input
stringlengths
3.83k
4.62k
output
sequencelengths
1
1
id
stringlengths
40
40
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_less { filter_eq { all_rows ; date ; january } ; crowd ; 4000 } } ; 3 }, interpretation: select the rows whose date record fuzzily matches to january . among these rows , select the rows whose crowd record is less than 4000 . the number of such rows is 3 . Output:
[ "yes" ]
task211-2c37efe3187e4247a0fd748b0590d5eb
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; location attendance ; rose garden } } ; 3 }, interpretation: select the rows whose away team score record is less than 10 . the number of such rows is 1 . Output:
[ "no" ]
task211-dfc892eccb0640b48db033da81a4dfb9
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; playoffs ; did not qualify } } ; 2 }, interpretation: select the rows whose playoffs record fuzzily matches to did not qualify . the number of such rows is 2 . Output:
[ "yes" ]
task211-036fff0bd92b445ea7deefa6956eb6c1
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmin { all_rows ; foundation ; 2 } ; english name } ; japan coast guard academy }, interpretation: for the viewers ( million ) records of all rows , most of them are greater than 3 . Output:
[ "no" ]
task211-13b90610b1af4e25ab49b5df3f9f0a14
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { sum { all_rows ; total } ; 48 }, interpretation: the sum of the total record of all rows is 48 . Output:
[ "yes" ]
task211-53150d68e6834a4aa37624329d76a14b
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; laps led ; 0 }, interpretation: for the final records of all rows , most of them fuzzily match to did not advance . Output:
[ "no" ]
task211-43446e5a55b1491e81352152945c7d14
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; to par ; 7 }, interpretation: for the to par records of all rows , most of them are equal to 7 . Output:
[ "yes" ]
task211-9580eacedde543438d208426ed5ca258
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; apps ; 12 } } ; eq { hop { filter_eq { all_rows ; apps ; 12 } ; season } ; 2004 - 2005 } }, interpretation: select the rows whose player record fuzzily matches to ( can ) . the sum of the goals record of these rows is 26 . Output:
[ "no" ]
task211-b50bbd46c87c412bb25bfcf2b716be9b
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmin { all_rows ; score } ; player } ; tim simpson }, interpretation: select the row whose score record of all rows is minimum . the player record of this row is tim simpson . Output:
[ "yes" ]
task211-40edf9f27b30479a860fb0e213877008
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_less { all_rows ; attendance ; 40000 } } ; 1 }, interpretation: select the rows whose location attendance record fuzzily matches to bryce jordan center , state college , pa ( 9833 ) . there is only one such row in the table . the date record of this unqiue row is december 6 . Output:
[ "no" ]
task211-641eb9ace1df4e6190c8535edd295766
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; laps led ; 0 }, interpretation: for the laps led records of all rows , most of them are equal to 0 . Output:
[ "yes" ]
task211-839daac0e5db41dca8151a55440b0366
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_less { all_rows ; viewers ( households in millions ) ; 18 } } ; 3 }, interpretation: select the rows whose result record fuzzily matches to lose . the number of such rows is 5 . Output:
[ "no" ]
task211-63d4d31b8f6d409cb0a996fbc4681fce
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; outcome ; winner } } ; 4 }, interpretation: for the points records of all rows , most of them are less than 10 . Output:
[ "no" ]
task211-720b1c9b6b7046aab8c1c327424b1379
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; championship ; world snooker championship } } ; 2 }, interpretation: select the rows whose championship record fuzzily matches to world snooker championship . the number of such rows is 2 . Output:
[ "yes" ]
task211-2b5100b750dd45cd98255c94e53b5548
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; points } ; team } ; palestra itália - sp }, interpretation: for the surface records of all rows , most of them fuzzily match to dirt . Output:
[ "no" ]
task211-9d14553264534be1839805a78067290c
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmin { all_rows ; time } ; name } ; pieter van den hoogenband }, interpretation: select the rows whose incumbent record fuzzily matches to john page . take the first elected record of this row . select the rows whose incumbent record fuzzily matches to francis walker . take the first elected record of this row . the first record is less than the second record . Output:
[ "no" ]
task211-5bb1e65a56fd45d49aa9874f9adc7077
