input
stringlengths 3.23k
13.3k
| output
sequencelengths 1
3
| id
stringlengths 40
40
|
---|---|---|
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: To create our training dataset, we followed an approach similar to LASER. The dataset contains 6 languages: English, Spanish, German, Dutch, Korean and Chinese Mandarin. The dataset was created by using translations provided by Tatoeba and OpenSubtitles BIBREF16.
Output:
| [
"Which corpus do they use?"
] | task461-9bd3778aae0a497f8007aa70425cd6ce |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Generally, providing an incorrect speaker and/or audience information decreases the BLEU scores, while providing the correct information substantially improves it - we see an increase of up to 2.3 BLEU over the baseline. We see that the baseline system severely under-predicts the feminine form of verbs as compared to the reference. The “He said” conditions further decreases the number of feminine verbs, while the “I said” conditions bring it back to the baseline level. Finally, the “She said” prefixes substantially increase the number of feminine-marked verbs, bringing the proportion much closer to that of the reference (though still under-predicting some of the feminine cases).
Output:
| [
"How is it demonstrated that the correct gender and number information is injected using this system?"
] | task461-45a113a09ff3481985413a83957d7618 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Despite the greater similarity between our task and the 2013 ShARe/CLEF Task 1, we use the clinical notes from the CE task in 2010 i2b2/VA on account of 1) the data from 2010 i2b2/VA being easier to access and parse, 2) 2013 ShARe/CLEF containing disjoint entities and hence requiring more complicated tagging schemes.
Output:
| [
"where did they obtain the annotated clinical notes from?"
] | task461-5ac74a81d31e4e3995d09240927d2d64 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: To evaluate the effectiveness of the proposed framework for the ATE task, we conduct experiments over four benchmark datasets from the SemEval ABSA challenge BIBREF1 , BIBREF18 , BIBREF12 . Table TABREF24 shows their statistics. INLINEFORM0 (SemEval 2014) contains reviews of the laptop domain and those of INLINEFORM1 (SemEval 2014), INLINEFORM2 (SemEval 2015) and INLINEFORM3 (SemEval 2016) are for the restaurant domain. In these datasets, aspect terms have been labeled by the task organizer.
Output:
| [
"Which dataset(s) do they use to train the model?"
] | task461-22dc5b09f01d44dd90cad941f2c949ba |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: The BLEU metric is adopted to evaluate the model performance during evaluation.
Output:
| [
"What evaluation metric is used?"
] | task461-e2d5dde101224002993703ea5aab2e45 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: These actions consist of the following components:
[leftmargin=*]
Co-Reference Resolution: To support multi-turn interactions, it is sometimes necessary to use co-reference resolution techniques for effective retrieval. Query Generation: This component generates a query based on the past user-system interactions. Retrieval Model: This is the core ranking component that retrieves documents or passages from a large collection. Result Generation: The retrieved documents can be too long to be presented using some interfaces.
Output:
| [
"What are the different modules in Macaw?"
] | task461-c47eea8f67864270bea2e6a5a65b837d |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We evaluated SDNet on CoQA dataset
Output:
| [
"Is the model evaluated on other datasets?"
] | task461-7d9be43662e3456d9a585960272f472b |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: The resulting dataset consists of 22,880 users, 41,094 blogs, and 561,003 posts. Table TABREF2 presents additional statistics of our dataset.
Output:
| [
"How many users do they look at?"
] | task461-1e36fa8bcb9346ad8c008da4e5d64d65 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We are in line with recent work BIBREF16 , proposing to shift evaluation from absolute values to more exploratory evaluations focusing on weaknesses and strengths of the embeddings and not so much in generic scores. For example, one metric could consist in checking whether for any given word, all words that are known to belong to the same class are closer than any words belonging to different classes, independently of the actual cosine.
Output:
| [
"What new metrics are suggested to track progress?"
] | task461-8fb54aa197c44a82bf5c03caa06d978f |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: With this challenge in mind, we introduce Torch-Struct with three specific contributions:
Modularity: models are represented as distributions with a standard flexible API integrated into a deep learning framework.
Completeness: a broad array of classical algorithms are implemented and new models can easily be added in Python.
Efficiency: implementations target computational/memory efficiency for GPUs and the backend includes extensions for optimization.
Output:
| [
"Is this library implemented into Torch or is framework agnostic?"
] | task461-65bbe129c9754361b6ff84f22d8e666e |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We obtained 9,892 stories of sexual harassment incidents that was reported on Safecity. Those stories include a text description, along with tags of the forms of harassment, e.g. commenting, ogling and groping. A dataset of these stories was published by Karlekar and Bansal karlekar2018safecity. In addition to the forms of harassment, we manually annotated each story with the key elements (i.e. “harasser", “time", “location", “trigger"), because they are essential to uncover the harassment patterns. An example is shown in Figure FIGREF3. Furthermore, we also assigned each story classification labels in five dimensions (Table TABREF4). The detailed definitions of classifications in all dimensions are explained below.
Output:
| [
"What is the size of the dataset?"
] | task461-649dc82bf75d40dca6e217b2e9c97681 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We start the training process by applying the rule INLINEFORM4 to a set of natural language questions INLINEFORM5 . The resulting dataset is considered as the training data to initialize both the semantic parser and the question generator. Afterwards, both models are improved following the back-translation protocol that target sequences should follow the real data distribution, yet source sequences can be generated with noises.
Output:
| [
"How is the back-translation model trained?"
] | task461-e718a69c83c04a1c8f6d640cfec150c9 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We perform experiments on document-level variants of the SQuAD dataset BIBREF1 .
Output:
| [
"What datasets have this method been evaluated on?"
] | task461-5b2335b0dab54bb497c8ffacef7046af |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: The following data sources were used to train the RNN-T and associated RNN-LMs in this study.
Source-domain baseline RNN-T: approximately 120M segmented utterances (190,000 hours of audio) from YouTube videos, with associated transcripts obtained from semi-supervised caption filtering BIBREF28.
Source-domain normalizing RNN-LM: transcripts from the same 120M utterance YouTube training set. This corresponds to about 3B tokens of the sub-word units used (see below, Section SECREF30).
Target-domain RNN-LM: 21M text-only utterance-level transcripts from anonymized, manually transcribed audio data, representative of data from a Voice Search service. This corresponds to about 275M sub-word tokens.
Target-domain RNN-T fine-tuning data: 10K, 100K, 1M and 21M utterance-level {audio, transcript} pairs taken from anonymized, transcribed Voice Search data. These fine-tuning sets roughly correspond to 10 hours, 100 hours, 1000 hours and 21,000 hours of audio, respectively.
Output:
| [
"How much training data is used?",
"How is the training data collected?"
] | task461-4ae2c652813249f595d64971e7ba1f77 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Compared to the in-context-parsing-based system, the combination with exact string matching yields a gain in recall of over 6%, and the combination with inflectional string matching yields an even bigger gain of almost 8%, at precision losses of 0.6% and 0.8%, respectively.
Output:
| [
"What compleentary PIE extraction methods are used to increase reliability further?"
