etc...
default to choice() of full list"""
if search: c = choice(search_color(search))
else: c = choice(THECOLORS.values())
#debug: print type(c), c # returns Color()
return c
#todo: exception on color search fail? OR just default to white.
def search_color(name):
"""search pygame. THECOLORS for a name, example:
"green" -> seagreen, bluegreen, darkgreen
"""
#verbose: print "search_color( {} ) =".format(name)
return [Color(c) for c in pygame.color.THECOLORS if name in c]
# for search*
color_groups = ['', 'white', 'purple','green','dark','light','red','blue','orange','gray','blue','green'] |
e12db07f662918cc36ac39f7f006448fd56e1558 | JoMOlsson/neural_playground | /ANNet.py | 39,935 | 3.609375 | 4 | import numpy as np
from math import e
import matplotlib.pyplot as plt
import mnist
import math
from colour import Color
from PIL import Image
import copy
import os
import glob
import random
def sigmoid(z):
""" Calculates the output of the sigmoid function from the provided z-data
:param z: (float, int, npArray) Input data
:return g: Output of sigmoid function
"""
g = 1 / (1 + e**(-z))
return g
def sigmoid_gradient(z):
""" Calculates the output of the sigmoid derivative function from the provided z-data
:param z: (float, int, npArray) Input data
:return g: Output of sigmoid derivative function
"""
g = sigmoid(z)*(1 - sigmoid(z))
return g
class ANNet:
def __init__(self):
self.default_hidden_layer_size = 15 # Default number of neurons in hidden layer
self.epsilon = 0.12 # Initialization value for weight matrices
self.alpha = 1.0 # Learning rate
self.network_size = [] # Default network size
self.Theta = [] # Holding weight matrices
self.feature_mean_vector = [] # (list) average values in data per feature
self.feature_var_vector = [] # (list) variance values in data per feature
self.data_min = None # (float) min value in input data
self.feature_min_vector = [] # (list) min values in data per feature
self.data_max = None # (float) max value in input data
self.feature_max_vector = [] # (list) max values in data per feature
self.num_of_train_samples = None # (int) Number of train samples
self.input_shape = [] # Original shape of input data
self.num_of_test_samples = None # (int) Number of labels in test data-set
self.train_data = np.array([]) # Hold train data
self.test_data = np.array([]) # Holds test data
self.train_labels = [] # Labels for train-data
self.test_labels = [] # Labels for test-data
self.output_layer_size = [] # Output layer size
self.input_layer_size = None # Input layer size
self.network_architecture = None # Network architecture
self.gif_created = False # Boolean variable if gif was ever created
self.is_mnist = False # Boolean variable stating if mnist data-set is used
self.orig_images = [] # List holding the original images
self.orig_test_images = [] # List holding the original test images
def init_network_params(self, network_size):
""" Takes a list of integers and assigns it to the network_size class variable and creates the weight matrices
(theta) corresponding to the network architecture. The weights of the artificial network will be initialized
to random values in the interval (-self.epsilon, self.epsilon)
:param network_size: (list)
:return theta: (list) List of npArrays containing the network weights
"""
theta = []
self.network_size = network_size
for i in range(0, len(network_size)-1):
n = (network_size[i]+1) * network_size[i+1]
t = np.random.uniform(-self.epsilon, self.epsilon, size=(1, n))
theta.extend(t)
self.Theta = theta
return theta
@staticmethod
def create_gif():
""" Will fetch all *.png files located under the temp folder and creates an animated gif to visualize the
training sequence.
:return:
"""
print("Creating gif ... ")
cur_path = os.path.dirname(os.path.realpath(__file__))
temp_path = os.path.join(cur_path, 'temp')
image_directory = glob.glob(temp_path + '/*.png')
images = []
i = 0
for im_dir in image_directory:
print(str(i/len(image_directory)))
if i < 1000:
images.append(Image.open(im_dir))
i += 1
print("Images loaded")
images[0].save('movie.gif', save_all=True, append_images=images)
def set_network_architecture(self, network_architecture):
""" Assigns the provided network_architecture variable to the internal class-variable self.network_architecture
:param network_architecture: (list) List of integer corresponding to the desired size of the input layer,
hidden layers and the output layer.
:return:
"""
self.network_architecture = network_architecture
def set_mnist_data(self):
""" Imports the mnist data-set and assigns it to the train- & test-data. The mnist data-set is an open source
data set consisting of 60000 training images of hand-written digits. The method will also assign the
internal class-variable self.is_mnist to true.
:return:
"""
# Extract data
train_images = mnist.train_images()
train_labels = mnist.train_labels()
test_images = mnist.test_images()
test_labels = mnist.test_labels()
self.orig_images = train_images
self.orig_test_images = test_images
# Assign data
self.set_train_data(train_images)
self.set_train_labels(train_labels)
self.set_test_data(test_images)
self.set_test_labels(test_labels)
self.is_mnist = True
def normalize_data(self, data):
""" Takes the provided data and normalize it using the min and the max values of the data. If the min and max
is already provided, the stored max/min value will be used.
:param data: (npArray) Numpy array corresponding to the data to be used within the neural network
:return data: (npArray) Normalized data
"""
data = np.array(data)
data = data.astype('float64')
# Assign mean and var vector if not available
if 'self.feature_mean_vector' not in locals():
feature_mean_vector = []
for iFeat in range(0, data.shape[1]):
feature_mean_vector.append(np.mean(data[:, iFeat]))
self.feature_mean_vector = feature_mean_vector
if 'self.feature_var_vector' not in locals():
feature_var_vector = []
for iFeat in range(0, data.shape[1]):
feature_var_vector.append(np.var(data[:, iFeat]))
self.feature_var_vector = feature_var_vector
if 'self.feature_min_vector' not in locals():
self.data_min = np.min(np.min(data))
feature_min_vector = []
for iFeat in range(0, data.shape[1]):
feature_min_vector.append(np.min(data[:, iFeat]))
self.feature_min_vector = feature_min_vector
if 'self.feature_max_vector' not in locals():
self.data_max = np.max(np.max(data))
feature_max_vector = []
for iFeat in range(0, data.shape[1]):
feature_max_vector.append(np.max(data[:, iFeat]))
self.feature_max_vector = feature_max_vector
# ----- Normalize data -----
for iData in range(0, data.shape[0]):
d = np.array(data[iData, :])
d_norm = (2*(d - self.data_min)) / (self.data_max - self.data_min) - 1
data[iData, :] = d_norm
return data
def set_train_data(self, data):
""" Assigns the provided data to the training data-set. The data will be normalized using the normalize_data
method. The method will also assign the class variables input_layer_size, num_of_train_samples, input_shape
based on the properties of the provided data.
:param data: (npArray) Data to be set to the training data-set
:return:
"""
train_data = []
if len(data.shape) == 3:
self.input_layer_size = data.shape[1] * data.shape[2]
self.num_of_train_samples = data.shape[0]
self.input_shape = [data.shape[1], data.shape[2]]
# Reshape data
for i in range(0, len(data)):
train_data.append(np.array(np.matrix.flatten(data[i])))
elif len(data.shape) == 2:
self.input_layer_size = data.shape[1]
self.num_of_train_samples = data.shape[0]
self.input_shape = [1, data.shape[1]]
train_data = data
train_data = self.normalize_data(np.array(train_data))
self.train_data = train_data
def set_test_data(self, data):
""" Assigns the provided data to the test data-set. The data will be normalized using the normalize_data
method. The method will also assign the class variables input_layer_size, num_of_train_samples, input_shape
based on the properties of the provided data.
:param data: (npArray) Either a numpy array or list with test samples
:return:
"""
test_data = []
self.num_of_test_samples = data.shape[0]
if len(data.shape) == 3:
self.input_shape = [data.shape[1], data.shape[2]]
# Reshape data
for i in range(0, len(data)):
test_data.append(np.matrix.flatten(data[i]))
elif len(data.shape) == 2:
self.input_shape = [1, data.shape[1]]
test_data = self.normalize_data(np.array(test_data))
self.test_data = np.array(test_data)
def set_train_labels(self, labels):
""" Assigns the provided labels to the labels of the training data-set. The method will also set the
class-variable output_layer_size based on the unique set of labels in the provided data.
:param labels: (npArray/list) Either a numpy array or list with labels corresponding to the true classifications
of the training data-set
:return:
"""
self.train_labels = labels
if 'self.output_layer_size' not in locals():
self.output_layer_size = len(np.unique(labels))
def set_test_labels(self, labels):
""" Assigns the provided labels to the labels of the test data-set. The method will also set the
class-variable output_layer_size based on the unique set of labels in the provided data.
:param labels: (npArray/list) Either a numpy array or list with labels corresponding to the true classifications
of the training data-set
:return:
"""
self.test_labels = labels
if 'self.output_layer_size' not in locals():
self.output_layer_size = len(np.unique(labels))
def forward_propagation(self, x, y=None):
""" Will make predictions by forward propagate the provided input data x through the neural network stored in
within the class. If the annotations (labels) are provided through the y-input variable, the cost (c) of the
network will be calculated post the forward propagation using the least-square method. Else the cost will be
set to None. Along with the predictions (h) per provided samples and the total cost (c), the method will
return a list of all activation layers (a_list) and a list of all sigmoid layers (z_list)
:param x: (npArray) Input data to be propagated through the neural network, Either one ore more samples.
:param y: (npArray) [optional] Annotations to be used to calculate the network cost
:return h, (npArray) Prediction array
c, (float) Network cost
a_list, (list) List of all activation layers
z_list: (list) List of sigmoid layers
"""
num_of_samples = len(x) if len(x.shape) > 1 else 1 # Sets the number of samples based on the dimensions of the
# provided input data (x)
bias = np.ones((num_of_samples, 1)) # Create bias units
a = x # Sets first activation layer to the provided input data
a_list = [] # List containing all activation in the forward propagation
if num_of_samples > 1:
a = np.vstack([bias.T, a.T])
a = a.T
else:
a = np.append(bias, a)
a_list.append(a)
z_list = [] # List to hold all sigmoid values
for i, theta in enumerate(self.Theta): # Forward propagate through all layers
t = theta.reshape(self.network_size[i]+1, self.network_size[i+1]) # Reshape parameter matrix
z = np.matmul(a, t) # z = a*t
z_list.append(z) # Store the sigmoid values
a = sigmoid(z) # Calculate the activation layer
# add bias unit
if num_of_samples > 1:
a = np.column_stack([bias, a])
else:
a = np.append(bias, a)
a_list.append(a) # Store activation layer
h = a # Prediction layer is equal to the final activation layer
# pop bias unit
if len(h.shape) > 1:
h = h[:, 1:]
else:
h = h[1:]
a_list.pop(-1) # Last layer in a is equivalent to h
# Calculate cost (Least Square Method)
if y is None:
# labels has not been provided, cost can not be calculated
c = None
else:
c = (1 / (2 * num_of_samples)) * np.sum((h - y) ** 2) # Cost with LSM
return h, c, a_list, z_list
def draw_and_predict(self):
""" The method will randomly pick a sample in the test data-set and makes a prediction by doing a forward
propagation using the current state of the neural network. If the network data is the mnist data-set
the drawn sample will be visualised and the predicted value will be printed.
:return:
"""
sample_idx = random.randint(0, self.test_data.shape[0])
x = self.test_data[sample_idx, :]
y = self.test_labels[sample_idx]
y_hat = np.zeros((self.output_layer_size, 1))
y_hat[y] = 1
h, c, a, z = ANNet.forward_propagation(self, x, y_hat)
prediction = np.argmax(h)
print("Network predicts value: " + str(prediction))
im = x.reshape(self.input_shape[0], self.input_shape[1])
plt.imshow(im)
plt.show()
def train_network(self, x=None, y=None, num_of_iterations=1000, visualize_training=True):
""" The method will initialize a training session with a number of training iterations determined by the
variable num_of_iterations (int). The network will be trained using the x data as input data and the
y data as the annotations. If x or y are not provided the input data and the annotation data will be
set to the internal class-variables self.train_data and self.train_labels. The network is trained by
forward propagating the input data and then back propagate the errors using gradient decent. If the
boolean variable visualize_training is set to true, the training session will be visualized and the
output will be stored in a temp-folder under the current directory path.
:param x: (npArray) Input data to be propagated through the network
:param y: (npArray) Training labels used for calculating the network errors for
back-propagation
:param num_of_iterations: (int) Number of iterations to be executed in the training session
:param visualize_training: (boolean) Boolean flag to indicate if the training session should be visualized
:return:
"""
historic_prediction = [] # holds the predicted values for every iteration, used for visualization
historic_theta = [] # holds the wight matrices for every iteration, used for visualization
# Set input and label data if not provided
if (x is None) or (y is None):
