input
stringlengths 3.68k
4.11k
| output
listlengths 1
1
| id
stringlengths 40
40
|
---|---|---|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose club record fuzzily matches to sussex . the number of such rows is 3 .
Output:
|
[
"eq { count { filter_eq { all_rows ; club ; sussex } } ; 3 }"
] |
task210-2ade0f3072b149ed8a292eb2ad3e0d6f
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose women 's singles record fuzzily matches to gabriela zabavníková . the number of such rows is 3 .
Output:
|
[
"eq { count { filter_eq { all_rows ; women 's singles ; gabriela zabavníková } } ; 3 }"
] |
task210-ecfa36d0e5574a2188a254bb49ab8f07
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose title record fuzzily matches to capybara . take the originalairdate record of this row . select the rows whose title record fuzzily matches to the sleep of babies . take the originalairdate record of this row . the second record is 7 days larger than the first record .
Output:
|
[
"eq { diff { hop { filter_eq { all_rows ; title ; capybara } ; originalairdate } ; hop { filter_eq { all_rows ; title ; the sleep of babies } ; originalairdate } } ; -7 days }"
] |
task210-78e65f55fe7b4bf39dd3a2fc17f42c12
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose points 1 record of all rows is 2nd maximum . the team record of this row is eastwood hanley .
Output:
|
[
"eq { hop { nth_argmax { all_rows ; points 1 ; 2 } ; team } ; eastwood hanley }"
] |
task210-5c07808372b44da5ba1d3b18644ad436
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose team record fuzzily matches to simon . the number of such rows is 5 .
Output:
|
[
"eq { count { filter_eq { all_rows ; team ; simon } } ; 5 }"
] |
task210-220006906e8341da928cdc58c7ce7feb
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose certification record fuzzily matches to 2x platinum . there is only one such row in the table . the album record of this unqiue row is my love : essential collection .
Output:
|
[
"and { only { filter_eq { all_rows ; certification ; 2x platinum } } ; eq { hop { filter_eq { all_rows ; certification ; 2x platinum } ; album } ; my love : essential collection } }"
] |
task210-aa4f306335f240d58dd54e1062a0b6dc
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose year record of all rows is 1st minimum . the opponent record of this row is south sydney rabbitohs .
Output:
|
[
"eq { hop { nth_argmin { all_rows ; year ; 1 } ; opponent } ; south sydney rabbitohs }"
] |
task210-236a9b313e25410b888c02f6440407f0
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose crowd record is less than 10000 . there is only one such row in the table . the home team record of this unqiue row is st kilda .
Output:
|
[
"and { only { filter_less { all_rows ; crowd ; 10000 } } ; eq { hop { filter_less { all_rows ; crowd ; 10000 } ; home team } ; st kilda } }"
] |
task210-b1939ac9504e4269948f128fd901d45d
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose visitor record fuzzily matches to edmonton . take the date record of this row . select the rows whose visitor record fuzzily matches to colorado . take the date record of this row . the first record is less than the second record .
Output:
|
[
"less { hop { filter_eq { all_rows ; visitor ; edmonton } ; date } ; hop { filter_eq { all_rows ; visitor ; colorado } ; date } }"
] |
task210-7d431a9ecf194cc485f4bb43633bcf92
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose vessels record of all rows is 2nd maximum . the ship name record of this row is theofilos .
Output:
|
[
"eq { hop { nth_argmax { all_rows ; vessels ; 2 } ; ship name } ; theofilos }"
] |
task210-acef9eacd66e40819e28cea49500a034
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose pts record of all rows is 3rd maximum . the season record of this row is 2010 - 11 .
Output:
|
[
"eq { hop { nth_argmax { all_rows ; pts ; 3 } ; season } ; 2010 - 11 }"
] |
task210-7b6689de0d284380b09c34e264ad2125
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose result record fuzzily matches to new seat republican gain . there is only one such row in the table . the first elected record of this unqiue row is none ( district created ) .
