input
stringlengths
3.83k
4.62k
output
sequencelengths
1
1
id
stringlengths
40
40
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; issue price ; 79.95 } } ; 2 }, interpretation: select the rows whose bronze record is equal to 1 . the number of such rows is 4 . Output:
[ "no" ]
task211-7d1b580b013b4b8ba86c78cf32e7ddea
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { sum { all_rows ; quantity } ; 10 }, interpretation: the sum of the quantity record of all rows is 10 . Output:
[ "yes" ]
task211-8ea3b529be5a4435a485d81381725880
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; owner ; university } } ; eq { hop { filter_eq { all_rows ; owner ; university } ; frequency } ; fm 101.7 } }, interpretation: select the rows whose owner record fuzzily matches to university . there is only one such row in the table . the frequency record of this unqiue row is fm 101.7 . Output:
[ "yes" ]
task211-6e6ebf8407c84e6abfb64335936a52f7
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; original air date ; 1 } ; title } ; i 'll take you }, interpretation: select the rows whose year record fuzzily matches to 1996 . take the winnings record of this row . select the rows whose year record fuzzily matches to 1998 . take the winnings record of this row . the first record is greater than the second record . Output:
[ "no" ]
task211-ea26c4613085460880ee1e7950132573
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_less { filter_eq { all_rows ; hometown ; santiago de los caballeros } ; age ; 19 } } ; eq { hop { filter_less { filter_eq { all_rows ; hometown ; santiago de los caballeros } ; age ; 19 } ; contestant } ; valerie chardonnens vargas } }, interpretation: select the rows whose hometown record fuzzily matches to santiago de los caballeros . among these rows , select the rows whose age record is less than 19 . there is only one such row in the table . the contestant record of this unqiue row is valerie chardonnens vargas . Output:
[ "yes" ]
task211-1340f5339c184e2787b9e063cd071b0c
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { not_eq { hop { filter_eq { all_rows ; tournament ; paris } ; career win - loss } ; hop { filter_eq { all_rows ; tournament ; rome } ; career win - loss } } ; and { eq { hop { filter_eq { all_rows ; tournament ; paris } ; career win - loss } ; 6 - 4 } ; eq { hop { filter_eq { all_rows ; tournament ; rome } ; career win - loss } ; 0 - 8 } } }, interpretation: select the rows whose style record fuzzily matches to country - western two - step . there is only one such row in the table . the couple record of this unqiue row is kherington payne mark kanemura . Output:
[ "no" ]
task211-163dbb72cfdb4f51b143fb7d933b6804
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; time slot ( est ) ; wednesday 10 pm / 9c }, interpretation: select the row whose laps record of all rows is maximum . the year record of this row is 2007 . Output:
[ "no" ]
task211-7d0ec352cd40430b940d58968bc49e30
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; weeks on top ; 1 } ; song } ; music }, interpretation: select the rows whose theme record fuzzily matches to 1970s dance music . there is only one such row in the table . the week record of this unqiue row is top 7 . Output:
[ "no" ]
task211-4400d22395e64c75b0778838e09d541a
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { filter_eq { all_rows ; tyre ; e } ; constructor ; ferrari }, interpretation: select the rows whose tyre record fuzzily matches to e . for the constructor records of these rows , most of them fuzzily match to ferrari . Output:
[ "yes" ]
task211-44bd9382ce48434d81e3ded4a9dc1335
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_greater { all_rows ; year ; 2000 } } ; 3 }, interpretation: select the row whose agg record of all rows is maximum . the team 1 record of this row is canon yaoundé . Output:
[ "no" ]
task211-8edd9ca4bca04df881495c8ce83966e4
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; year ; 198 }, interpretation: for the year records of all rows , most of them fuzzily match to 198 . Output:
[ "yes" ]
task211-0f3e8ea3333640ef982f2cbef4b3bbd3
