input
stringlengths
3.83k
4.62k
output
sequencelengths
1
1
id
stringlengths
40
40
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; type ; norteño }, interpretation: select the rows whose location record fuzzily matches to hermanos rodriguez . among these rows , select the rows whose constructor record fuzzily matches to williams - renault . the number of such rows is 2 . Output:
[ "no" ]
task211-d0578bfcf58f4ff1a6b93c6a49b6664a
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; title ; mount rushmore } ; original air date } ; hop { filter_eq { all_rows ; title ; salem } ; original air date } }, interpretation: select the rows whose sydney record fuzzily matches to yes . the number of such rows is 13 . Output:
[ "no" ]
task211-e75c535b10ce41db9f893daa0401fb68
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; crowd } ; venue } ; vfl park }, interpretation: the average of the attendance record of all rows is 50540 . Output:
[ "no" ]
task211-601b5108bd414ee6b744900fcbbeb0cb
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; city ; santa clara , california } } ; eq { hop { filter_eq { all_rows ; city ; santa clara , california } ; athlete } ; mike ryan } }, interpretation: select the rows whose city record fuzzily matches to santa clara , california . there is only one such row in the table . the athlete record of this unqiue row is mike ryan . Output:
[ "yes" ]
task211-95d0feec73294535a2e3ff7bf757e189
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_all { all_rows ; result } } ; 5 }, interpretation: the average of the pick record of all rows is 16.6 . Output:
[ "no" ]
task211-32d7bd7bbbd7468db855c6559504bfe1
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; opponent ; new york giants } } ; eq { hop { filter_eq { all_rows ; opponent ; new york giants } ; week } ; 1 } }, interpretation: select the rows whose surface record fuzzily matches to hard . the number of such rows is 7 . Output:
[ "no" ]
task211-5a3eea8eceaa453fb7866d52aa42ba62
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; margin ; 3 strokes } } ; 2 }, interpretation: select the rows whose margin record fuzzily matches to 3 strokes . the number of such rows is 2 . Output:
[ "yes" ]
task211-fef66ba341214ce092daa502adf8791b
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; label ; parlophone }, interpretation: for the label records of all rows , most of them fuzzily match to parlophone . Output:
[ "yes" ]
task211-155d686e481a4b29aba3844679dfcb8a
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; first elected ; 195 } } ; 2 }, interpretation: select the row whose react record of all rows is minimum . the athlete record of this row is tyler christopher . Output:
[ "no" ]
task211-034e9ec8df644165b3d16e61ece3ae5f
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_all { all_rows ; contestant } } ; 19 }, interpretation: select the row whose attendance record of all rows is maximum . the date record of this row is 1970 - 10 - 04 . Output:
[ "no" ]
task211-eb89ab53f76045f29dcf2ec1ee401c81
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmin { all_rows ; place } ; artist } ; krassimir avramov }, interpretation: select the row whose % of votes khuzestan record of all rows is 2nd maximum . the candidates record of this row is akbar hashemi rafsanjani . Output:
[ "no" ]
task211-60e18b992cd54a889f96659a1a6dbbcd
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_greater { all_rows ; yards ; 1000 } } ; 2 }, interpretation: select the rows whose yards record is greater than 1000 . the number of such rows is 2 . Output:
[ "yes" ]
task211-fccde8c89e75405c9fde3f9d8312a6fc
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { greater { hop { filter_eq { all_rows ; player ; tim jones } ; pick } ; hop { filter_eq { all_rows ; player ; lew kamanu } ; pick } } ; and { eq { hop { filter_eq { all_rows ; player ; tim jones } ; position } ; quarterback } ; eq { hop { filter_eq { all_rows ; player ; lew kamanu } ; position } ; defensive end } } }, interpretation: select the rows whose player record fuzzily matches to tim jones . take the pick record of this row . select the rows whose player record fuzzily matches to lew kamanu . take the pick record of this row . the first record is greater than the second record . the position record of the first row is quarterback . the position record of the second row is defensive end . Output:
[ "yes" ]
task211-5888a9a9e0df4aa49a89ca91be59161d
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; 1st leg ; 0-3 } } ; and { eq { hop { filter_eq { all_rows ; 1st leg ; 0-3 } ; team 1 } ; blooming } ; eq { hop { filter_eq { all_rows ; 1st leg ; 0-3 } ; team 2 } ; river plate } } }, interpretation: select the rows whose 1st leg record fuzzily matches to 0-3 . there is only one such row in the table . the team 1 record of this unqiue row is blooming . the team 2 record of this unqiue row is river plate . Output:
[ "yes" ]
task211-2b8379d4cbe64af8a62825427e3c584b
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; title ; chicken run } ; year } ; hop { filter_eq { all_rows ; title ; creature comforts } ; year } }, interpretation: select the row whose entries record of all rows is maximum . the driver record of this row is rubens barrichello . Output:
[ "no" ]
task211-d53b43c95e0b4c96a4fcc3a9b6581d8e
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; result ; l }, interpretation: for the platform ( s ) records of all rows , most of them fuzzily match to windows . Output:
[ "no" ]
task211-ff1f8acc32c8490eaf2406c9c3bab4f3
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; fixtures ; 1 } } ; eq { hop { filter_eq { all_rows ; fixtures ; 1 } ; round } ; final } }, interpretation: select the rows whose won record is less than or equal to 5 . the sum of the points record of these rows is 75 . Output:
[ "no" ]
task211-64cbceb0b44547479adfd888254a1feb
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { filter_eq { all_rows ; winning team ; texas } ; winning pitcher ; chris young } } ; 2 }, interpretation: select the rows whose date record fuzzily matches to february 2 . take the attendance record of this row . select the rows whose date record fuzzily matches to february 29 . take the attendance record of this row . the first record is greater than the second record . Output:
[ "no" ]
task211-aff06208a74c45c6abb0ef2f041de06a
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; points ; 16 } } ; eq { hop { filter_eq { all_rows ; points ; 16 } ; team } ; ec são caetano } }, interpretation: select the rows whose points record is equal to 16 . there is only one such row in the table . the team record of this unqiue row is ec são caetano . Output:
[ "yes" ]
task211-451c341d7c1547ffa4f01abf672269a9
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; matches } ; goalkeeper } ; chema }, interpretation: select the row whose matches record of all rows is maximum . the goalkeeper record of this row is chema . Output:
[ "yes" ]
task211-47638accde3e4bd8a5803965ff43b336
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; laps ; 39 } } ; eq { hop { filter_eq { all_rows ; laps ; 39 } ; year } ; 1949 } }, interpretation: select the rows whose laps record is equal to 39 . there is only one such row in the table . the year record of this unqiue row is 1949 . Output:
[ "yes" ]
task211-99f36782a06940728637965969093767
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; titles } ; city } ; budapest }, interpretation: select the row whose titles record of all rows is maximum . the city record of this row is budapest . Output:
[ "yes" ]
task211-4ae22ccb576248a7bbfc6d17eee334be
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; high points ; kevin martin }, interpretation: for the high points records of all rows , most of them fuzzily match to kevin martin . Output:
[ "yes" ]
task211-58abcb6e910d4a4192a6757e8a3ef3ae
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; bronze ; 2 } ; nation } ; netherlands }, interpretation: select the row whose bronze record of all rows is 2nd maximum . the nation record of this row is netherlands . Output:
[ "yes" ]
task211-706720899654440e846cbfb4ddec0346
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; opponent ; queensland } ; runs } ; hop { filter_eq { all_rows ; opponent ; victoria } ; runs } }, interpretation: select the rows whose opponent record fuzzily matches to queensland . take the runs record of this row . select the rows whose opponent record fuzzily matches to victoria . take the runs record of this row . the first record is greater than the second record . Output:
[ "yes" ]
task211-b9c4fd9b46614091885deb4993376e5d