] | task461-9e7c016d098f41ccb2f3c252e120a5f4 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Motivated by this, we introduce resolution mode variables $\Pi = \lbrace \pi _1, \ldots , \pi _n\rbrace $ , where for each mention $j$ the variable $\pi _j \in \lbrace str, prec, attr\rbrace $ indicates in which mode the mention should be resolved. In our model, we define three resolution modes — string-matching (str), precise-construct (prec), and attribute-matching (attr) — and $\Pi $ is deterministic when $D$ is given (i.e. $P(\Pi |D)$ is a point distribution). We determine $\pi _j$ for each mention $m_j$ in the following way:
$\pi _j = str$ , if there exists a mention $m_i, i < j$ such that the two mentions satisfy the String Match sieve, the Relaxed String Match sieve, or the Strict Head Match A sieve in the Stanford multi-sieve system BIBREF1 .
$\pi _j = prec$ , if there exists a mention $m_i, i < j$ such that the two mentions satisfy the Speaker Identification sieve, or the Precise Constructs sieve.
$\pi _j = attr$ , if there is no mention $m_i, i < j$ satisfies the above two conditions.
Output:
| [
"What are resolution model variables?",
"Are resolution mode variables hand crafted?"
] | task461-2ffa62b4973c462e84b9e1b54390e58c |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: In task 1, there are two top categories, namely, chit-chat and task-oriented dialogue.
Output:
| [
"How many intents were classified?"
] | task461-4bd90473ebc64d2caf151a7624e8b202 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We evaluate performance of our models on the SQUAD BIBREF16 dataset (denoted $\mathcal {S}$ ). We use the same split as that of BIBREF4 , where a random subset of 70,484 instances from $\mathcal {S}\ $ are used for training ( ${\mathcal {S}}^{tr}$ ), 10,570 instances for validation ( ${\mathcal {S}}^{val}$ ), and 11,877 instances for testing ( ${\mathcal {S}}^{te}$ ).
Output:
| [
"Which datasets are used to train this model?"
] | task461-10ae73d850b74671bfafe832e2ed2e94 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: All corpora provide datasets/splits for answer selection, whereas only (WikiQA, SQuAD) and (WikiQA, SelQA) provide datasets for answer extraction and answer triggering, respectively. SQuAD is much larger in size although questions in this corpus are often paraphrased multiple times. On the contrary, SQuAD's average candidates per question ( INLINEFORM0 ) is the smallest because SQuAD extracts answer candidates from paragraphs whereas the others extract them from sections or infoboxes that consist of bigger contexts. Although InfoboxQA is larger than WikiQA or SelQA, the number of token types ( INLINEFORM1 ) in InfoboxQA is smaller than those two, due to the repetitive nature of infoboxes.
All corpora show similar average answer candidate lengths ( INLINEFORM0 ), except for InfoboxQA where each line in the infobox is considered a candidate. SelQA and SQuAD show similar average question lengths ( INLINEFORM1 ) because of the similarity between their annotation schemes. It is not surprising that WikiQA's average question length is the smallest, considering their questions are taken from search queries. InfoboxQA's average question length is relatively small, due to the restricted information that can be asked from the infoboxes. InfoboxQA and WikiQA show the least question-answer word overlaps over questions and answers ( INLINEFORM2 and INLINEFORM3 in Table TABREF2 ), respectively. In terms of the F1-score for overlapping words ( INLINEFORM4 ), SQuAD gives the least portion of overlaps between question-answer pairs although WikiQA comes very close.
Output:
| [
"How do they analyze contextual similaries across datasets?"
] | task461-683f322907ae45418bc0b7e98ed78e41 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We demonstrated the utility of Katecheo by deploying the system for question answering in two topics, Medical Sciences and Christianity.
Output:
| [
"how many domains did they experiment with?"
] | task461-15478a45a1114a0a8162bb3f6bd9fbc8 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We extract data from the WMT'14 English-French (En-Fr) and English-German (En-De) datasets. To create a larger discrepancy between the tasks, so that there is a clear dataset size imbalance, the En-De data is artificially restricted to only 1 million parallel sentences, while the full En-Fr dataset, comprising almost 40 million parallel sentences, is used entirely.
Output:
| [
"What datasets are used for experiments?"
] | task461-91037456c12045ed8a50fdc8381147bf |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: The final result submitted in public leaderboard is 0.73019 and in private leaderboard is 0.58455. It is quite different in bad way. That maybe is the result of the model too overfit on train set tuning on public test set.
Output:
| [
"What is public dashboard?",
"What is private dashboard?"
] | task461-fd42acd185b84062b3fb1b26fa61ad1e |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Despite its usefulness, linked entities extracted from ELS's have issues because of low precision rates BIBREF11 and design challenges in training datasets BIBREF12 . First, the extracted entities may be ambiguous. Second, the linked entities may also be too common to be considered an entity.
Output:
| [
"Why are current ELS's not sufficiently effective?"
] | task461-47ecd658385f4c31a0cba7b78db2d6fa |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: The comparative evaluator is trained with maximum likelihood estimation (MLE) objective, as described in eq DISPLAY_FORM6
where $\mathcal {X}$ is the set of pairwise training examples contructed as described above, $Q(x_1, x_2) \in \lbrace >,<,\approx \rbrace $ is the true label for the pair ($x_1$, $x_2$), $D_\phi ^q(x_1, x_2)$ is the probability of the comparative discriminator's prediction being $q$ ($q \in \lbrace >,<,\approx \rbrace $) for the pair ($x_1$, $x_2$).
Output:
| [
"How they add human prefference annotation to fine-tuning process?"
] | task461-51cf8519cfce487e8ce4ff670c0f9a94 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Each dataset consisted of five Arabic dialects: Egyptian (EGY), Levantine (LEV), Gulf (GLF), North African (NOR), and Modern Standard Arabic (MSA).
Output:
| [
"Which are the four Arabic dialects?"
] | task461-1bc92c2f312941439eef22c39a92ebcc |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: The crowdworkers were located in the US and hired on the BIBREF22 platform.
Output:
| [
"Who are the crowdworkers?"
] | task461-b48ee79fd0b249f488a97ff02a10013a |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: However, recent work has found that many NLI datasets contain biases, or annotation artifacts, i.e., features present in hypotheses that enable models to perform surprisingly well using only the hypothesis, without learning the relationship between two texts BIBREF2 , BIBREF3 , BIBREF4 . For instance, in some datasets, negation words like “not” and “nobody” are often associated with a relationship of contradiction. As a ramification of such biases, models may not generalize well to other datasets that contain different or no such biases.
Output:
| [
"Is such bias caused by bad annotation?"
] | task461-5085774b4b94468fbc8c1c42925ac4a5 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: The improvement when the difficult subset with expert annotations is mixed with the remaining crowd annotation is 3.5 F1 score, much larger than when a random set of expert annotations are added.
Output:
| [
"How much higher quality is the resulting annotated data?"
] | task461-eded16a1b43247aeb126981aaf8b5dad |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: To investigate the extent to which the text obtained from the two platforms of Yahoo! Answers and Twitter reflect the true attributes of neighbourhoods, we first study whether there are significant, strong and meaningful correlations between the terms present in each corpus and the many neighbourhood attributes through the Pearson correlation coefficient $\rho $ .
Output:
| [
"What do the correlation demonstrate? "
] | task461-11c9e06e4d47431980f11f3557b84792 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: To counter that, we use a left-to-right attention mask, similar to the one employed in the original Transformer decoder BIBREF1. For the input tokens in $X$, we apply such mask to all the target tokens $Y$ that were concatenated to $X$, so that input tokens can only attend to the other input tokens. Conversely, for target tokens $y_t$, we put an attention mask on all tokens $y_{>t}$, allowing target tokens $y_t$ to attend only to the input tokens and the already generated target tokens.