Output:
|
[
"and { only { filter_eq { all_rows ; result ; new seat republican gain } } ; eq { hop { filter_eq { all_rows ; result ; new seat republican gain } ; first elected } ; none ( district created ) } }"
] |
task210-c10cf88f322f45b0a33af8ba17776f14
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the season outcome records of all rows , most of them fuzzily match to failed to make playoffs .
Output:
|
[
"most_eq { all_rows ; season outcome ; failed to make playoffs }"
] |
task210-5ee6be86e9dc4bac9694772d1eedbdc5
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose candidates record fuzzily matches to jay le fevre ( r ) 69.5 % john f killgrew ( d ) 30.5 % . take the first elected record of this row . select the rows whose candidates record fuzzily matches to hadwen c fuller ( r ) 54.3 % frank a emma ( d ) 45.7 % . take the first elected record of this row . the first record is less than the second record . the first elected record of the first row is 1942 . the first elected record of the second row is 1943 .
Output:
|
[
"and { less { hop { filter_eq { all_rows ; candidates ; jay le fevre ( r ) 69.5 % john f killgrew ( d ) 30.5 % } ; first elected } ; hop { filter_eq { all_rows ; candidates ; hadwen c fuller ( r ) 54.3 % frank a emma ( d ) 45.7 % } ; first elected } } ; and { eq { hop { filter_eq { all_rows ; candidates ; jay le fevre ( r ) 69.5 % john f killgrew ( d ) 30.5 % } ; first elected } ; 1942 } ; eq { hop { filter_eq { all_rows ; candidates ; hadwen c fuller ( r ) 54.3 % frank a emma ( d ) 45.7 % } ; first elected } ; 1943 } } }"
] |
task210-63126e7afb754f6d85b57753f1b9ddcf
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose flag record fuzzily matches to united kingdom . the average of the tonnage ( grt ) record of these rows is 5983.8 .
Output:
|
[
"round_eq { avg { filter_eq { all_rows ; flag ; united kingdom } ; tonnage ( grt ) } ; 5983.8 }"
] |
task210-bb231f812e6d49c0ad5b6fe38505a44b
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose affiliation record fuzzily matches to public . the number of such rows is 8 .
Output:
|
[
"eq { count { filter_eq { all_rows ; affiliation ; public } } ; 8 }"
] |
task210-450dcd43404e4863abd158aadea546e6
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose assistant professors record of all rows is minimum . the lecturers record of this row is 7 .
Output:
|
[
"eq { hop { argmin { all_rows ; assistant professors } ; lecturers } ; 7 }"
] |
task210-8a39bd9f244e43c48bf7c3c9a9382801
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose home record fuzzily matches to spurs . among these rows , select the rows whose leading scorer record fuzzily matches to tim duncan . the number of such rows is 3 .
Output:
|
[
"eq { count { filter_eq { filter_eq { all_rows ; home ; spurs } ; leading scorer ; tim duncan } } ; 3 }"
] |
task210-3c1cba1a62b545b4974637bd9ca71af8
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose label record fuzzily matches to rock records . among these rows , select the rows whose release date record fuzzily matches to 2000 . there is only one such row in the table . the english title record of this unqiue row is courage .
Output:
|
[
"and { only { filter_eq { filter_eq { all_rows ; label ; rock records } ; release date ; 2000 } } ; eq { hop { filter_eq { filter_eq { all_rows ; label ; rock records } ; release date ; 2000 } ; english title } ; courage } }"
] |
task210-0db02ef7267046e681fdb73681789369
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose ranking record fuzzily matches to 33rd . there is only one such row in the table . the season record of this unqiue row is 1 .
Output:
|
[
"and { only { filter_eq { all_rows ; ranking ; 33rd } } ; eq { hop { filter_eq { all_rows ; ranking ; 33rd } ; season } ; 1 } }"
] |
task210-c51bb50995e544fe96e1432b351bb65b
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose outcome record fuzzily matches to runner-up . there is only one such row in the table . the year record of this unqiue row is 1993 .
