input
stringlengths
3.83k
4.62k
output
sequencelengths
1
1
id
stringlengths
40
40
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; score } ; 139 }, interpretation: the average of the score record of all rows is 139 . Output:
[ "yes" ]
task211-5f97d63a5f5845ec94931fa5b8f7bfd1
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; venue ; neman } ; capacity } ; hop { filter_eq { all_rows ; venue ; darida } ; capacity } }, interpretation: for the average attendance home records of all rows , most of them are less than 3200 . Output:
[ "no" ]
task211-111f08736f644012ab79b21719d52241
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_less { filter_greater { all_rows ; round ; 3 } ; overall ; 200 } } ; 3 }, interpretation: select the rows whose home team record is arbitrary . the number of such rows is 6 . Output:
[ "no" ]
task211-aabee3c000994cf6aba132e5787373e9
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 2 } ; opponent } ; denver broncos }, interpretation: select the row whose attendance record of all rows is 2nd maximum . the opponent record of this row is denver broncos . Output:
[ "yes" ]
task211-0715e16ee4ca4433ab46a5130d423be8
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: all_eq { all_rows ; width ; 96 }, interpretation: select the row whose votes record of all rows is maximum . the election record of this row is 1990 . Output:
[ "no" ]
task211-203b3083dde44b7fadf6deb5645ddef2
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; first elected ; 1944 } } ; 2 }, interpretation: select the rows whose railway record fuzzily matches to pdswjr . the number of such rows is 3 . Output:
[ "no" ]
task211-5bd14a7562b843cdb722bbe5fcbb2756
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; withdrawn ; 1951 } } ; 5 }, interpretation: select the rows whose withdrawn record is equal to 1951 . the number of such rows is 5 . Output:
[ "yes" ]
task211-b6b6ba485d0a49d5a4da5e8d42f1ebbd
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; erp w } ; call sign } ; w273ae }, interpretation: the average of the to par record of all rows is 13.4 . Output:
[ "no" ]
task211-4ff431cb353c477f9842c6df666a055d
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; result ; nominated }, interpretation: for the result records of all rows , most of them fuzzily match to nominated . Output:
[ "yes" ]
task211-564b375c508144a98802815fd8403b9d
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; team ; sandviken } ; in toppserien since } ; hop { filter_eq { all_rows ; team ; kolbotn } ; in toppserien since } }, interpretation: select the rows whose team record fuzzily matches to sandviken . take the in toppserien since record of this row . select the rows whose team record fuzzily matches to kolbotn . take the in toppserien since record of this row . the first record is greater than the second record . Output:
[ "yes" ]
task211-a603015dc5a04845affa52614d4642b8
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; pick } ; 20.8 }, interpretation: the average of the pick record of all rows is 20.8 . Output:
[ "yes" ]
task211-230da98400954a6195ec4bde710fd1e6
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: only { filter_less { filter_eq { all_rows ; country ; united states } ; score ; 208 } }, interpretation: select the rows whose rank record is less than or equal to 5 . for the goals records of these rows , all of them are greater than 100 . Output:
[ "no" ]
task211-a28e585c3f0f45d7a5bfec6864816972
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; hdtv ; yes } } ; eq { hop { filter_eq { all_rows ; hdtv ; yes } ; television service } ; satisfaction hd } }, interpretation: select the rows whose crowd record is greater than 10000 . the number of such rows is 2 . Output:
[ "no" ]
task211-2a0e437c7cec4a638296a4380508da3f
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; opponent in the final ; ágnes szávay } } ; 2 }, interpretation: the average of the total passengers record of all rows is 4773780 . Output:
[ "no" ]
task211-1a656e211e1b4bafbf0fdf9771238b94
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; nationality ; united states }, interpretation: select the rows whose aircraft record fuzzily matches to boeing . the number of such rows is 3 . Output:
[ "no" ]
task211-722ed822413f498cad2945db462c912d
