input
stringlengths 3.68k
4.11k
| output
listlengths 1
1
| id
stringlengths 40
40
|
---|---|---|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the result records of all rows , all of them fuzzily match to not nominated .
Output:
|
[
"all_eq { all_rows ; result ; not nominated }"
] |
task210-01817fa2b6e04d0488dc20dcf467ace1
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose venue record fuzzily matches to china . there is only one such row in the table .
Output:
|
[
"only { filter_eq { all_rows ; venue ; china } }"
] |
task210-843fdb05f23a403089c1b3f9db455415
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the score record of all rows is 2-0 .
Output:
|
[
"round_eq { avg { all_rows ; score } ; 2-0 }"
] |
task210-6cfd8c902a4a4e4cacbd420913ae96c6
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose player record fuzzily matches to scott garlick . take the games record of this row . select the rows whose player record fuzzily matches to dj countess . take the games record of this row . the first record is 4 larger than the second record .
Output:
|
[
"eq { diff { hop { filter_eq { all_rows ; player ; scott garlick } ; games } ; hop { filter_eq { all_rows ; player ; dj countess } ; games } } ; 4 }"
] |
task210-7c4e61203bf54834b721d93793de2d17
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose points ( total 500 ) record is greater than 300 . the number of such rows is 3 .
Output:
|
[
"eq { count { filter_greater { all_rows ; points ( total 500 ) ; 300 } } ; 3 }"
] |
task210-5cf1adf878834c568b56c06c577923c6
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose elected record of all rows is minimum . the incumbent record of this row is john lewis .
Output:
|
[
"eq { hop { argmin { all_rows ; elected } ; incumbent } ; john lewis }"
] |
task210-09ed1a653d2a4ae8812067817c5b9672
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose country record fuzzily matches to new zealand . there is only one such row in the table . the company record of this unqiue row is enernoc new zealand limited .
Output:
|
[
"and { only { filter_eq { all_rows ; country ; new zealand } } ; eq { hop { filter_eq { all_rows ; country ; new zealand } ; company } ; enernoc new zealand limited } }"
] |
task210-b1e9c2e302974d82ac260b7a24cb4a98
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose municipality record fuzzily matches to jose panganiban . take the area ( km square ) record of this row . select the rows whose municipality record fuzzily matches to daet ( capital town ) . take the area ( km square ) record of this row . the first record is greater than the second record .
Output:
|
[
"greater { hop { filter_eq { all_rows ; municipality ; jose panganiban } ; area ( km square ) } ; hop { filter_eq { all_rows ; municipality ; daet ( capital town ) } ; area ( km square ) } }"
] |
task210-2fec937c1207460c9f0d2943cca99267
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose tournament record fuzzily matches to bordeaux , france . take the date record of this row . select the rows whose tournament record fuzzily matches to san marino . take the date record of this row . the first record is less than the second record .
Output:
|
[
"less { hop { filter_eq { all_rows ; tournament ; bordeaux , france } ; date } ; hop { filter_eq { all_rows ; tournament ; san marino } ; date } }"
] |
task210-44c45a96a95341fb904af3b61692e916
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose lost record is equal to 0 . the number of such rows is 5 .
Output:
|
[
"eq { count { filter_eq { all_rows ; lost ; 0 } } ; 5 }"
] |
task210-19ea034eb9c640ffa00ee80db2e8a692
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose introduced record is less than 2000 . among these rows , select the rows whose fleet size record is equal to 2 . the number of such rows is 2 .
Output:
|
[
"eq { count { filter_eq { filter_less { all_rows ; introduced ; 2000 } ; fleet size ; 2 } } ; 2 }"
] |
task210-bbd0cef44ac047a7a74cb4d4dff0a57d
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose region record fuzzily matches to africa . among these rows , select the rows whose joined opec record is equal to 1969 . there is only one such row in the table . the country record of this unqiue row is algeria .