Output:
| [
"What is different in BERT-gen from standard BERT?"
] | task461-0b61c2a07b1a4d4299403b10000d74d9 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: The baseline model BIBREF3 is implemented with a recurrent neural network based encoder-decoder framework.
Output:
| [
"Do they compare against Noraset et al. 2017?"
] | task461-f0d263f8639a4639a58c5d688ef96d95 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: In this work, we propose to generate unanswerable questions by editing an answerable question and conditioning on the corresponding paragraph that contains the answer. So the generated unanswerable questions are more lexically similar and relevant to the context. Moreover, by using the answerable question as a prototype and its answer span as a plausible answer, the generated examples can provide more discriminative training signal to the question answering model.
Output:
| [
"Does their approach require a dataset of unanswerable questions mapped to similar answerable questions?"
] | task461-4710b52d35ff48e2b37239bbab3797c8 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: The main questions this paper attempts to answer are: Does compressing BERT impede it's ability to transfer to new tasks? And does fine-tuning make BERT more or less compressible?
To explore these questions, we compressed English BERT using magnitude weight pruning BIBREF8 and observed the results on transfer learning to the General Language Understanding Evaluation (GLUE) benchmark BIBREF9, a diverse set of natural language understanding tasks including sentiment analysis, NLI, and textual similarity evaluation. We chose magnitude weight pruning, which compresses models by removing weights close to 0, because it is one of the most fine-grained and effective compression methods and because there are many interesting ways to view pruning, which we explore in the next section. Our findings are as follows: Low levels of pruning (30-40%) do not increase pre-training loss or affect transfer to downstream tasks at all. Medium levels of pruning increase the pre-training loss and prevent useful pre-training information from being transferred to downstream tasks.
Output:
| [
"How they observe that fine-tuning BERT on a specific task does not improve its prunability?"
] | task461-df16cee7da9546b58990497effac2c95 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Experimental results on public datasets show that our CRU model could substantially outperform various systems by a large margin, and set up new state-of-the-art performances on related datasets.
Output:
| [
"Are there some results better than state of the art on these tasks?"
] | task461-a9b4fede0137410bb1aaef6f997b4b5c |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Our goal is to supply an NMT system with knowledge regarding the speaker and interlocutor of first-person sentences, in order to produce the desired target-side morphology when the information is not available in the source sentence. The approach we take in the current work is that of black-box injection, in which we attempt to inject knowledge to the input in order to influence the output of a trained NMT system, without having access to its internals or its training procedure as proposed by vanmassenhove-hardmeier-way:2018:EMNLP. To verify this, we experiment with translating the sentences with the following variations: No Prefix—The baseline translation as returned by the GMT system. “He said:”—Signaling a male speaker. We expect to further skew the system towards masculine forms. “She said:”—Signaling a female speaker and unknown audience. As this matches the actual speaker's gender, we expect an improvement in translation of first-person pronouns and verbs with first-person pronouns as subjects. “I said to them:”—Signaling an unknown speaker and plural audience. “He said to them:”—Masculine speaker and plural audience. “She said to them:”—Female speaker and plural audience—the complete, correct condition. We expect the best translation accuracy on this setup. “He/she said to him/her”—Here we set an (incorrect) singular gender-marked audience, to investigate our ability to control the audience morphology.
Output:
| [
"What are the components of the black-box context injection system?"
] | task461-d395bbe86c184e629af26437acd0606e |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We re-implement the model proposed in BIBREF3, and use it as a baseline for our problem. The rationale behind choosing this particular model as a baseline is it's proven good predictive performance on multilingual text classification.
Output:
| [
"What is their baseline model?"
] | task461-fd66857f4d2a49f6b77fa5a248eed877 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: First, we propose a class of recurrent-like neural networks for NLP tasks that satisfy the differential equation DISPLAYFORM0
where DISPLAYFORM0
and where INLINEFORM0 and INLINEFORM1 are learned functions. INLINEFORM2 corresponds to traditional RNNs, with INLINEFORM3 . For INLINEFORM4 , this takes the form of RNN cells with either nested internal memories or dependencies that extend temporally beyond the immediately previous hidden state.
Output:
| [
"What novel class of recurrent-like networks is proposed?"
] | task461-35e80869c2634cb4901003ef8866ec7d |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: The data set we evaluate on in this work is WMT English-French NewsTest2014, which has 380M words of parallel training data and a 3003 sentence test set. The NewsTest2013 set is used for validation.
Output:
| [
"Do they only test on one dataset?"
] | task461-31c5758b20794999848f8725962e60f6 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: These models define parametrized similarity scoring functions $: Q\times T\rightarrow \mathbb {R}$ , where $Q$ is the set of natural language questions and $T$ is the set of paraphrases of logical forms.
Output:
| [
"Does a neural scoring function take both the question and the logical form as inputs?"
] | task461-addb4dc5d0c54066b2be2fee0427c5b9 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Encoders with induced latent structures have been shown to benefit several tasks including document classification, natural language inference BIBREF12, BIBREF13, and machine translation BIBREF11.
Output:
| [
"Is there any evidence that encoders with latent structures work well on other tasks?"
] | task461-9a9b5c62a82d41809424e68c30a96bda |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: This decoding approach closely follows Algorithm SECREF7 , but along with soft back pointers, we also compute hard back pointers at each time step. After computing all the relevant quantities like model score, loss etc., we follow the hard backpointers to obtain the best sequence INLINEFORM0 .
Output:
| [
"Do they compare partially complete sequences (created during steps of beam search) to gold/target sequences?"
] | task461-7c8ed00e6cd84bf0a5d6fb6f02c34fd3 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: The 16 classes are inspired by the OntoNotes5 corpus BIBREF7 as well as the ACE (Automatic Content Extraction) English Annotation Guidelines for Entities Version 6.6 2008.06.13 BIBREF8.
Output:
| [
"How did they determine the distinct classes?"
] | task461-9567b20b211e4725ab5435634c161299 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: The data for this project are two parts, the first part is the historical S&P 500 component stocks, which are downloaded from the Yahoo Finance. We use the data over the period of from 12/07/2017 to 06/01/2018. The second part is the news article from financial domain are collected with the same time period as stock data. Hence, only news article from financial domain are collected. The data is mainly taken from Webhose archived data, which consists of 306242 news articles present in JSON format, dating from December 2017 up to end of June 2018.
Output:
| [
"What is the dataset used in the paper?"
] | task461-9c132b60ac8c4629bd50943386826a07 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Only the information concerned with the dictionary definitions are used there, discarding the polarity scores. However, when we utilise the supervised score (+1 or -1), words of opposite polarities (e.g. “happy" and “unhappy") get far away from each other as they are translated across coordinate regions.
Output:
| [
"How are the supervised scores of the words calculated?"
] | task461-abd38a5fcdf348b0b1ee96b66488693f |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: In particular, we aggregate documents from the CommonCrawl dataset that has the most overlapping n-grams with the questions. We name this dataset STORIES since most of the constituent documents take the form of a story with long chain of coherent events. Figure 5 -left and middle show that STORIES always yield the highest accuracy for both types of input processing.
Output:
| [
"Which of their training domains improves performance the most?"
] | task461-6146af55a4614d5f87ffa9aebe9dc417 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: These datasets are part of SemEval-2016 Challenge Task 5 BIBREF27 , BIBREF28 . Table TABREF7 shows the number of observations in each test corpus.
Output:
| [
"what datasets were used in evaluation?"