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_less { filter_greater { all_rows ; points ; 60 } ; tries for ; 60 } } ; eq { hop { filter_less { filter_greater { all_rows ; points ; 60 } ; tries for ; 60 } ; club } ; kidwelly rfc } }, interpretation: the average of the points record of all rows is 11 . Output:
[ "no" ]
task211-9b849bb256d84756a857e47654b6e791
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_greater { all_rows ; top - 5 ; 0 } } ; 2 }, interpretation: select the row whose year record of all rows is 2nd maximum . the role record of this row is ahana sharma . Output:
[ "no" ]
task211-cb6fba97ce274d42a871b2156b6c831f
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; publisher ; nintendo }, interpretation: select the rows whose high points record fuzzily matches to vince carter . the number of such rows is 12 . Output:
[ "no" ]
task211-49d016b9cadd4768a85176ac931a0298
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { filter_eq { all_rows ; affiliation ; private/catholic } ; enrollment } ; 3,847 }, interpretation: select the rows whose affiliation record fuzzily matches to private/catholic . the average of the enrollment record of these rows is 3,847 . Output:
[ "yes" ]
task211-726275bb9e11493d9dfb39b8b4aab124
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; reason for change ; to enter the us army } } ; eq { hop { filter_eq { all_rows ; reason for change ; to enter the us army } ; vacator } ; charles i faddis ( d ) } }, interpretation: for the result records of all rows , most of them fuzzily match to l . Output:
[ "no" ]
task211-db5981b00e9142c5a0299f4a97c78776
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; venue ; johannesburg }, interpretation: for the venue records of all rows , most of them fuzzily match to johannesburg . Output:
[ "yes" ]
task211-9adbec793b804425acb742aa4da0065c
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; cover model ; two alternative covers } } ; eq { hop { filter_eq { all_rows ; cover model ; two alternative covers } ; date } ; 3 - 04 } }, interpretation: select the rows whose cover model record fuzzily matches to two alternative covers . there is only one such row in the table . the date record of this unqiue row is 3 - 04 . Output:
[ "yes" ]
task211-cc63e5dcffda4db9a70ce1a7da5c8ab4
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { sum { filter_eq { all_rows ; opponent ; toronto maple leafs } ; attendance } ; 38,002 }, interpretation: select the rows whose opponent record fuzzily matches to toronto maple leafs . the sum of the attendance record of these rows is 38,002 . Output:
[ "yes" ]
task211-01f55d140bd84b429027d4765ff5e766
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmin { all_rows ; score } ; player } ; phil mickelson }, interpretation: for the status records of all rows , most of them fuzzily match to loaned . Output:
[ "no" ]
task211-895420155a6348a6ba164755563c15d7
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmin { all_rows ; distance / duration ; 2 } ; year } ; 2010 }, interpretation: select the row whose points record of all rows is maximum . the artist record of this row is marlen angelidou . Output:
[ "no" ]
task211-fc86b58bd0e847ac83c17dd35420c90b
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; year ; 2011 } ; purse } ; hop { filter_eq { all_rows ; year ; 2005 } ; purse } }, interpretation: select the rows whose event record is arbitrary . the number of such rows is 14 . Output:
[ "no" ]
task211-1d63676522bc4b59a475d11afc65a12b
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; english title ; the saviour of the soul } ; hk viewers } ; hop { filter_eq { all_rows ; english title ; men in pain } ; hk viewers } }, interpretation: select the rows whose english title record fuzzily matches to the saviour of the soul . take the hk viewers record of this row . select the rows whose english title record fuzzily matches to men in pain . take the hk viewers record of this row . the first record is greater than the second record . Output:
[ "yes" ]
task211-363acebb4c92401c9c7ade49cd69d831
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; country ; finland } } ; eq { hop { filter_eq { all_rows ; country ; finland } ; company } ; stonesoft } }, interpretation: select the rows whose frequency record fuzzily matches to am . there is only one such row in the table . the branding record of this unqiue row is am 1150 . Output:
[ "no" ]
task211-7527df798fdd4f938fb6fccfb19d6972
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; method ; draw } } ; eq { hop { filter_eq { all_rows ; method ; draw } ; opponent } ; yoko takahashi } }, interpretation: for the outcome records of all rows , most of them fuzzily match to runner-up . Output:
[ "no" ]
task211-b53abab217ca441a9b7efae40b4a39e1
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; shirt sponsor ; n / a } } ; eq { hop { filter_eq { all_rows ; shirt sponsor ; n / a } ; team } ; dubai } }, interpretation: select the rows whose shirt sponsor record fuzzily matches to n / a . there is only one such row in the table . the team record of this unqiue row is dubai . Output:
[ "yes" ]
task211-a3a1a1393a2a4596bc32e67273852ee4
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: all_eq { all_rows ; sport ; football }, interpretation: for the sport records of all rows , all of them fuzzily match to football . Output:
[ "yes" ]
task211-3b3c6111b5494cb9b2412c3c5822fd04
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; date of appointment ; 3 november 2008 } } ; eq { hop { filter_eq { all_rows ; date of appointment ; 3 november 2008 } ; outgoing manager } ; osman özdemir } }, interpretation: select the rows whose date of appointment record fuzzily matches to 3 november 2008 . there is only one such row in the table . the outgoing manager record of this unqiue row is osman özdemir . Output:
[ "yes" ]
task211-4cb9449763f747808d39579d00ce5b21
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; attendance } ; 56346 }, interpretation: the average of the attendance record of all rows is 56346 . Output:
[ "yes" ]
task211-44f703b458884b279bff11fdc812ee61
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { filter_eq { all_rows ; year ; 2012 } ; worldwide gross } ; movie } ; ek tha tiger }, interpretation: select the rows whose candidates record fuzzily matches to unopposed . there is only one such row in the table . the incumbent record of this unqiue row is bob brady . Output:
[ "no" ]
task211-c4437184463f405a87ef71cf990c7e8a
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: less { hop { filter_eq { all_rows ; song title ; nee maatalo } ; year } ; hop { filter_eq { all_rows ; song title ; hey po } ; year } }, interpretation: select the row whose area ( km square ) record of all rows is 3rd maximum . the name of county record of this row is pest . Output:
[ "no" ]
task211-31fb0f2670844995bc70aec052c77aec
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; successor ; vacant } } ; eq { hop { filter_eq { all_rows ; successor ; vacant } ; vacator } ; ross bass ( d ) } }, interpretation: select the rows whose composer record fuzzily matches to alexander lunyov . there is only one such row in the table . the song record of this unqiue row is never let you go 2 . Output:
[ "no" ]
task211-9b1e6a1d58e548869e6089cc71db59c0
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; school / club team ; maynard evans hs } } ; eq { hop { filter_eq { all_rows ; school / club team ; maynard evans hs } ; player } ; darryl dawkins } }, interpretation: select the rows whose school / club team record fuzzily matches to maynard evans hs . there is only one such row in the table . the player record of this unqiue row is darryl dawkins . Output:
[ "yes" ]
task211-f6073af0eeb44f828ac972a37ed6e4a2
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmin { filter_eq { all_rows ; coach ; brian noble } ; main article ; 4 } ; lost } ; 7 }, interpretation: select the rows whose coach record fuzzily matches to brian noble . select the row whose main article record of these rows is 4th minimum . the lost record of this row is 7 . Output:
[ "yes" ]
task211-e4efa372c8144553bf634ca57bddf80f
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; director ; benedict andrews } } ; eq { hop { filter_eq { all_rows ; director ; benedict andrews } ; production } ; the war of the roses } }, interpretation: select the rows whose director record fuzzily matches to benedict andrews . there is only one such row in the table . the production record of this unqiue row is the war of the roses . Output:
[ "yes" ]
task211-1d6622a55571452384fa05d3ebc052fe
