input
stringlengths 3.83k
4.62k
| output
sequencelengths 1
1
| id
stringlengths 40
40
|
---|---|---|
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { hop { nth_argmax { all_rows ; negotiable debt at mid - 2005 ( us dollar bn equivalent ) ; 2 } ; currency } ; us dollar }, interpretation: select the rows whose score record fuzzily matches to 1 - 0 . among these rows , select the rows whose attendance record fuzzily matches to february . the number of such rows is 2 .
Output:
| [
"no"
] | task211-0fca5cb2f33d43c0bec4a7aaae9818d1 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { hop { argmax { all_rows ; time / retired } ; rider } ; dani pedrosa }, interpretation: select the row whose time / retired record of all rows is maximum . the rider record of this row is dani pedrosa .
Output:
| [
"yes"
] | task211-ca90a41e977046ba97dc958cb4d51cc7 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: and { only { filter_not_eq { all_rows ; result ; re-elected } } ; eq { hop { filter_not_eq { all_rows ; result ; re-elected } ; incumbent } ; iris faircloth blitch } }, interpretation: select the row whose distance ( km ) record of all rows is minimum . the station record of this row is kawarada .
Output:
| [
"no"
] | task211-700a2e1a26814b73860f27521b89da7d |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { count { filter_eq { all_rows ; outcome ; winner } } ; 2 }, interpretation: for the outcome records of all rows , most of them fuzzily match to winner .
Output:
| [
"no"
] | task211-7e43c7afc7a54c229e41f6c2281101a1 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { hop { argmax { all_rows ; us viewers ( million ) } ; title } ; baby not on board }, interpretation: select the rows whose incumbent record fuzzily matches to sam graves . take the first elected record of this row . select the rows whose incumbent record fuzzily matches to russ carnahan . take the first elected record of this row . the second record is 4 larger than the first record .
Output:
| [
"no"
] | task211-5a21503fbff44c2c8fd747f39c2ee09c |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: and { only { filter_greater { all_rows ; yards ; 1400 } } ; eq { hop { filter_greater { all_rows ; yards ; 1400 } ; player } ; derrick lewis } }, interpretation: select the rows whose method record fuzzily matches to draw . there is only one such row in the table . the opponent record of this unqiue row is yoko takahashi .
Output:
| [
"no"
] | task211-f87bf90f3d7a4c74bed75554cb22d2c2 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: and { only { filter_eq { all_rows ; opponent in the final ; adriano panatta } } ; eq { hop { filter_eq { all_rows ; opponent in the final ; adriano panatta } ; championship } ; bologna , italy } }, interpretation: select the rows whose opponent in the final record fuzzily matches to adriano panatta . there is only one such row in the table . the championship record of this unqiue row is bologna , italy .
Output:
| [
"yes"
] | task211-279e93908d644dffad84bf988faad196 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: round_eq { sum { filter_eq { all_rows ; location attendance ; wachovia center } ; location attendance } ; 89767 }, interpretation: for the party records of all rows , most of them fuzzily match to republican .
Output:
| [
"no"
] | task211-44107d6a354044bd9e0c0b602080a1b9 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: round_eq { avg { all_rows ; gold } ; 15 }, interpretation: the average of the gold record of all rows is 15 .
Output:
| [
"yes"
] | task211-076256f3dca24ef29ee3c14a18b51b7e |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: round_eq { avg { all_rows ; crowd } ; 16000 }, interpretation: the average of the crowd record of all rows is 16000 .
Output:
| [
"yes"
] | task211-5f5b2cc5282547539272d01af0b143c5 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: most_eq { all_rows ; power ( kw ) ; 5 kw }, interpretation: for the power ( kw ) records of all rows , most of them fuzzily match to 5 kw .
Output:
| [
"yes"
] | task211-aaba786f1bfc41d7bd14f16c18683de8 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: only { filter_eq { all_rows ; event ; medley } }, interpretation: select the rows whose event record fuzzily matches to medley . there is only one such row in the table .