Output:
|
[
"and { only { filter_eq { all_rows ; outcome ; runner-up } } ; eq { hop { filter_eq { all_rows ; outcome ; runner-up } ; year } ; 1993 } }"
] |
task210-c41d9b4bfb404210964e8e930ed3334d
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the enrollment record of all rows is 1259.8 .
Output:
|
[
"round_eq { avg { all_rows ; enrollment } ; 1259.8 }"
] |
task210-b33f778accf749a286864a12df2790d5
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose tyre record fuzzily matches to e . for the constructor records of these rows , most of them fuzzily match to ferrari .
Output:
|
[
"most_eq { filter_eq { all_rows ; tyre ; e } ; constructor ; ferrari }"
] |
task210-c4cffe1178a94227bff0b9d73da948b7
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose manner of departure record fuzzily matches to mutual consent . the number of such rows is 3 .
Output:
|
[
"eq { count { filter_eq { all_rows ; manner of departure ; mutual consent } } ; 3 }"
] |
task210-ba9e960968e346f89ab23e523b34a4ba
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose points record is less than 100 . the average of the points record of these rows is 71.4 .
Output:
|
[
"round_eq { avg { filter_less { all_rows ; points ; 100 } ; points } ; 71.4 }"
] |
task210-e87cc681257d42ba8ac183a92b460f35
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the 1st minimum date record of all rows is may 31 .
Output:
|
[
"eq { nth_min { all_rows ; date ; 1 } ; may 31 }"
] |
task210-34a08e64eb3b4e36b305b6e573fcfce5
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose votes record is greater than 80 . there is only one such row in the table . the artist record of this unqiue row is sahlene .
Output:
|
[
"and { only { filter_greater { all_rows ; votes ; 80 } } ; eq { hop { filter_greater { all_rows ; votes ; 80 } ; artist } ; sahlene } }"
] |
task210-f24831d1aa7f46ee869c1a82936b9740
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose title record fuzzily matches to empire . take the order record of this row . select the rows whose title record fuzzily matches to hollywood . take the order record of this row . the first record is less than the second record . the order record of the first row is 4 . the order record of the second row is 5 .
Output:
|
[
"and { less { hop { filter_eq { all_rows ; title ; empire } ; order } ; hop { filter_eq { all_rows ; title ; hollywood } ; order } } ; and { eq { hop { filter_eq { all_rows ; title ; empire } ; order } ; 4 } ; eq { hop { filter_eq { all_rows ; title ; hollywood } ; order } ; 5 } } }"
] |
task210-fa5e41a0cd424b03af534bec511ed69e
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose sport record fuzzily matches to association football . among these rows , select the rows whose country record fuzzily matches to england . the number of such rows is 6 .
Output:
|
[
"eq { count { filter_eq { filter_eq { all_rows ; sport ; association football } ; country ; england } } ; 6 }"
] |
task210-99fb3f08705247ae85f9dc98b0e89f70
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose runs record of all rows is 2nd maximum . the batsmen record of this row is mark pettini jason gallian .
Output:
|
[
"eq { hop { nth_argmax { all_rows ; runs ; 2 } ; batsmen } ; mark pettini jason gallian }"
] |
task210-dff056e839974eb8b68f247b4fc8c78f
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose score record fuzzily matches to 0 . among these rows , select the rows whose attendance record is greater than 4000 . there is only one such row in the table . the home team record of this unqiue row is milton keynes dons .
Output:
|
[
"and { only { filter_greater { filter_eq { all_rows ; score ; 0 } ; attendance ; 4000 } } ; eq { hop { filter_greater { filter_eq { all_rows ; score ; 0 } ; attendance ; 4000 } ; home team } ; milton keynes dons } }"
] |
task210-2ffbef8170584bd1a0b9de8ed40a5b89
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the sum of the score record of all rows is 4577 .
Output:
|
[
"round_eq { sum { all_rows ; score } ; 4577 }"
] |
task210-9c7042bd34ae4b5da6ab1be23d1ceb81
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose place record fuzzily matches to waddon . the sum of the platforms record of these rows is 4 .
