blob_id
string | repo_name
string | path
string | length_bytes
int64 | score
float64 | int_score
int64 | text
string |
---|---|---|---|---|---|---|
d91f8c6f3078c969d6efec2b9f38583e18ca4057 | hbcelebi/leetcode | /#34_First_Last_Position_of_Element/main.py | 2,202 | 3.96875 | 4 |
"""
Created on Mon May 3 14:40:08 2021
@author: hbc
"""
# This is a O(N) computational complexity and O(1) space complexity solution to the problem
from typing import List
### Here starts my code
class Solution(object):
def searchRange(self, nums, target):
# The algorithm first finds the initial position of the target, then the last position
# Initialize the variables
left_idx = 0
right_idx = len(nums) - 1
first_position = -1
# let's do binary search to find the first location
while(left_idx <= right_idx):
# set the middle index inbetween the two indexes
mid_idx = int((left_idx + right_idx)/2)
# if we already found the target check if it is the first location
if nums[mid_idx] == target:
if mid_idx == 0 or nums[mid_idx-1] != target:
first_position = mid_idx
right_idx = mid_idx - 1
elif nums[mid_idx] < target:
left_idx = mid_idx + 1
else:
right_idx = mid_idx - 1
# if there is no first_position then there is no target value inside the array
if first_position == -1:
return [-1, -1]
# Initialize the variables for the second loop
left_idx = 0
right_idx = len(nums) - 1
# let's do binary search to find the last location
while(left_idx <= right_idx):
# set the middle index inbetween the two indexes
mid_idx = int((left_idx + right_idx)/2)
# if we already found the target check if it is the last position
if nums[mid_idx] == target:
if mid_idx == len(nums) - 1 or nums[mid_idx+1] != target:
last_position = mid_idx
left_idx = mid_idx + 1
elif nums[mid_idx] < target:
left_idx = mid_idx + 1
else:
right_idx = mid_idx - 1
# return the positions
return [first_position, last_position]
s = Solution()
result = s.searchRange([10, 11, 11, 11, 14, 15], 11)
print(result)
|
dcb3a69cba18bcf1049581c10e4b0ebe1b2de839 | alanjimenez21/Python-Programming | /Python_Programming/Lab02Part1.py | 946 | 4.03125 | 4 | """
PROBLEM 1
A hotdog stand sells hotdogs, potato chips and sodas. Hotdogs are $2.50 each.
Potato chips are $1.50 per bag. Sodas are $1.25 per cans.
Design a program to do the following. Ask the user to enter number of hotdogs, chips and sodas ordered
by the customer. The program will calculate and display the total amount due.
"""
#Define Variables
hot_dogs = 2.5
potato_chips = 1.5
sodas = 1.25
#Prompt the user to input amounts
print("Welcome to Fair Eatings!")
count_hot_dogs = int(input("How many hot dogs would you like? "))
count_potato_chips = int(input("How many potato chips would you like? "))
count_sodas = int(input("How many sodas would you like? "))
#Calculations
total_hot_dogs = hot_dogs * count_hot_dogs
total_potato_chips = potato_chips * count_potato_chips
total_sodas = sodas * count_sodas
amount_due = total_hot_dogs+total_potato_chips+total_sodas
#Display Amount
print("Your total amount due is $", amount_due)
|
43ce9547597ddefbeb4adc9ef6ff25eb1a69120d | stevenhuangcode/programming | /Quiz Python.py | 1,349 | 4.0625 | 4 | # Quiz Game
correct = 0
incorrect = 0
# Question 1
if input("What is the name of the famous tower in Paris?").lower() == "eiffel":
print("Correct")
correct += 1
else:
print("Incorrect")
incorrect += 1
# Question 2
Donnie_Yen = input("How many Ip Man movies are there (ft. Donnie Yen)")
if Donnie_Yen == "4" or Donnie_Yen.lower() == "four":
print("Correct")
correct += 1
else:
print("Incorrect")
incorrect += 1
# Question 3
if input("Capital of New York / a. NYC b. NCY c. CYN d. Albany").lower() == "d":
print("Correct")
correct += 1
else:
print("Incorrect")
incorrect += 1
# Question 4
if input("Which country does pineapple pizza come from?").lower() == "canada":
print("Correct")
correct += 1
else:
print("Incorrect")
incorrect += 1
# Question 5
if input("True or False, there is a Popeye's in Richmond").lower() == "true":
print("Correct")
correct += 1
else:
print("Incorrect")
incorrect += 1
print(f" You have {correct} correct answers and {incorrect} incorrect answers")
if (correct / (correct + incorrect)) * 100 >= 60:
print(f" Nice. You passed with a score of {(correct / (correct + incorrect)) * 100} %")
elif (correct / (correct + incorrect)) * 100 <= 60:
print(f" Oops. You failed with a score of {(correct / (correct + incorrect)) * 100} %") |
5f82bae6c5e2b1ddd90221e14b5b15d8d831a0c9 | jessewalton/Practice-Problems | /python/soldier_game/soldier_game_oop.py | 1,575 | 3.515625 | 4 | #!/usr/bin/env python
class SoldierGame(object):
soldier_health = []
soldier_class = []
soldier_attack = []
"""
def add_soldier(self, _health, _class, _attack):
soldier_health.append(100)
soldier_class.append(0)
soldier_attack.append(0)
"""
def addSoldier(self, soldier_instance):
self.soldier_health.append(soldier_instance.health_stat)
#self.soldier_class.append(soldier_instance.soldier_class)
def printAll(self):
for i in self.soldier_health:
print i
class Soldier(object):
health_stat = 100
def __init__(self, uid, team):
self.uid = uid
self.team = team
self.attack_stat = 0
def attack(self, enemy):
if self.team != enemy.team:
enemy.health_stat = enemy.health_stat - self.attack_stat
def print_status(self):
print "ID:", self.uid
print "Team:", self.team
print "Health:", self.health_stat
#print "Attack:", self.attack_stat
class Grenadier(Soldier):
def __init__(self, uid, team):
Soldier.__init__(self, uid, team)
self.attack_stat = 30
self.health_stat = 100
class Heavy(Soldier):
def __init__(self, uid, team):
Soldier.__init__(self, uid, team)
self.attack_stat = 50
self.health = 200
# start new game
newGame = SoldierGame()
ally_grenadier_1 = Grenadier(1, "Blue")
ally_heavy_2 = Heavy(2, "Blue")
enemy_grenadier_1 = Grenadier(3, "Red")
soldiers = [ally_grenadier_1, ally_heavy_2, enemy_grenadier_1]
for soldier in soldiers:
newGame.addSoldier(soldier)
newGame.printAll()
|
e65e559b186bd83f1d3611eee3dde6885f87e688 | cutieskye/algorithmia | /dynamic-programming/placing_parentheses.py | 1,381 | 3.546875 | 4 | import sys
def evaluate(a, b, operation):
if operation == '+':
return a + b
if operation == '-':
return a - b
if operation == '*':
return a * b
assert False
def extrema(i, j, minima, maxima, operations):
minimum = sys.maxsize
maximum = -sys.maxsize - 1
for k in range(i, j):
a = evaluate(minima[i][k], minima[k + 1][j], operations[k])
b = evaluate(minima[i][k], maxima[k + 1][j], operations[k])
c = evaluate(maxima[i][k], minima[k + 1][j], operations[k])
d = evaluate(maxima[i][k], maxima[k + 1][j], operations[k])
minimum = min(minimum, a, b, c, d)
maximum = max(maximum, a, b, c, d)
return minimum, maximum
def get_maximum_value(expression):
operations = expression[1::2]
numbers = expression[::2]
length = len(numbers)
minima = [[0 for _ in range(length)] for _ in range(length)]
maxima = [[0 for _ in range(length)] for _ in range(length)]
for i in range(length):
minima[i][i] = maxima[i][i] = int(numbers[i])
for s in range(1, length):
for i in range(length - s):
j = i + s
minima[i][j], maxima[i][j] = extrema(
i, j, minima, maxima, operations)
return maxima[0][-1]
if __name__ == "__main__":
print(get_maximum_value(input()))
|
7277fe4d8193078e028d761da397fd714c736799 | gustavofcosta/curso-python | /Totos exercícios e desafios/ex044.py | 977 | 3.890625 | 4 | print('=='*50)
print('Calculadora de desconto ou juros, conforme a forma de pagamento.')
print(' '*50)
produto = float(input('informe o valor do produto R$ '))
print('Qual é a forma de pagamento?')
print(' '*50)
print('''
[1] - À vista dinheiro/cheque 10% de desconto.
[2] - À vista cartão 5% de descont
[3] - Em até 2 vezes no cartão preço normal.
[4] - 3 vezes ou mais no cartão 20% de juros. ''')
precione = int(input('Qual é a opção? '))
if precione == 1:
print('À vista dinheiro/cheque 10% de desconto valor de R${}'.format(produto * 0.9))
elif precione == 2:
print('À vista com cartão 5% de desconto, valor de R${}'.format(produto * 0.95))
elif precione == 3:
print('Em até 2 vezes no cartão preço normal, valor de R${}'.format(produto))
elif precione == 4:
quantas = int(input('Quantas parcelas: '))
divi = (produto*1.2) / quantas
print('{} X {} no cartão 20% de juros, valor de R${}'.format(quantas, divi, produto*1.2))
|
da4033aecd44cb88fd090aaa6e829d688178bc48 | yadavraganu/Codeforce | /1000/Donut_Shops.py | 252 | 3.625 | 4 | for i in range(int(input())):
arr=list(map(int,input().split()))
a=arr[0]
b=arr[1]
c=arr[2]
if a<c:
a1="1"
else:
a1="-1"
if c<a*b:
b1=b
else:
b1='-1'
print(str(a1)+" "+str(b1)) |
fe725b9712f2046af414b8ec25ee638d4c351f54 | boconlonton/python-deep-dive | /part-3/4-specialized_dictionary/1-default_dict.py | 3,125 | 3.625 | 4 | """defaultdict"""
from collections import defaultdict, namedtuple
from datetime import datetime
from functools import partial, wraps
counts = defaultdict(lambda: 0)
sentence = "able was I ere I saw elba"
for c in sentence:
counts[c] += 1
print(counts)
print(isinstance(counts, defaultdict)) # True
print(isinstance(counts, dict)) # True
# Factory function
c = defaultdict(int) # equals to defaultdict(lambda: 0)
print(bool())
print(list())
print(str())
# Usage of defaultdict
persons = {
'john': {'age': 20, 'eye_color': 'blue'},
'jack': {'age': 25, 'eye_color': 'brown'},
'jill': {'age': 22, 'eye_color': 'blue'},
'eric': {'age': 35},
'michael': {'age': 27}
}
eye_colors = {}
for person, details in persons.items():
if 'eye_color' in details:
color = details['eye_color']
else:
color = 'unknown'
if color in eye_colors:
eye_colors[color].append(person)
else:
eye_colors[color] = [person]
print(eye_colors)
eye_colors = {}
for person, details in persons.items():
color = details.get('eye_color', 'unknown')
person_list = eye_colors.get(color, [])
person_list.append(person)
eye_colors[color] = person_list
print(eye_colors)
eye_colors = defaultdict(list)
for person, details in persons.items():
color = details.get('eye_color', 'unknown')
eye_colors[color].append(person)
print(eye_colors)
persons = {
'john': defaultdict(lambda: 'unknown',
age=20, eye_color='blue'),
'jack': defaultdict(lambda: 'unknown',
age=20, eye_color='brown'),
'jill': defaultdict(lambda: 'unknown',
age=22, eye_color='blue'),
'eric': defaultdict(lambda: 'unknown', age=35),
'michael': defaultdict(lambda: 'unknown', age=27)
}
eye_colors = defaultdict(lambda: [])
for person, details in persons.items():
eye_colors[details['eye_color']].append(person)
print(eye_colors)
eyedict = partial(defaultdict, lambda: 'unknown')
# eyedict1 = lambda *args, **kwargs: defaultdict(lambda: 'unknown', *args, **kwargs)
persons = {
'john': eyedict(age=20, eye_color='blue'),
'jack': eyedict(age=20, eye_color='brown'),
'jill': eyedict(age=22, eye_color='blue'),
'eric': eyedict(age=35),
'michael': eyedict(age=27)
}
eye_colors = defaultdict(lambda: [])
for person, details in persons.items():
eye_colors[details['eye_color']].append(person)
print(eye_colors)
# Additional arguments of defaultdict()
d = defaultdict(lambda: ' ', k1=100, k2=200)
print(d)
# Factory function NOT need to be a deterministic function
def function_stats():
d = defaultdict(lambda: {"count": 0, "first_called": datetime.utcnow()})
Stats = namedtuple('Stats', 'decorator data')
def decorator(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
d[fn.__name__]['count'] += 1
return fn(*args, **kwargs)
return wrapper
return Stats(decorator, d)
stats = function_stats()
@stats.decorator
def func_1():
pass
@stats.decorator
def func_2():
pass
func_1()
func_2()
func_1()
print(stats.data)
|
aabf61afa9492620a637fea2b46a298dd89ff3da | gustavo-mota/programming_fundamentals | /8_Sétima_lista/1.2_cc/1.2.py | 522 | 3.734375 | 4 | string = str(input("Digite o nome sem espaços no fim: "))
sobre = []
novo_nome = []
for i in string:
novo_nome.append(i)
x = len(novo_nome) - 1
while x > 0:
if ord(novo_nome[x]) == 32:
break
else:
if ord(novo_nome[x]) >= 97 and ord(novo_nome[x]) <= 122:
novo_nome[x] = chr(ord(novo_nome[x]) - 32)
sobre.append(novo_nome[x])
novo_nome.pop()
x -= 1
sobre.reverse( )
sobre.append(",")
for s in sobre:
print(s,end="")
for i in novo_nome:
print(i,end="") |
029459a5c18b52788819a9738844c98cfc69a81b | SurakshaRV/python-lab-1BM17CS108 | /rvsFibonacci.py | 227 | 4.03125 | 4 | def fib(n):
if n<=1:
return n
else:
return (fib(n-1)+fib(n-2))
n=int(input("how many numbers? "))
if n<=0:
print("enter a positive integer: ")
else:
for i in range(1,n+1):
print(fib(i))
|
e3128c429b227bc4762dcbe9385369a7e447c982 | joshtaylora/HackerRank | /CountingValleys/CountValleys.py | 1,017 | 4.125 | 4 | import math
import os
import random
import re
import sys
#
# Complete the 'countingValleys' function below.
#
# The function is expected to return an INTEGER.
# The function accepts following parameters:
# 1. INTEGER steps
# 2. STRING path
#
def countingValleys(steps, path):
downDist = 0
upDist = 0
valCount = 0
travel = 0
for index, step in enumerate(path):
if step == 'U':
travel += 1
upDist += 1
print("path[%d]: %s, travel: %d" % (index, step, travel))
elif step =='D':
downDist += 18
travel -= 1
print("path[%d]: %s, travel: %d" % (index, step, travel))
if travel == 0 and index > 0 and path[index] == 'U' and upDist > 0:
valCount += 1
print("path[%d]: %s, travel: %d valley ++" % (index, step, travel))
return valCount
if __name__ == '__main__':
steps = 8
path = 'UDDDUDUU'
result = countingValleys(steps, path)
print(result)
|
24ad8ff5db3fd0744f2f7d54f50a29fbc75a5d70 | UWPCE-PythonCert-ClassRepos/SP_Online_PY210 | /students/Pirouz_N/lesson08/sparsearray.py | 17,807 | 3.640625 | 4 | #!/usr/bin/env python3
"""
Purpose: Sparse Array python certificate from UW
Author: Pirouz Naghavi
Date: 07/13/2020
"""
# imports
from collections.abc import Sequence
import operator
class SparseArray:
"""Sparse Array is data structure for spare data.
The list hold information describing the HTML element as well as a class attribute describing the HTML tag
called tag. It also contains instance attributes such as contents which is a list that contains the contents.
It is very likely that the contents could include element which would be the sub elements to the current
element. There are two major methods append and render. Append adds more contents to the contents list. Render
adds the current element.
Attributes:
date: This attribute contains all the values in the data including zeros.
"""
def __init__(self, init_data=None, dim=None):
"""Initialises the Sparse Array class.
Args:
init_data: Is the initializing data. If it is not provided empty structure will be created. This
value will be a sparse array of objects or 2 sparse array of objects. In case of a 2D sparse
array of object every row need not to have the same length additional zeros will be
automatically added. If init_data is not sequence it will be treated as an object set for index
zero of the data.
dim: Dimensionality of the array.
Raises:
ValueError: If dim is specified as two dimensional but it is not a Sequence.
"""
self._data = {}
self._num_row = 0
self._num_col = 0
self._dim = dim if dim is not None and (dim == 1 or dim == 2) else 1
if init_data is not None:
if isinstance(init_data, Sequence):
if len(init_data) != 0:
self._initial_sequence_update(init_data)
else:
self._data[0] = init_data
def _initial_sequence_update(self, init_data):
"""Initialises the Sparse Array class when initial data is a sequence.
Args:
init_data: Is the initializing data. If it is not provided empty structure will be created. This
value will be a sparse array of objects or 2 sparse array of objects. In case of a 2D sparse
array of object every row need not to have the same length additional zeros will be
automatically added. If init_data is not sequence it will be treated as an object set for index
zero of the data.
Raises:
ValueError: If dim is specified as two dimensional but it is not a Sequence.
"""
self._num_row = len(init_data)
for i, row_val in enumerate(init_data):
if self._dim == 1:
if row_val != 0 and row_val != 0.0 and row_val != '':
self._data[i] = row_val
else:
self._num_col = len(row_val) if len(row_val) > self._num_col else self._num_col
try:
for j, col_val in enumerate(row_val):
if col_val != 0 and col_val != 0.0 and col_val != '':
self._data[(i, j)] = col_val
except ValueError as err:
raise ValueError("Every row of initial data must be a sequence." + str(err))
@property
def data(self):
"""It returns array slice based on the passed slice and value. This will return a row.
Returns:
The property of data as a form of list of lists.
"""
if self._dim == 2:
return [[self._data[(i, j)] if (i, j) in self._data else 0 for j in range(self._num_col)]
for i in range(self._num_row)]
else:
return [self._data[i] if i in self._data else 0 for i in range(self._num_row)]
@data.setter
def data(self, init_data):
"""Resets the Sparse Array class from blank with initial data.
Args:
init_data: Is the initializing data. If it is not provided empty structure will be created. This
value will be a sparse array of objects or 2 sparse array of objects. In case of a 2D sparse
array of object every row need not to have the same length additional zeros will be
automatically added. If init_data is not sequence it will be treated as an object set for index
zero of the data.
dim: Dimensionality of the array.
Raises:
ValueError: If dim is specified as two dimensional but it is not a Sequence.
"""
self._data = {}
self._num_row = 0
self._num_col = 0
self._dim = dim if dim is not None and (dim == 1 or dim == 2) else 1
if init_data is not None:
if isinstance(init_data, Sequence):
if len(init_data) != 0:
self._initial_sequence_update(init_data)
else:
self._data[0] = init_data
@staticmethod
def _slice_range(slc, length):
return range(operator.index(slc.start) if slc.start is not None else 0,
operator.index(slc.stop) if slc.stop is not None else length,
operator.index(slc.step) if slc.step is not None else 1)
def _two_d_tuple_get_item_both_slice(self, item):
"""It returns an array slice based on the passed slice tuple. This will return a list of lists.
Args:
item: Slice tuple that needs to be returned.
Returns:
This will return a list of lists based on the tuple of slices.
"""
return [[self._data[(i, j)] if (i, j) in self._data else 0
for j in self._slice_range(item[1], self._num_col)]
for i in self._slice_range(item[0], self._num_row)]
def _two_d_tuple_get_item_one_slice(self, item):
"""It returns an array slice based on the passed slice and value. This will return a row.
Args:
item: Slice and value that needs to be returned.
Returns:
This will return a row as a list based on the slice and value.
"""
return [[self._data[(i, j)] if (i, j) in self._data else 0
for j in self._slice_range(item[1], self._num_col)]
for i in range(operator.index(item[0]), operator.index(item[0]) + 1)]
def _two_d_tuple_get_item_two_slice(self, item):
"""It returns an array slice based on the passed slice and value. This will return a column vector.
Args:
item: Slice and value that needs to be returned.
Returns:
This will return a column vector as a list of list based on the slice and value.
"""
return [[self._data[(i, j)] if (i, j) in self._data else 0
for j in range(operator.index(item[1]), operator.index(item[1]) + 1)]
for i in self._slice_range(item[0], self._num_row)]
def _two_d_tuple_get_item_no_slice(self, item):
"""It returns array slice based on the passed slice and value. This a value located at provided index.
Args:
item: Index tuple that needs to be returned.
Returns:
This will return a value based on the tuple of values.
"""
return self._data[(operator.index(item[0]), operator.index(item[1]))] \
if (operator.index(item[0]), operator.index(item[1])) in self._data else 0
def _two_d_tuple_get_item(self, item):
"""It returns an array slice based on the passed tuple. This a value located at provided index tuple.
Args:
item: Index or slice tuple that needs to be returned.
Returns:
This will return a value, row, column vector, or matrix based on the tuple of values.
"""
if len(item) == 2:
if isinstance(item[0], slice) and isinstance(item[1], slice):
return self._two_d_tuple_get_item_both_slice(item)
elif isinstance(item[0], slice) and not isinstance(item[1], slice):
return self._two_d_tuple_get_item_two_slice(item)
elif not isinstance(item[0], slice) and isinstance(item[1], slice):
return self._two_d_tuple_get_item_one_slice(item)
else:
return self._two_d_tuple_get_item_no_slice(item)
else:
raise IndexError("Dimension tuple for two array must be two dimensional")
def _two_d_get_item(self, item):
"""It returns an array slice based on the passed tuple, slice, or value. This a value located at index tuple.
Args:
item: Index or slice tuple that needs to be returned.
Returns:
This will return a value, row, column vector, or matrix based on the tuple of values.
"""
if isinstance(item, tuple):
return self._two_d_tuple_get_item(item)
elif isinstance(item, slice):
return [[self._data[(i, j)] if (i, j) in self._data else 0 for j in range(self._num_col)]
for i in self._slice_range(item[0], self._num_row)]
else:
return[[self._data[(i, j)] if (i, j) in self._data else 0
for j in range(self._num_col)]
for i in range(operator.index(item), operator.index(item) + 1)]
def _one_d_get_item(self, item):
"""It returns an array slice based on the passed slice, or value. This is located at index or slice.
Args:
item: Index or slice that needs to be returned.
Returns:
This will return a value, or list based on slice or value.
"""
if isinstance(item, slice):
return [self._data[i] if i in self._data else 0
for i in self._slice_range(item[0], self._num_row)]
else:
return self._data[operator.index(item)] if operator.index(item) in self._data else 0
def __getitem__(self, item):
"""It returns an array slice based on the passed slice, or value for 1D and 2D.
Args:
item: Index or slice or as tuple of indexes or slices combo that needs to be returned for 1D or 2D.