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; total } ; 3.75 }, interpretation: select the rows whose position record fuzzily matches to cornerback . the number of such rows is 2 . Output:
[ "no" ]
task211-c624dbfc69a64a82b1b82d737814c15f
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { eq { nth_min { all_rows ; date ; 2 } ; jun 25 } ; eq { hop { nth_argmin { all_rows ; date ; 2 } ; score } ; 2 - 3 } }, interpretation: the sum of the ends won record of all rows is 516 . Output:
[ "no" ]
task211-e44c50f68f134936b8eef780853930c9
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_not_eq { all_rows ; bubbles ; yes } } ; eq { hop { filter_not_eq { all_rows ; bubbles ; yes } ; type } ; domnoderemovedfromdocument } }, interpretation: select the rows whose bubbles record does not match to yes . there is only one such row in the table . the type record of this unqiue row is domnoderemovedfromdocument . Output:
[ "yes" ]
task211-9cced4fce6d149ec804e3cf0d4fbaafb
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; points } ; team } ; libertad }, interpretation: select the row whose points record of all rows is maximum . the team record of this row is libertad . Output:
[ "yes" ]
task211-ae8c896e7a7a4aecb06a9de76bd2e1e5
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; qual 1 ; - } } ; eq { hop { filter_eq { all_rows ; qual 1 ; - } ; name } ; a j allmendinger } }, interpretation: select the rows whose erp w record is equal to 33 . there is only one such row in the table . the call sign record of this unqiue row is w267 am . Output:
[ "no" ]
task211-6f0fe3710a2e41b0b756ffaea05d88da
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; station type ; relay }, interpretation: for the gold records of all rows , most of them are equal to 0 . Output:
[ "no" ]
task211-3ab93266a7c14219a2024b2c5d601c80
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { sum { all_rows ; crowd } ; 149299 }, interpretation: the sum of the crowd record of all rows is 149299 . Output:
[ "yes" ]
task211-14825d90a57641d98149a09ea1f5bef6
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { filter_eq { all_rows ; release date ; january 2011 } ; release price ( usd ) } ; 507.71 }, interpretation: select the rows whose release date record fuzzily matches to january 2011 . the average of the release price ( usd ) record of these rows is 507.71 . Output:
[ "yes" ]
task211-e24754d22b4f4979ae8818da7e704d0f
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_greater { all_rows ; viewing figure ; 7 }, interpretation: select the row whose time record of all rows is 3rd minimum . the rider record of this row is ross johnson . Output:
[ "no" ]
task211-40da02fb53fa411990393c6f7d17b048
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; launch date ; june } } ; 3 }, interpretation: select the rows whose result record fuzzily matches to safe . the sum of the score record of these rows is 54 . Output:
[ "no" ]
task211-4a0ef04a675848668bd7562ad3dab34d
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { greater { hop { filter_eq { all_rows ; name ; santa maria da feira } ; area ( km square ) } ; hop { filter_eq { all_rows ; name ; vale de cambra } ; area ( km square ) } } ; and { eq { hop { filter_eq { all_rows ; name ; santa maria da feira } ; area ( km square ) } ; 215.1 } ; eq { hop { filter_eq { all_rows ; name ; vale de cambra } ; area ( km square ) } ; 146.5 } } }, interpretation: select the rows whose name record fuzzily matches to santa maria da feira . take the area ( km square ) record of this row . select the rows whose name record fuzzily matches to vale de cambra . take the area ( km square ) record of this row . the first record is greater than the second record . the area ( km square ) record of the first row is 215.1 . the area ( km square ) record of the second row is 146.5 . Output:
[ "yes" ]
task211-ecd4150fe86041bc9c8f3e2a7ae2f7da
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; party ; democrat }, interpretation: for the party records of all rows , most of them fuzzily match to democrat . Output:
[ "yes" ]
task211-a560da56ff824967a022fbfd8b92d27d
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: only { filter_eq { all_rows ; 1988 ; - } }, interpretation: select the rows whose player record fuzzily matches to tom watson . take the total record of this row . select the rows whose player record fuzzily matches to tom weiskopf . take the total record of this row . the first record is greater than the second record . Output:
[ "no" ]
task211-9d425ff2c2d7438e8be56cc0d8c6f7bf
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; no ; 3 } ; player } ; ashraf amaya }, interpretation: select the row whose no record of all rows is 3rd maximum . the player record of this row is ashraf amaya . Output:
[ "yes" ]
task211-d983be00ec5949ffaaa113951e068e0a
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; location attendance ; bryce jordan center , state college , pa ( 9833 ) } } ; eq { hop { filter_eq { all_rows ; location attendance ; bryce jordan center , state college , pa ( 9833 ) } ; date } ; december 6 } }, interpretation: select the rows whose location attendance record fuzzily matches to bryce jordan center , state college , pa ( 9833 ) . there is only one such row in the table . the date record of this unqiue row is december 6 . Output:
[ "yes" ]
task211-1c0f0ae1920a47a4885114365938e230
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmin { all_rows ; start } ; year } ; 1936 }, interpretation: select the row whose start record of all rows is minimum . the year record of this row is 1936 . Output:
[ "yes" ]
task211-f8e0422166fb4c5d865e6fc1c990cb86
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: all_eq { all_rows ; party ; democratic }, interpretation: for the elevator records of all rows , all of them fuzzily match to urban vi . Output:
[ "no" ]
task211-e715d104e2e24b0cbcd57018abb75a5c
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmin { all_rows ; us viewers ( million ) } ; title } ; the lorelais ' first day at yale }, interpretation: select the rows whose field goals record is not equal to 0 . there is only one such row in the table . the player record of this unqiue row is octy graham . Output:
[ "no" ]
task211-0a89ad647fbf47fe9e786a1ccb13e373
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { diff { hop { filter_eq { all_rows ; incumbent ; gene taylor } ; first elected } ; hop { filter_eq { all_rows ; incumbent ; harold volkmer } ; first elected } } ; -4 years }, interpretation: the sum of the prize ( k ) record of all rows is 1920 . Output:
[ "no" ]
task211-630715e1e3e04fdaa96397f155698ad9
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { greater { hop { filter_eq { all_rows ; player ; tim jones } ; pick } ; hop { filter_eq { all_rows ; player ; lew kamanu } ; pick } } ; and { eq { hop { filter_eq { all_rows ; player ; tim jones } ; position } ; quarterback } ; eq { hop { filter_eq { all_rows ; player ; lew kamanu } ; position } ; defensive end } } }, interpretation: the average of the enrollment record of all rows is 1,285 . Output:
[ "no" ]
task211-ef537956d7644d75809fbae3d3b8eb59
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_greater { filter_greater { all_rows ; remittances 2011 ; 10 } ; remittances 2010 ; 50 } } ; eq { hop { filter_greater { filter_greater { all_rows ; remittances 2011 ; 10 } ; remittances 2010 ; 50 } ; country } ; india } }, interpretation: select the rows whose remittances 2011 record is greater than 10 . among these rows , select the rows whose remittances 2010 record is greater than 50 . there is only one such row in the table . the country record of this unqiue row is india . Output:
[ "yes" ]
task211-426fe8a1be7f400392eeb42ad50093da
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { sum { all_rows ; laps } ; 3670 }, interpretation: the sum of the laps record of all rows is 3670 . Output:
[ "yes" ]
task211-9027dc140c784d3c8f3ffa8b19e301c9
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; points } ; year } ; 1985 }, interpretation: select the row whose viewers ( millions ) record of all rows is maximum . the episode record of this row is 7 . Output:
[ "no" ]
task211-78aa9eabbb8b440ea52a9bb576846b37
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; venue ; amman }, interpretation: for the venue records of all rows , most of them fuzzily match to amman . Output:
[ "yes" ]
task211-d78b897f2d3f490cb8667c1ae3b5b95d
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { max { filter_eq { all_rows ; away team score ; 9.12 ( 66 ) } ; crowd } ; 29374 }, interpretation: select the rows whose away team score record fuzzily matches to 9.12 ( 66 ) . the maximum crowd record of these rows is 29374 . Output:
[ "yes" ]
task211-ef85b10d36e94d68aab992c736154aa3
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { eq { max { all_rows ; us viewers ( million ) } ; 6.14 } ; eq { hop { argmax { all_rows ; us viewers ( million ) } ; no in season } ; 1 } }, interpretation: the maximum us viewers ( million ) record of all rows is 6.14 . the no in season record of the row with superlative us viewers ( million ) record is 1 . Output:
[ "yes" ]
task211-199cd8da60ee40cfa3e1ddb9f4820b12
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 1 } ; date } ; november 17 }, interpretation: select the row whose attendance record of all rows is 1st maximum . the date record of this row is november 17 . Output:
[ "yes" ]
task211-4c92c6118ffd4277a97098304d9ce523
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { diff { hop { filter_eq { all_rows ; opponent ; chicago bears } ; date } ; hop { filter_eq { all_rows ; opponent ; staten island stapletons } ; date } } ; -7 }, interpretation: select the row whose original air date record of all rows is 1st maximum . the title record of this row is weeping willows . Output:
[ "no" ]
task211-af157a7074d34cc6a232041581f633cb
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmin { all_rows ; time ; 2 } ; winner } ; paddy o'prado }, interpretation: select the row whose time record of all rows is 2nd minimum . the winner record of this row is paddy o'prado . Output:
[ "yes" ]
task211-a008d952a65943c5958f238d14d2f576
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; rebounds per game ; 3.4 } } ; eq { hop { filter_eq { all_rows ; rebounds per game ; 3.4 } ; tournament } ; 2011 eurobasket } }, interpretation: select the rows whose rebounds per game record is equal to 3.4 . there is only one such row in the table . the tournament record of this unqiue row is 2011 eurobasket . Output:
[ "yes" ]
task211-c14ed5610d3b415799b513b88182d54b
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; tv time ; fox } } ; 2 }, interpretation: select the row whose torque ( nm ) / rpm record of all rows is maximum . the model / engine record of this row is 2.0 duratec he . Output:
[ "no" ]
task211-c0451b75f2db4bfaa48085c3d6285df0
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmin { all_rows ; time ; 2 } ; athletes } ; mathieu goubel }, interpretation: select the row whose time record of all rows is 2nd minimum . the athletes record of this row is mathieu goubel . Output:
[ "yes" ]
task211-c390fd35779e4fda9b0d932c9d51762e
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; opponent ; new york giants } } ; eq { hop { filter_eq { all_rows ; opponent ; new york giants } ; week } ; 1 } }, interpretation: select the rows whose opponent record fuzzily matches to new york giants . there is only one such row in the table . the week record of this unqiue row is 1 . Output:
[ "yes" ]
task211-c5023cb614f6477a8b801c03f3dab3b5
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; for } ; 31 }, interpretation: select the row whose points record of all rows is 2nd maximum . the name record of this row is angelika buck / erich buck . Output:
[ "no" ]
task211-d2d865eeed564394b919022c4e224d9d
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; date ; 13 may 1998 } ; weight ( kg ) } ; hop { filter_eq { all_rows ; date ; 23 aug 1997 } ; weight ( kg ) } }, interpretation: select the rows whose date record fuzzily matches to 13 may 1998 . take the weight ( kg ) record of this row . select the rows whose date record fuzzily matches to 23 aug 1997 . take the weight ( kg ) record of this row . the first record is greater than the second record . Output:
[ "yes" ]
task211-0b05f04045604d779d5279b4a21d183d
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_greater { all_rows ; time ; 7:00:00 } } ; eq { hop { filter_greater { all_rows ; time ; 7:00:00 } ; country } ; iraq } }, interpretation: the average of the blank ends record of all rows is 6.9 . Output:
[ "no" ]
task211-9ea73ced25cb4349bc9b0a2e2bc8256c
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; episode } ; 240 }, interpretation: select the row whose game record of all rows is 3rd minimum . the team record of this row is miami . Output:
[ "no" ]
task211-000f675fddf14eb09e73bea43e7ce06f
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; event ; ept baden classic } ; prize } ; hop { filter_eq { all_rows ; event ; the european poker championships } ; prize } }, interpretation: the sum of the bb + hbp record of all rows is 580 . Output:
[ "no" ]
task211-fc9699f79345436192449d0703e3309f
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; player ; mitchell duke } ; goals } ; hop { filter_eq { all_rows ; player ; john hutchinson } ; goals } }, interpretation: select the rows whose fixtures record is equal to 1 . there is only one such row in the table . the round record of this unqiue row is final . Output:
[ "no" ]
task211-0cb8bf4340e64922a4a238c5983c09f4
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; country ; scotland } } ; 2 }, interpretation: select the rows whose country record fuzzily matches to scotland . the number of such rows is 2 . Output:
[ "yes" ]
task211-c5cba84dab4a4887a77c61db68b101f1
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; votes ; 3 } ; candidate 's name } ; michael mackay }, interpretation: select the rows whose time record is greater than 48 . there is only one such row in the table . the athlete record of this unqiue row is naiel santiago d'almeida . Output:
[ "no" ]
task211-e94e7bd923b448758787a7282e9ce630
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { filter_eq { all_rows ; party ; republican } ; result ; retired } } ; eq { hop { filter_eq { filter_eq { all_rows ; party ; republican } ; result ; retired } ; incumbent } ; jack fields } }, interpretation: select the rows whose party record fuzzily matches to republican . among these rows , select the rows whose result record fuzzily matches to retired . there is only one such row in the table . the incumbent record of this unqiue row is jack fields . Output:
[ "yes" ]
task211-5be114ff35e34b7bb3677b2ced1b28a6
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { filter_less_eq { all_rows ; rank ; 5 } ; bronze } ; 4 }, interpretation: for the result records of all rows , most of them fuzzily match to won . Output:
[ "no" ]
task211-9ff3c7b499934b3db5d9b43fb765a960
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { sum { all_rows ; games played } ; 52 }, interpretation: the sum of the games played record of all rows is 52 . Output:
[ "yes" ]
task211-887706162400448291bfaed7c397201a
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_greater { filter_eq { all_rows ; date ; 12 june 1972 } ; crowd ; 20000 } } ; 2 }, interpretation: select the rows whose november record fuzzily matches to 27 . take the points record of this row . select the rows whose november record fuzzily matches to 29 . take the points record of this row . the second record is 2 larger than the first record . Output:
[ "no" ]
task211-148c9ae32acd451a8b59ba9b01d8fbe2
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; easa ( eu ) ; yes } } ; eq { hop { filter_eq { all_rows ; easa ( eu ) ; yes } ; airline } ; premiair } }, interpretation: select the rows whose easa ( eu ) record fuzzily matches to yes . there is only one such row in the table . the airline record of this unqiue row is premiair . Output:
[ "yes" ]
task211-747a8c6778b3423691ccaa185487925f
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_greater { all_rows ; transfer fee ( millions ) ; 26 }, interpretation: for the transfer fee ( millions ) records of all rows , most of them are greater than 26 . Output:
[ "yes" ]
task211-9f98b6e2e6e84f8096f20b5b3fdb14a4
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; candidates } ; incumbent } ; charles r jonas }, interpretation: select the rows whose office record fuzzily matches to state assemblyman . there is only one such row in the table . the elected record of this unqiue row is 1974 . Output:
[ "no" ]
task211-8da1068701f94ad69895da780cbea6a2
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; height ( m ) ; 2 } ; island } ; ailsa craig }, interpretation: select the row whose height ( m ) record of all rows is 2nd maximum . the island record of this row is ailsa craig . Output:
[ "yes" ]
task211-a57f0d9bda44460e89f0d62cd2aefb63
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_greater { filter_eq { all_rows ; played ; 114 } ; points ; 100 }, interpretation: select the rows whose played record is equal to 114 . for the points records of these rows , most of them are greater than 100 . Output:
[ "yes" ]
task211-de0e2eed325a496e985747a76b05b012
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; population } ; 338662 }, interpretation: the average of the drawn record of all rows is 2.55 . Output:
[ "no" ]
task211-d1838d00dcb3465baa6f543b4e397327
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; first premiere ; 2009 } } ; 3 }, interpretation: select the rows whose first premiere record fuzzily matches to 2009 . the number of such rows is 3 . Output:
[ "yes" ]
task211-7a84cce19e0347378d32bfee387c31bd
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; hdtv ; yes } } ; eq { hop { filter_eq { all_rows ; hdtv ; yes } ; television service } ; satisfaction hd } }, interpretation: select the rows whose hdtv record fuzzily matches to yes . there is only one such row in the table . the television service record of this unqiue row is satisfaction hd . Output:
[ "yes" ]
task211-81db3da47d3d4dc2a8292d087cb71d1b
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; name ; amangul mollayeva } ; ties } ; hop { filter_eq { all_rows ; name ; ayna ereshova } ; ties } }, interpretation: select the rows whose nation record is arbitrary . the number of such rows is 9 . Output:
[ "no" ]
task211-f1ff1f4545d94574a364bc2b71ca7df8
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; attendance } ; opponent } ; detroit lions }, interpretation: select the rows whose 1st party record fuzzily matches to liberal . the number of such rows is 4 . Output:
[ "no" ]
task211-394ad048376c42798378f5d4bb51c43b
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; country ; australia } } ; 3 }, interpretation: select the rows whose country record fuzzily matches to australia . the number of such rows is 3 . Output:
[ "yes" ]
task211-b0f331fc73cf4d099256f2a67bca8fea
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; school / club team ; duke } } ; eq { hop { filter_eq { all_rows ; school / club team ; duke } ; player } ; antonio lang } }, interpretation: select the rows whose school / club team record fuzzily matches to duke . there is only one such row in the table . the player record of this unqiue row is antonio lang . Output:
[ "yes" ]
task211-bf6086a4beae4e5391e3d1d48f95bd12
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; format ; vinyl }, interpretation: select the rows whose drawn record is equal to 0 . select the row whose won record of these rows is maximum . the club record of this row is brynmawr rfc . Output:
[ "no" ]
task211-fa1527f804fb4127af347f1cc1cdf4b3
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; high points ; vince carter } } ; 12 }, interpretation: the average of the first downs record of all rows is 19.42 . Output:
[ "no" ]
task211-fbcc1903de6e4b6688d28e4bbaa0d184
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; affiliation ; public }, interpretation: for the affiliation records of all rows , most of them fuzzily match to public . Output:
[ "yes" ]
task211-c59f1fb6991a44a7879edc3edd38230b
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; club ; real oviedo } ; wins } ; hop { filter_eq { all_rows ; club ; ca osasuna } ; wins } }, interpretation: select the rows whose club record fuzzily matches to real oviedo . take the wins record of this row . select the rows whose club record fuzzily matches to ca osasuna . take the wins record of this row . the first record is greater than the second record . Output:
[ "yes" ]
task211-33d9ff9cb6b64637afeef89670b8c7ee
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: less { hop { filter_eq { all_rows ; club ; glais rfc } ; lost } ; hop { filter_eq { all_rows ; club ; tycroes rfc } ; lost } }, interpretation: select the row whose tonnage record of all rows is 2nd maximum . the name record of this row is ocean rover . Output:
[ "no" ]
task211-bde4c6bf622c42d49f372cb0cb66417a
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; category ; outstanding actor } } ; 3 }, interpretation: select the row whose location attendance record of all rows is 2nd maximum . the team record of this row is dallas . Output:
[ "no" ]
task211-3bd08021802a4ba9b320086d874f610d
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmin { all_rows ; evening gown } ; state } ; pennsylvania }, interpretation: select the row whose evening gown record of all rows is minimum . the state record of this row is pennsylvania . Output:
[ "yes" ]
task211-19838f601c1d43598d6f0877e38b1283
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; county ; clark } ; casinos } ; hop { filter_eq { all_rows ; county ; south lake tahoe } ; casinos } }, interpretation: the sum of the races record of all rows is 190 . Output:
[ "no" ]
task211-f8fe8d56eed74d2e8340ce1b8f3ecf7c
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; margin of victory } ; 2 }, interpretation: the average of the margin of victory record of all rows is 2 . Output:
[ "yes" ]
task211-8114e0d79d904aab90d6857c4a8e2adf
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; outcome ; winner }, interpretation: select the rows whose new adherents per year record is greater than 1000000 . among these rows , select the rows whose growth rate record is greater than 1.70 % . there is only one such row in the table . the religion record of this unqiue row is islam . Output:
[ "no" ]
task211-c6fba4beb0da4322a80605389f4832a8
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; tournaments played } ; 16.1 }, interpretation: the average of the tournaments played record of all rows is 16.1 . Output:
[ "yes" ]
task211-cd432b4eca91450e907de9e5a1292166
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; region 2 ; 2004 } } ; 3 }, interpretation: select the rows whose region 2 record fuzzily matches to 2004 . the number of such rows is 3 . Output:
[ "yes" ]
task211-b4a3f00ac8884efdb50e977a2d9d2c14
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; no in season ; 1 / 2 } ; us viewers ( million ) } ; hop { filter_eq { all_rows ; no in season ; 16 } ; us viewers ( million ) } }, interpretation: select the rows whose no in season record fuzzily matches to 1 / 2 . take the us viewers ( million ) record of this row . select the rows whose no in season record fuzzily matches to 16 . take the us viewers ( million ) record of this row . the first record is greater than the second record . Output:
[ "yes" ]
task211-884ae79df4ca4e19a230709e30e03e22
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; population } ; official name } ; quispamsis }, interpretation: select the row whose population record of all rows is maximum . the official name record of this row is quispamsis . Output:
[ "yes" ]
task211-67f3f76215e64a4487baf58b988ddb7f
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_all { all_rows ; team } } ; 18 }, interpretation: select the rows whose team record is arbitrary . the number of such rows is 18 . Output:
[ "yes" ]
task211-5ef9f0a6d55f4b61a0a92514bcce4b9a
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; score ; 1 } ; ground } ; humber college north }, interpretation: select the row whose score record of all rows is 1st maximum . the ground record of this row is humber college north . Output:
[ "yes" ]
task211-6221d064710840fca51f2c788c151692
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; date ; 1982 } } ; 2 }, interpretation: select the rows whose original air date ( uk ) record fuzzily matches to july . there is only one such row in the table . the episode title record of this unqiue row is night games . Output:
[ "no" ]
task211-e0350f6abb814ca7979979e720327a5a
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; position ; rhp } } ; 6 }, interpretation: select the row whose us viewers ( millions ) record of all rows is maximum . the no in series record of this row is 1 . Output:
[ "no" ]
task211-3c64a314e37f43cc88a4698baba9d95a
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_not_eq { all_rows ; field goals ; 0 } } ; eq { hop { filter_not_eq { all_rows ; field goals ; 0 } ; player } ; octy graham } }, interpretation: select the rows whose field goals record is not equal to 0 . there is only one such row in the table . the player record of this unqiue row is octy graham . Output:
[ "yes" ]
task211-99c1dee4949d4fe3a8d5e63e0db0a784
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; points } ; club } ; hércules cf }, interpretation: select the row whose points record of all rows is maximum . the club record of this row is hércules cf . Output:
[ "yes" ]
task211-a680f9d5b12d4c06acea2aa3d7ea0636
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_greater_eq { all_rows ; points ; 20 } } ; 3 }, interpretation: select the rows whose points record is greater than or equal to 20 . the number of such rows is 3 . Output:
[ "yes" ]
task211-7f579ac7618b4797a2e2d636e4d76e73
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; nationality ; canada } } ; 4 }, interpretation: select the rows whose visitor record fuzzily matches to chicago black hawks . the number of such rows is 3 . Output:
[ "no" ]
task211-4c4f45cef3e1413f8b58fbad43e2c35c
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_less { all_rows ; rating ; 3 } } ; eq { hop { filter_less { all_rows ; rating ; 3 } ; ride } ; taxi jam } }, interpretation: select the rows whose rating record is less than 3 . there is only one such row in the table . the ride record of this unqiue row is taxi jam . Output:
[ "yes" ]
task211-7374a0c78ab44c47a507861e3d7a8d06
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; points ; 2 } ; performer } ; honor heffernan }, interpretation: select the rows whose performer 4 record fuzzily matches to john bird . there is only one such row in the table . the episode record of this unqiue row is 5 . Output:
[ "no" ]
task211-1436c26c3c974ece985b9741c2a7740f
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { sum { filter_eq { all_rows ; high assists ; damon stoudamire } ; high assists } ; 95 }, interpretation: select the rows whose high assists record fuzzily matches to damon stoudamire . the sum of the high assists record of these rows is 95 . Output:
[ "yes" ]
task211-6fd083f7723e489f82e68ea7e8784c5b
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_not_eq { all_rows ; % buddhist ; - } } ; eq { hop { filter_not_eq { all_rows ; % buddhist ; - } ; area } ; ladakh } }, interpretation: select the rows whose % buddhist record is not equal to - . there is only one such row in the table . the area record of this unqiue row is ladakh . Output:
[ "yes" ]
task211-9bdcb3150c1b419db459aa80d287c0d9
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; win % ; 2 } ; coach } ; jim larranaga }, interpretation: select the rows whose result record fuzzily matches to selected . there is only one such row in the table . the week record of this unqiue row is wild card . Output:
[ "no" ]
task211-b947c050c30845e1b3e63bc84fc3e274