input
stringlengths
3.68k
4.11k
output
listlengths
1
1
id
stringlengths
40
40
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the result records of all rows , all of them fuzzily match to not nominated . Output:
[ "all_eq { all_rows ; result ; not nominated }" ]
task210-01817fa2b6e04d0488dc20dcf467ace1
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose venue record fuzzily matches to china . there is only one such row in the table . Output:
[ "only { filter_eq { all_rows ; venue ; china } }" ]
task210-843fdb05f23a403089c1b3f9db455415
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the score record of all rows is 2-0 . Output:
[ "round_eq { avg { all_rows ; score } ; 2-0 }" ]
task210-6cfd8c902a4a4e4cacbd420913ae96c6
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose player record fuzzily matches to scott garlick . take the games record of this row . select the rows whose player record fuzzily matches to dj countess . take the games record of this row . the first record is 4 larger than the second record . Output:
[ "eq { diff { hop { filter_eq { all_rows ; player ; scott garlick } ; games } ; hop { filter_eq { all_rows ; player ; dj countess } ; games } } ; 4 }" ]
task210-7c4e61203bf54834b721d93793de2d17
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose points ( total 500 ) record is greater than 300 . the number of such rows is 3 . Output:
[ "eq { count { filter_greater { all_rows ; points ( total 500 ) ; 300 } } ; 3 }" ]
task210-5cf1adf878834c568b56c06c577923c6
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose elected record of all rows is minimum . the incumbent record of this row is john lewis . Output:
[ "eq { hop { argmin { all_rows ; elected } ; incumbent } ; john lewis }" ]
task210-09ed1a653d2a4ae8812067817c5b9672
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose country record fuzzily matches to new zealand . there is only one such row in the table . the company record of this unqiue row is enernoc new zealand limited . Output:
[ "and { only { filter_eq { all_rows ; country ; new zealand } } ; eq { hop { filter_eq { all_rows ; country ; new zealand } ; company } ; enernoc new zealand limited } }" ]
task210-b1e9c2e302974d82ac260b7a24cb4a98
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose municipality record fuzzily matches to jose panganiban . take the area ( km square ) record of this row . select the rows whose municipality record fuzzily matches to daet ( capital town ) . take the area ( km square ) record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; municipality ; jose panganiban } ; area ( km square ) } ; hop { filter_eq { all_rows ; municipality ; daet ( capital town ) } ; area ( km square ) } }" ]
task210-2fec937c1207460c9f0d2943cca99267
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose tournament record fuzzily matches to bordeaux , france . take the date record of this row . select the rows whose tournament record fuzzily matches to san marino . take the date record of this row . the first record is less than the second record . Output:
[ "less { hop { filter_eq { all_rows ; tournament ; bordeaux , france } ; date } ; hop { filter_eq { all_rows ; tournament ; san marino } ; date } }" ]
task210-44c45a96a95341fb904af3b61692e916
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose lost record is equal to 0 . the number of such rows is 5 . Output:
[ "eq { count { filter_eq { all_rows ; lost ; 0 } } ; 5 }" ]
task210-19ea034eb9c640ffa00ee80db2e8a692
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose introduced record is less than 2000 . among these rows , select the rows whose fleet size record is equal to 2 . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { filter_less { all_rows ; introduced ; 2000 } ; fleet size ; 2 } } ; 2 }" ]
task210-bbd0cef44ac047a7a74cb4d4dff0a57d
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose region record fuzzily matches to africa . among these rows , select the rows whose joined opec record is equal to 1969 . there is only one such row in the table . the country record of this unqiue row is algeria . Output:
[ "and { only { filter_eq { filter_eq { all_rows ; region ; africa } ; joined opec ; 1969 } } ; eq { hop { filter_eq { filter_eq { all_rows ; region ; africa } ; joined opec ; 1969 } ; country } ; algeria } }" ]