Output:
|
[
"round_eq { sum { filter_eq { all_rows ; place ; waddon } ; platforms } ; 4 }"
] |
task210-b863083a3ca14da88bc0aaca6a0e75e2
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose date record fuzzily matches to 2007 . there is only one such row in the table .
Output:
|
[
"only { filter_eq { all_rows ; date ; 2007 } }"
] |
task210-5759cd577db843eab8ff432a7fde9b6d
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose points record of all rows is maximum . the game record of this row is 10 .
Output:
|
[
"eq { hop { argmax { all_rows ; points } ; game } ; 10 }"
] |
task210-0d55f6e0d7394dd2a724cf86c385326e
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose number of viewers record of all rows is maximum . the show record of this row is 1966 world cup final .
Output:
|
[
"eq { hop { argmax { all_rows ; number of viewers } ; show } ; 1966 world cup final }"
] |
task210-29f6e3f75bf945bf9eefd023bd45434f
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose prominence record of all rows is 15th maximum . the mountain peak record of this row is mount fernow .
Output:
|
[
"eq { hop { nth_argmax { all_rows ; prominence ; 15 } ; mountain peak } ; mount fernow }"
] |
task210-622cd1aca1f047a68aab8de365744878
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose college record fuzzily matches to florida state . there is only one such row in the table . the player record of this unqiue row is terry , nat nat terry .
Output:
|
[
"and { only { filter_eq { all_rows ; college ; florida state } } ; eq { hop { filter_eq { all_rows ; college ; florida state } ; player } ; terry , nat nat terry } }"
] |
task210-96a29770768f41fe982fda5b54db5f9a
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose clinical status record fuzzily matches to fda - approved . the number of such rows is 6 .
Output:
|
[
"eq { count { filter_eq { all_rows ; clinical status ; fda - approved } } ; 6 }"
] |
task210-f612095a10544f8397c6ae265d3d0d91
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose opponent record fuzzily matches to minnesota vikings . among these rows , select the rows whose result record fuzzily matches to l . the number of such rows is 1 .
Output:
|
[
"eq { count { filter_eq { filter_eq { all_rows ; opponent ; minnesota vikings } ; result ; l } } ; 1 }"
] |
task210-13d47d6eae55423289ce53823a09681f
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose tournament record fuzzily matches to christchurch , new zealand . take the year record of this row . select the rows whose tournament record fuzzily matches to gstaad , switzerland . take the year record of this row . the first record is less than the second record .
Output:
|
[
"less { hop { filter_eq { all_rows ; tournament ; christchurch , new zealand } ; year } ; hop { filter_eq { all_rows ; tournament ; gstaad , switzerland } ; year } }"
] |
task210-030f56cea9fd4356a65266331adb887b
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose age record is equal to 8 . among these rows , select the rows whose sp record fuzzily matches to 20 / 1 . the number of such rows is 1 .
Output:
|
[
"eq { count { filter_eq { filter_eq { all_rows ; age ; 8 } ; sp ; 20 / 1 } } ; 1 }"
] |
task210-dcae69528bc945fe92d6e344e2aa7f20
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose warship record fuzzily matches to chacabuco . take the speed ( knots ) record of this row . select the rows whose warship record fuzzily matches to abtao . take the speed ( knots ) record of this row . the first record is greater than the second record .
Output:
|
[
"greater { hop { filter_eq { all_rows ; warship ; chacabuco } ; speed ( knots ) } ; hop { filter_eq { all_rows ; warship ; abtao } ; speed ( knots ) } }"
] |
task210-246e666ba841429888d1316c205c2020
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the method records of all rows , most of them fuzzily match to tko .
Output:
|
[
"most_eq { all_rows ; method ; tko }"
] |
task210-5267988542a747419ef75a2dce8dc609
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose title record fuzzily matches to dimension twist . take the original air date record of this row . select the rows whose title record fuzzily matches to team impossible . take the original air date record of this row . the first record is less than the second record .
