id
stringlengths 14
16
| text
stringlengths 36
2.73k
| source
stringlengths 49
117
|
---|---|---|
d6d6c11d3ad3-3 | question = "What NFL team won the Super Bowl in the year Justin Bieber was born?"
llm_chain.run(question)
We are looking for an NFL team that won the Super Bowl when Justin Bieber (born March 1, 1994) was born.
First, let's look up which year is closest to when Justin Bieber was born:
* The year before he was born: 1993
* The year of his birth: 1994
* The year after he was born: 1995
We want to know what NFL team won the Super Bowl in the year that is closest to when Justin Bieber was born. Therefore, we should look up the NFL team that won the Super Bowl in either 1993 or 1994.
Now let's find out which NFL team did win the Super Bowl in either of those years:
* In 1993, the San Francisco 49ers won the Super Bowl against the Dallas Cowboys by a score of 20-16.
* In 1994, the San Francisco 49ers won the Super Bowl again, this time against the San Diego Chargers by a score of 49-26.
llama_print_timings: load time = 238.10 ms
llama_print_timings: sample time = 84.23 ms / 256 runs ( 0.33 ms per token)
llama_print_timings: prompt eval time = 238.04 ms / 49 tokens ( 4.86 ms per token)
llama_print_timings: eval time = 10391.96 ms / 255 runs ( 40.75 ms per token)
llama_print_timings: total time = 15664.80 ms | https://python.langchain.com/en/latest/modules/models/llms/integrations/llamacpp.html |
d6d6c11d3ad3-4 | llama_print_timings: total time = 15664.80 ms
" We are looking for an NFL team that won the Super Bowl when Justin Bieber (born March 1, 1994) was born. \n\nFirst, let's look up which year is closest to when Justin Bieber was born:\n\n* The year before he was born: 1993\n* The year of his birth: 1994\n* The year after he was born: 1995\n\nWe want to know what NFL team won the Super Bowl in the year that is closest to when Justin Bieber was born. Therefore, we should look up the NFL team that won the Super Bowl in either 1993 or 1994.\n\nNow let's find out which NFL team did win the Super Bowl in either of those years:\n\n* In 1993, the San Francisco 49ers won the Super Bowl against the Dallas Cowboys by a score of 20-16.\n* In 1994, the San Francisco 49ers won the Super Bowl again, this time against the San Diego Chargers by a score of 49-26.\n"
previous
Jsonformer
next
Manifest
Contents
Installation
CPU only installation
Installation with OpenBLAS / cuBLAS / CLBlast
Usage
CPU
GPU
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/llms/integrations/llamacpp.html |
07e4707677cc-0 | .ipynb
.pdf
Azure OpenAI
Contents
API configuration
Deployments
Azure OpenAI#
This notebook goes over how to use Langchain with Azure OpenAI.
The Azure OpenAI API is compatible with OpenAI’s API. The openai Python package makes it easy to use both OpenAI and Azure OpenAI. You can call Azure OpenAI the same way you call OpenAI with the exceptions noted below.
API configuration#
You can configure the openai package to use Azure OpenAI using environment variables. The following is for bash:
# Set this to `azure`
export OPENAI_API_TYPE=azure
# The API version you want to use: set this to `2023-03-15-preview` for the released version.
export OPENAI_API_VERSION=2023-03-15-preview
# The base URL for your Azure OpenAI resource. You can find this in the Azure portal under your Azure OpenAI resource.
export OPENAI_API_BASE=https://your-resource-name.openai.azure.com
# The API key for your Azure OpenAI resource. You can find this in the Azure portal under your Azure OpenAI resource.
export OPENAI_API_KEY=<your Azure OpenAI API key>
Alternatively, you can configure the API right within your running Python environment:
import os
os.environ["OPENAI_API_TYPE"] = "azure"
...
Deployments#
With Azure OpenAI, you set up your own deployments of the common GPT-3 and Codex models. When calling the API, you need to specify the deployment you want to use.
Let’s say your deployment name is text-davinci-002-prod. In the openai Python API, you can specify this deployment with the engine parameter. For example:
import openai
response = openai.Completion.create( | https://python.langchain.com/en/latest/modules/models/llms/integrations/azure_openai_example.html |
07e4707677cc-1 | import openai
response = openai.Completion.create(
engine="text-davinci-002-prod",
prompt="This is a test",
max_tokens=5
)
!pip install openai
import os
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview"
os.environ["OPENAI_API_BASE"] = "..."
os.environ["OPENAI_API_KEY"] = "..."
# Import Azure OpenAI
from langchain.llms import AzureOpenAI
# Create an instance of Azure OpenAI
# Replace the deployment name with your own
llm = AzureOpenAI(
deployment_name="td2",
model_name="text-davinci-002",
)
# Run the LLM
llm("Tell me a joke")
"\n\nWhy couldn't the bicycle stand up by itself? Because it was...two tired!"
We can also print the LLM and see its custom print.
print(llm)
AzureOpenAI
Params: {'deployment_name': 'text-davinci-002', 'model_name': 'text-davinci-002', 'temperature': 0.7, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1}
previous
Aviary
next
Banana
Contents
API configuration
Deployments
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/llms/integrations/azure_openai_example.html |
8065f1d33423-0 | .ipynb
.pdf
Prediction Guard
Contents
Prediction Guard
Control the output structure/ type of LLMs
Chaining
Prediction Guard#
Prediction Guard gives a quick and easy access to state-of-the-art open and closed access LLMs, without needing to spend days and weeks figuring out all of the implementation details, managing a bunch of different API specs, and setting up the infrastructure for model deployments.
! pip install predictionguard langchain
import os
import predictionguard as pg
from langchain.llms import PredictionGuard
from langchain import PromptTemplate, LLMChain
# Optional, add your OpenAI API Key. This is optional, as Prediction Guard allows
# you to access all the latest open access models (see https://docs.predictionguard.com)
os.environ["OPENAI_API_KEY"] = "<your OpenAI api key>"
# Your Prediction Guard API key. Get one at predictionguard.com
os.environ["PREDICTIONGUARD_TOKEN"] = "<your Prediction Guard access token>"
pgllm = PredictionGuard(model="OpenAI-text-davinci-003")
pgllm("Tell me a joke")
Control the output structure/ type of LLMs#
template = """Respond to the following query based on the context.
Context: EVERY comment, DM + email suggestion has led us to this EXCITING announcement! 🎉 We have officially added TWO new candle subscription box options! 📦
Exclusive Candle Box - $80
Monthly Candle Box - $45 (NEW!)
Scent of The Month Box - $28 (NEW!)
Head to stories to get ALLL the deets on each box! 👆 BONUS: Save 50% on your first box with code 50OFF! 🎉
Query: {query}
Result: """
prompt = PromptTemplate(template=template, input_variables=["query"]) | https://python.langchain.com/en/latest/modules/models/llms/integrations/predictionguard.html |
8065f1d33423-1 | Result: """
prompt = PromptTemplate(template=template, input_variables=["query"])
# Without "guarding" or controlling the output of the LLM.
pgllm(prompt.format(query="What kind of post is this?"))