] | task461-68751ce251ce4f14bdcb6d5434a9e622 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We suspect the absence of decoding in maximum likelihood estimation as a cause behind this inconsistency, and suggest investigating sequence-level learning as an alternative in the future. Inconsistency may arise from the lack of decoding in solving this optimization problem. Maximum likelihood learning fits the model $p_{\theta }$ using the data distribution, whereas a decoded sequence from the trained model follows the distribution $q_{\mathcal {F}}$ induced by a decoding algorithm. Based on this discrepancy, we make a strong conjecture: we cannot be guaranteed to obtain a good consistent sequence generator using maximum likelihood learning and greedy decoding.
Output:
| [
"Is infinite-length sequence generation a result of training with maximum likelihood?"
] | task461-153b21a68ff44399b3a1500351607a84 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: As far as we know, all existing systems treat this task as a pipeline of two separate subtasks, i.e., event extraction and temporal relation classification, and they also assume that gold events are given when training the relation classifier BIBREF0, BIBREF1, BIBREF2, BIBREF3, BIBREF4, BIBREF5. Specifically, they built end-to-end systems that extract events first and then predict temporal relations between them (Fig. FIGREF1). In these pipeline models, event extraction errors will propagate to the relation classification step and cannot be corrected afterwards. Our first contribution is the proposal of a joint model that extracts both events and temporal relations simultaneously (see Fig. FIGREF1).
Output:
| [
"Is this the first paper to propose a joint model for event and temporal relation extraction?"
] | task461-ae825391410149ec8770b0911af775f2 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: As it is reported that conservatives and liberals exhibit different behaviors on online social platforms BIBREF19BIBREF20BIBREF21, we further assigned a political bias label to different US outlets (and therefore news articles) following the procedure described in BIBREF2. In order to assess the robustness of our method, we performed classification experiments by training only on left-biased (or right-biased) outlets of both disinformation and mainstream domains and testing on the entire set of sources, as well as excluding particular sources that outweigh the others in terms of samples to avoid over-fitting.
Output:
| [
"How is the political bias of different sources included in the model?"
] | task461-551ad34be2374027a7269ccca9467f15 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We find that the visual attention is very sparse, in that just one source encoding is attended to (the maximum visual attention over source encodings, across the test set, has mean 0.99 and standard deviation 0.015), thereby limiting the use of modulation. In both cases, we find that the visual component of the attention hasn't learnt any variation over the source encodings, again suggesting that the visual embeddings do not lend themselves to enhancing token-level discriminativess during prediction. We find this to be consistent across sentences of different lengths.
Output:
| [
"What is result of their attention distribution analysis?"
] | task461-da1229590eed431ba78626bc55dfe828 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We adopt the DSTC2 BIBREF20 dataset and Maluuba BIBREF21 dataset to evaluate our proposed model.
Output:
| [
"What two benchmark datasets are used?"
] | task461-3552697a524b467c9241a23e7dbc3fe1 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Experimental results show that our joint model outperforms the visual-only model in all cases, and the text-only model on Wikipedia and two subsets of arXiv.
Output:
| [
"Do the methods that work best on academic papers also work best on Wikipedia?"
] | task461-6ffdf94bb562403992a57f7d308ceb06 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: The final embedding dimensionality is equal to the number of unique word labels in the training set, which is 1061.
Output:
| [
"Which dimensionality do they use for their embeddings?"
] | task461-55e2ac21292e4ea08e387d4f44cc3e23 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Note that the question answering tasks we consider here are multimodal in that while the context is a procedural text, the question and the multiple choice answers are composed of images.
Output:
| [
"What multimodality is available in the dataset?"
] | task461-43c36d4b5dd14da4bfad6468de8dee3f |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We find that communities that are characterized by specialized, constantly-updating content have higher user retention rates, but also exhibit larger linguistic gaps that separate newcomers from established members. More closely examining factors that could contribute to this linguistic gap, we find that especially within distinctive communities, established users have an increased propensity to engage with the community's specialized content, compared to newcomers (Section SECREF5 ).
Output:
| [
"What patterns do they observe about how user engagement varies with the characteristics of a community?"
] | task461-93f057e249a946e092f928c0131d99b5 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: The Y-axis in the figure is the success rate of the agent (measured in terms of number of dialogs that resulted in launching a skill divided by total number of dialogs), and the X-axis is the number of learning steps.
Output:
| [
"How did they measure effectiveness?"
] | task461-b459e440ec87451bb4aa79ecc3678a11 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: (proposed) Bi-LSTM/CRF + Bi-CharLSTM with modality attention (W+C): uses the modality attention to merge word and character embeddings.
(proposed) Bi-LSTM/CRF + Bi-CharLSTM + Inception (W+C+V): takes as input visual contexts extracted from InceptionNet as well, concatenated with word and char vectors.
(proposed) Bi-LSTM/CRF + Bi-CharLSTM + Inception with modality attention (W+C+V): uses the modality attention to merge word, character, and visual embeddings as input to entity LSTM.
Output:
| [
"Does their NER model learn NER from both text and images?"
] | task461-36931185333d4f1086cccaf89da4e8df |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We aim to find such content in the social media focusing on the tweets.
Output:
| [
"Does the dataset contain content from various social media platforms?"
] | task461-7b7f97da1e564aedb57858234f5e7f29 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Comparing the natural and artificial sources of our parallel data wrt. several linguistic and distributional properties, we observe that (see Fig. FIGREF21 - FIGREF22 ):
artificial sources are on average shorter than natural ones: when using BT, cases where the source is shorter than the target are rarer; cases when they have the same length are more frequent.
automatic word alignments between artificial sources tend to be more monotonic than when using natural sources, as measured by the average Kendall INLINEFORM0 of source-target alignments BIBREF22 : for French-English the respective numbers are 0.048 (natural) and 0.018 (artificial); for German-English 0.068 and 0.053. The intuition is that properties (i) and (ii) should help translation as compared to natural source, while property (iv) should be detrimental.
Output:
| [
"what is their explanation for the effectiveness of back-translation?"
] | task461-f060e7dc65e541d38e1486c800e28653 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We collect $37,263$ concept-sets as the inputs, each of which contains three to five common concepts. These concept-sets are sampled from several large corpora of image/video captions, such that the concepts inside them are more likely to co-occur in natural scenes. The expected concept-sets in our task are supposed to be likely co-occur in natural, daily-life scenes . The concepts in images/videos captions, which usually describe scenes in our daily life, thus possess the desired property. We therefore collect a large amount of caption sentences from a variety of datasets, including VATEX BIBREF4, LSMDC BIBREF12, ActivityNet BIBREF13, and SNLI BIBREF15, forming 1,040,330 sentences in total.
Output:
| [
"Where do the concept sets come from?"
] | task461-a966f71630fe45feac8e35e43e3cff7c |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We conducted an experiment to determine whether we could maintain or improve classifier performances by applying the following three-tiered feature elimination approach:
Reduction We reduced the dataset encoded for each class by eliminating features that occur less than twice in the full dataset.
Selection We iteratively applied Chi-Square feature selection on the reduced dataset, selecting the top percentile of highest ranked features in increments of 5 percent to train and test the support vector model using a linear kernel and 5-fold, stratified cross-validation.
Rank We cumulatively plotted the average F1-score performances of each incrementally added percentile of top ranked features. We report the percentile and count of features resulting in the first occurrence of the highest average F1-score for each class.