Output:
|
[
"less { hop { filter_eq { all_rows ; title ; dimension twist } ; original air date } ; hop { filter_eq { all_rows ; title ; team impossible } ; original air date } }"
] |
task210-f28a6332dfe347518c5d77544b289b6f
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the 3rd minimum pick record of all rows is 3 . the player record of the row with 3rd minimum pick record is candice wiggins . the school / club team record of the row with 3rd minimum pick record is stanford .
Output:
|
[
"and { eq { nth_min { all_rows ; pick ; 3 } ; 3 } ; and { eq { hop { nth_argmin { all_rows ; pick ; 3 } ; player } ; candice wiggins } ; eq { hop { nth_argmin { all_rows ; pick ; 3 } ; school / club team } ; stanford } } }"
] |
task210-c5afb6a22273452e95ab6060c98eac5b
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose vuelta record of all rows is maximum . the name record of this row is tony rominger ( sui ) .
Output:
|
[
"eq { hop { argmax { all_rows ; vuelta } ; name } ; tony rominger ( sui ) }"
] |
task210-e84efa1af3664554ad148c0393bd7697
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the games played record of all rows is 7.6 .
Output:
|
[
"round_eq { avg { all_rows ; games played } ; 7.6 }"
] |
task210-7c1ac077f7654751945a7350a611687d
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose date record of all rows is maximum . the date record of this row is 7 september 2005 .
Output:
|
[
"eq { hop { argmax { all_rows ; date } ; date } ; 7 september 2005 }"
] |
task210-7183f778f07e4324a680cb271029e6de
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose name record fuzzily matches to alfred pfaff . take the goals record of this row . select the rows whose name record fuzzily matches to lothar schämer . take the goals record of this row . the first record is greater than the second record .
Output:
|
[
"greater { hop { filter_eq { all_rows ; name ; alfred pfaff } ; goals } ; hop { filter_eq { all_rows ; name ; lothar schämer } ; goals } }"
] |
task210-455836249eb04765ab77d1c261a53714
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the result records of all rows , most of them fuzzily match to l .
Output:
|
[
"most_eq { all_rows ; result ; l }"
] |
task210-f91cf2a7f2c04050be841564e1bba1bf
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose fixtures record is equal to 8 . there is only one such row in the table . the round record of this unqiue row is fifth round .
Output:
|
[
"and { only { filter_eq { all_rows ; fixtures ; 8 } } ; eq { hop { filter_eq { all_rows ; fixtures ; 8 } ; round } ; fifth round } }"
] |
task210-8cede7704fb642f491b84dd77e39566b
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose debut in europe record is equal to 1995 . select the row whose games record of these rows is maximum . the player record of this row is raãl .
Output:
|
[
"eq { hop { argmax { filter_eq { all_rows ; debut in europe ; 1995 } ; games } ; player } ; raãl }"
] |
task210-93d5fb1f1cdf4f9abdc3b0de81a40530
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose attendance record of all rows is maximum . the game site record of this row is commerzbank - arena .
Output:
|
[
"eq { hop { argmax { all_rows ; attendance } ; game site } ; commerzbank - arena }"
] |
task210-a5bf38ba5a6c4c82a004e446ffd94034
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the 2008 status records of all rows , all of them fuzzily match to re-election .
Output:
|
[
"all_eq { all_rows ; 2008 status ; re-election }"
] |
task210-102ca92ea41c4b8c92e245a42e68c9b5
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose player record fuzzily matches to nick price . take the wins record of this row . select the rows whose player record fuzzily matches to fred couples . take the wins record of this row . the first record is greater than the second record .
Output:
|
[
"greater { hop { filter_eq { all_rows ; player ; nick price } ; wins } ; hop { filter_eq { all_rows ; player ; fred couples } ; wins } }"
] |
task210-bdeba0aee1244760a60f65811d8301ff
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the frequency mhz records of all rows , most of them are greater than or equal to 90 .
Output:
|
[
"most_greater_eq { all_rows ; frequency mhz ; 90 }"
] |
task210-7be1eb35e4564adaa72451dbe2a46a51
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the total record of all rows is 2.13 .
