input
stringlengths
3.23k
13.3k
output
sequencelengths
1
3
id
stringlengths
40
40
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: While the plan generation stage is guaranteed to be faithful to the input, the translation process from plans to text is based on a neural seq2seq model and may suffer from known issues with such models: hallucinating facts that do not exist in the input, repeating facts, or dropping facts. While the clear mapping between plans and text helps to reduce these issues greatly, the system in BIBREF0 still has 2% errors of these kinds. Recent work in neural text generation and summarization attempt to address these issues by trying to map the textual outputs back to structured predicates, and comparing these predicates to the input data. Output:
[ "What is the effectiveness plan generation?" ]
task461-1819a140d09346b4b830cc968257eaf0
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Women represent 33.16% of the speakers, confirming the figures given by the GMMP report BIBREF0. Output:
[ "How big is imbalance in analyzed corpora?" ]
task461-ecb1e1b0aeb243258f09821fc8fe9056
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Task: given a caption and a paired image (if used), the goal is to label every token in a caption in BIO scheme (B: beginning, I: inside, O: outside) BIBREF27 . Output:
[ "Can named entities in SnapCaptions be discontigious?" ]
task461-686662449e674e168215807ad95e2f28
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Task 1: Quora Duplicate Question Pair Detection Task 2: Ranking questions in Bing's People Also Ask Output:
[ "On which tasks do they test their conflict method?" ]
task461-99c0fc4325884430b5244f5aeb00c9a0
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Experimental Protocol ::: Datasets ::: Training Dataset (i) TTS System dataset: We trained our TTS system with a mixture of neutral and newscaster style speech. For a total of 24 hours of training data, split in 20 hours of neutral (22000 utterances) and 4 hours of newscaster styled speech (3000 utterances). (ii) Embedding selection dataset: As the evaluation was carried out only on the newscaster speaking style, we restrict our linguistic search space to the utterances associated to the newscaster style: 3000 sentences. Experimental Protocol ::: Datasets ::: Evaluation Dataset The systems were evaluated on two datasets: (i) Common Prosody Errors (CPE): The dataset on which the baseline Prostron model fails to generate appropriate prosody. This dataset consists of complex utterances like compound nouns (22%), “or" questions (9%), “wh" questions (18%). This set is further enhanced by sourcing complex utterances (51%) from BIBREF24. (ii) LFR: As demonstrated in BIBREF25, evaluating sentences in isolation does not suffice if we want to evaluate the quality of long-form speech. Thus, for evaluations on LFR we curated a dataset of news samples. The news style sentences were concatenated into full news stories, to capture the overall experience of our intended use case. Output:
[ "What dataset is used for train/test of this method?" ]
task461-39b653b13f6f4439b23569c70e483b4d
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Although such an approach has been used in different studies during feature engineering, the selection of word vectors and the number of clusters remain a trial-end-error procedure. Output:
[ "Which other hyperparameters, other than number of clusters are typically evaluated in this type of research?" ]
task461-5dc0f1ac2f9d47f1ab9ce0bd61a1519f
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: According to the above analysis According to the above analysis, we proposed a weighted version of DIRL to address the problem caused by the shift of $\rm {P}(\rm {Y})$ to DIRL. The key idea of this framework is to first align $\rm {P}(\rm {Y})$ across domains before performing domain-invariant learning, and then take account the shift of $\rm {P}(\rm {Y})$ in the label prediction procedure. Specifically, it introduces a class weight $\mathbf {w}$ to weigh source domain examples by class. Based on the weighted source domain, the domain shift problem is resolved in two steps. The motivation behind this practice is to adjust data distribution of the source domain or the target domain to alleviate the shift of $\rm {P}(\rm {Y})$ across domains before applying DIRL. Consider that we only have labels of source domain data, we choose to adjust data distribution of the source domain. To achieve this purpose, we introduce a trainable class weight $\mathbf {w}$ to reweigh source domain examples by class when performing DIRL, with $\mathbf {w}_i > 0$. Specifically, we hope that: and we denote $\mathbf {w}^*$ the value of $\mathbf {w}$ that makes this equation hold. We shall see that when $\mathbf {w}=\mathbf {w}^*$, DIRL is to align $\rm {P}_S(G(\rm {X})|\rm {Y})$ with $\rm {P}_T(G(\rm {X})|\rm {Y})$ without the shift of $\rm {P}(\rm {Y})$. According to our analysis, we know that due to the shift of $\rm {P}(\rm {Y})$, there is a conflict between the training objects of the supervised learning $\mathcal {L}_{sup}$ and the domain-invariant learning $\mathcal {L}_{inv}$. And the conflict degree will decrease as $\rm {P}_S(\rm {Y})$ getting close to $\rm {P}_T(\rm {Y})$. Therefore, during model training, $\mathbf {w}$ is expected to be optimized toward $\mathbf {w}^*$ since it will make $\rm {P}(\rm {Y})$ of the weighted source domain close to $\rm {P}_T(\rm {Y})$, so as to solve the conflict. Output:
[ "How are different domains weighted in WDIRL?" ]
task461-6857d4e86f09426680ab24c29e745ef3
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Three incremental levels of document preprocessing are experimented with: raw text, text cleaning through document logical structure detection, and removal of keyphrase sparse sections of the document. In doing so, we present the first consistent comparison of different keyphrase extraction models and study their robustness over noisy text. Output:
[ "what levels of document preprocessing are looked at?" ]
task461-9cd46422403a457d93361cc4ed232812
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: BIBREF6 introduce the KG-A2C, which uses a knowledge graph based state-representation to aid in the section of actions in a combinatorially-sized action-space—specifically they use the knowledge graph to constrain the kinds of entities that can be filled in the blanks in the template action-space. They test their approach on Zork1, showing the combination of the knowledge graph and template action selection resulted in improvements over existing methods. They note that their approach reaches a score of 40 which corresponds to a bottleneck in Zork1 where the player is eaten by a “grue” (resulting in negative reward) if the player has not first lit a lamp. Output:
[ "What are the baselines?" ]
task461-e641f0eea7624899a7cdf986105f4d26
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Shared Self-attention Layers As our model providing two outputs from one input, there is a bifurcation setting for how much shared part should be determined. Both constituent and dependency parsers share token representation and 8 self-attention layers at most. Assuming that either parser always takes input information flow through 8 self-attention layers as shown in Figure FIGREF4, then the number of shared self-attention layers varying from 0 to 8 may reflect the shared degree in the model. When the number is set to 0, it indicates only token representation is shared for both parsers trained for the joint loss through each own 8 self-attention layers. When the number is set to less than 8, for example, 6, then it means that both parsers first shared 6 layers from token representation then have individual 2 self-attention layers. For different numbers of shared layers, the results are in Table TABREF14. We respectively disable the constituent and the dependency parser to obtain a separate learning setting for both parsers in our model. The comparison in Table TABREF14 indicates that even though without any shared self-attention layers, joint training of our model may significantly outperform separate learning mode. At last, the best performance is still obtained from sharing full 8 self-attention layers. Output:
[ "How are different network components evaluated?" ]
task461-13727fa8285f48f991490e8708a12402
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Data was collected from a 10% uniform sample of Twitter posts made during 2013, specifically the Gardenhose API. Control documents were also selected. These documents did not contain any of `caused', `causing', or `causes', nor any bidirectional words, and are further matched temporally to obtain the same number of control documents as causal documents in each fifteen-minute period during 2013. Control documents were otherwise selected randomly; causal synonyms may be present. Output:
[ "What is the source of the \"control\" corpus?", "how do they collect the comparable corpus?" ]
task461-df54517a0eeb426799954160ebcb21e0
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: The second Turkish dataset is the Twitter corpus which is formed of tweets about Turkish mobile network operators. Those tweets are mostly much noisier and shorter compared to the reviews in the movie corpus. In total, there are 1,716 tweets. 973 of them are negative and 743 of them are positive. These tweets are manually annotated by two humans, where the labels are either positive or negative. Output:
[ "What details are given about the Twitter dataset?" ]
task461-a0e9c0b5aa54451b961ac09c7a1f638c
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Our goal is to decouple the content selection from the decoder by introducing an extra content selector. The most intuitive way is training the content selector to target some heuristically extracted contents. For example, we can train the selector to select overlapped words between the source and target BIBREF6 , sentences with higher tf-idf scores BIBREF20 or identified image objects that appear in the caption BIBREF21 . INLINEFORM0 as Latent Variable: Another way is to treat INLINEFORM1 as a latent variable and co-train selector and generator by maximizing the marginal data likelihood. By doing so, the selector has the potential to automatically explore optimal selecting strategies best fit for the corresponding generator component. Reinforce-select (RS) BIBREF24 , BIBREF9 utilizes reinforcement learning to approximate the marginal likelihood. We propose Variational Reinforce-Select (VRS) which applies variational inference BIBREF10 for variance reduction. Output:
[ "How is the model trained to do only content selection?" ]
task461-2c589030862e46da8c861b3151149717
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We also consider the following baselines. BOW-Tags represents locations using a bag-of-words representation, using the same tag weighting as the embedding model. BOW-KL(Tags) uses the same representation but after term selection, using the same KL-based method as the embedding model. BOW-All combines the bag-of-words representation with the structured information, encoded as proposed in BIBREF7 . GloVe uses the objective from the original GloVe model for learning location vectors, i.e. this variant differs from EGEL-Tags in that instead of INLINEFORM1 we use the number of co-occurrences of tag INLINEFORM2 near location INLINEFORM3 , measured as INLINEFORM4 . Output:
[ "what are the existing approaches?" ]
task461-02ee092615704c2fa3e63d19fd8cdd03
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Three different datasets have been used to train our models: the Toronto book corpus, Wikipedia sentences and tweets. Our Sent2Vec models also on average outperform or are at par with the C-PHRASE model, despite significantly lagging behind on the STS 2014 WordNet and News subtasks. This observation can be attributed to the fact that a big chunk of the data that the C-PHRASE model is trained on comes from English Wikipedia, helping it to perform well on datasets involving definition and news items. Output:
[ "Do they report results only on English data?" ]
task461-59e54b89812840868614935a7804b769
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Training Dataset UM Inventory BIBREF5 is a public dataset created by researchers from the University of Minnesota, containing about 37,500 training samples with 75 abbreviation terms. Existing work reports abbreviation disambiguation results on 50 abbreviation terms BIBREF6, BIBREF5, BIBREF17. However, after carefully reviewing this dataset, we found that it contains many samples where medical professionals disagree: wrong samples and uncategorized samples. Due to these mistakes and flaws of this dataset, we removed the erroneous samples and eventually selected 30 abbreviation terms as our training dataset that can be made public. Output:
[ "What existing dataset is re-examined and corrected for training?" ]
task461-7e5a6f422eb04842a43d354fcd22e58b
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Akkadian is divided into six dialects in the dataset: Old Babylonian, Middle Babylonian peripheral, Standard Babylonian, Neo Babylonian, Late Babylonian, and Neo Assyrian BIBREF14 . Output:
[ "Which language is divided into six dialects in the task mentioned in the paper?" ]
task461-3a23604da1ab4619a2f80fd552b919d1
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Pre-trained English NER model We construct the English NER system following BIBREF7 . This system uses a bidirectional LSTM as a character-level language model to take context information for word embedding generation. For pre-trained English NER system, we use the default NER model of Flair. Output:
[ "Which pre-trained English NER model do they use?" ]
task461-689dcaa7d8e245bba7008596d89c187f
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We conduct our experiments on $\sim $ 8.7M annotated anonymised user utterances. They are annotated and derived from requests across 23 domains. Output:
[ "Over which datasets/corpora is this work evaluated?" ]
task461-c2f779322952418aa8840fa229401b16
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We end up eliminating 5.86% of total characters, and end up with 45,821 characters and 12,815 unique HLA, resulting in 945,519 total character-HLA pairs. We end up eliminating 5.86% of total characters, and end up with 45,821 characters and 12,815 unique HLA, resulting in 945,519 total character-HLA pairs. Output:
[ "How many different characters were in dataset?" ]
task461-e01ef7d162354c7fb9da8b03c2134329
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We recruited 100 crowdworkers on Amazon Mechanical Turk (AMT) and measured completion times and accuracies for typing randomly sampled sentences from the Yelp corpus. Output:
[ "What user variations have been tested?", "How many participants were trying this communication game?" ]
task461-3d85cbd445bc40c7bf2eb70b347dd265
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We evaluate the proposed models on three conversationet dataset such as MojiTalk BIBREF16, PersonaChat BIBREF11, Empathetic-Dialogues BIBREF26. Output:
[ "What three conversational datasets are used for evaluation?" ]
task461-0da805e0b3764491a88de4ca40441728
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We evaluate our model on both English and Chinese segmentation Output:
[ "What language do they look at?" ]
task461-a94e93abdcae442784266ad2c7b88572
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We use two datasets for experiments (Table TABREF29 ): (a) STAN INLINEFORM0 , created by BIBREF10 BansalBV15, which consists of 1,108 unique English hashtags from 1,268 randomly selected tweets in the Stanford Sentiment Analysis Dataset BIBREF36 along with their crowdsourced segmentations and our additional corrections; and (b) STAN INLINEFORM1 , our new expert curated dataset, which includes all 12,594 unique English hashtags and their associated tweets from the same Stanford dataset. Output:
[ "Do the hashtag and SemEval datasets contain only English data?", "How is the dataset of hashtags sourced?" ]
task461-f0a40598963b4b5caf689e8b43cf9125
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Single-Turn: This dataset consists of single-turn instances of statements and responses from the MiM chatbot developed at Constellation AI BIBREF5. Multi-Turn: This dataset is taken from the ConvAI2 challenge and consists of various types of dialogue that have been generated by human-computer conversations. Output:
[ "what datasets did they use?" ]
task461-4546f0b4bcf14b70819e946156a1dd6c
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Bi-LSTM BIBREF11 is a baseline for neural models. Bi-LSTM$_{+ att. + LEX + POS}$ BIBREF10 is a multi-task learning framework for WSD, POS tagging, and LEX with self-attention mechanism, which converts WSD to a sequence learning task. GAS$_{ext}$ BIBREF12 is a variant of GAS which is a gloss-augmented variant of the memory network by extending gloss knowledge. CAN$^s$ and HCAN BIBREF13 are sentence-level and hierarchical co-attention neural network models which leverage gloss knowledge. Output:
[ "How does the neural network architecture accomodate an unknown amount of senses per word?" ]
task461-5e751e28d8534a3196a0c380d8a0f717
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Our model differs by learning the subword vectors and resulting representation jointly as weighted factorization of a word-context co-occurrence matrix is performed. Output:
[ "Which matrix factorization methods do they use?" ]
task461-c05843d1739f41d6abb6f78aab55d4d6
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We published a survey on Reddit asking Danish speaking users to suggest offensive, sexist, and racist terms for a lexicon. Language and user behaviour varies between platforms, so the goal is to capture platform-specific terms. This gave 113 offensive and hateful terms which were used to find offensive comments. The remainder of comments in the corpus were shuffled and a subset of this corpus was then used to fill the remainder of the final dataset. The resulting dataset contains 3600 user-generated comments, 800 from Ekstra Bladet on Facebook, 1400 from r/DANMAG and 1400 from r/Denmark. Output:
[ "How large was the dataset of Danish comments?" ]
task461-6361835c9e654a938c56dea0d77c0a1d
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We initialized the embeddings of these words with 300 dimensional Glove embeddings BIBREF31 . Output:
[ "Do they use pretrained embeddings?" ]
task461-05e7dfb6a71844e79b886d50340c7574
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Overall, MMM has achieved a new SOTA, i.e., test accuracy of 88.9%, which exceeds the previous best by 16.9%. Output:
[ "How big are improvements of MMM over state of the art?" ]
task461-c70c72a9d3f6417ebfc9ba75ba1deeaa
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: This working note presents RNN and LSTM based embedding system for social media health text classification. Though the data sets of task 1 and task 2 are limited, this paper proposes RNN and LSTM based embedding method. Output:
[ "What type of RNN is used?" ]
task461-f0f1b7c5ec594dc5b0794b4eb6d4eb05
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Hence, in this paper, we propose a cascaded multimodal STT with two components: (i) an English ASR system trained on the How2 dataset and (ii) a transformer-based BIBREF0 visually grounded MMT system. Output:
[ "What dataset was used in this work?" ]
task461-c7b345bf067a4b969175c9ddf308ad13
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: GPT-2 achieves the highest score and the $n$-gram the lowest. Transformer-XL and the LSTM LM perform in the middle, and at roughly the same level as each other. We report the 12-category accuracy results for all models and human evaluation in Table TABREF14. Output:
[ "What is the performance of the models on the tasks?" ]
task461-34ff02329b764b0a83b7f829ec4ad1d5
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: In this work, we propose to augment the integer linear programming (ILP)-based summarization framework with a low-rank approximation of the co-occurrence matrix, and further evaluate the approach on a broad range of datasets exhibiting high lexical diversity. Output:
[ "What do they constrain using integer linear programming?" ]
task461-3254fa35325a4c7a9a5e602da6876f99
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: The task, as framed above, requires to detect the semantic change between two corpora. The two corpora used in the shared task correspond to the diachronic corpus pair from BIBREF0: DTA18 and DTA19. They consist of subparts of DTA corpus BIBREF11 which is a freely available lemmatized, POS-tagged and spelling-normalized diachronic corpus of German containing texts from the 16th to the 20th century. DTA18 contains 26 million sentences published between 1750-1799 and DTA19 40 million between 1850-1899. Output:
[ "What is the corpus used for the task?" ]
task461-2b61c11ddc6246f48b3c0b93eb6320c4
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: As the gold standard sentiment lexica, we chose manually created lexicon in Czech BIBREF11 , German BIBREF12 , French BIBREF13 , Macedonian BIBREF14 , and Spanish BIBREF15 . Output:
[ "what sentiment sources do they compare with?" ]
task461-8ad5dbb261474e30b5f59a23ed3c6b0e
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Finally, our combined model which uses both Latent and Explicit structure performs the best with a strong improvement of 1.08 points in ROUGE-L over our base pointer-generator model and 0.6 points in ROUGE-1. Output:
[ "By how much they improve over the previous state-of-the-art?" ]
task461-45ba1abfb5f644cd947d073334e51f42
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Slot filling models are a useful method for simple natural language understanding tasks, where information can be extracted from a sentence and used to perform some structured action As candidate tasks, we consider the actions that a user might perform via apps on their phone. Crowd-sourced data was collected simulating common use cases for four different apps: United Airlines, Airbnb, Greyhound bus service and OpenTable. The corresponding actions are booking a flight, renting a home, buying bus tickets, and making a reservation at a restaurant. Output:
[ "What tasks are they experimenting with in this paper?" ]
task461-dddda91082dc4eb08f8321f69ef86955
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: In particular, we use Semeval 2014 BIBREF34 Twitter Sentiment Analysis Dataset for the training Sarcasm Datasets Used in the Experiment This dataset was created by BIBREF8 . The tweets were downloaded from Twitter using #sarcasm as a marker for sarcastic tweets. It is a monolingual English dataset which consists of a balanced distribution of 50,000 sarcastic tweets and 50,000 non-sarcastic tweets. Since sarcastic tweets are less frequently used BIBREF8 , we also need to investigate the robustness of the selected features and the model trained on these features on an imbalanced dataset. To this end, we used another English dataset from BIBREF8 . It consists of 25,000 sarcastic tweets and 75,000 non-sarcastic tweets. We have obtained this dataset from The Sarcasm Detector. It contains 120,000 tweets, out of which 20,000 are sarcastic and 100,000 are non-sarcastic. We randomly sampled 10,000 sarcastic and 20,000 non-sarcastic tweets from the dataset. Visualization of both the original and subset data show similar characteristics. Output:
[ "Which benchmark datasets are used?" ]
task461-4c238b8ffe284ac486066f1aaa290e31