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: less { hop { filter_eq { all_rows ; local government area ; anangu pitjantjatjara yankunytjatjara } ; pop 2006 } ; hop { filter_eq { all_rows ; local government area ; outback areas community development trust } ; pop 2006 } }, interpretation: select the rows whose local government area record fuzzily matches to anangu pitjantjatjara yankunytjatjara . take the pop 2006 record of this row . select the rows whose local government area record fuzzily matches to outback areas community development trust . take the pop 2006 record of this row . the first record is less than the second record . Output:
[ "yes" ]
task211-ef625700d29640f59f98e23daa827947
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; home ; philadelphia }, interpretation: for the home records of all rows , most of them fuzzily match to philadelphia . Output:
[ "yes" ]
task211-d2c8a6e1b55849c3976d498380141bc0
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: all_eq { all_rows ; date ; april }, interpretation: select the row whose erp / power w record of all rows is 2nd maximum . the call sign record of this row is wrli - fm . Output:
[ "no" ]
task211-6b502620bb12433f97c05123c47086d1
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; total } ; nbr class } ; 396 }, interpretation: select the row whose total record of all rows is maximum . the nbr class record of this row is 396 . Output:
[ "yes" ]
task211-79e6230fb876483ea304c4d2f3f2135c
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; result ; retired } } ; eq { hop { filter_eq { all_rows ; result ; retired } ; incumbent } ; edward boland } }, interpretation: select the rows whose location record fuzzily matches to ga . among these rows , select the rows whose champion record fuzzily matches to emory . the number of such rows is 2 . Output:
[ "no" ]
task211-10d93a2b087640a19cdda306edbd29d9
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_greater { all_rows ; points ; 100 }, interpretation: select the row whose time record of all rows is 4th minimum . the country record of this row is bulgaria . Output:
[ "no" ]
task211-daeb9c84f569466dbde1c243626172f0
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; overall } ; name } ; sean renfree }, interpretation: the average of the crowd record of all rows is 25000-27000 . Output:
[ "no" ]
task211-530bfbcb176d4adb9a314d4b39814a13
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; intra - molecular structure ; no }, interpretation: select the row whose pts record of all rows is maximum . the year record of this row is 1995 . Output:
[ "no" ]
task211-fd43db03aa99483892de9a745afe3e48
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; date ; january 29 } ; high points } ; hop { filter_eq { all_rows ; date ; january 1 } ; high points } }, interpretation: select the rows whose date record fuzzily matches to january 29 . take the high points record of this row . select the rows whose date record fuzzily matches to january 1 . take the high points record of this row . the first record is greater than the second record . Output:
[ "yes" ]
task211-7b242e8e22ce488ba5e15b07e3ca7074
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; score } ; team 1 } ; as monaco ( d1 ) }, interpretation: select the row whose score record of all rows is maximum . the team 1 record of this row is as monaco ( d1 ) . Output:
[ "yes" ]
task211-783ccb4694f1469892981f64b0929d40
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { filter_eq { all_rows ; location ; japan } ; res ; win } } ; 3 }, interpretation: for the released records of all rows , most of them fuzzily match to 2012 . Output:
[ "no" ]
task211-f20bf108253948fda549abfc3ff894ac
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; candidates } ; 13 }, interpretation: the average of the candidates record of all rows is 13 . Output:
[ "yes" ]
task211-dd73e024957f419a9f5e2cda85d88b32
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; type ; private } } ; 12 }, interpretation: select the rows whose type record fuzzily matches to private . the number of such rows is 12 . Output:
[ "yes" ]
task211-b0bd29e0322042fc9e2f7cbb535cd878
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; champion ; university of california , berkeley } } ; 4 }, interpretation: for the qual 2 records of all rows , most of them are not equal to - . Output:
[ "no" ]
task211-9d6071e558484da6afc323a4598c90fb
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; original air date ( uk ) ; july } } ; eq { hop { filter_eq { all_rows ; original air date ( uk ) ; july } ; episode title } ; night games } }, interpretation: select the rows whose date record fuzzily matches to november 25 . take the rank record of this row . select the rows whose date record fuzzily matches to november 18 . take the rank record of this row . the second record is 1 larger than the first record . Output:
[ "no" ]
task211-e5e92a6d7b4c41ab843bf677a1c9e843
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; us viewers ( millions ) } ; 2.46 }, interpretation: the average of the us viewers ( millions ) record of all rows is 2.46 . Output:
[ "yes" ]
task211-a62c2faf6c9e43e2bbe94a0c8f4305a0
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; artist ; demos beke } ; points } ; hop { filter_eq { all_rows ; artist ; lucas christodolou } ; points } }, interpretation: select the rows whose artist record fuzzily matches to demos beke . take the points record of this row . select the rows whose artist record fuzzily matches to lucas christodolou . take the points record of this row . the first record is greater than the second record . Output:
[ "yes" ]
task211-fd9c12ff938845b5a2d67bc3de58405a
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { filter_eq { all_rows ; district ; hisar } ; number of electorates ( 2009 ) } ; 132744 }, interpretation: select the rows whose institution record fuzzily matches to university of dayton . take the founded record of this row . select the rows whose institution record fuzzily matches to university of memphis . take the founded record of this row . the first record is less than the second record . Output:
[ "no" ]
task211-6bfeb636ffae4277bd6388cf799059a1
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; method ; tko }, interpretation: for the method records of all rows , most of them fuzzily match to tko . Output:
[ "yes" ]
task211-3564dc381f3543348964108501f35d7c
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; frequency ; 1 } ; model number } ; athlon x2 5050e }, interpretation: select the row whose frequency record of all rows is 1st maximum . the model number record of this row is athlon x2 5050e . Output:
[ "yes" ]
task211-fa1bb2a1e7824a06b241b515637415ad
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { eq { nth_min { all_rows ; no ; 14 } ; 14 } ; and { eq { hop { nth_argmin { all_rows ; no ; 14 } ; date } ; 18 mar 2012 } ; eq { hop { nth_argmin { all_rows ; no ; 14 } ; winners share } ; 225000 } } }, interpretation: select the row whose worldwide gross record of all rows is 4th maximum . the title record of this row is the hobbit : an unexpected journey . Output:
[ "no" ]
task211-e3fa3aff85eb4f44bf3fcbb4a56566a8
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { filter_less_eq { all_rows ; rank ; 5 } ; bronze } ; 4 }, interpretation: select the rows whose rank record is less than or equal to 5 . the average of the bronze record of these rows is 4 . Output:
[ "yes" ]
task211-6a007620f4c34ee6b74b23c2647f030a
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; points ; 2 } ; performer } ; honor heffernan }, interpretation: select the row whose points record of all rows is 2nd maximum . the performer record of this row is honor heffernan . Output:
[ "yes" ]
task211-a7aeb1fb4aac4acdafc3c81ddaa7de07
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; goals against } ; 24 }, interpretation: select the rows whose habitat type record fuzzily matches to forest steppe . the number of such rows is 8 . Output:
[ "no" ]
task211-4bdfe4a368f744bfa25b10e1d43c2a58
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; resolution ; committed suicide } } ; eq { hop { filter_eq { all_rows ; resolution ; committed suicide } ; name } ; josé manuel balmaceda } }, interpretation: select the rows whose resolution record fuzzily matches to committed suicide . there is only one such row in the table . the name record of this unqiue row is josé manuel balmaceda . Output:
[ "yes" ]
task211-6a73e7e358304570bb8ba266cd3794dd
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { diff { hop { filter_eq { all_rows ; player ; kenny solomon } ; td 's } ; hop { filter_eq { all_rows ; player ; chris ryan } ; td 's } } ; 2 }, interpretation: the average of the crowd record of all rows is 16000 . Output:
[ "no" ]
task211-73dd7711c4c44d73b5b0d6853f537d88
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; opponent ; detroit red wings } } ; 3 }, interpretation: select the rows whose race title record is arbitrary . the number of such rows is 5 . Output:
[ "no" ]
task211-b2c233e7ec664cb4b3a177261e89aa25