x = self.train_data
y = self.train_labels
num_of_samples = len(x) # Samples in the training set
# Initialize weights if they have not been initialized by user.
if not self.Theta:
if self.network_architecture is None:
print("Network weights has not been initialized by user!, default hidden layer of size " +
str(self.default_hidden_layer_size) + " has been applied")
input_layer_size = self.input_layer_size
output_layer_size = self.output_layer_size
network_architecture = [input_layer_size, self.default_hidden_layer_size, output_layer_size]
self.network_architecture = network_architecture
self.init_network_params(self.network_architecture)
# Preparing label data, every sample will be represented by a vector with the size equal to the number of
# unique classes in the training data. The correct classification will be marked by a one while the false
# classifications are marked with a zero for all samples. The label matrix will be of the size
# [num_of_train_samples x num_of_unique_classes]
y_mat = np.zeros((y.shape[0], self.output_layer_size))
for i, val in enumerate(y):
y_mat[i][int(val)] = 1
cost = np.zeros([num_of_iterations, 1]) # Holding cost value per iteration
accuracy = np.zeros([num_of_iterations, 1]) # Holding accuracy value per iteration
for iteration in range(0, num_of_iterations):
# Init weight gradient matrices
theta_grad = []
for iLayer, theta in enumerate(self.Theta):
theta = theta.reshape(self.network_size[iLayer]+1, self.network_size[iLayer+1])
theta_grad.append(np.zeros(theta.shape))
h_mat, c, a_mat, z_mat = ANNet.forward_propagation(self, x, y_mat) # Forward propagate
delta = -(y_mat-h_mat)
for iLayer in range(len(a_mat)-1, -1, -1):
z = z_mat[iLayer]
if not iLayer == len(a_mat)-1:
index = iLayer + 1
theta = self.Theta[index]
t = theta.reshape(self.network_size[index] + 1, self.network_size[index + 1])
t = t[1:, :]
delta_weight = np.dot(t, delta.T)
sig_z = sigmoid_gradient(z)
delta = delta_weight * sig_z.T
delta = delta.T
else:
delta = delta * sigmoid_gradient(z)
a = a_mat[iLayer]
th_grad = np.dot(a.T, delta)
theta_grad[iLayer] += th_grad
# Update weights from the weight gradients
for i, theta_val in enumerate(theta_grad):
theta_grad[i] = (1/num_of_samples)*theta_val
t = self.alpha * theta_grad[i]
self.Theta[i] -= t.flatten()
# Save the weight values for animation
historic_theta.append(copy.deepcopy(self.Theta))
# Calculate and print cost
h, c, _, _ = ANNet.forward_propagation(self, x, y_mat)
historic_prediction.append(h)
itr = 0
num_of_errors = 0
for p in h:
prediction = np.argmax(p)
y = np.argmax(y_mat[itr])
if not prediction == y:
num_of_errors += 1
itr += 1
# ------------------------------ print iteration --------------------------------
cost[iteration] = c
accuracy[iteration] = 1 - num_of_errors/num_of_samples
print("Iteration (" + str(iteration) + "/" + str(num_of_iterations) + "), " +
"Cost of network: " + str(c) +
" , number of false predictions: " + str(num_of_errors) +
" , accuracy: " + str(1 - num_of_errors/num_of_samples))
if visualize_training:
# # ===== Dump data to json =====
picture_idx = random.randint(0, len(self.test_labels))
h_test, c_test, a_test, z_test = ANNet.forward_propagation(self, self.test_data[picture_idx, :],
self.test_labels[picture_idx])
picture = self.orig_test_images[picture_idx, :, :]
# create dump json file
cur_path = os.path.dirname(os.path.realpath(__file__))
data_path = os.path.join(cur_path, 'data_dump')
if not os.path.exists(data_path):
# Create dump folder
os.makedirs(data_path)
else:
# clean dump folder
for file in glob.glob(os.path.join(data_path, '*.npy')):
os.remove(file)
# Dump data
data = {'picture': picture,
'theta': self.Theta,
'network_size': self.network_size,
'a': a_test,
'z': z_test,
'prediction': h_test}
np.save(os.path.join(data_path, 'data.npy'), data) # save to npy file
# ----- Plot Cost/Accuracy progression -----
plt.close()
plt.plot(cost)
plt.plot(accuracy)
plt.pause(0.001)
plt.ion()
plt.show()
self.visualize_training(x, cost, accuracy, historic_theta, historic_prediction)
def visualize_training(self, x, cost, accuracy, historic_theta, historic_prediction):
""" The method will visualize the training session in a (2x2) subplot displaying cost/accuracy, sample
predictions and neural network for the whole training session. The output will be stored with .png
files stored in a temp folder.
:param x: (npArray) Training input data set
:param cost: (list) List holding the cost values per iteration
:param accuracy: (list) List holding the accuracy values per iteration
:param historic_theta: (list) List holding all weight matrices per iteration
:param historic_prediction: (list) List holding all predictions for every iteration
:return:
"""
fig, axs = plt.subplots(2, 2)
mng = plt.get_current_fig_manager()
mng.window.state('zoomed')
temp_folder = self.create_temp_folder() # Create a temp-folder to store the training visualisation content
# Extract min/max weight
absolute_weight = False
max_weight = []
min_weight = []
if absolute_weight:
max_weight = -np.inf
min_weight = np.inf
for theta in historic_theta:
for t in theta:
max_v = np.max(np.max(t))
min_v = np.min(np.min(t))
if max_weight < max_v:
max_weight = max_v
if min_weight > min_v:
min_weight = min_v
picture_idx = []
num_of_pics_m = 23
num_of_pics_n = 45
tot_num_of_pics = num_of_pics_m * num_of_pics_n
if self.is_mnist:
picture_idx = random.sample(range(0, len(self.train_labels)), tot_num_of_pics)
image_directory = []
num_of_digits = self.determine_number_of_digits(len(historic_prediction))
for iteration in range(0, len(historic_prediction)):
title_str = 'Cost: ' + str(cost[iteration]) + ' , Accuracy: ' + str(accuracy[iteration]) + \
' , Iteration: ' + str(iteration)
fig.suptitle(title_str)
print(iteration)
h = historic_prediction[iteration]
# ----- Prediction plot [0, 0]-----
outcome = []
col = []
col_true = []
if self.is_mnist:
output_classes = list(set(self.train_labels))
num_of_false_predictions = np.zeros((len(output_classes),), dtype=int)
num_of_true_predictions = np.zeros((len(output_classes),), dtype=int)
outcome = np.ones((len(h),), dtype=int)
for i_sample in range(0, len(h)):
y = self.train_labels[i_sample]
prediction = np.argmax(h[i_sample, :])
if prediction != y:
outcome[i_sample] = 0
num_of_false_predictions[y] += 1
else:
num_of_true_predictions[y] += 1
axs[0, 0].bar(output_classes, num_of_false_predictions, color='#ff5959', edgecolor='white')
axs[0, 0].bar(output_classes, num_of_true_predictions, color='#34ebd6', edgecolor='white',
bottom=num_of_false_predictions)
axs[0, 0].set_xlabel('Output classes')
axs[0, 0].set_ylabel('Number of false vs number of true')
else:
for i_sample in range(0, h.shape[0]):
col.append('#ff5959' if np.argmax(h[i_sample, :]) else '#34ebd6')
col_true.append('#ff5959' if self.train_labels[i_sample] else '#34ebd6')
axs[0, 0].scatter(x[:, 0], x[:, 1], c=col)
axs[0, 0].axis('equal')
axs[0, 0].set_xticks([])
axs[0, 0].set_yticks([])
# ----- Cost / Accuracy plot [1,0] -----
axs[1, 0].plot(cost[0: iteration], label='Cost')
axs[1, 0].plot(accuracy[0: iteration], label='Accuracy')
axs[1, 0].legend()
# ----- Reference plot [0, 1]-----
if self.is_mnist:
classification_result = outcome[picture_idx]
border_thickness = 4
m = self.input_shape[0] + 2*border_thickness
n = self.input_shape[1] + 2*border_thickness
validation_image = np.zeros((num_of_pics_m * m,
num_of_pics_n * n,
3))
def_im = np.zeros((m, n, 3))
# Set frame
im_true = def_im.copy()
border_color_channel = 1 # Green
im_true[0:border_thickness - 1, 0:n, border_color_channel] = 1 # top
im_true[m - border_thickness + 1:m, 0:n, border_color_channel] = 1 # right
im_true[0:m, 0:border_thickness - 1, border_color_channel] = 1 # left
im_true[0:m, n - border_thickness + 1:n, border_color_channel] = 1 # bottom
im_false = def_im.copy()
border_color_channel = 0 # Red
im_false[0:border_thickness - 1, 0:n, border_color_channel] = 1 # top
im_false[m - border_thickness + 1:m, 0:n, border_color_channel] = 1 # right
im_false[0:m, 0:border_thickness - 1, border_color_channel] = 1 # left
im_false[0:m, n - border_thickness + 1:n, border_color_channel] = 1 # bottom
idx = 0
for i in range(0, num_of_pics_m):
for j in range(0, num_of_pics_n):
sample_idx = picture_idx[idx]
mnist_im = self.orig_images[sample_idx]
if classification_result[idx]:
im = im_true
else:
im = im_false
# Set image
im[border_thickness:m-border_thickness,
border_thickness:n-border_thickness, 0] = mnist_im / 255
im[border_thickness:m - border_thickness,
border_thickness:n - border_thickness, 1] = mnist_im / 255
im[border_thickness:m - border_thickness,
border_thickness:n - border_thickness, 2] = mnist_im / 255
# ----- Set overall picture -----
validation_image[i*m:(i+1)*m, j*n:(j+1)*n, :] = im
idx += 1
axs[0, 1].imshow(validation_image)
axs[0, 1].set_xticks([])
axs[0, 1].set_yticks([])
axs[0, 1].set_title(str(round(tot_num_of_pics / len(self.train_labels) * 1000) / 10) + '% of the data')
else:
axs[0, 1].scatter(x[:, 0], x[:, 1], c=col_true)
axs[0, 1].axis('equal')
axs[0, 1].set_xticks([])
axs[0, 1].set_yticks([])
# ----- Network plot [1, 1]-----
if absolute_weight:
self.draw_network(historic_theta[iteration], axs[1, 1], max_weight, min_weight)
else:
self.draw_network(historic_theta[iteration], axs[1, 1])
# ----- Save figure -----
im_dir = self.append_with_zeros(num_of_digits, iteration) + '.png'
im_dir = os.path.join(temp_folder, im_dir)
image_directory.append(im_dir)
plt.savefig(im_dir)
# ----- Clear figures -----
axs[0, 0].clear()
axs[0, 1].clear()
axs[1, 1].clear()
axs[1, 0].clear()
plt.close(fig)
@staticmethod
def create_temp_folder():
""" The method will create a folder called temp in the current file-directory if it already does no exist. If
the folder already exists it will flush it by deleting all .png files located in the folder.
:return temp_folder: (str) path to temp folder
"""
current_path = os.path.dirname(os.path.realpath(__file__)) # Get current directory path
temp_folder = os.path.join(current_path, 'temp') # Temp folder path
if not os.path.exists(temp_folder):
os.makedirs(temp_folder) # Create if not already exist
# flush folder from png
files = os.listdir(temp_folder) # List all files in temp folder
for file in files:
if file.endswith(".png"):
os.remove(os.path.join(temp_folder, file)) # Delete if file is png
return temp_folder
@staticmethod
def determine_number_of_digits(num_of_iterations):
""" Determines the number of digits needed in the image naming to hold all iterations. This is used to get the
images naturally sorted based on name even in a windows file-explorer.
:param num_of_iterations: (int) Total number of iterations
:return num_of_digits: (int) Total number of needed digits in the file-naming
"""
num_of_digits = math.ceil(math.log10(num_of_iterations + 0.001))
return num_of_digits
@staticmethod
def append_with_zeros(num_of_digits, iteration):
""" Will give the file-name of the current iteration. The file will be named to enable natrual sorting even in
a windows OS. For instance, if total number of digits == 3 and current iteration is 7 the file-name will be
"007"
:param num_of_digits: (int) Total number of needed digits in the file-naming
:param iteration: (int) Current iteration
:return appended_name: (str) File name
"""
number_of_zeros = num_of_digits - math.ceil(math.log10(iteration + 0.001))
appended_name = ''
for i in range(0, number_of_zeros):
appended_name += '0'
appended_name += str(iteration)
return appended_name
def draw_network(self, theta, axs, max_weight=None, min_weight=None):
""" The method will take list of weight matrices (npArray) and a plot axis and display the the network
given by the weight matrices. If the max&min weight values (float) are given, they will be used as
max and min for the color scaling of the weight lines, otherwise the the method will use the max
and min value in the weight matrices. This is used to enable absolute color scaling through
a series of training iterations. The method will display all neurons, along with bias neurons as-well
as the weight network between the neurons. The color of the neurons and the weights will be set by
their individual values. The method will also display the sum of the network per layer to enable
visualisation of changes in the network between iterations.