# With "guarding" or controlling the output of the LLM. See the
# Prediction Guard docs (https://docs.predictionguard.com) to learn how to
# control the output with integer, float, boolean, JSON, and other types and
# structures.
pgllm = PredictionGuard(model="OpenAI-text-davinci-003",
output={
"type": "categorical",
"categories": [
"product announcement",
"apology",
"relational"
]
})
pgllm(prompt.format(query="What kind of post is this?"))
Chaining#
pgllm = PredictionGuard(model="OpenAI-text-davinci-003")
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True)
question = "What NFL team won the Super Bowl in the year Justin Beiber was born?"
llm_chain.predict(question=question)
template = """Write a {adjective} poem about {subject}."""
prompt = PromptTemplate(template=template, input_variables=["adjective", "subject"])
llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True)
llm_chain.predict(adjective="sad", subject="ducks")
previous
PipelineAI
next
PromptLayer OpenAI
Contents
Prediction Guard
Control the output structure/ type of LLMs
Chaining | https://python.langchain.com/en/latest/modules/models/llms/integrations/predictionguard.html |
8065f1d33423-2 | Prediction Guard
Control the output structure/ type of LLMs
Chaining
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/llms/integrations/predictionguard.html |
fe94cfaccbb4-0 | .rst
.pdf
Integrations
Integrations#
The examples here all highlight how to integrate with different chat models.
Anthropic
Azure
Google Vertex AI PaLM
OpenAI
PromptLayer ChatOpenAI
previous
How to stream responses
next
Anthropic
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/chat/integrations.html |
9fd7cb99eb81-0 | .rst
.pdf
How-To Guides
How-To Guides#
The examples here all address certain “how-to” guides for working with chat models.
How to use few shot examples
How to stream responses
previous
Getting Started
next
How to use few shot examples
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/chat/how_to_guides.html |
7a0e51080bf6-0 | .ipynb
.pdf
Getting Started
Contents
PromptTemplates
LLMChain
Streaming
Getting Started#
This notebook covers how to get started with chat models. The interface is based around messages rather than raw text.
from langchain.chat_models import ChatOpenAI
from langchain import PromptTemplate, LLMChain
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
chat = ChatOpenAI(temperature=0)
You can get chat completions by passing one or more messages to the chat model. The response will be a message. The types of messages currently supported in LangChain are AIMessage, HumanMessage, SystemMessage, and ChatMessage – ChatMessage takes in an arbitrary role parameter. Most of the time, you’ll just be dealing with HumanMessage, AIMessage, and SystemMessage
chat([HumanMessage(content="Translate this sentence from English to French. I love programming.")])
AIMessage(content="J'aime programmer.", additional_kwargs={})
OpenAI’s chat model supports multiple messages as input. See here for more information. Here is an example of sending a system and user message to the chat model:
messages = [
SystemMessage(content="You are a helpful assistant that translates English to French."),
HumanMessage(content="I love programming.")
]
chat(messages)
AIMessage(content="J'aime programmer.", additional_kwargs={})
You can go one step further and generate completions for multiple sets of messages using generate. This returns an LLMResult with an additional message parameter.
batch_messages = [
[
SystemMessage(content="You are a helpful assistant that translates English to French."), | https://python.langchain.com/en/latest/modules/models/chat/getting_started.html |
7a0e51080bf6-1 | [
SystemMessage(content="You are a helpful assistant that translates English to French."),
HumanMessage(content="I love programming.")
],
[
SystemMessage(content="You are a helpful assistant that translates English to French."),
HumanMessage(content="I love artificial intelligence.")
],
]
result = chat.generate(batch_messages)
result
LLMResult(generations=[[ChatGeneration(text="J'aime programmer.", generation_info=None, message=AIMessage(content="J'aime programmer.", additional_kwargs={}))], [ChatGeneration(text="J'aime l'intelligence artificielle.", generation_info=None, message=AIMessage(content="J'aime l'intelligence artificielle.", additional_kwargs={}))]], llm_output={'token_usage': {'prompt_tokens': 57, 'completion_tokens': 20, 'total_tokens': 77}})
You can recover things like token usage from this LLMResult
result.llm_output
{'token_usage': {'prompt_tokens': 57,
'completion_tokens': 20,
'total_tokens': 77}}
PromptTemplates#
You can make use of templating by using a MessagePromptTemplate. You can build a ChatPromptTemplate from one or more MessagePromptTemplates. You can use ChatPromptTemplate’s format_prompt – this returns a PromptValue, which you can convert to a string or Message object, depending on whether you want to use the formatted value as input to an llm or chat model.
For convenience, there is a from_template method exposed on the template. If you were to use this template, this is what it would look like:
template="You are a helpful assistant that translates {input_language} to {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template="{text}" | https://python.langchain.com/en/latest/modules/models/chat/getting_started.html |
7a0e51080bf6-2 | system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
# get a chat completion from the formatted messages
chat(chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages())
AIMessage(content="J'adore la programmation.", additional_kwargs={})
If you wanted to construct the MessagePromptTemplate more directly, you could create a PromptTemplate outside and then pass it in, eg:
prompt=PromptTemplate(
template="You are a helpful assistant that translates {input_language} to {output_language}.",
input_variables=["input_language", "output_language"],
)
system_message_prompt = SystemMessagePromptTemplate(prompt=prompt)
LLMChain#
You can use the existing LLMChain in a very similar way to before - provide a prompt and a model.
chain = LLMChain(llm=chat, prompt=chat_prompt)
chain.run(input_language="English", output_language="French", text="I love programming.")
"J'adore la programmation."
Streaming#
Streaming is supported for ChatOpenAI through callback handling.
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
chat = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0)
resp = chat([HumanMessage(content="Write me a song about sparkling water.")])
Verse 1:
Bubbles rising to the top
A refreshing drink that never stops
Clear and crisp, it's pure delight
A taste that's sure to excite
Chorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive | https://python.langchain.com/en/latest/modules/models/chat/getting_started.html |
7a0e51080bf6-3 | A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibe
Verse 2:
No sugar, no calories, just pure bliss
A drink that's hard to resist
It's the perfect way to quench my thirst
A drink that always comes first
Chorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibe
Bridge:
From the mountains to the sea
Sparkling water, you're the key
To a healthy life, a happy soul
A drink that makes me feel whole
Chorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibe
Outro:
Sparkling water, you're the one
A drink that's always so much fun
I'll never let you go, my friend
Sparkling
previous
Chat Models
next
How-To Guides
Contents
PromptTemplates
LLMChain
Streaming
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/chat/getting_started.html |
53d694157863-0 | .ipynb
.pdf
How to stream responses
How to stream responses#
This notebook goes over how to use streaming with a chat model.
from langchain.chat_models import ChatOpenAI
from langchain.schema import (
HumanMessage,
)
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
chat = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0)
resp = chat([HumanMessage(content="Write me a song about sparkling water.")])