Returns:
This will return a value, list, list of list as vector, or list of lists as matrix based on item.
Raises:
TypeError: When values are not operator.index convertible to ints.
IndexError: When index of values are out of bounds.
"""
try:
if self._dim == 2:
return self._two_d_get_item(item)
else:
return self._one_d_get_item(item)
except TypeError as err:
raise TypeError("Indices must be integers." + str(err))
except IndexError as err:
raise IndexError("Provided index is out of bounds of the data." + str(err))
def _set_two_d(self, item, value):
"""It sets a value at a certain tuple for 2D.
Args:
item: Index tuple that the value needs to be placed into.
value: That needs to be placed in the index tuple.
Raises:
TypeError: When values are not operator.index convertible to ints.
IndexError: When index of values are out of bounds.
"""
if isinstance(item, tuple):
if len(item) == 2:
self._num_row = operator.index(item[0]) + 1 if self._num_row - 1 < operator.index(item[0]) \
else self._num_row
self._num_col = operator.index(item[1]) + 1 if self._num_col - 1 < operator.index(item[1]) \
else self._num_col
self._data[(operator.index(item[0]), operator.index(item[1]))] = value
else:
raise IndexError("2D array requires a tuple of indices with length of two.")
else:
raise IndexError("2D array requires a tuple of indices.")
def _set_one_d(self, item, value):
"""It sets a value at a certain index for 1D.
Args:
item: Index that the value needs to be placed into.
value: That needs to be placed in the index.
Raises:
TypeError: When values are not operator.index convertible to ints.
IndexError: When index of values are out of bounds.
"""
self._num_row = operator.index(item) + 1 if self._num_row - 1 < operator.index(item) \
else self._num_row
self._data[operator.index(item)] = value
def __setitem__(self, item, value):
"""It sets a value at a certain index for 1D or index tuple for 2D.
Args:
item: Index or index tuple that the value needs to be placed into.
value: That needs to be placed in the index or index tuple.
Raises:
TypeError: When values are not operator.index convertible to ints.
IndexError: When index of values are out of bounds.
"""
try:
if self._dim == 2:
self._set_two_d(item, value)
else:
self._set_one_d(item, value)
except TypeError as err:
raise TypeError("Indices must be integers." + str(err))
except IndexError as err:
raise IndexError("Provided index is out of bounds of the data." + str(err))
def __len__(self):
"""It the length of the current instance."""
if self._dim == 2:
return self._num_row
else:
return self._num_row
@property
def shape(self):
"""It the shape of the current instance."""
if self._dim == 2:
return self._num_row, self._num_col
else:
return self._num_row
def _delitem_two_d(self, key):
"""It removes item at key for 2D."""
if isinstance(key, tuple) and len(key) == 2:
del self._data[key]
self._num_row = max(self._data)[0] + 1 if self._num_row - 1 == operator.index(key[0]) \
else self._num_row
self._num_col = max(self._data, key=lambda x: x[1])[1] + 1 if self._num_col - 1 == operator.index(key[1]) \
else self._num_col
else:
raise IndexError("The item for 2D array must be a tuple of length 2.")
def _delitem_one_d(self, key):
"""It removes item at key for 1D."""
del self._data[key]
self._num_row = max(self._data) + 1 if self._num_row - 1 == operator.index(key) \
else self._num_row
def __delitem__(self, key):
"""It removes item at key. For 2D keys must be tuples of length 2. For 1D an integer value should suffice."""
try:
if self._dim == 2:
self._delitem_two_d(key)
else:
self._delitem_one_d(key)
except TypeError as err:
raise TypeError("Indices must be integers." + str(err))
except IndexError as err:
raise IndexError("Provided index is out of bounds of the data." + str(err))
@staticmethod
def _print_two_d_item(data, index, start, end_short, end_long):
"""Prints item of sparse 2D array."""
obj_str = ""
obj_str += start
if len(data[index]) < 15:
obj_str += str(data[index]) + end_short
else:
obj_str += '[' + str(data[index][0]) + ', ' + str(data[index][1]) + ', ' + str(
data[index][2]) + ', ..., ' \
+ str(data[index][len(data[index]) - 3]) + ', ' + str(
data[index][len(data[index]) - 2]) + ', ' \
+ str(data[index][len(data[index]) - 1])
obj_str += end_long
return obj_str
def _str_two_d(self, all_data):
"""Prints data of sparse 2D array."""
obj_str = ''
if self._num_row == 0:
obj_str += "{}D Sparse Array ([".format(self._dim) + '[]' + '])'
elif self._num_row == 1:
obj_str += "{}D Sparse Array ([".format(self._dim) + str(all_data[0]) + '])'
else:
obj_str += self._print_two_d_item(all_data, 0, "{}D Sparse Array ([", ',\n', '],\n')
for i in range(1, self._num_row - 1):
obj_str += self._print_two_d_item(all_data, i, " ", ',\n', '],\n')
obj_str += self._print_two_d_item(all_data, self._num_row - 1, " ", '])', ']])')
return obj_str
def __str__(self):
"""Prints data of sparse array."""
all_data = self.data
if self._dim == 2:
return self._str_two_d(all_data)
else:
return "{}D Sparse Array (".format(self._dim) + str(all_data) + ')'
if __name__ == "__main__":
"""blank = SparseArray()
blank[0] = 100
blank[1] = 100
blank[100] = 1000
blank[1000] = 1
print(blank)
print(len(blank))
del blank[1000]
print(blank)
print(len(blank))
two_d_blank = SparseArray(dim=2)
two_d_blank[1, 100] = 100
two_d_blank[0, 0] = 100
two_d_blank[2, 5] = 'better than numpy! lol'
print(two_d_blank)
del two_d_blank[2, 5]
print(two_d_blank)
one_d_init = SparseArray([1, 2, 3, 4, 5, 6])
one_d_init[20] = 100
one_d_init[200] = 'better than numpy! lol'
print(one_d_init)
del one_d_init[200]
print(one_d_init)
two_d_init = SparseArray([[1, 2, 3, 4, 5, 6]], dim=2)
print(two_d_init)
two_d_init[100, 100] = 'I am "cool"'
print(two_d_init)
print(two_d_init.shape)
print(two_d_init[1, 1])
print(two_d_init[99:, 100])
two_d_init[52, 52] = 'I am "cool"'
print(two_d_init[50:59, 50:59])
print(SparseArray(two_d_init[50:59, 50:59], dim=2))""" |
45934f287630608a4298ac6a5b627e0266dd363d | tomasmarcenaro/Tic-Tac-Toe-project | /tictactoe.py | 4,464 | 3.796875 | 4 | # write your code here
movs = "_________"
movs2 = [movs[0:3], movs[3:6], movs[6:9]]
print("---------")
for s in movs2:
print("|", *s, "|")
print("---------")
row_winX = None
row_winO = None
col_winO = None
col_winX = None
diag_winX = None
diag_winO = None
winner = any([row_winX, row_winO, col_winX, col_winO, diag_winX, diag_winO])
def indice(x, y):
indx = (x - 1) + (9 - (3 * y))
return indx
def check_result(matrix, moves):
# check rows
global row_winX
global col_winX
global diag_winX
global row_winO
global col_winO
global diag_winO
global winner
col1 = [sub[0] for sub in matrix]
col2 = [sub[1] for sub in matrix]
col3 = [sub[2] for sub in matrix]
columns = [col1, col2, col3]
diag1 = [matrix[0][0], matrix[1][1], matrix[2][2]]
diag2 = [matrix[0][2], matrix[1][1], matrix[2][0]]
for i in matrix:
if i.count("O") == 3 and i.count("X") == 3:
print("Impossible")
elif i.count("X") == 3:
row_winX = True
print("X wins")
winner = True
elif i.count("O") == 3:
row_winO = True
print("O wins")
winner = True
if diag1.count("X") == 3 or diag2.count("X") == 3:
print("X wins")
diag_winX = True
winner = True
elif diag1.count("O") == 3 or diag2.count("O") == 3:
print("O wins")
diag_winO = True
winner = True
# check columns
for c in columns:
if c.count("O") == 3:
col_winO = True
winner = True
if c.count("X") == 3:
col_winX = True
winner = True
if col_winX is True and col_winO is True:
print("Impossible")
elif col_winO is True:
print("O wins")
elif col_winX is True:
print("X wins")
# Draw/impossible and not finished
if row_winX is not True and col_winX is not True and diag_winX is not True and row_winO is not True and col_winO is not True and diag_winO is not True:
if moves.count("X") > (moves.count("O") + 1) or moves.count("O") > (moves.count("X") + 1):
print("Impossible")
elif moves.count("_") == 0:
print("Draw")
winner = True
elif moves.count("_") > 0:
print("Game not finished")
elif moves.count("X") > (moves.count("O") + 1) or moves.count("O") > (moves.count("X") + 1):
print("Impossible")
return winner
#get and check coordinates
while winner is False:
while True:
try:
x, y = map(int, input("Enter the coordinates: ").split())
while x > 3 or y > 3:
print("Coordinates should be from 1 to 3!")
x, y = map(int, input("Enter the coordinates: ").split())
else:
i = indice(x, y)
while movs[i] == "X" or movs[i] == "O":
print("This cell is occupied! Choose another one!")
x, y = map(int, input("Enter the coordinates: ").split())
i = indice(x, y)
break
except ValueError:
print("You should enter numbers!")
#index again for new matrix. For efficiency, this should be improved, since the value is in the loop
i = indice(x, y)
# new matrix
movs = movs[:i] + "X" + movs[i + 1:]
movs2 = [movs[0:3], movs[3:6], movs[6:9]]
print("---------")
for s in movs2:
print("|", *s, "|")
print("---------")
check_result(movs2, movs)
if winner is True:
break
while True:
try:
x, y = map(int, input("Enter the coordinates: ").split())
while x > 3 or y > 3:
print("Coordinates should be from 1 to 3!")
x, y = map(int, input("Enter the coordinates: ").split())
else:
i = indice(x, y)
while movs[i] == "X" or movs[i] == "O":
print("This cell is occupied! Choose another one!")
x, y = map(int, input("Enter the coordinates: ").split())
i = indice(x, y)
break
except ValueError:
print("You should enter numbers!")
movs = movs[:i] + "O" + movs[i + 1:]
movs2 = [movs[0:3], movs[3:6], movs[6:9]]
print("---------")
for s in movs2:
print("|", *s, "|")
print("---------")
check_result(movs2, movs)
if winner is True:
break
|
ffd3b9d9d940171b060575665f8f9ade3bd3101c | AkilaSachin/Binary-Tree | /Binary Search Tree/Binary Search Tree.py | 3,993 | 4.0625 | 4 | # Creating the Binary node class
class binaryNode:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
# Adding new child to node
def addChild(self, data):
if data == self.data:
return
if data < self.data:
if self.left:
self.left.addChild(data)
else:
self.left = binaryNode(data)
else:
if self.right:
self.right.addChild(data)
else:
self.right = binaryNode(data)
# In-Order Traversal method / Left, Root, Right Traversal (Remember "In-Order" means root is in between Left and Right)
def inOrderTraversal(self):
nodes = []
if self.left:
nodes += self.left.inOrderTraversal()
nodes.append(self.data)
if self.right:
nodes += self.right.inOrderTraversal()
return nodes
# Pre-Order Traversal method / Root, Left, Right Traversal (Remember "Pre-Order" means root is in before the Left and Right)
def preOrderTraversal(self):
nodes = []
nodes.append(self.data)
if self.left:
nodes += self.left.preOrderTraversal()
if self.right:
nodes += self.right.preOrderTraversal()
return nodes
# Post-Order Traversal method / Left, Right, Root Traversal (Remember "Post-Order" means root is in after the Left and Right)
def postOrderTraversal(self):
nodes = []
if self.left:
nodes += self.left.postOrderTraversal()
if self.right:
nodes += self.right.postOrderTraversal()
nodes.append(self.data)
return nodes
#Searching a value in the Tree
def search(self, val):
if self.data == val:
return True
if self.data > val:
if self.left:
return self.left.search(val)
else:
return False
if self.data < val:
if self.right:
return self.right.search(val)
else:
return False
# Finding the minimum value in the tree
def min(self):
if self.left:
return self.left.min()
else:
return self.data
# Finding the Maximum value in the tree
def max(self):
if self.right:
return self.right.max()
else:
return self.data
# Calculating the Sum of all nodes in the tree
def sum(self):
sum = 0
if self.left:
sum += self.left.sum()
if self.right:
sum += self.right.sum()
sum += self.data
return sum
# Deleting a node in the tree
def delete(self,val):
if val < self.data:
if self.left:
self.left = self.left.delete(val)
elif val > self.data:
if self.right:
self.right = self.right.delete(val)
else:
if self.left is None and self.right is None:
return None
if self.left is None:
return self.right
if self.right is None:
return self.left
minVal = self.right.min()
self.data = minVal
self.right = self.right.delete(minVal)
return self
# Building the tree
def buildTree(values):
root = binaryNode(values[0])
for i in range(1, len(values)):
root.addChild(values[i])
return root
if __name__ == "__main__":
numbers = [17, 4, 1, 20, 9, 23, 18, 34, 18, 4]
tree = buildTree(numbers)
print(tree.inOrderTraversal())
print(tree.preOrderTraversal())
print(tree.postOrderTraversal())
print(tree.search(17))
print(tree.search(1000))
print(tree.min())
print(tree.max())
print(tree.sum())
tree.delete(20)
print(tree.inOrderTraversal())
tree.delete(9)
print(tree.inOrderTraversal())
|
ac49270a8fa76c3715502212e597638ef8b8fab3 | JulianCSalazar/Python_Tutorial | /Sorting Algorithms.py | 4,393 | 4.125 | 4 | def merge(L, R):
print(L)
print(R)
L_i, R_i = 0, 0
temp = []
while (L_i < len(L)) and (R_i < len(R)):
if (L[L_i] < R[R_i]):
temp.append(L[L_i])
L_i = L_i + 1
else:
temp.append(R[R_i])
R_i = R_i + 1
if L_i == len(L):
temp.extend(R[R_i:])
elif R_i == len(R):
temp.extend(L[L_i:])
print(temp)
return temp
def mergesort(A):
if (len(A) <= 1):
return A
mid_point = len(A)//2
left_side = A[:mid_point]
right_side = A[mid_point:]
print("A is:", A)
left_side = mergesort(left_side)
right_side = mergesort(right_side)
print("MERGING")
return merge(left_side, right_side)
def in_place_merge(A, left_start, left_end, right_start, right_end):
print("left indices:", left_start, left_end)
print("right indices:", right_start, right_end)
L_i, R_i = left_start, right_start
while (L_i <= left_end) and (R_i <= right_end):
if (A[L_i] < A[R_i]):
R_i = R_i + 1
else:
swap(A, L_i, R_i)
L_i = L_i + 1
def in_place_mergesort(A, left_pt, right_pt):
if ((right_pt-left_pt) <= 1):
return
mid_point = ((right_pt - left_pt) // 2) + left_pt
in_place_mergesort(A, left_pt, mid_point)
in_place_mergesort(A, mid_point, right_pt)
print("MERGING")
in_place_merge(A, left_pt, mid_point-1, mid_point, right_pt-1)
print(A)
def swap(A, index_1, index_2):
temp = A[index_1]
A[index_1] = A[index_2]
A[index_2] = temp
def partition(A, p):
i, j = 0, len(A)-1
while (i < j):
while (A[i] < p):
i = i+1
while (A[j] > p):
j = j-1
swap(A, i, j)
def quicksort(A):
print("A is:", A)
if (len(A) <= 1):
return A
mid_index = len(A)//2
print("mid_index is:", mid_index)
pivot = A[mid_index]
print("pivot is:", pivot)
partition(A, pivot)
print("Post-Partition:", A)
left_side = A[:mid_index]
right_side = A[mid_index:]
left_side = quicksort(left_side)
right_side = quicksort(right_side)
print(left_side, right_side)
return left_side+right_side
def in_place_partition(A, pivot, left_start, right_end):
while (left_start < right_end):
while (A[left_start] <= pivot) and (left_start < right_end):
left_start = left_start + 1
while (A[right_end] > pivot) and (right_end > left_start):
right_end = right_end - 1
swap(A, left_start, right_end)
def in_place_quicksort(A, left_pt, right_pt):
print("Array is:", A)
if (right_pt-left_pt <= 1):
return
mid_index = (left_pt + right_pt)//2
pivot = A[mid_index]
print("Pivot is:", pivot, "at index:", mid_index)
in_place_partition(A, pivot, left_pt, right_pt)
print("Post-partition:", A)
in_place_quicksort(A, left_pt, mid_index)
in_place_quicksort(A, mid_index, right_pt)
return
def complete_heapify(A, left_pt, right_pt):
for i in range (left_pt+1, right_pt):
bubble_up(A, i, (i-1)//2)
def bubble_up(A, i, j):
if A[i] > A[j]:
swap(A, i, j)
bubble_up(A, j, j//2)
return
def sink_down(A, i, working_range):
left_child_index = (i*2) + 1
right_child_index = (i*2) + 2
#make sure you are within the working range
if (left_child_index > working_range):
return
elif (right_child_index > working_range):
swap_index = left_child_index
elif (A[left_child_index] > A[right_child_index]):
swap_index = left_child_index
else:
swap_index = right_child_index
if (A[i] < A[swap_index]):
swap(A, i, swap_index)
sink_down(A, swap_index, working_range)
else:
return
def heapsort(A):
print("Initiating heapify")
complete_heapify(A, 0, len(A))
print("Heapify complete. Result is:", A)
print(" ")
for i in range(len(A)-1):
print("Swapping", A[0], "and", A[len(A)-(i+1)])
swap(A, 0, len(A)-(i+1))
print("Swap complete. Result is", A)
print("Beginning sink")
sink_down(A, 0, len(A)-(i+2))
print("Sink Complete. Result is:", A)
print(" ")
A = [ 1, -1, 4, 16, 3, 7, 0, -4]
in_place_mergesort(A, 0, len(A))
print(A)
|
9478534055d40df30b7eca244b1c3d1a6774e7ca | BigBlackWolf/LeetCodeProblems | /DynamicProgramming/maximum-subarray.py | 588 | 4.0625 | 4 | """
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
"""
class Solution:
def maxSubArray(self, nums) -> int:
for i, j in enumerate(nums[1:]):
max_x = max(nums[i] + j, j)
nums[i + 1] = max_x
return max(nums)
|
1f8b0b8f424ff5c82ae3e9b2dd3e407c109ad0dc | KF10/ichw | /pyassign2/currency.py | 1,856 | 4.15625 | 4 | #!/usr/bin/env python3
"""currency.py: provide a 'exchange' function which return the
amount of another currency when you want to convert a certain
amount of currency to another.
__author__ = "Kuangwenyu"
__pkuid__ = "1800013245"
__email__ = "[email protected]"
"""
from urllib.request import urlopen
import json
def exchange(currency_from, currency_to, amount_from):
"""Returns: amount of currency received in the given exchange.
In this exchange, the user is changing amount_from money in
currency currency_from to the currency currency_to. The value
returned represents the amount in currency currency_to.
The value returned has type float.
Parameter currency_from: the currency on hand
Precondition: currency_from is a string for a valid currency code
Parameter currency_to: the currency to convert to
Precondition: currency_to is a string for a valid currency code
Parameter amount_from: amount of currency to convert
Precondition: amount_from is a float
"""
doc = urlopen('http://cs1110.cs.cornell.edu/2016fa/a1server.php?from={0}&to={1}&amt={2}'.
format(currency_from, currency_to, amount_from))
docstr = doc.read()
doc.close()
jstr = docstr.decode('ascii')
ret_dict = json.loads(jstr) # 将jstr转为字典
convert = ret_dict['to']
mylist = convert.split()
amount_to = float(mylist[0])
return amount_to
def test_exchange():
"""test the 'exchange' function.
"""
assert(17.13025 == exchange('USD', 'CNY', 2.5))
assert(2.1589225 == exchange('USD', 'EUR', 2.5))
assert(0.018484513053739 == exchange('AOA', 'AUD', 3.7))
def test_all():
"""test all cases.