:param theta: (list) List of weight matrices to be displayed
:param axs: (matplotlib axes) axis where the figure should be displayed
:param max_weight: (float) maximum value used for color scaling
:param min_weight: (float) minimum value used for color scaling
:return:
"""
neuron_radius = 1 # Neuron radius
neuron_distance = 15 # Distance between neurons in each layer
layer_distance = 10 * neuron_distance # Distance between each layer
# Reconstruct weight matrices
network_architecture = []
i_layer = len(theta)
for i_layer, t in enumerate(theta):
theta[i_layer] = t.reshape(self.network_size[i_layer] + 1, self.network_size[i_layer + 1])
network_architecture.append(theta[i_layer].shape[0])
network_architecture.append(theta[i_layer].shape[1])
# Calculate position lists
use_max_y = True
max_y = (max(network_architecture)-1)*(neuron_distance + 2*neuron_radius)
x = 0 # x-position of the first neural layer
neuron_positions = [] # List holding the positions of all neurons
min_y_pos = [] # List holding the minimum y-value for each layer
for N_neurons in network_architecture:
p = [] # Position list storing the positions of the neurons of the current layer
# Find vertical start position
if use_max_y:
# The width in the y-dimension will be equal for all layers
y0 = max_y / 2
delta_y = max_y / (N_neurons - 1)
else:
# The width in the y-dimension will be different for all layers. The y-positions of the neurons will
# distributed according to the neuron_radius and neuron_distance variables
if N_neurons % 2:
n = math.floor(N_neurons / 2)
y0 = (2 * neuron_radius + neuron_distance) * n
else:
n = N_neurons / 2
y0 = (neuron_distance / 2 + neuron_radius) + (neuron_distance + 2 * neuron_radius) * (n - 1)
delta_y = (neuron_distance + 2 * neuron_radius)
# Position the neurons of the current layer
y = y0
for i in range(0, N_neurons):
pos_tuple = (x, y)
p.append(pos_tuple)
y -= delta_y
neuron_positions.append(p) # Store the neuron positions of the current layer
x += layer_distance # update the x-position for the new neuron layer
min_y_pos.append(y) # Store the minimal y-position of the current layer
# ======== Get colormap ========
blue = Color("blue")
n_col_steps = 1000
colors = list(blue.range_to(Color("red"), n_col_steps)) # Colormap to be used for scaling the colors of
# the neurons and the weights
# ===== Plot neurons =====
for iLayer, n_pos in enumerate(neuron_positions):
if iLayer == len(neuron_positions) - 1:
output_layer = True
input_layer = False
t = theta[iLayer - 1]
elif not iLayer:
output_layer = False
input_layer = True
t = []
else:
output_layer = False
input_layer = False
t = theta[iLayer - 1]
if output_layer:
neuron_value = []
for i in range(0, t.shape[0]):
neuron_value.append(np.sum(t[i, :]))
min_neuron_val = np.min(neuron_value)
max_neuron_val = np.max(neuron_value)
elif not input_layer:
neuron_value = []
for i in range(0, t.shape[1]):
neuron_value.append(np.sum(t[:, i]))
min_neuron_val = np.min(neuron_value)
max_neuron_val = np.max(neuron_value)
else:
neuron_value = []
min_neuron_val = None
max_neuron_val = None
for iNeuron, p in enumerate(n_pos):
# Get synapse color
if input_layer:
# Input layer
c = str(colors[0])
else:
if iNeuron:
col_idx = math.floor(((neuron_value[iNeuron - 1] - min_neuron_val) /
(max_neuron_val - min_neuron_val)) * (n_col_steps - 1))
c = str(colors[col_idx])
else:
c = str(colors[0])
draw_circle = plt.Circle((p[0], p[1]), radius=neuron_radius, color=c)
axs.add_patch(draw_circle)
# ===== Plot Connections =====
# extract min/max values, used if max&min weight values are not provided by user
if not max_weight or not min_weight:
max_weight = -np.inf
min_weight = np.inf
for t in theta:
max_v = np.max(np.max(t))
min_v = np.min(np.min(t))
if max_weight < max_v:
max_weight = max_v
if min_weight > min_v:
min_weight = min_v
# Dynamically set the alpha values
alpha = []
for iLayer, t in enumerate(theta):
num_of_weights = t.shape[0] * t.shape[1]
alpha.append((1 / num_of_weights) * 100)
for iLayer, t in enumerate(theta):
if iLayer == len(theta)-1:
output_layer = True
else:
output_layer = False
neurons_positions_prim_layer = neuron_positions[iLayer]
neurons_positions_sec_layer = neuron_positions[iLayer+1]
# Set alpha value
a = alpha[iLayer]
for i, p1 in enumerate(neurons_positions_prim_layer):
for j, p2 in enumerate(neurons_positions_sec_layer):
if j or output_layer:
connection_weight = t[i, j-1]
col_idx = math.floor(((connection_weight - max_weight) /
(max_weight - min_weight)) * (n_col_steps - 1))
c = str(colors[col_idx])
plt.plot([p1[0], p2[0]], [p1[1], p2[1]], color=c, alpha=a)
# ===== write theta sum text =====
y_pos = min(min_y_pos) + 2*neuron_distance
x_pos = layer_distance/4
for t in theta:
theta_sum = np.sum(np.sum(t))
theta_sum = np.floor(theta_sum*1000)/1000
s = 'weight sum: ' + str(theta_sum)
plt.text(x_pos, y_pos, s)
x_pos += layer_distance
axs.set_xticks([]) # Delete x-ticks
axs.set_yticks([]) # Delete y-ticks
|
f95a3729fcc7e2e5476081156a8f1d3a2378eb4d | Saneter/Education | /assignment_5_travis_jarratt.py | 4,287 | 4.15625 | 4 | """
author: Travis Jarratt
CIS 1600 - Assignment 5
Saint Louis University
"""
def get_data():
fileObj = open("./exam-scores.csv")
lines = fileObj.readlines()
dict_scores = {}
for line in lines[1:]:
lst_items = line.strip().split(",")
dict_scores[lst_items[0]] = (float(lst_items[1]), float(lst_items[2]))
return dict_scores
def print_menu():
print("\nEnter 1 to see all the scores")
print("2 to see a particular student's score")
print("3 to see the class average on a particular test")
print("4 to see the students with the highest score")
print("5 to display a list of students whose combined \n "
"score on both the tests exceeds the average \n "
"of the combined scores on the two tests")
userchoice = int(input("and 0 to quit."))
return userchoice
def display_all_data(dict_scores):
print("Here are all the students' scores:")
for stdname in dict_scores:
print("%s: %f %f" % (stdname, dict_scores[stdname][0], dict_scores[stdname][1]))
def display_specific_student_score(dict_scores):
student_name = input("Provide the student's name whose scores you would like to retrieve: ")
if not student_name in dict_scores:
print("Student %s is not present in our records!" % student_name)
else:
print("Student %s's scores are: %s" % (student_name,
str(dict_scores[student_name][0]) +
" " + str(dict_scores[student_name][1])))
def display_average_score(dict_scores):
test_no = int(input("Enter the number for the test: 1 for the first test and 2 for the second test: "))
if not test_no in (1, 2):
print("Please enter a valid test number: either 1 or 2. You have entered: %d" % test_no)
else:
total = 0
for key in dict_scores:
total += dict_scores[key][test_no - 1]
print("The avg. score on test %d is %f" % (test_no, total / len(dict_scores)))
def get_max_score(dict_scores, test_no):
maxScore = 0
for key in dict_scores:
if maxScore < dict_scores[key][test_no - 1]:
maxScore = dict_scores[key][test_no - 1]
return maxScore
def display_max_scores_on_test(dict_scores):
test_no = int(input("Enter the number for the test: 1 for the first test and 2 for the second test: "))
if not test_no in (1, 2):
print("Please enter a valid test number: either 1 or 2. You have entered: %d" % test_no)
else:
maxScore = get_max_score(dict_scores, test_no)
print("max score is " + str(maxScore))
for key in dict_scores:
if dict_scores[key][test_no - 1] == maxScore:
print("%s had a test score of %d" % (key, dict_scores[key][test_no - 1]))
def student_combined_score_both_tests(dict_scores):
temp_dict = {}
for k, v in dict_scores.items():
temp_dict[k] = (v[0] + v[1])
return temp_dict
def avg_score_both_tests(dict_scores):
testTotal = 0
for v in dict_scores.values():
testTotal += ((v[0]) + (v[1]))
return testTotal/len(dict_scores)
def better_than_the_avg_on_both_tests(dict_scores):
better_dict = {}
temp = student_combined_score_both_tests(dict_scores)
for k, v in temp.items():
if v > avg_score_both_tests(dict_scores):
better_dict[k] = v
print("The students who scored better\n"
"than the average score both tests, {}, are: ".format(avg_score_both_tests(dict_scores)))
for key, value in better_dict.items():
print("{} {}".format(key, value))
def run_ui():
dict_scores = get_data()
while True:
choice = print_menu()
if choice == 0:
print("Good bye!")
quit()
elif choice == 1:
display_all_data(dict_scores)
elif choice == 2:
display_specific_student_score(dict_scores)
elif choice == 3:
display_average_score(dict_scores)
elif choice == 4:
display_max_scores_on_test(dict_scores)
elif choice == 5:
better_than_the_avg_on_both_tests(dict_scores)
else:
print("%d is an invalid choice" % choice)
if __name__ == '__main__':
run_ui()
|
cf4a38a0e60330d84e3de39e55d45cde94bf8486 | Tusharsampang/LabProject2 | /One.py | 331 | 4.40625 | 4 | '''
1.Write a program that takes numbers and print theirs sum.Every number is given on a separate line.
'''
num1 = int(input("enter the first value: "))
num2 = int(input("enter the second value: "))
num3 = int(input("enter the third value: "))
sum = num1 + num2 + num3
print(sum)
print(f"The sum of given three numbers is {sum}")
|
8e0400fa1f3956b2e70cb5084fab4abac5982b13 | sevdaghalarova/Donguler | /List_comprehension.py | 417 | 4.28125 | 4 | # List Comrehension listeler uzerinde for dongusunu daha kisa yazmak icin kullanilir
liste=[1,2,3,4,5]
liste1=list()
for i in liste:
liste1.append(i)
#print(liste1)
# yukaridaki kodu list comprehension ile yazarsak
liste1=[i for i in liste]
liste1=[i*2 for i in liste] # her bir elemani 2-3 carpip liste1-e ekleyecek
print(liste1)
liste3=[(1,2),(2,3),(2,4)]
liste4=[i for x in liste3 for i in x]
print(liste4) |
f2db23034447104787549f69b7c5c44f528fe044 | saadz-khan/SpotDown | /SpotDown/spotipy_api/client.py | 2,341 | 3.578125 | 4 | from spotipy.oauth2 import SpotifyClientCredentials
from spotipy import Spotify
import json
from sys import argv
def spotify_authentication(client_id, client_secret, playlist_id):
"""
This part verifies the credentials for the spotify-api usage
Args:
client_id:
client_secret:
playlist_id: Playlist id in the link of the playlist
Returns:
All the data related to the playlists
"""
auth_manager = SpotifyClientCredentials(client_id=client_id, client_secret=client_secret)
sp = Spotify(auth_manager=auth_manager)
return sp.playlist(playlist_id)
def spotify_playlist_info(client_id, client_secret, playlist_id):
"""
This function retrives the track information inside of a playlist
It inputs client_id and client_secret from spotify dashboard
Along with a playlist_id from the link of the playlist.
"""
results = spotify_authentication(client_id, client_secret, playlist_id)
track_list = []
#print("Song - Artist - Album\n")
for item in results['tracks']['items']:
track_list.append(item['track']['name'] + ' - ' +
item['track']['artists'][0]['name'])
# For album name in the search query uncomment this
#+ ' - ' +
#item['track']['album']['name'])
#print(track_list)
return track_list
def output_json(client_id, client_secret, playlist_id):
"""
To output a json file from it
"""
results = spotify_authentication(client_id, client_secret, playlist_id)
# Creating a data structure for json format.
result_dict = {
'tracks': {
'items': [],
'limit': 100,
'next': None,
'offset': 0,
'previous': None,
'total': 16
},
'type': 'playlist',
'uri': playlist_id
}
for item in results['tracks']['items']:
track_dict = {
'track': {
'album': {
'name': item['track']['album']['name'],
},
'artists': [{
'name': item['track']['artists'][0]['name'],
}],
'name': item['track']['name'],
}
}
result_dict['tracks']['items'].append(track_dict)
# Append the track dict structure to your results dict structure
out_file = open('track.json','w')
json.dump(result_dict, out_file, indent = 4)
# Sample Script
"""
c_id = str(argv[1])
c_secret = str(argv[2])
p_id = str(argv[3])
p_id = p_id[34:]
spotify_playlist_info(c_id, c_secret, p_id)
""" |
1ac326f8a1aadb038ce4ce4502afa9a9de07640b | bhaavanmerchant/challenge-problems | /skycompany/Tree.py | 826 | 3.765625 | 4 | class Tree:
root = {
'value': None,
'children': []
}
def __init__(self, val):
self.root = self._create_node(val)
return self.root
def _create_node(self, val):
return {
'value': val,
'children': []
}
def create_child(self, val):
new_node = self._create_node(val)
self.root.append(new_node)
return new_node
def print_tree(node):
print(node['value'])
if len(node['children'] == 0):
return None
print('\/\/')
for child_node in node['children']:
self.print_tree(child_node)
def traverse_bfs(node):
if __name__ == '__main__':
root = Tree(3)
root.create_child(2)
Tree.create_child(root, 4)
Tree.print_tree(root)
|
5c30c871d1372ec6d61ff1b195ed2877972bdc42 | hellokena/goorm | /1단계/홀짝 판별.py | 61 | 3.921875 | 4 | n = int(input())
if n%2==0: print('even')
else: print('odd')
|
f0e6b2ace850a92b0771dc2844ca6a2b1bfdcc8b | aliKatlabi/Python_tut | /tutorial/DataStructure.py | 937 | 3.546875 | 4 | vec = [-4, -2, 0, 2, 4]
# create a new list with the values doubled
[x*2 for x in vec]
#[-8, -4, 0, 4, 8]
# filter the list to exclude negative numbers
[x for x in vec if x >= 0]
#[0, 2, 4]
# apply a function to all the elements
[abs(x) for x in vec]
#[4, 2, 0, 2, 4]
# call a method on each element
freshfruit = [' banana', ' loganberry ', 'passion fruit']
[weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
# create a list of 2-tuples like (number, square)
[(x, x**2) for x in range(6)]
#[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]
# the tuple must be parenthesized, otherwise an error is raised
#[x, x**2 for x in range(6)]
# File "<stdin>", line 1, in <module>
# [x, x**2 for x in range(6)]
# ^
#SyntaxError: invalid syntax
# flatten a list using a listcomp with two 'for'
vec = [[1,2,3], [4,5,6], [7,8,9]]
[num for elem in vec for num in elem]
#[1, 2, 3, 4, 5, 6, 7, 8, 9]
|
b9d2cd65a38cf0cbc57508d5c71d8553973d77e0 | joaovbs96/Logistic-Regression-Neural-Networks-MC886-2018s2 | /nnOneHiddenLayer.py | 6,437 | 3.765625 | 4 | # coding: utf-8
# MC886/MO444 - 2018s2 - Assignment 02 - Neural Network with One Hidden Layer
# Tamara Campos - RA 157324
# João Vítor B. Silva - RA 155951
import sys
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import itertools
from sklearn.preprocessing import MinMaxScaler
from sklearn.decomposition import PCA
from sklearn.metrics import f1_score
from sklearn.metrics import confusion_matrix
# source: http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.tight_layout()
# =========================================
# relu derivative function
def relu_derivative(z):
def do_relu_deriv(x):
if x > 0:
return 1
else:
return 0
relufunc = np.vectorize(do_relu_deriv)
return relufunc(z)
# relu function
def relu(z):
def do_relu(x):
return max(0, x)
relufunc = np.vectorize(do_relu)
return relufunc(z)
# Stable softmax function
def softmax(z):
z -= np.max(z)
sm = (np.exp(z).T / np.sum(np.exp(z),axis=1)).T
return sm
# Function to transform target data into one hot encode
def oneHotEncode(y, k):
return np.eye(k)[y]
# calculate loss using cross entropy function
def loss(h, y):
m = len(y)
cost = (-1 / m) * np.sum(np.sum(y * np.log(h + 0.0001) + (1. - y) * np.log((1 - h) + 0.0001), axis=1))
return cost
# Train the neural network doing feed forward and backpropagation
def NeuralNetwork(x, y, it, alpha):
classes = len(y[0]) # number of classes
_, n = x.shape # n: number of features
secondLayerSize = 64 # number of neurons in the second layer
# step by step: check slide 68
# step 1 - random init in [0, 1)
weights1 = np.random.rand(n, secondLayerSize)
weights2 = np.random.rand(secondLayerSize, classes)
J = []
for i in range(it):
# step 2 - feed forward - slide 41
# First activation function
# z1 = f(W1 * x + b1)
z1 = np.dot(x, weights1)
a1 = relu(z1)
# Second activation function(softmax)
# z2 = softmax(W2 * z1 + b2)
z2 = np.dot(a1, weights2)
a2 = softmax(z2)
# step 3 - calculate output error
J.append(loss(a2, y))
# step 4 - calculate derivative of error
# step 5 - backpropagate
# step 6 - update the weights with the derivative cost function
dz2 = (y - a2) # the last layer don't use activation function derivative
dw2 = a1.T.dot(dz2)
dz1 = dz2.dot(weights2.T) * relu_derivative(a1)
dw1 = x.T.dot(dz1)
weights2 += dw2 * alpha
weights1 += dw1 * alpha
return [weights1, weights2], J
# MAIN
# execução: main.py [train_data]
# dataset: https://www.dropbox.com/s/qawunrav8ri0sp4/fashion-mnist-dataset.zip
# disable SettingWithCopyWarning warnings
pd.options.mode.chained_assignment = None # default='warn'
# Read main database
trainName = sys.argv[1]
data = pd.read_csv(trainName)
# read test database
filename = sys.argv[2]
testData = pd.read_csv(filename)
# separate target/classes from set
Y = data.drop(data.columns.values[1:], axis='columns')
X = data.drop('label', axis='columns')
# separate target/classes from test set
testY = testData.drop(testData.columns.values[1:], axis='columns')
testX = testData.drop('label', axis='columns')
# split dataset into train and validation
trainX, validX = X.iloc[12000:], X.iloc[:12000]
trainY, validY = Y.iloc[12000:], Y.iloc[:12000]
# Dimensionality reduction
pca = PCA(.98)
trainX = pca.fit_transform(trainX)
validX = pca.transform(validX)
testX = pca.transform(testX)
# normalize train, validation ans test with the max value in the matrix - monocromatic images
trainX /= 255.0
validX /= 255.0
testX /= 255.0
# target OndeHotEncode and reduction from 3d to 2d matrix
y = np.squeeze(oneHotEncode(trainY, len(np.unique(trainY))))
# train neural network
it = 1000
# tested alphas: 0.000001, 0.0000001, 0.00000001 - Better: 0.000001
alphas = [0.000001]
for alpha in alphas:
weights, J = NeuralNetwork(trainX, y, it, alpha)
# plot graph for GD with regularization
plt.plot(J)
plt.ylabel('Função de custo J')
plt.xlabel('Número de iterações')
plt.title('Rede Neural com uma camada escondida')
plt.show()
# ============== VALIDATION
z1Valid = relu(np.dot(validX, weights[0]))
resultsValid = softmax(np.dot(z1Valid, weights[1]))
yPredValid = []
for r in resultsValid:
yPredValid.append(np.argmax(r))
# Accuracy
print("VALIDAÇÃO ----> REDE NEURAL COM 1 CAMADA ESCONDIDA - ALPHA", str(alpha), " - ", str(it), " ITERAÇÕES")
print("F1 Score:" + str(f1_score(validY, yPredValid, average='micro')))
# ============= TEST
# calculte output value
z1 = relu(np.dot(testX, weights[0]))
results = softmax(np.dot(z1, weights[1]))
yPred = []
for r in results:
yPred.append(np.argmax(r))
# Accuracy
print("TESTE ----> REDE NEURAL COM 1 CAMADA ESCONDIDA - ALPHA", str(alpha), " - ", str(it), " ITERAÇÕES")
print("F1 Score:" + str(f1_score(testY, yPred, average='micro')))
# confusion matrix
cm = confusion_matrix(testY, yPred)
plt.figure()
plot_confusion_matrix(cm, classes=[str(i) for i in range(10)], normalize=False, title='Confusion Matrix')
plt.show()
|
feccaf38a397e46c4d1c0d0ffa3de9501d278d11 | edD9m/codingground | /New Project/main.py | 2,412 | 4.28125 | 4 | print "Hi, my name is Python! I'm a programming language that's intelligent but simple! Enjoy your stay!"