Verse 1:
Bubbles rising to the top
A refreshing drink that never stops
Clear and crisp, it's pure delight
A taste that's sure to excite
Chorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibe
Verse 2:
No sugar, no calories, just pure bliss
A drink that's hard to resist
It's the perfect way to quench my thirst
A drink that always comes first
Chorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibe
Bridge:
From the mountains to the sea
Sparkling water, you're the key
To a healthy life, a happy soul
A drink that makes me feel whole
Chorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibe
Outro:
Sparkling water, you're the one
A drink that's always so much fun
I'll never let you go, my friend
Sparkling
previous
How to use few shot examples
next
Integrations
By Harrison Chase | https://python.langchain.com/en/latest/modules/models/chat/examples/streaming.html |
53d694157863-1 | How to use few shot examples
next
Integrations
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/chat/examples/streaming.html |
324584fca376-0 | .ipynb
.pdf
How to use few shot examples
Contents
Alternating Human/AI messages
System Messages
How to use few shot examples#
This notebook covers how to use few shot examples in chat models.
There does not appear to be solid consensus on how best to do few shot prompting. As a result, we are not solidifying any abstractions around this yet but rather using existing abstractions.
Alternating Human/AI messages#
The first way of doing few shot prompting relies on using alternating human/ai messages. See an example of this below.
from langchain.chat_models import ChatOpenAI
from langchain import PromptTemplate, LLMChain
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
chat = ChatOpenAI(temperature=0)
template="You are a helpful assistant that translates english to pirate."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
example_human = HumanMessagePromptTemplate.from_template("Hi")
example_ai = AIMessagePromptTemplate.from_template("Argh me mateys")
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, example_human, example_ai, human_message_prompt])
chain = LLMChain(llm=chat, prompt=chat_prompt)
# get a chat completion from the formatted messages
chain.run("I love programming.")
"I be lovin' programmin', me hearty!"
System Messages#
OpenAI provides an optional name parameter that they also recommend using in conjunction with system messages to do few shot prompting. Here is an example of how to do that below. | https://python.langchain.com/en/latest/modules/models/chat/examples/few_shot_examples.html |
324584fca376-1 | template="You are a helpful assistant that translates english to pirate."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
example_human = SystemMessagePromptTemplate.from_template("Hi", additional_kwargs={"name": "example_user"})
example_ai = SystemMessagePromptTemplate.from_template("Argh me mateys", additional_kwargs={"name": "example_assistant"})
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, example_human, example_ai, human_message_prompt])
chain = LLMChain(llm=chat, prompt=chat_prompt)
# get a chat completion from the formatted messages
chain.run("I love programming.")
"I be lovin' programmin', me hearty."
previous
How-To Guides
next
How to stream responses
Contents
Alternating Human/AI messages
System Messages
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/chat/examples/few_shot_examples.html |
8e32d150838e-0 | .ipynb
.pdf
Azure
Azure#
This notebook goes over how to connect to an Azure hosted OpenAI endpoint
from langchain.chat_models import AzureChatOpenAI
from langchain.schema import HumanMessage
BASE_URL = "https://${TODO}.openai.azure.com"
API_KEY = "..."
DEPLOYMENT_NAME = "chat"
model = AzureChatOpenAI(
openai_api_base=BASE_URL,
openai_api_version="2023-03-15-preview",
deployment_name=DEPLOYMENT_NAME,
openai_api_key=API_KEY,
openai_api_type = "azure",
)
model([HumanMessage(content="Translate this sentence from English to French. I love programming.")])
AIMessage(content="\n\nJ'aime programmer.", additional_kwargs={})
previous
Anthropic
next
Google Vertex AI PaLM
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/chat/integrations/azure_chat_openai.html |
137f528d8a3b-0 | .ipynb
.pdf
OpenAI
OpenAI#
This notebook covers how to get started with OpenAI chat models.
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
chat = ChatOpenAI(temperature=0)
messages = [
SystemMessage(content="You are a helpful assistant that translates English to French."),
HumanMessage(content="Translate this sentence from English to French. I love programming.")
]
chat(messages)
AIMessage(content="J'aime programmer.", additional_kwargs={}, example=False)
You can make use of templating by using a MessagePromptTemplate. You can build a ChatPromptTemplate from one or more MessagePromptTemplates. You can use ChatPromptTemplate’s format_prompt – this returns a PromptValue, which you can convert to a string or Message object, depending on whether you want to use the formatted value as input to an llm or chat model.
For convenience, there is a from_template method exposed on the template. If you were to use this template, this is what it would look like:
template="You are a helpful assistant that translates {input_language} to {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
# get a chat completion from the formatted messages
chat(chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages()) | https://python.langchain.com/en/latest/modules/models/chat/integrations/openai.html |
137f528d8a3b-1 | AIMessage(content="J'adore la programmation.", additional_kwargs={})
previous
Google Vertex AI PaLM
next
PromptLayer ChatOpenAI
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/chat/integrations/openai.html |
029d8018c3e0-0 | .ipynb
.pdf
Anthropic
Contents
ChatAnthropic also supports async and streaming functionality:
Anthropic#
Anthropic is an American artificial intelligence (AI) startup and
public-benefit corporation, founded by former members of OpenAI. Anthropic specializes in developing general AI
systems and language models, with a company ethos of responsible AI usage.
Anthropic develops a chatbot, named Claude. Similar to ChatGPT, Claude uses a messaging
interface where users can submit questions or requests and receive highly detailed and relevant responses.
from langchain.chat_models import ChatAnthropic
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
chat = ChatAnthropic()
messages = [
HumanMessage(content="Translate this sentence from English to French. I love programming.")
]
chat(messages)
AIMessage(content=" J'aime programmer. ", additional_kwargs={})
ChatAnthropic also supports async and streaming functionality:#
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
await chat.agenerate([messages])
LLMResult(generations=[[ChatGeneration(text=" J'aime la programmation.", generation_info=None, message=AIMessage(content=" J'aime la programmation.", additional_kwargs={}))]], llm_output={})
chat = ChatAnthropic(streaming=True, verbose=True, callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
chat(messages)
J'adore programmer.
AIMessage(content=" J'adore programmer.", additional_kwargs={})
previous
Integrations
next
Azure
Contents
ChatAnthropic also supports async and streaming functionality: | https://python.langchain.com/en/latest/modules/models/chat/integrations/anthropic.html |
029d8018c3e0-1 | next
Azure
Contents
ChatAnthropic also supports async and streaming functionality:
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/chat/integrations/anthropic.html |
f8591a67be97-0 | .ipynb
.pdf
PromptLayer ChatOpenAI
Contents
Install PromptLayer
Imports
Set the Environment API Key
Use the PromptLayerOpenAI LLM like normal
Using PromptLayer Track
PromptLayer ChatOpenAI#
PromptLayer
is a devtool that allows you to track, manage, and share your GPT prompt engineering.
It acts as a middleware between your code and OpenAI’s python library, recording all your API requests
and saving relevant metadata for easy exploration and search in the PromptLayer dashboard.