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmin { all_rows ; pick ; 3 } ; player } ; dale hackbart }, interpretation: select the row whose founding date record of all rows is 2nd minimum . the organization record of this row is delta epsilon sigma iota . Output:
[ "no" ]
task211-d12884477b8145fcb783cdba02ee4bed
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; 2006 - 10 ; 0.29 } } ; 3 }, interpretation: select the rows whose result record fuzzily matches to drew . the number of such rows is 2 . Output:
[ "no" ]
task211-f8a4f4ee26184326ac80ef462be29ae4
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { max { filter_eq { all_rows ; position ; guard } ; height in ft } ; 6 - 8 }, interpretation: select the rows whose position record fuzzily matches to guard . the maximum height in ft record of these rows is 6 - 8 . Output:
[ "yes" ]
task211-8108f715f1364337b20a82239c28b954
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: all_eq { all_rows ; goals ; 0 }, interpretation: select the rows whose capacity record is less than 10000 . for the 201112 season records of these rows , most of them fuzzily match to divisione b . Output:
[ "no" ]
task211-adda50e8e65f48b483d17b1188be4ade
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { sum { all_rows ; laps } ; 1,268 }, interpretation: the sum of the laps record of all rows is 1,268 . Output:
[ "yes" ]
task211-38b8113eab074f80bea9d81b045b3d1a
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; points ; 2 } ; name } ; angelika buck / erich buck }, interpretation: select the row whose points record of all rows is 2nd maximum . the name record of this row is angelika buck / erich buck . Output:
[ "yes" ]
task211-93bc1ce1a6a54f55b355df03b3b6394d
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; imports } ; country } ; china }, interpretation: select the row whose imports record of all rows is maximum . the country record of this row is china . Output:
[ "yes" ]
task211-a1df8351ed0a47a9a4cd170848539df2
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; location attendance } ; date } ; june 9 }, interpretation: for the result records of all rows , most of them fuzzily match to l . Output:
[ "no" ]
task211-de0f8e07471243a3a10c2ab6fe308e9d
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; score } ; 279 }, interpretation: for the result records of all rows , most of them fuzzily match to not nominated . Output:
[ "no" ]
task211-d7dd249e8e0a48f3b8a6f9fd193018b1
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: less { hop { filter_eq { all_rows ; chassis ; hesketh 308e } ; year } ; hop { filter_eq { all_rows ; chassis ; surtees ts19 } ; year } }, interpretation: for the points records of all rows , most of them are greater than 100 . Output:
[ "no" ]
task211-a7bae0b3fd144543beff0abd0a651b15
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; crowd } ; 17128 }, interpretation: the average of the attendance record of all rows is 43583 . Output:
[ "no" ]
task211-a3cecd84958d42bab49caf504e4ffca1
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { less { hop { filter_eq { all_rows ; name ; historic federal reserve bank } ; floors } ; hop { filter_eq { all_rows ; name ; kansas city power and light building } ; floors } } ; and { eq { hop { filter_eq { all_rows ; name ; historic federal reserve bank } ; floors } ; 16 } ; eq { hop { filter_eq { all_rows ; name ; kansas city power and light building } ; floors } ; 34 } } }, interpretation: select the row whose date record of all rows is maximum . the label record of this row is fantasy records . Output:
[ "no" ]
task211-769584a4d255457f8d1ad44954c2e866
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_greater { filter_eq { all_rows ; score ; 0 } ; attendance ; 4000 } } ; eq { hop { filter_greater { filter_eq { all_rows ; score ; 0 } ; attendance ; 4000 } ; home team } ; milton keynes dons } }, interpretation: select the rows whose score record fuzzily matches to 0 . among these rows , select the rows whose attendance record is greater than 4000 . there is only one such row in the table . the home team record of this unqiue row is milton keynes dons . Output:
[ "yes" ]
task211-4ca2c7f4a1624049a9eeee9749aaa775