Output:
|
[
"and { only { filter_eq { filter_eq { all_rows ; region ; africa } ; joined opec ; 1969 } } ; eq { hop { filter_eq { filter_eq { all_rows ; region ; africa } ; joined opec ; 1969 } ; country } ; algeria } }"
] |
task210-449b534478164abda1cda8507f67276a
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose launch date ( ddmmyyyy ) record fuzzily matches to 2005 . among these rows , select the rows whose connection speed record fuzzily matches to 236.8 kbit/s . there is only one such row in the table . the carrier record of this unqiue row is moldcell .
Output:
|
[
"and { only { filter_eq { filter_eq { all_rows ; launch date ( ddmmyyyy ) ; 2005 } ; connection speed ; 236.8 kbit/s } } ; eq { hop { filter_eq { filter_eq { all_rows ; launch date ( ddmmyyyy ) ; 2005 } ; connection speed ; 236.8 kbit/s } ; carrier } ; moldcell } }"
] |
task210-6b164f19091645f9a4524ab7d98816c3
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose height record of all rows is maximum . the player record of this row is pape badiane .
Output:
|
[
"eq { hop { argmax { all_rows ; height } ; player } ; pape badiane }"
] |
task210-3f6ad9fd80994a71a057f79363392d53
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose top 10 record of all rows is maximum . the year record of this row is 2005 .
Output:
|
[
"eq { hop { argmax { all_rows ; top 10 } ; year } ; 2005 }"
] |
task210-a91c7e9ec09548cdaf8bdc8a8fe3adf3
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose tournament record fuzzily matches to world championships . the number of such rows is 2 .
Output:
|
[
"eq { count { filter_eq { all_rows ; tournament ; world championships } } ; 2 }"
] |
task210-31143ac352a94a029dc18fc379256624
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose average record of all rows is maximum . the player record of this row is andrew caddick .
Output:
|
[
"eq { hop { argmax { all_rows ; average } ; player } ; andrew caddick }"
] |
task210-4d93b0e156a0491a9d651fe7b6ed6e95
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose year of intro record of all rows is 2nd minimum . the name / designation record of this row is onorati smg .
Output:
|
[
"eq { hop { nth_argmin { all_rows ; year of intro ; 2 } ; name / designation } ; onorati smg }"
] |
task210-9620d7574ec2461096b32ee1674eb87c
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose goals record of all rows is 2nd maximum . the nationality record of this row is ireland .
Output:
|
[
"eq { hop { nth_argmax { all_rows ; goals ; 2 } ; nationality } ; ireland }"
] |
task210-13df91f8120e45f5a48cbb59830e461c
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose name record fuzzily matches to andrew . take the date record of this row . select the rows whose name record fuzzily matches to amanda . take the date record of this row . the first record is less than the second record .
Output:
|
[
"less { hop { filter_eq { all_rows ; name ; andrew } ; date } ; hop { filter_eq { all_rows ; name ; amanda } ; date } }"
] |
task210-862c3187c6db4a7092a3e47c1466649a
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose edition record fuzzily matches to 2008 davis cup europe / africa group ii . take the surface record of this row . select the rows whose edition record fuzzily matches to 2013 davis cup europe / africa group ii . take the surface record of this row . the first record fuzzily matches to the second record . the surface record of the first row is clay . the surface record of the second row is clay .
Output:
|
[
"and { eq { hop { filter_eq { all_rows ; edition ; 2008 davis cup europe / africa group ii } ; surface } ; hop { filter_eq { all_rows ; edition ; 2013 davis cup europe / africa group ii } ; surface } } ; and { eq { hop { filter_eq { all_rows ; edition ; 2008 davis cup europe / africa group ii } ; surface } ; clay } ; eq { hop { filter_eq { all_rows ; edition ; 2013 davis cup europe / africa group ii } ; surface } ; clay } } }"
] |
task210-b6c6caea9a3447a787f7f7f25e2cf0e2
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the wheels records of all rows , most of them fuzzily match to 4 - 4 - 2t .
Output:
|
[
"most_eq { all_rows ; wheels ; 4 - 4 - 2t }"
] |
task210-b7106d5408044263af8662a2b79afdd4
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose nationality record fuzzily matches to united states . among these rows , select the rows whose from record fuzzily matches to idaho state . there is only one such row in the table . the jersey number ( s ) record of this unqiue row is 41 .