Output:
| [
"What are the three steps to feature elimination?"
] | task461-796f574e139f437085b40bd08fb7e838 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Although our approach strongly outperforms random baselines, the relatively low F1 scores indicate that predicting which word is echoed in explanations is a very challenging task. It follows that we are only able to derive a limited understanding of how people choose to echo words in explanations. The extent to which explanation construction is fundamentally random BIBREF47, or whether there exist other unidentified patterns, is of course an open question. We hope that our study and the resources that we release encourage further work in understanding the pragmatics of explanations.
Output:
| [
"Do authors provide any explanation for intriguing patterns of word being echoed?"
] | task461-0bfb083985a741a68103d8b93f277638 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: The Software Ontology (SWO) BIBREF5 is included because its set of CQs is of substantial size and it was part of Ren et al.'s set of analysed CQs. The CQ sets of Dem@Care BIBREF8 and OntoDT BIBREF9 were included because they were available. CQs for the Stuff BIBREF6 and African Wildlife (AWO) BIBREF7 ontologies were added to the set, because the ontologies were developed by one of the authors (therewith facilitating in-depth domain analysis, if needed), they cover other topics, and are of a different `type' (a tutorial ontology (AWO) and a core ontology (Stuff)), thus contributing to maximising diversity in source selection.
Output:
| [
"How many domains of ontologies do they gather data from?"
] | task461-22354a0b6c26411aabe2df1dd854d717 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Looking at the current WinoGrande leaderboard, it appears that the previous state of the art is based on RoBERTa BIBREF2, which can be characterized as an encoder-only transformer architecture.
Output:
| [
"What is the previous state of the art?"
] | task461-0439625bc2a44e55b1abc157103ec901 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We collect three years of online news articles from June 2016 to June 2019.
Output:
| [
"What unlabeled corpus did they use?"
] | task461-a117dd78233b4691a12348d7e3bd1f5a |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: The total F-1 score on the OntoNotes dataset is 88%, and the total F-1 cross-validation score on the 112 class Wiki(gold) dataset is 53%.
Output:
| [
"What results do they achieve using their proposed approach?"
] | task461-0e6f08bc23684d59ac2fe65a0555701d |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Span detector. We adopt a multi-turn answer module for the span detector BIBREF1 . Formally, at time step INLINEFORM0 in the range of INLINEFORM1 , the state is defined by INLINEFORM2 . The initial state INLINEFORM3 is the summary of the INLINEFORM4 : INLINEFORM5 , where INLINEFORM6 . Here, INLINEFORM7 is computed from the previous state INLINEFORM8 and memory INLINEFORM9 : INLINEFORM10 and INLINEFORM11 . Finally, a bilinear function is used to find the begin and end point of answer spans at each reasoning step INLINEFORM12 : DISPLAYFORM0 DISPLAYFORM1
The final prediction is the average of each time step: INLINEFORM0 . We randomly apply dropout on the step level in each time step during training, as done in BIBREF1 .
Output:
| [
"What is the architecture of the span detector?"
] | task461-769018a5828246d0a47d6a965df4a31d |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: The extensive use of emojis has drawn a growing attention from researchers BIBREF4 , BIBREF5 because the emojis convey fruitful semantical and sentimental information to visually complement the textual information which is significantly useful in understanding the embedded emotional signals in texts BIBREF6 However, the previous literatures lack in considerations of the linguistic complexities and diversity of emoji. Therefore, previous emoji embedding methods fail to handle the situation when the semantics or sentiments of the learned emoji embeddings contradict the information from the corresponding contexts BIBREF5 , or when the emojis convey multiple senses of semantics and sentiments such as ( and ). In practice, emojis can either summarize and emphasis the original tune of their contexts, or express more complex semantics such as irony and sarcasm by being combined with contexts of contradictory semantics or sentiments. Conventional emoji analysis can only extract single embedding of each emoji, and such embeddings will confuse the following sentiment analysis model by inconsistent sentiment signals from the input texts and emojis
Output:
| [
"What is the motivation for training bi-sense embeddings?"
] | task461-b28f4d6c74894d0bba9dc3f9d4673288 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: IDEA
BIBREF9 Two different BERT models were developed. For Friends, pre-training was done using a sliding window of two utterances to provide dialogue context. Both Next Sentence Prediction (NSP) phase on the complete unlabeled scripts from all 10 seasons of Friends, which are available for download. In addition, the model learned the emotional disposition of each of six main six main characters in Friends (Rachel, Monica, Phoebe, Joey, Chandler and Ross) by adding a special token to represent the speaker. For EmotionPush, pre-training was performed on Twitter data, as it is similar in nature to chat based dialogues. In both cases, special attention was given to the class imbalance issue by applying “weighted balanced warming” on the loss function.
Output:
| [
"What model was used by the top team?"
] | task461-bc37e8c38d014185aa526da5a4d6f273 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We carried out the experimentation with a range of classifiers of different types: Support Vector Machines (SVM), Gaussian Naive Bayes, Multinomial Naive Bayes, Decision Trees, Random Forests and a Maximum Entropy classifier.
Output:
| [
"What model do they train?"
] | task461-ddd401eadbe94c92a9414c9ebc929cf2 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: When evaluating classifiers it is common to use accuracy, precision and recall as well as Hamming loss. It has been shown that when calculating precision and recall on multi-label classifiers, it can be advantageous to use micro averaged precision and recall BIBREF6 . The formulas for micro averaged precision are expressed as DISPLAYFORM0 DISPLAYFORM1
Output:
| [
"what evaluation metrics are discussed?"
] | task461-f26f2500ca474d5884bc6b048ca59652 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: The stance towards vaccination was categorized into `Negative’, `Neutral’, `Positive’ and `Not clear’.
Output:
| [
"Do they allow for messages with vaccination-related key terms to be of neutral stance?"
] | task461-48a84e82335d4f088fcc327c741ac54e |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Dataset Probes and Construction
Our probing methodology starts by constructing challenge datasets (Figure FIGREF1, yellow box) from a target set of knowledge resources. Each of our probing datasets consists of multiple-choice questions that include a question $\textbf {q}$ and a set of answer choices or candidates $\lbrace a_{1},...a_{N}\rbrace $. This section describes in detail the 5 different datasets we build, which are drawn from two sources of expert knowledge, namely WordNet BIBREF35 and the GNU Collaborative International Dictionary of English (GCIDE). We describe each resource in turn, and explain how the resulting dataset probes, which we call WordNetQA and DictionaryQA, are constructed.
For convenience, we will describe each source of expert knowledge as a directed, edge-labeled graph $G$. The nodes of this graph are $\mathcal {V} = \mathcal {C} \cup \mathcal {W} \cup \mathcal {S} \cup \mathcal {D}$, where $\mathcal {C}$ is a set of atomic concepts, $\mathcal {W}$ a set of words, $\mathcal {S}$ a set of sentences, and $\mathcal {D}$ a set of definitions (see Table TABREF4 for details for WordNet and GCIDE). Each edge of $G$ is directed from an atomic concept in $\mathcal {C}$ to another node in $V$, and is labeled with a relation, such as hypernym or isa$^\uparrow $, from a set of relations $\mathcal {R}$ (see Table TABREF4).
When defining our probe question templates, it will be useful to view $G$ as a set of (relation, source, target) triples $\mathcal {T} \subseteq \mathcal {R} \times \mathcal {C} \times \mathcal {V}$. Due to their origin in an expert knowledge source, such triples preserve semantic consistency. For instance, when the relation in a triple is def, the corresponding edge maps a concept in $\mathcal {C}$ to a definition in $\mathcal {D}$.