task210-449b534478164abda1cda8507f67276a
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose launch date ( ddmmyyyy ) record fuzzily matches to 2005 . among these rows , select the rows whose connection speed record fuzzily matches to 236.8 kbit/s . there is only one such row in the table . the carrier record of this unqiue row is moldcell . Output:
[ "and { only { filter_eq { filter_eq { all_rows ; launch date ( ddmmyyyy ) ; 2005 } ; connection speed ; 236.8 kbit/s } } ; eq { hop { filter_eq { filter_eq { all_rows ; launch date ( ddmmyyyy ) ; 2005 } ; connection speed ; 236.8 kbit/s } ; carrier } ; moldcell } }" ]
task210-6b164f19091645f9a4524ab7d98816c3
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose height record of all rows is maximum . the player record of this row is pape badiane . Output:
[ "eq { hop { argmax { all_rows ; height } ; player } ; pape badiane }" ]
task210-3f6ad9fd80994a71a057f79363392d53
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose top 10 record of all rows is maximum . the year record of this row is 2005 . Output:
[ "eq { hop { argmax { all_rows ; top 10 } ; year } ; 2005 }" ]
task210-a91c7e9ec09548cdaf8bdc8a8fe3adf3
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose tournament record fuzzily matches to world championships . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { all_rows ; tournament ; world championships } } ; 2 }" ]
task210-31143ac352a94a029dc18fc379256624
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose average record of all rows is maximum . the player record of this row is andrew caddick . Output:
[ "eq { hop { argmax { all_rows ; average } ; player } ; andrew caddick }" ]
task210-4d93b0e156a0491a9d651fe7b6ed6e95
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose year of intro record of all rows is 2nd minimum . the name / designation record of this row is onorati smg . Output:
[ "eq { hop { nth_argmin { all_rows ; year of intro ; 2 } ; name / designation } ; onorati smg }" ]
task210-9620d7574ec2461096b32ee1674eb87c
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose goals record of all rows is 2nd maximum . the nationality record of this row is ireland . Output:
[ "eq { hop { nth_argmax { all_rows ; goals ; 2 } ; nationality } ; ireland }" ]
task210-13df91f8120e45f5a48cbb59830e461c
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose name record fuzzily matches to andrew . take the date record of this row . select the rows whose name record fuzzily matches to amanda . take the date record of this row . the first record is less than the second record . Output:
[ "less { hop { filter_eq { all_rows ; name ; andrew } ; date } ; hop { filter_eq { all_rows ; name ; amanda } ; date } }" ]
task210-862c3187c6db4a7092a3e47c1466649a
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose edition record fuzzily matches to 2008 davis cup europe / africa group ii . take the surface record of this row . select the rows whose edition record fuzzily matches to 2013 davis cup europe / africa group ii . take the surface record of this row . the first record fuzzily matches to the second record . the surface record of the first row is clay . the surface record of the second row is clay . Output:
[ "and { eq { hop { filter_eq { all_rows ; edition ; 2008 davis cup europe / africa group ii } ; surface } ; hop { filter_eq { all_rows ; edition ; 2013 davis cup europe / africa group ii } ; surface } } ; and { eq { hop { filter_eq { all_rows ; edition ; 2008 davis cup europe / africa group ii } ; surface } ; clay } ; eq { hop { filter_eq { all_rows ; edition ; 2013 davis cup europe / africa group ii } ; surface } ; clay } } }" ]
task210-b6c6caea9a3447a787f7f7f25e2cf0e2
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the wheels records of all rows , most of them fuzzily match to 4 - 4 - 2t . Output:
[ "most_eq { all_rows ; wheels ; 4 - 4 - 2t }" ]
task210-b7106d5408044263af8662a2b79afdd4
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose nationality record fuzzily matches to united states . among these rows , select the rows whose from record fuzzily matches to idaho state . there is only one such row in the table . the jersey number ( s ) record of this unqiue row is 41 . Output:
[ "and { only { filter_eq { filter_eq { all_rows ; nationality ; united states } ; from ; idaho state } } ; eq { hop { filter_eq { filter_eq { all_rows ; nationality ; united states } ; from ; idaho state } ; jersey number ( s ) } ; 41 } }" ]
task210-ce0b8e9e7bcd4fc199a17d6bc2c49171
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the secondary ( 14 - 17 years ) record of all rows is 70.95 . Output:
[ "round_eq { avg { all_rows ; secondary ( 14 - 17 years ) } ; 70.95 }" ]
task210-7c19f670525c4a9c94d655f5efa21f78
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose party record fuzzily matches to democratic . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { all_rows ; party ; democratic } } ; 2 }" ]
task210-0686e2374cff46e6930a6af5e97d6e9d
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose points record is greater than or equal to 55 . among these rows , select the rows whose opponent record fuzzily matches to new york rangers . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { filter_greater_eq { all_rows ; points ; 55 } ; opponent ; new york rangers } } ; 2 }" ]
task210-f279665644444f598131328ac1a05acb
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the score record of all rows is 34.8 . Output:
[ "round_eq { avg { all_rows ; score } ; 34.8 }" ]
task210-d74113f8f0d34246bd2d2b87034ea793
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose 2nd position record fuzzily matches to lija . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { all_rows ; 2nd position ; lija } } ; 2 }" ]
task210-7553c3cbc70643dca37aa847c4337d7b
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the method records of all rows , most of them fuzzily match to decision . Output:
[ "most_eq { all_rows ; method ; decision }" ]
task210-1d94b1fd7660487b9bf899377a50f62a
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the score record of all rows is 1.8 . Output:
[ "round_eq { avg { all_rows ; score } ; 1.8 }" ]
task210-ff2ff027e57842ddb6a3f5e23cfc7435
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the attendance record of all rows is 19119 . Output:
[ "round_eq { avg { all_rows ; attendance } ; 19119 }" ]
task210-da34d1eee07f47fea98bbeb9e0d43825
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose result record fuzzily matches to retire . the number of such rows is 1 . Output:
[ "eq { count { filter_eq { all_rows ; result ; retire } } ; 1 }" ]
task210-82d699f3c960402d8158af5e76a3be74
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose school record fuzzily matches to avon community . take the enrollment record of this row . select the rows whose school record fuzzily matches to brownsburg . take the enrollment record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; school ; avon community } ; enrollment } ; hop { filter_eq { all_rows ; school ; brownsburg } ; enrollment } }" ]
task210-894749c7102b477bb80dbdf9fa3f4462
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose viewers ( households in millions ) record is less than 18 . the number of such rows is 3 . Output:
[ "eq { count { filter_less { all_rows ; viewers ( households in millions ) ; 18 } } ; 3 }" ]
task210-ee817bc78bb1475884017ebe8fe50d86
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose location attendance record fuzzily matches to amway arena . among these rows , select the rows whose high points record fuzzily matches to andre iguodala . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { filter_eq { all_rows ; location attendance ; amway arena } ; high points ; andre iguodala } } ; 2 }" ]
task210-d4bd374e3b504751a015f9fed5431f9c
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose opponent record fuzzily matches to chris haseman . take the round record of this row . select the rows whose opponent record fuzzily matches to wanderlei silva . take the round record of this row . the first record is 1 larger than the second record . Output:
[ "eq { diff { hop { filter_eq { all_rows ; opponent ; chris haseman } ; round } ; hop { filter_eq { all_rows ; opponent ; wanderlei silva } ; round } } ; 1 }" ]
task210-65cb1a0e97e2411dad50d90f9785e5dc