print "Soo, please answer my questions."
myname=raw_input("What's your name? >>> ")
print "Nice to meet you, " + " " + myname
if myname == "myname" :
print "Oh, by the way, don't enter the name of the variable, thanks."
if myname == "name" :
print "Yes, I know it's a name, but what IS your name?"
print "Good! Let's move on forward! How about I calculate a sum of two variables?"
calc=raw_input("So, shall I? You can answer either yes or no in downcase so my script will work properly! ")
if calc == "yes." :
a=20
b=30
print a+b,"is the answer."
else :
print "Well, I can't complain, so, shall we go on? "
shallwe=raw_input("So, shall we go on? Answer yes or no in downcase. ")
if shallwe == "yes" :
print "Well, let's go on! Now, let me calculate a complex mathematical equation!"
else :
print "I can't complain, but shall we go forward?"
shallwe2=raw_input("Shall we? ")
if shallwe2 == "yes" :
print "Haha, you are interested already!"
else :
print "Well, well, well."
v=30
c=20
numbers=v+c
print ("My calculations say: %i meters." % numbers)
print "Well, I think you are enjoying this! Shall we go on?"
go_on=raw_input("Shall we?")
if go_on == "yes" :
print "So, let's go on!"
else :
print "Well, that's fine by me!"
shallweend=raw_input("So, shall we end your first course or shall we continue? ")
if shallweend == "yes" :
print "Goodbye!"
else :
print "Well, if you want to continue the ride, let's go on!"
print "Now, let me show ya simple lists."
list = ["cats", "bong", "hey!", "hockey"]
print list
del list[2]
print list
print "This is the end of course 1, goodbye!"
print "INTERACTIVE PYTHON"
print "by edD."
print "------------------------------------"
print "Well, shall we start course 2?"
shallwe3=raw_input("Shall we or no? ")
if shallwe3 == "yes" :
print "Alright!"
else :
print "Well, that's fine."
print "Course 2 will be exclusive to some more fun script."
print "So, let me show you how to print out all the letters in Python."
for letter in "Python":
print "Current letter: ", letter
print "Here is an another example."
vegetables = ['tomato', 'potato', 'carrot']
for vegetable in vegetables:
print "Current vegetable: ", vegetable
print "Well, this is the short end of the first part of the guide." |
7436a98a489b0a0f39242ad99b0b83b170171145 | Rapid1898-code/codesignal | /arcade/level54.py | 367 | 3.734375 | 4 | def sumUpNumbers(inputString):
listString = list(inputString)
newString = ""
countSum = 0
for char in listString:
if char.isdigit():
newString += char
else:
newString += " "
newList = newString.split(" ")
for elem in newList:
if elem != "":
countSum += int(elem)
return countSum |
38231e47076d65f330d68dd5a4f47ef8843cd8de | kat0h/timetable_bot | /get_timetable.py | 1,128 | 3.59375 | 4 | import csv
import sys
def get_timetable(filepath: str):
# 時間割の読み取り
with open(filepath) as f:
reader = csv.reader(f)
tt = [row for row in reader]
timetable = {}
for i in tt:
timetable[i[0]] = i[1:7]
return timetable
def get_schedule(filepath: str):
# 時間割の読み取り
with open(filepath) as f:
reader = csv.reader(f)
sd = [row for row in reader]
schedule = {}
for i in sd:
schedule[i[0]] = i[1]
return schedule
if __name__ == "__main__":
time_table = get_timetable(sys.argv[1])
schedule = get_schedule(sys.argv[2])
date_today = sys.argv[3]
today = schedule[date_today]
print("今日{}の時間割は・・・\n".format(date_today))
if today == "特":
print("今日は特編授業です")
elif today == "休":
print("🎉🎉🎉今日は休日です🎉🎉🎉")
else:
today_time_table = time_table[today]
print("今日は{}です".format(today))
for i in range(1, 7):
print("{}時限 | {} ".format(i, today_time_table[i-1]))
|
5e0d0f760ac4bda396a4bb8ba9f408d5af7598e0 | jigonzalez124/morseCode | /morseCode.py | 1,195 | 3.984375 | 4 | # Name: Jesus Ivan Gonzalez
# Date: July 20th 2015
# Description: Simple morse code program. Note: / indicates whitespace
def morse(code):
morseCode = {
'.-': 'a', '-...': 'b', '-.-.': 'c', '-..': 'd', '.': 'e',
'..-.': 'f', '--.': 'g', '....': 'h', '..': 'i', '.---': 'j',
'-.-': 'k', '.-..': 'l', '--': 'm', '-.': 'n', '---': 'o',
'.--.': 'p', '--.-': 'q', '.-.': 'r', '...': 's', '-': 't',
'..-': 'u', '...-': 'v', '.--': 'w', '-..-': 'x', '-.--': 'y',
'--..': 'z'
}
return morseCode[code];
def main():
fileName = input("Enter the morse code file name to decode: ")
fhandle = open(fileName)
for line in fhandle: #read each line of the file
code = line.split() #split line to letters. '/' character indicates word space
final_msg = []
for letter in code:
if letter == "/": #if letter is /, then replace with whitespace
final_msg.append(" ")
else:
final_msg.append(morse(letter)) #call morse method
print("".join(final_msg))
if __name__ == '__main__':
main()
|
7900a6d984ef3a63b380fd528a411acbf43ec52d | Ragav-Subramanian/My-LeetCode-Submissions | /923. 3Sum With Multiplicity Python Solution.py | 323 | 3.5 | 4 | class Solution:
def threeSumMulti(self, arr: List[int], target: int) -> int:
twosums={}
ans=0
for i in range(len(arr)):
ans+=twosums.get(target-arr[i],0)
for j in range(i):
twosums[arr[i]+arr[j]]=twosums.get(arr[i]+arr[j],0)+1
return ans%(10**9+7) |
663e0b6ffc2069637d90ca4cba24cc7b676c8930 | GiantSweetroll/Program-Design-Methods-and-ITP | /Exercises/Lists and Dictionaries/Student.py | 1,536 | 3.875 | 4 | eren = {
"name": "Eren",
"homework": [90.0,97.0,75.0,92.0],
"quizzes": [88.0,40.0,94.0],
"tests": [75.0,90.0]
}
mikasa = {
"name": "Mikasa",
"homework": [100.0, 92.0, 98.0, 100.0],
"quizzes": [82.0, 83.0, 91.0],
"tests": [89.0, 97.0]
}
armin = {
"name": "Armin",
"homework": [0.0, 87.0, 75.0, 22.0],
"quizzes": [0.0, 75.0, 78.0],
"tests": [100.0, 100.0]
}
students = [eren, mikasa, armin]
for student in students:
print("Name:", student["name"])
print("Homework:", student["homework"])
print("Quizzes:", student["quizzes"])
print("Tests:", student["tests"])
def average(numbers:[float]) -> float:
total = sum(numbers)
total = float(total)
return total/len(numbers)
def get_average(student:{})-> float:
homework = average(student["homework"])
quizzes = average(student["quizzes"])
tests = average(student["tests"])
homework *= 0.1
quizzes *= 0.3
tests *= 0.6
return homework+quizzes+tests
def get_letter_grade(score:float) -> str:
if (score >= 90):
return "A"
elif (score >= 80):
return "B"
elif (score >= 70):
return "C"
elif (score >= 60):
return "D"
else:
return "F"
print(get_letter_grade(get_average(lloyd))) #"with lloyd", who is lloyd
def get_class_average(students:[{}]):
results = []
for student in students:
results.append(get_average(student))
return average(results)
print(get_class_average(students))
print(get_letter_grade(get_class_average(students))) |
efee6903cd41bc93ee9afee9a354a26182eee9d9 | chaofan-zheng/tedu-python-demo | /month01/all_code/day17/demo09.py | 1,938 | 3.546875 | 4 | """
需求:
定义函数,在员工列表中查找最富的员工
定义函数,在员工列表中查找xxx的员工
步骤:
1. 根据需求,写出函数。
2. 因为主体逻辑相同,核心算法不同.
所以使用函数式编程思想(分、隔、做)
创建通用函数get_max(定义到单独模块中)
3. 在当前模块中调用(使用lambda)
"""
from common.iterable_tools import IterableHelper
class Employee:
def __init__(self, eid, did, name, money):
self.eid = eid # 员工编号
self.did = did # 部门编号
self.name = name
self.money = money
# 员工列表
list_employees = [
Employee(1001, 9002, "师父", 60000),
Employee(1002, 9001, "孙悟空", 50000),
Employee(1003, 9002, "猪八戒", 20000),
Employee(1004, 9001, "沙僧", 30000),
Employee(1005, 9001, "小白龙", 15000),
]
def get_max01():
max_value = list_employees[0]
for i in range(1, len(list_employees)):
if max_value.money < list_employees[i].money:
max_value = list_employees[i]
return max_value
def get_max02():
max_value = list_employees[0]
for i in range(1, len(list_employees)):
if max_value.eid < list_employees[i].eid:
max_value = list_employees[i]
return max_value
def handle01(emp):
return emp.money
def handle02(emp):
return emp.eid
def get_max(func):
max_value = list_employees[0]
for i in range(1, len(list_employees)):
# if max_value.eid < list_employees[i].eid:
# if handle02(max_value) < handle02(list_employees[i]):
# if handle01(max_value) < handle01(list_employees[i]):
if func(max_value) < func(list_employees[i]):
max_value = list_employees[i]
return max_value
emp = IterableHelper.get_max(list_employees, lambda item: item.money)
print(emp.__dict__)
|
c837c5f673c0a18aa7b17b01bfec37a84e397a23 | Khananashvili/WEB | /LR2/Code_2.2.py | 145 | 3.65625 | 4 | s=str(input("Введите строку: "))
k=s.split(' ')
for i in range (len(k)):
if (k[i][len(k[i])-1:])=='r':
print(k[i])
|
39567f773e1395b4bf94da9fe4505cff5621f350 | df413/leetcode | /maximum_subarray/solution.py | 780 | 4 | 4 |
class Solution(object):
"""
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
the contiguous subarray [4,-1,2,1] has the largest sum = 6.
"""
def find_maximum_subarray(self, nums):
max_sum = nums[0]
current_sum = nums[0]
for i in range(1, len(nums)):
if current_sum < 0:
current_sum = 0
current_sum += nums[i]
if max_sum < current_sum:
max_sum = current_sum
return max_sum
if __name__ == "__main__":
sol = Solution()
print(sol.find_maximum_subarray([-2, 1, -3, 4, -1, 2, 1, -5, 4]))
print(sol.find_maximum_subarray([-2, 1]))
|
33bfd882d31d1b3114a2a0cb23557b020cfdce0d | DylanDu123/leetcode | /142.环形链表-ii.py | 873 | 3.5625 | 4 | #
# @lc app=leetcode.cn id=142 lang=python3
#
# [142] 环形链表 II
#
# @lc code=start
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution:
def fetchPoint(self, head: ListNode):
fast, slow = head, head
while fast is not None and fast.next is not None:
fast = fast.next.next
slow = slow.next
if fast == slow:
return fast
return None
def detectCycle(self, head: ListNode) -> ListNode:
if not head or not head.next:
return None
node = self.fetchPoint(head)
if not node:
return None
curr = head
while curr != node:
curr = curr.next
node = node.next
pass
return curr
# @lc code=end
|
2e44f6334967d048fd634fd71bfbfaacb97a0ef5 | kavithacm/MITx-6.00.1x- | /Week 4- Good Programming Practices/7. Testing and Debugging/Exercise- Integer Division | 1,080 | 3.578125 | 4 | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 22 14:27:13 2018
@author: Kavitha
"""
'''
Exercise: integer division
5.0/5.0 points (graded)
ESTIMATED TIME TO COMPLETE: 4 minutes
Consider the following function definition:
def integerDivision(x, a):
"""
x: a non-negative integer argument
a: a positive integer argument
returns: integer, the integer division of x divided by a.