To construct probe datasets, we rely on two heuristic functions, defined below for each individual probe: $\textsc {gen}_{\mathcal {Q}}(\tau )$, which generates gold question-answer pairs $(\textbf {q},\textbf {a})$ from a set of triples $\tau \subseteq \mathcal {T}$ and question templates $\mathcal {Q}$, and $\textsc {distr}(\tau ^{\prime })$, which generates distractor answers choices $\lbrace a^{\prime }_{1},...a^{\prime }_{N-1} \rbrace $ based on another set of triples $\tau ^{\prime }$ (where usually $\tau \subset \tau ^{\prime }$). For brevity, we will use $\textsc {gen}(\tau )$ to denote $\textsc {gen}_{\mathcal {Q}}(\tau )$, leaving question templates $\mathcal {Q}$ implicit.
Dataset Probes and Construction ::: WordNetQA
WordNet is an English lexical database consisting of around 117k concepts, which are organized into groups of synsets that each contain a gloss (i.e., a definition of the target concept), a set of representative English words (called lemmas), and, in around 33k synsets, example sentences. In addition, many synsets have ISA links to other synsets that express complex taxonomic relations. Figure FIGREF6 shows an example and Table TABREF4 summarizes how we formulate WordNet as a set of triples $\mathcal {T}$ of various types. These triples together represent a directed, edge-labeled graph $G$. Our main motivation for using WordNet, as opposed to a resource such as ConceptNet BIBREF36, is the availability of glosses ($\mathcal {D}$) and example sentences ($\mathcal {S}$), which allows us to construct natural language questions that contextualize the types of concepts we want to probe.
Dataset Probes and Construction ::: WordNetQA ::: Example Generation @!START@$\textsc {gen}(\tau )$@!END@.
We build 4 individual datasets based on semantic relations native to WordNet (see BIBREF37): hypernymy (i.e., generalization or ISA reasoning up a taxonomy, ISA$^\uparrow $), hyponymy (ISA$^{\downarrow }$), synonymy, and definitions. To generate a set of questions in each case, we employ a number of rule templates $\mathcal {Q}$ that operate over tuples. A subset of such templates is shown in Table TABREF8. The templates were designed to mimic naturalistic questions we observed in our science benchmarks.
For example, suppose we wish to create a question $\textbf {q}$ about the definition of a target concept $c \in \mathcal {C}$. We first select a question template from $\mathcal {Q}$ that first introduces the concept $c$ and its lemma $l \in \mathcal {W}$ in context using the example sentence $s \in \mathcal {S}$, and then asks to identify the corresponding WordNet gloss $d \in \mathcal {D}$, which serves as the gold answer $\textbf {a}$. The same is done for ISA reasoning; each question about a hypernym/hyponym relation between two concepts $c \rightarrow ^{\uparrow /\downarrow } c^{\prime } \in \mathcal {T}_{i}$ (e.g., $\texttt {dog} \rightarrow ^{\uparrow /\downarrow } \texttt {animal/terrier}$) first introduces a context for $c$ and then asks for an answer that identifies $c^{\prime }$ (which is also provided with a gloss so as to contain all available context).
In the latter case, the rules $(\texttt {isa}^{r},c,c^{\prime }) \in \mathcal {T}_i$ in Table TABREF8 cover only direct ISA links from $c$ in direction $r \in \lbrace \uparrow ,\downarrow \rbrace $. In practice, for each $c$ and direction $r$, we construct tests that cover the set HOPS$(c,r)$ of all direct as well as derived ISA relations of $c$:
This allows us to evaluate the extent to which models are able to handle complex forms of reasoning that require several inferential steps or hops.
Dataset Probes and Construction ::: WordNetQA ::: Distractor Generation: @!START@$\textsc {distr}(\tau ^{\prime })$@!END@.
An example of how distractors are generated is shown in Figure FIGREF6, which relies on similar principles as above. For each concept $c$, we choose 4 distractor answers that are close in the WordNet semantic space. For example, when constructing hypernymy tests for $c$ from the set hops$(c,\uparrow )$, we build distractors by drawing from $\textsc {hops}(c,\downarrow )$ (and vice versa), as well as from the $\ell $-deep sister family of $c$, defined as follows. The 1-deep sister family is simply $c$'s siblings or sisters, i.e., the other children $\tilde{c} \ne c$ of the parent node $c^{\prime }$ of $c$. For $\ell > 1$, the $\ell $-deep sister family also includes all descendants of each $\tilde{c}$ up to $\ell -1$ levels deep, denoted $\textsc {hops}_{\ell -1}(\tilde{c},\downarrow )$. Formally:
For definitions and synonyms we build distractors from all of these sets (with a similar restriction on the depth of sister distractors as noted above). In doing this, we can systematically investigate model performance on a wide range of distractor sets.
Dataset Probes and Construction ::: WordNetQA ::: Perturbations and Semantic Clusters
Based on how we generate data, for each concept $c$ (i.e., atomic WordNet synset) and probe type (i.e., definitions, hypernymy, etc.), we have a wide variety of questions related to $c$ that manipulate 1) the complexity of reasoning that is involved (e.g., the number of inferential hops) and; 2) the types of distractors (or distractor perturbations) that are employed. We call such sets semantic clusters. As we describe in the next section, semantic clusters allow us to devise new types of evaluation that reveal whether models have comprehensive and consistent knowledge of target concepts (e.g., evaluating whether a model can correctly answer several questions associated with a concept, as opposed to a few disjoint instances).
Details of the individual datasets are shown in Table TABREF12. From these sets, we follow BIBREF22 in allocating a maximum of 3k examples for training and reserve the rest for development and testing. Since we are interested in probing, having large held-out sets allows us to do detailed analysis and cluster-based evaluation.
Dataset Probes and Construction ::: DictionaryQA
The DictionaryQA dataset is created from the GCIDE dictionary, which is a comprehensive open-source English dictionary built largely from the Webster's Revised Unabridged Dictionary BIBREF38. Each entry consists of a word, its part-of-speech, its definition, and an optional example sentence (see Table TABREF14). Overall, 33k entries (out of a total of 155k) contain example sentences/usages. As with the WordNet probes, we focus on this subset so as to contextualize each word being probed. In contrast to WordNet, GCIDE does not have ISA relations or explicit synsets, so we take each unique entry to be a distinct sense. We then use the dictionary entries to create a probe that centers around word-sense disambiguation, as described below.
Dataset Probes and Construction ::: DictionaryQA ::: Example and Distractor Generation.
To generate gold questions and answers, we use the same generation templates for definitions exemplified in Figure TABREF8 for WordNetQA. To generate distractors, we simply take alternative definitions for the target words that represent a different word sense (e.g., the alternative definitions of gift shown in Table TABREF14), as well as randomly chosen definitions if needed to create a 5-way multiple choice question. As above, we reserve a maximum of 3k examples for training. Since we have only 9k examples in total in this dataset (see WordSense in Table TABREF12), we also reserve 3k each for development and testing.
We note that initial attempts to build this dataset through standard random splitting gave rise to certain systematic biases that were exploited by the choice-only baseline models described in the next section, and hence inflated overall model scores. After several efforts at filtering we found that, among other factors, using definitions from entries without example sentences as distractors (e.g., the first two entries in Table TABREF14) had a surprising correlation with such biases. This suggests that possible biases involving differences between dictionary entries with and without examples can taint the resulting automatically generated MCQA dataset (for more discussion on the pitfalls involved with automatic dataset construction, see Section SECREF5).