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; position ; defensive tackle } } ; 2 }, interpretation: select the row whose points record of all rows is maximum . the team record of this row is palestra itália - sp . Output:
[ "no" ]
task211-4191446199e7457a9161e5c7b264d731
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; score } ; 277 }, interpretation: select the row whose crowd record of all rows is 2nd maximum . the venue record of this row is victoria park . Output:
[ "no" ]
task211-b72fbc48db0d4f8cb627ddbc2a73d9af
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; time / retired ; engine } } ; eq { hop { filter_eq { all_rows ; time / retired ; engine } ; driver } ; jo bonnier } }, interpretation: the average of the points record of all rows is 325.4 . Output:
[ "no" ]
task211-3a666102ee7d41718529710f9df78f2e
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; partner ; igor sijsling } } ; 2 }, interpretation: select the rows whose partner record fuzzily matches to igor sijsling . the number of such rows is 2 . Output:
[ "yes" ]
task211-79feeee14c9e42faa63a21a29ef83dd3
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; laps ; 200 } } ; 4 }, interpretation: select the rows whose laps record is equal to 200 . the number of such rows is 4 . Output:
[ "yes" ]
task211-a5cab4bc249247de990a0f5fe76a83be
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; aircraft ; boeing } } ; 3 }, interpretation: select the rows whose aircraft record fuzzily matches to boeing . the number of such rows is 3 . Output:
[ "yes" ]
task211-aaa7d1fbc0cf436fa095f250bdb43440
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: less { hop { filter_eq { all_rows ; player ; ty warren } ; round } ; hop { filter_eq { all_rows ; player ; dan klecko } ; round } }, interpretation: select the rows whose player record fuzzily matches to ty warren . take the round record of this row . select the rows whose player record fuzzily matches to dan klecko . take the round record of this row . the first record is less than the second record . Output:
[ "yes" ]
task211-d30922e88899429a8bd336d84da7690f
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; venue ; victoria park } } ; and { eq { hop { filter_eq { all_rows ; venue ; victoria park } ; home team } ; collingwood } ; eq { hop { filter_eq { all_rows ; venue ; victoria park } ; away team } ; north melbourne } } }, interpretation: select the rows whose venue record fuzzily matches to victoria park . there is only one such row in the table . the home team record of this unqiue row is collingwood . the away team record of this unqiue row is north melbourne . Output:
[ "yes" ]
task211-5ffe359c679f4721a33296f6afc51f15
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; october 20 , 2008 ; 2010 } } ; 6 }, interpretation: for the high assists records of all rows , most of them fuzzily match to imari sawyer . Output:
[ "no" ]
task211-f45a4302549e487d9cf1ff9235c4e20f
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; focal plane in ft ( m ) ; n / a } } ; eq { hop { filter_eq { all_rows ; focal plane in ft ( m ) ; n / a } ; lighthouse } ; basco } }, interpretation: select the rows whose city of license record fuzzily matches to lyons falls , ny . take the frequency mhz record of this row . select the rows whose city of license record fuzzily matches to norwich , ny . take the frequency mhz record of this row . the first record is less than the second record . Output:
[ "no" ]
task211-0ff79792ba984d21a23a2e1063f189e8
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; tournaments played } ; 16.1 }, interpretation: for the sport records of all rows , all of them fuzzily match to football . Output:
[ "no" ]
task211-c175b9ef0d8b461fa9e52e20efd5c646
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; type ; loan return } } ; 2 }, interpretation: select the rows whose opponent record fuzzily matches to san francisco 49ers . the maximum attendance record of these rows is 65551 . the date record of the row with superlative attendance record is november 11 , 1979 . Output:
[ "no" ]
task211-0f9fca8bd4d346ad8fd6dec56af7f54a
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; year ; 1986 }, interpretation: for the year records of all rows , most of them are equal to 1986 . Output:
[ "yes" ]
task211-37cbabb03a494edf864d7bfa101ec940