"""
test_exchange()
print('All tests passed')
def main():
"""main module
"""
test_all()
if __name__ == '__main__':
main()
|
aafe2cd67a5b4ab6e3c7d8e33abfe770830717bc | kos0ng/code-challenge | /ProblemSolvinghackerrank/sequenceequation.py | 576 | 3.578125 | 4 | #!/bin/python
import math
import os
import random
import re
import sys
# Complete the permutationEquation function below.
def permutationEquation(p):
ind=[]
for i in range(len(p)):
ind.append(p.index(i+1)+1)
result=[]
for i in ind:
result.append(p.index(i)+1)
for i in result:
print i
if __name__ == '__main__':
# fptr = open(os.environ['OUTPUT_PATH'], 'w')
n = int(raw_input())
p = map(int, raw_input().rstrip().split())
result = permutationEquation(p)
# fptr.write('\n'.join(map(str, result)))
# fptr.write('\n')
# fptr.close()
|
6da46c0e975d4ff98e67b71914bb9e57d609220e | Justintime8/Python_Coding | /loops_dictionaries.py | 121 | 3.859375 | 4 | food = {'french fries' : 1, 'ice cream' : 8, 'kbbq' : 19, 'jian bing' : 88}
for key in food :
print(key, food[key])
|
4c0a9fcd022e936324a290302bfa3b7c4bd610ba | git-ahi/pomodoro-api | /app/auth/v1/models/user_models.py | 863 | 3.609375 | 4 | class UserModels:
"""
Class for the user operations
"""
users = []
def __init__(self, username, task, task_timer, break_timer, task_completed):
"""
Initialize the user models
"""
self.id = len(UserModels.users) + 1
self.username = username
self.task = task
self.task_timer = task_timer
self.break_timer = break_timer
self.task_completed = task_completed
def save_user(self):
"""
Method to register user instance and update the data structure
"""
user_record = dict(
id=self.id,
username=self.username,
task=self.task,
task_timer=self.task_timer,
break_timer=self.break_timer,
task_completed=self.task_completed
)
self.users.append(user_record)
|
9abd108e7e72f6a0db7a2fcb2da64fbb97575d61 | conor-mcmullan/Scoring-Player-System | /scoring_system.py | 3,982 | 3.78125 | 4 | import thread
score_system = {}
def set_player_list(player_count):
score_system.clear()
for player in xrange(player_count):
score_system.update({chr(ord('a')+player): 0})
def print_scoreboard():
for key in sorted(score_system):
if key is sorted(score_system)[-1]: v = "%s: %s"
else: v = "%s: %s, "
print v % (key, score_system[key]),
println(add_line(1))
def update_player_score(player):
if str(player).lower() in score_system.keys():
if str(player).islower():
score_system[str(player).lower()] += 1
elif str(player).isupper():
score_system[str(player).lower()] -= 1
else: println(add_line(1)+"NON_VALID_PLAYER"+add_line(1))
print_scoreboard()
def add_line(num):
for n in xrange(num):
return "\n"
def println(msg):
print str(msg)
def start_menu_system():
user_input = -1
while(user_input not in [0, 1]):
println(add_line(3)+"START MENU"+add_line(1)+"1: Start Game")
println("0: Exit Game"+add_line(2)+"...")
try:
user_input = int(raw_input('choice: '))
except ValueError:
println(add_line(1)+"| Not a valid choice |")
finally:
if user_input is 0:
exit(0)
elif user_input is 1:
main_menu()
else:
println(add_line(1) + "| Not a valid choice|")
start_menu_system()
def main_menu():
user_input = -1
while (user_input not in [0, 1, 2]):
println(add_line(2)+"MAIN MENU"+add_line(1)+"1: Enter Number Of Players")
println("2: View Instructions")
println("0: Exit Game" + add_line(2) + "...")
try:
user_input = int(raw_input('choice: '))
except ValueError:
println(add_line(1) + "| Not a valid choice|")
finally:
if user_input is 0:
exit(0)
elif user_input in [1, 2]:
in_game_menu(user_input)
else:
println(add_line(1) + "| Not a valid choice|")
def in_game_menu(case):
if case is 1:
user_input = -1
while (user_input < 1 or user_input > 26):
println(add_line(2) + "IN GAME MENU"+add_line(1))
try:
user_input = int(raw_input('Enter Number Of Players: '))
if (user_input < 1 or user_input > 26):
println(add_line(1)+"| Not a valid number of players |")
except ValueError:
println(add_line(1) + "| Not a valid number|")
finally:
if (user_input < 1 or user_input > 26):
println(add_line(1) + "| Not a valid number|")
else:
set_player_list(user_input)
game_loop()
elif case is 2:
println(add_line(2)+"Altering the scores."+
add_line(1)+"Scores a point: the letter of players name is typed in lowercase."+
add_line(1)+"Loses a point: the letter of players name is typed in uppercase.")
main_menu()
def game_loop():
user_input = "not end"
print_scoreboard()
while (user_input != ("END" or "end")):
try:
println(add_line(2)+"LOWER = ++"+add_line(1)+"UPPER = --" + add_line(1))
user_input = str(raw_input('player: '))
except ValueError:
println(add_line(1) + "| Not a valid choice |")
finally:
if user_input == ("END" or "end"):
start_menu_system()
elif user_input != ("END" or "end"):
if len(user_input) > 1:
solve_a_string(user_input)
else:
update_player_score(user_input)
def solve_a_string(solve):
for letter in xrange(len(solve)):
update_player_score(solve[letter])
if __name__ == "__main__":
thread.start_new_thread(start_menu_system()) |
500f9ee3ff8f16ef1e5904f4d043b9d05f9bc9e6 | Donkey-1028/algorithms | /alghorithms-of-everyone/quick_sort.py | 1,692 | 3.671875 | 4 | """
퀵정렬
Median of Three 방식
"""
def choice_pivot(arr, left, right):
"""
리스트의 첫번째값, 마지막값, 가운데값중
어떠한 값을 pivot 으로 이용할지 정렬하고 리턴
"""
center = (left + right) // 2
if arr[left] > arr[right]:
arr[left], arr[right] = arr[right], arr[left]
if arr[center] > arr[right]:
arr[center], arr[right] = arr[right], arr[center]
if arr[left] > arr[center]:
arr[left], arr[center] = arr[center], arr[left]
return center
def quick_sort(arr, left, right, pivot_index):
if right - left <= 0:
return
#pivot은 리스트의 Median of three를 이용하여 가운데로 설정.
pivot = arr[pivot_index]
j = left
for i in range(left, right):
#pivot을 기준으로 작으면 왼쪽, 크면 오른쪽에 정렬
if arr[i] < pivot:
arr[i], arr[j] = arr[j], arr[i]
j += 1
#pivot을 기준으로 왼쪽으로 정렬된 리스트를 다시 퀵정렬 하기 위해 다음 pivot 설정
next_min_pivot = choice_pivot(arr, left, pivot_index)
#왼쪽으로 정렬된 리스트 퀵정렬
quick_sort(arr, left, pivot_index, next_min_pivot)
#pivot을 기준으로 오른쪽으로 정렬된 리스트를 다시 퀵정렬 하기 위해 다음 pivot 설정
next_max_pivot = choice_pivot(arr, pivot_index+1, right)
#오른쪽으로 정렬된 리스트 퀵정렬
quick_sort(arr, pivot_index+1, right, next_max_pivot)
def sort(arr):
pivot_index = choice_pivot(arr, 0, len(arr)-1)
quick_sort(arr, 0, len(arr)-1, pivot_index)
t = [6, 8, 3, 9, 10, 1, 2, 4, 7, 5, 11, 12]
sort(t)
print(t) |
dab053eeafd8ebdeb1f9314c7b27648175f98bfc | abbisQQ/Server-Client-in-python-simple-and-threaded-for-more-than-one-connection-at-a-time | /server.py | 1,312 | 3.640625 | 4 | import socket
import sys
# Create a Socket()
def create_socket():
try:
global host
global port
global s
host = "127.0.0.1"
port = 9999
s = socket.socket()
except socket.error as msg:
print("Socket Creation Error: " + str(msg))
# Binding the socket and listening for connections
def bind_socket():
try:
global host
global port
global s
print("Binding the Port: " + str(port))
s.bind((host, port))
s.listen(5)
except socket.error as msg:
print("Socket Binding Error: " + str(msg) +"\n" +"Retrying...")
bind_socket()
# Establish connection
def socket_accept():
conn,addreess = s.accept()
print("Connection has been established with : " +addreess[0] + ":"+str(addreess[1]))
send_commands(conn)
conn.close()
# Send Commands to Client
def send_commands(conn):
while True:
cmd = input()
if cmd == "quit":
conn.close()
s.close()
sys.exit()
if len(str.encode(cmd))>0:
conn.send(str.encode(cmd))
client_responce = str(conn.recv(1024), "utf-8")
print(client_responce, end="")
def main():
create_socket()
bind_socket()
socket_accept()
main()
|
6cd97f1b067f7988aa03dc252feebba05b4e4a19 | Zhangmingyang-Su/Data-Structure-and-Algorithm | /BFS.py | 2,002 | 3.828125 | 4 | # Vertical Traversal for a Binary Tree
#Given a binary tree, return the vertical order traversal of its nodes' values. (ie, from top to bottom, column by column).
#If two nodes are in the same row and column, the order should be from left to right.
# Input: [3,9,20,null,null,15,7]
# 3
# / \
# 9 20
# / \
# 15 7
#Output:[[9],[3,15],[20],[7]]
from collections import deque, defaultdict
def vertival_traverse(root):
if not root:
return []
collection = defaultdict(list)
queue = deque([(root, 0)])
while queue:
node,count = queue.popleft()
if node is not None:
collection[count].append(node.val)
queue.append((node.left, count - 1))
queue.append((node.right, count + 1))
return [collection[x] for x in sorted(collection.key())]
# 2 In a given grid, each cell can have one of three values:
# the value 0 representing an empty cell;
# the value 1 representing a fresh orange;
# the value 2 representing a rotten orange.
# Every minute, any fresh orange that is adjacent (4-directionally) to a rotten orange becomes rotten.
# Return the minimum number of minutes that must elapse until no cell has a fresh orange. If this is impossible, return -1 instead.
# Input: [[2,1,1],[1,1,0],[0,1,1]]
# Output: 4
from collections import deque
def orangeRotting(grid):
if not grid:
return -1
cnt = 0
Q = deque([])
N, M = len(grid), len(grid[0])
for i in range(N):
for j in range(M):
if grid[i][j] == 1:
cnt += 1
if grid[i][j] == 2:
Q.append((i, j))
res = 0
while Q:
next_level = deque([])
size = len(Q)
for _ in range(size):
i, j = Q.popleft()
for x,y in [(i+1, j), (i-1, j), (i, j+1), (i, j-1)]:
if 0 <= x < N and 0 <= y < M and grid[x][y] == 1:
grid[x][y] = 2
cnt -= 1
next_level.append((x, y))
Q = next_level
res += 1
return max(0, res - 1) if cnt == 0 else -1
|
dfb178847d6a18bb405251e33f383b25b7cd2f06 | t0kage/palettes | /imagehelper.py | 397 | 3.578125 | 4 | from PIL import Image, ImageDraw
def draw_image_from_palette(palette, height):
paletteout = Image.new('HSV', (len(palette)*height, height),
color=255)
palettedraw = ImageDraw.Draw(paletteout)
for i in range(len(palette)):
shape = (height * i, height, height * (i + 1), 0)
palettedraw.rectangle(shape, fill=palette[i])
paletteout.show()
|
32c2dfdba80a9c2fb6889545ef6b07a6e588ea4b | fshahinfar1/SlidingPuzzle | /board.py | 3,286 | 3.578125 | 4 | import pygame
import card
from random import randrange
tmp = [0, 1, 2, 3, 4, 5, 6, 7, 8]
white = (255, 255, 255)
class Board(object):
def __init__(self):
self.grid = []
self.z_pos = [2, 2]
lst_tmp = []
count = 1
self.cols , self.rows = 3, 3
for i in range(self.cols):
for j in range(self.rows):
#index = randrange(len(tmp))
#num = tmp[index]
#new_card = card.Card(num)
new_card = card.Card(count)
lst_tmp.append(new_card)
count += 1
if count == 9:
count = 0
#del tmp[index]
self.grid.append(lst_tmp)
lst_tmp = []
self.pos = (50, 50)
self.size = self.width, self.height = 200, 200
self.shuffle()
def shuffle(self):
key_map = {0: self.k_up, 1: self.k_down, 2: self.k_left, 3: self.k_right}
for t in range(100):
x = randrange(4)
key_map[x]()
def change_cards(self, pos0, pos1):
x0, y0 = pos0
x1, y1 = pos1
if x1 < 0 or y1 < 0 or x1 > 2 or y1 > 2:
return
self.grid[x0][y0], self.grid[x1][y1] = self.grid[x1][y1], self.grid[x0][y0]
self.z_pos = pos1
def get_zero(self):
for i in range(3):
for j in range(3):
if self.grid[i][j].num == 0:
return i, j
return -1, -1
def draw(self, screen):
rect = [self.pos[0],self.pos[1],self.width,self.height]
pygame.draw.rect(screen,white,rect)
for i in range(3):
for j in range(3):
new_pos = [0,0]
new_pos[0] = 3 + self.pos[0] + (j * 65)
new_pos[1] = 3 + self.pos[1] + (i * 65)
self.grid[i][j].draw(screen, new_pos)
def k_up(self):
new_pos = [0, 0]
new_pos[0] = self.z_pos[0] + 1
new_pos[1] = self.z_pos[1]
self.change_cards(self.z_pos, new_pos)
def k_down(self):
new_pos = [0, 0]
new_pos[0] = self.z_pos[0] -1
new_pos[1] = self.z_pos[1]
self.change_cards(self.z_pos, new_pos)
def k_right(self):
new_pos = [0, 0]
new_pos[0] = self.z_pos[0]
new_pos[1] = self.z_pos[1] - 1
self.change_cards(self.z_pos, new_pos)
def k_left(self):
new_pos = [0, 0]
new_pos[0] = self.z_pos[0]
new_pos[1] = self.z_pos[1] + 1
self.change_cards(self.z_pos, new_pos)
def check_board_state(self):
correct_rows = 0
for i in range(self.rows):
row = self.grid[i][:]
if row[0].num != i + 1 + i * (self.cols - 1):
continue # check the next row this one is not correct
flag = True
for j in range(self.cols - 1):
if row[j].num +1 != row[j+1].num:
if not ((i == self.rows - 1) and (j == self.cols -2) and (row[j+1].num == 0)):
flag = False
break # this row is not correct
if flag:
correct_rows += 1
if correct_rows == self.rows:
return True
return False
|
d003b7b30059067b1138037c409a3b1fcda98244 | mohanRajCodes/python-project-todo | /buttonLearn.py | 1,077 | 3.75 | 4 | #####Button#####
from tkinter import *
import tkinter
#import tkMessageBox
from tkinter import messagebox
top = Tk("Hello","Hello")
def sayHello():
#messagebox = "Hello World !!!"
#Text = "Hello "
#Message = "Hello Message"
#tkinter.messagebox.showinfo("Hellow", "World");
messagebox.showinfo("Heelo","Heelllo");
B = Button(top,text="Hello",command=sayHello);
B.pack()
B.flash();
top.mainloop()
# Importing tkinter module
from tkinter import *
from tkinter.ttk import *
# creating Tk window
master = Tk()
# setting geometry of tk window
master.geometry("200x200")
# button widget
b1 = Button(master, text = "Absolute !")
b1.place( x =100, y = 10 )
b3 = Button(master, text = "Relative !")
b3.place( relx =0.5, y = 50 ,anchor= NW)
# label widget
l = Label(master, text = "I'm a Label")
l.place(anchor = NW)
# button widget
b2 = Button(master, text = "GFG")
b2.place(relx = 0.5, rely = 0.5, anchor = CENTER)
# infinite loop which is required to
# run tkinter program infinitely
# until an interrupt occurs
mainloop()
|
17e32ef0c8e37e87d29256cf6fab48593ffcf17e | wxhheian/ptcb | /ch2/ex2_1.py | 821 | 4.09375 | 4 | #你需要将一个字符串分割成多个字段,但分割符号(包括空格)不是固定的
#string对象的split()方法只适用于简单的字符串分割,它不允许有多个分割符
#re.split()分割字符串适用不同的分割符号
#正则表达式分割字符窗
import re
def split_str():
line = 'asdf fjdk; afed, fjek,asdf, foo'
print(re.split(r'[;\s,]\s*',line))
print(re.split(r'(;|,|\s)\s*',line)) #正则表达式如果使用了()捕获分组,那么被匹配到的文本也将出现在结果列表中
fields = re.split(r'(;|,|\s)\s*',line)
values = fields[::2]
delimiter = fields[1::2] + ['']
print(''.join(v+d for v,d in zip(values,delimiter)))
print(re.split(r'(?:,|;|\s)\s*',line))
if __name__ == '__main__':
split_str()
|
c0fb24ecb5f350eebdf4c7df607c30c1a6fb40d4 | lozanocelia/DyClee | /datasets/customCircunferencesDataset.py | 3,002 | 3.625 | 4 | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
from math import pi, cos, sin, radians
import random
# config ------------------------------------------------------------------------------------------
# circumference properties
h = 0
k = 0
ratio = 1
maxRatioInc = 0.5
ratioPortionForCenterPoints = 10 / 100 * ratio
# batch represents the amount of points to generate per list at a given angle
# we will have 180 * batch points in each list
pointsPerAngle = 5
# pointsPerListToAppend represents the amount of points from a list to be added one next to the other to the dataset
pointsPerListToAppendToDataset = 100
# dataset formation ------------------------------------------------------------------------------------------
# the idea is to get an angle and then use the circunference geometric interpretation and trigonometry to generate points
# on it
def point(theta):
# increase a little bit the radio [or not]
r = ratio + random.uniform(0, maxRatioInc)
# increase or decrease theta (angle)
theta = theta + random.uniform(0, radians(1)) - random.uniform(0, 0.5)
# cos(theta) * r --> difference between the point x coordinate and the circumference center one (h)
# sin(theta) * r --> difference between the point y coordinate and the circumference center one (y)
return [h + cos(theta) * r, k + sin(theta) * r]
def generatePoints():
# points lists
upperPoints = []
lowerPoints = []
centerPoints = []
# theta represents the angle with respect to the x axis from which we will rotate around the circumference center
for theta in range(0, 180):
for i in range(0, pointsPerAngle):
# to generate the upper points we move from right to left (from 0° to 180°)
upperPoints.append(point(radians(theta)))
# to generate the lower points we move from left to right (from 180° to 360°)
lowerPoints.append(point(pi + radians(theta)))
# to generate the center points we move from right to left but considering a small portion of the original ratio
# centerPoints.append(point(h, k, centerPointsR, maxRadioInc, radians(theta)))
return upperPoints, centerPoints, lowerPoints
def generateDataset():
upperPoints, centerPoints, lowerPoints = generatePoints()
# parameters regarding the points batchs per list formation
batchUpperLimit = 0
batchLowerLimit = 0
limIterator = len(upperPoints)
res = []
for i in range(0, limIterator):
# increment the batchUpperLimit
batchUpperLimit += pointsPerListToAppendToDataset
# select points batches from every list
res = res \
+ upperPoints[batchLowerLimit:batchUpperLimit] \
+ centerPoints[batchLowerLimit:batchUpperLimit] \
+ lowerPoints[batchLowerLimit:batchUpperLimit]
# now make batchLowerLimit equal to batchUpperLimit
batchLowerLimit = batchUpperLimit
return res
customCircunferencesDataset = generateDataset()
|
a0e39f647eb81dad3737c78f859ccf576dc8fca3 | iamdoublewei/Leetcode | /Python3/2363. Merge Similar Items.py | 2,712 | 3.734375 | 4 | '''
You are given two 2D integer arrays, items1 and items2, representing two sets of items. Each array items has the following properties:
items[i] = [valuei, weighti] where valuei represents the value and weighti represents the weight of the ith item.
The value of each item in items is unique.
Return a 2D integer array ret where ret[i] = [valuei, weighti], with weighti being the sum of weights of all items with value valuei.
Note: ret should be returned in ascending order by value.
Example 1:
Input: items1 = [[1,1],[4,5],[3,8]], items2 = [[3,1],[1,5]]
Output: [[1,6],[3,9],[4,5]]
Explanation:
The item with value = 1 occurs in items1 with weight = 1 and in items2 with weight = 5, total weight = 1 + 5 = 6.
The item with value = 3 occurs in items1 with weight = 8 and in items2 with weight = 1, total weight = 8 + 1 = 9.
The item with value = 4 occurs in items1 with weight = 5, total weight = 5.
Therefore, we return [[1,6],[3,9],[4,5]].
Example 2:
Input: items1 = [[1,1],[3,2],[2,3]], items2 = [[2,1],[3,2],[1,3]]
Output: [[1,4],[2,4],[3,4]]
Explanation:
The item with value = 1 occurs in items1 with weight = 1 and in items2 with weight = 3, total weight = 1 + 3 = 4.
The item with value = 2 occurs in items1 with weight = 3 and in items2 with weight = 1, total weight = 3 + 1 = 4.
The item with value = 3 occurs in items1 with weight = 2 and in items2 with weight = 2, total weight = 2 + 2 = 4.
Therefore, we return [[1,4],[2,4],[3,4]].
Example 3:
Input: items1 = [[1,3],[2,2]], items2 = [[7,1],[2,2],[1,4]]
Output: [[1,7],[2,4],[7,1]]
Explanation:
The item with value = 1 occurs in items1 with weight = 3 and in items2 with weight = 4, total weight = 3 + 4 = 7.
The item with value = 2 occurs in items1 with weight = 2 and in items2 with weight = 2, total weight = 2 + 2 = 4.
The item with value = 7 occurs in items2 with weight = 1, total weight = 1.
Therefore, we return [[1,7],[2,4],[7,1]].
Constraints:
1 <= items1.length, items2.length <= 1000
items1[i].length == items2[i].length == 2
1 <= valuei, weighti <= 1000
Each valuei in items1 is unique.
Each valuei in items2 is unique.
'''
class Solution:
def mergeSimilarItems(self, items1: List[List[int]], items2: List[List[int]]) -> List[List[int]]:
lookup = {}
for item in items1:
if item[0] in lookup:
lookup[item[0]] += item[1]
else:
lookup[item[0]] = item[1]
for item in items2:
if item[0] in lookup:
lookup[item[0]] += item[1]
else:
lookup[item[0]] = item[1]
lookup = sorted(lookup.items(), key=lambda x: x[0])
return [list(x) for x in lookup] |
32e85340ccf3c97854074f9f845664c8a5102c3e | OldDon/UdemyPythonCourse | /UdemyPythonCourse/string_formatting.py | 989 | 3.8125 | 4 | name = "Dave"
age = 50
accurate_age = 49+11/12
print("Hello %s is %d years old. Or better yet, %f years old." % (name, age, accurate_age)) # %s format string
# %d format integer
# %f format float
print("Hello %s is %d years old. Or better yet, %.2f years old." % (name, age, accurate_age))# %s format string
# %d format integer
# %.2f format float to 2 decimal places
print("Hello %s is currently %d years old. In ten years time will be %.2f" % (name, age, accurate_age + 10))# %s format string
data = ("Dave", "Elliott", 53.44)
format_string = "Hello %s %s. Your current balance is $%s."
print(format_string % data) |
700a02d84ec74c21d8ed06e4c8767625fb31ff6c | Kylar42/wvup | /Project Euler/euler220c.py | 1,698 | 3.734375 | 4 | import time
listOfPowers=[]
for i in range(0, 50):
listOfPowers.append(pow(2,i))
def divisiblePowerOf2odd(someNumber):
#print "number looking at is: %i" % someNumber
for i in range(0, len(listOfPowers)):
pow = listOfPowers[i]
if(0 == someNumber % pow):
dividend = someNumber / pow
if(0 == dividend % 2):
continue
else:
return pow
def leftOrRight(someNumber):
pow2 = divisiblePowerOf2odd(someNumber)
oddNum = someNumber / pow2
mod = oddNum % 4
#print "lr somenum: %i pow: %i mod %i" % (someNumber, pow2, mod)
if(mod == 3):
return True#L
elif(mod == 1):
return False#R
else:
print "Found bad value: %i 2pow: %i mod: %i" % (someNumber, pow2, mod)
def nextTuple(currentlocation, move):
x = currentlocation[0]
y = currentlocation[1]
direction = currentlocation[2]
#print "x: %i y: %i d: %i" % (x,y,direction)
step = False
if(0 == direction):
y += 1
elif(1 == direction):
x += 1
elif(2 == direction):
y -= 1
elif(3 == direction):
x -= 1
step = True
return (step, (x, y, direction))
def rotate(currentlocation, move):
dir = currentlocation[2]
if(move):
dir = (dir-1) %4
else:
dir = (dir+1) %4
return (currentlocation[0], currentlocation[1], dir)
# x: 2 y: -1 d: 2 is step #5.
#curTuple = (2,0,1)#after turn 3?