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmin { filter_eq { all_rows ; builder ; general dynamics , quincy } ; commissioned - decommissioned ; 1 } ; ship } ; wichita }, interpretation: select the rows whose builder record fuzzily matches to general dynamics , quincy . select the row whose commissioned - decommissioned record of these rows is 1st minimum . the ship record of this row is wichita . Output:
[ "yes" ]
task211-0aea4ce4063c4d98940576ebf82413f2
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; played ; 9 }, interpretation: for the played records of all rows , most of them are equal to 9 . Output:
[ "yes" ]
task211-de25e01b3f7842c898a4f3197a5556ca
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; owner ; university } } ; eq { hop { filter_eq { all_rows ; owner ; university } ; frequency } ; fm 101.7 } }, interpretation: select the rows whose college record fuzzily matches to detroit mercy . there is only one such row in the table . the player record of this unqiue row is joe kopicki . Output:
[ "no" ]
task211-7c582402bade4f82afbad844f6ca387b
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: less { hop { filter_eq { all_rows ; format ; christian } ; frequency } ; hop { filter_eq { all_rows ; format ; public broadcasting } ; frequency } }, interpretation: select the rows whose format record fuzzily matches to christian . take the frequency record of this row . select the rows whose format record fuzzily matches to public broadcasting . take the frequency record of this row . the first record is less than the second record . Output:
[ "yes" ]
task211-6aa7f5ab8a5f4214b8f8bd9a80bd0f97
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_greater { all_rows ; money ; 100000 } } ; eq { hop { filter_greater { all_rows ; money ; 100000 } ; player } ; ben crenshaw } }, interpretation: the average of the attendance record of all rows is 20240 . Output:
[ "no" ]
task211-291253ee597a4992845378e2921811e2
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmin { all_rows ; pick } ; pick } ; 5 }, interpretation: for the producer ( s ) records of all rows , most of them fuzzily match to mike e clark . Output:
[ "no" ]
task211-ce34a52e9ea64ee3955dfb6c83339431
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; location ; seoul , south korea } } ; eq { hop { filter_eq { all_rows ; location ; seoul , south korea } ; event } ; hero 's 2005 in seoul } }, interpretation: select the rows whose location record fuzzily matches to seoul , south korea . there is only one such row in the table . the event record of this unqiue row is hero 's 2005 in seoul . Output:
[ "yes" ]
task211-6bd07e1f2af84676b6349c281be93dbe
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { eq { hop { nth_argmin { filter_eq { all_rows ; date ; october } ; week ; 3 } ; opponent } ; san francisco 49ers } ; eq { hop { nth_argmin { filter_eq { all_rows ; date ; october } ; week ; 3 } ; result } ; w 31 - 17 } }, interpretation: select the rows whose candidates record fuzzily matches to david bard . the number of such rows is 2 . Output:
[ "no" ]
task211-8cafbe527f874b9aad8539d772047faf
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; country ; india } } ; 4 }, interpretation: select the rows whose country record fuzzily matches to india . the number of such rows is 4 . Output:
[ "yes" ]
task211-dc90cd878da842e69da388381fd10020
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; steals ; 3 tied } } ; 4 }, interpretation: select the rows whose gold record is greater than 200 . for the total records of these rows , all of them are greater than 1000 . Output:
[ "no" ]
task211-e03aef5b34eb47468453383bbb21de10
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; days ; 99 }, interpretation: select the rows whose competition record fuzzily matches to 1978 merdeka cup . take the score record of this row . select the rows whose competition record fuzzily matches to 1986 fifa world cup . take the score record of this row . the first record fuzzily matches to the second record . Output:
[ "no" ]
task211-a2f38c304b6b4598b04b3b6bf7fe69d3
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: all_eq { all_rows ; date ; march }, interpretation: for the cores records of all rows , all of them are equal to 4 . Output:
[ "no" ]
task211-013b263a1b374abca3d5c6261741c60b
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { filter_greater_eq { all_rows ; points ; 55 } ; opponent ; new york rangers } } ; 2 }, interpretation: for the founded records of all rows , most of them are less than 1900 . Output:
[ "no" ]
task211-9cd09ea8309148beb6de99937360d96c
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: all_eq { all_rows ; result ; re-elected }, interpretation: for the dominant religion ( 2002 ) records of all rows , most of them fuzzily match to orthodox christianity . Output:
[ "no" ]
task211-f5eaab8bf2da4c53b713da7f8d55f54a
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; time } ; 3:29 }, interpretation: select the row whose round record of all rows is 3rd minimum . the player record of this row is glen irwin . Output:
[ "no" ]
task211-afc85e1e526d49349022ea3b7a9166d8
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_all { all_rows ; no } } ; 11 }, interpretation: select the rows whose no record is arbitrary . the number of such rows is 11 . Output:
[ "yes" ]
task211-5b0169cfb12643d6b73d98b9b009de12
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; enrollment ; 1 } ; school } ; carson }, interpretation: select the row whose enrollment record of all rows is 1st maximum . the school record of this row is carson . Output:
[ "yes" ]
task211-2c6acf855690448eb7951a9f5c00f66b
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; date ; october 31 } ; score } ; hop { filter_eq { all_rows ; date ; october 29 } ; score } }, interpretation: select the rows whose name record fuzzily matches to shareese woods . take the react record of this row . select the rows whose name record fuzzily matches to natalya nazarova . take the react record of this row . the first record is less than the second record . Output:
[ "no" ]
task211-b91edf616d714f3d9119ada32e27838c
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; enrollment ( 2010 ) ; 2 } ; school } ; heritage }, interpretation: select the rows whose date ( s ) record fuzzily matches to september 2006 . the number of such rows is 2 . Output:
[ "no" ]
task211-f5e6abce292c4c15b93b547c812ee5be
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_less { filter_greater { all_rows ; ends won ; 50 } ; ends lost ; 50 } } ; 2 }, interpretation: select the rows whose ends won record is greater than 50 . among these rows , select the rows whose ends lost record is less than 50 . the number of such rows is 2 . Output:
[ "yes" ]
task211-836dba63f2654679a1429c80964bfeb0
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { filter_eq { all_rows ; college ; north carolina } ; height } ; player } ; jeff lebo }, interpretation: select the row whose asts record of all rows is maximum . the player record of this row is gail goodrich . Output:
[ "no" ]
task211-9cdc7b1bc932411aa98ec7e5f4e3df0e
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: only { filter_eq { all_rows ; city ; budapest , hungary } }, interpretation: select the rows whose home team record fuzzily matches to manchester city . take the score record of this row . select the rows whose home team record fuzzily matches to arsenal . take the score record of this row . the first record is greater than the second record . Output:
[ "no" ]
task211-3b0b54f64f8b460b88067ef8bb6083c2
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; club ; travnik } ; number of seasons in premier league a } ; hop { filter_eq { all_rows ; club ; zvijezda } ; number of seasons in premier league a } }, interpretation: select the rows whose fog ( days / year ) record is greater than 30 . the number of such rows is 4 . Output:
[ "no" ]
task211-9419ec402249428d82d75fa2fa416974
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; surface ; clay } } ; eq { hop { filter_eq { all_rows ; surface ; clay } ; tournament } ; valencia , spain } }, interpretation: select the rows whose surface record fuzzily matches to clay . there is only one such row in the table . the tournament record of this unqiue row is valencia , spain . Output:
[ "yes" ]
task211-8465d2d4221143ccbf8249094320a84f
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: all_eq { all_rows ; status ; running }, interpretation: for the status records of all rows , all of them fuzzily match to running . Output:
[ "yes" ]
task211-100819c5a5244ce78412e5aaec85e0c2
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; date ; february } } ; 4 }, interpretation: select the rows whose date record fuzzily matches to february . the number of such rows is 4 . Output:
[ "yes" ]
task211-ec9b01e0857747c2b5fd53fe54574b5b
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; expected year of completion ; 2006 } } ; 3 }, interpretation: select the rows whose expected year of completion record is equal to 2006 . the number of such rows is 3 . Output:
[ "yes" ]
task211-1a42744e4d7f4e1b84fc11128c68905f
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; chassis ; dallara }, interpretation: for the weight records of all rows , most of them are greater than or equal to 200 . Output:
[ "no" ]
task211-2f4eb5c334b44fa98487329eaa83f008
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; to par ; +1 } } ; 2 }, interpretation: select the rows whose to par record fuzzily matches to +1 . the number of such rows is 2 . Output:
[ "yes" ]
task211-77947018c7404cbb843e51ab0c498fbe
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; time ; 2 } ; wrestler } ; chris masters }, interpretation: select the row whose time record of all rows is 2nd maximum . the wrestler record of this row is chris masters . Output:
[ "yes" ]
task211-588d5885b2794fcc9c82f34a537fcdf8
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; 2nd venue ; mexico city } } ; eq { hop { filter_eq { all_rows ; 2nd venue ; mexico city } ; year } ; 2007 } }, interpretation: select the rows whose position record fuzzily matches to defensive back . the minimum overall record of these rows is 22 . Output:
[ "no" ]
task211-b604d3caa78c48928058fa4bf3ddd53d
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmin { all_rows ; total trade ; 1 } ; country } ; iran }, interpretation: select the row whose total trade record of all rows is 1st minimum . the country record of this row is iran . Output:
[ "yes" ]
task211-450a7ae9582843a8966de985c778fa71
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; extra points } ; player } ; merv pregulman }, interpretation: select the row whose extra points record of all rows is maximum . the player record of this row is merv pregulman . Output:
[ "yes" ]
task211-ee9ea0a5b07c4dec822958756e1483b4
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; wins } ; 2.2 }, interpretation: select the rows whose first episode record fuzzily matches to golden parachute . the number of such rows is 6 . Output:
[ "no" ]
task211-73fe4d650e354fb0b25d9da2b88454e8
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmin { all_rows ; position in 1992 } ; team } ; dinamo minsk }, interpretation: select the row whose position in 1992 record of all rows is minimum . the team record of this row is dinamo minsk . Output:
[ "yes" ]
task211-e84256fd3a964a0f8d2f4e8a0386ed06
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; frequency ; am } } ; eq { hop { filter_eq { all_rows ; frequency ; am } ; branding } ; am 1150 } }, interpretation: for the s host records of all rows , all of them fuzzily match to bob costas and tom hammond . Output:
[ "no" ]
task211-234b0310488249b0ad62c05d180d4343
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: only { filter_eq { all_rows ; recorded ; 1980 } }, interpretation: select the rows whose recorded record fuzzily matches to 1980 . there is only one such row in the table . Output:
[ "yes" ]
task211-43bf57ca6d064d5fa472a22b23637f9a
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; country ; united kingdom }, interpretation: for the country records of all rows , most of them fuzzily match to united kingdom . Output:
[ "yes" ]
task211-52de97e40af943809f51bdf3026cebf6
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { filter_eq { all_rows ; venue ; away } ; attendance } ; 1,692 }, interpretation: select the rows whose venue record fuzzily matches to away . the average of the attendance record of these rows is 1,692 . Output:
[ "yes" ]
task211-57628eba890543aba84907d07bb521be
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; pole ; 0 } } ; 4 }, interpretation: select the rows whose pole record is equal to 0 . the number of such rows is 4 . Output:
[ "yes" ]
task211-bdf1fde799484f0a994ed89419c46e27
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { only { filter_eq { all_rows ; team ( league ) ; lake superior state university ( ncaa ) } } ; eq { hop { filter_eq { all_rows ; team ( league ) ; lake superior state university ( ncaa ) } ; player } ; paul constantin } }, interpretation: select the rows whose team ( league ) record fuzzily matches to lake superior state university ( ncaa ) . there is only one such row in the table . the player record of this unqiue row is paul constantin . Output:
[ "yes" ]
task211-02083fe244424fa1baa93f60051baba9
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; high points ; r pierce }, interpretation: select the rows whose title record fuzzily matches to face / off . take the year record of this row . select the rows whose title record fuzzily matches to antz . take the year record of this row . the first record is less than the second record . Output:
[ "no" ]
task211-f9193c8a538c4320ac03fefa144d5c8d
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; registered voters ; 3 } ; city } ; encinitas }, interpretation: select the row whose registered voters record of all rows is 3rd maximum . the city record of this row is encinitas . Output:
[ "yes" ]
task211-55e6c213a0484eae9a9a3159a522e7f3
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; score } ; 210.6 }, interpretation: the average of the score record of all rows is 210.6 . Output:
[ "yes" ]
task211-265004979ff143de82f05eb2734db360
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: and { greater { hop { filter_eq { all_rows ; away team ; richmond } ; away team score } ; hop { filter_eq { all_rows ; away team ; hawthorn } ; away team score } } ; and { eq { hop { filter_eq { all_rows ; away team ; richmond } ; away team score } ; 7.9 ( 51 ) } ; eq { hop { filter_eq { all_rows ; away team ; hawthorn } ; away team score } ; 7.7 ( 49 ) } } }, interpretation: select the rows whose away team record fuzzily matches to richmond . take the away team score record of this row . select the rows whose away team record fuzzily matches to hawthorn . take the away team score record of this row . the first record is greater than the second record . the away team score record of the first row is 7.9 ( 51 ) . the away team score record of the second row is 7.7 ( 49 ) . Output:
[ "yes" ]
task211-5771ca21e537461fb842e7a8e93bafe6
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; result ; l }, interpretation: select the rows whose track record fuzzily matches to mono 45upm - romance adieu ( weltklang remix ) . take the year record of this row . select the rows whose track record fuzzily matches to kinder aus asbest - hey engel ( weltklang remix ) . take the year record of this row . the first record is less than the second record . Output:
[ "no" ]
task211-ad33410731fd4d05a1fbae539363b592
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; college / junior / club team ; calgary centennials } } ; 2 }, interpretation: select the rows whose college / junior / club team record fuzzily matches to calgary centennials . the number of such rows is 2 . Output:
[ "yes" ]
task211-1403834932d74bce85575811932c0db2
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: greater { hop { filter_eq { all_rows ; episode ; episode 4 } ; viewers ( millions ) } ; hop { filter_eq { all_rows ; episode ; episode 2 } ; viewers ( millions ) } }, interpretation: select the rows whose episode record fuzzily matches to episode 4 . take the viewers ( millions ) record of this row . select the rows whose episode record fuzzily matches to episode 2 . take the viewers ( millions ) record of this row . the first record is greater than the second record . Output:
[ "yes" ]
task211-4e4bb8a29cf149f8ab39888ee000a551
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { nth_argmax { all_rows ; no of installments ; 2 } ; book series } ; the hardy boys }, interpretation: for the crowd records of all rows , most of them are greater than 10000 . Output:
[ "no" ]
task211-b93759d90f0243ddb6c6cb45b5acb4ef
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; high assists ; g payton }, interpretation: select the rows whose score record fuzzily matches to 4:1 . there is only one such row in the table . the team 1 record of this unqiue row is muangthong united . the team 2 record of this unqiue row is persiwa wamena . Output:
[ "no" ]
task211-59c6db736c4b4921b5f674962657c5b9
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; enrollment } ; 538 }, interpretation: the average of the enrollment record of all rows is 538 . Output:
[ "yes" ]
task211-73df362269c0438ba0ac3bcc16f8939f