Output:
|
[
"and { only { filter_eq { filter_eq { all_rows ; nationality ; united states } ; from ; idaho state } } ; eq { hop { filter_eq { filter_eq { all_rows ; nationality ; united states } ; from ; idaho state } ; jersey number ( s ) } ; 41 } }"
] |
task210-ce0b8e9e7bcd4fc199a17d6bc2c49171
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the secondary ( 14 - 17 years ) record of all rows is 70.95 .
Output:
|
[
"round_eq { avg { all_rows ; secondary ( 14 - 17 years ) } ; 70.95 }"
] |
task210-7c19f670525c4a9c94d655f5efa21f78
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose party record fuzzily matches to democratic . the number of such rows is 2 .
Output:
|
[
"eq { count { filter_eq { all_rows ; party ; democratic } } ; 2 }"
] |
task210-0686e2374cff46e6930a6af5e97d6e9d
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose points record is greater than or equal to 55 . among these rows , select the rows whose opponent record fuzzily matches to new york rangers . the number of such rows is 2 .
Output:
|
[
"eq { count { filter_eq { filter_greater_eq { all_rows ; points ; 55 } ; opponent ; new york rangers } } ; 2 }"
] |
task210-f279665644444f598131328ac1a05acb
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the score record of all rows is 34.8 .
Output:
|
[
"round_eq { avg { all_rows ; score } ; 34.8 }"
] |
task210-d74113f8f0d34246bd2d2b87034ea793
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose 2nd position record fuzzily matches to lija . the number of such rows is 2 .
Output:
|
[
"eq { count { filter_eq { all_rows ; 2nd position ; lija } } ; 2 }"
] |
task210-7553c3cbc70643dca37aa847c4337d7b
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the method records of all rows , most of them fuzzily match to decision .
Output:
|
[
"most_eq { all_rows ; method ; decision }"
] |
task210-1d94b1fd7660487b9bf899377a50f62a
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the score record of all rows is 1.8 .
Output:
|
[
"round_eq { avg { all_rows ; score } ; 1.8 }"
] |
task210-ff2ff027e57842ddb6a3f5e23cfc7435
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the attendance record of all rows is 19119 .
Output:
|
[
"round_eq { avg { all_rows ; attendance } ; 19119 }"
] |
task210-da34d1eee07f47fea98bbeb9e0d43825
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose result record fuzzily matches to retire . the number of such rows is 1 .
Output:
|
[
"eq { count { filter_eq { all_rows ; result ; retire } } ; 1 }"
] |
task210-82d699f3c960402d8158af5e76a3be74
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose school record fuzzily matches to avon community . take the enrollment record of this row . select the rows whose school record fuzzily matches to brownsburg . take the enrollment record of this row . the first record is greater than the second record .
Output:
|
[
"greater { hop { filter_eq { all_rows ; school ; avon community } ; enrollment } ; hop { filter_eq { all_rows ; school ; brownsburg } ; enrollment } }"
] |
task210-894749c7102b477bb80dbdf9fa3f4462
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose viewers ( households in millions ) record is less than 18 . the number of such rows is 3 .
Output:
|
[
"eq { count { filter_less { all_rows ; viewers ( households in millions ) ; 18 } } ; 3 }"
] |
task210-ee817bc78bb1475884017ebe8fe50d86
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose location attendance record fuzzily matches to amway arena . among these rows , select the rows whose high points record fuzzily matches to andre iguodala . the number of such rows is 2 .
Output:
|
[
"eq { count { filter_eq { filter_eq { all_rows ; location attendance ; amway arena } ; high points ; andre iguodala } } ; 2 }"
] |
task210-d4bd374e3b504751a015f9fed5431f9c
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose opponent record fuzzily matches to chris haseman . take the round record of this row . select the rows whose opponent record fuzzily matches to wanderlei silva . take the round record of this row . the first record is 1 larger than the second record .
Output:
|
[
"eq { diff { hop { filter_eq { all_rows ; opponent ; chris haseman } ; round } ; hop { filter_eq { all_rows ; opponent ; wanderlei silva } ; round } } ; 1 }"
] |
task210-65cb1a0e97e2411dad50d90f9785e5dc
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose result record fuzzily matches to win . for the orangemen points records of these rows , most of them are greater than 20 .