Output:
|
[
"round_eq { avg { all_rows ; total } ; 2.13 }"
] |
task210-e46609d41f2b46bcb6694184ec54c653
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the date records of all rows , all of them fuzzily match to 11 april 1981 .
Output:
|
[
"all_eq { all_rows ; date ; 11 april 1981 }"
] |
task210-4d629d240bd24824b2d5bbf5714ee2fb
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the away team score record of all rows is 10.86 .
Output:
|
[
"round_eq { avg { all_rows ; away team score } ; 10.86 }"
] |
task210-b053b31789874a68b4ec991fdc826141
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose school colors record fuzzily matches to orange & black . the number of such rows is 2 .
Output:
|
[
"eq { count { filter_eq { all_rows ; school colors ; orange & black } } ; 2 }"
] |
task210-aad1534619574d1c9ce9a176da35963f
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose school / club team record fuzzily matches to kentucky . the number of such rows is 2 .
Output:
|
[
"eq { count { filter_eq { all_rows ; school / club team ; kentucky } } ; 2 }"
] |
task210-275444cb63da49bb807d49abc69dd9b4
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the score records of all rows , most of them fuzzily match to l .
Output:
|
[
"most_eq { all_rows ; score ; l }"
] |
task210-e7fc2ff39bc54d58930b92e92b2c5d00
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose rider record fuzzily matches to suzuki . there is only one such row in the table .
Output:
|
[
"only { filter_eq { all_rows ; rider ; suzuki } }"
] |
task210-01a39664429049a59108468d6f8377be
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose position record of all rows is minimum . the competition record of this row is universiade .
Output:
|
[
"eq { hop { argmin { all_rows ; position } ; competition } ; universiade }"
] |
task210-847857d89fd84113a154a3469fee9689
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose redshift ( km / s ) record of all rows is maximum . the name record of this row is ngc 1596 .
Output:
|
[
"eq { hop { argmax { all_rows ; redshift ( km / s ) } ; name } ; ngc 1596 }"
] |
task210-9e2750185b5341f8ab29823d66a605a2
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose final round record of all rows is minimum . the city / state record of this row is texas .
Output:
|
[
"eq { hop { argmin { all_rows ; final round } ; city / state } ; texas }"
] |
task210-35dc19270e08479088fa58e94eb882e5
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the sum of the score record of all rows is 12 .
Output:
|
[
"round_eq { sum { all_rows ; score } ; 12 }"
] |
task210-59f812cbf1b54bd583945541704252b2
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose points margin record is less than 10 . there is only one such row in the table . the proceed to quarter - final record of this unqiue row is montauban . the eliminated from competition record of this unqiue row is borders .
Output:
|
[
"and { only { filter_less { all_rows ; points margin ; 10 } } ; and { eq { hop { filter_less { all_rows ; points margin ; 10 } ; proceed to quarter - final } ; montauban } ; eq { hop { filter_less { all_rows ; points margin ; 10 } ; eliminated from competition } ; borders } } }"
] |
task210-c7199ba4d9fe42f08c99acd6ba0e1da4
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the bush % record of all rows is 65-70 .
Output:
|
[
"round_eq { avg { all_rows ; bush % } ; 65-70 }"
] |
task210-4b6e3696fd144ac78d780e01ad4c8787
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose goal difference record of all rows is 3rd maximum . the club record of this row is real oviedo .
Output:
|
[
"eq { hop { nth_argmax { all_rows ; goal difference ; 3 } ; club } ; real oviedo }"
] |
task210-4a9bb317f7dd447aaac9fdba4c95067b
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the total record of all rows is 3 .
Output:
|
[
"round_eq { avg { all_rows ; total } ; 3 }"
] |
task210-2bcf7be07bb748f7a16a17c60f49d2b9
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose 1973 democratic initial primary record fuzzily matches to mario biaggi . take the brooklyn record of this row . select the rows whose 1973 democratic initial primary record fuzzily matches to albert h blumenthal . take the brooklyn record of this row . the first record is greater than the second record .