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: The DBpedia SPARQL endpoint is used for query answering and reasoning. Output:
[ "What is the reasoning method that is used?" ]
task461-e3f0a8152dd6444b8d5935318516d684
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Results in Table TABREF13 show ten probes. Again, we see the performance of baseline ELMo-transformer and mSynC are similar, with mSynC doing slightly worse on 7 out of 9 tasks. Output:
[ "For how many probe tasks the shallow-syntax-aware contextual embedding perform better than ELMo’s embedding?" ]
task461-670d40b2183848a89d326fa678eff30b
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We use the Ultrax Typically Developing dataset (UXTD) from the publicly available UltraSuite repository BIBREF19 . This dataset contains synchronized acoustic and ultrasound data from 58 typically developing children, aged 5-12 years old (31 female, 27 male). The data was aligned at the phone-level, according to the methods described in BIBREF19 , BIBREF25 . The data was recorded using an Ultrasonix SonixRP machine using Articulate Assistant Advanced (AAA) software at INLINEFORM0 121fps with a 135 field of view. A single ultrasound frame consists of 412 echo returns from each of the 63 scan lines (63x412 raw frames). Output:
[ "What are the characteristics of the dataset?" ]
task461-81ee4480a2f642dfbc67000c3b4f1657
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We test our proposed approach on three public short text datasets. SearchSnippets. This dataset was selected from the results of web search transaction using predefined phrases of 8 different domains by Phan et al. BIBREF41 . StackOverflow. We use the challenge data published in Kaggle.com. Biomedical. We use the challenge data published in BioASQ's official website. Output:
[ "What datasets did they use?" ]
task461-ed15104c80ee48f39347450bb57a57e9
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Evaluating FastText, GloVe and word2vec, we show that compared to other word representation learning algorithms, the FastText performs best. Output:
[ "What do you use to calculate word/sub-word embeddings" ]
task461-8a67b0194e4e42b8821f9304806d2a39
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: For the sake of simplicity, we focus our analysis on Airbnb listings from Manhattan, NY, during the time period of January 1, 2016, to January 1, 2017. The data provided to us contained information for roughly 40,000 Manhattan listings that were posted on Airbnb during this defined time period. For each listing, we were given information of the amenities of the listing (number of bathrooms, number of bedrooms …), the listing’s zip code, the host’s description of the listing, the price of the listing, and the occupancy rate of the listing. Output:
[ "What is the size of the Airbnb?" ]
task461-7c14d80ff9194141aa7ea80ed7667cfc
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We used the Reuters-8 dataset without stop words from BIBREF27 aiming at single-label classification, which is a preprocessed format of the Reuters-21578. Output:
[ "Which dataset has been used in this work?" ]
task461-8394b3d0cf9e40d9a633bfc9477ba41a
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We extracted 200 sentence pairs from BIBREF3 's dataset and provided each pair with a document context consisting of a preceding and a following sentence, as in the following example. Output:
[ "What document context was added?" ]
task461-ecddee7330de4832a5e85b361e402d6f
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: For PHASE-ONE, we randomly shuffled and divided the data (1913 signals from 14 individuals) into train (80%), development (10%) and test sets (10%). In PHASE-TWO, in order to perform a fair comparison with the previous methods reported on the same dataset, we perform a leave-one-subject out cross-validation experiment using the best settings we learn from PHASE-ONE. Output:
[ "How many electrodes were used on the subject in EEG sessions?" ]
task461-42671e44ff854aa0b712d29bedf667fa
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Above all, we introduce two common baselines. The first one just selects the leading sentences to form a summary. It is often used as an official baseline of DUC, and we name it “LEAD”. The other system is called “QUERY_SIM”, which directly ranks sentences according to its TF-IDF cosine similarity to the query. Above all, we introduce two common baselines. The first one just selects the leading sentences to form a summary. It is often used as an official baseline of DUC, and we name it “LEAD”. The other system is called “QUERY_SIM”, which directly ranks sentences according to its TF-IDF cosine similarity to the query. In addition, we implement two popular extractive query-focused summarization methods, called MultiMR BIBREF2 and SVR BIBREF20 . Since our model is totally data-driven, we introduce a recent summarization system DocEmb BIBREF9 that also just use deep neural network features to rank sentences. To verify the effectiveness of the joint model, we design a baseline called ISOLATION, which performs saliency ranking and relevance ranking in isolation. Output:
[ "What models do they compare to?" ]
task461-9326b749862e40f991d9525c3cebaacd
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We compare eight different models in our experiments. Four of them have a Projected Layer (see Fig. FIGREF2), while the others do not have, and this is the only difference between these two groups of our models. So, we actually include four models in our experiments (having a projected layer or not). Firstly, LastStateRNN is the classic RNN model, where the last state passes through an MLP and then the LR Layer estimates the corresponding probability. In contrast, in the AvgRNN model we consider the average vector of all states that come out of the cells. The AttentionRNN model is the one that it has been presented in BIBREF9. Moreover, we introduce the MultiAttentionRNN model for the harassment language detection, which instead of one attention, it includes four attentions, one for each category. Output:
[ "What are the different variations of the attention-based approach which are examined?" ]
task461-af03b9b3d99c4426aaad23adc363d017
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We draw our data from news publications, wine reviews, and Reddit, which in addition to large volume, also let us characterize binomials in new ways, and analyze differences in binomial orderings across communities and over time. Output:
[ "What online text resources are used to test binomial lists?" ]
task461-50c3788468164d5d90b23baf83398eac
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Our prediction task is thus a straightforward binary classification task at the word level. We develop the following five groups of features to capture properties of how a word is used in the explanandum (see Table TABREF18 for the full list): [itemsep=0pt,leftmargin=*,topsep=0pt] Non-contextual properties of a word. These features are derived directly from the word and capture the general tendency of a word being echoed in explanations. Word usage in an OP or PC (two groups). These features capture how a word is used in an OP or PC. As a result, for each feature, we have two values for the OP and PC respectively. How a word connects an OP and PC. These features look at the difference between word usage in the OP and PC. We expect this group to be the most important in our task. General OP/PC properties. These features capture the general properties of a conversation. They can be used to characterize the background distribution of echoing. Table TABREF18 further shows the intuition for including each feature, and condensed $t$-test results after Bonferroni correction. Specifically, we test whether the words that were echoed in explanations have different feature values from those that were not echoed. In addition to considering all words, we also separately consider stopwords and content words in light of Figure FIGREF8. Here, we highlight a few observations: [itemsep=0pt,leftmargin=*,topsep=0pt] Although we expect more complicated words (#characters) to be echoed more often, this is not the case on average. We also observe an interesting example of Simpson's paradox in the results for Wordnet depth BIBREF38: shallower words are more likely to be echoed across all words, but deeper words are more likely to be echoed in content words and stopwords. Output:
[ "What features are proposed?" ]
task461-4e03f57d51dc46d49dc8ba4294ae33ca
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: It is worth mentioning that the collected texts contain a large quantity of errors of several types: orthographic, syntactic, code-switched words (i.e. words not in the required language), jokes, etc. Hence, the original written sentences have been processed in order to produce “cleaner” versions, in order to make the data usable for some research purposes (e.g. to train language models, to extract features for proficiency assessment, ...). Output:
[ "Are any of the utterances ungrammatical?" ]
task461-e4659840378540679429ddeadf65838d
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: To the best of our knowledge, the only scientific summarization benchmark is from TAC 2014 summarization track. For evaluating the effectiveness of Rouge variants and our metric (Sera), we use this benchmark, which consists of 20 topics each with a biomedical journal article and 4 gold human written summaries. Consider the following example: Endogeneous small RNAs (miRNA) were genetically screened and studied to find the miRNAs which are related to tumorigenesis. Output:
[ "Do the authors report results only on English data?" ]
task461-e26afa6982fc4e25acef8fd968b2ec12
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: The English online magazine of ISIS was named Dabiq and first appeared on the dark web on July 2014 and continued publishing for 15 issues. This publication was followed by Rumiyah which produced 13 English language issues through September 2017. Looking through both Dabiq and Rumiyah, many issues of the magazines contain articles specifically addressing women, usually with “ to our sisters ” incorporated into the title. Output:
[ "Do they report results only on English data?" ]
task461-96d031b9006e4e33b2468dd540385651
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: A dialog turn from one speaker may not only be a direct response to the other speaker's query, but also likely to be a continuation of his own previous statement. Thus, when modeling turn $k$ in a dialog, we propose to connect the last RNN state of turn $k-2$ directly to the starting RNN state of turn $k$ , instead of letting it to propagate through the RNN for turn $k-1$ . Output:
[ "How long of dialog history is captured?" ]
task461-d8d13232cf4e49ebb8723152c7d29580
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We evaluated our detection models on three benchmarks: the FCE test data (41K tokens) and the two alternative annotations of the CoNLL 2014 Shared Task dataset (30K tokens) BIBREF3 . Output:
[ "Which annotated corpus did they use?" ]
task461-68692a517770419cb25721250d3e49e8
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We also conduct two human evaluations in order to assess (a) which type of summary participants prefer (we compare extractive and abstractive systems) and (b) how much key information from the document is preserved in the summary (we ask participants to answer questions pertaining to the content in the document by reading system summaries). Output:
[ "Do they use other evaluation metrics besides ROUGE?" ]
task461-54e476ae64004a41bd25a7862e87d5c2
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Our goal was to generate questions without templates and with minimal human involvement using machine learning transformers that have been demonstrated to train faster and better than RNNs. Such a system would benefit educators by saving time to generate quizzes and tests. Output:
[ "What is the motivation behind the work? Why question generation is an important task?" ]
task461-1f9f24133772422599d0f3e2366b77b4
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: The Hausa data used in this paper is part of the LORELEI language pack. It consists of Broad Operational Language Translation (BOLT) data gathered from news sites, forums, weblogs, Wikipedia articles and twitter messages. We use a split of 10k training and 1k test instances. The Yorùbá NER data used in this work is the annotated corpus of Global Voices news articles recently released by BIBREF22. The dataset consists of 1,101 sentences (26k tokens) divided into 709 training sentences, 113 validation sentences and 279 test sentences based on 65%/10%/25% split ratio. Output:
[ "How much labeled data is available for these two languages?" ]
task461-dba7e65a15a54bdea97b56671f686226
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: The FBFans dataset contains data from anti-nuclear-power Chinese Facebook fan groups from September 2013 to August 2014, including posts and their author and liker IDs. Output:
[ "What topic is covered in the Chinese Facebook data? " ]
task461-428f1c87884e417e889f5e408dc30d91
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: For all the classifiers, our feature combination outperforms the baselines (considering only unigram features) as well as BIBREF3 , with the MILR classifier getting an F-score improvement of 3.7% and Kappa difference of 0.08. We also achieve an improvement of 2% over the baseline, using SVM classifier, when we employ our feature set. We also observe that the gaze features alone, also capture the differences between sarcasm and non-sarcasm classes with a high-precision but a low recall. Output:
[ "What other evaluation metrics are looked at?" ]
task461-aa452ca3fa3a448894137fdc09f458af
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We notice that the concatenation consistently outperforms the gated-attention mechanism for both training and testing instructions. We suspect that the gated-attention is useful in the scenarios where objects are described in terms of multiple attributes, but it has no to harming effect when it comes to the order connectors. Output:
[ "Why they conclude that the usage of Gated-Attention provides no competitive advantage against concatenation in this setting?" ]
task461-878c9fd6a8474995ac80053ea0d12993
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: In other cases, the model points out plausible signals which were passed over by an annotator, and may be considered errors in the gold standard. For example, the model easily notices that question marks indicate the solutionhood relation, even where these were skipped by annotators in favor of marking WH words instead: . [RGB]230, 230, 230Which [RGB]230, 230, 230previous [RGB]230, 230, 230Virginia [RGB]230, 230, 230Governor(s) [RGB]230, 230, 230do [RGB]230, 230, 230you [RGB]230, 230, 230most [RGB]230, 230, 230admire [RGB]230, 230, 230and [RGB]230, 230, 230why [RGB]12, 12, 12? $\xrightarrow[\text{pred:solutionhood}]{\text{gold:solutionhood}}$ [RGB]230, 230, 230Thomas [RGB]230, 230, 230Jefferson [RGB]183, 183, 183. However, it also picks up on a recurring tendency in how-to guides in which the second person pronoun referring to the reader is often the benefactee of some action, which contributes to the purpose reading and helps to disambiguate so, despite not being considered a signal by annotators. Output:
[ "Where does proposed metric differ from juman judgement?" ]
task461-344e8d08275741dfb915e3b00c20ef43
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: To generate it, we explore two implicit user-feedback labelling strategies: five-minute reuse and one-day return. Output:
[ "What feedback labels are used?" ]