Output:
|
[
"most_greater { filter_eq { all_rows ; result ; win } ; orangemen points ; 20 }"
] |
task210-52dab288db6349e7a13a3464e392b2c3
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose callsign record fuzzily matches to dwll . take the power record of this row . select the rows whose callsign record fuzzily matches to dyku . take the power record of this row . the first record is 10 larger than the second record .
Output:
|
[
"eq { diff { hop { filter_eq { all_rows ; callsign ; dwll } ; power } ; hop { filter_eq { all_rows ; callsign ; dyku } ; power } } ; 10 }"
] |
task210-42c1b23ac6844ff7a5993438a5aeb21a
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose player record fuzzily matches to craig kieswetter . take the runs record of this row . select the rows whose player record fuzzily matches to zander de bruyn . take the runs record of this row . the first record is 7 larger than the second record .
Output:
|
[
"eq { diff { hop { filter_eq { all_rows ; player ; craig kieswetter } ; runs } ; hop { filter_eq { all_rows ; player ; zander de bruyn } ; runs } } ; 7 }"
] |
task210-9bf30d3a4cc441e6bd1a36856bd072bc
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose pos record fuzzily matches to gk . the number of such rows is 2 .
Output:
|
[
"eq { count { filter_eq { all_rows ; pos ; gk } } ; 2 }"
] |
task210-a685202d0ba04407b733ab88a77d4d5c
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose points 1 record of all rows is maximum . the team record of this row is colne dynamoes .
Output:
|
[
"eq { hop { argmax { all_rows ; points 1 } ; team } ; colne dynamoes }"
] |
task210-2c2b0f1b1f744922ac5091f2708e90dc
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose rank record of all rows is minimum . the year record of this row is 2012 .
Output:
|
[
"eq { hop { argmin { all_rows ; rank } ; year } ; 2012 }"
] |
task210-2b65e7b1b82543d5889a9b514630930d
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose date record fuzzily matches to 6 march 1976 . select the row whose tie no record of these rows is minimum . the home team record of this row is sunderland . the away team record of this row is crystal palace .
Output:
|
[
"and { eq { hop { argmin { filter_eq { all_rows ; date ; 6 march 1976 } ; tie no } ; home team } ; sunderland } ; eq { hop { argmin { filter_eq { all_rows ; date ; 6 march 1976 } ; tie no } ; away team } ; crystal palace } }"
] |
task210-4a340725c2cf42faa347b0b3ec71064a
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose first elected record is less than 2006 . there is only one such row in the table . the incumbent record of this unqiue row is john kline .
Output:
|
[
"and { only { filter_less { all_rows ; first elected ; 2006 } } ; eq { hop { filter_less { all_rows ; first elected ; 2006 } ; incumbent } ; john kline } }"
] |
task210-1d588106acc4485eb9a06195eb6bc63e
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose overall record record of all rows is maximum . the texas vs record of this row is texas a & m .
Output:
|
[
"eq { hop { argmax { all_rows ; overall record } ; texas vs } ; texas a & m }"
] |
task210-1fc3136fa53b4d35aee3eed668ab27c5
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose attendance record is less than 1500 . there is only one such row in the table . the date record of this unqiue row is april 18 .
Output:
|
[
"and { only { filter_less { all_rows ; attendance ; 1500 } } ; eq { hop { filter_less { all_rows ; attendance ; 1500 } ; date } ; april 18 } }"
] |
task210-886ce4a9968142d09ad5060e4a904fe5
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose surface record fuzzily matches to clay . the minimum date record of these rows is january 8 , 2001 .
Output:
|
[
"eq { min { filter_eq { all_rows ; surface ; clay } ; date } ; january 8 , 2001 }"
] |
task210-b0d3d95dd02648f89e2269cfd954ff58
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose ship name record fuzzily matches to ashantian . take the tonnage ( grt ) record of this row . select the rows whose ship name record fuzzily matches to manchester brigade . take the tonnage ( grt ) record of this row . the second record is 1125 larger than the first record .