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; shooter ; cze } } ; 2 }, interpretation: select the row whose original air date record of all rows is 2nd maximum . the title record of this row is the understudy . Output:
[ "no" ]
task211-cc4cff827d434f66833addab9744b54b
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; manufacturer ; suzuki } } ; 2 }, interpretation: select the row whose gold record of all rows is maximum . the nation record of this row is united states ( usa ) . Output:
[ "no" ]
task211-e39e8f1b39634c8f80622f1a4c783bc2
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { filter_eq { all_rows ; game site ; gillette stadium } ; result } ; 26 }, interpretation: select the rows whose team record fuzzily matches to team penske . the number of such rows is 5 . Output:
[ "no" ]
task211-2a0cddc4e4f64c3c8013894863a1d0bc
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; district ; shajapur } } ; eq { hop { filter_eq { all_rows ; district ; shajapur } ; name } ; susner } }, interpretation: select the rows whose district record fuzzily matches to shajapur . there is only one such row in the table . the name record of this unqiue row is susner . Output:
[ "yes" ]
task211-d939a9e84f6c48cf881c49a63d24add2
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; points defending ; 0 } } ; 3 }, interpretation: select the rows whose points defending record is equal to 0 . the number of such rows is 3 . Output:
[ "yes" ]
task211-ff1969599836476196908503249e4eaf
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; wins ; 10 } } ; eq { hop { filter_eq { all_rows ; wins ; 10 } ; club } ; east bengal club } }, interpretation: select the rows whose wins record is equal to 10 . there is only one such row in the table . the club record of this unqiue row is east bengal club . Output:
[ "yes" ]
task211-42eb7d6b3465476dbf00e3044c579315
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { less { hop { filter_eq { all_rows ; title ; empire } ; order } ; hop { filter_eq { all_rows ; title ; hollywood } ; order } } ; and { eq { hop { filter_eq { all_rows ; title ; empire } ; order } ; 4 } ; eq { hop { filter_eq { all_rows ; title ; hollywood } ; order } ; 5 } } }, interpretation: select the rows whose title record fuzzily matches to empire . take the order record of this row . select the rows whose title record fuzzily matches to hollywood . take the order record of this row . the first record is less than the second record . the order record of the first row is 4 . the order record of the second row is 5 . Output:
[ "yes" ]
task211-4e77e6ef558a4598b597683d8892bd43
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { sum { all_rows ; result } ; 456 }, interpretation: the sum of the result record of all rows is 456 . Output:
[ "yes" ]
task211-7909ee47de45445e8d523f947a3dd06c
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { diff { hop { filter_eq { all_rows ; date ; november 25 } ; rank } ; hop { filter_eq { all_rows ; date ; november 18 } ; rank } } ; -1 }, interpretation: select the rows whose date record fuzzily matches to november 25 . take the rank record of this row . select the rows whose date record fuzzily matches to november 18 . take the rank record of this row . the second record is 1 larger than the first record . Output:
[ "yes" ]
task211-b9103d416b90483ab63495a2b47b2bcd
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; attendance ; n / a } } ; eq { hop { filter_eq { all_rows ; attendance ; n / a } ; date } ; october 25 } }, interpretation: select the rows whose attendance record fuzzily matches to n / a . there is only one such row in the table . the date record of this unqiue row is october 25 . Output:
[ "yes" ]
task211-3a3883f0b7084898a0bc0a57f3eb0534
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; directed by ; john t kretchmer } } ; 2 }, interpretation: select the rows whose goalkeeper record fuzzily matches to juan calatayud . take the goals record of this row . select the rows whose goalkeeper record fuzzily matches to eduardo navarro . take the goals record of this row . the first record is greater than the second record . Output:
[ "no" ]
task211-513012dd7f13487f8dc6386a3987059a
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; viewers ( millions ) } ; title } ; about face }, interpretation: select the row whose viewers ( millions ) record of all rows is maximum . the title record of this row is about face . Output:
[ "yes" ]
task211-df8fab66035941789707b11c66e1295e
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: less { hop { filter_eq { all_rows ; song title ; nee maatalo } ; year } ; hop { filter_eq { all_rows ; song title ; hey po } ; year } }, interpretation: select the rows whose song title record fuzzily matches to nee maatalo . take the year record of this row . select the rows whose song title record fuzzily matches to hey po . take the year record of this row . the first record is less than the second record . Output:
[ "yes" ]
task211-6adca94dc66649d19751cffc47fc3596
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { filter_eq { all_rows ; spectators ; 50000 } ; res ; 3 } } ; 2 }, interpretation: select the rows whose country record fuzzily matches to france . take the date record of this row . select the rows whose country record fuzzily matches to belgium . take the date record of this row . the first record is less than the second record . Output:
[ "no" ]
task211-18fbfb8cc49842da91e75dbfaaee23e3
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { nth_max { all_rows ; weeks ; 2 } ; 16 weeks }, interpretation: the 2nd maximum weeks record of all rows is 16 weeks . Output:
[ "yes" ]
task211-a705859b0e4049719ea7923cb7bede50
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_greater { filter_eq { all_rows ; result ; win } ; wildcats points ; 20 }, interpretation: select the rows whose result record fuzzily matches to win . for the wildcats points records of these rows , most of them are greater than 20 . Output:
[ "yes" ]
task211-898b883558e34cd9a01f5e8aabaec8d5
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_all { all_rows ; nation } } ; 5 }, interpretation: select the rows whose incumbent record fuzzily matches to gene taylor . take the first elected record of this row . select the rows whose incumbent record fuzzily matches to harold volkmer . take the first elected record of this row . the second record is 4 years larger than the first record . Output:
[ "no" ]
task211-74a1730758904bfd8c45f2b336a00232
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; date ; april 19 } ; high points } ; hop { filter_eq { all_rows ; date ; april 20 } ; high points } }, interpretation: select the rows whose date record fuzzily matches to april 19 . take the high points record of this row . select the rows whose date record fuzzily matches to april 20 . take the high points record of this row . the first record is greater than the second record . Output:
[ "yes" ]
task211-9fb9f496b88e4d1e91f43193bd46b4ca
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; points ; 17 } } ; 3 }, interpretation: select the rows whose points record is equal to 17 . the number of such rows is 3 . Output:
[ "yes" ]
task211-94531a5991a04f8f8858344a054964f7
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; township ; james hill } ; water ( sqmi ) } ; hop { filter_eq { all_rows ; township ; jim river valley } ; water ( sqmi ) } }, interpretation: select the rows whose township record fuzzily matches to james hill . take the water ( sqmi ) record of this row . select the rows whose township record fuzzily matches to jim river valley . take the water ( sqmi ) record of this row . the first record is greater than the second record . Output:
[ "yes" ]
task211-eeb45ed75c1b4d2cbfac38e26d7cfe68
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_not_eq { all_rows ; top - 10 ; 0 } } ; eq { hop { filter_not_eq { all_rows ; top - 10 ; 0 } ; tournament } ; the open championship } }, interpretation: select the row whose attendance record of all rows is maximum . the opponent record of this row is melbourne storm . Output:
[ "no" ]
task211-babc3e919b104feba5bebb857934913f
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { diff { hop { filter_eq { all_rows ; player ; yordanos abay } ; goals } ; hop { filter_eq { all_rows ; player ; fathi jabir } ; goals } } ; -15 }, interpretation: select the rows whose player record fuzzily matches to yordanos abay . take the goals record of this row . select the rows whose player record fuzzily matches to fathi jabir . take the goals record of this row . the second record is 15 larger than the first record . Output:
[ "yes" ]
task211-b822848eaf8b4e4e8d02e9ce63d61dff