"""
while x >= a:
count += 1
x = x - a
return count
When we call
print(integerDivision(5, 3))
we get the following error message:
File "temp.py", line 9, in integerDivision
count += 1
UnboundLocalError: local variable 'count' referenced before assignment
Your task is to modify the code for integerDivision so that this error does not occur.
'''
def integerDivision(x, a):
"""
x: a non-negative integer argument
a: a positive integer argument
returns: integer, the integer division of x divided by a.
"""
count=0
while x >= a:
count += 1
x = x - a
return count
##Correct |
2926b14261b2c450b0d29d34f802ea63b40e592c | edadasko/coursera_algorithms | /graphs/dijkstra.py | 917 | 3.53125 | 4 | from queue import PriorityQueue
INF = float('inf')
def distance(adj, cost, s, t):
q = PriorityQueue()
n = len(adj)
min_costs = [INF] * n
for i in range(n - 1):
q.put((INF, i))
q.put((0, s))
min_costs[s] = 0
for _ in range(len(adj) - 1):
min_node = q.get()
from_cost, from_node = min_node[0], min_node[1]
for to_node in adj[from_node]:
to_cost = from_cost + cost[from_node, to_node]
if min_costs[to_node] > to_cost:
min_costs[to_node] = to_cost
q.put((to_cost, to_node))
return min_costs[t] if min_costs[t] != INF else -1
n, m = map(int, input().split())
adj = [[] for _ in range(n)]
cost = {}
for i in range(m):
a, b, c = map(int, input().split())
adj[a - 1].append(b - 1)
cost[a - 1, b - 1] = c
s, t = map(int, input().split())
s, t = s - 1, t - 1
print(distance(adj, cost, s, t))
|
1e904e2bc98bb6a16844b1c9146de7f6d3af21ff | Ivanochko/lab-works-python | /Topic 07. Strings, Bytes, Bytearray/lab7_11.py | 203 | 3.71875 | 4 | arr = [(i, len(i)) for i in input('Введіть речення на сорт.: ').split(' ')]
arr = sorted(arr, key=lambda x: x[1], reverse=True)
print()
for x, i in arr:
print(x, end=' ')
print()
|
114be0800d32d9221ec5c4c290612e0828b72c7e | haekyu/python_tutoring_ys | /1029/hw_sol/mk_csv.py | 608 | 4.03125 | 4 | """
2. 파일 출력 연습
어떠한 리스트를 csv (comma-separated values) 포맷으로 텍스트파일에 저장해보세요.
예)
[[1, 2, 3, 5], [3, 5, 2, 1], [5, 3, 1, 5]]
라는 리스트가 주어져 있으면
1,2,3,5
3,5,2,1
5,3,1,5
로 텍스트파일(파일 이름 맘대로)에 저장해 보세요.
"""
def save_mat_csv(filename, mat):
f = open(filename, 'w')
for rows in mat:
for th, element in enumerate(rows):
f.write("%s" % element)
if th < len(rows) - 1:
f.write(",")
f.write("\n")
mat = [[1, 2, 3, 5], [3, 5, 2, 1], [5, 3, 1, 5]]
save_mat_csv('./result_csv.txt', mat)
|
dcc50569d07ca76d99b486295fa0f9e15ed6d4c6 | paige0701/rockpaperscissors | /main.py | 1,570 | 3.953125 | 4 | # This is a sample Python script.
# Press Shift+F10 to execute it or replace it with your code.
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.
from enum import IntEnum
class Action(IntEnum):
Rock = 0
Paper = 1
Scissors = 2
def get_user_selection():
choices = ', '.join([f"{action.name}[{action.value}]" for action in Action])
user_input = int(input(f"Enter a choice ({choices}): "))
action = Action(user_input)
return action
def get_computer_selection():
import random
random_int = random.randint(0, len(Action)-1)
action = Action(random_int)
return action
def determine_winner(user, computer):
answer = {
Action.Paper: [Action.Rock],
Action.Rock: [Action.Scissors],
Action.Scissors: [Action.Paper]
}
defeat = answer[user]
if user == computer:
print(f"YOU: {user.name} Vs COMPUTER: {computer.name} = It's a tie")
elif computer in defeat:
print(f"YOU: [{user.name}] Vs COMPUTER: {computer.name} = You win!")
else:
print(f"YOU: {user.name} Vs COMPUTER: [{computer.name}] = You lose")
def play_game():
while True:
user_selection = get_user_selection()
computer_selection = get_computer_selection()
determine_winner(user_selection, computer_selection)
user_input = input("Play again? Y/N : ")
if user_input.upper() == 'N':
break
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
play_game()
|
08b9b45752de1a0cf21337ff86d3f92ec0400b9d | spencerstock/Sprint-Challenge--Computer-Architecture | /ls8/cpu.py | 4,432 | 3.5625 | 4 | """CPU functionality."""
import sys
class CPU:
"""Main CPU class."""
def __init__(self):
"""Construct a new CPU."""
self.ram = [0] * 256
self.registers = [0] * 8
self.registers[7] = 0xF4
self.fl = 0b00000000
self.pc = 0
def load(self, path):
"""Load a program into memory."""
address = 0
# Loads program from ls8.py
program = []
try:
with open(path) as f:
for line in f:
comment_split = line.split("#")
num = comment_split[0].strip()
if num != "":
program.append(int(num, 2))
except FileNotFoundError:
print(f"{path} not found")
sys.exit(2)
for instruction in program:
self.ram[address] = instruction
address += 1
def alu(self, op, reg_a, reg_b):
"""ALU operations."""
if op == "ADD":
self.registers[reg_a] += self.registers[reg_b]
elif op == "SUB":
self.registers[reg_a] -= self.registers[reg_b]
else:
raise Exception("Unsupported ALU operation")
def ram_read(self, position):
return self.ram[position]
def ram_write(self, position, value):
self.ram[position] = value
def trace(self):
"""
Handy function to print out the CPU state. You might want to call this
from run() if you need help debugging.
"""
print(f"TRACE: %02X | %02X %02X %02X |" % (
self.pc,
#self.fl,
#self.ie,
self.ram_read(self.pc),
self.ram_read(self.pc + 1),
self.ram_read(self.pc + 2)
), end='')
for i in range(8):
print(" %02X" % self.registers[i], end='')
print()
def run(self):
"""Run the CPU."""
running = True
while running:
command = self.ram_read(self.pc)
if command == 0b00000001: #HALT
running = False
self.pc += 1
print("Halted")
sys.exit(1)
elif command == 0b10000010: #LDI
reg = self.ram_read(self.pc + 1)
num = self.ram_read(self.pc + 2)
self.registers[reg] = num
self.pc += 3
elif command == 0b01000111: #PRN
reg = self.ram_read(self.pc + 1)
num = self.registers[reg]
print(num)
self.pc += 2
elif command == 0b10100010: #MUL
reg_a = self.registers[self.ram_read(self.pc + 1)]
reg_b = self.registers[self.ram_read(self.pc + 2)]
self.registers[self.ram_read(self.pc + 1)] = reg_a * reg_b
self.pc += 3
elif command == 0b01010100: #JMP
reg = self.ram_read(self.pc + 1)
self.pc = self.registers[reg]
elif command == 0b10100111: #CMP
# clear flags from last time cmp ran
self.fl = 0b00000000
# get values from ram
reg_1 = self.ram_read(self.pc + 1)
reg_2 = self.ram_read(self.pc + 2)
val_1 = self.registers[reg_1]
val_2 = self.registers[reg_2]
# make comparisons
if val_1 == val_2:
self.fl = 0b00000001 #Equal
elif val_1 < val_2:
self.fl = 0b00000100 #Greater Than
elif val_1 > val_2:
self.fl = 0b00000010 #Less Than
self.pc += 3
elif command == 0b01010101: #JEQ
if self.fl == 0b00000001:
reg = self.ram_read(self.pc + 1)
self.pc = self.registers[reg]
else:
self.pc += 2
elif command == 0b01010110: #JNE
if self.fl == 0b00000100 or self.fl == 0b00000010:
reg = self.ram_read(self.pc + 1)
self.pc = self.registers[reg]
else:
self.pc += 2
else:
print(f"Unkown command {command}")
self.pc += 1
print(self.pc)
|
426777904ce7f66b904c4bd97386bb34ee8aebb7 | anrom7/Array | /multiset/multiset.py | 1,827 | 3.734375 | 4 | from multiset.array_list import MyArray
class Multiset:
def __init__(self):
"""
Produces a newly constructed empty Multiset.
"""
self.data = MyArray(100)
self.firstempty = 0
def empty(self):
"""
Checks emptiness of Multiset.
:return: True if Multiset is empty and False otherwise.
"""
for index in range(self.firstempty):
if self.data[index] != None:
return False
return True
def __contains__(self, value):
"""
Checks existence of value in the Multiset.
:param value: the value to be check.
:return: True if Multiset is in the Multiset and False otherwise.
"""
for index in range(self.firstempty):
if self.data[index] == value:
return True
return False
def add(self, value):
"""
Adds the value to multiset.
:param value: the value to be added..
"""
self.data[self.firstempty] = value
self.firstempty = self.firstempty + 1
def delete(self, value):
"""
Deletes value from multiset.
:param value: value firs occurrence of which should be deleted.
"""
position = -1
current = 0
while position == -1 and current < self.firstempty:
if self.data[current] == value:
position = current
else:
current = current + 1
if current < self.firstempty:
for updated in range(position, self.firstempty):
self.data[updated] = self.data[updated + 1]
self.data[self.firstempty] = None
self.firstempty = self.firstempty - 1
|
4ed7d7ac539651da3b4be4da47f0f0cfb3e572a3 | dlaevskiy/arhirepo | /fluent_python/2_sequence_array/1_listcomp_and_genexp.py | 576 | 3.578125 | 4 | # list comprehensive
import array
colors = ['black', 'white', ]
sizes = ['S', 'M', 'L']
tshirts = [(color, size) for color in colors for size in sizes]
print(tshirts)
# generators
symbols = '@#$%^7'
gen = tuple(ord(symbol) for symbol in symbols)
print(gen)
ar = array.array('I', (ord(symbol) for symbol in symbols))
print(ar)
# tuples
year, name = (1989, 'Dzmitry')
a, b, *rest = range(5)
print(a, b, *rest)
s = 'sdjhjkdhfodjsjfdjflkjdsouwijfhfdh'
def split_len(seq, length):
return [seq[i:i+length] for i in range(0, len(seq), length)]
print(split_len(s, 10))
|
0a1385c2e0ad0c6be68f336ba9ef6588b3e4bd8f | koskot77/leetcode | /1448treePath.py | 924 | 3.640625 | 4 | # https://leetcode.com/problems/count-good-nodes-in-binary-tree/submissions/
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution(object):
def helper(self, node, maximum):
n_good = 0 # error #1: think what you are going to return upfront
if node.val >= maximum:
n_good = 1
maximum = node.val
# error #2 don't make it more complicated with checking for leaf
if node.left != None:
n_good += self.helper(node.left,maximum)
if node.right != None:
n_good += self.helper(node.right,maximum)
return n_good
def goodNodes(self, root):
"""
:type root: TreeNode
:rtype: int
"""
return self.helper(root,-1000000)
|
a5ef8d78f80fa0c4c07fe039408c5b1a56baf800 | Zoogster/python-class | /Project 1/admin.py | 3,802 | 4.25 | 4 | """Lets an admin look at the roster and change max class size
show_roster -- Displays roster of a course.
change_max_size -- Allows admin to change max class size
"""
def show_roster(r_list):
"""Displays the roster for a chosen course
Checks to make sure the course entered is valid.