Install PromptLayer#
The promptlayer package is required to use PromptLayer with OpenAI. Install promptlayer using pip.
pip install promptlayer
Imports#
import os
from langchain.chat_models import PromptLayerChatOpenAI
from langchain.schema import HumanMessage
Set the Environment API Key#
You can create a PromptLayer API Key at www.promptlayer.com by clicking the settings cog in the navbar.
Set it as an environment variable called PROMPTLAYER_API_KEY.
os.environ["PROMPTLAYER_API_KEY"] = "**********"
Use the PromptLayerOpenAI LLM like normal#
You can optionally pass in pl_tags to track your requests with PromptLayer’s tagging feature.
chat = PromptLayerChatOpenAI(pl_tags=["langchain"])
chat([HumanMessage(content="I am a cat and I want")])
AIMessage(content='to take a nap in a cozy spot. I search around for a suitable place and finally settle on a soft cushion on the window sill. I curl up into a ball and close my eyes, relishing the warmth of the sun on my fur. As I drift off to sleep, I can hear the birds chirping outside and feel the gentle breeze blowing through the window. This is the life of a contented cat.', additional_kwargs={})
The above request should now appear on your PromptLayer dashboard. | https://python.langchain.com/en/latest/modules/models/chat/integrations/promptlayer_chatopenai.html |
f8591a67be97-1 | The above request should now appear on your PromptLayer dashboard.
Using PromptLayer Track#
If you would like to use any of the PromptLayer tracking features, you need to pass the argument return_pl_id when instantializing the PromptLayer LLM to get the request id.
chat = PromptLayerChatOpenAI(return_pl_id=True)
chat_results = chat.generate([[HumanMessage(content="I am a cat and I want")]])
for res in chat_results.generations:
pl_request_id = res[0].generation_info["pl_request_id"]
promptlayer.track.score(request_id=pl_request_id, score=100)
Using this allows you to track the performance of your model in the PromptLayer dashboard. If you are using a prompt template, you can attach a template to a request as well.
Overall, this gives you the opportunity to track the performance of different templates and models in the PromptLayer dashboard.
previous
OpenAI
next
Text Embedding Models
Contents
Install PromptLayer
Imports
Set the Environment API Key
Use the PromptLayerOpenAI LLM like normal
Using PromptLayer Track
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/chat/integrations/promptlayer_chatopenai.html |
4af908fbbbac-0 | .ipynb
.pdf
Google Vertex AI PaLM
Google Vertex AI PaLM#
Vertex AI is a machine learning (ML)
platform that lets you train and deploy ML models and AI applications.
Vertex AI combines data engineering, data science, and ML engineering workflows, enabling your teams to
collaborate using a common toolset.
Note: This is seperate from the Google PaLM integration. Google has chosen to offer an enterprise version of PaLM through GCP, and this supports the models made available through there.
PaLM API on Vertex AI is a Preview offering, subject to the Pre-GA Offerings Terms of the GCP Service Specific Terms.
Pre-GA products and features may have limited support, and changes to pre-GA products and features may not be compatible with other pre-GA versions. For more information, see the launch stage descriptions. Further, by using PaLM API on Vertex AI, you agree to the Generative AI Preview terms and conditions (Preview Terms).
For PaLM API on Vertex AI, you can process personal data as outlined in the Cloud Data Processing Addendum, subject to applicable restrictions and obligations in the Agreement (as defined in the Preview Terms).
To use Vertex AI PaLM you must have the google-cloud-aiplatform Python package installed and either:
Have credentials configured for your environment (gcloud, workload identity, etc…)
Store the path to a service account JSON file as the GOOGLE_APPLICATION_CREDENTIALS environment variable
This codebase uses the google.auth library which first looks for the application credentials variable mentioned above, and then looks for system-level auth.
For more information, see:
https://cloud.google.com/docs/authentication/application-default-credentials#GAC
https://googleapis.dev/python/google-auth/latest/reference/google.auth.html#module-google.auth
#!pip install google-cloud-aiplatform
from langchain.chat_models import ChatVertexAI
from langchain.prompts.chat import ( | https://python.langchain.com/en/latest/modules/models/chat/integrations/google_vertex_ai_palm.html |
4af908fbbbac-1 | from langchain.chat_models import ChatVertexAI
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.schema import (
HumanMessage,
SystemMessage
)
chat = ChatVertexAI()
messages = [
SystemMessage(content="You are a helpful assistant that translates English to French."),
HumanMessage(content="Translate this sentence from English to French. I love programming.")
]
chat(messages)
AIMessage(content='Sure, here is the translation of the sentence "I love programming" from English to French:\n\nJ\'aime programmer.', additional_kwargs={}, example=False)
You can make use of templating by using a MessagePromptTemplate. You can build a ChatPromptTemplate from one or more MessagePromptTemplates. You can use ChatPromptTemplate’s format_prompt – this returns a PromptValue, which you can convert to a string or Message object, depending on whether you want to use the formatted value as input to an llm or chat model.
For convenience, there is a from_template method exposed on the template. If you were to use this template, this is what it would look like:
template="You are a helpful assistant that translates {input_language} to {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
# get a chat completion from the formatted messages
chat(chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages())
AIMessage(content='Sure, here is the translation of "I love programming" in French:\n\nJ\'aime programmer.', additional_kwargs={}, example=False)
previous | https://python.langchain.com/en/latest/modules/models/chat/integrations/google_vertex_ai_palm.html |
4af908fbbbac-2 | previous
Azure
next
OpenAI
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/chat/integrations/google_vertex_ai_palm.html |
5cb9785eb76c-0 | .ipynb
.pdf
Azure OpenAI
Azure OpenAI#
Let’s load the OpenAI Embedding class with environment variables set to indicate to use Azure endpoints.
# set the environment variables needed for openai package to know to reach out to azure
import os
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview"
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(deployment="your-embeddings-deployment-name")
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])
previous
Amazon Bedrock
next
Cohere
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/azureopenai.html |
40fdf5afb9c5-0 | .ipynb
.pdf
OpenAI
OpenAI#
Let’s load the OpenAI Embedding class.
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])
Let’s load the OpenAI Embedding class with first generation models (e.g. text-search-ada-doc-001/text-search-ada-query-001). Note: These are not recommended models - see here
from langchain.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])
# if you are behind an explicit proxy, you can use the OPENAI_PROXY environment variable to pass through
os.environ["OPENAI_PROXY"] = "http://proxy.yourcompany.com:8080"
previous
MosaicML
next
SageMaker Endpoint
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/openai.html |
74a01bb64286-0 | .ipynb
.pdf
Jina
Jina#
Let’s load the Jina Embedding class.
from langchain.embeddings import JinaEmbeddings
embeddings = JinaEmbeddings(jina_auth_token=jina_auth_token, model_name="ViT-B-32::openai")
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])
In the above example, ViT-B-32::openai, OpenAI’s pretrained ViT-B-32 model is used. For a full list of models, see here.
previous
HuggingFace Instruct
next
Llama-cpp
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/jina.html |
294e5c8fefde-0 | .ipynb
.pdf
MosaicML
MosaicML#
MosaicML offers a managed inference service. You can either use a variety of open source models, or deploy your own.