Output:
|
[
"eq { diff { hop { filter_eq { all_rows ; ship name ; ashantian } ; tonnage ( grt ) } ; hop { filter_eq { all_rows ; ship name ; manchester brigade } ; tonnage ( grt ) } } ; -1125 }"
] |
task210-463cd5dd3f654390ab1b442d0f0d114b
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose attendance record of all rows is 2nd maximum . the date record of this row is may 22 .
Output:
|
[
"eq { hop { nth_argmax { all_rows ; attendance ; 2 } ; date } ; may 22 }"
] |
task210-7b27849f518240058ee0004b9ee3096d
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the earnings records of all rows , most of them are greater than 10000000 .
Output:
|
[
"most_greater { all_rows ; earnings ; 10000000 }"
] |
task210-e688c09fa7094c8a82f7a50dc6ddef75
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose tournaments played record is less than 20 . there is only one such row in the table . the year record of this unqiue row is 2002 .
Output:
|
[
"and { only { filter_less { all_rows ; tournaments played ; 20 } } ; eq { hop { filter_less { all_rows ; tournaments played ; 20 } ; year } ; 2002 } }"
] |
task210-9a92159fb48a4376ba0576057f0efd9e
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose title record fuzzily matches to ( part . among these rows , select the rows whose directed by record fuzzily matches to tom tataranowicz . the number of such rows is 3 .
Output:
|
[
"eq { count { filter_eq { filter_eq { all_rows ; title ; ( part } ; directed by ; tom tataranowicz } } ; 3 }"
] |
task210-cc70cc9888eb4f699a6424824a91adcd
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose goalkeeper record fuzzily matches to matías garavano . take the goals record of this row . select the rows whose goalkeeper record fuzzily matches to álvaro campos . take the goals record of this row . the first record is greater than the second record .
Output:
|
[
"greater { hop { filter_eq { all_rows ; goalkeeper ; matías garavano } ; goals } ; hop { filter_eq { all_rows ; goalkeeper ; álvaro campos } ; goals } }"
] |
task210-9d1d654562bd416abd1f4141e8aa8531
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the goals records of all rows , all of them are equal to 0 .
Output:
|
[
"all_eq { all_rows ; goals ; 0 }"
] |
task210-601ece3dfd0f45549c7e12e226d41b80
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose attendance record of all rows is 2nd maximum . the date record of this row is saturday , april 10 .
Output:
|
[
"eq { hop { nth_argmax { all_rows ; attendance ; 2 } ; date } ; saturday , april 10 }"
] |
task210-bef0fca9ba8e400d9efc60403d6e283a
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the react record of all rows is .19025 .
Output:
|
[
"round_eq { avg { all_rows ; react } ; .19025 }"
] |
task210-416a2a666fc4436a88795a030f4e39eb
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose gold record of all rows is maximum . the nation record of this row is great britain .
Output:
|
[
"eq { hop { argmax { all_rows ; gold } ; nation } ; great britain }"
] |
task210-f7ff02589c9f4695af599679f4a5fc91
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose home / away record fuzzily matches to home . the number of such rows is 8 .
Output:
|
[
"eq { count { filter_eq { all_rows ; home / away ; home } } ; 8 }"
] |
task210-4f8c98967dfc40dfa3c010fe3061b478
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose school record fuzzily matches to leo . take the year joined record of this row . select the rows whose school record fuzzily matches to south adams . take the year joined record of this row . the second record is 20 years larger than the first record .
Output:
|
[
"eq { diff { hop { filter_eq { all_rows ; school ; leo } ; year joined } ; hop { filter_eq { all_rows ; school ; south adams } ; year joined } } ; -20 years }"
] |
task210-39c0344f395047bcad0023d9aaceae9c
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose result record fuzzily matches to lost re - election . there is only one such row in the table . the incumbent record of this unqiue row is ralph r eltse .
Output:
|
[
"and { only { filter_eq { all_rows ; result ; lost re - election } } ; eq { hop { filter_eq { all_rows ; result ; lost re - election } ; incumbent } ; ralph r eltse } }"
] |
task210-d462f1c9f11c4854bc637039667448b2
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose result record fuzzily matches to w . the number of such rows is 8 .