Output:
| [
"yes"
] | task211-14f01ddcfa1e42079dc3ed807c664b46 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: all_eq { all_rows ; played ; 18 }, interpretation: for the played records of all rows , all of them are equal to 18 .
Output:
| [
"yes"
] | task211-1bfec8020aa640fe9d036717fb83049d |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { count { filter_eq { filter_eq { all_rows ; res ; win } ; round ; 1 } } ; 8 }, interpretation: select the rows whose res record fuzzily matches to win . among these rows , select the rows whose round record is equal to 1 . the number of such rows is 8 .
Output:
| [
"yes"
] | task211-910fc7255d9646478e67366c86a7828f |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: most_eq { all_rows ; district ; hisar }, interpretation: the average of the score record of all rows is 55 .
Output:
| [
"no"
] | task211-d6987660e93b43b5b00d912bc5b8ce65 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { hop { nth_argmin { all_rows ; date ; 1 } ; title } ; the love letter }, interpretation: select the row whose date record of all rows is 1st minimum . the title record of this row is the love letter .
Output:
| [
"yes"
] | task211-73f33e1431a34566bf3c9b328556f72f |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { hop { nth_argmax { all_rows ; crowd ; 2 } ; venue } ; victoria park }, interpretation: select the row whose crowd record of all rows is 2nd maximum . the venue record of this row is victoria park .
Output:
| [
"yes"
] | task211-b52b23449c3246f7af77f1150ade45e5 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: most_eq { all_rows ; result ; re - elected }, interpretation: for the result records of all rows , most of them fuzzily match to re - elected .
Output:
| [
"yes"
] | task211-0a0be1b32ee549f1b61cb006745a9d5e |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: round_eq { avg { all_rows ; home team score } ; 10 }, interpretation: select the row whose us viewers ( million ) record of all rows is maximum . the title record of this row is exile on main st .
Output:
| [
"no"
] | task211-2ff915262c3f424fbeafc168da8df177 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: most_less { all_rows ; no of installments ; 100 }, interpretation: for the no of installments records of all rows , most of them are less than 100 .
Output:
| [
"yes"
] | task211-c83f8c55275346fe86ae37cd21a2c0b9 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: greater { hop { filter_eq { all_rows ; opponent ; cleveland browns } ; attendance } ; hop { filter_eq { all_rows ; opponent ; dallas cowboys } ; attendance } }, interpretation: select the rows whose segment a record fuzzily matches to three wheeled vehicles . take the episode record of this row . select the rows whose segment a record fuzzily matches to air filters . take the episode record of this row . the first record is less than the second record . the episode record of the first row is 66 . the episode record of the second row is 70 .
Output:
| [
"no"
] | task211-f2e3fd8c060c4256bd55518cd974b498 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: most_less { filter_eq { all_rows ; county ; new haven } ; proposed ; 2000 }, interpretation: select the rows whose county record fuzzily matches to new haven . for the proposed records of these rows , most of them are less than 2000 .
Output:
| [
"yes"
] | task211-298d35ad690940259103c7974cd9bd8f |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { count { filter_eq { all_rows ; outcome ; winner } } ; 4 }, interpretation: select the rows whose outcome record fuzzily matches to winner . the number of such rows is 4 .
Output:
| [
"yes"
] | task211-3570cbbc09cc49a4aa682b42ad78d5f5 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: and { only { filter_eq { filter_greater { all_rows ; crowd ; 20000 } ; venue ; victoria park } } ; eq { hop { filter_eq { filter_greater { all_rows ; crowd ; 20000 } ; venue ; victoria park } ; home team } ; collingwood } }, interpretation: select the rows whose city record fuzzily matches to santa clara , california . there is only one such row in the table . the athlete record of this unqiue row is mike ryan .
Output:
| [
"no"
] | task211-52e6809454d64e5da50bf38baa8a8be3 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: greater { hop { filter_eq { all_rows ; opponent ; andrew chappelle } ; round } ; hop { filter_eq { all_rows ; opponent ; danny payne } ; round } }, interpretation: the sum of the runs record of all rows is 3324 .