If valid desplays student IDs enrolled in that course sorted
"""
choose_course = input*('Choose a course: ')
choose_course = choose_course.upper()
if choose_course != 'CSC121' or choose_course != 'CSC122' or choose_course != 'CSC221':
print('Error: Not a valid course')
return
if choose_course == 'CSC121':
print('Students in CSC121: ', r_list[0].sort())
return
elif choose_course == 'CSC122':
print('Students in CSC122: ', r_list[1].sort())
return
else:
print('Students in CSC221: ', r_list[2].sort())
return
def change_max_size(r_list, m_list):
"""Allows an admin to change the class size of any course
Asks what course they wish toe change the max size of and checks to make sure it is a valid course
Asks what the new max size should be and makes sure it isn't lower than the current amout enrolled in it
"""
while True:
course_to_change = input(
'What course do you wish to change the max class size of? ')
course_to_change = course_to_change.upper()
if course_to_change == 'CSC121' or course_to_change == 'CSC122' or course_to_change == "CSC221":
break
else:
print('Error: Invalid course')
if course_to_change == 'CSC121':
print(
f'The number of students currenty enrolled in CSC121 is {len(r_list[0])} and the current max class size is {m_list[0]}.')
new_max_size = int(
input('What do you want to change the max class size of CSC121 to? '))
while True:
if new_max_size < len(r_list[0]):
print(
'Error: New max class size can not be smaller than the number of current students enrolled in the course.')
new_max_size = int(input(
f'Please enter a new max class size that is greater or equal to {len(r_list[0])}. '))
else:
break
m_list[0] = new_max_size
return
elif course_to_change == 'CSC122':
print(
f'The number of students currenty enrolled in CSC122 is {len([1])} and the current max class size is {m_list[1]}.')
new_max_size = int(
input('What do you want to change the max class size of CSC122 to? '))
while True:
if new_max_size < len(r_list[1]):
print(
'Error: New max class size can not be smaller than the number of current students enrolled in the course.')
new_max_size = int(input(
f'Please enter a new max class size that is greater or equal to {len(r_list[1])}.'))
else:
break
m_list[1] = new_max_size
return
else:
print(
f'The number of students currenty enrolled in CSC221 is {len(r_list[2])} and the current max class size is {m_list[2]}.')
new_max_size = int(
input('What do you want to change the max class size of CSC221 to? '))
while True:
if new_max_size < len(r_list[2]):
print(
'Error: New max class size can not be smaller than the number of current students enrolled in the course.')
new_max_size = int(input(
f'Please enter a new max class size that is greater or equal to {len(r_list[2])}.'))
else:
break
m_list[2] = new_max_size
return
|
1c312af821a9253a41a9a87ff566b41daebba346 | kunweiTAN/techgym_ai | /0LTh.py | 652 | 3.765625 | 4 | #AI-TECHGYM-3-2-Q-2
#回帰問題と分類問題
#インポート
import matplotlib.pyplot as plt
import numpy as np
from sklearn import linear_model
#データを作成
#0〜1までの乱数を100個つくる
x = np.random.rand(100, 1)
#値の範囲を-2~2に調整
x = x * 4 - 2
#yの値をつくる
#標準正規分布(平均0,標準偏差1)の乱数を加える
y += np.random.randn(100, 1)
#モデル
model = linear_model.LinearRegression()
#係数、切片を表示
print('係数', model.coef_)
print('切片', model.intercept_)
#決定係数
#グラフ表示
plt.scatter(x, y, marker='o')
plt.show()
|
2f2e90c195fdd811873c904f23aab19308ee83f4 | ESE205/fl_19_mod_9 | /mod9_func.py | 341 | 3.640625 | 4 | def movingAvg(array_list, numvals_for_average, size_of_array, position):
sumvals = 0
for i in range(numvals_for_average):
if (position - i >= 0):
sumvals = sumvals + array_list[position - i]
else:
sumvals = sumvals + array_list[size_of_array + (position - i)]
return sumvals/numvals_for_average
|
30c73b09c79b659ce6cae69377e313c37ea69809 | jarroba/Curso-Python | /Casos Prácticos/4.17-bucle_condicional_salida.py | 309 | 3.921875 | 4 | # 1
continua = True
# 2
uno = False
dos = False
tres = False
# 3
while continua:
# 4
print("uno: {}, dos: {}, tres: {}".format(uno, dos, tres))
# 5
if not uno:
uno = True
elif not dos:
dos = True
elif not tres:
tres = True
else:
continua = False
|
f9e37d84a0b00ab191270c8a582c5d8449866edf | letoshelby/codewars-tasks | /6 kyu/IQ test.py | 683 | 4.3125 | 4 | # Description:
# Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of
# the given numbers differs from the others. Bob observed that one number usually differs from the others in evenness.
# Help Bob — to check his answers, he needs a program that among the given numbers finds one that is different in evenness,
# and return a position of this number.
# ! Keep in mind that your task is to help Bob solve a real IQ test, which means indexes of the elements start from 1 (not 0)
def iq_test(numbers):
e = [int(i) % 2 for i in numbers.split()]
return e.index(True) + 1 if e.count(1) == 1 else e.index(False) + 1
|
8be15612b4c3fcd38b642474c9f0ad165a0ea386 | gdh756462786/Leetcode_by_python | /Array/Find All Duplicates in an Array.py | 706 | 4.03125 | 4 | # coding: utf-8
'''
Given an array of integers, 1 ≤ a[i] ≤ n (n = size of array),
some elements appear twice and others appear once.
Find all the elements that appear twice in this array.
Could you do it without extra space and in O(n) runtime?
Example:
Input:
[4,3,2,7,8,2,3,1]
Output:
[2,3]
'''
class Solution(object):
def findDuplicates(self, nums):
"""
:type nums: List[int]
:rtype: List[int]
"""
ans = []
for n in nums:
if nums[abs(n) - 1] < 0:
ans.append(abs(n))
else:
nums[abs(n) - 1] *= -1
return ans
solution = Solution()
print solution.findDuplicates([5,4,6,7,9,3,10,9,5,6]) |
d63792db1c43815b7dbc63ad65e2ae789a6bd4bc | tp00012x/Hacker-Rank | /Python/Strings/Text Wrap.py | 337 | 3.625 | 4 | # Textwrap
#
# The textwrap module provides two convenient functions: wrap() and fill().
#
# textwrap.wrap()
# The wrap() function wraps a single paragraph in text (a string) so that every line is width characters long at most.
# It returns a list of output lines.
def wrap(string, max_width):
return textwrap.fill(string,max_width) |
0957e8a5213196a6c5d35606fb3603890ba717e7 | bwhitaker10/Python | /python/fundamentals/funcint1.py | 754 | 3.921875 | 4 | import random
def randInt(min='', max=''):
a = random.random() * ((randInt(max='')) - (randInt(min='')) + (randInt(min=''))
b = random.random() * (100 - (randInt(min='')) + (randInt(min=''))
c = random.random() * (randInt(max=''))
d = random.random()
if randInt(min='', max=''):
return a
elif randInt(min=''):
return b
elif randInt(max=''):
return c
elif randInt():
return d
#print(randInt()) # should print a random integer between 0 to 100
#print(randInt(max=50)) # should print a random integer between 0 to 50
#print(randInt(min=50)) # should print a random integer between 50 to 100
#print(randInt(min=50, max=500)) # should print a random integer between 50 and 500 |
7428bdd3d23700f96945cac313223efe189182f1 | SEU-CodingTogether/Daily-Python | /Level-00-Elementary/solutions/s19.py | 665 | 4.0625 | 4 | def most_frequent(data: list) -> str:
"""
determines the most frequently occurring string in the sequence.
"""
# your code here
d = dict(zip(list(set(data)), map(data.count, list(set(data)))))
return sorted(d, key=lambda x:d[x])[-1]
if __name__ == '__main__':
#These "asserts" using only for self-checking and not necessary for auto-testing
print('Example:')
print(most_frequent([
'a', 'b', 'c',
'a', 'b',
'a'
]))
assert most_frequent([
'a', 'b', 'c',
'a', 'b',
'a'
]) == 'a'
assert most_frequent(['a', 'a', 'bi', 'bi', 'bi']) == 'bi'
print('Done') |
651b022796c0c1de8fb27df38ae5b7adfac1930c | maypel/docstring_exercices | /jeux_aleatoire.py | 1,119 | 3.78125 | 4 | from random import randint
nombre = randint(1, 101) # sélection du chiffre
# intro et paramètres du jeux
print("***Le jeu du nombre mystère***")
essais = 5
print(f"Il te reste {essais} essais")
# boucle du jeux
while True:
num = input('Devine le nombre :') # choix du joueur
if num.isdigit() == True: # on vérifie que l'entrée du joueur soit bien un chiffre
if int(num) == nombre: # victoire
print(f"Bravo vous avez gagné en {6 - essais}\n"
"Fin du jeux")
break
elif int(num) > nombre: # autres cas
print(f"Le nombre mystère est plus petit que {num}")
else:
print(f"Le nombre mystère est plus grand que {num}")
essais -= 1 # on enlève une chance
print(f"Il te reste {essais}")
if essais == 0: # quand le nombre de chance est épuisées
print(f"Dommage ! Le nombre mystère était {nombre}\n"
"Fin du jeux")
break
else:
print("Veuillez entrer un nombre valide") # quand l'entrée du joueur n'est pas un chiffre
|
10790df43ef3b4b0df78aed9fbb6e4ae787fcf20 | clickpn/final_proj | /UpdatedProject1207/general_functions.py | 1,178 | 3.546875 | 4 | import pickle
'''to merge with other teammates'''
def get_dictionary(filename):
'''The function takes a dictionray.p file as input and returns a dictionary.'''
dictionary = pickle.load(open(filename, 'rb'))
return dictionary
def data_extract(data, startyear, startmonth, endyear, endmonth):
data_by_year_start = data.loc[data['startyear'] == startyear]
data_by_month_start = data_by_year_start.loc[data_by_year_start['startmonth'] == startmonth]
startindex = data_by_month_start.index[0]
data_by_year_end = data.loc[data['startyear'] == endyear]
data_by_month_end = data_by_year_end.loc[data_by_year_end['startmonth'] == endmonth]
endindex = data_by_month_end.index[-1]
df = data.ix[startindex:endindex, :]
df = df.reset_index(range(df.shape[0]))
return df
"""
check input
"""
def check(yr, month):
if yr == '2013':
if month in [str(i) for i in range(7,13)]:
return True
elif yr == '2014':
if month in [str(i) for i in range(1,13)]:
return True
elif yr == '2015':
if month in [str(i) for i in range(1,11)]:
return True
else:
return False |
3ea97ed39eed4821ff05ff5a92e46dd5e9ed826d | flame4ost/Python-projects | /§4(77-119)/z89.py | 562 | 3.890625 | 4 | import math
print("Задание 88 а ")
a = input("Введите число a ")
a = int(a)
b = input("Введите число b ")
b = int(b)
print("a = ", a)
print("b = ", b)
while (a and b):
if a>=b:
a = a-b
elif(b>=a):
b = b-a
print("Результат",b)
print("Задание 88 б")
def gcd(a,b):
while(b>0):
a,b=b,a%b
return a
def lcm(x,y):
return (x*y)//gcd(x,y)
a = int(input("Введите число a "))
b = int(input("Введите число b "))
print("Кратное = ",lcm(a,b))
|
b20766dfda3dc01f17aa2750330a0567325345db | shubhamkanade/Niyander-Python | /Multiplication.py | 107 | 3.765625 | 4 | def multiply(b,c):
mul=b*c;
return mul
result=multiply(4,5)
print("the multiplication is "+str(result))
|
0e7da2ec5944235ea6b5b8b811127f7237254e6f | LZY2006/A-poker-small-game-emulator | /Poker1.py | 2,371 | 3.53125 | 4 | # A 2 3 4 5 6 7 8 9 10 J Q K JOKER JOKER
# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
import random
import time
def step(x, _list):
global desktop, one, another
desktop.append(x)
if _list == "one":
if x in desktop[:-1]:
pos = desktop[:-1].index(x)
for i in desktop[pos:]:
one.append(i)
desktop = desktop[:pos]
return True
elif (x == 14) or (x == 15):
for j in desktop:
one.append(j)
desktop = []
return True
return False
elif _list == "another":
if x in desktop[:-1]:
pos = desktop[:-1].index(x)
for i in desktop[pos:]:
another.append(i)
desktop = desktop[:pos]
return True
elif (x == 14) or (x == 15):
for j in desktop:
another.append(j)
desktop = []
return True
return False
else:
raise ValueError
cards = [1,2,3,4,5,6,7,8,9,10,11,12,13] * 4 + [14,15]
random.seed(time.time())
random.shuffle(cards)
one = cards[:27].copy()
another = cards[27:].copy()
desktop = []
# index = 0
result = []
index = 0
random.seed(time.time())
random.shuffle(cards)
one = cards[:27].copy()
another = cards[27:].copy()
desktop = []
#result = []
def main():
global cards, one, another, desktop, result, index
cards = [1,2,3,4,5,6,7,8,9,10,11,12,13] * 4 + [14,15]
random.seed(time.time())
random.shuffle(cards)
one = cards[:27].copy()
another = cards[27:].copy()
desktop = []
# index = 0
result = []
index = 0
random.seed(time.time())
random.shuffle(cards)
one = cards[:27].copy()
another = cards[27:].copy()
desktop = []
while True:
try:
x = one.pop(0)
while step(x, "one"):
x = one.pop(0)
y = another.pop(0)
while step(y, "another"):
y = another.pop(0)
#print(desktop, x, y)
index += 1
except IndexError:
break
if index > 1000:
break
##if another == []:
## print(index, "one")
##elif one == []:
## print(index, "another")
##else:
## print("平")
|
3539f9a0704c66f35e82730a38ec7fbf5dfe0673 | MihailSolomnikov/Mihail | /main.py | 1,098 | 3.6875 | 4 | from __future__ import annotations
from abc import ABC, abstractmethod
class Abiturient(ABC):
@abstractmethod
def factory_method(self):
pass
def some_operation(self) -> str:
# Вызываем фабричный метод, чтобы получить объект-продукт.
product = self.factory_method()
# Далее, работаем с этим продуктом.
result = f"Creator: worked with {product.operation()}"
return result
class Student(Abiturient):
def factory_method(self) -> ZaoStudent:
return Student_one()
class ZaoStudent(ABC):
@abstractmethod
def operation(self) -> str:
pass
class Student_one(ZaoStudent):
def operation(self) -> str:
return "{Result of the Student_one is ZaoStudent}"
def client_code(creator: Abiturient) -> None:
print(f"Client: it still works.\n"
f"{creator.some_operation()}", end="")
if __name__ == "__main__":
print("App: Launched")
client_code(Student())
|
e638bb9170ef377411bdcaba3f82d17d3fda0485 | cmonnom/Ped_Endocrine_Risk_Assessment | /date_helper.py | 720 | 3.84375 | 4 | from datetime import datetime
from datetime import timedelta
# split dates
month, day, year = [int(s) for s in "7/2/2014".split("/")]
print(month, day, year)
# testing dates
f_date = datetime(year, month, day)
l_date = datetime(2014, 7, 11)
# difference between dates
diff_date = l_date - f_date
print(diff_date)
# adding days to a date
later_date = f_date + timedelta(days=diff_date.days)
# reformat to get a date field
later_date_formatted = str(later_date.month) + "/" + str(later_date.day) + "/" + str(later_date.year)
print(later_date_formatted)
#code logic:
# extract DOB
# extract admission date
# calculate the diff
# set DOB to 1/1/1800
# add the diff to new DOB
# replace DOB and admission dates by new dates
|
3169ff3ba355164dff2955e06d9d5fe0114e7c7a | Harshad06/Python_programs | /Higher complexity programs/sumofTwoNums01.py | 416 | 3.734375 | 4 |
# sum 10 for adjacent 2 numbers??
x = [3, 2, 4, 6, 5, 9, 1, 12, 10]
for i in range(len(x)-1):
if x[i] + x[i+1] == 10:
print(f'Numbers are: {x[i]} & {x[i+1]}')
'''
output:-
# Numbers are: 4 & 6
# Numbers are: 9 & 1
-------------------------------
error if :-
if x[i] + x[i+1] == 10:
IndexError: list index out of range
it will take last element + 1, so it will OutOfIndex Error.