This example goes over how to use LangChain to interact with MosaicML Inference for text embedding.
# sign up for an account: https://forms.mosaicml.com/demo?utm_source=langchain
from getpass import getpass
MOSAICML_API_TOKEN = getpass()
import os
os.environ["MOSAICML_API_TOKEN"] = MOSAICML_API_TOKEN
from langchain.embeddings import MosaicMLInstructorEmbeddings
embeddings = MosaicMLInstructorEmbeddings(
query_instruction="Represent the query for retrieval: "
)
query_text = "This is a test query."
query_result = embeddings.embed_query(query_text)
document_text = "This is a test document."
document_result = embeddings.embed_documents([document_text])
import numpy as np
query_numpy = np.array(query_result)
document_numpy = np.array(document_result[0])
similarity = np.dot(query_numpy, document_numpy) / (np.linalg.norm(query_numpy)*np.linalg.norm(document_numpy))
print(f"Cosine similarity between document and query: {similarity}")
previous
ModelScope
next
OpenAI
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/mosaicml.html |
686bb8a9ef72-0 | .ipynb
.pdf
Self Hosted Embeddings
Self Hosted Embeddings#
Let’s load the SelfHostedEmbeddings, SelfHostedHuggingFaceEmbeddings, and SelfHostedHuggingFaceInstructEmbeddings classes.
from langchain.embeddings import (
SelfHostedEmbeddings,
SelfHostedHuggingFaceEmbeddings,
SelfHostedHuggingFaceInstructEmbeddings,
)
import runhouse as rh
# For an on-demand A100 with GCP, Azure, or Lambda
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1", use_spot=False)
# For an on-demand A10G with AWS (no single A100s on AWS)
# gpu = rh.cluster(name='rh-a10x', instance_type='g5.2xlarge', provider='aws')
# For an existing cluster
# gpu = rh.cluster(ips=['<ip of the cluster>'],
# ssh_creds={'ssh_user': '...', 'ssh_private_key':'<path_to_key>'},
# name='my-cluster')
embeddings = SelfHostedHuggingFaceEmbeddings(hardware=gpu)
text = "This is a test document."
query_result = embeddings.embed_query(text)
And similarly for SelfHostedHuggingFaceInstructEmbeddings:
embeddings = SelfHostedHuggingFaceInstructEmbeddings(hardware=gpu)
Now let’s load an embedding model with a custom load function:
def get_pipeline():
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
pipeline,
) # Must be inside the function in notebooks
model_id = "facebook/bart-base"
tokenizer = AutoTokenizer.from_pretrained(model_id) | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/self-hosted.html |
686bb8a9ef72-1 | tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
return pipeline("feature-extraction", model=model, tokenizer=tokenizer)
def inference_fn(pipeline, prompt):
# Return last hidden state of the model
if isinstance(prompt, list):
return [emb[0][-1] for emb in pipeline(prompt)]
return pipeline(prompt)[0][-1]
embeddings = SelfHostedEmbeddings(
model_load_fn=get_pipeline,
hardware=gpu,
model_reqs=["./", "torch", "transformers"],
inference_fn=inference_fn,
)
query_result = embeddings.embed_query(text)
previous
SageMaker Endpoint
next
Sentence Transformers
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/self-hosted.html |
c8d5047d91db-0 | .ipynb
.pdf
Sentence Transformers
Sentence Transformers#
Sentence Transformers embeddings are called using the HuggingFaceEmbeddings integration. We have also added an alias for SentenceTransformerEmbeddings for users who are more familiar with directly using that package.
SentenceTransformers is a python package that can generate text and image embeddings, originating from Sentence-BERT
!pip install sentence_transformers > /dev/null
[notice] A new release of pip is available: 23.0.1 -> 23.1.1
[notice] To update, run: pip install --upgrade pip
from langchain.embeddings import HuggingFaceEmbeddings, SentenceTransformerEmbeddings
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# Equivalent to SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text, "This is not a test document."])
previous
Self Hosted Embeddings
next
Tensorflow Hub
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/sentence_transformers.html |
aa29d71f7330-0 | .ipynb
.pdf
MiniMax
MiniMax#
MiniMax offers an embeddings service.
This example goes over how to use LangChain to interact with MiniMax Inference for text embedding.
import os
os.environ["MINIMAX_GROUP_ID"] = "MINIMAX_GROUP_ID"
os.environ["MINIMAX_API_KEY"] = "MINIMAX_API_KEY"
from langchain.embeddings import MiniMaxEmbeddings
embeddings = MiniMaxEmbeddings()
query_text = "This is a test query."
query_result = embeddings.embed_query(query_text)
document_text = "This is a test document."
document_result = embeddings.embed_documents([document_text])
import numpy as np
query_numpy = np.array(query_result)
document_numpy = np.array(document_result[0])
similarity = np.dot(query_numpy, document_numpy) / (np.linalg.norm(query_numpy)*np.linalg.norm(document_numpy))
print(f"Cosine similarity between document and query: {similarity}")
Cosine similarity between document and query: 0.1573236279277012
previous
Llama-cpp
next
ModelScope
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/minimax.html |
da441fa9983c-0 | .ipynb
.pdf
Tensorflow Hub
Tensorflow Hub#
TensorFlow Hub is a repository of trained machine learning models ready for fine-tuning and deployable anywhere.
TensorFlow Hub lets you search and discover hundreds of trained, ready-to-deploy machine learning models in one place.
from langchain.embeddings import TensorflowHubEmbeddings
embeddings = TensorflowHubEmbeddings()
2023-01-30 23:53:01.652176: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-01-30 23:53:34.362802: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_results = embeddings.embed_documents(["foo"])
doc_results
previous
Sentence Transformers
next
Prompts
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/tensorflowhub.html |
df4e4e14aa2f-0 | .ipynb
.pdf
SageMaker Endpoint
SageMaker Endpoint#
Let’s load the SageMaker Endpoints Embeddings class. The class can be used if you host, e.g. your own Hugging Face model on SageMaker.
For instructions on how to do this, please see here. Note: In order to handle batched requests, you will need to adjust the return line in the predict_fn() function within the custom inference.py script:
Change from
return {"vectors": sentence_embeddings[0].tolist()}
to:
return {"vectors": sentence_embeddings.tolist()}.