Output:
|
[
"eq { count { filter_eq { all_rows ; result ; w } } ; 8 }"
] |
task210-75ca9a1cb12d4cdeae3e3fdc8b2e9c71
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose player record fuzzily matches to steve pepin . take the nhl team record of this row . select the rows whose player record fuzzily matches to john miner . take the nhl team record of this row . the first record does not match to the second record . the nhl team record of the first row is chicago black hawks . the nhl team record of the second row is edmonton oilers .
Output:
|
[
"and { not_eq { hop { filter_eq { all_rows ; player ; steve pepin } ; nhl team } ; hop { filter_eq { all_rows ; player ; john miner } ; nhl team } } ; and { eq { hop { filter_eq { all_rows ; player ; steve pepin } ; nhl team } ; chicago black hawks } ; eq { hop { filter_eq { all_rows ; player ; john miner } ; nhl team } ; edmonton oilers } } }"
] |
task210-e5938a314e454f11a7424e23929aa2e8
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose incumbent record fuzzily matches to dale kildee . take the first elected record of this row . select the rows whose incumbent record fuzzily matches to fred upton . take the first elected record of this row . the first record is less than the second record .
Output:
|
[
"less { hop { filter_eq { all_rows ; incumbent ; dale kildee } ; first elected } ; hop { filter_eq { all_rows ; incumbent ; fred upton } ; first elected } }"
] |
task210-271e574da14647ce973ac862010fed6d
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the date records of all rows , all of them fuzzily match to 16 july 1949 .
Output:
|
[
"all_eq { all_rows ; date ; 16 july 1949 }"
] |
task210-0af42fa637ee41f89e04d28263192227
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose school / club team record fuzzily matches to university of texas at arlington . the sum of the overall record of these rows is 308 .
Output:
|
[
"round_eq { sum { filter_eq { all_rows ; school / club team ; university of texas at arlington } ; overall } ; 308 }"
] |
task210-14120f58a3f44ef596282330d3bbb72b
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose days record is greater than 110 . there is only one such row in the table . the series record of this unqiue row is season 3 .
Output:
|
[
"and { only { filter_greater { all_rows ; days ; 110 } } ; eq { hop { filter_greater { all_rows ; days ; 110 } ; series } ; season 3 } }"
] |
task210-8072ae4e861e477db0955ca30f10cf3b
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the gold record of all rows is 3.7 .
Output:
|
[
"round_eq { avg { all_rows ; gold } ; 3.7 }"
] |
task210-be9c4a99f08d4930b6e8352159f5ceed
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose commissioned or completed record fuzzily matches to 1864 . for the laid down records of these rows , all of them are equal to 1862 .
Output:
|
[
"all_eq { filter_eq { all_rows ; commissioned or completed ; 1864 } ; laid down ; 1862 }"
] |
task210-10ed9187da914945b6eb9b6fc28269e2
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose screens record is greater than 100 . there is only one such row in the table . the territory record of this unqiue row is turkey .
Output:
|
[
"and { only { filter_greater { all_rows ; screens ; 100 } } ; eq { hop { filter_greater { all_rows ; screens ; 100 } ; territory } ; turkey } }"
] |
task210-d0e9f7046c4d4a8bb1ae8a9f5a6eb9a2
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the race 1 ( pts ) record of all rows is 17.8 .
Output:
|
[
"round_eq { avg { all_rows ; race 1 ( pts ) } ; 17.8 }"
] |
task210-0bc9c436855a45abb5759c5b82309c77
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose matches record is equal to 139 . there is only one such row in the table . the team record of this unqiue row is darlington .
Output:
|
[
"and { only { filter_eq { all_rows ; matches ; 139 } } ; eq { hop { filter_eq { all_rows ; matches ; 139 } ; team } ; darlington } }"
] |
task210-02df5720bdef4d9c812c585cd3225f60
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose name record fuzzily matches to coby fleener . take the round record of this row . select the rows whose name record fuzzily matches to josh chapman . take the round record of this row . the first record is less than the second record .