'''
|
b53a0ac42858a7acab8f3920688a39993c6e0b6c | ynXiang/LeetCode | /563.BinaryTreeTilt/solution.py | 1,069 | 3.71875 | 4 | #https://discuss.leetcode.com/topic/87208/python-simple-with-explanation
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def findTilt(self, root):
"""
:type root: TreeNode
:rtype: int
"""
return self.tiltWithSum(root)[0]
def tiltWithSum(self, root):
#return totel tilt of root and total sum of nodes including root
if not root:
return 0, 0
elif not root.left and not root.right:
return 0, root.val
elif not root.left:
t, s = self.tiltWithSum(root.right)
return t + abs(s), s + root.val
elif not root.right:
t, s = self.tiltWithSum(root.left)
return t + abs(s), s + root.val
else:
tl, sl = self.tiltWithSum(root.left)
tr, sr = self.tiltWithSum(root.right)
return tl + tr + abs(sl -sr), sl + sr + root.val
|
00b65f36fd04c3bdcdd7fc59064e232f8dbdd50a | Renmusxd/PerturbationLib | /PerturbationLib/Symmetries.py | 5,271 | 4 | 4 | from abc import ABCMeta, abstractmethod
from typing import Sequence, Tuple
class Symmetry(metaclass=ABCMeta):
"""
A class containing information as to how to
combine and calculate representations.
Multiplets are stored in (a,b,c...) notation to
remove ambiguity. A conversion method will be implemented for
each class.
"""
def __init__(self, name: str, multiplets: Sequence[Tuple[int, ...]]):
"""
Create a symmetry
:param name: unique identifier for symmetry
:param multiplets: sum of multiplets (i.e. (1) + (3) + ...)
"""
self.name = name
if multiplets is None:
self.multiplets = [self.singletRepr()]
else:
self.multiplets = list(multiplets)
def combine(self, sym: 'Symmetry') -> 'Symmetry':
"""
Combine a given symmetry with another symmetry
:param sym: other U(N) with same N
:return: new U(N) with sum of multiplets
"""
if self.matchesSymmetry(sym):
mapRepr = []
for r1 in self.multiplets:
for r2 in sym.multiplets:
mapRepr += self.combineRepr(r1, r2)
return self.constructWithNewRepr(mapRepr)
raise Exception("Symmetries do not match: "+self.name+", "+sym.name)
def singlet(self) -> 'Symmetry':
"""
Gives a singlet of the given group
:return:
"""
return self.constructWithNewRepr([self.singletRepr()])
def inverse(self) -> 'Symmetry':
"""
Gives the conjugate representation
:return:
"""
return self.constructWithNewRepr(self.inverseRepr())
def __call__(self, *args: Tuple[int, ...]) -> 'Symmetry':
return self.constructWithNewRepr(args)
@abstractmethod
def constructWithNewRepr(self, newrepr: Sequence[Tuple[int, ...]]) -> 'Symmetry':
"""
Create a new version of this symmetry with new representations.
:param newrepr: new representations
:return: Symmetry with new representations
"""
raise Exception("Method was not overridden")
@abstractmethod
def combineRepr(self, r1: Tuple[int, ...], r2: Tuple[int, ...]) -> Tuple[int, ...]:
"""
Combines two representations of the symmetry.
:return: [combined repr]
"""
raise Exception("Method was not overridden")
@abstractmethod
def containsSinglet(self) -> bool:
"""
:return: true if repr contains a singlet
"""
raise Exception("Method was not overridden")
@abstractmethod
def singletRepr(self) -> Tuple[int, ...]:
"""
Gives a singlet representation of the given group
:return:
"""
raise Exception("Method was not overridden")
@abstractmethod
def inverseRepr(self) -> Sequence[Tuple[int, ...]]:
"""
Gives the conjugate representation representation/multiplets
:return:
"""
raise Exception("Method was not overridden")
@abstractmethod
def matchesSymmetry(self, sym: 'Symmetry') -> bool:
"""
True/False if symmetries may be combined.
:param sym:
:return:
"""
return self.name == sym.name
def __repr__(self):
return self.name
def _latex(self, *args):
return self.__repr__()
def _repr_latex(self):
return "$"+self._latex()+"$"
class U(Symmetry):
"""
U(N) symmetry
"""
def __init__(self, N: int, name: str = None, multiplets: Sequence[Tuple[int, ...]] = None):
self.N = N
super().__init__(name or 'U('+str(N)+')', multiplets)
if N != 1:
raise Exception("U(N>1) not yet implemented")
def constructWithNewRepr(self, newrepr: Sequence[Tuple[int, ...]]) -> 'U':
"""
Create a new version of this symmetry with new representations.
:param newrepr: new representations
:return: Symmetry with new representations
"""
return U(self.N, self.name, newrepr)
def combineRepr(self, r1, r2) -> Sequence[Tuple[int, ...]]:
"""
Combines the multiplets for two U(N) symmetries, returns new multiplet
:param r1:
:param r2:
:return:
"""
if self.N == 1:
return [(r1[0] + r2[0],)]
else:
raise Exception("U(N>1) not yet implemented")
def containsSinglet(self) -> bool:
if self.N == 1:
return (0,) in self.multiplets
else:
raise Exception("U(N>1) not yet implemented")
def singletRepr(self) -> Tuple[int, ...]:
if self.N == 1:
return 0,
raise Exception("U(N>1) not yet implemented")
def inverseRepr(self) -> 'Sequence[Tuple[int]]':
if self.N == 1:
return [(-x[0],) for x in self.multiplets]
else:
raise Exception("U(N>1) not yet implemented")
def matchesSymmetry(self, sym: 'Symmetry') -> bool:
if isinstance(sym, U):
return self.name == sym.name and self.N == sym.N
return False
def __repr__(self):
return "U("+str(self.N)+"){"+(" + ".join([str(x) for x in self.multiplets]))+"}"
|
3107407ba493e28a9d9b9ac4a6eec8c851a7d2e9 | auntaru/mypycharms | /importcsv7function.py | 951 | 3.59375 | 4 | # https://pythonspot.com/reading-csv-files-in-python/
# https://pythonspot.com/category/database/
# https://pythonspot.com/en/mysql-with-python
# https://pythonspot.com/en/python-database-postgresql/
# https://jakevdp.github.io/PythonDataScienceHandbook/03.10-working-with-strings.html
import csv
import pandas as pd
def readMyFile(filename):
column1 = []
column2 = []
column3 = []
column4 = []
with open(filename) as csvDataFile:
csvReader = csv.reader(csvDataFile, delimiter=';')
for row in csvReader:
column1.append(row[0])
column2.append(row[1])
column3.append(row[2])
column4.append(row[3])
return column1, column2, column3, column4
servers, ports , databases, users = readMyFile('ALLPRIVILEGESModifyMySQL3col.csv.txt')
names = pd.Series(users)
usersip=names.str.split('@')
print(servers)
print(ports)
print(databases)
# print(users)
print(usersip)
|
c6492bd31d9d28f50ebc3a5d8b7e0aaed0eae436 | vijama1/codevita | /automorphic.py | 327 | 3.59375 | 4 | inp=input("Enter the number")
intinp=int(inp)
list=[]
list1=[]
list2=[]
for i in inp:
list.append(i)
length=len(list)
square=intinp*intinp
strsquare=str(square)
for j in strsquare:
list1.append(j)
list2=list1[-length:]
num=int(''.join(list2))
if num==intinp:
print("Automorphic")
else:
print("Not automorphic")
|
ed5a0b99588888098db4ef762dd864c568f73b2a | SleepwalkerCh/Leetcode- | /77.py | 674 | 3.5 | 4 | #77. Combinations
#简单的全排列
class Solution:
def combine(self, n: int, k: int) -> List[List[int]]:
result=[]
self.result=result
nums=[x+1 for x in range(n-1)]
self.Combination(nums,k,[])
return self.result
def Combination(self,nums,num,res):
if num==0:
self.result.append(res[:])
for i in range(len(nums)):
res.append(nums[i])
self.Combination(nums[i+1:],num-1,res)
del(res[-1])
#Runtime: 696 ms, faster than 20.81% of Python3 online submissions for Combinations.
#Memory Usage: 15.3 MB, less than 19.18% of Python3 online submissions for Combinations. |
6aeef53d6112d30af0fc7609a257fc54c16bfdf9 | michelman2/RigolDS1000Z | /code/Rigol_Lib/__init__.py | 646 | 3.59375 | 4 | import sys
import os
from pathlib import Path
"""
The file makes paths avaiable to python interpreter
has to be added before using a project hierarchy
"""
def add_subfolder_to_path( project_base_folder):
"""
Function iterates over all folders and subfolders of
current folder and add everything to the path
"""
for x in os.walk(project_base_folder):
folder_subfolders = (x[0])
if(folder_subfolders in sys.path):
pass
else:
sys.path.insert(1 , folder_subfolders)
path = Path(os.getcwd()).parent
print(path)
add_subfolder_to_path(path) |
5e6892111a1e6da698b0b00b6b6f6988d51c8a14 | jes5918/TIL | /Algorithm/SWEA/파이썬SW문제해결 String/범/4861.py | 803 | 3.5 | 4 | import numpy as np
def horizontal(x, n, m):
result = ''
for i in x:
for j in range(n-m+1):
a = i[j:j+m]
for k in range(m//2):
if a[k] != a[-(k+1)]:
break
else:
result += a
return result
def vertical(a, n, m):
result = np.array(a)
for x in range(n):
for y in range(n-m+1):
for i in range(m//2):
if a[x][y] != a[x][m-y]:
break
else:
re = result[x:(x-1),y:(m-y)]
return result
for t in range(1, int(input())+1):
N, M = map(int, input().split())
arr = [input() for i in range(N)]
res = horizontal(arr, N, M)
if res == False:
res = vertical(arr, N, M)
print(f'#{t} {res}') |
5987a40144dce5447965eae0975aa77251b49a1c | AnshulDasyam/python | /syntax/Summation.py | 125 | 3.984375 | 4 | """Sum of first n natural numbers"""
n = int(input("Summation of "))
a = 0
b = 0
while a < n :
a +=1
b += a
print(b)
|
108e5fd5e69e22f430c198b47e6ad18e961843be | permCoding/elective-course | /py/meeting-4-task-27/task-21.py | 107 | 3.578125 | 4 | def f(x):
return 2*x*x+3*x+2
k = int(input())
i = 15
while (i > 0 and f(i) > k):
i -= 1
print(i)
|
f4f71572de30c2c6091b0f985bb2b1526c6ca390 | aman-singh7/training.computerscience.algorithms-datastructures | /09-problems/lc_150_evaluate_reverse_polish_notation.py | 798 | 3.90625 | 4 | """
1. Problem Summary / Clarifications / TDD:
["2", "1", "+", "3", "*"]
9
5
-208
"""
class Solution:
def __init__(self):
self.operators = {
"+": lambda b, a: a + b,
"-": lambda b, a: a - b,
"/": lambda b, a: int(a / b),
"*": lambda b, a: a * b
}
def evalRPN(self, tokens: List[str]) -> int:
stack = []
for token in tokens:
if token in self.operators:
stack.append(self.operators[token](stack.pop(), stack.pop()))
else:
stack.append(int(token))
return stack[-1]
|
951cb94db2bb676ea0c05bc72ce316f5c103ac7b | Raymond-Zhu/CSC113_Project_1 | /battle.py | 2,000 | 3.765625 | 4 | from status import player_status, battle_status #battle_status checks the status of everyone after someone makes a turn. If all enemy hp is 0 or player's hp is 0, it returns false to break the loop ending the battle
import random
import textwrap
def battle(player,enemies,inventory):
for enemy in enemies:
print("A " + enemy.name + " has appeared.")
enemy_count = len(enemies)
delay = input("\nPress enter to continue...")
status = True
while(status):
choice = input(textwrap.dedent("""
What do you want to do?
0 - Attack
1 - Magic
2 - Skills
3 - Items
"""))
if choice == "0":
player.attack(enemies)
elif choice == "1":
player.magic(enemies)
elif choice == "2":
player.skill(enemies)
elif choice == "3":
player.use_potion(inventory)
status = battle_status(player,enemies)
delay = input("\nPress enter to continue...\n")
if len(enemies) is not 0:
for enemy in enemies:
enemy.attack(player)
status = battle_status(player,enemies)
delay = input("\nPress enter to continue...\n")
#Returns when you died
if player.hp <= 0:
return player
print("You have gained %d experience.\n" % (enemy_count))
for x in range(0,enemy_count):
player.hp += 1
player.full_hp += 1
player.mp += 1
player.full_mp += 1
player.atk += 1
player.matk += 1
player.defense += 1
player_status(player)
#Random potion drop
drop = random.randrange(0,4)
if drop == 0:
inventory['Health Potion'] += 1
print("You have obtained a Health Potion!\n")
elif drop == 2:
inventory['Mana Potion'] += 1
print("You have obtained a Mana Potion!\n")
return player
|
eaf64c5ce602b2c608de00f3eb1d9f3ed05d3b24 | EdwinSantos/EECS-4088 | /flask/games/__game.py | 5,082 | 3.578125 | 4 | #!/usr/bin/python3
from copy import deepcopy, copy
from abc import ABC, abstractmethod
from queue import Queue, PriorityQueue
from collections import OrderedDict, deque
class Game(ABC):
class Ranks():
'''
The ranks object is used by the display_game class to display standings.
Its functionally a wrapper for a deque but exists as to define a function that
expects a "Rank" object vs a "deque" object which is a common class.
'''
def __init__(self):
'''
Initializes Ranks as a deque().
'''
self.__ranks = deque()
def prepend(self, player):
'''
Prepends player to ranks.
'''
self.__ranks.appendleft(player)
def append(self, player):
'''
Appends player to ranks.
'''
self.__ranks.append(player)
def __iter__(self):
'''
Makes ranks iterable.
'''
for item in self.__ranks:
yield item
@property
def ranks(self):
'''
Public accessor for private object __ranks
'''
return self.__ranks
def __init__(self, players, default, **kwargs):
'''
Sets up the games default parameters.
'''
self.state = {}
super().__init__()
self.nocopy = list(kwargs.keys())
self.socketio = kwargs.get('socketio', None)
self.display_game = kwargs.get('display_game', None)
self.__players = players
self.__name__ = self.__class__.__name__
print("New "+self.__name__+" Started")
self.active = True
self.ranks = self.Ranks()
self.state['players'] = OrderedDict()
for player in players:
self.state['players'][player] = copy(default)
self.__active_players = len(list(players))
def __deepcopy__(self, memo):
'''
Redefines deepcopy to not include to not deepcopy private objects
and items produced by optional arguments.