Output:
| [
"no"
] | task211-a3d9f0201883455ea1f187fa36a2e5f5 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { hop { nth_argmax { all_rows ; money ; 4 } ; score } ; 68 + 68 + 69 + 79, interpretation: select the row whose money record of all rows is 4th maximum . the score record of this row is 68 + 68 + 69 + 79 = 284 .
Output:
| [
"yes"
] | task211-538d20616ee746f197ed0d9ff5d0d81c |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: less { hop { filter_eq { all_rows ; name ; sue } ; discovered } ; hop { filter_eq { all_rows ; name ; bucky } ; discovered } }, interpretation: select the rows whose name record fuzzily matches to sue . take the discovered record of this row . select the rows whose name record fuzzily matches to bucky . take the discovered record of this row . the first record is less than the second record .
Output:
| [
"yes"
] | task211-f4af3a5c3d304eae95f8b35c7d92fc09 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { hop { nth_argmax { all_rows ; enrollment ; 2 } ; school } ; stony brook university }, interpretation: select the row whose away team score record of all rows is 2nd maximum . the home team record of this row is collingwood .
Output:
| [
"no"
] | task211-cfcdfbfbf48d41b28560f0719a3bd8e2 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: most_eq { all_rows ; tournament ; 25000 }, interpretation: select the rows whose test record fuzzily matches to math . among these rows , select the rows whose number of students record is greater than 100000 . there is only one such row in the table .
Output:
| [
"no"
] | task211-d4892c9de1644350b0dd1406328ca145 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: most_eq { all_rows ; language ; hindi }, interpretation: for the language records of all rows , most of them fuzzily match to hindi .
Output:
| [
"yes"
] | task211-96283422ec9f4028b9a458265bf928f0 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { hop { nth_argmax { all_rows ; founded ; 2 } ; institution } ; high point university }, interpretation: select the row whose founded record of all rows is 2nd maximum . the institution record of this row is high point university .
Output:
| [
"yes"
] | task211-46fe8651202048598b63e6671b0fb835 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: greater { hop { filter_eq { all_rows ; rr romaja ; gangwon } ; area } ; hop { filter_eq { all_rows ; rr romaja ; jeju } ; area } }, interpretation: select the rows whose rr romaja record fuzzily matches to gangwon . take the area record of this row . select the rows whose rr romaja record fuzzily matches to jeju . take the area record of this row . the first record is greater than the second record .
Output:
| [
"yes"
] | task211-07c567252bda417897ea041e96433e84 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: round_eq { avg { all_rows ; area ( km square ) } ; 47 }, interpretation: select the rows whose written by record fuzzily matches to robert king & michelle king . the average of the us viewers ( million ) record of these rows is 12.47 .
Output:
| [
"no"
] | task211-319658603e0d4c04ae2663f9f29d4c7e |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: and { only { filter_eq { all_rows ; country ; ch } } ; eq { hop { filter_eq { all_rows ; country ; ch } ; building } ; victoria hall } }, interpretation: select the row whose capacity record of all rows is maximum . the team record of this row is dinamo zagreb .
Output:
| [
"no"
] | task211-1e353dcabce3402cacaab397d56a179f |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: round_eq { avg { all_rows ; win % } ; 505 }, interpretation: the average of the win % record of all rows is 505 .
Output:
| [
"yes"
] | task211-c35deae51c24460d84888e37df069c92 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { count { filter_eq { all_rows ; date ; november } } ; 16 }, interpretation: select the rows whose date record fuzzily matches to november . the number of such rows is 16 .
Output:
| [
"yes"
] | task211-52060dd49e1e49fbaa80dbd20dc2a297 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { count { filter_eq { all_rows ; pole ; 0 } } ; 4 }, interpretation: for the round records of all rows , most of them are equal to 1 .
Output:
| [
"no"
] | task211-c9d9a8ba18484c4a980c4f4c73b2a73c |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { hop { nth_argmax { all_rows ; time ; 2 } ; wrestler } ; chris masters }, interpretation: select the rows whose club record fuzzily matches to glais rfc . take the lost record of this row . select the rows whose club record fuzzily matches to tycroes rfc . take the lost record of this row . the first record is less than the second record .