task461-1259ee158d2347c4bd3331fd19987a52
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: The DDI corpus contains thousands of XML files, each of which are constructed by several records. For a sentence containing INLINEFORM0 drugs, there are INLINEFORM1 drug pairs. Output:
[ "How big is the evaluated dataset?" ]
task461-8d32a5ca0a7e4e09975dae76d705ecf1
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: For the evaluation of performance of the proposed method on the NLI task, SNLI BIBREF22 and MultiNLI BIBREF23 datasets are used. We use Quora Question Pairs dataset BIBREF24 in evaluating the performance of our method on the PI task. In evaluating sentiment classification performance, the Stanford Sentiment Treebank (SST) BIBREF25 is used. Output:
[ "Which datasets were used?" ]
task461-4367f1254cf8475aa4f99d3af1509ac5
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: By choosing English (En) as the pivot language, we perform pivot alignments for identical English segments on Europarl Fr-En and En-De parallel corpora BIBREF18 , constructing a multi-parallel corpus of Fr-En-De. Then each of the Fr*-De and Fr-De* pseudo parallel corpora is established from the multi-parallel data by applying the pivot language-based translation described in the previous section. Output:
[ "How do they align the synthetic data?" ]
task461-19789cb4cb874073be8b6419cbbdca5b
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Each tweet is annotated as no evidence of depression (e.g., “Citizens fear an economic depression") or evidence of depression (e.g., “depressed over disappointment"). If a tweet is annotated evidence of depression, then it is further annotated with one or more depressive symptoms, for example, depressed mood (e.g., “feeling down in the dumps"), disturbed sleep (e.g., “another restless night"), or fatigue or loss of energy (e.g., “the fatigue is unbearable") BIBREF10 . Output:
[ "How is the dataset annotated?" ]
task461-7eacdaabc12b416ea6f935a9a9b01879
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We focus here on the Europarl domain, for which we have ample data in several languages, and use as in-domain training data the Europarl corpus BIBREF5 for two translation directions: English INLINEFORM0 German and English INLINEFORM1 French. When measuring out-of-domain performance, we will use the WMT newstest 2014. or French we use samples from News-Commentary-11 and Wikipedia from WMT 2014 shared translation task, as well as the Multi-UN BIBREF9 and EU-Bookshop BIBREF10 corpora. For German, we use samples from News-Commentary-11, Rapid, Common-Crawl (WMT 2017) and Multi-UN (see table TABREF5 ). Output:
[ "what dataset is used?" ]
task461-daf502485e91439f9e38f887c5f956ca
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: For the language modeling evaluation, we also evaluate a baseline without knowledge distillation (termed NoKD), with a model parameterized identically to the distilled student models but trained directly on the teacher model objective from scratch. For downstream tasks, we compare with NoKD as well as Patient Knowledge Distillation (PKD) from BIBREF34, who distill the 12-layer BERTBASE model into 3 and 6-layer BERT models by using the teacher model's hidden states. Output:
[ "What state-of-the-art compression techniques were used in the comparison?" ]
task461-763131aa4b854dd499f9e2983d1c6ebb
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Three baseline classification methods: Support Vector Machines (SVM), Adaboost, and Random Forests are adopted to evaluate our extracted features. On each dataset, the employed classifiers are trained with individual feature first, and then with the combination of the two features. Output:
[ "LDA is an unsupervised method; is this paper introducing an unsupervised approach to spam detection?" ]
task461-9d3e770032d64fd3ac59fa0907c40a4f
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: $D_a$ contained all of the tweets collected on the attack day of the five attacks mentioned in section 4.2. And $D_b$ contained all of the tweets collected before the five attacks. There are 1180 tweets in $D_a$ and 7979 tweets in $D_b$. The tweets on the attack days ($D_a$) are manually annotated and only 50 percent of those tweets are actually about a DDoS attack. Output:
[ "Do twitter users tend to tweet about the DOS attack when it occurs? How much data supports this assumption?" ]
task461-6972ac0550c745d996131dc07781df0d
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: For each test set, we use the corresponding training questions $Q_\mathit {tr}$ to retrieve domain-relevant sentences from S. Specifically, for each multiple-choice question $(q,A) \in Q_\mathit {tr}$ and each choice $a \in A$ , we use all non-stopword tokens in $q$ and $a$ as an ElasticSearch query against S. We take the top 200 hits, run Open IE v4, and aggregate the resulting tuples over all $a \in A$ and over all questions in $Q_\mathit {tr}$ to create the tuple KB (T). Output:
[ "What method was used to generate the OpenIE extractions?" ]
task461-9ab696667711455b8231c846af06454a
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: To identify the most suitable classifier for classifying the scalars associated with each text, we perform evaluations using the stochastic gradient descent, naive bayes, decision tree, and random forest classifiers. Output:
[ "What was the baseline?" ]
task461-c8ba502b71bb46b99f7ed8c78b228f7a
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: The best baseline model is NO-MOVE, reaching an accuracy of 30.3% on single sentences and 0.3 on complete paragraphs. Output:
[ "How well did the baseline perform?" ]
task461-e3b3c3ef9b7a4654863235e1afaf03c4
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Secondly, we examine the effect of Washington Post on the views of the users. This is done by looking at the sentiments of the candidates (to predict winners) of a debate before and after the winners are announced by the experts in Washington Post. This way, we can see if Washington Post has had any effect on the sentiments of the users. One can see the winners suggested by the Washington Post in Table TABREF35. Output:
[ "How do you establish the ground truth of who won a debate?" ]
task461-6ce9d88cca3748dd915f474e26253304
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: The dataset consists of 198,112 news articles. Output:
[ "How many articles did they have?" ]
task461-b9ca25e92932427492a36e32f6ba9583
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: While a host of input modalities have been considered in other NLG tasks, such as text summarization BIBREF24 , image captioning BIBREF25 and table-to-text generation BIBREF26 , traditional QG mainly focused on textual inputs, especially declarative sentences, explained by the original application domains of question answering and education, which also typically featured textual inputs. Recently, with the growth of various QA applications such as Knowledge Base Question Answering (KBQA) BIBREF27 and Visual Question Answering (VQA) BIBREF28 , NQG research has also widened the spectrum of sources to include knowledge bases BIBREF29 and images BIBREF10 . Output:
[ "What are all the input modalities considered in prior work in question generation?" ]
task461-c460fdae19484bae8f315fa5b405fd10
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We use the MedWeb (“Medical Natural Language Processing for Web Document”) dataset BIBREF4 that was provided as part of a subtask at the NTCIR-13 Conference BIBREF5. The data is summarised in Table TABREF1. There are a total of 2,560 pseudo-tweets in three different languages: Japanese (ja), English (en) and Chinese (zh). Output:
[ "How big is dataset used for fine-tuning model for detection of red flag medical symptoms in individual statements?" ]
task461-8411dd87f4a84bc9be89ed1c1b4170f7