Output:
|
[
"less { hop { filter_eq { all_rows ; name ; coby fleener } ; round } ; hop { filter_eq { all_rows ; name ; josh chapman } ; round } }"
] |
task210-35fd68906b04463fa0cebe3e6cb3bb06
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose league record of all rows is 3rd maximum . the name record of this row is bill foulkes .
Output:
|
[
"eq { hop { nth_argmax { all_rows ; league ; 3 } ; name } ; bill foulkes }"
] |
task210-4f49703fb4174b37a4c20d6134a9460e
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the parish ( prestegjeld ) records of all rows , all of them fuzzily match to kinn parish .
Output:
|
[
"all_eq { all_rows ; parish ( prestegjeld ) ; kinn parish }"
] |
task210-58a4aeb64c6748929903ecd09dd51063
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose rank record of all rows is 6th minimum . the name record of this row is emilio falla ( ecu ) .
Output:
|
[
"eq { hop { nth_argmin { all_rows ; rank ; 6 } ; name } ; emilio falla ( ecu ) }"
] |
task210-9694f578aef3462b938ff56aaecc07d2
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the speed record of all rows is 87.75 .
Output:
|
[
"round_eq { avg { all_rows ; speed } ; 87.75 }"
] |
task210-72c1e505b8594d1aae7b30d56bafd711
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose result record fuzzily matches to re - elected . among these rows , select the rows whose first elected record is equal to 1902 . the number of such rows is 2 .
Output:
|
[
"eq { count { filter_eq { filter_eq { all_rows ; result ; re - elected } ; first elected ; 1902 } } ; 2 }"
] |
task210-17c2ab8105114b2d85adb9d3db9d1593
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose 2004 record fuzzily matches to w . there is only one such row in the table . the tournament record of this unqiue row is french open .
Output:
|
[
"and { only { filter_eq { all_rows ; 2004 ; w } } ; eq { hop { filter_eq { all_rows ; 2004 ; w } ; tournament } ; french open } }"
] |
task210-5ac007ce29604a6a84bfd575bc22f49d
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose first - team goals record of all rows is maximum . the player record of this row is gareth barry .
Output:
|
[
"eq { hop { argmax { all_rows ; first - team goals } ; player } ; gareth barry }"
] |
task210-e9b01c4a65dc447ea2d774a71e2483cf
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose location record fuzzily matches to minsk . take the capacity record of this row . select the rows whose location record fuzzily matches to lida . take the capacity record of this row . the first record is greater than the second record .
Output:
|
[
"greater { hop { filter_eq { all_rows ; location ; minsk } ; capacity } ; hop { filter_eq { all_rows ; location ; lida } ; capacity } }"
] |
task210-394a05d904554f72b923fff1263b6c32
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose date record fuzzily matches to may 2008 . for the original artist records of these rows , all of them fuzzily match to beatles .
Output:
|
[
"all_eq { filter_eq { all_rows ; date ; may 2008 } ; original artist ; beatles }"
] |
task210-5df02ecde5794cbf9c461ba287d1b38b
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the time records of all rows , most of them are less than 4:00 .
Output:
|
[
"most_less { all_rows ; time ; 4:00 }"
] |
task210-25d038f67fb34648a458dbc6af9e2ee1
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the object type records of all rows , most of them fuzzily match to open cluster .
Output:
|
[
"most_eq { all_rows ; object type ; open cluster }"
] |
task210-a6ebebbbeeeb458e801bf89b0d843d94
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the crowd record of all rows is 15760 .
Output:
|
[
"round_eq { avg { all_rows ; crowd } ; 15760 }"
] |
task210-78d7942e447f42d2995c47192946b65c
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose winning score record of all rows is maximum . the year record of this row is 2001 .
Output:
|
[
"eq { hop { argmax { all_rows ; winning score } ; year } ; 2001 }"
] |
task210-9fb7cbb2f3704ca0b4c5383cb1ad0f4b
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the date records of all rows , all of them fuzzily match to november .
Output:
|
[
"all_eq { all_rows ; date ; november }"
] |
task210-926f3af034be4e4e80586e160204a8ca
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose silver record of all rows is maximum . the nation record of this row is cuba .