Output:
| [
"no"
] | task211-4b5260db50d642e8b27fffe4f9723953 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: round_eq { avg { all_rows ; total } ; 15.419 }, interpretation: select the rows whose role record fuzzily matches to police officer lung . the number of such rows is 5 .
Output:
| [
"no"
] | task211-f50091a943af4241863a701ed710fa01 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: greater { hop { filter_eq { all_rows ; pitcher ; toad ramsey } ; strikeouts } ; hop { filter_eq { all_rows ; pitcher ; old hoss radbourn } ; strikeouts } }, interpretation: select the rows whose pitcher record fuzzily matches to toad ramsey . take the strikeouts record of this row . select the rows whose pitcher record fuzzily matches to old hoss radbourn . take the strikeouts record of this row . the first record is greater than the second record .
Output:
| [
"yes"
] | task211-eedbbb6900004876b11c97870c117e2f |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { count { filter_eq { all_rows ; 1st place team ; mary star all - stars } } ; 5 }, interpretation: select the rows whose 1st place team record fuzzily matches to mary star all - stars . the number of such rows is 5 .
Output:
| [
"yes"
] | task211-c977e31d37c64093b7a165c428aecc1e |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: less { hop { filter_eq { all_rows ; incumbent ; wilbur mills } ; first elected } ; hop { filter_eq { all_rows ; incumbent ; james william trimble } ; first elected } }, interpretation: select the rows whose incumbent record fuzzily matches to wilbur mills . take the first elected record of this row . select the rows whose incumbent record fuzzily matches to james william trimble . take the first elected record of this row . the first record is less than the second record .
Output:
| [
"yes"
] | task211-6ddd7615c5fb495c90e24bf4b0f7bd6d |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: and { only { filter_eq { all_rows ; points ; 16 } } ; eq { hop { filter_eq { all_rows ; points ; 16 } ; team } ; ec são caetano } }, interpretation: select the row whose points record of all rows is maximum . the game record of this row is 10 .
Output:
| [
"no"
] | task211-e2b8f04c57304a928ae61dcf09770929 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: most_eq { all_rows ; headquarters ; sweden }, interpretation: for the headquarters records of all rows , most of them fuzzily match to sweden .
Output:
| [
"yes"
] | task211-2d6ea86ab9844d8b8118df92db9df1e8 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { hop { argmin { all_rows ; date } ; circuit } ; calder park raceway }, interpretation: select the row whose date record of all rows is minimum . the circuit record of this row is calder park raceway .
Output:
| [
"yes"
] | task211-ae858800eda2498ba9e24eda560329b1 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: only { filter_eq { all_rows ; method ; ko ( punch ) } }, interpretation: select the rows whose nation record fuzzily matches to kenya . among these rows , select the rows whose time record is less than 30:34 . the number of such rows is 2 .
Output:
| [
"no"
] | task211-6d34d1a5cd7240d2b8e191a2fcec2bcb |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: and { only { filter_eq { all_rows ; date ; december } } ; eq { hop { filter_eq { all_rows ; date ; december } ; round } ; 20 } }, interpretation: select the rows whose gender record fuzzily matches to m . the maximum votes record of these rows is 11542 .
Output:
| [
"no"
] | task211-c71e12635bff49fea5d573a1bbd9c42c |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { hop { argmax { all_rows ; goals scored ( gf ) } ; team ( equipo ) } ; arabe unido }, interpretation: select the rows whose type of game record fuzzily matches to friendly . the number of such rows is 5 .
Output:
| [
"no"
] | task211-0ba86bba581a41659da81369f0860bce |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: all_eq { all_rows ; date ; 1 may 1926 }, interpretation: select the rows whose year record is greater than 2010 . there is only one such row in the table .
Output:
| [
"no"
] | task211-fade2ff3bd264e3084ba418d7ebbb09e |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { count { filter_eq { all_rows ; district ; sagar } } ; 3 }, interpretation: select the rows whose gold record is greater than 100 . there is only one such row in the table . the province record of this unqiue row is bangkok .