curTuple = (2,-1,2)#turn 4
#print leftOrRight(6)
dest = 1000000
startTime = time.time()
for i in range(5,dest):
nextchar = leftOrRight(i)
#print "i: %i %c" % (i, nextchar)
#(didStep, curTuple) = nextTuple(curTuple, nextchar)
curTuple = rotate(curTuple, nextchar)
(didStep, curTuple) = nextTuple(curTuple, 'F')
#if(i % 10000 == 0):
# print "running val: %i" % i
print time.time() - startTime
print curTuple
|
fc2e695e9d09d0d62ee8bcaccb975d6f4e64fabe | GlitchLight/Algorithms_DataStructures_Python | /Алгоритмы/Базовые алгоритмы/Небольшое число Фибоначчи/small_fibo.py | 442 | 3.703125 | 4 | # Дано целое число 1 <= n <= 40. Вычислить n-e число Фибоначчи
def fib(n):
# put your code here
if n == 0:
return 0
elif n == 1:
return 1
else:
a = 0
b = 1
for i in range(2, n + 1):
F = a + b
a = b
b = F
return F
def main():
n = int(input())
print(fib(n))
if __name__ == "__main__":
main() |
c3c23f50ca59841ffc24dcd595f692544cd8476f | curiousTauseef/Face-Recognizer | /interface.py | 1,442 | 3.75 | 4 | import tkinter as tk
class App(tk.Tk):
"""
Basic app class to initialize everything
"""
def __init__(self, title: str = None, size: tuple = None) -> None:
super().__init__()
self.geometry('{}x{}'.format(size[0], size[1]))
self.size = size
self.bind('<Escape>', self.kill)
self.resizable(False, False)
self.title(title)
def kill(self, event):
self.destroy()
def add_button(self, side: str = "top", padding: tuple = (20, 20),
width: int = 10, text: str = "Button", frame: tk.Frame = None) -> tk.Button:
if frame is None:
frame = self
btn = tk.Button(frame)
btn['text'] = text
btn['width'] = width
btn.pack(side=side, padx=padding[0], pady=padding[1])
return btn
def add_label(self, text: str = "label", width: int = 30, frame: tk.Frame = None, side: str = 'top') -> tk.Label:
if frame is None:
frame = self
lbl = tk.Label(frame, anchor='w')
lbl['text'] = text
lbl['width'] = width
lbl.pack(side=side)
return lbl
def add_entry(self, frame: tk.Frame = None, initial_text: str = '', side: str = 'top') -> tk.Entry:
if frame is None:
frame = self
entry = tk.Entry(frame)
entry.insert(0, initial_text)
entry.pack(side=side, expand=tk.YES, fill=tk.X)
return entry
|
832f5de6e017bf726afcc9813423812316808670 | krnets/codewars-practice | /8kyu/Find Maximum and Minimum Values of a List/index.py | 1,510 | 4 | 4 | # 8kyu - Find Maximum and Minimum Values of a List
""" Your task is to make two functions, max and min that take a(n) array/vector of integers list as input and outputs,
respectively, the largest and lowest number in that array/vector.
maximun([4,6,2,1,9,63,-134,566]) returns 566
minimun([-52, 56, 30, 29, -54, 0, -110]) returns -110
maximun([5]) returns 5
minimun([42, 54, 65, 87, 0]) returns 0
You may consider that there will not be any empty arrays/vectors. """
# def minimun(arr):
# low = float("inf")
# for i in arr:
# if i < low:
# low = i
# return low
# def maximun(arr):
# high = float("-inf")
# for i in arr:
# if i > high:
# high = i
# return high
def minimun(arr):
low = arr[0]
for i in arr[1:]:
if i < low:
low = i
return low
def maximun(arr):
high = arr[0]
for i in arr[1:]:
if i > high:
high = i
return high
# def minimun(arr):
# return list(sorted(arr))[0]
# def maximun(arr):
# return list(sorted(arr))[-1]
q = minimun([-52, 56, 30, 29, -54, 0, -110]) # -110
q
q = minimun([42, 54, 65, 87, 0]) # 0
q
q = minimun([1, 2, 3, 4, 5, 10]) # 1
q
q = minimun([-1, -2, -3, -4, -5, -10]) # -10
q
q = minimun([9]) # 9
q
q = maximun([-52, 56, 30, 29, -54, 0, -110]) # 56
q
q = maximun([4, 6, 2, 1, 9, 63, -134, 566]) # 566
q
q = maximun([5]) # 5
q
q = maximun([534, 43, 2, 1, 3, 4, 5, 5, 443, 443, 555, 555]) # 555
q
q = maximun([9]) # 9
q
|
61290954e301f984a07dc1c7d8159ce9602e1914 | bozhikovstanislav/Python-Fundamentals | /List-Dictionarys/List_HomeWork/06.OddNumberAtOddPosition.py | 244 | 3.828125 | 4 | from typing import List
number_list = list(map(int, input().split(' ')))
list_odd: List[int] = []
list_odd = [print(f'Index {x} -> {number_list[x]}') for x in range(0, len(number_list)) if
x % 2 != 0 and number_list[x] % 2 != 0]
|
d55cee6bf20e0cab58ed87dac7135e7d9631f861 | mfreund/python-labs | /08_file_io/08_01_words_analysis.py | 585 | 4.34375 | 4 | '''
Write a script that reads in the words from the words.txt file and finds and prints:
1. The shortest word (if there is a tie, print all)
2. The longest word (if there is a tie, print all)
3. The total number of words in the file.
'''
word_list = []
with open('words.txt', 'r') as words:
for word in words.readlines():
word = word.strip()
word_list.append(word)
print(f"The shortest word is {min(word_list, key=len)}")
print(f"The longest word is {max(word_list, key=len)}")
print(f"The total amount of words in this file is {len(word_list)}")
|
d0d36c703297f42c876a546e7bad230bb1472158 | EliakinCosta/python_sessao_da_tarde | /code/numeros_pares_certo.py | 91 | 3.765625 | 4 | lista = [1, 2, 3, 4, 5, 6, 7, 8]
print([elemento for elemento in lista if elemento%2==0])
|
c7239c264302414454693a6ad824499ac0007558 | JoshCLWren/python_stuff | /map.py | 453 | 4.09375 | 4 | num = [2, 4, 6, 8, 10]
doubles = list(map(lambda x: x*2, num))
print(doubles)
people = ["josh", "me", "too"]
peeps = map(lambda name: name.upper(), people)
list(peeps)
print(peeps)
# map(function or lambad here: iterator, what you are iteratin) returns the item mapped with the function performed on each element in it
nums = [1,2,3,4]
def decrement_list(nums):
return list(map(lambda numbers: numbers - 1, nums))
print(decrement_list(nums)) |
1763dbf110d5348a2697f5f34ea4a86266e47a90 | acaciooneto/cursoemvideo | /ex_aulas/ex.aula9-022.py | 191 | 3.609375 | 4 | nome = input('Digite seu nome completo: ')
print(nome.upper())
print(nome.lower())
print(nome.title())
name = nome.split()
joi = ''.join(name)
print(len(joi))
print(name)
print(len(name[0]))
|
b681a6b9a43fc18140c325d0e77e3bb0387097e6 | naveen6797/python-tutorials | /programs/odd_or_not.py | 188 | 4.3125 | 4 | number = int(input("enter number:"))
if number % 2 != 0:
print("{} is odd number".format(number))
else:
print("{} is not odd number".format(number))
print("program is completed")
|
60e703f031930da758af9e094df059e85f554e4c | forzen-fish/python-notes | /10.面向对象下/2单继承与多继承.py | 781 | 3.984375 | 4 | """
单继承
class Dog(object):
def __init__(self,color = "white"):
self.color = color
def run(self):
print("run")
class RED_Dog(Dog):
pass
dog1 = RED_Dog("red")
dog1.run()
print(dog1.color)
父类的私有方法和私有属性是不会被子类继承的,也不能被子类访问
"""
"""
多继承
子类继承多个父类
语法格式:
class 子类(父类1,父类2...)
代码
class 陆地生物:
def ludi(self):
print("地上爬的")
class 水下生物:
def shuixia(self):
print("水里游的")
class 蛤蟆(陆地生物,水下生物):
pass
蛤蟆1 = 蛤蟆()
蛤蟆1.shuixia()
蛤蟆1.ludi()
如果继承关系复杂,通过mro算法找到合适的类,
调用__mro__()方法可以查看先后顺序
"""
|
36e20861253990eed5deaade35ecb4aa9325d4c0 | michaelcyng/python_tutorial | /tutorial6/while_loop_examples/break.py | 357 | 4.25 | 4 | print("Please enter a positive integer")
required_count = int(input())
count = 1
print("Start counting")
while count <= required_count: # The following runs as long as this condition is true
print("Count: {0}".format(count))
count += 1
if count > 5:
print("Count is greater than 5. Exit the loop")
break
print("Left the loop")
|
2bfa29f73a3bd92d34a316489fd0c8d9b16e8e89 | karthikgvsk/project-euler | /p34.py | 860 | 4.03125 | 4 | # Digit factorials
# upper bound is important
from math import log
def getDigits(num):
l = []
while num > 10:
l.append(num % 10)
num = num // 10
if num == 10:
l.append(1)
l.append(0)
else:
l.append(num)
return l
# producing the factorial list
factList = [1]
i = 1
prod = 1
while i <= 9:
prod = prod * i
factList.append(prod)
i = i + 1
# taking the right numbers
num = 1
LARGE = 2 * log(factList[9]) * factList[9]
mainList = []
stop = False
while not stop: #num <= LARGE:
digits = getDigits(num)
sum1 = 0
for digit in digits:
sum1 = sum1 + factList[digit]
if num == sum1:
mainList.append(num)
num = num + 1
nineFactorial = factList[9]
if num > nineFactorial * log(num):
stop = True
print mainList
print factList
print sum(mainList)
print "you should subtract 3 from the sum"
print "since cases 1 and 2 are not to be included"
|
a05ceb6d95e4271e5342de877f075d24d3e88593 | janeosaka/AdventOfCode | /2020/day5/Day5_BinaryBoarding.py | 737 | 3.59375 | 4 | def open_file():
with open('../seats.txt', 'r') as f:
seat_list = f.readlines()
return seat_list
def part1():
seat_list = open_file()
seats = []
for record in seat_list:
record = (record.replace('F', '0').replace('B', '1').replace('R', '1').replace('L', '0'))
row = int(record[:7], 2)
col = int(record[7:], 2)
seat = (row * 8) + col
seats.append(seat)
print(max(seats))
return sorted(seats)
print(part1())
def part2():
seat_list = part1()
for i, seats in enumerate(seat_list):
if min(seat_list) < seats < max(seat_list):
if seat_list[i + 1] - seats == 2:
print(seats + 1)
break
part2()
exit()
|
c53361d698f1e4991cb0a691ccccf367a1b293b3 | kashyap1810/pythonbasics- | /list.py | 315 | 3.96875 | 4 | #list
employees=['adam','john','greg','danna','ashley']
print('employees length : '+ str(employees.__len__()))
employees[1]='jack'
print(employees)
employees.insert(3,'mavrik')
print(employees)
employees.remove('mavrik')
print(employees)
employees.append('mavrik')
print(employees)
employees.pop()
print(employees)
|
767deef8f9cbf2ae558b5d42aaa2ed0866082cf7 | ejonakodra/holbertonschool-machine_learning-1 | /pipeline/0x04-data_augmentation/5-hue.py | 430 | 3.765625 | 4 | #!/usr/bin/env python3
"""
Defines function that changes the hue of an image
"""
import tensorflow as tf
def change_hue(image, delta):
"""
Changes the hue of an image
parameters:
image [3D td.Tensor]:
contains the image to change
delta [float]:
the amount the hue should change
returns:
the altered image
"""
return (tf.image.adjust_hue(image, delta))
|
5634707575cfaa10215d34abb0d39ab42748c7a8 | kolevatov/python_lessons | /week4/4_9.py | 963 | 4.28125 | 4 | # Быстрое возведение в степень
"""
Возводить в степень можно гораздо быстрее, чем за n умножений!
Для этого нужно воспользоваться следующими рекуррентными соотношениями:
aⁿ = (a²)ⁿ/² при четном n, aⁿ=a⋅aⁿ⁻¹ при нечетном n.
Реализуйте алгоритм быстрого возведения в степень.
Если вы все сделаете правильно,то сложность вашего алгоритма будет O(logn).
Формат ввода
Вводится действительное число a и целое число n.
Формат вывода
Выведите ответ на задачу.
"""
A = float(input())
N = int(input())
if N % 2 == 0:
result = (A ** 2) ** (N // 2)
else:
result = A * A ** (N - 1)
print(result)
|
1be6126987ffad639cf9fdadf4073cfabc8b5aae | shubham1172/pyfinbar | /pyfinbar/stock_record.py | 1,222 | 3.625 | 4 | from pyfinbar.console import Colors
class StockRecord:
'''StockRecord represents the state of a stock.
Ticker is the stock symbol.
Prevclose is the last day's closing price.
Close is today's closing price.
usage:
record = StockRecord("YESBANK", 12, 14.5)
'''
def __init__(self, ticker, prevclose, close):
super().__init__()
self.ticker = ticker
self.prevclose = prevclose
self.close = close
def change(self):
return 100*(self.close - self.prevclose)/self.prevclose
def to_string(self, colored=False):
delta = self.change()
s = "%s %.2f " % (self.ticker, self.close)
suff = "%+.2f%%" % delta
if not colored:
return s + suff
if delta > 0:
color = Colors.GREEN
elif delta < 0:
color = Colors.RED
else:
color = Colors.GRAY
return s + color + suff + Colors.ENDC
def to_object(self):
return \
{
"TICKER": self.ticker,
"CLOSE": "%.2f" % self.close,
"CHANGE": "%+.2f%%" % self.change()
}
def __str__(self):
return self.to_string()
|
2adcce7c1c754878c998011df308de8d56787f33 | Foknetics/AoC_2019 | /day_15/part2-1.py | 1,520 | 3.53125 | 4 | import json
with open('tile_map.json') as tile_data:
string_map = json.load(tile_data)
tile_map = {}
for coord in string_map.keys():
x, y = coord[1:-1].split(', ')
tile_map[(int(x), int(y))] = string_map[coord]
def print_map():
output = ''
for y in range(21, -20, -1):
row = ''
for x in range(-21, 20):
tile = tile_map.get((x, y))
if tile is None:
row += ' '
elif tile == 2:
row += 'O'
elif tile == 3:
row += 'o'
elif tile == 0:
row += '█'
elif tile == 1:
row += '░'
output += row+'\n'
print(output, end='\r')
def lacking_oxygen():
tiles = []
for coord in tile_map:
tiles.append(tile_map[coord])
return 1 in tiles
minutes = 0
while lacking_oxygen():
minutes += 1
for coord in tile_map:
if tile_map[coord] == 2:
x, y = coord
if tile_map.get((x+1, y)) == 1:
tile_map[(x+1, y)] = 3
if tile_map.get((x-1, y)) == 1:
tile_map[(x-1, y)] = 3
if tile_map.get((x, y+1)) == 1:
tile_map[(x, y+1)] = 3
if tile_map.get((x, y-1)) == 1:
tile_map[(x, y-1)] = 3
#print(f'After {minutes} minutes')
#print_map()
for coord in tile_map.keys():
if tile_map[coord] == 3:
tile_map[coord] = 2
print(f'Oxygen will spread in {minutes} minutes')
|
1240a0f951459bf4d50a7a78c6c315c9d9ff0472 | nathanychin/Python-MySQL | /main.py | 1,332 | 3.53125 | 4 | from database import cursor, db
def add_log(text, user):
sql = ("INSERT INTO logs(text, user) VALUES (%s, %s)")
cursor.execute(sql, (text, user,))
db.commit()
log_id = cursor.lastrowid
print("Added log {}".format(log_id))
def get_logs():
sql = ("SELECT * FROM logs ORDER BY created DESC")
cursor.execute(sql)
result = cursor.fetchall()
for row in result:
print(row[1])
def get_log(id):
sql = ("SELECT * FROM logs WHERE id = $s")
cursor.execute(sql, (id,))
result = cursor.fetchone()
for row in result:
print(row)
def update_log(id, text):
sql = ("UPDATE logs SET text = %s WHERE id = %s")
cursor.execute(sql, (text, id))
db.commit()
print("Updated log {}".format(id))
def delete_log(id):
sql = ("DELETE FROM logs WHERE id = %s")
cursor.execute(sql, (id,))
db.commit()
print("Log {} deleted".format(id))
# Logs added to table
add_log('This is log one', 'Nathan')
add_log('This is log two', 'Meagan')
add_log('This is log three', 'Jack')
# Get all current logs
get_logs()
# Get this specific log
get_log(2)
# Update this specific log
update_log(2, 'Updated log')
# Show update
get_logs()
# Delete this specific log
delete_log(2)
# Show current logs
get_logs() |
54ac6f0e4b3a024a298d119291dcf1e38e5bf894 | maobinchen/data_structure | /c7/insert_sort.py | 903 | 3.53125 | 4 | from DoublyLinkedBase import PositionalList
import random
def insertion_sort(L):
if len(L) > 1:
marker = L.first()
while marker != L.last():
pivot = L.after(marker)
value = pivot.element()
if value > marker.element():
marker = pivot
else:
walk = marker
while walk != L.first() and L.before(walk).element() > value:
walk = L.before(walk)
L.delete(pivot)
L.add_before(walk,value)
if __name__ == '__main__':
PQ = PositionalList()
s = PQ.add_first(1)
PQ.add_after(s,5)
PQ.add_before(s,3)
PQ.add_first(9)
PQ.add_first(11)
print PQ
insertion_sort(PQ)
print PQ
N = 100
L = PositionalList()
for i in range(N) : L.add_first(random.randint(1,1000))
print L
insertion_sort(L)
print L
|
955729066bdc244656809bd520dfb8b45f13efce | SimmonsChen/LeetCode | /周赛/5543. 两个相同字符之间的最长子字符串.py | 752 | 3.875 | 4 | """
给你一个字符串 s,请你返回 两个相同字符之间的最长子字符串的长度 ,计算长度时不含这两个字符。
如果不存在这样的子字符串,返回 -1 。
子字符串 是字符串中的一个连续字符序列
"""
class Solution(object):
def maxLengthBetweenEqualCharacters(self, s):
"""
:type s: str
:rtype: int
"""
res = -2
mylist = list(s)
for i, item in enumerate(mylist):
if item in mylist[:i]:
if res < i - s.index(item) - 1:
res = i - s.index(item) - 1
return res if res != -2 else -1
if __name__ == '__main__':
s = Solution()
print(s.maxLengthBetweenEqualCharacters(s="aa"))
|
17104dc4e9a0b27958a6e57d5b65ecdbd501bb2c | sungwooman91/python_code | /03.Data_Science/csv_test.py | 1,240 | 3.6875 | 4 | import csv
with open("Demographic_Statistics_By_Zip_Code.csv", newline="") as infile:
data = list(csv.reader(infile))
## No1_COUNT PARTICIPANTS
countParticipantsIndex = data[0].index("COUNT PARTICIPANTS")
print("The index of 'COUNT PARTICIPANTS': %s" % countParticipantsIndex)
# print("The index of 'COUNT PARTICIPANTS': " +str(countParticipantsIndex))
countParticipants = []
# index = 0
for row in data[1:]:
countParticipants.append(int(row[countParticipantsIndex]))
print("The contents of 'COUNT PARTICIPANTS': %s" % countParticipants)
## No2_COUNT CITIZEN STATUS TOTAL
countCitizenStatusTotalIndex = data[0].index("COUNT CITIZEN STATUS TOTAL")
print("The index of 'COUNT CITIZEN STATUS TOTAL': %s" % countCitizenStatusTotalIndex)
countCitizenStatusTotal = []
for row in data[1:]:
countCitizenStatusTotal.append(int(row[countCitizenStatusTotalIndex]))
print("The contents of 'COUNT CITIZEN STATUS TOTAL': %s" % countCitizenStatusTotal)
## No3_COUNT FEMALE
countFemaleIndex = data[0].index("COUNT FEMALE")
print("The index of 'COUNT FEMALE': %s" % countFemaleIndex)
countFemale = []
for row in data[1:]:
countFemale.append(int(row[countFemaleIndex]))
print("The contents of 'COUNT FEMALE': %s" % countFemale) |
eb076b873094942de4200320d1c3f1e64c7bccdc | pacerrabbit/mock-signup-page | /models.py | 1,003 | 3.578125 | 4 | # Standard libs
from collections import OrderedDict
# Mock user collection
# Maps username to User object. Only stores data in memory, so it won't persist
# anything when the app exits. I'm using an OrderedDict so that users will be
# listed in the order in which they're created.
USER_COLLECTION = OrderedDict()
class User(object):
@classmethod
def create(cls, username, email, password_hash):
# Create a user and store them in the mock collection
user = User(username, email, password_hash)
USER_COLLECTION[username] = user
return user
@classmethod
def get_by_username(cls, username):
# Retrieve a user by their username
return USER_COLLECTION.get(username, None)
@classmethod
def get_all(cls):
# Retrieve all users
return USER_COLLECTION.values()
def __init__(self, username, email, password_hash):
self.username = username
self.email = email
self.password_hash = password_hash
|
c49d9801cd29c28921e00116463ce6732b58105f | cooleel/HackerRank | /Mini_Max_Sum.py | 380 | 3.828125 | 4 | #!/bin/python3
#by Shanshan Wang
#https://www.hackerrank.com/cooleel
#!/bin/python3
import math
import os
import random
import re
import sys
# Complete the miniMaxSum function below.
def miniMaxSum(arr):
min_ = sum(arr)-max(arr)
max_ = sum(arr)-min(arr)
print(min_, max_)
if __name__ == '__main__':
arr = list(map(int, input().rstrip().split()))
miniMaxSum(arr) |
b48e773d9cd3894c3dc7b772d9014ebfc92cf187 | joseangel-sc/CodeFights | /Arcade/SortingOutpost/maximumSum.py | 1,108 | 3.671875 | 4 | def maximumSum(A, Q):
A.sort()
b = [0]*len(A)
for q in Q:
for i in range(q[0],q[1]+1):
b[i] += 1
b.sort()
sol = 0
for i in range(len(A)):
sol += A[i]*b[i]
return sol
'''You are given an array of integers A. Range sum query is defined by a pair of non-negative integers L and R (L <= R). An output to a range sum query on the given array is the sum of all elements of A with indices from L to R inclusive.
Find an algorithm that given a list of range sum queries can rearrange the array A in such a way that the total sum of all of the query outputs is maximized.
Example
For A = [2, 1, 2] and Q = [[0, 1]], the output should be
maximumSum(A, Q) = 4.
Input/Output
[time limit] 4000ms (py)
[input] array.integer A
An initial array.
Constraints:
2 ≤ A.length ≤ 10,
1 ≤ A[i] ≤ 10.
[input] array.array.integer Q
Array of range sum queries, each query is an array of two non-negative integers.
Constraints:
1 ≤ Q.length ≤ 10,
0 ≤ Q[i][j] ≤ 10.