'''
cls = self.__class__
result = cls.__new__(cls)
memo[id(self)] = result
for k, v in self.__dict__.items():
if k not in self.nocopy and not k.startswith('_'):
setattr(result, k, deepcopy(v, memo))
return result
@abstractmethod
def display(self):
'''
Abstract method display forces the child to redefine it.
Used to display data to the console.
'''
pass
@abstractmethod
def run_game(self):
'''
Abstract method run_game forces the child to redefine it.
Current version is only usable by calling super from child.
'''
if self.__active_players < 1:
self.end_game()
def end_game(self):
'''
Signal for ending a game.
'''
self.active = False
self.rank_players()
self.display()
if self.display_game is not None:
self.display_game.update(self.ranks)
self.socketio.sleep(3)
print("Game Over")
if self.socketio is not None:
self.socketio.emit('gameOver', broadcast=True)
@property
def players(self):
'''
Public accessor for __players
'''
return self.__players
@property
def deepcopy(self):
'''
Allows functions in game to call obj.deepcopy without importing deepcopy.
'''
return deepcopy(self)
def print_standings(self):
'''
Prints standings.
'''
print("Standings")
for i, item in enumerate(self.ranks, 1):
print(str(i) + ": " + str(item))
def rank_players(self):
'''
Function for ranking players. Stores data in a priority queue to heapsort it.
'''
results = PriorityQueue()
for player, stats in self.state['players'].items():
results.put((stats['score'], player))
while not results.empty():
self.ranks.prepend(results.get()[1])
def remove_player(self, player=None):
'''
Decrements player count if a player drops from a game.
'''
self.__active_players -= 1
print("players left: " + str(self.__active_players))
def add_player(self, player=None):
'''
Increments player if a player rejoins game.
'''
self.__active_players += 1
print("players joined: " + str(self.__active_players))
def check_alive(self, player):
'''
Checks if a player is alive in the current game.
'''
if player is not None:
hp = self.state['players'][player].get("hp")
print(hp)
if hp is not None and hp == "dead":
return False
return True
|
09ff4026527f0c110fa969ae08996c64df0ae69b | SpencerBurt/Minesweeper-game | /functions.py | 5,611 | 4.0625 | 4 | import board
class Functions:
"""
Provides some of the utility functions for printing and interacting with the gameboard.
"""
@staticmethod
def print_board(board:board.Board):
"""
Prints the gameboard
:param board: The gameboard that will be printed
:type board: Board
:returns: void
"""
for y in range(board.ydim):
for x in range(board.xdim):
print(board.gameboard[y * board.xdim + x], end= '')
print()
@staticmethod
def reveal_space(board:board.Board, xloc:int, yloc:int):
"""
Decides whether or not to reveal a space on the board given the user's input
:param board: The board
:type board: Board
:param xloc: The x location to be checked
:type xloc: int
:param yloc: The y location to be checked
:type yloc: int
:returns: False if the move results in a loss and True otherwise
"""
space = board.gameboard[yloc * board.xdim + xloc]
if space.is_marked:
Functions.reveal_marked()
return True
elif space.is_bomb:
board.is_lost = True
return False
elif not space.is_hidden:
Functions.reveal_revealed()
return True
else:
Functions.reveal_zeros(board, xloc, yloc, space)
return True
# Note: the function declaration sacrifices some simplicity to avoid having to import the space file, this could be simplified later on if problems arise.
@staticmethod
def reveal_zeros(board:board.Board, xloc:int, yloc:int, space:board.space.Space):
"""
Reveals a given space. Reveals the surrounding spaces if it is zero.
:param board: The board
:type board: Board
:param xloc: The x location of the space being revealed
:type xloc: int
:param yloc: The y location of the space being revealed
:type yloc: int
:param space: The space being revealed, determined by the reveal_space function
:type space: Space
:returns: void
"""
space.is_hidden = False
if space.value == 0:
for y in range(-1,2):
if (yloc + y != -1) and (yloc + y != board.ydim):
for x in range(-1,2):
location = board.gameboard[(yloc + y) * board.xdim + (xloc + x)]
if (xloc + x != -1) and (xloc + x != board.xdim) and not location.is_bomb:
location.is_hidden = False
@staticmethod
def check_won(board:board.Board):
"""
Checks if the game has been won.
:param board: The board
:type board: Board
:returns: True if the game is won, False otherwise
"""
is_won = True
for yloc in range(board.ydim):
for xloc in range(board.xdim):
location = board.gameboard[yloc * board.xdim + xloc]
if location.is_hidden and not location.is_bomb:
is_won = False
board.is_won = is_won
return is_won
@staticmethod
def reveal(gameboard:board.Board):
"""
Collects input and reveals a space based upon it.
:param gameboard: The board
:type board: Board
:returns: False if the move resulted in a loss, True otherwise
"""
revealed = False
while not revealed:
xloc = int(input('Enter x location: \n'))
yloc = int(input('Enter y location: \n'))
if (xloc >= gameboard.xdim or yloc >= gameboard.ydim):
print('Incorrect input, space is out of bounds')
continue
if Functions.reveal_space(gameboard, xloc, yloc):
return True
else:
return False
@staticmethod
def mark(gameboard:board.Board):
"""
Collects input and marks a space based upon it.
:param gameboard: The board
:type gameboard: Board
:returns: void
"""
marked = False
while not marked:
xloc = int(input('Enter x location: \n'))
yloc = int(input('Enter y location: \n'))
if (xloc >= gameboard.xdim or yloc >= gameboard.ydim):
print('Incorrect input, space is out of bounds')
continue
gameboard.mark_space(xloc, yloc)
@staticmethod
def move(gameboard:board.Board):
"""
Decides and executes the move types dictated by the user.
:param gameboard: The board
:type gameboard: Board
:returns: True if the game will continue, false if the given move is the last in the game
"""
Functions.print_board(gameboard)
move = input('[R] Reveal [M] Mark [Q] Quit\n')
if move.capitalize() == "R":
if Functions.reveal(gameboard):
gameboard.is_lost = False
return True
else:
gameboard.is_lost = True
return True
elif move.capitalize() == 'Q':
return False
elif move.capitalize() == 'M':
Functions.mark(gameboard)
return True
else:
print('Please enter a valid move')
return True
@staticmethod
def reveal_marked():
print('Space is marked, unmark it to reveal.')
@staticmethod
def reveal_revealed():
print('Space is already revealed.') |
f98979ada41ef6011297582c15c1e07c97a497be | xiao812/code | /temperature/world_population.py | 632 | 3.59375 | 4 | # -*- coding: utf-8 -*-
"""
Created on Tue Apr 14 22:25:21 2020
@author: w
"""
import json
from test import get_country_code
# 将数据加载到一个列表中
filename = 'population_data.json'
with open(filename) as f:
pop_data = json.load(f)
# 打印每个国家2010年的人口
for pop_dict in pop_data:
if pop_dict['Year'] == '2010':
country_name = pop_dict['Country Name']
population = int(float(pop_dict['Value']))
code = get_country_code(country_name)
if code:
print(code + ": " +str(population))
else:
print('ERROR - ' + country_name)
|
275c38a2a98831592c7e04dc2185f44119f7ae78 | sdvacap/Python--Spring2020 | /Restriction_enzyme.py | 1,547 | 3.953125 | 4 | #Restriction Enzyme
#Sarah Vaca
#March 02,2020
#ACTGATCGATTACGTATAGTAGAATTCTATCATACATATATATCGATGCGTTCAT
#The sequence contains a recognition site for the EcoRI restriction enzyme, which cuts at the motif G*AATTC (the position of the cut is indicated by an asterisk)
#Write a program which will calculate the size of the two fragments that will be produced when the DNA sequence is digested with EcoRI
###STEP 1
#Create a variable for the sequence
sequence=("ACTGATCGATTACGTATAGTAGAATTCTATCATACATATATATCGATGCGTTCAT")
print(sequence)
###STEP 2
#Find the motif G*AATTC in the sequence and cut between G and A, to obtain two fragments
position=sequence.find("GAATTC") #find the motif "GAATTC" inside the sequence
RE=sequence.replace("GAATTC","G AATTC") #replace "GAATTC" for "G AATTC", so you will know were the RE will cut
print(RE) #print the sequence with the space, you will see where the RE will cut
fragments=RE.split(" ") #split the sequence with a space
print(fragments[0]) #shows the first fragment
print(fragments[1]) #shows the second fragment
###STEP 3
#Calcutate the size of the first fragment
frag1=len(fragments[0]) #calculate the size of the first fragment
print("The size of the first fragment is", frag1)
#Calcutate the size of the second fragment
frag2=len(fragments[0]) #calculate the size of the second fragment
print("The size of the second fragment is", frag2)
|
d3b4ada695a2b2369fd0d96d5f5ef36c0d9c5a66 | AlexanderRagnarsson/M | /Assignments/Assignment 10/Stringtolist.py | 818 | 4.4375 | 4 | def word_splitter(word):
"""
Takes a string and splits is up into words which it appends to a list
when there is a space or comma and then returns the list
"""
return_list = []
append_word = ''
#Appends word to list whenever there is a space or comma next
for char in word:
if char == ',' or char == ' ':
return_list.append(append_word)
append_word = ''
else:
append_word += char
#We never append the word if we dont end with a space or comma so lets append it the the list
if word[-1] != ' ' or word[-1] != ',':
return_list.append(append_word)
return return_list
# The main program starts here
the_string = input("Enter the string: ")
# call your function here
the_list = word_splitter(the_string)
print(the_list) |
26c32a657118a20adf804da60ecd7992af48a29e | me-and/project-euler | /pe050.py | 1,467 | 3.640625 | 4 | #!/usr/bin/env python3
'''
Consecutive prime sum
The prime 41, can be written as the sum of six consecutive primes:
41 = 2 + 3 + 5 + 7 + 11 + 13
This is the longest sum of consecutive primes that adds to a prime below
one-hundred.
The longest sum of consecutive primes below one-thousand that adds to a prime,
contains 21 terms, and is equal to 953.
Which prime, below one-million, can be written as the sum of the most
consecutive primes?
'''
from itertools import count
from prime import primes
if __name__ == '__main__':
best_length = 21
best_prime = 953
for start_idx in count():
if sum(primes[start_idx:start_idx + best_length + 1]) > 1000000:
# The smallest sum of primes for this start point is over one
# million, so we're not going to find any new results.
break
for end_idx in count(start_idx + best_length + 1):
sum_of_primes = sum(primes[start_idx:end_idx])
if sum_of_primes > 1000000:
# Over one million, so try the next start index.
break
if sum_of_primes in primes:
# Better than anything we've seen before. We know it has to
# have a longer sequence since the shortest sequence length
# we'd loop over is longer than the previous best result.
best_prime = sum_of_primes
best_length = end_idx - start_idx
print(best_prime)
|
7ccd87484275fa2b0d0d180da871a7cbe7bb4099 | ovidubya/Coursework | /Python/Programs/assign5part2.py | 879 | 3.734375 | 4 | a = [] # The array with all positive numbers not including zero
b = [] # The array with all negative numbers including zeros
c = [] # The array with all numbers
isDone = True
while(isDone):
x = int(input("Enter a num"))
if(x == -9999):
break
if(x > 0):
a.append(x)
if(x <= 0):
b.append(x)
c.append(x)
def listA():
totalA = 0
for i in a:
totalA = totalA + i
return totalA
def listB():
totalB = 0
for j in b:
totalB = totalB + j
return totalB
def listC():
totalC = 0
for k in c:
totalC = totalC + k
return totalC
# Averages for each list
avgPositive = str(float(listA()//len(a)))
avgNegative = str(float(listB()//len(b)))
avgAll = str(float(listC()//len(c)))
print("{'AvgPositive': " + avgPositive + ", 'AvgNonPos': " + avgNegative + ", 'AvgAllNum': " + avgAll + "}") |
5c507cfc5582665dd273d8b91b712f46803cc8e5 | massey-high-school/2020-91896-7-assessment-zionapril | /2020-91896-7-assessment-zionapril-master/01_String_Checker.py | 606 | 4.09375 | 4 | # Functions goes here
def string_checker(question, to_check):
valid = False
while not valid:
response = input(question).lower()
for item in to_check:
if response == item:
return response
elif response == item[0]:
return item
print("Can only be square, rectangle, triangle, parallelogram or circle")
# *** Main Routine starts here ***
available_shapes = ["square", "rectangle", "triangle", "parallelogram", "circle"]
ask_user = string_checker("Choose a shape to work out:", available_shapes)
print(ask_user)
|
2bcdb5d533b002d8f61510073a0eb07458d72b6d | gdincu/py_thw | /4_File_Handling.py | 2,098 | 4.34375 | 4 | #Ex15
import sys
filename = sys.argv[1]
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Read a File
'r' is the default mode. It opens a file for reading and reads the entire content of the file.
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
f=open(filename, "r")
if f.mode == 'r':
contents =f.read()
print(contents)
#readlines - used to read the contents of a file line by line
fTemp = f.readlines()
for x in fTemp:
print(x)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Adds to the file
'w' opens the file for writing. If the file doesn't exist it creates a new file. If the file exists it truncates the file.
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
f= open("template.txt","w+")
print("Adds lines to the file: ")
for i in range(10):
f.write("This is line %d\r\n" % (i+1))
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Create a new file
'x' creates a new file. If the file already exists, the operation fails.
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
f= open("newFile.txt",'x')
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Append Data to a File
'a' opens a file in append mode. If the file does not exist, it creates a new file
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
f=open(filename, "a+")
for i in range(2):
f.write("Appended line %d\r\n" % (i+1))
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Truncate a file
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
#Opens the file & provides writing permission
print("Opening the file....")
txt = open(filename,'w+')
#Truncates the file
print("Truncating the file")
txt.truncate()
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Close a file
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
target.close()
|
77046d8e99bf5b4d3c1b78f9d92a30d2cc2d34b0 | stephnec/ExerciciosLista01-Python | /Ex05.py | 284 | 3.671875 | 4 | precoCombustivel = float(input("Digite o preço do litro do combustível: "))
valorDinheiro = float(input("Digite o valor em dinheiro que deseja pagar: "))
litrosTotal = valorDinheiro / precoCombustivel
print("O total de litros a ser comprado é de " + str(litrosTotal) + " litros") |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.