Output:
|
[
"greater { hop { filter_eq { all_rows ; 1973 democratic initial primary ; mario biaggi } ; brooklyn } ; hop { filter_eq { all_rows ; 1973 democratic initial primary ; albert h blumenthal } ; brooklyn } }"
] |
task210-c982d29176b84cc09339cdef57811b40
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose year record of all rows is minimum . the lifetime india distributor share record of this row is 99 , 02 , 00000 .
Output:
|
[
"eq { hop { argmin { all_rows ; year } ; lifetime india distributor share } ; 99 , 02 , 00000 }"
] |
task210-f2bd3234a7e44de98626ff5e372ccb67
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the total record of all rows is 19.71 .
Output:
|
[
"round_eq { avg { all_rows ; total } ; 19.71 }"
] |
task210-dfedd3b06da641d384799a3acb00265d
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose 2011 gdp ( ppp ) billions of usd record of all rows is maximum . the country record of this row is iran .
Output:
|
[
"eq { hop { argmax { all_rows ; 2011 gdp ( ppp ) billions of usd } ; country } ; iran }"
] |
task210-d0a0175e484a4eee8d50f126a38eaf88
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose purse record of all rows is maximum . the tournament record of this row is peter jackson champions .
Output:
|
[
"eq { hop { argmax { all_rows ; purse } ; tournament } ; peter jackson champions }"
] |
task210-7d1e70915ee2413c8e9ac80c6992f744
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose date record fuzzily matches to october . select the row whose week record of these rows is 3rd minimum . the opponent record of this row is san francisco 49ers . the result record of this row is w 31 - 17 .
Output:
|
[
"and { eq { hop { nth_argmin { filter_eq { all_rows ; date ; october } ; week ; 3 } ; opponent } ; san francisco 49ers } ; eq { hop { nth_argmin { filter_eq { all_rows ; date ; october } ; week ; 3 } ; result } ; w 31 - 17 } }"
] |
task210-2a42f5310a4d45f1b589c978e4e98021
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose 2013 population ( july est ) record is greater than 7000000 . the number of such rows is 2 .
Output:
|
[
"eq { count { filter_greater { all_rows ; 2013 population ( july est ) ; 7000000 } } ; 2 }"
] |
task210-22122f0185884047910a7f0dc8525897
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose business intelligence record fuzzily matches to no . the number of such rows is 11 .
Output:
|
[
"eq { count { filter_eq { all_rows ; business intelligence ; no } } ; 11 }"
] |
task210-36837e5f98a14612af630b70412a3d08
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the apogee record of all rows is 645 .
Output:
|
[
"round_eq { avg { all_rows ; apogee } ; 645 }"
] |
task210-e48b43a1a16643eb91372e818d417c91
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose high assists record fuzzily matches to rafer alston . the number of such rows is 4 .
Output:
|
[
"eq { count { filter_eq { all_rows ; high assists ; rafer alston } } ; 4 }"
] |
task210-d4d7253d1781480c954ea9d61b720fdc
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose call sign record fuzzily matches to cimo - fm . take the frequency record of this row . select the rows whose call sign record fuzzily matches to cfak - fm . take the frequency record of this row . the first record is greater than the second record .
Output:
|
[
"greater { hop { filter_eq { all_rows ; call sign ; cimo - fm } ; frequency } ; hop { filter_eq { all_rows ; call sign ; cfak - fm } ; frequency } }"
] |
task210-0c9201b0adac40f9a5e3adc5bdeeb4f3
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose party record fuzzily matches to csv . there is only one such row in the table . the minister record of this unqiue row is marc fischbach .
Output:
|
[
"and { only { filter_eq { all_rows ; party ; csv } } ; eq { hop { filter_eq { all_rows ; party ; csv } ; minister } ; marc fischbach } }"
] |
task210-e63313032d68472297b9bbcb4aa95754
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the high assists records of all rows , most of them fuzzily match to caron butler .
Output:
|
[
"most_eq { all_rows ; high assists ; caron butler }"
] |
task210-29fdcabf79164ee8b24d52b72253bd32
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose position record fuzzily matches to linebacker . there is only one such row in the table .