Output:
| [
"Are the automatically constructed datasets subject to quality control?"
] | task461-e6c91e118ad041388eecc9f9cd4a05b8 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Once the S-V-O is generated, Text2Visual provides users with visual components that convey the S-V-O text meanings.
Output:
| [
"Does their solution involve connecting images and text?"
] | task461-d8eaf44b111e41d3b739b015686baad0 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We learn that a number of factors can influence the performance of adversarial attacks, including architecture of the classifier, sentence length and input domain.
Output:
| [
"What other factors affect the performance?"
] | task461-51a4f177f3d54207866ff13e22f7bb39 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: In this paper we proposed a methodology to identify words that could lead to confusion at any given node of a speech recognition based system. We used edit distance as the metric to identifying the possible confusion between the active words. There is a significant saving in terms of being able to identify recognition bottlenecks in a menu based speech solution through this analysis because it does not require actual people testing the system. Actual use of this analysis was carried out for a speech solution developed for Indian Railway Inquiry System to identify bottlenecks in the system before its actual launch.
Output:
| [
"what bottlenecks were identified?"
] | task461-74b78a91143f4f16a862e3c79a7ff2a1 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: For the proposed model, we denote INLINEFORM0 parameterized by INLINEFORM1 as a neural-based feature encoder that maps documents from both domains to a shared feature space, and INLINEFORM2 parameterized by INLINEFORM3 as a fully connected layer with softmax activation serving as the sentiment classifier. We have left the feature encoder INLINEFORM0 unspecified, for which, a few options can be considered. In our implementation, we adopt a one-layer CNN structure from previous works BIBREF22 , BIBREF4 , as it has been demonstrated to work well for sentiment classification tasks.
Output:
| [
"What is the architecture of the model?"
] | task461-2b9f1dd09e2b4c5d9276447d44dec250 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Since the training data consists only of utterance-denotation pairs, the ranker is trained to maximize the log-likelihood of the correct answer $z$ by treating logical forms as a latent variable The role of the ranker is to score the candidate logical forms generated by the parser; at test time, the logical form receiving the highest score will be used for execution. The ranker is a discriminative log-linear model over logical form $y$ given utterance $x$ :
Output:
| [
"How does the model compute the likelihood of executing to the correction semantic denotation?"
] | task461-fb66bcbcf9d94fcfa587695641510644 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We experiment with small feed-forward networks for four diverse NLP tasks: language identification, part-of-speech tagging, word segmentation, and preordering for statistical machine translation.
Output:
| [
"What NLP tasks do the authors evaluate feed-forward networks on?"
] | task461-68ae97741c28478eb878e8e9b3c94978 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: In this section, we consider two kinds of relational classification tasks: (1) relation prediction and (2) relation extraction. We hope to design a simple and clear experiment setup to conduct error analysis for relational prediction. Therefore, we consider a typical method TransE BIBREF3 as the subject as well as FB15K BIBREF3 as the dataset. For relation extraction, we consider the supervised relation extraction setting and TACRED dataset BIBREF10 . As for the subject model, we use the best model on TACRED dataset — position-aware neural sequence model.
Output:
| [
"Which competitive relational classification models do they test?"
] | task461-35bb583a8c5449db8114bd7796173cf7 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: To reduce variance and boost accuracy, we ensemble 10 CNNs and 10 LSTMs together through soft voting. The models ensembled have different random weight initializations, different number of epochs (from 4 to 20 in total), different set of filter sizes (either INLINEFORM0 , INLINEFORM1 or INLINEFORM2 ) and different embedding pre-training algorithms (either Word2vec or FastText).
Output:
| [
"How many CNNs and LSTMs were ensembled?"
] | task461-36293ebdb89c425ea04b5847a1c4dfe2 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: The real-time tweets scores were calculated in the same way as the historical data and summed up for a minute and sent to the machine learning model with the Bitcoin price in the previous minute and the rolling average price. It predicted the next minute's Bitcoin price from the given data. After the actual price arrived, the RMS value was calculated and the machine learning model updated itself to predict with better understanding the next value.
Output:
| [
"What experimental evaluation is used?"
] | task461-86d8f04f087e45479a2f3d3334ab7e3f |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Generic Sarcasm. We first examine the different patterns learned on the Gen dataset. We observe that the not-sarcastic patterns appear to capture technical and scientific language, while the sarcastic patterns tend to capture subjective language that is not topic-specific. We observe an abundance of adjective and adverb patterns for the sarcastic class, although we do not use adjective and adverb patterns in our regex retrieval method. Rhetorical Questions. We notice that while the not-sarcastic patterns generated for RQs are similar to the topic-specific not-sarcastic patterns we find in the general dataset, there are some interesting features of the sarcastic patterns that are more unique to the RQs.
Many of our sarcastic questions focus specifically on attacks on the mental abilities of the addressee. This generalization is made clear when we extract and analyze the verb, subject, and object arguments using the Stanford dependency parser BIBREF32 for the questions in the RQ dataset. Hyperbole. One common pattern for hyperbole involves adverbs and adjectives, as noted above. We did not use this pattern to retrieve hyperbole, but because each hyperbolic sarcastic utterance contains multiple cues, we learn an expanded class of patterns for hyperbole. We learn a number of verbal patterns that we had not previously associated with hyperbole, as shown in Table TABREF34 . Interestingly, many of these instantiate the observations of CanoMora2009 on hyperbole and its related semantic fields: creating contrast by exclusion, e.g. no limit and no way, or by expanding a predicated class, e.g. everyone knows. Many of them are also contrastive.
Output:
| [
"What are the linguistic differences between each class?"
] | task461-6e1bccf6ebcf424ab299a734b1b9ad33 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: The quality class of a Wikipedia article is assigned by Wikipedia reviewers or any registered user, who can discuss through the article's talk page to reach consensus. The arXiv dataset BIBREF2 consists of three subsets of academic articles under the arXiv repository of Computer Science (cs), from the three subject areas of: Artificial Intelligence (cs.ai), Computation and Language (cs.cl), and Machine Learning (cs.lg). In line with the original dataset formulation BIBREF2 , a paper is considered to have been accepted (i.e. is positively labeled) if it matches a paper in the DBLP database or is otherwise accepted by any of the following conferences: ACL, EMNLP, NAACL, EACL, TACL, NIPS, ICML, ICLR, or AAAI. Failing this, it is considered to be rejected (noting that some of the papers may not have been submitted to one of these conferences).
Output:
| [
"Where do they get their ground truth quality judgments?"
] | task461-2a61cf7139744e44a41f44bb2c694556 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We started by answering always YES (in batch 2 and 3) to get the baseline performance. For batch 4 we used entailment.
Output:
| [
"What was the baseline model?"
] | task461-6b6e1999992d48d9878585e8ad049211 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: It is an order of magnitude more efficient in terms of training time. The model is complex, both in terms of implementation and run-time. Indeed, this model requires pre-training and mutual-learning and requires days of training time, whereas the simple architecture we propose requires on the order of an hour (and is easy to implement). MGNC-CNN is usually better than MG-CNN. And on the Subj dataset, MG-CNN actually achieves slightly better results than BIBREF11 , with far less complexity and required training time (MGNC-CNN performs comparably, although no better, here).