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose result record fuzzily matches to win . for the orangemen points records of these rows , most of them are greater than 20 . Output:
[ "most_greater { filter_eq { all_rows ; result ; win } ; orangemen points ; 20 }" ]
task210-52dab288db6349e7a13a3464e392b2c3
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose callsign record fuzzily matches to dwll . take the power record of this row . select the rows whose callsign record fuzzily matches to dyku . take the power record of this row . the first record is 10 larger than the second record . Output:
[ "eq { diff { hop { filter_eq { all_rows ; callsign ; dwll } ; power } ; hop { filter_eq { all_rows ; callsign ; dyku } ; power } } ; 10 }" ]
task210-42c1b23ac6844ff7a5993438a5aeb21a
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose player record fuzzily matches to craig kieswetter . take the runs record of this row . select the rows whose player record fuzzily matches to zander de bruyn . take the runs record of this row . the first record is 7 larger than the second record . Output:
[ "eq { diff { hop { filter_eq { all_rows ; player ; craig kieswetter } ; runs } ; hop { filter_eq { all_rows ; player ; zander de bruyn } ; runs } } ; 7 }" ]
task210-9bf30d3a4cc441e6bd1a36856bd072bc
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose pos record fuzzily matches to gk . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { all_rows ; pos ; gk } } ; 2 }" ]
task210-a685202d0ba04407b733ab88a77d4d5c
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose points 1 record of all rows is maximum . the team record of this row is colne dynamoes . Output:
[ "eq { hop { argmax { all_rows ; points 1 } ; team } ; colne dynamoes }" ]
task210-2c2b0f1b1f744922ac5091f2708e90dc
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose rank record of all rows is minimum . the year record of this row is 2012 . Output:
[ "eq { hop { argmin { all_rows ; rank } ; year } ; 2012 }" ]
task210-2b65e7b1b82543d5889a9b514630930d
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose date record fuzzily matches to 6 march 1976 . select the row whose tie no record of these rows is minimum . the home team record of this row is sunderland . the away team record of this row is crystal palace . Output:
[ "and { eq { hop { argmin { filter_eq { all_rows ; date ; 6 march 1976 } ; tie no } ; home team } ; sunderland } ; eq { hop { argmin { filter_eq { all_rows ; date ; 6 march 1976 } ; tie no } ; away team } ; crystal palace } }" ]
task210-4a340725c2cf42faa347b0b3ec71064a
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose first elected record is less than 2006 . there is only one such row in the table . the incumbent record of this unqiue row is john kline . Output:
[ "and { only { filter_less { all_rows ; first elected ; 2006 } } ; eq { hop { filter_less { all_rows ; first elected ; 2006 } ; incumbent } ; john kline } }" ]
task210-1d588106acc4485eb9a06195eb6bc63e
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose overall record record of all rows is maximum . the texas vs record of this row is texas a & m . Output:
[ "eq { hop { argmax { all_rows ; overall record } ; texas vs } ; texas a & m }" ]
task210-1fc3136fa53b4d35aee3eed668ab27c5
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose attendance record is less than 1500 . there is only one such row in the table . the date record of this unqiue row is april 18 . Output:
[ "and { only { filter_less { all_rows ; attendance ; 1500 } } ; eq { hop { filter_less { all_rows ; attendance ; 1500 } ; date } ; april 18 } }" ]
task210-886ce4a9968142d09ad5060e4a904fe5
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose surface record fuzzily matches to clay . the minimum date record of these rows is january 8 , 2001 . Output:
[ "eq { min { filter_eq { all_rows ; surface ; clay } ; date } ; january 8 , 2001 }" ]
task210-b0d3d95dd02648f89e2269cfd954ff58
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose ship name record fuzzily matches to ashantian . take the tonnage ( grt ) record of this row . select the rows whose ship name record fuzzily matches to manchester brigade . take the tonnage ( grt ) record of this row . the second record is 1125 larger than the first record . Output:
[ "eq { diff { hop { filter_eq { all_rows ; ship name ; ashantian } ; tonnage ( grt ) } ; hop { filter_eq { all_rows ; ship name ; manchester brigade } ; tonnage ( grt ) } } ; -1125 }" ]
task210-463cd5dd3f654390ab1b442d0f0d114b
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose attendance record of all rows is 2nd maximum . the date record of this row is may 22 . Output:
[ "eq { hop { nth_argmax { all_rows ; attendance ; 2 } ; date } ; may 22 }" ]
task210-7b27849f518240058ee0004b9ee3096d
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the earnings records of all rows , most of them are greater than 10000000 . Output:
[ "most_greater { all_rows ; earnings ; 10000000 }" ]
task210-e688c09fa7094c8a82f7a50dc6ddef75
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose tournaments played record is less than 20 . there is only one such row in the table . the year record of this unqiue row is 2002 . Output:
[ "and { only { filter_less { all_rows ; tournaments played ; 20 } } ; eq { hop { filter_less { all_rows ; tournaments played ; 20 } ; year } ; 2002 } }" ]
task210-9a92159fb48a4376ba0576057f0efd9e
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose title record fuzzily matches to ( part . among these rows , select the rows whose directed by record fuzzily matches to tom tataranowicz . the number of such rows is 3 . Output:
[ "eq { count { filter_eq { filter_eq { all_rows ; title ; ( part } ; directed by ; tom tataranowicz } } ; 3 }" ]
task210-cc70cc9888eb4f699a6424824a91adcd
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose goalkeeper record fuzzily matches to matías garavano . take the goals record of this row . select the rows whose goalkeeper record fuzzily matches to álvaro campos . take the goals record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; goalkeeper ; matías garavano } ; goals } ; hop { filter_eq { all_rows ; goalkeeper ; álvaro campos } ; goals } }" ]
task210-9d1d654562bd416abd1f4141e8aa8531
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the goals records of all rows , all of them are equal to 0 . Output:
[ "all_eq { all_rows ; goals ; 0 }" ]
task210-601ece3dfd0f45549c7e12e226d41b80
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose attendance record of all rows is 2nd maximum . the date record of this row is saturday , april 10 . Output:
[ "eq { hop { nth_argmax { all_rows ; attendance ; 2 } ; date } ; saturday , april 10 }" ]
task210-bef0fca9ba8e400d9efc60403d6e283a
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the react record of all rows is .19025 . Output:
[ "round_eq { avg { all_rows ; react } ; .19025 }" ]
task210-416a2a666fc4436a88795a030f4e39eb
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose gold record of all rows is maximum . the nation record of this row is great britain . Output:
[ "eq { hop { argmax { all_rows ; gold } ; nation } ; great britain }" ]
task210-f7ff02589c9f4695af599679f4a5fc91
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose home / away record fuzzily matches to home . the number of such rows is 8 . Output:
[ "eq { count { filter_eq { all_rows ; home / away ; home } } ; 8 }" ]
task210-4f8c98967dfc40dfa3c010fe3061b478
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose school record fuzzily matches to leo . take the year joined record of this row . select the rows whose school record fuzzily matches to south adams . take the year joined record of this row . the second record is 20 years larger than the first record . Output:
[ "eq { diff { hop { filter_eq { all_rows ; school ; leo } ; year joined } ; hop { filter_eq { all_rows ; school ; south adams } ; year joined } } ; -20 years }" ]
task210-39c0344f395047bcad0023d9aaceae9c
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose result record fuzzily matches to lost re - election . there is only one such row in the table . the incumbent record of this unqiue row is ralph r eltse . Output:
[ "and { only { filter_eq { all_rows ; result ; lost re - election } } ; eq { hop { filter_eq { all_rows ; result ; lost re - election } ; incumbent } ; ralph r eltse } }" ]
task210-d462f1c9f11c4854bc637039667448b2