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; total } ; 3 }, interpretation: select the rows whose site / stadium record fuzzily matches to goodwin field . there is only one such row in the table . the date record of this unqiue row is may 25 . the opponent record of this unqiue row is cal state fullerton . Output:
[ "no" ]
task211-87c24a907af644ec8336f9a64bc9d6cb
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; name ; eclair } ; launched } ; hop { filter_eq { all_rows ; name ; derwent } ; launched } }, interpretation: select the rows whose venue record fuzzily matches to trent bridge . there is only one such row in the table . the date record of this unqiue row is 23 , 24 , 25 , 26 , 27 july 1998 . Output:
[ "no" ]
task211-696986c0052f46c281cc660205772753
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { nth_min { all_rows ; date ; 1 } ; 18 may 1993 }, interpretation: select the rows whose annual ridership ( 2012 ) record fuzzily matches to 280904200 . take the stations record of this row . select the rows whose annual ridership ( 2012 ) record fuzzily matches to 231154300 . take the stations record of this row . the first record is less than the second record . Output:
[ "no" ]
task211-8e8071418c9c47f9ad9a38c4ae63b76e
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { filter_eq { all_rows ; proposed ; 1989 } ; proposed ; 1989 } } ; eq { hop { filter_eq { filter_eq { all_rows ; proposed ; 1989 } ; proposed ; 1989 } ; county } ; new london } }, interpretation: select the rows whose year ( ceremony ) record fuzzily matches to 2006 ( 79th ) . take the year ( ceremony ) record of this row . select the rows whose year ( ceremony ) record fuzzily matches to 2007 ( 80th ) . take the year ( ceremony ) record of this row . the first record is less than the second record . the year ( ceremony ) record of the first row is 2006 ( 79th ) . the year ( ceremony ) record of the second row is 2007 ( 80th ) . Output:
[ "no" ]
task211-446d0f1d921047bd8f57f587805bc323
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; fate ; wrecked } } ; eq { hop { filter_eq { all_rows ; fate ; wrecked } ; name } ; magnet } }, interpretation: select the row whose score record of all rows is maximum . the tie no record of this row is replay . the home team record of this row is southampton . the away team record of this row is sheffield wednesday . Output:
[ "no" ]
task211-09359a55ce5e4d4bb1b9100c915b38b4
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_greater { all_rows ; length ; 4:00 } } ; 3 }, interpretation: select the rows whose length record is greater than 4:00 . the number of such rows is 3 . Output:
[ "yes" ]
task211-1f1cd63cd432469db80b627efd0e8580
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; country ; australia } } ; eq { hop { filter_eq { all_rows ; country ; australia } ; player } ; geoff ogilvy } }, interpretation: select the rows whose television service record fuzzily matches to telemarket . the number of such rows is 2 . Output:
[ "no" ]
task211-201eeee6c2644e9ab84a0a1d41bf5d23
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: less { hop { filter_eq { all_rows ; race ; italian grand prix } ; date } ; hop { filter_eq { all_rows ; race ; european grand prix } ; date } }, interpretation: select the rows whose race record fuzzily matches to italian grand prix . take the date record of this row . select the rows whose race record fuzzily matches to european grand prix . take the date record of this row . the first record is less than the second record . Output:
[ "yes" ]
task211-92b32f99ca0f4f87900e084d5b98feec
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; viewers ( millions ) } ; episode } ; episode 5 }, interpretation: select the row whose viewers ( millions ) record of all rows is maximum . the episode record of this row is episode 5 . Output:
[ "yes" ]
task211-027539d139b74a35a9671efbaffb4e47
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmin { all_rows ; date ; 2 } ; venue } ; bahrain national stadium , manama }, interpretation: select the row whose date record of all rows is 2nd minimum . the venue record of this row is bahrain national stadium , manama . Output:
[ "yes" ]
task211-b2fce8c224174fb483b0056a14b0a835
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: all_eq { all_rows ; songwriter ( s ) ; ( adapted by malcolm dodds ) }, interpretation: for the songwriter ( s ) records of all rows , all of them fuzzily match to ( adapted by malcolm dodds ) . Output:
[ "yes" ]
task211-7246bd257d4047e5adc66d5ed7f407df
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_greater { all_rows ; mean score ; 621 }, interpretation: select the rows whose years record fuzzily matches to 192 . the number of such rows is 2 . Output:
[ "no" ]
task211-0f8f28725c364a1f8c690fbcefc88bde
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; attendance } ; date } ; 19 may 2007 }, interpretation: the maximum score record of all rows is l 83 - 74 . the date record of the row with superlative score record is february 5 . Output:
[ "no" ]
task211-a56c4cadb33b404d9138140d7b8cab1a
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_greater { all_rows ; elevation ; 12000 feet } } ; 3 }, interpretation: select the rows whose elevation record is greater than 12000 feet . the number of such rows is 3 . Output:
[ "yes" ]
task211-782c7d3dca0a45c4a1b688925ed66e43
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { eq { hop { nth_argmax { all_rows ; gross ; 5 } ; title } ; the color purple } ; eq { hop { nth_argmax { all_rows ; gross ; 5 } ; director } ; steven spielberg } }, interpretation: select the row whose gross record of all rows is 5th maximum . the title record of this row is the color purple . the director record of this row is steven spielberg . Output:
[ "yes" ]
task211-9a05b5aa5c0147aaa5e0f707a1474c38
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; viewers ( in millions ) } ; 12.56 }, interpretation: select the rows whose attendance record is less than 40000 . the number of such rows is 1 . Output:
[ "no" ]
task211-d616a4f126684ede8f9d3232dfc5009a
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; us viewers ( million ) ; 2 } ; - } ; 1 }, interpretation: select the rows whose 2009 record fuzzily matches to sf . there is only one such row in the table . the tournament record of this unqiue row is us open . Output:
[ "no" ]
task211-6d41f4a316584e169238986b3d051705
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; style ; country - western two - step } } ; eq { hop { filter_eq { all_rows ; style ; country - western two - step } ; couple } ; kherington payne mark kanemura } }, interpretation: select the rows whose style record fuzzily matches to country - western two - step . there is only one such row in the table . the couple record of this unqiue row is kherington payne mark kanemura . Output:
[ "yes" ]
task211-678c4b1bbb424423a5b07e334e093346
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: less { hop { filter_eq { all_rows ; week ; top 24 ( 12 women ) } ; order } ; hop { filter_eq { all_rows ; week ; top 20 ( 10 women ) } ; order } }, interpretation: select the rows whose series record is arbitrary . the number of such rows is 7 . Output:
[ "no" ]
task211-50efc0fe9b1c4607b54a4add01715293
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; orangemen points } ; 20.3 }, interpretation: the average of the orangemen points record of all rows is 20.3 . Output:
[ "yes" ]
task211-a9e55ae9950f4d7185c3969d40c24825
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { less { hop { filter_eq { all_rows ; year ; 1961 } ; rank } ; hop { filter_eq { all_rows ; year ; 1970 } ; rank } } ; and { eq { hop { filter_eq { all_rows ; year ; 1961 } ; rank } ; 17 } ; eq { hop { filter_eq { all_rows ; year ; 1970 } ; rank } ; 22 } } }, interpretation: select the rows whose warship record fuzzily matches to chacabuco . take the speed ( knots ) record of this row . select the rows whose warship record fuzzily matches to abtao . take the speed ( knots ) record of this row . the first record is greater than the second record . Output:
[ "no" ]
task211-28d7359c4e654deab476afee3ae9617b
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; drawn ; 1 } } ; 2 }, interpretation: select the rows whose drawn record is equal to 1 . the number of such rows is 2 . Output:
[ "yes" ]
task211-c573c2c75bbf47af90c6a3f7e3f39fb3
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { eq { hop { filter_eq { all_rows ; lost ; 15 } ; lost } ; hop { filter_eq { all_rows ; lost ; 15 } ; lost } } ; and { eq { hop { filter_eq { all_rows ; lost ; 15 } ; lost } ; 15 } ; eq { hop { filter_eq { all_rows ; lost ; 15 } ; lost } ; 15 } } }, interpretation: select the rows whose player record fuzzily matches to fred couples . take the weeks record of this row . select the rows whose player record fuzzily matches to david duval . take the weeks record of this row . the first record is greater than the second record . Output:
[ "no" ]
task211-6ce3dd8c36354d3e9f30ed65573a147e
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { filter_eq { all_rows ; competition ; league } ; venue ; away }, interpretation: for the prone records of all rows , most of them are less than 200 . Output:
[ "no" ]
task211-d2ed619129774e4196b48a4b41fcbd05
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; win % ; 2 } ; coach } ; jim larranaga }, interpretation: select the row whose win % record of all rows is 2nd maximum . the coach record of this row is jim larranaga . Output:
[ "yes" ]
task211-decac833df7c48539329f27569f8d133
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; song ; endless love } ; weeks on top } ; hop { filter_eq { all_rows ; song ; morning train } ; weeks on top } }, interpretation: the average of the total prize money record of all rows is 135000 . Output:
[ "no" ]
task211-86113ae8c02c421f887f42f2b04c5992
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; attendance } ; 58252 }, interpretation: select the row whose 1910 census record of all rows is 3rd maximum . the city record of this row is fuzan . Output:
[ "no" ]
task211-fd412aa6c49848788a9cbd39ecd69c06
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; population } ; official name } ; quispamsis }, interpretation: for the capacity records of all rows , most of them are less than 10000 . Output:
[ "no" ]
task211-fc0ec52f3cac467c91381a8687e7e11e
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_greater { filter_eq { all_rows ; time / retired ; clutch } ; laps ; 30 }, interpretation: select the rows whose time / retired record fuzzily matches to clutch . for the laps records of these rows , most of them are greater than 30 . Output:
[ "yes" ]
task211-1df3916741dd414485f3249fb6b15b44
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { filter_eq { all_rows ; competition ; 1978 merdeka cup } ; score } ; hop { filter_eq { all_rows ; competition ; 1986 fifa world cup } ; score } }, interpretation: select the rows whose opponent record fuzzily matches to cleveland browns . take the attendance record of this row . select the rows whose opponent record fuzzily matches to dallas cowboys . take the attendance record of this row . the first record is greater than the second record . Output:
[ "no" ]
task211-3adeeb0fe9a14b2192736c5a25c4b9c8
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; score ; 64 } } ; 2 }, interpretation: the average of the crowd record of all rows is 21012 . Output:
[ "no" ]
task211-e93035b17e0e4f788c73843d6ed7e82d
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_less { filter_greater { all_rows ; home team score ; 12 } ; crowd ; 20000 } } ; 2 }, interpretation: select the rows whose home team score record is greater than 12 . among these rows , select the rows whose crowd record is less than 20000 . the number of such rows is 2 . Output:
[ "yes" ]
task211-cb37359241ff49ecace90d3d845ac161
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; author ; barbara clegg and marc platt } } ; eq { hop { filter_eq { all_rows ; author ; barbara clegg and marc platt } ; title } ; point of entry } }, interpretation: select the rows whose tag team record fuzzily matches to rosey and the hurricane . take the eliminated record of this row . select the rows whose tag team record fuzzily matches to jindrak and cade . take the eliminated record of this row . the first record is less than the second record . Output:
[ "no" ]
task211-17424b4a58e5476e9fbb8f5d06d838be
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; location ; norfolk } } ; 4 }, interpretation: select the rows whose location record fuzzily matches to norfolk . the number of such rows is 4 . Output:
[ "yes" ]
task211-bdfeafe102e74eb4a1da4184fc275c15
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; actual version ; n / a } } ; eq { hop { filter_eq { all_rows ; actual version ; n / a } ; name } ; estyjs } }, interpretation: the average of the result record of all rows is 10.15 th . Output:
[ "no" ]
task211-9b555f9ded824e1c9ec0e2c42109e401