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; format ; limited edition } } ; 5 }, interpretation: for the result records of all rows , most of them fuzzily match to nominated . Output:
[ "no" ]
task211-c3157f66d66b45a9a7314ba921eb7342
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: most_eq { all_rows ; outcome ; runner-up }, interpretation: for the outcome records of all rows , most of them fuzzily match to runner-up . Output:
[ "yes" ]
task211-febf2e753a934e0c8251d23acfe86002
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; 2008 } ; 8133819 }, interpretation: the average of the 2008 record of all rows is 8133819 . Output:
[ "yes" ]
task211-f1423d89284948dba30887993b034baa
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; gold ; - } } ; 2 }, interpretation: select the rows whose gold record is equal to - . the number of such rows is 2 . Output:
[ "yes" ]
task211-57e47a518bf74c1dbb458ca0281bfb8e
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { hop { argmax { all_rows ; production ( mt ) } ; commodity } ; wheat }, interpretation: the 3rd maximum winnings record of all rows is 160261 . Output:
[ "no" ]
task211-6bb7fa36096d407795b1ac2362ce0831
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { diff { hop { filter_eq { all_rows ; tournament ; us open } ; top - 10 } ; hop { filter_eq { all_rows ; tournament ; the open championship } ; top - 10 } } ; 1 }, interpretation: select the rows whose tournament record fuzzily matches to us open . take the top - 10 record of this row . select the rows whose tournament record fuzzily matches to the open championship . take the top - 10 record of this row . the first record is 1 larger than the second record . Output:
[ "yes" ]
task211-7aaa679d7a0d463c8fe136c233ff714d
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; pick } ; 16.6 }, interpretation: the average of the pick record of all rows is 16.6 . Output:
[ "yes" ]
task211-1406210226fa47f7966f01f93c57cf23
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; leading scorer ; tony parker } } ; 4 }, interpretation: select the rows whose leading scorer record fuzzily matches to tony parker . the number of such rows is 4 . Output:
[ "yes" ]
task211-caf50db594eb4e63a862d5aee89893b4
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: round_eq { avg { all_rows ; us viewers ( millions ) } ; 17.89 }, interpretation: the average of the us viewers ( millions ) record of all rows is 17.89 . Output:
[ "yes" ]
task211-c35fdc40358b40d0924557911e58c739
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: eq { count { filter_eq { all_rows ; relationship ; mac taylor } } ; 2 }, interpretation: select the rows whose rank record is less than or equal to 10 . the number of such rows is 8 . Output:
[ "no" ]
task211-9febaf1ff656480d9aa74479476f3e68
Definition: In this task, you are given commands (in terms of logical operations) and natural interpretation of the given command to select relevant rows from the given table. Your job is to generate a label "yes" if the interpretation is appropriate for the command, otherwise generate label "no". Here are the definitions of logical operators: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: yes Positive Example 2 - Input: Command: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }, interpretation: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: yes Negative Example 1 - Input: Command: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }, interpretation: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: no Negative Example 2 - Input: Command: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }, interpretation: select the rows whose name of county record fuzzily matches to veszprém. take the area (km square) record of this row. select the rows whose name of county record fuzzily matches to tolna. Output: yes Now complete the following example - Input: Command: less { hop { filter_eq { all_rows ; player ; tom laidlaw } ; round } ; hop { filter_eq { all_rows ; player ; chris mclaughlin } ; round } }, interpretation: select the rows whose player record fuzzily matches to tom laidlaw . take the round record of this row . select the rows whose player record fuzzily matches to chris mclaughlin . take the round record of this row . the first record is less than the second record . Output:
[ "yes" ]
task211-9d3ad7a9baa542f3b82e64171e55c884