[output] integer
Maximum possible total sum of the given range sum query outputs.'''
|
3c7b41a6fccbf14805c150cab1e44d9043f0518f | kalyons11/kevin | /kevin/leet/score_of_parentheses.py | 1,671 | 3.765625 | 4 | """
https://leetcode.com/explore/challenge/card/february-leetcoding-challenge-2021/587/week-4-february-22nd-february-28th/3651/
"""
class Solution:
def score_of_parentheses(self, S: str) -> int:
# recursive approach potentially?
# need to get down to base cases of (), (A), (AB)
# know S is balanced
# len(S) is even - same number of ( and ) in proper stack ordering
# stack never errors out, stack empty at end of string
# can we use this?
if S == '()':
return 1
# attempt to find index that splits into A and B case
# index must be at least 2, and can increment by 2
for split in range(2, len(S) - 1, 2):
if self._is_balanced(S[:split]) and self._is_balanced(S[split:]):
return self.score_of_parentheses(S[:split]) + \
self.score_of_parentheses(S[split:])
# otherwise, must be (A) case
return 2 * self.score_of_parentheses(S[1:len(S) - 1])
def _is_balanced(self, s: str) -> bool:
# return True iff s is balanced
count = 0
for c in s:
if c == '(':
count += 1
elif c == ')':
count -= 1
if count < 0:
return False
return count == 0
# taken from discussion
# O(n) runtime, O(1) memory - very nice
class SolutionOptimized:
def score_of_parentheses(self, S: str) -> int:
ans, bal = 0, 0
for i, s in enumerate(S):
bal = bal + 1 if s == "(" else bal - 1
if i > 0 and S[i-1:i+1] == "()":
ans += 1 << bal
return ans
|
e15bdc4a6356b0ef710261bf94ab3120245d7b3c | LezamaCybart/scientific_computing_with_python_fcc | /probability_calculator/prob_calculator.py | 1,280 | 3.703125 | 4 | import copy
import random
# Consider using the modules imported above.
class Hat:
hat = dict()
contents = list()
def __init__(self, **balls):
self.hat = balls
for color in self.hat:
for number in range(self.hat[color]):
self.contents.append(color)
def draw(self, amount):
top = amount
balls_drawed = list()
if top >= len(self.contents):
balls_drawed = self.contents
else:
while(top > 0):
balls_drawed.append(self.contents.pop(random.randint(0, top)))
top = top -1
return balls_drawed
def experiment(hat, expected_balls, num_balls_drawn, num_experiments):
m = 0
the_expected_balls = list()
for color in expected_balls:
for number in range(expected_balls[color]):
the_expected_balls.append(color)
#the_expected_balls.sort()
for experiment in range(num_experiments):
copy_hat = copy.copy(hat)
returned_balls = copy_hat.draw(num_balls_drawn)
#returned_balls.sort()
#if the_expected_balls in returned_balls:
if all(elem in the_expected_balls for elem in returned_balls):
m = m +1
return m / num_experiments
|
9e699bbab2e386ac0fd8b8bcb3723dc3661a05ab | dogac00/Python-General | /linked-list-python.py | 571 | 3.9375 | 4 | class Node:
def __init__(self, value):
self.value = value
self.next = None
def printNode(self):
print(self.value, end=" -> None")
class LinkedList:
def __init__(self, value):
self.value = value
self.next = None
def insertValue(self, value):
while self.next:
self = self.next
self.next = Node(value)
def printList(self):
while self:
print(self.value, end=" -> ")
self = self.next
print("None")
myList = LinkedList(5)
myList.insertValue(7)
myList.insertValue(9)
myList.insertValue(11)
myList.printList()
|
6a74266d357961d84c5bfa28c894d348d6bbe95d | SerhiiDior/soft_100_task | /100_tasks/unit_test/problems/2.py | 96 | 3.921875 | 4 | number=int(input("Number="))
fact=1
i=1
while (i<=number):
fact=fact*i
i+=1
print(fact)
|
e60e90488ec575599e4bef54832824c5629b8cd0 | rajarajann/Labs | /openbook3_task1.py | 971 | 3.65625 | 4 | fin = open ("Bus_Stops.csv")
def total_terminals():
fin = open("Bus_Stops.csv")
counter = 0
for lines in fin:
line_list = lines.split(",")
if line_list[10] == "Terminal":
counter +=1
print ("Total number of Terminals :", counter)
def total_busstop():
fin = open("Bus_Stops.csv")
counter = 0
for lines in fin:
line_list = lines.split(",")
if line_list[10] == "Conventional Transit Bus Stop":
counter +=1
print ("Total number of Conventional Transit Bus Stop :", counter)
total_terminals()
total_busstop()
def assessible_terminals(line_list):
#fin = open("Bus_Stops.csv")
counter = 0
if line_list [7] == "Accessible":
counter +=1
accessible_terminals = line_list[6]
print (accessible_terminals)
return counter
print ("List of Accessible Terminals:")
for lines in fin:
line_list = lines.split(",")
assessible_terminals(line_list)
|
fdfb999efb42ecd020cb699359e30e7632a2de0e | Gijsbertk/afvinkblok1 | /5.21.py | 672 | 3.84375 | 4 | import random #importeert library
print('Je doet steen papier schaar, voor steen kies je 1 voor papier 2 en schaar 3') #print wat je moet doen
def main():
game() #roept functie aan
def game(): #functie
speler = int(input('Kies een nummer voor steen papier schaar: ')) #vraagt om functie
comp = random.randint(1, 3) # random getal wordt toegekend aan variabele
print(comp) #print varaiabele
while speler == comp: # als variabele gelijk is aan input
speler = int(input('Kies een nummer voor steen papier schaar: ')) #opnieuw
comp = random.randint(1, 3) # opnieuw
main()
#auteur gijsbert ekja
|
be4cc927cf5fcdb7da54ecacf3a5b6a24bd646f5 | jamesro/BlackJackLearn | /blackjack/player.py | 4,699 | 3.625 | 4 | #!/usr/bin/python
# -*- coding: utf-8 -*-
from .cards import *
from .hand import Hand
from .table import Table
class Player:
def __init__(self, bank=1000):
self.gameState = ""
self.table = Table()
self.bank = bank
self.wins = 0
self.losses = 0
self.pushes = 0
self.naturals = 0
def bet(self,amount):
self.gameState = "InPlay"
self.betAmount = amount
self.bank -= self.betAmount
print("Betting $",amount)
self.table.deal()
if self.table.hand.total() == 21:
print("Blackjack.")
self.endPlay(Natural
=True)
def hit(self,Double=False):
self.table.hand += self.table.deck.pop()
print("\nHit: ",self.table.hand,"\n")
if self.table.hand.total() == 21:
self.endPlay()
elif self.table.hand.total() > 21:
self._lose()
elif Double==True: # You can't keep playing after doubling
self.endPlay()
def stand(self):
self.table.dealer_hand += self.table.hole_card
print("\nStand.\nDealer's hand: ",self.table.dealer_hand)
self.endPlay()
def double(self):
if len(self.table.hand.cards) == 2:
self.bank -= self.betAmount
self.betAmount *= 2
print("Double. Bet is $",self.betAmount)
self.hit(Double=True)
elif len(self.table.hand.cards) > 2:
raise DoubleError("Cannot double after hitting")
def endPlay(self,Natural=False):
while self.table.dealer_hand.total() < 17:
self.table.dealer_hand += self.table.deck.pop()
print("Dealer's hand: ",self.table.dealer_hand)
if self.table.dealer_hand.total() == self.table.hand.total() <= 21:
if Natural==True:
self._natural()
else:
self._push()
elif (self.table.dealer_hand > self.table.hand) and (self.table.dealer_hand.total() <= 21):
self._lose()
elif (self.table.dealer_hand.total() > 21) and (self.table.hand.total() <= 21):
self._win()
elif (self.table.dealer_hand < self.table.hand) and (self.table.hand.total() <= 21):
self._win()
def deckCheck(self):
if len(self.table.deck._cards) <= 15:
self.table.deck = Deck()
def split(self):
if self.table.hand.cards[0].hard == self.table.hand.cards[1].hard:
if not self.table.hand.is_split:
print("Split. Betting $",self.betAmount)
self.bank -= self.betAmount
self.table.splitHand.append(Hand(self.table.hand.cards[1], self.table.deck.pop(),is_split=True))
self.table.hand = Hand(self.table.hand.cards[0], self.table.deck.pop(),is_split=True)
print("Your first hand: ",self.table.hand)
else:
raise SplitError("Hand has already been split")
else:
raise SplitError("Hand cannot be split")
# def _endSplitGame(self):
# try: # if this is the end of the first of the two hands
# self.table.hand = self.table.other_hand
# del self.table.other_hand
# #self.gameState = "InPlay"
# print("Your second hand: ",self.table.hand)
# if self.table.hand.total() == 21:
# self.endPlay()
# except:
# pass
def _win(self):
self.gameState = "Won"
self.bank += 2 * self.betAmount
print("\nYou win. You have $",self.bank,"\n")
self.wins += 1
# if self.table.hand.is_split:
# self._endSplitGame()
self.deckCheck()
def _lose(self):
self.gameState = "Lost"
print("\nYou lose. You have $",self.bank,"\n")
self.losses += 1
# if self.table.hand.is_split:
# self._endSplitGame()
self.deckCheck()
def _natural(self):
self.naturals += 1
self.gameState = "Natural"
self.bank += self.betAmount + 1.5*self.betAmount
print("\nYou win. You have $",self.bank,"\n")
# if self.table.hand.is_split:
# self._endSplitGame()
self.deckCheck()
def _push(self):
self.pushes += 1
self.gameState = "Push"
self.bank += self.betAmount
print("\nDraw. You have $",self.bank,"\n")
# if self.table.hand.is_split:
# self._endSplitGame()
self.deckCheck()
class SplitError(Exception):
pass
class DoubleError(Exception):
pass
|
7541be8d53fe79ac6ce7ff459d67f0c3a1804e51 | adarshnamsani/exam | /python-test1.py | 3,371 | 4.21875 | 4 | from placeholders import *
def get_odds_list(count):
"""
This method returns a list of the first 'count' odd numbers in descending
order. e.g count = 3 should return [5,3,1]
"""
return None
def get_odd_mountain(count):
"""
odd mountain is a list of odd numbers going up from 1 and then back to 1.
e.g. odd_mountain of size 5 is [1,3,5,3,1]
odd_mountain of size 4 is [1,3,3,1]
Hint: use the list functions and a builtin function we have already seen.
"""
return None
def get_multiples_desc(number, count):
"""
return the first count multiples of number in desc order in a list.
e.g call with input (3,2) returns [6,3]
call with input(5,3) returns [15,10, 5]
Hint: one line of code, use a builtin function we have already seen in the lists lesson.
"""
return None
def get_sorted_diff_string(first, second):
"""
returns a string which contains letters in first but not in second.
e.g.s apple and pig returns ael.
"""
return None
def get_sorted_without_duplicates(input):
"""
returns a string in which characters are sorted and duplicates removed
e.g apple returns aelp, engine returns egin
"""
return None
def create_palindrome(word):
pass
# Sort the words that are passed in by word length instead of word content.
# e.g ["apple", "dog", "elephant"] should result in ["elephant", "apple", "dog"]
# hint: use list.sort, don't write your own
def sort_by_length(words):
pass
def test_odds_list():
assert [1] == get_odds_list(1)
assert [] == get_odds_list(0)
assert [5,3,1] == get_odds_list(3)
assert [9,7,5,3,1] == get_odds_list(5)
def test_get_odd_mountain():
assert [1,1] == get_odd_mountain(2)
assert [1,3,1] == get_odd_mountain(3)
assert [1,3,5,7,5,3,1] == get_odd_mountain(7)
assert [] == get_odd_mountain(0)
def test_get_multiples_desc():
assert [6,3] == get_multiples_desc(3,2)
assert [15, 10, 5] == get_multiples_desc(5,3)
assert [] == get_multiples_desc(6, 0)
assert [3,2,1] == get_multiples_desc(1, 3)
def test_sorted_diff_string():
assert "" == get_sorted_diff_string("apple", "apple")
assert "aelp" == get_sorted_diff_string("apple", "")
assert "do" == get_sorted_diff_string("dog", "pig")
assert "in" == get_sorted_diff_string("pineapple", "apple")
def test_sorted_without_duplicates():
assert "aelp" == get_sorted_without_duplicates("apple")
assert "eorz" == get_sorted_without_duplicates("zeroo")
assert "" == get_sorted_without_duplicates("")
assert "abcd" == get_sorted_without_duplicates("abcdabcd")
def test_create_palindrome():
assert "battab" == create_palindrome("bat")
assert "abba" == create_palindrome("ab")
assert "" == create_palindrome("")
assert None == create_palindrome(None)
def test_sort_by_length():
assert ["apple", "bear", "dog"] == sort_by_length(["dog", "apple", "bear"])
assert ["apple", "bear", "dog"] == sort_by_length(["apple", "dog", "bear"])
assert ["apple", "dog", "cat"] == sort_by_length(["dog", "apple", "cat"])
assert ["elephant", "apple"] == sort_by_length(["apple", "elephant"])
assert ["three", "four", "one", "two"] == sort_by_length(["one", "two", "three", "four"])
assert [] == sort_by_length([])
assert None == sort_by_length(None)
|
d105ed0b71fc01c837aa6a8fa155b79f7dc66fc1 | sridhar667/hello-world | /oddoreven.py | 174 | 3.625 | 4 | n = input()
lst = [int(i) for i in n]
for i in lst:
if i%2==0:
lst.remove(i)
s = sum(lst)
if s%2==0:
print('Even')
else:
print('Odd')
|
9686d36a56d4e23d947011244a324ae568c81159 | larsQue11/knn_electron_app | /backend/knn_iris.py | 6,915 | 3.65625 | 4 | # Course: CS7267
# Student name: William Stone
# Student ID: 000-272-306
# Assignment #: 1
# Due Date: September 16, 2019
# Signature:
# Score:
import numpy as np
from math import sqrt
import csv
import sys
#retrieve data from CSV file
def getData(dataPath):
with open(dataPath) as dataFile:
data = np.array(list(csv.reader(dataFile)))
return data
#calculate the Euclidean distance: sqrt( sum( (x.i - y.i)^2 ) )
def EuclideanDistance(testIris, knownIris):
sumOfDifferences = 0
if testIris.sepal_length != -1:
sumOfDifferences = sumOfDifferences + ((testIris.sepal_length-knownIris.sepal_length) ** 2)
if testIris.sepal_width != -1:
sumOfDifferences = sumOfDifferences + ((testIris.sepal_width-knownIris.sepal_width) ** 2)
if testIris.petal_length != -1:
sumOfDifferences = sumOfDifferences + ((testIris.petal_length-knownIris.petal_length) ** 2)
if testIris.petal_width != -1:
sumOfDifferences = sumOfDifferences + ((testIris.petal_width-knownIris.petal_width) ** 2)
return sqrt(sumOfDifferences)
#a function to evaluate the query against k neighbors
#returns a prediction based on the evaluation
def FindNeighbors(k,model,query):
neighbors = []
#calculate the Euclidean distance between the query and all Irises in the model
#the neighbors array keeps a running track of the k nearest neighbors, it is sorted closest-furthest
#after each iteration, allowing the algorithm to test just the last position
for iris in model:
iris.setDistance(EuclideanDistance(query,iris))
if len(neighbors) < k:
neighbors.append(iris)
else:
if iris.distance < neighbors[k-1].distance:
neighbors[k-1] = iris
neighbors.sort(key=lambda x: x.distance)
#find the mode amongst the classifications is found in the final list of neighbors
numSetosas = 0
numVersicolors = 0
numVirginicas = 0
for neighbor in neighbors:
if neighbor.species == "Setosa":
numSetosas = numSetosas + 1
elif neighbor.species == "Versicolor":
numVersicolors = numVersicolors + 1
elif neighbor.species == "Virginica":
numVirginicas = numVirginicas + 1
if numSetosas > numVersicolors:
if numSetosas > numVirginicas:
prediction = "Setosa"
else:
prediction = "Virginica"
else:
if numVersicolors > numVirginicas:
prediction = "Versicolor"
else:
prediction = "Virginica"
return prediction
#a function that returns the index of the row for the corresponding species being tested
def UpdateTable(species):
if species == "Setosa":
dim = 0
elif species == "Versicolor":
dim = 1
else:
dim = 2
return dim
#a custom object to represent the Iris's data values
class Iris():
def __init__(self, irisData):
self.sepal_length = float (irisData[0])
self.sepal_width = float (irisData[1])
self.petal_length = float (irisData[2])
self.petal_width = float (irisData[3])
self.distance = -1
if len(irisData) > 4:
if irisData[4] == 'Iris-setosa':
self.species = 'Setosa'
elif irisData[4] == 'Iris-versicolor':
self.species = 'Versicolor'
elif irisData[4] == 'Iris-virginica':
self.species = 'Virginica'
else:
pass
def setDistance(self, distance):
self.distance = distance
def main():
dataPath = './data/iris_dataset.csv'
retrievedData = getData(dataPath)
#create lists of Iris objects: half for training, half for testing
trainingSet = []
testingSet = []
count = 0
for iris in retrievedData:
myIris = Iris(iris)
if count % 2 == 0:
trainingSet.append(myIris)
else:
testingSet.append(myIris)
count = count + 1
#build confusion matrix
'''
+------------+---------+------------+-----------+
| | Setosa | Versicolor | Virginica |
+------------+---------+------------+-----------+
| Setosa | TP(S) | E(S,Ve) | E(S,Vi) |
| Versicolor | E(Ve,S) | TP(Ve) | E(Ve,Vi) |
| Virginica | E(Vi,S) | E(Vi,Ve) | TP(Vi) |
+------------|---------+------------+-----------|
'''
confusionMatrix = np.zeros(shape=(3,3)) #creates a 2D array (3x3 table) containing all zeros
#if input from user has been found, retrieve the input and set parameters
if sys.argv[1]:
#set K value
k = int (sys.argv[1])
#create an Iris
userInput = [sys.argv[2],sys.argv[3],sys.argv[4],sys.argv[5]]
checkInput = sum(float (x) for x in userInput)
userIris = Iris(userInput)
#test the training model: update the confusion matrix for evaluation calculations
for testIris in testingSet:
#make a prediction for the current test case based on the specified K value and the model
prediction = FindNeighbors(k,trainingSet,testIris)
row = UpdateTable(testIris.species)
col = UpdateTable(prediction)
confusionMatrix[row,col] = confusionMatrix[row,col] + 1 #increment corresponding cell in the matrix
#TP: the cell where the actual and predicted values intersect
#TN: sum of all cells not in the classifier's row or column
#FP: sum of all cells in the current column excluding TP
#FN: sum of all cells in the current row excluding TP
#calculate overall accuracy of model: (TP+TN)/(TP+TN+FP+FN)
accuracy = (confusionMatrix[0,0] + confusionMatrix[1,1] + confusionMatrix[2,2]) / np.sum(confusionMatrix)
accuracy = '{:.4}'.format(str(accuracy))
#calculate precision: TP/(TP+FP)
precisionSetosa = confusionMatrix[0,0] / np.sum(confusionMatrix,axis=0)[0]
precisionSetosa = '{:.4}'.format(str(precisionSetosa))
precisionVersicolor = confusionMatrix[1,1] / np.sum(confusionMatrix,axis=0)[1]
precisionVersicolor = '{:.4}'.format(str(precisionVersicolor))
precisionVirginica = confusionMatrix[2,2] / np.sum(confusionMatrix,axis=0)[2]
precisionVirginica = '{:.4}'.format(str(precisionVirginica))
#make prediction
if checkInput > -4:
prediction = FindNeighbors(k,trainingSet,userIris)
else:
prediction = "N/A"
#print the output to an array which is returned to iris.js and then to the HTML document
output = [k,prediction,accuracy,precisionSetosa,precisionVersicolor,precisionVirginica]
for out in output:
print(out)
sys.stdout.flush()
else:
print(f"Nothing received")
sys.stdout.flush()
if __name__ == '__main__':
main() |
5a359f517804a9e8f474a91363bd3684c11c98ec | coding-with-fun/Python-Lectures | /Lec 1/Task/stringOperations.py | 814 | 4.375 | 4 | s = "This is string example"
'''
Reverse string
'''
reverse = s[::-1]
print("Reverse string is: "+reverse)
print()
'''
Reverse words
'''
words = s.split(" ")
revWords = [revWord[::-1] for revWord in words]
revStr = " ".join(revWords)
print("Reversed words are: "+revStr)
print()
'''
Split and join
'''
splitString = s.split(" ")
print("Splitted string is: ")
print(splitString)
joinString = "*".join(splitString)
print("Joined string is: "+joinString)
print()
print("Interchanged chars are: "+splitString[0][1]+splitString[0][0]+splitString[0][3]+splitString[0][2])
print()
'''
Replace is
'''
seperateString = s.split(" ")
for x in range(len(seperateString)):
if seperateString[x]=="is":
seperateString[x]="was"
joinString = " ".join(seperateString)
print("Edited string is: "+joinString)
print()
|
00a85601f190c68c0aaad68309463506c2a42221 | celsopa/CeV-Python | /mundo01/ex020.py | 451 | 4.09375 | 4 | # Exercício Python 020: O mesmo professor do desafio 019 quer sortear a ordem de apresentação de trabalhos dos alunos. Faça um programa que leia o nome dos quatro alunos e mostre a ordem sorteada.
from random import shuffle
lista = list([input("Aluno 1: "), input("Aluno 2: "), input("Aluno 3: "), input("Aluno 4: ")])
shuffle(lista)
print(f"""A ordem de apresentação é: 1º: {lista[0]}, 2º: {lista[1]}, 3º: {lista[2]}, 4º: {lista[3]}.""")
|
216290b62d6ae4a1499f9ff309dbfd8cd530a5d4 | CSC510-G35-Fall2022/csc510-g35-hw2 | /codes/num.py | 1,995 | 3.84375 | 4 | import random as r
import math
from codes.utilities import utilities as u
import codes.commandLine as c
class Num:
'''Holds number cols and applies functions to them'''
def __init__(self, c, s):
self.n = 0
self.name = s
self._has = []
self.at = c or 0
self.lo = math.inf
self.hi = -math.inf
self.isSorted=True
if s[-1] == '-':
self.w = -1
else:
self.w = 1
def nums(self):
'''
Sorts the has list and sets isSorted to True
'''
if not self.isSorted:
self._has.sort()
self.isSorted=True
return self._has
def add(self, v):
'''
Adds a new value to the list and replaces a random old value if size exceeds attribute defined by the["nums"] config
:param v: value to add to the list
'''
#print(v)
v = float(v)
if v!="?":
self.n = self.n + 1
self.lo = min(float(v), self.lo)
self.hi = max(float(v), self.hi)
if len(self._has) < c.the["nums"]:
pos = len(self._has)
self._has.insert(pos, v)
elif r.random() < c.the["nums"] / self.n:
pos = r.randrange(len(self._has))
self._has[pos] = v
self.isSorted = False
def div(self):
'''
Returns the diversity of the nums object
:return: diversity of sym object
'''
a=self.nums()
return (u.per(a, 0.9) - u.per(a, 0.1)) / 2.58
'''
Returns the median of the nums object
'''
def mid(self):
'''
Returns the median of the nums col
:return: median of nums list
'''
return u.per(self.nums(), 0.5)
def __string__(self):
return 'at: {0} hi: {1} isSorted: {2} lo: {3} n: {4} name: {5} w: {6}'.format(self.at, self.hi, self.isSorted, self.lo, self.n, self.name, self.w) |
1f9d49f012f8280ee930b6ed6fb86448da98892e | pangyouzhen/data-structure | /tree/104 maxDepth.py | 1,144 | 3.6875 | 4 | # Definition for a binary tree node.