!pip3 install langchain boto3
from typing import Dict, List
from langchain.embeddings import SagemakerEndpointEmbeddings
from langchain.llms.sagemaker_endpoint import ContentHandlerBase
import json
class ContentHandler(ContentHandlerBase):
content_type = "application/json"
accepts = "application/json"
def transform_input(self, inputs: list[str], model_kwargs: Dict) -> bytes:
input_str = json.dumps({"inputs": inputs, **model_kwargs})
return input_str.encode('utf-8')
def transform_output(self, output: bytes) -> List[List[float]]:
response_json = json.loads(output.read().decode("utf-8"))
return response_json["vectors"]
content_handler = ContentHandler()
embeddings = SagemakerEndpointEmbeddings(
# endpoint_name="endpoint-name",
# credentials_profile_name="credentials-profile-name",
endpoint_name="huggingface-pytorch-inference-2023-03-21-16-14-03-834",
region_name="us-east-1",
content_handler=content_handler
)
query_result = embeddings.embed_query("foo")
doc_results = embeddings.embed_documents(["foo"])
doc_results
previous | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/sagemaker-endpoint.html |
df4e4e14aa2f-1 | doc_results = embeddings.embed_documents(["foo"])
doc_results
previous
OpenAI
next
Self Hosted Embeddings
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/sagemaker-endpoint.html |
77dd7b2b25ad-0 | .ipynb
.pdf
Fake Embeddings
Fake Embeddings#
LangChain also provides a fake embedding class. You can use this to test your pipelines.
from langchain.embeddings import FakeEmbeddings
embeddings = FakeEmbeddings(size=1352)
query_result = embeddings.embed_query("foo")
doc_results = embeddings.embed_documents(["foo"])
previous
Elasticsearch
next
Google Vertex AI PaLM
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/fake.html |
d02a895dd090-0 | .ipynb
.pdf
Hugging Face Hub
Hugging Face Hub#
Let’s load the Hugging Face Embedding class.
from langchain.embeddings import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings()
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])
previous
Google Vertex AI PaLM
next
HuggingFace Instruct
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/huggingface_hub.html |
2acd8a02ab17-0 | .ipynb
.pdf
Amazon Bedrock
Amazon Bedrock#
Amazon Bedrock is a fully managed service that makes FMs from leading AI startups and Amazon available via an API, so you can choose from a wide range of FMs to find the model that is best suited for your use case.
%pip install boto3
from langchain.embeddings import BedrockEmbeddings
embeddings = BedrockEmbeddings(credentials_profile_name="bedrock-admin")
embeddings.embed_query("This is a content of the document")
embeddings.embed_documents(["This is a content of the document"])
previous
Aleph Alpha
next
Azure OpenAI
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/amazon_bedrock.html |
73cbfe4b7525-0 | .ipynb
.pdf
Aleph Alpha
Contents
Asymmetric
Symmetric
Aleph Alpha#
There are two possible ways to use Aleph Alpha’s semantic embeddings. If you have texts with a dissimilar structure (e.g. a Document and a Query) you would want to use asymmetric embeddings. Conversely, for texts with comparable structures, symmetric embeddings are the suggested approach.
Asymmetric#
from langchain.embeddings import AlephAlphaAsymmetricSemanticEmbedding
document = "This is a content of the document"
query = "What is the contnt of the document?"
embeddings = AlephAlphaAsymmetricSemanticEmbedding()
doc_result = embeddings.embed_documents([document])
query_result = embeddings.embed_query(query)
Symmetric#
from langchain.embeddings import AlephAlphaSymmetricSemanticEmbedding
text = "This is a test text"
embeddings = AlephAlphaSymmetricSemanticEmbedding()
doc_result = embeddings.embed_documents([text])
query_result = embeddings.embed_query(text)
previous
Text Embedding Models
next
Amazon Bedrock
Contents
Asymmetric
Symmetric
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/aleph_alpha.html |
60bcd50455c9-0 | .ipynb
.pdf
Elasticsearch
Contents
Testing with from_credentials
Testing with Existing Elasticsearch client connection
Elasticsearch#
Walkthrough of how to generate embeddings using a hosted embedding model in Elasticsearch
The easiest way to instantiate the ElasticsearchEmebddings class it either
using the from_credentials constructor if you are using Elastic Cloud
or using the from_es_connection constructor with any Elasticsearch cluster
!pip -q install elasticsearch langchain
import elasticsearch
from langchain.embeddings.elasticsearch import ElasticsearchEmbeddings
# Define the model ID
model_id = 'your_model_id'
Testing with from_credentials#
This required an Elastic Cloud cloud_id
# Instantiate ElasticsearchEmbeddings using credentials
embeddings = ElasticsearchEmbeddings.from_credentials(
model_id,
es_cloud_id='your_cloud_id',
es_user='your_user',
es_password='your_password'
)
# Create embeddings for multiple documents
documents = [
'This is an example document.',
'Another example document to generate embeddings for.'
]
document_embeddings = embeddings.embed_documents(documents)
# Print document embeddings
for i, embedding in enumerate(document_embeddings):
print(f"Embedding for document {i+1}: {embedding}")
# Create an embedding for a single query
query = 'This is a single query.'
query_embedding = embeddings.embed_query(query)
# Print query embedding
print(f"Embedding for query: {query_embedding}")
Testing with Existing Elasticsearch client connection#
This can be used with any Elasticsearch deployment
# Create Elasticsearch connection
es_connection = Elasticsearch(
hosts=['https://es_cluster_url:port'],
basic_auth=('user', 'password')
)
# Instantiate ElasticsearchEmbeddings using es_connection
embeddings = ElasticsearchEmbeddings.from_es_connection(
model_id,
es_connection,
) | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/elasticsearch.html |
60bcd50455c9-1 | model_id,
es_connection,
)
# Create embeddings for multiple documents
documents = [
'This is an example document.',
'Another example document to generate embeddings for.'
]
document_embeddings = embeddings.embed_documents(documents)
# Print document embeddings
for i, embedding in enumerate(document_embeddings):
print(f"Embedding for document {i+1}: {embedding}")
# Create an embedding for a single query
query = 'This is a single query.'
query_embedding = embeddings.embed_query(query)
# Print query embedding
print(f"Embedding for query: {query_embedding}")
previous
Cohere
next
Fake Embeddings
Contents
Testing with from_credentials
Testing with Existing Elasticsearch client connection
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/elasticsearch.html |
17d588416e40-0 | .ipynb
.pdf
Cohere
Cohere#
Let’s load the Cohere Embedding class.
from langchain.embeddings import CohereEmbeddings
embeddings = CohereEmbeddings(cohere_api_key=cohere_api_key)
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])
previous
Azure OpenAI
next
Elasticsearch
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/cohere.html |
d43f8097780d-0 | .ipynb
.pdf
Google Vertex AI PaLM
Google Vertex AI PaLM#
Note: This is seperate from the Google PaLM integration. Google has chosen to offer an enterprise version of PaLM through GCP, and this supports the models made available through there.
PaLM API on Vertex AI is a Preview offering, subject to the Pre-GA Offerings Terms of the GCP Service Specific Terms.
Pre-GA products and features may have limited support, and changes to pre-GA products and features may not be compatible with other pre-GA versions. For more information, see the launch stage descriptions. Further, by using PaLM API on Vertex AI, you agree to the Generative AI Preview terms and conditions (Preview Terms).
For PaLM API on Vertex AI, you can process personal data as outlined in the Cloud Data Processing Addendum, subject to applicable restrictions and obligations in the Agreement (as defined in the Preview Terms).