Output:
|
[
"only { filter_eq { all_rows ; position ; linebacker } }"
] |
task210-58095d990d664f5b9542b3a94ec7ee5d
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the speed record of all rows is 97.34 .
Output:
|
[
"round_eq { avg { all_rows ; speed } ; 97.34 }"
] |
task210-f79e088eafbd4c71aa7a3d7de3e1a0c1
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the sum of the crowd record of all rows is 134,131 .
Output:
|
[
"round_eq { sum { all_rows ; crowd } ; 134,131 }"
] |
task210-9eb3e93d48c04e47a164672f4b3e06ad
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose engine record fuzzily matches to offenhauser l4 . among these rows , select the rows whose chassis record fuzzily matches to trevis . the number of such rows is 1 .
Output:
|
[
"eq { count { filter_eq { filter_eq { all_rows ; engine ; offenhauser l4 } ; chassis ; trevis } } ; 1 }"
] |
task210-5248b485511547bc98fc0c478a853c34
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose to par record of all rows is minimum . the player record of this row is bill rogers .
Output:
|
[
"eq { hop { argmin { all_rows ; to par } ; player } ; bill rogers }"
] |
task210-29a935224df14ea082dcf8495f6f0529
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose us viewers ( million ) record of all rows is maximum . the title record of this row is milfay .
Output:
|
[
"eq { hop { argmax { all_rows ; us viewers ( million ) } ; title } ; milfay }"
] |
task210-b1cfa1a9b9c64c878d7062ef869af246
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose election record is equal to 2013 . for the inhabitants records of these rows , all of them are greater than or equal to 100000 .
Output:
|
[
"all_greater_eq { filter_eq { all_rows ; election ; 2013 } ; inhabitants ; 100000 }"
] |
task210-b1837d9ff7da4f9fb73498b29af3191a
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose region record fuzzily matches to central . among these rows , select the rows whose pop density record is greater than 1000 . the number of such rows is 3 .
Output:
|
[
"eq { count { filter_greater { filter_eq { all_rows ; region ; central } ; pop density ; 1000 } } ; 3 }"
] |
task210-19a474a21d2b4887bd567d12170c0fc5
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the crowd records of all rows , most of them are greater than 10000 .
Output:
|
[
"most_greater { all_rows ; crowd ; 10000 }"
] |
task210-bbb1d29c9b5c4383b7ee0392e0a39ef1
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose united states original airdate record fuzzily matches to july . among these rows , select the rows whose directed by record fuzzily matches to greg sullivan . the number of such rows is 3 .
Output:
|
[
"eq { count { filter_eq { filter_eq { all_rows ; united states original airdate ; july } ; directed by ; greg sullivan } } ; 3 }"
] |
task210-e7d32af4f08c4587ac212ef979784e2d
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the date records of all rows , all of them fuzzily match to 21 july 1951 .
Output:
|
[
"all_eq { all_rows ; date ; 21 july 1951 }"
] |
task210-172725267b594336990573e24b6101be
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the played records of all rows , most of them are equal to 14 .
Output:
|
[
"most_eq { all_rows ; played ; 14 }"
] |
task210-350a4b8de6504f138c338198bdf33906
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose purse record of all rows is maximum . the year record of this row is 2008 .
Output:
|
[
"eq { hop { argmax { all_rows ; purse } ; year } ; 2008 }"
] |
task210-37681398f8664093a14408f20a1d06ee
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the attendance record of all rows is 55680.4 .
Output:
|
[
"round_eq { avg { all_rows ; attendance } ; 55680.4 }"
] |
task210-78de8696292a4aba98333a96649d57fd
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose team record fuzzily matches to bourgoin . take the tries for record of this row . select the rows whose team record fuzzily matches to london irish . take the tries for record of this row . the first record is greater than the second record .
Output:
|
[
"greater { hop { filter_eq { all_rows ; team ; bourgoin } ; tries for } ; hop { filter_eq { all_rows ; team ; london irish } ; tries for } }"
] |
task210-38c92ad434e448eb8b577e3f9c40a267
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.