# 插入,删除,查找
from base.tree.tree_node import TreeNode
class Solution:
def maxDepth(self, root: TreeNode):
"""
:rtype:最高深度
"""
if root is None:
return 0
left_depth = self.maxDepth(root.left)
right_depth = self.maxDepth(root.right)
# max(left的深度+ right的深度) + 最后一个node
return max(left_depth, right_depth) + 1
def maxDepth2(self,root:TreeNode):
if not root:
return 0
curr = [root]
h = 0
while curr:
next_levels = []
for i in curr:
if i.left:
next_levels.append(i.left)
if i.right:
next_levels.append(i.right)
curr = next_levels
h += 1
return h
if __name__ == '__main__':
root = "[3,9,20,null,null,15,7]"
tree = TreeNode.from_strs(root)
sol = Solution()
sol2 = Solution().maxDepthTreave
assert sol.maxDepth(tree) == 3
print(sol2(tree)) |
64a77e1838f97a847cf19e4316ea13ee147e5cd9 | mbazhlekova/mit-intro-programming-python | /week 1/lectures/guess-and-check.py | 117 | 3.859375 | 4 | cube = 27
for guess in range(cube + 1):
if guess**3 == cube:
print("Cube root of ", cube, " is ", guess)
|
bf4aac580efc2e69b8cd3feefc4fb85d0d177f3e | DiyanKalaydzhiev23/fundamentals---python | /dictionaries - exresice/softuni exam results.py | 999 | 3.71875 | 4 | languages = {}
banned = []
results = {}
data = input().split("-")
while "exam finished" not in data:
if "banned" in data:
banned.append(data[0])
data = input().split("-")
continue
name = data[0]
language = data[1]
points = int(data[2])
current_points = 0
if language in languages:
languages[language] += 1
if name in results:
if points > results[name]:
results[name] = points
else:
results[name] = points
else:
languages[language] = 1
results[name] = points
data = input().split("-")
results = dict(sorted(results.items(), key=lambda x: (-x[1], x[0])))
languages = dict(sorted(languages.items(), key=lambda x: (-x[1], x[0])))
print("Results:")
for name in results:
if name in banned:
continue
else:
print(f"{name} | {results[name]}")
print("Submissions:")
[print(f"{language} - {languages[language]}") for language in languages]
|
8b3fef93387829c36b3081fa1343b5d02613763c | AdamZhouSE/pythonHomework | /Code/CodeRecords/2710/60776/311893.py | 517 | 3.515625 | 4 | list=[]
a=input().split(' ')
renshu=int(a[0])
yujushu=int(a[1])
for i in range(0,yujushu):
a=input().split(' ')
if a[0]=='M':
list1=[]
list1.append(int(a[1]))
list1.append(int(a[2]))
list.append(list1)
else:
list1=[]
for j in range(0,len(list)):
if list[j][0]<=int(a[1]) and list[j][1]>=int(a[2]):
list1.append(list[j][1])
list1.sort()
if list1==[]:
print(-1)
else:
print(list1[0]) |
6c0a79810d142cd1e1057cf45a808321e5c5e62e | bf108/Prediction-of-US-City-Temp-with-Linear-Regression | /Predicting_US_Cities_Annual_Temp_Linear_Regression.py | 9,475 | 3.609375 | 4 | import numpy as np
import pylab
import matplotlib.pyplot as plt
import re
# cities in our weather data
CITIES = [
'BOSTON',
'SEATTLE',
'SAN DIEGO',
'PHILADELPHIA',
'PHOENIX',
'LAS VEGAS',
'CHARLOTTE',
'DALLAS',
'BALTIMORE',
'SAN JUAN',
'LOS ANGELES',
'MIAMI',
'NEW ORLEANS',
'ALBUQUERQUE',
'PORTLAND',
'SAN FRANCISCO',
'TAMPA',
'NEW YORK',
'DETROIT',
'ST LOUIS',
'CHICAGO'
]
INTERVAL_1 = list(range(1961, 1985))
INTERVAL_2 = list(range(1985, 2016))
class Climate(object):
"""
The collection of temperature records loaded from given csv file
"""
def __init__(self, filename):
"""
Initialize a Climate instance, which stores the temperature records
loaded from a given csv file specified by filename.
Args:
filename: name of the csv file (str)
"""
self.rawdata = {}
f = open(filename, 'r')
header = f.readline().strip().split(',')
for line in f:
items = line.strip().split(',')
date = re.match('(\d\d\d\d)(\d\d)(\d\d)', items[header.index('DATE')])
year = int(date.group(1))
month = int(date.group(2))
day = int(date.group(3))
city = items[header.index('CITY')]
temperature = float(items[header.index('TEMP')])
if city not in self.rawdata:
self.rawdata[city] = {}
if year not in self.rawdata[city]:
self.rawdata[city][year] = {}
if month not in self.rawdata[city][year]:
self.rawdata[city][year][month] = {}
self.rawdata[city][year][month][day] = temperature
f.close()
def get_yearly_temp(self, city, year):
"""
Get the daily temperatures for the given year and city.
Args:
city: city name (str)
year: the year to get the data for (int)
Returns:
a numpy 1-d array of daily temperatures for the specified year and
city
"""
temperatures = []
assert city in self.rawdata, "provided city is not available"
assert year in self.rawdata[city], "provided year is not available"
for month in range(1, 13):
for day in range(1, 32):#change back to 32 for full month
if day in self.rawdata[city][year][month]:
temperatures.append(self.rawdata[city][year][month][day])
return np.array(temperatures)
def get_daily_temp(self, city, month, day, year):
"""
Get the daily temperature for the given city and time (year + date).
Args:
city: city name (str)
month: the month to get the data for (int, where January = 1,
December = 12)
day: the day to get the data for (int, where 1st day of month = 1)
year: the year to get the data for (int)
Returns:
a float of the daily temperature for the specified time (year +
date) and city
"""
assert city in self.rawdata, "provided city is not available"
assert year in self.rawdata[city], "provided year is not available"
assert month in self.rawdata[city][year], "provided month is not available"
assert day in self.rawdata[city][year][month], "provided day is not available"
return self.rawdata[city][year][month][day]
def get_monthly_mean(self, city, month, year):
assert city in self.rawdata, "provided city is not available"
assert year in self.rawdata[city], "provided year is not available"
assert month in self.rawdata[city][year], "provided month is not available"
mean_temp = []
for day in range(1,32):#change back to 32 for full month
if day in self.rawdata[city][year][month]:
mean_temp.append(self.rawdata[city][year][month][day])
mean = sum(mean_temp)/float(len(mean_temp))
return mean
# Problem 1
def generate_models(x, y, degs):
"""
Generate regression models by fitting a polynomial for each degree in degs
to points (x, y).
Args:
x: a list with length N, representing the x-coords of N sample points
y: a list with length N, representing the y-coords of N sample points
degs: a list of degrees of the fitting polynomial
Returns:
a list of numpy arrays, where each array is a 1-d array of coefficients
that minimizes the squared error of the fitting polynomial
"""
# TODO
models = []
xval = np.array(x)
yval = np.array(y)
for d in degs:
models.append(pylab.polyfit(xval, yval, d))
return models
# Problem 2
def r_squared(observed, predicted):
"""
Calculate the R-squared error term.
Args:
y: list with length N, representing the y-coords of N sample points
estimated: a list of values estimated by the regression model
Returns:
a float for the R-squared error term
"""
# TODO
error = ((predicted - observed)**2).sum()
meanError = error/len(observed)
return 1 - (meanError/np.var(observed))
# Problem 3
def evaluate_models_on_training(x, y, models,dataSet):
"""
For each regression model, compute the R-square for this model with the
standard error over slope of a linear regression line (only if the model is
linear), and plot the data along with the best fit curve.
For the plots, you should plot data points (x,y) as blue dots and your best
fit curve (aka model) as a red solid line. You should also label the axes
of this figure appropriately and have a title reporting the following
information:
degree of your regression model,
R-square of your model evaluated on the given data points
Args:
x: a list of length N, representing the x-coords of N sample points
y: a list of length N, representing the y-coords of N sample points
models: a list containing the regression models you want to apply to
your data. Each model is a numpy array storing the coefficients of
a polynomial.
dataSet: String outlining data set in analysis e.g Boston, Chicago or USA
Returns:
None
"""
# TODO
styles = ['r-','g-','y-']
pylab.plot(x,y,'b-',label = 'Mean Temperature Data')
# rSquares = {}
i = 0
for m in models:
# rSquares[m] = []
estYVals = pylab.polyval(m, np.array(x))
# rSquares[m].append(estYVals)
error = round(r_squared(np.array(y), estYVals),5)
pylab.plot(x,estYVals,styles[i],label = (str(str(i+1) + "Order Polynomial" + "\n" + " R-Squared Error: " + str(error))))
i +=1
pylab.title('Average Annual {} Temperatures'.format(dataSet))
pylab.xlabel('Years')
pylab.ylabel('Average Temperature Deg C')
pylab.legend(loc = 'best')
### Begining of program
'''
Code to plot avg annual temp for all US cities
The regression models are show on the plots also with respective errors
The linear regression appears to be much more accurate than the ploynomials versions
'''
def usAverageTemp():
raw_data = Climate('data.csv')
avg_temp1 = []
for year in INTERVAL_1:
avg = 0
for city in CITIES:
avg += sum(raw_data.get_yearly_temp(city,year))/float(len(raw_data.get_yearly_temp(city,year)))
avg_temp1.append(avg/float(len(CITIES)))
avg_temp2 = []
for year in INTERVAL_2:
avg = 0
for city in CITIES:
avg += sum(raw_data.get_yearly_temp(city,year))/float(len(raw_data.get_yearly_temp(city,year)))
avg_temp2.append(avg/float(len(CITIES)))
models = generate_models(INTERVAL_1,avg_temp1,[1,2])
evaluate_models_on_training(INTERVAL_2,avg_temp2,models,'USA')
def cityAverageTemp(city):
city = city.upper()
while city not in CITIES:
[print(c) for c in CITIES]
city = input('City not available, select a city from above list: ').upper()
raw_data = Climate('data.csv')
avg_temp1 = []
for year in INTERVAL_1:
avg_temp1.append(sum(raw_data.get_yearly_temp(city,year))/float(len(raw_data.get_yearly_temp(city,year))))
avg_temp2 = []
for year in INTERVAL_2:
avg_temp2.append(sum(raw_data.get_yearly_temp(city,year))/float(len(raw_data.get_yearly_temp(city,year))))
models = generate_models(INTERVAL_1,avg_temp1,[1,2])
evaluate_models_on_training(INTERVAL_2,avg_temp2,models,city.title())
def annualCityTemp(city, year):
import calendar
city = city.upper()
while city not in CITIES:
[print(c) for c in CITIES]
city = input('City not available, select a city from above list: ').upper()
while not min(INTERVAL_1) < year < max(INTERVAL_2):
year = int(input('Please pick a year between 1960 and 2016: '))
raw_data = Climate('data.csv')
monthly_mean = [raw_data.get_monthly_mean(city,i,year) for i in range(1,13)]
months = [calendar.month_abbr[i] for i in range(1,13)]
x_vals = np.arange(len(months))
plt.bar(x_vals, monthly_mean, align='center', alpha=0.5)
plt.xticks(x_vals,months)
plt.ylabel('Mean Monthly Temperature Deg C')
plt.title('Monthly Mean Temperature of {} during {}'.format(city.title(),year))
|
f682a67759afb0a5e5b25a77f16bd86bc94c29c7 | godxvincent/pythonbasico | /ModuloAccesoBD/BaseDatosRestaurante.py | 4,625 | 3.84375 | 4 | import sqlite3
import os
def crear_db():
conexion = sqlite3.connect("restaurante.db")
cursor = conexion.cursor()
try:
sentencia = """CREATE TABLE categoria(
id INTEGER PRIMARY KEY AUTOINCREMENT,
nombre VARCHAR(100) UNIQUE NOT NULL) """
cursor.execute(sentencia)
except sqlite3.OperationalError:
print("La tabla categoria ya fue creada")
except Exception as e:
print(type(e).__name__)
finally:
print("Continua con el proceso")
try:
sentencia = """CREATE TABLE plato(
id INTEGER PRIMARY KEY AUTOINCREMENT,
nombre VARCHAR(100) UNIQUE NOT NULL,
categoria_id INTEGER NOT NULL,
FOREIGN KEY(categoria_id) REFERENCES categoria(id))"""
cursor.execute(sentencia)
except sqlite3.OperationalError:
print("La tabla plato ya fue creada")
except Exception as e:
print(type(e).__name__)
finally:
print("Continua con el proceso")
conexion.commit()
conexion.close()
def agregar_categoria():
os.system("cls")
while (True):
print("Por favor ingresar una categoria")
categoria = input()
listaCategorias = []
listaCategorias.append(categoria.title())
try:
conexion = sqlite3.connect("restaurante.db")
cursor = conexion.cursor()
cursor.execute("INSERT INTO categoria VALUES (null,?)",
listaCategorias)
except sqlite3.IntegrityError:
print("**********************ERROR*************************")
print("La categoria {} ya esta registrada".format(categoria))
print("**********************ERROR*************************")
except Exception as e:
print(type(e).__name__)
else:
print("Categoria creada exitosamente")
break
finally:
conexion.commit()
conexion.close()
def agregar_plato():
# Se cargan las categorias disponibles.
conexion = sqlite3.connect("restaurante.db")
cursor = conexion.cursor()
cursor.execute("SELECT * FROM categoria")
categorias = cursor.fetchall()
conexion.commit()
conexion.close()
os.system("cls")
while (True):
print("Por favor ingrese el nombre del plato que desea registrar")
nombrePlato = input()
print("Por favor indique a cual categoria pertenece el plato")
for categoria in categorias:
print("Código Categoria '{}', Nombre Categoria '{}'".
format(categoria[0], categoria[1]))
idCategoria = input()
try:
platoTupla = (nombrePlato.title(), int(idCategoria))
conexion = sqlite3.connect("restaurante.db")
cursor = conexion.cursor()
cursor.execute("INSERT INTO plato VALUES (null,?,?)", platoTupla)
except sqlite3.IntegrityError:
print("El plato {} ya se encuentra registrado".
format(nombrePlato, idCategoria))
except Exception as e:
print(type(e).__name__)
break
else:
print("Plato registrado correctamente")
break
finally:
conexion.commit()
conexion.close()
def visualizar_menu():
conexion = sqlite3.connect("restaurante.db")
cursor = conexion.cursor()
cursor.execute(
"SELECT a.nombre, b.nombre FROM categoria a join plato b on (a.id = b.categoria_id)")
menu = cursor.fetchall()
for plato in menu:
print("Categoria: {} - Plato: {}".format(plato[0], plato[1]))
conexion.commit()
conexion.close()
def menuOpciones():
os.system("cls")
while True:
print("********************************************************")
print("Bienvenido al menu para adicionar categorias de platos ")
print("Ingrese opción 1 para adicionar nuevas categorias")
print("Ingrese opción 2 para adicionar un plato a una categoria")
print("Ingrese opción 3 para visualizar el menú")
print("Ingrese opción 4 para salir del menú")
print("*******************************************************")
opcion = input("Ingrese una opción\n")
if opcion == "1":
agregar_categoria()
elif opcion == "2":
agregar_plato()
elif opcion == "3":
visualizar_menu()
elif opcion == "4":
print("Gracias por usar nuestro sistema")
break
else:
print("***Opción no válida***")
# crear_db()
menuOpciones()
|
f619f9942ad4af68e1a9ef369d0f4b036f41cc1a | frclasso/CodeGurus_Python_mod1-turma1_2019 | /Cap18_Tkinter/07_label.py | 520 | 3.671875 | 4 | from tkinter import *
root = Tk()
root.title("Lables")
label = Label(root, text="Hey, How are you doing?", relief=RAISED)
label.pack()
Label(root, text='Sufficient width', fg='white', bg='purple', relief=RAISED).pack()
Label(root, text='Width of x', fg='white', bg='green', relief=RAISED).pack(fill='x')
Label(root, text='Height of y', fg='white', bg='black', relief=RAISED).pack(side='left', fill='y')
Label(root, text='Height of y', fg='white', bg='blue', relief=RAISED).pack(side='left',fill='y')
root.mainloop() |
f949ee0f65234c925a8d22b4df252bb5cfd8c137 | Fiinall/UdemyPythonCourse | /Loops/Determining Factorial - Alternative.py | 438 | 4.25 | 4 | print(""" Hello
I Can Help You to Determine Your Numbers Factorial
To Exit Press the "q"
""")
while True:
Number = (input("Please Enter Your Number"))
if (Number == "q"):
print("Exiting...")
break
else:
Factorial = 1
Number = int(Number)
for i in range(1,Number+1) :
Factorial = i*Factorial
i += 1
print(Factorial)
|
9bba419a842ef4d5c1b3a1811bd2a9afb1f7b318 | jonasht/cursoIntesivoDePython | /exercisesDosCapitulos/07-entradaDeUsuario-E-lacosWhile/7.3-multiplosDDez.py | 170 | 3.921875 | 4 | n = int(input('\ninforme o numero para ver é multiplo de 10,\nn:'))
print('o numero é multiplo de dez' if n % 10 == 0
else 'o numero não é multiplo de dez')
|
3b37021ba5655f6a5b20e5ceb54294d3cf472bc0 | andysai/python | /黑马程序员-python/python从0开始学编程/day03/16-猜拳游戏功能实现.py | 565 | 4.28125 | 4 | """
1 出拳
玩家:手动输入
电脑:1 固定:剪刀 2. 随机
2 判断输赢
2.1 玩家获胜
2.2 平局
2.3 电脑获胜
"""
# 1 出拳
# 玩家
player = int(input("请出拳(0--石头;1--剪刀;2--布):"))
# 电脑
computer = 1
# 2 判断输赢
# 玩家获胜
if ((player == 0) and (computer == 1)) or ((player == 1) and (computer == 2)) or ((player == 2) and (computer == 0)) :
print('玩家获胜')
# 平局
elif player == computer:
print('平局,别走,再来一次')
# 电脑获胜
else:
print('电脑获胜') |
61cd48dd6701147f1438ebba6eb01ee06f766ef7 | xtorrentgorjon/Python-Examples | /Multiprocessing/Threads/threads.py | 466 | 3.90625 | 4 | #####
# Python Examples:
# threads.py
#
# Simple threading example.
#
# Xavier Torrent Gorjon
#####
import threading
THREAD_NUMBER = 4
class thread_class(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
self.__n = 0
def run(self):
n = self.__n
while n < 1000:
n+=1
print self.name, n
if __name__ == "__main__":
thread_list = []
for i in range(THREAD_NUMBER):
thread_list.append(thread_class())
for i in thread_list:
i.start()
|
ead747179025becc977d7e79bd4624438a331426 | ajpri/UHD_CS3321-Spr2020-25973-LMS | /functions.py | 617 | 3.875 | 4 | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 4 11:51:57 2020
@author: austin
"""
grades = ("A", "C", "F")
def calcgpa(inputgrades):
sum = 0
for grade in grades:
if grade.upper() == "A":
sum += 4
elif grade.upper() == "B":
sum += 3
elif grade.upper() == "C":
sum += 2
elif grade.upper() == "D":
sum += 1
elif grade.upper() == "F":
sum += 0
return sum/len(inputgrades)
print(round(calcgpa(grades),2))
|
2581f0e8a881aa7112ca2e1cf5396d673a2962c4 | jspencersharp/Portfolio | /Functions/sept7.lecture.py | 642 | 3.6875 | 4 | # class that rep's superhero - name, city, powers,
class Hero():
def __init__ (self, name, city, powers):
self.name = name
self.city = city
self.powers = powers
hero1 = Hero("superman", "New York", "x-ray vision")
print hero1.name
#create villain
class Villian():
def __init__(self,name,city,powers):
self.name=name
self.city=city
self.powers=powers
villian1=Villian("joker","gotham","violence")
class Sidekick():
def __init__(self, name, city, powers):
self.name=name
self.city=city
self.powers=powers
sidekick1 = Sidekick("bob","gotham","none") |
ebdb6a3030065b25ba68888d1943e760a7f88253 | machineMachineLearning/PythonProgramming | /program21_RNN.py | 23,300 | 4.03125 | 4 | # we use: http://www.deeplearningitalia.com/wp-content/uploads/2017/12/Dropbox_Chollet.pdf
# we use: F. Chollet, Deep learning with Python
# RNN
# an RNN is a for loop that re-uses quantities computed during the previous iteration of the loop
# RNNs, LSTM-RNNs and GRU-RNNs
# LSTM-RNNs and GRU-RNNs are better than RNNs
# LSTM-RNNs and GRU-RNNs are better than vanilla RNNs
# LSTM-RNNs are used in (https://research.google.com/pubs/archive/44312.pdf)
# GRU-RNNs are used in (https://pdfs.semanticscholar.org/702e/aa99bcb366d08d7f450ed7e354f9f6920b23.pdf)
import numpy as np
#state_t = 0
#for input_t in input_sequence:
#output_t = activation(dot(W, input_t) + dot(U, state_t) + b)
#state_t = output_t
timesteps = 100
# the input sequence has 100 timesteps
input_features = 32
# the dimensionality of the output is 32
output_features = 64
# the dimensionality of the output is 64
# we define the input
inputs = np.random.random((timesteps, input_features))
# the input is random noise
# initialize the state
state_t = np.zeros((output_features,))
# the state is initialized to zero
W = np.random.random((output_features, input_features))
U = np.random.random((output_features, output_features))
b = np.random.random((output_features,))
successive_outputs = []
# use for loop
for input_t in inputs:
output_t = np.tanh(np.dot(W, input_t) + np.dot(U, state_t) + b)
# we define the output
#output_t = np.tanh(np.dot(W, input_t) + np.dot(U, state_t) + b)
# we use tanh
successive_outputs.append(output_t)
state_t = output_t
final_output_sequence = np.concatenate(successive_outputs, axis=0)
# we use SimpleRNN
from keras.layers import SimpleRNN
# SimpleRNN has inputs: (batch_size, timesteps, input_features)
from keras.models import Sequential
from keras.layers import Embedding, SimpleRNN
model = Sequential()
model.add(Embedding(10000, 32))
model.add(SimpleRNN(32))
model.summary()
model = Sequential()
model.add(Embedding(10000, 32))
model.add(SimpleRNN(32, return_sequences=True))
model.summary()
# we now stack several recurrent layers one after the other
model = Sequential()
model.add(Embedding(10000, 32))
model.add(SimpleRNN(32, return_sequences=True))
model.add(SimpleRNN(32, return_sequences=True))
model.add(SimpleRNN(32, return_sequences=True))
model.add(SimpleRNN(32))
model.summary()
# we use IMDB
from keras.datasets import imdb
# we use the IMDB movie review classification problem
from keras.preprocessing import sequence
max_features = 10000
maxlen = 500
batch_size = 32
print('Loading data...')