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { filter_eq { all_rows ; location attendance ; at & t center } ; location attendance } ; 18581 }, interpretation: select the rows whose location attendance record fuzzily matches to at & t center . the average of the location attendance record of these rows is 18581 . Output:
[ "yes" ]
task211-dd7af759cce340d48326a33646263493
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_less { all_rows ; avg attend ; 4000 } } ; eq { hop { filter_less { all_rows ; avg attend ; 4000 } ; indoor year } ; 1983 - 1984 } }, interpretation: select the rows whose avg attend record is less than 4000 . there is only one such row in the table . the indoor year record of this unqiue row is 1983 - 1984 . Output:
[ "yes" ]
task211-8f32da784b164bc28017c691a49b1cec
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; player ; frederick l conklin } ; touchdowns } ; hop { filter_eq { all_rows ; player ; jimmy craig } ; touchdowns } }, interpretation: select the rows whose player record fuzzily matches to frederick l conklin . take the touchdowns record of this row . select the rows whose player record fuzzily matches to jimmy craig . take the touchdowns record of this row . the first record is greater than the second record . Output:
[ "yes" ]
task211-363608de762e495bba900415e6120163
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; effective exhaust velocity ( m / s ) } ; 33869 }, interpretation: the average of the effective exhaust velocity ( m / s ) record of all rows is 33869 . Output:
[ "yes" ]
task211-80a5cc8de4f34b2ab1a6c450d8406423
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; mlb draft ; pirates } } ; 2 }, interpretation: select the rows whose mlb draft record fuzzily matches to pirates . the number of such rows is 2 . Output:
[ "yes" ]
task211-8a692c7410a64d9eb8b574e0e047272e
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; school ; hawaii } } ; eq { hop { filter_eq { all_rows ; school ; hawaii } ; player } ; darrick branch } }, interpretation: select the rows whose school record fuzzily matches to hawaii . there is only one such row in the table . the player record of this unqiue row is darrick branch . Output:
[ "yes" ]
task211-08bd11b1f21b4da084d61e43bc8a30c1
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { sum { all_rows ; races } ; 164 }, interpretation: the average of the laps record of all rows is 102.9 . Output:
[ "no" ]
task211-414408ab3f694104bff230d95d49d8ed
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; surface ; grass } } ; 2 }, interpretation: select the row whose gdp per capita ( us ) record of all rows is maximum . the member countries record of this row is austria . Output:
[ "no" ]
task211-98583b574f4e4ad0b19efe988b976b40
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { filter_eq { all_rows ; area ; featherston } ; roll } ; name } ; st teresa 's school }, interpretation: select the rows whose type record fuzzily matches to embankment . for the height ( m ) records of these rows , most of them are less than 100 . Output:
[ "no" ]
task211-20c12e61950a4db7b06ad5625a38f2f2
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; production ( mt ) } ; commodity } ; wheat }, interpretation: select the row whose production ( mt ) record of all rows is maximum . the commodity record of this row is wheat . Output:
[ "yes" ]
task211-2d0973f6e72a4dbaa04be27b0c1a5e2d
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; average } ; player } ; alec bedser }, interpretation: select the rows whose country record fuzzily matches to australia . there is only one such row in the table . the player record of this unqiue row is geoff ogilvy . Output:
[ "no" ]
task211-bc69dc0b5cf14c7d9fd08974b0fbad1f
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; previous network ; nbc } } ; 3 }, interpretation: select the rows whose previous network record fuzzily matches to nbc . the number of such rows is 3 . Output:
[ "yes" ]
task211-f9a814067df0475599f72b98e90fa96e
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; distance } ; stage } ; 2 }, interpretation: select the row whose distance record of all rows is maximum . the stage record of this row is 2 . Output:
[ "yes" ]
task211-8e53b3cf81e34818a04717d5adee0a14
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; time / retired ; off course } } ; eq { hop { filter_eq { all_rows ; time / retired ; off course } ; driver } ; gastón mazzacane } }, interpretation: select the rows whose rider record fuzzily matches to stan woods . take the time record of this row . select the rows whose rider record fuzzily matches to tom loughridge . take the time record of this row . the first record is less than the second record . Output:
[ "no" ]
task211-e16da8b68fa543ea83389fafb5a17098
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; attendance } ; date } ; 1970 - 10 - 04 }, interpretation: select the rows whose silver record is equal to 3 . there is only one such row in the table . the nation record of this unqiue row is soviet union . Output:
[ "no" ]
task211-e16d0e08801b42ad8dfcd505a82433ed
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: all_eq { all_rows ; s host ; bob costas and tom hammond }, interpretation: for the s host records of all rows , all of them fuzzily match to bob costas and tom hammond . Output:
[ "yes" ]
task211-4b2759c98a68449eaf5b0f1757dc47dc
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; county ; mobile } } ; 3 }, interpretation: select the rows whose series record fuzzily matches to australian formula 3 championship - national class . the average of the points record of these rows is 160.5 . Output:
[ "no" ]
task211-fab5628481294b2a8bef4c3c3707474d
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_greater_eq { all_rows ; established ; 2000 }, interpretation: for the established records of all rows , most of them are greater than or equal to 2000 . Output:
[ "yes" ]
task211-ae3d7316b6914bf9ae3031692fee127c
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; bodyweight ; 69.73 } } ; eq { hop { filter_eq { all_rows ; bodyweight ; 69.73 } ; name } ; nelly rivera ( dom ) } }, interpretation: select the rows whose bodyweight record is equal to 69.73 . there is only one such row in the table . the name record of this unqiue row is nelly rivera ( dom ) . Output:
[ "yes" ]
task211-454c5337ebef400cae23df3bab319140
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { filter_eq { all_rows ; years ; k - 6 } ; suburb / town ; villawood } } ; eq { hop { filter_eq { filter_eq { all_rows ; years ; k - 6 } ; suburb / town ; villawood } ; founded } ; 1955 } }, interpretation: select the rows whose location in park record fuzzily matches to baja ridge . select the row whose year first opened record of these rows is 1st minimum . the current name record of this row is revolution . Output:
[ "no" ]
task211-46978b1aa3914319b6fd96ce8f4fe7cd
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: only { filter_eq { all_rows ; rider ; suzuki } }, interpretation: select the rows whose rider record fuzzily matches to suzuki . there is only one such row in the table . Output:
[ "yes" ]
task211-0444f317f53243788f56777f57260360
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; pts } ; team } ; castres olympique }, interpretation: select the rows whose competition record fuzzily matches to friendly . the number of such rows is 3 . Output:
[ "no" ]
task211-cc038e20a31944038d79b68012204be8
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { sum { all_rows ; crowd } ; 149299 }, interpretation: select the rows whose winner record fuzzily matches to new york jets . among these rows , select the rows whose location record fuzzily matches to shea stadium . the number of such rows is 7 . Output:
[ "no" ]
task211-5b0aecd33002413ca6d7be686f28362e
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; aspect ; 16:9 } } ; eq { hop { filter_eq { all_rows ; aspect ; 16:9 } ; channel } ; 31.1 } }, interpretation: select the rows whose aspect record fuzzily matches to 16:9 . there is only one such row in the table . the channel record of this unqiue row is 31.1 . Output:
[ "yes" ]
task211-a367654f516048709bb121869f835804
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmin { all_rows ; hosted 4 teams since } ; metropolitan area } ; detroit , michigan }, interpretation: for the party records of all rows , all of them fuzzily match to democratic . Output:
[ "no" ]
task211-5ecbabac930349688dafa05e1e295888
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; capacity } ; club } ; standard liège }, interpretation: the sum of the laps record of all rows is 3670 . Output:
[ "no" ]
task211-c2dd8e96f2ee4f90a6dcc0ad0469d617
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; venue ; twickenham , london }, interpretation: for the venue records of all rows , most of them fuzzily match to twickenham , london . Output:
[ "yes" ]
task211-800efdab31f6437cae394e67a765f0fd