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; enrollment } ; 651.8 }, interpretation: the average of the enrollment record of all rows is 651.8 . Output:
[ "yes" ]
task211-359d916a9c794e1c93ed3b6c7c1830c3
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { filter_eq { all_rows ; series ; australian formula 3 championship - national class } ; points } ; 160.5 }, interpretation: select the rows whose to par record fuzzily matches to +1 . the number of such rows is 2 . Output:
[ "no" ]
task211-576963debfe6408cb30e6c1aeff0abec
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmin { all_rows ; first elected ; 2 } ; incumbent } ; s otis bland }, interpretation: select the rows whose engine type record fuzzily matches to diesel - electric . there is only one such row in the table . the make & model record of this unqiue row is orion vii 3rd generation . Output:
[ "no" ]
task211-564574c530b241fc840309fa88cebea8
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; position ; left wing } } ; 4 }, interpretation: select the rows whose position record fuzzily matches to left wing . the number of such rows is 4 . Output:
[ "yes" ]
task211-e8a65b2dd0984bf1a840357a68e28766
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { filter_greater { all_rows ; crowd ; 20000 } ; venue ; victoria park } } ; eq { hop { filter_eq { filter_greater { all_rows ; crowd ; 20000 } ; venue ; victoria park } ; home team } ; collingwood } }, interpretation: select the rows whose crowd record is greater than 20000 . among these rows , select the rows whose venue record fuzzily matches to victoria park . there is only one such row in the table . the home team record of this unqiue row is collingwood . Output:
[ "yes" ]
task211-9d7387d9da7943a98c7aacb1e16ebd3c
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; venue ; glasgow } } ; 6 }, interpretation: select the rows whose venue record fuzzily matches to glasgow . the number of such rows is 6 . Output:
[ "yes" ]
task211-7a1a3af66e4d4e5488b5722c486fdb49
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { sum { filter_eq { all_rows ; name ; jack riley } ; games } ; 375 }, interpretation: select the rows whose name record fuzzily matches to jack riley . the sum of the games record of these rows is 375 . Output:
[ "yes" ]
task211-99c1bcec72064f58b6e75c1e225e4971
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { diff { hop { filter_eq { all_rows ; incumbent ; doug walgren } ; first elected } ; hop { filter_eq { all_rows ; incumbent ; tom ridge } ; first elected } } ; -6 }, interpretation: select the rows whose incumbent record fuzzily matches to doug walgren . take the first elected record of this row . select the rows whose incumbent record fuzzily matches to tom ridge . take the first elected record of this row . the second record is 6 larger than the first record . Output:
[ "yes" ]
task211-cdddee1b58e249fc8a706b124b0d57ad
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { sum { all_rows ; won } ; 128 }, interpretation: select the row whose 1st ship delivery date record of all rows is 2nd maximum . the yard name record of this row is pendleton shipyards corp . Output:
[ "no" ]
task211-15ef3cb9d16f457f96741e6e0cce22f3
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; team ; pk racing } } ; eq { hop { filter_eq { all_rows ; team ; pk racing } ; name } ; max papis } }, interpretation: select the rows whose team record fuzzily matches to pk racing . there is only one such row in the table . the name record of this unqiue row is max papis . Output:
[ "yes" ]
task211-10ebf9e01d9d401ab25ced35300e7687
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; lms class ; 3p } } ; 2 }, interpretation: the average of the score record of all rows is 2.2 . Output:
[ "no" ]
task211-3daab0b0273845b8b860723163667f41
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; last match } ; competition } ; uefa champions league }, interpretation: for the displacement records of all rows , most of them are equal to 3.9 . Output:
[ "no" ]
task211-e3b4c738a18949ad8f36796f1d0f4896
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; categoría ; rock group } } ; 2 }, interpretation: the sum of the electorate record of all rows is 2633581 . Output:
[ "no" ]
task211-d2811991641147e7b2088984be4a3d56