(input_train, y_train), (input_test, y_test) = imdb.load_data(num_words=max_features)
print(len(input_train), 'train sequences')
print(len(input_test), 'test sequences')
print('We pad sequences (samples x time)')
input_train = sequence.pad_sequences(input_train, maxlen=maxlen)
input_test = sequence.pad_sequences(input_test, maxlen=maxlen)
print('input_train shape:', input_train.shape)
print('input_test shape:', input_test.shape)
# we use an Embedding layer and a SimpleRNN layer
# we use: SimpleRNN
from keras.layers import Dense
model = Sequential()
model.add(Embedding(max_features, 32))
model.add(SimpleRNN(32))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
history = model.fit(input_train, y_train, epochs=10, batch_size=128, validation_split=0.2)
# we train the model
# we see:
# 5120/20000 [======>.......................] - ETA: 17s - loss: 0.6916 - acc: 0.5273
# 5248/20000 [======>.......................] - ETA: 17s - loss: 0.6917 - acc: 0.5274
# 5376/20000 [=======>......................] - ETA: 17s - loss: 0.6916 - acc: 0.5283
# 5504/20000 [=======>......................] - ETA: 17s - loss: 0.6913 - acc: 0.5305
# 5632/20000 [=======>......................] - ETA: 17s - loss: 0.6912 - acc: 0.5314
# 13696/20000 [===================>..........] - ETA: 7s - loss: 0.2009 - acc: 0.9265
# 13824/20000 [===================>..........] - ETA: 7s - loss: 0.2010 - acc: 0.9266
# 13952/20000 [===================>..........] - ETA: 7s - loss: 0.2018 - acc: 0.9261
# Epoch 8/10
# we plot the training and validation loss and accuracy
# we use plt to plot figures
import matplotlib.pyplot as plt
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
# we define the epochs
epochs = range(1, len(acc) + 1)
# we plot the training and validation accuracy
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
# we now plot the training and validation loss
# plot the training and validation loss
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
# use: https://www.w3resource.com/c-programming-exercises/recursion/index.php
# we use: http://interactivepython.org/runestone/static/pythonds/index.html#
# website: http://interactivepython.org/runestone/static/pythonds/index.html#
# we use: http://interactivepython.org/runestone/static/pythonds/BasicDS/toctree.html
# we use lambda expressions in Python
# use: https://docs.python.org/2/reference/expressions.html#lambda
# we use: https://docs.python.org/2/reference/expressions.html
# website: https://docs.python.org/2/reference/expressions.html#lambda
# recursion, Fibonacci series
# recursion and memoization to solve stack overflow problems
# we use: https://www.w3resource.com/c-programming-exercises/recursion/index.php
# Fibonacci series with recursion
def Fib_rec(n):
if n == 0:
return 1
if n == 1:
return 1
return Fib_rec(n - 1) + Fib_rec(n - 2)
print(Fib_rec(1))
print(Fib_rec(2))
print(Fib_rec(10))
print('')
# Fibonacci series with no recursion
def Fib(n):
prev = 1
last = 1
for i in range(1, n):
# prev = last
last, prev = (prev + last), last
return last
print(Fib(1))
print(Fib(2))
print(Fib(10))
print('')
# sum of N terms from Fibonacci
def sumFib(n):
prev = 1
last = 1
sum1 = 2
if n == 0:
return 1
for i in range(1, n):
# prev = last
last, prev = (prev + last), last
sum1 += last
return sum1
print(sumFib(3))
print(sumFib(4))
print(sumFib(10))
print('')
# sum of N terms from Fibonacci
def sumFib_rec(n):
if n == 0:
return 1
if n == 1:
return 2
return 1 + sumFib_rec(n - 2) + sumFib_rec(n - 1)
print(sumFib_rec(3))
print(sumFib_rec(4))
print(sumFib_rec(10))
print('')
# print(Fib(1))
# print(Fib(2))
# print(Fib(10))
# memoization
# recursion and memoization
# Fibonacci series and memoization
# tuple and list unpacking
a = [3, 4, 5, 600]
# unpack list to variables
m1, m2, m3, m4 = a
print(m4)
m1, m2 = 3, 4 #same as: m1, m2 = (3, 4)
print(m1, m2)
print('')
# the left-hand side => same elements as needed
# m1, m2 = a => error too many values to unpack
# unpack
m1, m2, *r = a
# in r => elements are stored as a list
# we use a list for "r"
m1, m2, *r = (1, 2, 3, 4, 5, 6, 7)
print(r)
# use unpacking
m1, m2, *r = 1, 2, 3, 4, 5, 6, 7
print(r)
# var1 = 4 and list1 = [3,2,1]
var1, *list1 = 4,3,2,1
# we use tuples and unpacking
print(list1)
print('')
# to terminate a while loop: use "break" or "pass"
# use: "and", "or"
# and, or, in, not in, !=, ==
# De Morgan's laws
# use: https://en.wikipedia.org/wiki/De_Morgan%27s_laws
# use: while not found and lower<=upper
# we use: while not found and not lower>upper
# we now use: while not (found or lower>upper)
# we use De Morgan's laws
# use: while not (found or lower>upper)
# https://en.wikipedia.org/wiki/De_Morgan%27s_laws
# use: https://www.tutorialspoint.com/computer_logical_organization/demorgan_theroems.htm
# use: http://interactivepython.org/runestone/static/pythonds/SortSearch/TheBinarySearch.html
# we use: http://interactivepython.org/runestone/static/pythonds/index.html#
# binary search => sorted list
# binary search is stable => 9 searches to find item
# binary search needs a sorted list
def binarySearch(list1, item1):
upper = len(list1) - 1
lower = 0
found = False
while not found and upper >= lower:
mid = (upper + lower) // 2
#print(upper)
#print(lower)
if list1[mid] == item1:
found = True
elif list1[mid] < item1:
lower = mid + 1
else:
upper = mid - 1
# if upper < lower:
# break
return found
list1 = [4, 5, 6, 7]
print(binarySearch(list1, 6))
list1 = [4, 5, 6, 7, 5, 2, 3, 1, -1, -3, -2, 0]
list1.sort()
print(binarySearch(list1, 6))
print(binarySearch(list1, -4))
print('')
# the greatest common divisor (gcd)
# use: https://en.wikipedia.org/wiki/Greatest_common_divisor
# greatest common divisor
def gcd(a, b):
if a == b:
return a
# return mkd(abs(a-b), min(a,b))
return gcd(a - b, b) if a > b else gcd(a, b - a)
# return x if a>b else y
# use: return x if a>b else y
# we use: x if a>b else y
print(gcd(15, 3))
print(gcd(12, 18))
print(gcd(90, 12))
# https://www.w3resource.com/c-programming-exercises/recursion/index.php
# recursion programming exercises
# use: https://www.w3resource.com/c-programming-exercises/recursion/index.php
# we use: https://www.geeksforgeeks.org/recursion-practice-problems-solutions/
# http://interactivepython.org/courselib/static/thinkcspy/Recursion/ProgrammingExercises.html
# use: http://interactivepython.org/runestone/static/pythonds/index.html#
# recursion coding exercises
# Python recursion exercises
# recursion programming exercises
# main website: https://www.w3resource.com/c-programming-exercises/recursion/index.php
# Compute the sum 1/2 + 3/5 + 5/8 + .... for N terms with recursion and with no recursion.
# 1/2 + 3/5 + 5/8 + 7/11 + 9/14 + ....
# sum of 1/2 + 3/5 + 5/8 + 7/11 + 9/14 + .... for N terms with recursion and with no recursion
# sum of N terms with no recursion
def functionSum(n):
sum1 = 0
for i in range(n):
#sum1 += (2*n+1) / (2*n+n+2)
sum1 += (2*i+1) / (3*i+2)
return sum1
print(functionSum(1))
print(functionSum(2))
print(functionSum(3))
print(functionSum(4))
print(functionSum(10))
print('')
# sum of N terms with no recursion
def functionSum2(n):
sum1 = 0
var1 = 1
var2 = 2
for i in range(n):
sum1 += var1 / var2
var1 += 2
var2 += 3
return sum1
print(functionSum2(1))
print(functionSum2(2))
print(functionSum2(3))
print(functionSum2(4))
print(functionSum2(10))
print('')
# sum of N terms with recursion
def functionSum_rec(n):
if n == 1:
return 1/2
#return ((2*(n-1)+1) / (2*(n-1)+(n-1)+2)) + functionSum_rec(n-1)
return ((2*n - 1) / (3*n - 1)) + functionSum_rec(n - 1)
print(functionSum_rec(1))
print(functionSum_rec(2))
print(functionSum_rec(3))
print(functionSum_rec(4))
print(functionSum_rec(10))
print('')
# sum of N terms with recursion
def functionSum2_rec(n, var1=0, var2=0):
if n == 1:
return 1/2
if (var1 == 0 and var2 == 0):
var1 = (2*n - 1)
var2 = (3*n - 1)
#else:
# pass
return (var1/var2) + functionSum2_rec(n-1, var1-2, var2-3)
print(functionSum2_rec(1))
print(functionSum2_rec(2))
print(functionSum2_rec(3))
print(functionSum2_rec(4))
print(functionSum2_rec(10))
print('')
# Python Online: Interactive Python problems
# http://interactivepython.org/runestone/static/pythonds/index.html
# Recursion with finite memory and stack. Trees, graphs.
# use: http://interactivepython.org/runestone/static/pythonds/index.html
# List of interview questions:
# www.github.com/MaximAbramchuck/awesome-interview-questions
# Website for Python coding questions:
# https://www.springboard.com/blog/data-science-interview-questions/#programming
# use: https://www.w3resource.com/c-programming-exercises/recursion/index.php
# https://www.springboard.com/blog/data-science-interview-questions
# we use: http://interactivepython.org/runestone/static/pythonds/index.html#
# we use: http://interactivepython.org/runestone/static/pythonds/BasicDS/toctree.html
# website: http://interactivepython.org/runestone/static/pythonds/index.html#
# we use lambda expressions in Python
# use: https://docs.python.org/2/reference/expressions.html#lambda
# we use: https://docs.python.org/2/reference/expressions.html
# website: https://docs.python.org/2/reference/expressions.html#lambda
# recursion, Fibonacci series
# recursion and memoization to solve stack overflow problems
# we use: https://www.w3resource.com/c-programming-exercises/recursion/index.php
# Find the n-term of the series: a(n) = a(n-1)*2/3 with recursion and with no recursion.
# recursion for a(n) = a(n-1)*2/3
def function1(n):
if n == 0:
return 1
return (2/3) * function1(n-1)
print('')
print(function1(1))
print(function1(2))
print(function1(3))
print(function1(9))
print('')
# no recursion for a(n) = a(n-1)*2/3
def function2(n):
k = 1
for i in range(1,n+1):
k *= 2/3
return k
print('')
print(function2(1))
print(function2(2))
print(function2(3))
print(function2(9))
print('')
# use: http://interactivepython.org/runestone/static/pythonds/index.html
# use: https://www.w3resource.com/c-programming-exercises/recursion/index.php
# website: http://interactivepython.org/runestone/static/pythonds/index.html#
# we use: http://interactivepython.org/runestone/static/pythonds/BasicDS/toctree.html
# we use lambda expressions in Python
# use: https://docs.python.org/2/reference/expressions.html#lambda
# website: https://www.w3resource.com/c-programming-exercises/recursion/index.php
# we use: https://docs.python.org/2/reference/expressions.html
# website: https://docs.python.org/2/reference/expressions.html#lambda
import numpy as np
# we use Python's build-in functions
# use: https://docs.python.org/3/library/functions.html
# we use *args and **kwargs
# https://www.saltycrane.com/blog/2008/01/how-to-use-args-and-kwargs-in-python/
# use one-line code
# write as few lines of code as possible
# use comprehensions
a = [i for i in range(2, 100 + 1, 2)]
print(a)
# we use list comprehensions
a = [i for i in range(1, 101) if i % 2 == 0]
print(a)
# create a generator object, use "(.)"
a = (i for i in range(1, 101) if i % 2 == 0)
# the generator object can be used only once
# the generator object can be used one time only
print(list(a))
print('')
# positional arguments => position matters
# we can call function1 using "function1(y=1, x=2)"
# function with positional arguments x, y
def function1(x, y):
return x - y
# positional arguments: the position matters
print(function1(3, 5))
# named arguments, no matter the order
print(function1(y=3, x=5))
# both positional arguments and named arguments
print(function1(4, y=7))
# in functions, position can matter and can not matter
# positional arguments for function
# positional parameters, function inputs, arguments
print('')
print(max(2,6,9,3))
print(sum([2,6,9,3]))
# functions can have default values
# define a function with default values
def func2(x, y=9, z=1):
# the default value is for z
return (x + y) * z
# If we do not give a value for z, then z=1=(default value)
# we can have default values in functions
# default values go to the end of the arguments
# use: (1) default values, (2) *args, (3) **kwargs
# we use default values, one asterisk (i.e. *) and two asterisks (i.e. **)
# we now use *args and **kwargs
# use: https://www.saltycrane.com/blog/2008/01/how-to-use-args-and-kwargs-in-python/
# default arguments can be only at the end, even more than one
g = func2(2, 5, 7)
print(g)
print('')
for i in range(5):
print(i, "-", i ** 2)
# use *args at the end
# we use un-named arguments *args
# (1) *args at the end of the arguments in a function
# (2) default values at the end of the arguments in a function
# *args must be in the end of the arguments
def apodosi(*apodoseis):
k = 1
for i in apodoseis:
k *= i
return k
# use: (1) *args, and (2) **kwargs
# "**kwargs" is a dictionary dict
# we use keys and values
# "**kwargs" is a dictionary and has keys and values
# **kwargs must be at the end and hence after *args
def apodosi(*apodoseis, **kwargs):
# we use the "max" key in the dictionary
if "max" in kwargs:
n = kwargs["max"]
else:
n = len(apodoseis)
k = 1
for i in range(n):
k *= apodoseis[i]
return k
# **kwargs must be at the end and hence after *args
def apodosi2(*apodoseis, **kwargs):
# we use the "max" key in the dictionary
if "max" in kwargs:
# we use min(., len(apodoseis))
n = min(kwargs["max"], len(apodoseis))
else:
n = len(apodoseis)
k = 1
for i in range(n):
k *= apodoseis[i]
return k
print('')
print(apodosi(1.11, 1.22, 1.31))
print(apodosi2(1.11, 1.22, 1.31))
print('')
# use: "*m" amd "myFunction(*m)"
m = [2.3, 1.4, 1.8, 1.5, 2.4]
# we use: "*m" amd "myFunction(*m)"
# when we have a list m, then we use "*m" to get its elements
print(apodosi(*m, max=3))
print(apodosi2(*m, max=3))
# use *list1 to break the list
print(apodosi2(*m, max=13))
# the function does not work if we do not use "*"
# use *args and **kwargs in functions
# website: https://www.saltycrane.com/blog/2008/01/how-to-use-args-and-kwargs-in-python/
# use: https://www.geeksforgeeks.org/args-kwargs-python/
# convert to binary
# convert the number n to binary
n = 14
# we use the stack data structure
# define a list that will be used as a stack
stack1 = []
# stack: the last item that enters the stack is the first item out
# the stack data structure is Last In First Out (LIFO)
# the queue data structure is First In First Out (FIFO)
print('')
# every program uses an execution stack
# the execution stack in Python is short
# Every program has a stack that contains the parameters and the local variables of the functions
# that have been called. The stack is LIFO. The last parameter of a function gets out first, i.e. LIFO,
# when many funnctions have been called in a recursion.
# recursion problems
# recursion and memoization
# Fibonacci series and memoization
# the stack overflow error
# stack overflow: when recursion, when the execution stack is full
# we use a while loop
while n != 0:
# d is the last digit
d = n % 2
# print(d)
stack1.insert(0, d)
# we remove the last digit
n = n // 2
# print the elements
for i in stack1:
print(i, end="")
print()
def toBinary(n):
if n == 0:
return
toBinary(n // 2)
print(n % 2, end='')
toBinary(14)
print()
toBinary(14)
print()
# d is the last digit
# d = n % 2
# stack1.insert(0, d)
# we remove the last digit
#n = n // 2
# we use base 8
def toOctal(n):
if n == 0:
return
toOctal(n // 8)
print(n % 8, end='')
# use base 10
def toDecimal(n):
if n == 0:
return
toDecimal(n // 10)
print(n % 10, end='')
# 453%10 = 3 = last digit
# 453//10 = 45 = remove last digit
# x%10 = last digit
# x//10 = remove last digit
# we use base 3
def toTernary(n):
if n == 0:
return
toTernary(n // 3)
print(n % 3, end='')
# sum of N numbers
def sumToN(N):
sum = 0
for i in range(1, N + 1):
sum += i
return sum
# recursion, sum of N numbers
def sumToN_rec(N):
#print(N)
if N == 1:
return 1
# return 1 + sumToN_rec(N-1)
return N + sumToN_rec(N - 1)
print('')
print(sumToN_rec(4))
#print(sumToN_rec(40000))
print(sumToN_rec(40))
# recursion problems
# coding recursion exercises
# programming recursion exercises
# recursion and memoization
# write code with and without recursion
# use one-line code
# lambda expressions => one line only
# comprehensions, list comprehensions => one line only
# use comprehensions: lists or generator objects
# comprehensions with "(.)" => generator objects
# generator objects are created for one time only
# positional arguments
# define functions and call them with positional arguments
# positional arguments or non-positional arguments, default values
# default values go at the end, *args goes at the end
# use *args and **kwargs, **kwargs goes at the end
# use function1(*list1), use "*list1"
# we use "*list1" to break the list to its elements
# dictionary: keys and values
# dictionaries have keys and values
# we use *args and ** kwargs
# website: https://www.geeksforgeeks.org/args-kwargs-python/
# **kwargs => named arguments, dictionary
# dictionary has keys and values
# we use keys as an index to acccess the values
# "if "max" in dict1:": "max" is a key and not a value
# stack data structure => LIFO
# LIFO, last in first out, stack, execution stack
# recursion, memoization, execution stack, stack overflow
# limited stack, limited short execution stack
# recursion, Fibonacci series => stack overflow
# memoization, we use lookup table, memoization to store values
# Find the n-term of the series: a(n) = a(n-1)*2/3 with recursion and with no recursion.
# recursion for a(n) = a(n-1)*2/3
def function1(n):
if n == 0:
return 1
return (2/3) * function1(n-1)
print('')
print(function1(1))
print(function1(2))
print(function1(3))
print(function1(9))
print('')
# no recursion for a(n) = a(n-1)*2/3
def function2(n):
k = 1
for i in range(1,n+1):
k *= 2/3
return k
print('')
print(function2(1))
print(function2(2))
print(function2(3))
print(function2(9))
print('')
# Compute the sum 1/2 + 3/5 + 5/8 + .... for N terms with recursion and with no recursion.
# 1/2 + 3/5 + 5/8 + 7/11 + 9/14 + ....
# sum of 1/2 + 3/5 + 5/8 + 7/11 + 9/14 + .... for N terms with recursion and with no recursion
# sum of N terms with no recursion
def functionSum(n):
sum1 = 0
for i in range(n):
#sum1 += (2*n+1) / (2*n+n+2)
sum1 += (2*i+1) / (3*i+2)
return sum1
print(functionSum(1))
print(functionSum(2))
print(functionSum(3))
print(functionSum(4))
print(functionSum(10))
print('')
def functionSum2(n):
sum1 = 0
var1 = 1
var2 = 2
for i in range(n):
sum1 += var1 / var2
var1 += 2
var2 += 3
return sum1
print(functionSum2(1))
print(functionSum2(2))
print(functionSum2(3))
print(functionSum2(4))
print(functionSum2(10))
print('')
# sum of N terms with recursion
def functionSum_rec(n):
if n == 1:
return 1/2
#return ((2*(n-1)+1) / (2*(n-1)+(n-1)+2)) + functionSum_rec(n-1)
return ((2*n - 1) / (3*n - 1)) + functionSum_rec(n - 1)
print(functionSum_rec(1))
print(functionSum_rec(2))
print(functionSum_rec(3))
print(functionSum_rec(4))
print(functionSum_rec(10))
print('')
def functionSum2_rec(n, var1=0, var2=0):
if n == 1:
return 1/2
if (var1 == 0 and var2 == 0):
var1 = (2*n - 1)
var2 = (3*n - 1)
#else:
# pass
return (var1/var2) + functionSum2_rec(n-1, var1-2, var2-3)
print(functionSum2_rec(1))
print(functionSum2_rec(2))
print(functionSum2_rec(3))
print(functionSum2_rec(4))
print(functionSum2_rec(10))
print('')
|
34bb662ffa26ffed3a8e3d795b02c659a9993fb6 | liwenkaitop/test | /sort.py | 369 | 3.90625 | 4 | # 冒泡排序
def bubblesort(srcDatas):
"""对一个列表中的数据进行从小到大的冒泡排序,返回排序成功"""
if len(srcDatas)<=2:
return True
for i in range(0,len(srcDatas)-1):
for j in range(0,len(srcDatas)-1-i):
if srcDatas[j] > srcDatas[j+1]:
data = srcDatas[j]
srcDatas[j] = srcDatas[j+1]
srcDatas[j+1] = data
return True
|
5f8b8eac76af2502611fe1a213ebeb4ebc5143b0 | VaishnaviReddyGuddeti/Python_programs | /Python_Lists/list()Constructor.py | 214 | 4.21875 | 4 | # It is also possible to use the list() constructor to make a new list.