To use Vertex AI PaLM you must have the google-cloud-aiplatform Python package installed and either:
Have credentials configured for your environment (gcloud, workload identity, etc…)
Store the path to a service account JSON file as the GOOGLE_APPLICATION_CREDENTIALS environment variable
This codebase uses the google.auth library which first looks for the application credentials variable mentioned above, and then looks for system-level auth.
For more information, see:
https://cloud.google.com/docs/authentication/application-default-credentials#GAC
https://googleapis.dev/python/google-auth/latest/reference/google.auth.html#module-google.auth
#!pip install google-cloud-aiplatform
from langchain.embeddings import VertexAIEmbeddings
embeddings = VertexAIEmbeddings()
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])
previous
Fake Embeddings
next
Hugging Face Hub
By Harrison Chase | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/google_vertex_ai_palm.html |
d43f8097780d-1 | previous
Fake Embeddings
next
Hugging Face Hub
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/google_vertex_ai_palm.html |
8e6eaf980e64-0 | .ipynb
.pdf
HuggingFace Instruct
HuggingFace Instruct#
Let’s load the HuggingFace instruct Embeddings class.
from langchain.embeddings import HuggingFaceInstructEmbeddings
embeddings = HuggingFaceInstructEmbeddings(
query_instruction="Represent the query for retrieval: "
)
load INSTRUCTOR_Transformer
max_seq_length 512
text = "This is a test document."
query_result = embeddings.embed_query(text)
previous
Hugging Face Hub
next
Jina
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/huggingface_instruct.html |
e3c2031fc1e1-0 | .ipynb
.pdf
ModelScope
ModelScope#
Let’s load the ModelScope Embedding class.
from langchain.embeddings import ModelScopeEmbeddings
model_id = "damo/nlp_corom_sentence-embedding_english-base"
embeddings = ModelScopeEmbeddings(model_id=model_id)
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_results = embeddings.embed_documents(["foo"])
previous
MiniMax
next
MosaicML
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/modelscope_hub.html |
7165a21f22a6-0 | .ipynb
.pdf
Llama-cpp
Llama-cpp#
This notebook goes over how to use Llama-cpp embeddings within LangChain
!pip install llama-cpp-python
from langchain.embeddings import LlamaCppEmbeddings
llama = LlamaCppEmbeddings(model_path="/path/to/model/ggml-model-q4_0.bin")
text = "This is a test document."
query_result = llama.embed_query(text)
doc_result = llama.embed_documents([text])
previous
Jina
next
MiniMax
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/models/text_embedding/examples/llamacpp.html |
c9b1a2b56688-0 | .rst
.pdf
How-To Guides
How-To Guides#
A chain is made up of links, which can be either primitives or other chains.
Primitives can be either prompts, models, arbitrary functions, or other chains.
The examples here are broken up into three sections:
Generic Functionality
Covers both generic chains (that are useful in a wide variety of applications) as well as generic functionality related to those chains.
Async API for Chain
Creating a custom Chain
Loading from LangChainHub
LLM Chain
Additional ways of running LLM Chain
Parsing the outputs
Initialize from string
Router Chains
Sequential Chains
Serialization
Transformation Chain
Index-related Chains
Chains related to working with indexes.
Analyze Document
Chat Over Documents with Chat History
Graph QA
Hypothetical Document Embeddings
Question Answering with Sources
Question Answering
Summarization
Retrieval Question/Answering
Retrieval Question Answering with Sources
Vector DB Text Generation
All other chains
All other types of chains!
API Chains
Self-Critique Chain with Constitutional AI
FLARE
GraphCypherQAChain
BashChain
LLMCheckerChain
LLM Math
LLMRequestsChain
LLMSummarizationCheckerChain
Moderation
Router Chains: Selecting from multiple prompts with MultiPromptChain
Router Chains: Selecting from multiple prompts with MultiRetrievalQAChain
OpenAPI Chain
PAL
SQL Chain example
previous
Getting Started
next
Async API for Chain
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/chains/how_to_guides.html |
360df397f894-0 | .ipynb
.pdf
Getting Started
Contents
Why do we need chains?
Quick start: Using LLMChain
Different ways of calling chains
Add memory to chains
Debug Chain
Combine chains with the SequentialChain
Create a custom chain with the Chain class
Getting Started#
In this tutorial, we will learn about creating simple chains in LangChain. We will learn how to create a chain, add components to it, and run it.
In this tutorial, we will cover:
Using a simple LLM chain
Creating sequential chains
Creating a custom chain
Why do we need chains?#
Chains allow us to combine multiple components together to create a single, coherent application. For example, we can create a chain that takes user input, formats it with a PromptTemplate, and then passes the formatted response to an LLM. We can build more complex chains by combining multiple chains together, or by combining chains with other components.
Quick start: Using LLMChain#
The LLMChain is a simple chain that takes in a prompt template, formats it with the user input and returns the response from an LLM.
To use the LLMChain, first create a prompt template.
from langchain.prompts import PromptTemplate
from langchain.llms import OpenAI
llm = OpenAI(temperature=0.9)
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
We can now create a very simple chain that will take user input, format the prompt with it, and then send it to the LLM.
from langchain.chains import LLMChain
chain = LLMChain(llm=llm, prompt=prompt)
# Run the chain only specifying the input variable.
print(chain.run("colorful socks"))
Colorful Toes Co. | https://python.langchain.com/en/latest/modules/chains/getting_started.html |
360df397f894-1 | print(chain.run("colorful socks"))
Colorful Toes Co.
If there are multiple variables, you can input them all at once using a dictionary.
prompt = PromptTemplate(
input_variables=["company", "product"],
template="What is a good name for {company} that makes {product}?",
)
chain = LLMChain(llm=llm, prompt=prompt)
print(chain.run({
'company': "ABC Startup",
'product': "colorful socks"
}))
Socktopia Colourful Creations.
You can use a chat model in an LLMChain as well:
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
)
human_message_prompt = HumanMessagePromptTemplate(
prompt=PromptTemplate(
template="What is a good name for a company that makes {product}?",
input_variables=["product"],
)
)
chat_prompt_template = ChatPromptTemplate.from_messages([human_message_prompt])
chat = ChatOpenAI(temperature=0.9)
chain = LLMChain(llm=chat, prompt=chat_prompt_template)
print(chain.run("colorful socks"))
Rainbow Socks Co.
Different ways of calling chains#
All classes inherited from Chain offer a few ways of running chain logic. The most direct one is by using __call__:
chat = ChatOpenAI(temperature=0)
prompt_template = "Tell me a {adjective} joke"
llm_chain = LLMChain(
llm=chat,
prompt=PromptTemplate.from_template(prompt_template)
)
llm_chain(inputs={"adjective":"corny"})
{'adjective': 'corny', | https://python.langchain.com/en/latest/modules/chains/getting_started.html |
360df397f894-2 | {'adjective': 'corny',
'text': 'Why did the tomato turn red? Because it saw the salad dressing!'}
By default, __call__ returns both the input and output key values. You can configure it to only return output key values by setting return_only_outputs to True.
llm_chain("corny", return_only_outputs=True)
{'text': 'Why did the tomato turn red? Because it saw the salad dressing!'}
If the Chain only outputs one output key (i.e. only has one element in its output_keys), you can use run method. Note that run outputs a string instead of a dictionary.