Output:
| [
"How much faster is training time for MGNC-CNN over the baselines?"
] | task461-7b17696523484b27b9ef0af0c57ab335 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: In particular, we investigated attention to nouns, verbs, pronouns, subjects, objects, and negation words, and special BERT tokens across the tasks.
Output:
| [
"What handcrafter features-of-interest are used?"
] | task461-65d0bba786644babac4ac9e61ab96960 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Word Lattice
As shown in Figure FIGREF4 , a word lattice is a directed graph INLINEFORM0 , where INLINEFORM1 represents a node set and INLINEFORM2 represents a edge set. For a sentence in Chinese, which is a sequence of Chinese characters INLINEFORM3 , all of its possible substrings that can be considered as words are treated as vertexes, i.e. INLINEFORM4 . Then, all neighbor words are connected by directed edges according to their positions in the original sentence, i.e. INLINEFORM5 .
Output:
| [
"How do they obtain word lattices from words?"
] | task461-0869ee13c4d1432db757deda380d4d3c |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We propose a natural language generation model based on BERT, making good use of the pre-trained language model in the encoder and decoder process, and the model can be trained end-to-end without handcrafted features. During model training, the objective of our model is sum of the two processes, jointly trained using "teacher-forcing" algorithm. During training we feed the ground-truth summary to each decoder and minimize the objective.
$$L_{model} = \hat{L}_{dec} + \hat{L}_{refine}$$ (Eq. 23)
At test time, each time step we choose the predicted word by $\hat{y} = argmax_{y^{\prime }} P(y^{\prime }|x)$ , use beam search to generate the draft summaries, and use greedy search to generate the refined summaries.
Output:
| [
"How are the different components of the model trained? Is it trained end-to-end?"
] | task461-cabebceb764d4952bed50cab56b9ddff |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Each one of these tokenizers, we combine with some types of representation methods, including word to vector methods such as continuous bag of words BIBREF5, pre-trained embedding as fasttext (trained on Wiki Vietnamese language) BIBREF6 and sonvx (trained on Vietnamese newspaper) BIBREF7 The dataset in this HSD task is really imbalance. Clean class dominates with 91.5%, offensive class takes 5% and the rest belongs to hate class with 3.5%.
Output:
| [
"What dataset do they use?"
] | task461-898426fd356b42289225be0c8b2fc9f5 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: To the best of our knowledge, this is the first large-scale reusable sentence representation model obtained by combining a set of training objectives with the level of diversity explored here, i.e. multi-lingual NMT, natural language inference, constituency parsing and skip-thought vectors.
Output:
| [
"Which training objectives do they combine?"
] | task461-08748b7407064bb9b3543485e5f3a86b |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Fourteen such feature extractors have been implemented which can be clubbed into 3 major categories:
[noitemsep]
Lexicon Features
Word Vectors
Syntax Features
Output:
| [
"how many total combined features were there?"
] | task461-54d8cab908a74ad789688bb4b4877dfa |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: We use the annotations from experts for an abstract if it exists otherwise use crowd annotations.
Output:
| [
"How do they match annotators to instances?"
] | task461-b725d9c308224ea2bc17be10b6c0f973 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: The only requirement is that the model accepts as input, an embedding layer (for entities and relations). If a model fulfills this requirement (which a large number of neural models on knowledge graphs do), we can just use Dolores embeddings as a drop-in replacement. We just initialize the corresponding embedding layer with Dolores embeddings.
Output:
| [
"Is fine-tuning required to incorporate these embeddings into existing models?"
] | task461-afe91dd98e1c4fb99fc8ae8d23363424 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: In CBOW architecture the task is predicting the word given its context and in SG the task in predicting the context given the word. We built 16 models of word embeddings using the implementation of CBOW and Skip-gram methods in the FastText tool BIBREF9 .
Output:
| [
"What is specific about the specific embeddings?"
] | task461-7f2e0bd14f4a44709975806012bc5408 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Different from previous work, we make our model conceptually simple and modular, so that the most important sub module, namely a five-character window context, can be pretrained using external data.
Output:
| [
"What submodules does the model consist of?"
] | task461-e46cb071e0c1486c9d908bd3a4e4cd20 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: For this reason as a baseline algorithm for English dataset we refer to results from BIBREF0, and as for Russian dataset, we used the probabilistic language model, described in BIBREF8.
Output:
| [
"Which languages are used in the paper?",
"Is the RNN model evaluated against any baseline?"
] | task461-25d0b61991d54a22a2afc2af3f3ac86a |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Performing the Welch's t-test, both changes after weGAN training are statistically significant at a INLINEFORM0 significance level.
Output:
| [
"Do they evaluate grammaticality of generated text?"
] | task461-56328a4917274237aaad6d731a8d6494 |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Automation of cQA forums can be divided into three tasks: question-comment relevance (Task A), question-question relevance (Task B), and question-external comment relevance (Task C). In our cQA tasks, the pair of objects are (question, question) or (question, comment), and the relationship is relevant/irrelevant. For task C, in addition to an original question (oriQ) and an external comment (relC), the question which relC commented on is also given (relQ). To incorporate this extra information, we consider a multitask learning framework which jointly learns to predict the relationships of the three pairs (oriQ/relQ, oriQ/relC, relQ/relC).
Output:
| [
"What supplemental tasks are used for multitask learning?"
] | task461-56201848001849c2b54bed2cbd85bc2c |
Definition: In this task, you will be presented with a context from an academic paper and you have to write an answerable question based on the context. Your questions can be extractive, abstractive, or yes-no questions.
Positive Example 1 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: how was the dataset built?
Positive Example 2 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language are the tweets?
Negative Example 1 -
Input: Using this annotation model, we create a new large publicly available dataset of English tweets.
Output: In what language is tweets?
Negative Example 2 -
Input: Questions are gathered from anonymized, aggregated queries to the Google search engine. Queries that are likely to be yes/no questions are heuristically identified: we found selecting queries where the first word is in a manually constructed set of indicator words and are of sufficient length, to be effective.
Questions are only kept if a Wikipedia page is returned as one of the first five results, in which case the question and Wikipedia page are given to a human annotator for further processing.
Annotators label question/article pairs in a three-step process. First, they decide if the question is good, meaning it is comprehensible, unambiguous, and requesting factual information. This judgment is made before the annotator sees the Wikipedia page. Next, for good questions, annotators find a passage within the document that contains enough information to answer the question. Annotators can mark questions as “not answerable" if the Wikipedia article does not contain the requested information. Finally, annotators mark whether the question's answer is “yes" or “no". Annotating data in this manner is quite expensive since annotators need to search entire Wikipedia documents for relevant evidence and read the text carefully.
Output: What is the size of the dataset?
Now complete the following example -
Input: Note that we adopt a parsimonious design principle in our modelling: both Centroid and Naïve Bayes are parameter-free models, $k$NN only depends on the choice of $k$, and KDE uses a single bandwidth parameter $h$. A Centroid model summarizes each set of seed words by its expected vector in embedding space, and classifies concepts into the class of closest expected embedding in Euclidean distance following a softmax rule; A Naïve Bayes model considers both mean and variance, under the assumption of independence among embedding dimensions, by fitting a normal distribution with mean vector and diagonal covariance matrix to the set of seed words of each class;
Output:
| [
"How does the parameter-free model work?"
] | task461-9bc7edf4bf594274bd67d8302fafd8e4 |
Subsets and Splits