#Using the list() constructor to make a List:
thislist = list(("apple", "banana", "cherry")) # note the double round-brackets
print(thislist)
|
c23e399f934381d0d7364c423d9b554c1f4e9572 | arishabh/HTML-and-CSS | /HTML - INFO-I 101/py4.py | 595 | 4.125 | 4 | import random
name = input("Enter your name: ")
sentence = "*proper fell on the *adj *noun today."
sentence = sentence.split()
nouns = ['table', 'chair', 'floor', 'ground', 'staircase', 'playground']
adj = ['huge', 'small', 'tiny', 'enormous', 'humungous']
count = 0;
for word in sentence:
if (word == '*noun'):
sentence[count] = random.choice(nouns)
if (word == '*proper'):
sentence[count] = name
if (word == '*adj'):
sentence[count] = random.choice(adj)
count += 1
st = ''
for word in sentence:
st += word + ' '
print(st)
|
42b084d6a687ef7acf2d59c8a50bb47d902beca6 | jihoondio/leetcode | /1588. Sum of All Odd Length Subarrays.py | 528 | 3.5625 | 4 | class Solution:
def sumOddLengthSubarrays(self, arr: List[int]) -> int:
_sum = sum(arr)
arr_sum = [arr[0]]
for i in range(1, len(arr)):
arr_sum.append(arr[i] + arr_sum[i - 1])
curr_odd = 3
while curr_odd <= len(arr):
for j in range(curr_odd - 1, len(arr)):
odd_sum = arr_sum[j]
if j >= curr_odd:
odd_sum -= arr_sum[j - curr_odd]
_sum += odd_sum
curr_odd += 2
return _sum |
575a0095523dd275b7e6a5f89266f4feae0afdbb | UCD-pbio-rclub/Pithon_JohnD | /July_18_2018/Problem_1.py | 803 | 4.125 | 4 | # Problem 1
# Write a function that reports the number of sequences in a fasta file
import string
import re
import glob
def fastaCount():
files = glob.glob('*')
filename = input('Enter the name of the fasta file if unsure, enter ls for \
current directory listings: ')
if filename == 'ls':
for i in files:
print(i)
filename = input('Enter the name of the fasta file: ')
if filename in files:
with open(filename, 'r') as f:
count = 0
line = f.readline()
while line != '':
if line.startswith('>'):
count += 1
line = f.readline()
print('There are', count, 'fasta records in', filename)
else:
print('File could not be found')
|
9211ee4ebe955333df1e0e5150510cb8b5f5c6b6 | RajashriST/python_demo | /factorial.py | 172 | 3.890625 | 4 | #factorial
fact=1
def factorial(x):
if x>1:
return x*factorial(x-1)
elif x==1:
return 1
fact=factorial(6)
print(fact)
#import math
#print(math.factorial(5))
|
d6b13141fee2ead8606aaa9c5f64ce6b0812627c | yiming1012/MyLeetCode | /LeetCode/树(Binary Tree)/834. 树中距离之和.py | 1,878 | 3.65625 | 4 | """
给定一个无向、连通的树。树中有 N 个标记为 0...N-1 的节点以及 N-1 条边 。
第 i 条边连接节点 edges[i][0] 和 edges[i][1] 。
返回一个表示节点 i 与其他所有节点距离之和的列表 ans。
示例 1:
输入: N = 6, edges = [[0,1],[0,2],[2,3],[2,4],[2,5]]
输出: [8,12,6,10,10,10]
解释:
如下为给定的树的示意图:
0
/ \
1 2
/|\
3 4 5
我们可以计算出 dist(0,1) + dist(0,2) + dist(0,3) + dist(0,4) + dist(0,5)
也就是 1 + 1 + 2 + 2 + 2 = 8。 因此,answer[0] = 8,以此类推。
说明: 1 <= N <= 10000
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/sum-of-distances-in-tree
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
"""
import collections
from typing import List
class Solution:
def sumOfDistancesInTree(self, N: int, edges: List[List[int]]) -> List[int]:
"""
思路:dfs
@param N:
@param edges:
@return:
"""
graph = collections.defaultdict(set)
for u, v in edges:
graph[u].add(v)
graph[v].add(u)
ans = [0] * N
cnt = [1] * N
def dfs(node=0, parent=None):
for child in graph[node]:
if child != parent:
dfs(child, node)
cnt[node] += cnt[child]
ans[node] += ans[child] + cnt[child]
dfs()
def dfs2(node=0, parent=None):
for child in graph[node]:
if child != parent:
ans[child] = ans[node] + N - 2 * cnt[child]
dfs2(child, node)
dfs2()
return ans
if __name__ == '__main__':
N = 6
edges = [[0, 1], [0, 2], [2, 3], [2, 4], [2, 5]]
print(Solution().sumOfDistancesInTree(N, edges))
|
760d25432c1695c002f764837262c94f4bcbcf85 | linbojun/ResNet | /resnet/Util.py | 4,046 | 3.859375 | 4 | import tensorflow as tf
import numpy as np
from matplotlib import pyplot as plt
import os
import random
import math
def accuracy(logits, labels):
"""
Calculates the model's prediction accuracy by comparing
logits to correct labels – no need to modify this.
:param logits: a matrix of size (num_inputs, self.num_classes); during training, this will be (batch_size, self.num_classes)
containing the result of multiple convolution and feed forward layers
:param labels: matrix of size (num_labels, self.num_classes) containing the answers, during training, this will be (batch_size, self.num_classes)
NOTE: DO NOT EDIT
:return: the accuracy of the model as a Tensor
"""
#print("probs: ", probs)
#print("labels: ",labels )
#print("In accuracy(self, probs, labels): tf.argmax(probs, 1) = ", tf.argmax(probs, 1))
#correct_predictions = tf.equal(tf.argmax(logits, 1), labels)
#print("Util, accuracy: logits %s" % (logits))
#print("Util, accuracy: labels %s" % (labels))
correct_predictions = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1))
#print("Util, accuracy: correct_predictions %s" % (correct_predictions))
return tf.reduce_mean(tf.cast(correct_predictions, tf.float32))
def visualize_loss(losses):
"""
Uses Matplotlib to visualize the losses of our model.
:param losses: list of loss data stored from train. Can use the model's loss_list
field
NOTE: DO NOT EDIT
return: doesn't return anything, a plot should pop-up
"""
x = [i for i in range(len(losses))]
plt.plot(x, losses)
plt.title('Loss per batch')
plt.xlabel('Batch')
plt.ylabel('Loss')
plt.show()
def test(model, test_inputs, test_labels):
# Tests the model on the test inputs and labels. You should NOT randomly
# flip images or do any extra preprocessing.
# :param test_inputs: test data (all images to be tested),
# shape (num_inputs, width, height, num_channels)
# :param test_labels: test labels (all corresponding labels),
# shape (num_labels, num_classes)
# :return: test accuracy - this should be the average accuracy across
# all batches
num_batch = int(test_labels.shape[0] / model.batch_size)
tot = 0.0
for i in range(num_batch):
image_batch = test_inputs[i*model.batch_size:(i+1)*model.batch_size]
label_batch = test_labels[i*model.batch_size:(i+1)*model.batch_size]
logits = model.call(image_batch)
accur = accuracy(logits,label_batch)
tot += accur
print(tot / num_batch)
return tot / num_batch
def train(model, images, labels, save_path):
'''
:param images: (num_image, width, height, num_channels)
:param labels: (num_labels, num_class)
'''
n = images.shape[0]
indice = tf.range(n)
indice = tf.random.shuffle(indice)
labels = tf.gather(labels, indice)
images = tf.gather(images, indice)
images = tf.image.random_flip_left_right(images)
num_batch = int(n/model.batch_size)
for i in range(num_batch):
#for i in range(1):
print("batch ", i, "of ", num_batch)
start_pos = i * model.batch_size
end_pos = (i+1) * model.batch_size
image_batch = images[start_pos : end_pos]
label_batch = labels[start_pos : end_pos]
with tf.GradientTape() as tape:
#logits = model.call(image_batch)
predictions = model(image_batch, training = True)
loss_val = model.loss(predictions, label_batch)
#loss_val = model.loss(y_true=label_batch, y_pred=predictions)
print("loss: %s" % (loss_val))
print("__________________________")
# print("""loss: %s, \n logits: %s
# ===============""" % (loss_val, predictions))
model.loss_list.append(loss_val)
gradients = tape.gradient(loss_val, model.trainable_variables)
model.optimizer.apply_gradients(grads_and_vars=zip(gradients, model.trainable_variables))
model.save(save_path)
return
|
12de4c87d49bb6979b9164a56fb369969f35d763 | MiekoHayasaka/Python_Training | /day0202/code4_5.py | 324 | 3.90625 | 4 | count=0
student_num=int(input('学生の数を入力>>'))
score_list=list()
while count < student_num:
count += 1
score=int(input('{}人目の試験の得点を入力>>'.format(count)))
score_list.append(score)
print(score_list)
total=sum(score_list)
print('平均点は{}点です'.format(total / student_num))
|
3f12f4f0fa954c93e271a86042756bc392682866 | MAPLE-Robot-Subgoaling/IPT | /data/HW3/hw3_297.py | 826 | 4.0625 | 4 | def main():
temperature = float(input("What is the temperature: "))
print("Please enter C for Celsius or K for Kelvin")
choice = input("Celsius or Kelvin: ")
if(choice == "K"):
tempc = (temperature - 273.15)
if (tempc < 0):
print("Water is solid at this temperature.")
elif ((tempc > 0)and(tempc < 100)):
print("Water is a liquid at this temperature.")
elif (tempc > 100):
print("Water is a gas at this temperature.")
if(choice == "C"):
if (temperature < 0):
print("Water is solid at this temperature.")
elif ((temperature > 0)and(temperature < 100)):
print("Water is a liquid at this temperature.")
elif (temperature > 100):
print("Water is a gas at this temperature.")
main()
|
fea35d9e1b68cfed9b91e7cd123ef773870a7967 | randolphwong/libdw | /libdw/boundarySM.py | 4,128 | 3.8125 | 4 | """
Very simple behavior for following the boundary of an obstacle in the
world, with the robot's 'right hand' on the wall.
"""
import sm
from soar.io import io
######################################################################
# Global Variables
######################################################################
# Thresholds in meters
sideClearDist = 0.3
clearDist = 0.25
# Speeds
forwardSpeed = 0.25
rotationalSpeed = 0.25
# Actions
stop = io.Action(0, 0)
go = io.Action(forwardSpeed, 0)
left = io.Action(0, rotationalSpeed)
right = io.Action(sideClearDist*rotationalSpeed, -rotationalSpeed)
######################################################################
# Sensor Utilities
######################################################################
# Return True if the minimum of the selected sensor values is less
# than a threshold
# Type: (list(num), num) -> boolean
def clearTest(selectedSensors, threshold):
return min(selectedSensors) > threshold
# All of these have type: sensors -> boolean
def frontClear(sensors):
return clearTest(frontSonars(sensors), clearDist)
def leftClear(sensors):
return clearTest(leftSonars(sensors), sideClearDist)
def rightClear(sensors):
return clearTest(rightSonars(sensors), sideClearDist)
# Select out sets of sonar values. Type sensors -> list(num)
# Front 4 sonars
def frontSonars(sensors):
return sensors.sonars[2:6]
def front6Sonars(sensors):
return sensors.sonars[1:7]
# Left 3 sonars
def leftSonars(sensors):
return sensors.sonars[0:3]
# Right 3 sonars
def rightSonars(sensors):
return sensors.sonars[5:8]
def rightmostSonar(sensors):
return sensors.sonars[7:8]
def wallInFront(sensors):
return not clearTest(front6Sonars(sensors), clearDist)
def wallOnRight(sensors):
return not clearTest(rightmostSonar(sensors), sideClearDist)
def pickAction(state):
if state == 'turningLeft':
return left
elif state == 'turningRight':
return right
elif state == 'stop':
return stop
else:
return go
class BoundaryFollowerSM4(sm.SM):
"""State machine with instances of ``io.SensorInput`` as input and
``io.Action`` as output. Follows a boundary with the robot's
'right hand' on the wall. Has four internal states:
'turningLeft', 'turningRight', 'movingForward', and 'following'
"""
startState = 'movingForward'
def getNextValues(self, state, inp):
if state == 'turningLeft':
if wallInFront(inp):
nextState = 'turningLeft'
elif wallOnRight(inp):
nextState = 'following'
else:
nextState = 'turningLeft'
elif state == 'turningRight':
if wallOnRight(inp):
nextState = 'following'
else:
nextState = 'turningRight'
elif state == 'movingForward':
if wallInFront(inp):
nextState = 'turningLeft'
else:
nextState = 'movingForward'
else: # state is 'following'
if wallInFront(inp):
nextState = 'turningLeft'
elif wallOnRight(inp):
nextState = 'following'
else:
nextState = 'turningRight'
return (nextState, pickAction(nextState))
class BoundaryFollowerSM2(sm.SM):
"""State machine with instances of ``io.SensorInput`` as input and
``io.Action`` as output. Follows a boundary with the robot's
'right hand' on the wall. Has two internal states: 'seek' and
'following'.
"""
startState = 'seek'
def getNextValues(self, state, inp):
if state == 'seek':
if wallInFront(inp):
return ('following', left)
elif wallOnRight(inp):
return ('following', go)
else:
return ('seek', go)
else:
if wallInFront(inp):
return ('following', left)
elif wallOnRight(inp):
return ('following', go)
else:
return ('following', right)
|
b197426a48c7e62b524bca20bab44726dd521a66 | pandeyab/create_your_own_image_classifier | /Part 2 - Neural Networks in PyTorch.py | 8,036 | 3.921875 | 4 | #!/usr/bin/env python
# coding: utf-8
# # Neural networks with PyTorch
#
# Next I'll show you how to build a neural network with PyTorch.
# In[1]:
# Import things like usual
get_ipython().run_line_magic('matplotlib', 'inline')
get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'retina'")
import numpy as np
import torch
import helper
import matplotlib.pyplot as plt
from torchvision import datasets, transforms
# First up, we need to get our dataset. This is provided through the `torchvision` package. The code below will download the MNIST dataset, then create training and test datasets for us. Don't worry too much about the details here, you'll learn more about this later.
# In[2]:
# Define a transform to normalize the data
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
# Download and load the training data
trainset = datasets.MNIST('MNIST_data/', download=True, train=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
# Download and load the test data
testset = datasets.MNIST('MNIST_data/', download=True, train=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=True)
# In[36]:
dataiter = iter(trainloader)
images, labels = dataiter.next()
# We have the training data loaded into `trainloader` and we make that an iterator with `iter(trainloader)`. We'd use this to loop through the dataset for training, but here I'm just grabbing the first batch so we can check out the data. We can see below that `images` is just a tensor with size (64, 1, 28, 28). So, 64 images per batch, 1 color channel, and 28x28 images.
# In[37]:
plt.imshow(images[1].numpy().squeeze(), cmap='Greys_r');
# ## Building networks with PyTorch
#
# Here I'll use PyTorch to build a simple feedfoward network to classify the MNIST images. That is, the network will receive a digit image as input and predict the digit in the image.
#
# <img src="assets/mlp_mnist.png" width=600px>
#
# To build a neural network with PyTorch, you use the `torch.nn` module. The network itself is a class inheriting from `torch.nn.Module`. You define each of the operations separately, like `nn.Linear(784, 128)` for a fully connected linear layer with 784 inputs and 128 units.
#
# The class needs to include a `forward` method that implements the forward pass through the network. In this method, you pass some input tensor `x` through each of the operations you defined earlier. The `torch.nn` module also has functional equivalents for things like ReLUs in `torch.nn.functional`. This module is usually imported as `F`. Then to use a ReLU activation on some layer (which is just a tensor), you'd do `F.relu(x)`. Below are a few different commonly used activation functions.
#
# <img src="assets/activation.png" width=700px>
#
# So, for this network, I'll build it with three fully connected layers, then a softmax output for predicting classes. The softmax function is similar to the sigmoid in that it squashes inputs between 0 and 1, but it's also normalized so that all the values sum to one like a proper probability distribution.
# In[5]:
from torch import nn
from torch import optim
import torch.nn.functional as F
# In[ ]:
class Network(nn.Module):
def __init__(self):
super().__init__()
# Defining the layers, 128, 64, 10 units each
self.fc1 = nn.Linear(784, 128)
self.fc2 = nn.Linear(128, 64)
# Output layer, 10 units - one for each digit
self.fc3 = nn.Linear(64, 10)
def forward(self, x):
''' Forward pass through the network, returns the output logits '''
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
x = F.relu(x)
x = self.fc3(x)
x = F.softmax(x, dim=1)
return x
model = Network()
model
# ### Initializing weights and biases
#
# The weights and such are automatically initialized for you, but it's possible to customize how they are initialized. The weights and biases are tensors attached to the layer you defined, you can get them with `model.fc1.weight` for instance.
# In[ ]:
print(model.fc1.weight)
print(model.fc1.bias)
# For custom initialization, we want to modify these tensors in place. These are actually autograd *Variables*, so we need to get back the actual tensors with `model.fc1.weight.data`. Once we have the tensors, we can fill them with zeros (for biases) or random normal values.
# In[ ]:
# Set biases to all zeros
model.fc1.bias.data.fill_(0)
# In[ ]:
# sample from random normal with standard dev = 0.01
model.fc1.weight.data.normal_(std=0.01)
# ### Forward pass
#
# Now that we have a network, let's see what happens when we pass in an image. This is called the forward pass. We're going to convert the image data into a tensor, then pass it through the operations defined by the network architecture.
# In[31]:
# Grab some data
dataiter = iter(trainloader)
images, labels = dataiter.next()
# Resize images into a 1D vector, new shape is (batch size, color channels, image pixels)
images.resize_(64, 1, 784)
# or images.resize_(images.shape[0], 1, 784) to not automatically get batch size
# Forward pass through the network
img_idx = 0
ps = model.forward(images[img_idx,:])
img = images[img_idx]
helper.view_classify(img.view(1, 28, 28), ps)
# As you can see above, our network has basically no idea what this digit is. It's because we haven't trained it yet, all the weights are random!
#
# PyTorch provides a convenient way to build networks like this where a tensor is passed sequentially through operations, `nn.Sequential` ([documentation](https://pytorch.org/docs/master/nn.html#torch.nn.Sequential)). Using this to build the equivalent network:
# In[38]:
# Hyperparameters for our network
input_size = 784
hidden_sizes = [128, 64]
output_size = 10
# Build a feed-forward network
model = nn.Sequential(nn.Linear(input_size, hidden_sizes[0]),
nn.ReLU(),
nn.Linear(hidden_sizes[0], hidden_sizes[1]),
nn.ReLU(),
nn.Linear(hidden_sizes[1], output_size),
nn.Softmax(dim=1))
print(model)
# Forward pass through the network and display output
images, labels = next(iter(trainloader))
images.resize_(images.shape[0], 1, 784)
ps = model.forward(images[0,:])
helper.view_classify(images[0].view(1, 28, 28), ps)
# You can also pass in an `OrderedDict` to name the individual layers and operations. Note that a dictionary keys must be unique, so _each operation must have a different name_.
# In[45]:
from collections import OrderedDict
model = nn.Sequential(OrderedDict([
('fc1', nn.Linear(input_size, hidden_sizes[0])),
('relu1', nn.ReLU()),
('fc2', nn.Linear(hidden_sizes[0], hidden_sizes[1])),
('relu2', nn.ReLU()),
('output', nn.Linear(hidden_sizes[1], output_size)),
('softmax', nn.Softmax(dim=1))]))
model
# Now it's your turn to build a simple network, use any method I've covered so far. In the next notebook, you'll learn how to train a network so it can make good predictions.
#
# >**Exercise:** Build a network to classify the MNIST images with _three_ hidden layers. Use 400 units in the first hidden layer, 200 units in the second layer, and 100 units in the third layer. Each hidden layer should have a ReLU activation function, and use softmax on the output layer.
# In[ ]:
## TODO: Your network here
# In[ ]:
## Run this cell with your model to make sure it works ##
# Forward pass through the network and display output
images, labels = next(iter(trainloader))
images.resize_(images.shape[0], 1, 784)
ps = model.forward(images[0,:])
helper.view_classify(images[0].view(1, 28, 28), ps)
|
5b8b60e383c8ad3b9597a0774b7c55706fcc0497 | acbahr/Python-Practice-Projects | /magic_8_ball_gui.py | 1,524 | 4.3125 | 4 | # 1. Simulate a magic 8-ball.
# 2. Allow the user to enter their question.
# 3. Display an in progress message(i.e. "thinking").
# 4. Create 20 responses, and show a random response.
# 5. Allow the user to ask another question or quit.
# Bonus:
# - Add a gui.
# - It must have box for users to enter the question.
# - It must have at least 4 buttons:
# - ask
# - clear (the text box)
# - play again
# - quit (this must close the window)
# Basic text in TKinter is called a label
import random
import tkinter as tk
"""
def magic_8ball():
root = tk.Tk() # constructor class in TKinter. Creates a blank window
active = True
responses = ['Yes', 'No', 'Maybe', 'Try Again', "It's Possible", 'It is in the stars', 'Ask me another time',
'I am not sure', 'Ask your mother', 'Ask your father', 'Only if you Live Bearded']
while active:
label1 = tk.Label(text='What would you like to ask?')
label1.pack()
entry = tk.Entry(width=75)
entry.pack()
question = entry.get()
if question != 'n' or question != 'N':
thinking = tk.Label(text='thinking....')
thinking.pack()
return random.choice(responses)
else:
print('thinking...')
print(random.choice(responses))
try_again = input('Would you like to try again? y/n: ')
if try_again.lower() == 'n':
active = False
root.mainloop() # mainloop keeps running the window until closed by user
magic_8ball()
"""
|
ff245a18811f529e5d756c478819b3f41e2b97ae | elsaVelazquez/faster-pet-adoption | /src/pipelines/data_ingestion/read_in_data.py | 511 | 3.578125 | 4 | import numpy as np
import pandas as pd
def read_df_csv(path):
'''read in file
'''
# print('read df')
return pd.read_csv(path) #, parse_dates=True, squeeze=True)
def read_text_file(fname):
'''Reads the filename - should have a .txt extension.
Returns a text string containing the entire description.
'''
f = open(fname, 'r')
textstring = f.read()
return textstring
def explore_data(df):
# print(df.head())
return df
if __name__ == "__main__":
pass |
295e926b58dd752b3d5a392892578746ba8cb2f1 | shaheerkhan199/python_assignment | /Assignment1/Q5.py | 159 | 4.25 | 4 | first_name = input("Enter First name:")
last_name = input("Enter Last name:")
print("your name in reverse Order", first_name.reverse()," ",last_name.reverse()) |
609c085bed92d83d98b5a63bce2e6e46b90d6665 | pedrottoni/Studies-Python | /Cursoemvideo/Mundo2/exercise070.py | 1,609 | 4.09375 | 4 | """
Crie um programa que leia o nome e o preço de vários produtos. O programa deverá perguntar se o usuário vai continuar ou não. No final, mostre:
A) qual é o total gasto na compra.
B) quantos produtos custam mais de R$1000.
C) qual é o nome do produto mais barato.
"""
amount = greater_thousand = cheapeast_product = 0
cheapeast_product_name = ''
while True:
product = str(input('Nome do produto: '))
# Recebe o preço e garante que ele seja um número
price = input('Preço: ')
while price.isnumeric() == False:
price = input('Valor inválido\nPreço: ')
price = float(price)
# Faz o produto mais barato ser o primeiro se ele for igual a zero, caso não seja, verifica se o preço atual é menor do que o valor mais barato recebido
if cheapeast_product == 0:
cheapeast_product = price
if price < cheapeast_product:
cheapeast_product = price
cheapeast_product_name = product
# Verifica se o preço é maior que 1000, caso for, acrescenta um produto na contagem dos maiores que 1000
if price > 1000:
greater_thousand += 1
# Calcula o valor total da compra
amount += price
keep = str(input('Deseja continuar? [S|N]')).upper().strip()
while len(keep) > 1 or keep not in 'SN':
keep = str(
input('Valor inválido\nDeseja continuar? [S|N]')).upper().strip()
if keep == 'N':
break
print(f'O total da compra foi: R${amount:.2f}\nProdutos que custaram mais de 1000: {greater_thousand}\nO produto mais barato foi {cheapeast_product_name} que custou R${cheapeast_product:.2f} ')
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.