Output:
|
[
"eq { hop { argmax { all_rows ; silver } ; nation } ; cuba }"
] |
task210-7383d3d5c65a4efb84a5eb6fb2c8c4fc
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the wins record of all rows is .12 .
Output:
|
[
"round_eq { avg { all_rows ; wins } ; .12 }"
] |
task210-b990aee7b52e40ad9f7722c6a8738976
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose name record fuzzily matches to niki cross . take the minutes record of this row . select the rows whose name record fuzzily matches to amanda cinalli . take the minutes record of this row . the second record is 60 larger than the first record .
Output:
|
[
"eq { diff { hop { filter_eq { all_rows ; name ; niki cross } ; minutes } ; hop { filter_eq { all_rows ; name ; amanda cinalli } ; minutes } } ; -60 }"
] |
task210-893b196cc282447580d93fe54be6664f
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the sum of the ends won record of all rows is 516 .
Output:
|
[
"round_eq { sum { all_rows ; ends won } ; 516 }"
] |
task210-b9ed02ac9c8b4942a4a7d724e39ae341
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose enrollment record of all rows is maximum . the institution record of this row is grove city college .
Output:
|
[
"eq { hop { argmax { all_rows ; enrollment } ; institution } ; grove city college }"
] |
task210-73f89b51128d4f7fb0034d5d8e73c0ac
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the crankshaft records of all rows , most of them fuzzily match to 180 degree .
Output:
|
[
"most_eq { all_rows ; crankshaft ; 180 degree }"
] |
task210-0d1024ec4a53495a828f8bea02b81155
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the 2nd minimum years for grizzlies record of all rows is 1997 - 1999 . the player record of the row with 2nd minimum years for grizzlies record is michael smith .
Output:
|
[
"and { eq { nth_min { all_rows ; years for grizzlies ; 2 } ; 1997 - 1999 } ; eq { hop { nth_argmin { all_rows ; years for grizzlies ; 2 } ; player } ; michael smith } }"
] |
task210-c9d4a50b83c147bf9bb8787283b0a909
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose team record fuzzily matches to switzerland . take the points record of this row . select the rows whose team record fuzzily matches to germany . take the points record of this row . the first record is greater than the second record .
Output:
|
[
"greater { hop { filter_eq { all_rows ; team ; switzerland } ; points } ; hop { filter_eq { all_rows ; team ; germany } ; points } }"
] |
task210-9abb2c12e335471d9f9f518e214429fd
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose cfl team record fuzzily matches to ottawa renegades . take the pick record of this row . select the rows whose cfl team record fuzzily matches to bc lions . take the pick record of this row . the first record is less than the second record .
Output:
|
[
"less { hop { filter_eq { all_rows ; cfl team ; ottawa renegades } ; pick } ; hop { filter_eq { all_rows ; cfl team ; bc lions } ; pick } }"
] |
task210-8b768448887847d99dac1a64fdaf53e0
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose written by record fuzzily matches to james wood . the number of such rows is 5 .
Output:
|
[
"eq { count { filter_eq { all_rows ; written by ; james wood } } ; 5 }"
] |
task210-db7618aa0aef40cb8183c4b78b48a293
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose rec record is greater than 50 . the number of such rows is 4 .
Output:
|
[
"eq { count { filter_greater { all_rows ; rec ; 50 } } ; 4 }"
] |
task210-0df9ef975a704007828581207bdcdfcd
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the venue records of all rows , all of them fuzzily match to skonto hall , riga .
Output:
|
[
"all_eq { all_rows ; venue ; skonto hall , riga }"
] |
task210-2d540f2baaa54da58425ac4da75d3836
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the sum of the enrollment record of all rows is 6339 .
Output:
|
[
"round_eq { sum { all_rows ; enrollment } ; 6339 }"
] |
task210-b3fcbe2c560c4961a1b123ae49e3ab15
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose result record fuzzily matches to w . the 2nd minimum date record of these rows is november 28 , 1999 .
Output:
|
[
"eq { nth_min { filter_eq { all_rows ; result ; w } ; date ; 2 } ; november 28 , 1999 }"
] |
task210-d30f3093167a47f584770d8999d381f4
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.