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose result record fuzzily matches to w . the number of such rows is 8 . Output:
[ "eq { count { filter_eq { all_rows ; result ; w } } ; 8 }" ]
task210-75ca9a1cb12d4cdeae3e3fdc8b2e9c71
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose player record fuzzily matches to steve pepin . take the nhl team record of this row . select the rows whose player record fuzzily matches to john miner . take the nhl team record of this row . the first record does not match to the second record . the nhl team record of the first row is chicago black hawks . the nhl team record of the second row is edmonton oilers . Output:
[ "and { not_eq { hop { filter_eq { all_rows ; player ; steve pepin } ; nhl team } ; hop { filter_eq { all_rows ; player ; john miner } ; nhl team } } ; and { eq { hop { filter_eq { all_rows ; player ; steve pepin } ; nhl team } ; chicago black hawks } ; eq { hop { filter_eq { all_rows ; player ; john miner } ; nhl team } ; edmonton oilers } } }" ]
task210-e5938a314e454f11a7424e23929aa2e8
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose incumbent record fuzzily matches to dale kildee . take the first elected record of this row . select the rows whose incumbent record fuzzily matches to fred upton . take the first elected record of this row . the first record is less than the second record . Output:
[ "less { hop { filter_eq { all_rows ; incumbent ; dale kildee } ; first elected } ; hop { filter_eq { all_rows ; incumbent ; fred upton } ; first elected } }" ]
task210-271e574da14647ce973ac862010fed6d
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the date records of all rows , all of them fuzzily match to 16 july 1949 . Output:
[ "all_eq { all_rows ; date ; 16 july 1949 }" ]
task210-0af42fa637ee41f89e04d28263192227
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose school / club team record fuzzily matches to university of texas at arlington . the sum of the overall record of these rows is 308 . Output:
[ "round_eq { sum { filter_eq { all_rows ; school / club team ; university of texas at arlington } ; overall } ; 308 }" ]
task210-14120f58a3f44ef596282330d3bbb72b
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose days record is greater than 110 . there is only one such row in the table . the series record of this unqiue row is season 3 . Output:
[ "and { only { filter_greater { all_rows ; days ; 110 } } ; eq { hop { filter_greater { all_rows ; days ; 110 } ; series } ; season 3 } }" ]
task210-8072ae4e861e477db0955ca30f10cf3b
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the gold record of all rows is 3.7 . Output:
[ "round_eq { avg { all_rows ; gold } ; 3.7 }" ]
task210-be9c4a99f08d4930b6e8352159f5ceed
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose commissioned or completed record fuzzily matches to 1864 . for the laid down records of these rows , all of them are equal to 1862 . Output:
[ "all_eq { filter_eq { all_rows ; commissioned or completed ; 1864 } ; laid down ; 1862 }" ]
task210-10ed9187da914945b6eb9b6fc28269e2
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose screens record is greater than 100 . there is only one such row in the table . the territory record of this unqiue row is turkey . Output:
[ "and { only { filter_greater { all_rows ; screens ; 100 } } ; eq { hop { filter_greater { all_rows ; screens ; 100 } ; territory } ; turkey } }" ]
task210-d0e9f7046c4d4a8bb1ae8a9f5a6eb9a2
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the race 1 ( pts ) record of all rows is 17.8 . Output:
[ "round_eq { avg { all_rows ; race 1 ( pts ) } ; 17.8 }" ]
task210-0bc9c436855a45abb5759c5b82309c77
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose matches record is equal to 139 . there is only one such row in the table . the team record of this unqiue row is darlington . Output:
[ "and { only { filter_eq { all_rows ; matches ; 139 } } ; eq { hop { filter_eq { all_rows ; matches ; 139 } ; team } ; darlington } }" ]
task210-02df5720bdef4d9c812c585cd3225f60
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose name record fuzzily matches to coby fleener . take the round record of this row . select the rows whose name record fuzzily matches to josh chapman . take the round record of this row . the first record is less than the second record . Output:
[ "less { hop { filter_eq { all_rows ; name ; coby fleener } ; round } ; hop { filter_eq { all_rows ; name ; josh chapman } ; round } }" ]
task210-35fd68906b04463fa0cebe3e6cb3bb06
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose league record of all rows is 3rd maximum . the name record of this row is bill foulkes . Output:
[ "eq { hop { nth_argmax { all_rows ; league ; 3 } ; name } ; bill foulkes }" ]
task210-4f49703fb4174b37a4c20d6134a9460e
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the parish ( prestegjeld ) records of all rows , all of them fuzzily match to kinn parish . Output:
[ "all_eq { all_rows ; parish ( prestegjeld ) ; kinn parish }" ]
task210-58a4aeb64c6748929903ecd09dd51063
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose rank record of all rows is 6th minimum . the name record of this row is emilio falla ( ecu ) . Output:
[ "eq { hop { nth_argmin { all_rows ; rank ; 6 } ; name } ; emilio falla ( ecu ) }" ]
task210-9694f578aef3462b938ff56aaecc07d2
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the speed record of all rows is 87.75 . Output:
[ "round_eq { avg { all_rows ; speed } ; 87.75 }" ]
task210-72c1e505b8594d1aae7b30d56bafd711
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose result record fuzzily matches to re - elected . among these rows , select the rows whose first elected record is equal to 1902 . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { filter_eq { all_rows ; result ; re - elected } ; first elected ; 1902 } } ; 2 }" ]
task210-17c2ab8105114b2d85adb9d3db9d1593
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose 2004 record fuzzily matches to w . there is only one such row in the table . the tournament record of this unqiue row is french open . Output:
[ "and { only { filter_eq { all_rows ; 2004 ; w } } ; eq { hop { filter_eq { all_rows ; 2004 ; w } ; tournament } ; french open } }" ]
task210-5ac007ce29604a6a84bfd575bc22f49d
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose first - team goals record of all rows is maximum . the player record of this row is gareth barry . Output:
[ "eq { hop { argmax { all_rows ; first - team goals } ; player } ; gareth barry }" ]
task210-e9b01c4a65dc447ea2d774a71e2483cf
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose location record fuzzily matches to minsk . take the capacity record of this row . select the rows whose location record fuzzily matches to lida . take the capacity record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; location ; minsk } ; capacity } ; hop { filter_eq { all_rows ; location ; lida } ; capacity } }" ]
task210-394a05d904554f72b923fff1263b6c32
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose date record fuzzily matches to may 2008 . for the original artist records of these rows , all of them fuzzily match to beatles . Output:
[ "all_eq { filter_eq { all_rows ; date ; may 2008 } ; original artist ; beatles }" ]
task210-5df02ecde5794cbf9c461ba287d1b38b
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the time records of all rows , most of them are less than 4:00 . Output:
[ "most_less { all_rows ; time ; 4:00 }" ]
task210-25d038f67fb34648a458dbc6af9e2ee1
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the object type records of all rows , most of them fuzzily match to open cluster . Output:
[ "most_eq { all_rows ; object type ; open cluster }" ]
task210-a6ebebbbeeeb458e801bf89b0d843d94
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the crowd record of all rows is 15760 . Output:
[ "round_eq { avg { all_rows ; crowd } ; 15760 }" ]
task210-78d7942e447f42d2995c47192946b65c
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose winning score record of all rows is maximum . the year record of this row is 2001 . Output:
[ "eq { hop { argmax { all_rows ; winning score } ; year } ; 2001 }" ]
task210-9fb7cbb2f3704ca0b4c5383cb1ad0f4b
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the date records of all rows , all of them fuzzily match to november . Output:
[ "all_eq { all_rows ; date ; november }" ]
task210-926f3af034be4e4e80586e160204a8ca