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: It is true that the above-mentioned associated caption sentences for each concept-set are human-written and do describe scenes that cover all given concepts. However, they are created under specific contexts (i.e. an image or a video) and thus might be less representative for common sense. To better measure the quality and interpretability of generative reasoners, we need to evaluate them with scenes and rationales created by using concept-sets only as the signals for annotators. We collect more human-written scenes for each concept-set in dev and test set through crowd-sourcing via the Amazon Mechanical Turk platform. Each input concept-set is annotated by at least three different humans. The annotators are also required to give sentences as the rationales, which further encourage them to use common sense in creating their scenes. Output:
[ "Are the sentences in the dataset written by humans who were shown the concept-sets?" ]
task461-bac8f25f135b46fcb409e148d0bd1bab
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We constructed our seed lexicon consisting of 15 positive words and 15 negative words, as shown in Section SECREF27. Output:
[ "How big is seed lexicon used for training?" ]
task461-689b419c9a394b0fb8ee6bf6ec8c638f
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Approach ::: Method: Training and Testing ::: Experiment 1: Representation Some of the problems encountered by prior approaches seem to be attributable to the use of infix notation. In this experiment, we compare translation BLEU-2 scores to spot the differences in representation interpretability. Approach ::: Method: Training and Testing ::: Experiment 2: State-of-the-art This experiment compares our networks to recent previous work. We count a given test score by a simple “correct versus incorrect" method. The answer to an expression directly ties to all of the translation terms being correct, which is why we do not consider partial precision. We compare average accuracies over 3 test trials on different randomly sampled test sets from each MWP dataset. Output:
[ "How is this problem evaluated?" ]
task461-f102d9a40473436b8ffa2b644a2d7292
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Macaw also supports Wizard of Oz studies or intermediary-based information seeking studies. The architecture of Macaw for such setup is presented in FIGREF16. As shown in the figure, the seeker interacts with a real conversational interface that supports multi-modal and mixed-initiative interactions in multiple devices. The intermediary (or the wizard) receives the seeker's message and performs different information seeking actions with Macaw. All seeker-intermediary and intermediary-system interactions will be logged for further analysis. Output:
[ "What is a wizard of oz setup?" ]
task461-7ce61215c31946f0aa08a4254ee773d2
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Based on the best results (BLSTM-CNN-CRF), error analysis is performed based on five types of errors (No extraction, No annotation, Wrong range, Wrong tag, Wrong range and tag), in a way similar to BIBREF10, but we analyze on both gold labels and predicted labels (more detail in figure 1 and 2). Output:
[ "What type of errors were produced by the BLSTM-CNN-CRF system?" ]
task461-9afbaf2c0f31499e830537b867366eb6
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Table TABREF44 shows average results of our automatic and human evaluations. Output:
[ "How big is the difference in performance between proposed model and baselines?" ]
task461-634c852a07db46dabbbf3d8dbc55bde7
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We train MaLOPa on the concantenation of training sections of all seven languages. Output:
[ "How many languages have this parser been tried on?" ]
task461-74f9410377d24948885c6d90b53a72be
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: All cases exhibit high scores—in the vast majority of the cases substantially higher than reported in previous work. In particular, in BIBREF1 we assess the ability of LSTMs to learn subject-verb agreement patterns in English, and evaluate on naturally occurring wikipedia sentences. BIBREF2 also consider subject-verb agreement, but in a “colorless green ideas” setting in which content words in naturally occurring sentences are replaced with random words with the same part-of-speech and inflection, thus ensuring a focus on syntax rather than on selectional-preferences based cues. BIBREF3 consider a wider range of syntactic phenomena (subject-verb agreement, reflexive anaphora, negative polarity items) using manually constructed stimuli, allowing for greater coverage and control than in the naturally occurring setting. Output:
[ "Were any of these tasks evaluated in any previous work?" ]
task461-5a09d7dbc91f4b22bd9055a2596e1d2d
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: In our experiments, we used WordNet 3.0 BIBREF9 as our external knowledge base INLINEFORM0 . For word embeddings, we experimented with two popular models: (1) GloVe embeddings trained by BIBREF10 on Wikipedia and Gigaword 5 (vocab: 400K, dim: 300), and (2) w2v-gn, Word2vec BIBREF5 trained on the Google News dataset (vocab: 3M, dim: 300). Our coverage enhancement starts by transforming the knowledge base INLINEFORM0 into a vector space representation that is comparable to that of the corpus-based space INLINEFORM1 . To this end, we use two techniques for learning low-dimensional feature spaces from knowledge graphs: DeepWalk and node2vec. DeepWalk uses a stream of short random walks in order to extract local information for a node from the graph. By treating these walks as short sentences and phrases in a special language, the approach learns latent representations for each node. Similarly, node2vec learns a mapping of nodes to continuous vectors that maximizes the likelihood of preserving network neighborhoods of nodes. Thanks to a flexible objective that is not tied to a particular sampling strategy, node2vec reports improvements over DeepWalk on multiple classification and link prediction datasets. For both these systems we used the default parameters and set the dimensionality of output representation to 100. Also, note than nodes in the semantic graph of WordNet represent synsets. Hence, a polysemous word would correspond to multiple nodes. In our experiments, we use the MaxSim assumption of BIBREF11 in order to map words to synsets. Output:
[ "What other embedding models are tested?" ]
task461-ff4b1c2294a74432825c7801f2d5e6aa
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: First preference is given to the labels that are perfectly matching in all the neural annotators. In Table TABREF11, we can see that both datasets have about 40% of exactly matching labels over all models (AM). Then priority is given to the context-based models to check if the label in all context models is matching perfectly. In case two out of three context models are correct, then it is being checked if that label is also produced by at least one of the non-context models. Then, we allow labels to rely on these at least two context models. As a result, about 47% of the labels are taken based on the context models (CM). When we see that none of the context models is producing the same results, then we rank the labels with their respective confidence values produced as a probability distribution using the $softmax$ function. The labels are sorted in descending order according to confidence values. Then we check if the first three (case when one context model and both non-context models produce the same label) or at least two labels are matching, then we allow to pick that one. There are about 3% in IEMOCAP and 5% in MELD (BM). Finally, when none the above conditions are fulfilled, we leave out the label with an unknown category. This unknown category of the dialogue act is labeled with `xx' in the final annotations, and they are about 7% in IEMOCAP and 11% in MELD (NM). Output:
[ "How does the ensemble annotator extract the final label?" ]
task461-aa047e8a03b548d8a0e53db012e4f226
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: In Section SECREF16, we first provide more details about the experimental setting that we followed. As explained in Section SECREF3, we used BabelNet BIBREF29 as our reference taxonomy. BabelNet is a large-scale full-fledged taxonomy consisting of heterogeneous sources such as WordNet BIBREF36, Wikidata BIBREF37 and WiBi BIBREF38, making it suitable to test our hypothesis in a general setting. To test our proposed category induction model, we consider all BabelNet categories with fewer than 50 known instances. This is motivated by the view that conceptual neighborhood is mostly useful in cases where the number of known instances is small. For each of these categories, we split the set of known instances into 90% for training and 10% for testing. To tune the prior probability $\lambda _A$ for these categories, we hold out 10% from the training set as a validation set. Output:
[ "What experiments they perform to demonstrate that their approach leads more accurate region based representations?" ]
task461-3d2960ee6c3048c5bade3c2e8ecb1776
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: To compare our results, we use the provided baseline, which is a non-parameter optimized linear-kernel SVM that uses TF-IDF bag-of-word vectors as inputs. Output:
[ "What was the baseline model?" ]
task461-8727de1ee76b4c0cb2265dd8f73d3d59
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: In this paper, we use three data sets from the literature to train and evaluate our own classifier. Data collected by BIBREF3 , which we term the Sexist/Racist (SR) data set, was collected using an initial Twitter search followed by analysis and filtering by the authors and their team who identified 17 common phrases, hashtags, and users that were indicative of abusive speech. BIBREF4 collected the HATE dataset by searching for tweets using a lexicon provided by Hatebase.org. The final data set we used, which we call HAR, was collected by BIBREF9 ; we removed all retweets reducing the dataset to 20,000 tweets. Tweets were labeled as “Harrassing” or “Non-Harrassing”; hate speech was not explicitly labeled, but treated as an unlabeled subset of the broader “Harrassing” category BIBREF9 . Many of the false negatives we see are specific references to characters in the TV show “My Kitchen Rules”, rather than something about women in general. While this may be a limitation of considering only the content of the tweet, it could also be a mislabel. Debra are now my most hated team on #mkr after least night's ep. Snakes in the grass those two. Along these lines, we also see correct predictions of innocuous speech, but find data mislabeled as hate speech: @LoveAndLonging ...how is that example "sexism"? @amberhasalamb ...in what way? Output:
[ "Do they report results only on English data?" ]
task461-c9ba571f348241c296e97eb31a86f567
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We use the Yelp Challenge dataset BIBREF2 for our fake review generation. Output:
[ "Which dataset do they use a starting point in generating fake reviews?" ]
task461-26c0a895a44f4b81ba7ee73ddcb390b3
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We use two state-of-art neural coreference resolution models described by BIBREF2 and BIBREF1 . Output:
[ "What is the state-of-the-art neural coreference resolution model?" ]
task461-b1bef18f82844c55b46c1e470588f78d
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: Table IV shows the result of our model for sentiment classification against other models. We compare our model performance with the approaches of BIBREF0 BIBREF5 on STS Corpus. BIBREF0 reported the results of Maximum Entropy (MaxEnt), NB, SVM on STS Corpus having good performance in previous time. The model of BIBREF5 is a state-of-the-art so far by using a CharSCNN. As can be seen, 86.63 is the best prediction accuracy of our model so far for the STS Corpus. For Sanders and HCR datasets, we compare results with the model of BIBREF14 that used a ensemble of multiple base classifiers (ENS) such as NB, Random Forest (RF), SVM and Logistic Regression (LR). The ENS model is combined with bag-of-words (BoW), feature hashing (FH) and lexicons. The model of BIBREF14 is a state-of-the-art on Sanders and HCR datasets. Our models outperform the model of BIBREF14 for the Sanders dataset and HCR dataset. Output:
[ "What was the baseline?" ]
task461-9ebd3ee3006747098756392fe7c09a78
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: In both cases, we denote with the word model one of the possible combinations of classic/statistical LSA and a classifier. The used classifiers are Support Vector Machine (SVM), Logistic regression (Log.Reg), Random Forest (RF) and gradient boosting (XGB). Where applicable, we compare our results with existing results in the literature. Output:
[ "What are the different methods used for different corpora?" ]
task461-84fa0926937a4a28bd5b3a248e28900c
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: ACL-ARC is a dataset of citation intents released by BIBREF7 . The dataset is based on a sample of papers from the ACL Anthology Reference Corpus BIBREF15 and includes 1,941 citation instances from 186 papers and is annotated by domain experts in the NLP field. Output:
[ "What is the size of ACL-ARC datasets?" ]
task461-0359c643583447dc85b53717a0d55fce
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: We compare our approach with several methods BIBREF1 , BIBREF31 , BIBREF11 , BIBREF8 , BIBREF10 , BIBREF39 in two cross-domain settings. Using string kernels, Giménez-Pérez et al. BIBREF10 reported better performance than SST BIBREF31 and KE-Meta BIBREF11 in the multi-source domain setting. In addition, we compare our approach with SFA BIBREF1 , CORAL BIBREF8 and TR-TrAdaBoost BIBREF39 in the single-source setting. Transductive string kernels. We present a simple and straightforward approach to produce a transductive similarity measure suitable for strings. Our transductive kernel classifier (TKC) approach is composed of two learning iterations. Output:
[ "What machine learning algorithms are used?" ]
task461-c9bb1aa1917a43ae83f3682f84386f2b
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions. Positive Example 1 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: how was the dataset built? Positive Example 2 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language are the tweets? Negative Example 1 - Input: Using this annotation model, we create a new large publicly available dataset of English tweets. Output: In what language is tweets? Negative Example 2 - Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective. Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing. Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully. Output: What is the size of the dataset? Now complete the following example - Input: As this corpus of annotated patient notes comprises original healthcare data which contains protected health information (PHI) per The Health Information Portability and Accountability Act of 1996 (HIPAA) BIBREF16 and can be joined to the MIMIC-III database, individuals who wish to access to the data must satisfy all requirements to access the data contained within MIMIC-III. To satisfy these conditions, an individual who wishes to access the database must take a “Data or Specimens Management” course, as well as sign a user agreement, as outlined on the MIMIC-III database webpage, where the latest version of this database will be hosted as “Annotated Clinical Texts from MIMIC” BIBREF17. This corpus can also be accessed on GitHub after completing all of the above requirements. Output:
[ "Is this dataset publicly available for commercial use?" ]
task461-2a9e69798d84420e97e53c0bfa76a983