Output:
| [
"no"
] | task211-83deb6be764743739ce4c2f20d3f5f25 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { nth_max { all_rows ; crowd ; 3 } ; 13805 }, interpretation: the 3rd maximum crowd record of all rows is 13805 .
Output:
| [
"yes"
] | task211-8f7dbed2ce764211b44747b74a416614 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: round_eq { avg { all_rows ; score } ; 1.67 }, interpretation: the average of the score record of all rows is 1.67 .
Output:
| [
"yes"
] | task211-7d29b78d12c34d68be53705a4bd82a84 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { count { filter_eq { all_rows ; platform ( s ) ; gamecube } } ; 5 }, interpretation: the sum of the production in 2011 ( 1000 ton ) record of all rows is 290,133 .
Output:
| [
"no"
] | task211-31274aa7a5b8436ea04218095f57508b |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { diff { hop { filter_eq { all_rows ; november ; 27 } ; points } ; hop { filter_eq { all_rows ; november ; 29 } ; points } } ; -2 }, interpretation: select the rows whose november record fuzzily matches to 27 . take the points record of this row . select the rows whose november record fuzzily matches to 29 . take the points record of this row . the second record is 2 larger than the first record .
Output:
| [
"yes"
] | task211-6f8f359f61da4f9cad6e5e503953a887 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: and { only { filter_eq { all_rows ; engine ; judd v8 } } ; eq { hop { filter_eq { all_rows ; engine ; judd v8 } ; year } ; 1989 } }, interpretation: select the rows whose engine record fuzzily matches to judd v8 . there is only one such row in the table . the year record of this unqiue row is 1989 .
Output:
| [
"yes"
] | task211-9dd4927b54ee444884aa7e5dc2d22704 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { count { filter_eq { all_rows ; rank ; 21st } } ; 3 }, interpretation: select the rows whose rank record fuzzily matches to 21st . the number of such rows is 3 .
Output:
| [
"yes"
] | task211-a6f78adfbbba41418dab6d4ed964a7c1 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: and { eq { hop { argmin { all_rows ; place } ; artist } ; liam reilly } ; eq { hop { argmin { all_rows ; place } ; song } ; somewhere in europe } }, interpretation: select the rows whose pole position record fuzzily matches to chris goodwin andrew kirkaldy . there is only one such row in the table . the round record of this unqiue row is 5 .
Output:
| [
"no"
] | task211-ae196ac366344012aa141c74f20c57c0 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: and { only { filter_eq { all_rows ; position ; test driver } } ; eq { hop { filter_eq { all_rows ; position ; test driver } ; series } ; formula one } }, interpretation: the sum of the crowd record of all rows is 129,800 .
Output:
| [
"no"
] | task211-2c71c3b0a5b8492a872134b844f512f1 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { count { filter_eq { filter_eq { all_rows ; title ; ( part } ; directed by ; tom tataranowicz } } ; 3 }, interpretation: the average of the margin ( pts ) record of all rows is 27.25 .
Output:
| [
"no"
] | task211-fb5e4c4941e449dcade5e910cc7763a4 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: most_eq { all_rows ; engine ; ferrari v12 }, interpretation: select the rows whose region record fuzzily matches to middle east . the maximum joined opec record of these rows is 1967 . the country record of the row with superlative joined opec record is united arab emirates .
Output:
| [
"no"
] | task211-56bb4795a67f44c681db7f4d7e5a863b |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { hop { argmax { all_rows ; total } ; nbr class } ; 396 }, interpretation: select the row whose enrolment record of all rows is maximum . the school record of this row is pembroke school .
Output:
| [
"no"
] | task211-2f9633cffd6d4d3797d5cf8b711bda49 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: most_eq { all_rows ; original air date ; 2008 }, interpretation: for the original air date records of all rows , most of them fuzzily match to 2008 .
Output:
| [
"yes"
] | task211-088cd6665133429b9f717cc6e282caff |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: round_eq { avg { all_rows ; attendance } ; 16828.89 }, interpretation: select the rows whose political party record fuzzily matches to democratic party of albania . the number of such rows is 2 .