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose silver record of all rows is maximum . the nation record of this row is cuba . Output:
[ "eq { hop { argmax { all_rows ; silver } ; nation } ; cuba }" ]
task210-7383d3d5c65a4efb84a5eb6fb2c8c4fc
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the wins record of all rows is .12 . Output:
[ "round_eq { avg { all_rows ; wins } ; .12 }" ]
task210-b990aee7b52e40ad9f7722c6a8738976
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose name record fuzzily matches to niki cross . take the minutes record of this row . select the rows whose name record fuzzily matches to amanda cinalli . take the minutes record of this row . the second record is 60 larger than the first record . Output:
[ "eq { diff { hop { filter_eq { all_rows ; name ; niki cross } ; minutes } ; hop { filter_eq { all_rows ; name ; amanda cinalli } ; minutes } } ; -60 }" ]
task210-893b196cc282447580d93fe54be6664f
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the sum of the ends won record of all rows is 516 . Output:
[ "round_eq { sum { all_rows ; ends won } ; 516 }" ]
task210-b9ed02ac9c8b4942a4a7d724e39ae341
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose enrollment record of all rows is maximum . the institution record of this row is grove city college . Output:
[ "eq { hop { argmax { all_rows ; enrollment } ; institution } ; grove city college }" ]
task210-73f89b51128d4f7fb0034d5d8e73c0ac
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the crankshaft records of all rows , most of them fuzzily match to 180 degree . Output:
[ "most_eq { all_rows ; crankshaft ; 180 degree }" ]
task210-0d1024ec4a53495a828f8bea02b81155
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the 2nd minimum years for grizzlies record of all rows is 1997 - 1999 . the player record of the row with 2nd minimum years for grizzlies record is michael smith . Output:
[ "and { eq { nth_min { all_rows ; years for grizzlies ; 2 } ; 1997 - 1999 } ; eq { hop { nth_argmin { all_rows ; years for grizzlies ; 2 } ; player } ; michael smith } }" ]
task210-c9d4a50b83c147bf9bb8787283b0a909
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose team record fuzzily matches to switzerland . take the points record of this row . select the rows whose team record fuzzily matches to germany . take the points record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; team ; switzerland } ; points } ; hop { filter_eq { all_rows ; team ; germany } ; points } }" ]
task210-9abb2c12e335471d9f9f518e214429fd
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose cfl team record fuzzily matches to ottawa renegades . take the pick record of this row . select the rows whose cfl team record fuzzily matches to bc lions . take the pick record of this row . the first record is less than the second record . Output:
[ "less { hop { filter_eq { all_rows ; cfl team ; ottawa renegades } ; pick } ; hop { filter_eq { all_rows ; cfl team ; bc lions } ; pick } }" ]
task210-8b768448887847d99dac1a64fdaf53e0
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose written by record fuzzily matches to james wood . the number of such rows is 5 . Output:
[ "eq { count { filter_eq { all_rows ; written by ; james wood } } ; 5 }" ]
task210-db7618aa0aef40cb8183c4b78b48a293
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose rec record is greater than 50 . the number of such rows is 4 . Output:
[ "eq { count { filter_greater { all_rows ; rec ; 50 } } ; 4 }" ]
task210-0df9ef975a704007828581207bdcdfcd
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the venue records of all rows , all of them fuzzily match to skonto hall , riga . Output:
[ "all_eq { all_rows ; venue ; skonto hall , riga }" ]
task210-2d540f2baaa54da58425ac4da75d3836
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the sum of the enrollment record of all rows is 6339 . Output:
[ "round_eq { sum { all_rows ; enrollment } ; 6339 }" ]
task210-b3fcbe2c560c4961a1b123ae49e3ab15
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose result record fuzzily matches to w . the 2nd minimum date record of these rows is november 28 , 1999 . Output:
[ "eq { nth_min { filter_eq { all_rows ; result ; w } ; date ; 2 } ; november 28 , 1999 }" ]
task210-d30f3093167a47f584770d8999d381f4