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { max { filter_eq { all_rows ; away team score ; 9.12 ( 66 ) } ; crowd } ; 29374 }, interpretation: select the rows whose status record fuzzily matches to retired republican hold . there is only one such row in the table . the district record of this unqiue row is minnesota3 . Output:
[ "no" ]
task211-475289713b6c45d98d1a2b54f5d6edc0
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_greater { filter_eq { all_rows ; constructor ; talbot - lago - talbot } ; laps ; 30 } } ; 5 }, interpretation: for the type records of all rows , most of them fuzzily match to norteño . Output:
[ "no" ]
task211-c5fd4ca1a8dd4d6dafb98d2078381b20
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; drawn } ; 2.55 }, interpretation: the average of the drawn record of all rows is 2.55 . Output:
[ "yes" ]
task211-aceae729f1674443a191dc9555acb3ae
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { filter_eq { all_rows ; party ; democratic } ; first elected ; 1974 } } ; 2 }, interpretation: select the rows whose party record fuzzily matches to democratic . among these rows , select the rows whose first elected record is equal to 1974 . the number of such rows is 2 . Output:
[ "yes" ]
task211-23cfab93917741829896f8ce5235fae8
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; quantity } ; make } ; gm new look }, interpretation: select the row whose quantity record of all rows is maximum . the make record of this row is gm new look . Output:
[ "yes" ]
task211-16d1449c0ec440bcb7cc0824cff2be36
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; school / club team ; duke } } ; eq { hop { filter_eq { all_rows ; school / club team ; duke } ; player } ; antonio lang } }, interpretation: select the rows whose position record fuzzily matches to 8th . there is only one such row in the table . the season record of this unqiue row is 1946 - 47 . Output:
[ "no" ]
task211-7920963327764528b0af05f7759ce9e2
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { filter_eq { all_rows ; position ; guard } ; height in ft ; 6 - 2 } } ; eq { hop { filter_eq { filter_eq { all_rows ; position ; guard } ; height in ft ; 6 - 2 } ; player } ; garland , winston winston garland } }, interpretation: the average of the crowd record of all rows is 17724 . Output:
[ "no" ]
task211-2f3c2aff085e46148ffadf186fcae1c0
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { sum { all_rows ; runs } ; 3324 }, interpretation: select the rows whose name record fuzzily matches to greg merson . take the wsop cashes record of this row . select the rows whose name record fuzzily matches to michael esposito . take the wsop cashes record of this row . the first record is greater than the second record . Output:
[ "no" ]
task211-e649b2cd902b4cc98d054f6de1326317
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; tv ; nbc }, interpretation: for the tv records of all rows , most of them fuzzily match to nbc . Output:
[ "yes" ]
task211-bd7579e8df194134882f6427dd13133c
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmin { all_rows ; first elected ; 1 } ; incumbent } ; harry lane englebright }, interpretation: for the time slot ( est ) records of all rows , most of them fuzzily match to wednesday 10 pm / 9c . Output:
[ "no" ]
task211-83d5423ad37845c8b86e4e587ac3ee50
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; crowd ; 2 } ; venue } ; mcg }, interpretation: select the rows whose status record fuzzily matches to millennium trophy match . there is only one such row in the table . the opposing teams record of this unqiue row is ireland . Output:
[ "no" ]
task211-d5d3f88e1d454d9e84d130fe85506a92
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; home team score } ; 15.18 }, interpretation: select the rows whose nbr class record fuzzily matches to 251 . take the total record of this row . select the rows whose nbr class record fuzzily matches to 229 . take the total record of this row . the first record is greater than the second record . Output:
[ "no" ]
task211-11a2154b3be041aeba2a926a93bf2f31
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; release date ; 2004 } } ; eq { hop { filter_eq { all_rows ; release date ; 2004 } ; version } ; 4.10 } }, interpretation: select the rows whose constellation record fuzzily matches to ursa major . the number of such rows is 3 . Output:
[ "no" ]
task211-a139a4ac5b9a49278edb69db98b95edf