Output:
| [
"no"
] | task211-f42df81e3eb9411d8fe668ba853c6d6f |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { count { filter_eq { all_rows ; outcome of election ; ndc opposition } } ; 2 }, interpretation: select the row whose score record of all rows is 2nd maximum . the date record of this row is march 13 . the opponent record of this row is baltimore bullets .
Output:
| [
"no"
] | task211-36112d5876ab4078b65a0b22f75c7379 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: most_eq { all_rows ; result ; l }, interpretation: select the rows whose tournament record fuzzily matches to tunis , tunisia . take the date record of this row . select the rows whose tournament record fuzzily matches to rabat , morocco . take the date record of this row . the second record is 7 days larger than the first record .
Output:
| [
"no"
] | task211-d5c6c5b6fd764d57aac784904db5c66f |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: only { filter_eq { all_rows ; winner ; 6 - 1 , 6 - 1 } }, interpretation: select the rows whose men 's singles record fuzzily matches to kasperi salo . take the year record of this row . select the rows whose men 's singles record fuzzily matches to ville lang . take the year record of this row . the first record is less than the second record .
Output:
| [
"no"
] | task211-b7179f56c2794d8ca58c79a430681b14 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { count { filter_eq { filter_eq { all_rows ; reason for change ; resigned } ; date successor seated ; november } } ; 4 }, interpretation: select the rows whose margin of victory record fuzzily matches to 1 stroke . the number of such rows is 4 .
Output:
| [
"no"
] | task211-b491785743014ea9846ca1164aa1486b |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { hop { nth_argmax { all_rows ; date of vacancy ; 2 } ; team } ; coventry city }, interpretation: select the rows whose rider record fuzzily matches to wattie brown . take the time record of this row . select the rows whose rider record fuzzily matches to chris swallow . take the time record of this row . the first record is less than the second record .
Output:
| [
"no"
] | task211-befb61526b804494925cd3b9266ccd7b |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { hop { nth_argmax { all_rows ; silver ; 1 } ; nation } ; france }, interpretation: select the row whose silver record of all rows is 1st maximum . the nation record of this row is france .
Output:
| [
"yes"
] | task211-7ef8cf639a324a63a742cdc9de002313 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: round_eq { sum { all_rows ; production in 2011 ( 1000 ton ) } ; 290,133 }, interpretation: the sum of the production in 2011 ( 1000 ton ) record of all rows is 290,133 .
Output:
| [
"yes"
] | task211-b86acccf400c4961ad6cd74d44fb2d6a |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { hop { argmax { all_rows ; against } ; opposing team } ; australia }, interpretation: select the row whose against record of all rows is maximum . the opposing team record of this row is australia .
Output:
| [
"yes"
] | task211-a3402b4a906a41a689cc0b5c499916f3 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { count { filter_eq { all_rows ; country ; united states } } ; 3 }, interpretation: select the rows whose country record fuzzily matches to united states . the number of such rows is 3 .
Output:
| [
"yes"
] | task211-21df743f58fe4834a178cd98ba29c529 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: round_eq { avg { all_rows ; pick } ; 154 }, interpretation: select the rows whose points record is greater than 0 . there is only one such row in the table . the year record of this unqiue row is 1974 .
Output:
| [
"no"
] | task211-b86f38b840574941b1de5f97f17c34ff |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: greater { hop { filter_eq { all_rows ; song title ; he thinks i still care } ; length } ; hop { filter_eq { all_rows ; song title ; the pain of loving you } ; length } }, interpretation: select the rows whose song title record fuzzily matches to he thinks i still care . take the length record of this row . select the rows whose song title record fuzzily matches to the pain of loving you . take the length record of this row . the first record is greater than the second record .
Output:
| [
"yes"
] | task211-5186c340912e40ce99327a3fe94e8ae9 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: and { only { filter_eq { all_rows ; nickname ; polar bears } } ; eq { hop { filter_eq { all_rows ; nickname ; polar bears } ; school } ; jackson } }, interpretation: select the rows whose aspect record fuzzily matches to 16:9 . there is only one such row in the table . the channel record of this unqiue row is 31.1 .
Output:
| [
"no"
] | task211-cbf0efac0fb047dc896b76d929698fc3 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: most_eq { all_rows ; country of origin ; philippines }, interpretation: for the country of origin records of all rows , most of them fuzzily match to philippines .
Output:
| [
"yes"
] | task211-9154240274254962895b451399f40469 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: and { eq { max { all_rows ; final score } ; w 41 - 31 } ; eq { hop { argmax { all_rows ; final score } ; opponent } ; hamburg sea devils } }, interpretation: the maximum final score record of all rows is w 41 - 31 . the opponent record of the row with superlative final score record is hamburg sea devils .
Output:
| [
"yes"
] | task211-3a8704f065364093862bfd80b838500d |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { hop { nth_argmax { all_rows ; record ; 2 } ; year } ; 1979 }, interpretation: select the row whose record record of all rows is 2nd maximum . the year record of this row is 1979 .
Output:
| [
"yes"
] | task211-5a010dbeaf6e474abd598c80473753b7 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { nth_min { all_rows ; date ; 1 } ; march 22 }, interpretation: select the rows whose opponent record fuzzily matches to new york giants . there is only one such row in the table . the week record of this unqiue row is 1 .
Output:
| [
"no"
] | task211-b2dd3e51d0ac466e97f47310137303a3 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { count { filter_eq { all_rows ; fate ; damaged } } ; 2 }, interpretation: select the rows whose competition record fuzzily matches to league . for the venue records of these rows , most of them fuzzily match to away .
Output:
| [
"no"
] | task211-4f8dd21da4e843a695c4a492224b610a |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: most_not_eq { all_rows ; ownership ; state - owned }, interpretation: for the country records of all rows , most of them fuzzily match to belgium .
Output:
| [
"no"
] | task211-a608174f9c7d4e6a8a16110ea4b3e286 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { count { filter_eq { all_rows ; 2003 - 04 pts ; - } } ; 4 }, interpretation: select the rows whose country record fuzzily matches to russia . the sum of the uci points record of these rows is 90 .
Output:
| [
"no"
] | task211-8465071ad69a496ab744a3eb2c1a2641 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: and { only { filter_eq { all_rows ; national titles ; 0 } } ; eq { hop { filter_eq { all_rows ; national titles ; 0 } ; school } ; college of saint mary } }, interpretation: select the rows whose national titles record is equal to 0 . there is only one such row in the table . the school record of this unqiue row is college of saint mary .
Output:
| [
"yes"
] | task211-df0477b48a3d41f5ba048c30fe6e12aa |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: and { only { filter_eq { all_rows ; chassis ; lola } } ; eq { hop { filter_eq { all_rows ; chassis ; lola } ; year } ; 1993 } }, interpretation: select the rows whose chassis record fuzzily matches to lola . there is only one such row in the table . the year record of this unqiue row is 1993 .
Output:
| [
"yes"
] | task211-722e72b92c3948eb8e3f15ad4da81d8a |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { count { filter_eq { all_rows ; status ; re - elected } } ; 3 }, interpretation: select the rows whose status record fuzzily matches to re - elected . the number of such rows is 3 .
Output:
| [
"yes"
] | task211-3c4a544486474e479637d28066246ba3 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: and { only { filter_less { filter_eq { all_rows ; gender ; m } ; votes ; 3000 } } ; eq { hop { filter_less { filter_eq { all_rows ; gender ; m } ; votes ; 3000 } ; candidate 's name } ; lorne robinson } }, interpretation: select the rows whose album record fuzzily matches to lost souls . the number of such rows is 3 .
Output:
| [
"no"
] | task211-8f7ba8cf43334ed7b3c420d5fc64d984 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { max { filter_eq { all_rows ; technology ; rmi } ; date } ; september 16 , 2009 }, interpretation: select the rows whose apps record is equal to 12 . there is only one such row in the table . the season record of this unqiue row is 2004 - 2005 .
Output:
| [
"no"
] | task211-efb9a67c104048948784e747896598b0 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: and { only { filter_eq { filter_eq { all_rows ; years ; 1 - 8 } ; authority ; integrated } } ; eq { hop { filter_eq { filter_eq { all_rows ; years ; 1 - 8 } ; authority ; integrated } ; name } ; st teresa 's school } }, interpretation: select the rows whose years record fuzzily matches to 1 - 8 . among these rows , select the rows whose authority record fuzzily matches to integrated . there is only one such row in the table . the name record of this unqiue row is st teresa 's school .
Output:
| [
"yes"
] | task211-7a83b309bfb34785bebcb772461c713e |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { hop { nth_argmax { all_rows ; td 's ; 2 } ; player } ; lenzie jackson }, interpretation: for the political party records of all rows , most of them fuzzily match to labour party .
Output:
| [
"no"
] | task211-37b74955cc6246dabb6ec0f8a0b9a28a |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { hop { nth_argmax { all_rows ; 1st ship delivery date ; 2 } ; yard name } ; pendleton shipyards corp }, interpretation: select the row whose 1st ship delivery date record of all rows is 2nd maximum . the yard name record of this row is pendleton shipyards corp .
Output:
| [
"yes"
] | task211-560e1c1e8ba74dd59730044a5124740e |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: round_eq { sum { all_rows ; score } ; 16 }, interpretation: the sum of the score record of all rows is 16 .
Output:
| [
"yes"
] | task211-e50a9b0eb9db459c8b35fbd497486c8d |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: most_eq { all_rows ; points ; 0 }, interpretation: for the points records of all rows , most of them are equal to 0 .
Output:
| [
"yes"
] | task211-f1016f7c74a940c693bea4eb68262efd |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { count { filter_all { all_rows ; season } } ; 5 }, interpretation: select the rows whose season record is arbitrary . the number of such rows is 5 .
Output:
| [
"yes"
] | task211-c5d1599d3cd0476ca3a2ce07a7c80bfe |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: most_eq { all_rows ; type ; norteño }, interpretation: for the type records of all rows , most of them fuzzily match to norteño .
Output:
| [
"yes"
] | task211-059e2f589cee4f109493984350eb334d |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { count { filter_eq { all_rows ; industry ; oil and gas } } ; 4 }, interpretation: select the rows whose industry record fuzzily matches to oil and gas . the number of such rows is 4 .
Output:
| [
"yes"
] | task211-a0a5a3c2ca464764bda58b4781dc6d67 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 2 } ; home team } ; milton keynes dons }, interpretation: select the row whose attendance record of all rows is 2nd maximum . the home team record of this row is milton keynes dons .
Output:
| [
"yes"
] | task211-5677166fcd304cbfa23c596e2ef3fdb2 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: most_eq { all_rows ; years ; 2001 - 2004 }, interpretation: for the years records of all rows , most of them fuzzily match to 2001 - 2004 .
Output:
| [
"yes"
] | task211-f14c1b8ddda54bd7b456f3846c9c509d |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: all_eq { all_rows ; date ; 17 june 1939 }, interpretation: select the rows whose region record fuzzily matches to united states or japan . for the format records of these rows , most of them fuzzily match to cd .
Output:
| [
"no"
] | task211-a502feb235784758a084fcbf45ebe87b |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: most_less { all_rows ; established ; 2005 }, interpretation: select the row whose est record of all rows is minimum . the local government area record of this row is outback areas community development trust .
Output:
| [
"no"
] | task211-71a6353eba064a8190097f0eaaf413f6 |
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no".
Here are the definitions of logical operators:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: yes
Positive Example 2 -
Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: yes
Negative Example 1 -
Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: no
Negative Example 2 -
Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna.
Output: yes
Now complete the following example -
Input: Command: and { only { filter_eq { all_rows ; successor ; vacant } } ; eq { hop { filter_eq { all_rows ; successor ; vacant } ; district } ; illinois 1st } }, interpretation: select the rows whose successor record fuzzily matches to vacant . there is only one such row in the table . the district record of this unqiue row is illinois 1st .
Output:
| [
"yes"
] | task211-32a0bf9f05554a5e8c0669af6033e43b |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.