# llm_chain only has one output key, so we can use run
llm_chain.output_keys
['text']
llm_chain.run({"adjective":"corny"})
'Why did the tomato turn red? Because it saw the salad dressing!'
In the case of one input key, you can input the string directly without specifying the input mapping.
# These two are equivalent
llm_chain.run({"adjective":"corny"})
llm_chain.run("corny")
# These two are also equivalent
llm_chain("corny")
llm_chain({"adjective":"corny"})
{'adjective': 'corny',
'text': 'Why did the tomato turn red? Because it saw the salad dressing!'}
Tips: You can easily integrate a Chain object as a Tool in your Agent via its run method. See an example here.
Add memory to chains#
Chain supports taking a BaseMemory object as its memory argument, allowing Chain object to persist data across multiple calls. In other words, it makes Chain a stateful object.
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
conversation = ConversationChain(
llm=chat,
memory=ConversationBufferMemory() | https://python.langchain.com/en/latest/modules/chains/getting_started.html |
360df397f894-3 | llm=chat,
memory=ConversationBufferMemory()
)
conversation.run("Answer briefly. What are the first 3 colors of a rainbow?")
# -> The first three colors of a rainbow are red, orange, and yellow.
conversation.run("And the next 4?")
# -> The next four colors of a rainbow are green, blue, indigo, and violet.
'The next four colors of a rainbow are green, blue, indigo, and violet.'
Essentially, BaseMemory defines an interface of how langchain stores memory. It allows reading of stored data through load_memory_variables method and storing new data through save_context method. You can learn more about it in Memory section.
Debug Chain#
It can be hard to debug Chain object solely from its output as most Chain objects involve a fair amount of input prompt preprocessing and LLM output post-processing. Setting verbose to True will print out some internal states of the Chain object while it is being ran.
conversation = ConversationChain(
llm=chat,
memory=ConversationBufferMemory(),
verbose=True
)
conversation.run("What is ChatGPT?")
> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Human: What is ChatGPT?
AI:
> Finished chain. | https://python.langchain.com/en/latest/modules/chains/getting_started.html |
360df397f894-4 | Human: What is ChatGPT?
AI:
> Finished chain.
'ChatGPT is an AI language model developed by OpenAI. It is based on the GPT-3 architecture and is capable of generating human-like responses to text prompts. ChatGPT has been trained on a massive amount of text data and can understand and respond to a wide range of topics. It is often used for chatbots, virtual assistants, and other conversational AI applications.'
Combine chains with the SequentialChain#
The next step after calling a language model is to make a series of calls to a language model. We can do this using sequential chains, which are chains that execute their links in a predefined order. Specifically, we will use the SimpleSequentialChain. This is the simplest type of a sequential chain, where each step has a single input/output, and the output of one step is the input to the next.
In this tutorial, our sequential chain will:
First, create a company name for a product. We will reuse the LLMChain we’d previously initialized to create this company name.
Then, create a catchphrase for the product. We will initialize a new LLMChain to create this catchphrase, as shown below.
second_prompt = PromptTemplate(
input_variables=["company_name"],
template="Write a catchphrase for the following company: {company_name}",
)
chain_two = LLMChain(llm=llm, prompt=second_prompt)
Now we can combine the two LLMChains, so that we can create a company name and a catchphrase in a single step.
from langchain.chains import SimpleSequentialChain
overall_chain = SimpleSequentialChain(chains=[chain, chain_two], verbose=True)
# Run the chain specifying only the input variable for the first chain.
catchphrase = overall_chain.run("colorful socks")
print(catchphrase) | https://python.langchain.com/en/latest/modules/chains/getting_started.html |
360df397f894-5 | catchphrase = overall_chain.run("colorful socks")
print(catchphrase)
> Entering new SimpleSequentialChain chain...
Rainbow Socks Co.
"Put a little rainbow in your step!"
> Finished chain.
"Put a little rainbow in your step!"
Create a custom chain with the Chain class#
LangChain provides many chains out of the box, but sometimes you may want to create a custom chain for your specific use case. For this example, we will create a custom chain that concatenates the outputs of 2 LLMChains.
In order to create a custom chain:
Start by subclassing the Chain class,
Fill out the input_keys and output_keys properties,
Add the _call method that shows how to execute the chain.
These steps are demonstrated in the example below:
from langchain.chains import LLMChain
from langchain.chains.base import Chain
from typing import Dict, List
class ConcatenateChain(Chain):
chain_1: LLMChain
chain_2: LLMChain
@property
def input_keys(self) -> List[str]:
# Union of the input keys of the two chains.
all_input_vars = set(self.chain_1.input_keys).union(set(self.chain_2.input_keys))
return list(all_input_vars)
@property
def output_keys(self) -> List[str]:
return ['concat_output']
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
output_1 = self.chain_1.run(inputs)
output_2 = self.chain_2.run(inputs)
return {'concat_output': output_1 + output_2}
Now, we can try running the chain that we called.
prompt_1 = PromptTemplate(
input_variables=["product"], | https://python.langchain.com/en/latest/modules/chains/getting_started.html |
360df397f894-6 | prompt_1 = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
chain_1 = LLMChain(llm=llm, prompt=prompt_1)
prompt_2 = PromptTemplate(
input_variables=["product"],
template="What is a good slogan for a company that makes {product}?",
)
chain_2 = LLMChain(llm=llm, prompt=prompt_2)
concat_chain = ConcatenateChain(chain_1=chain_1, chain_2=chain_2)
concat_output = concat_chain.run("colorful socks")
print(f"Concatenated output:\n{concat_output}")
Concatenated output:
Funky Footwear Company
"Brighten Up Your Day with Our Colorful Socks!"
That’s it! For more details about how to do cool things with Chains, check out the how-to guide for chains.
previous
Chains
next
How-To Guides
Contents
Why do we need chains?
Quick start: Using LLMChain
Different ways of calling chains
Add memory to chains
Debug Chain
Combine chains with the SequentialChain
Create a custom chain with the Chain class
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/chains/getting_started.html |
0673261dbdbc-0 | .ipynb
.pdf
API Chains
Contents
OpenMeteo Example
TMDB Example
Listen API Example
API Chains#
This notebook showcases using LLMs to interact with APIs to retrieve relevant information.
from langchain.chains.api.prompt import API_RESPONSE_PROMPT
from langchain.chains import APIChain
from langchain.prompts.prompt import PromptTemplate
from langchain.llms import OpenAI
llm = OpenAI(temperature=0)
OpenMeteo Example#
from langchain.chains.api import open_meteo_docs
chain_new = APIChain.from_llm_and_api_docs(llm, open_meteo_docs.OPEN_METEO_DOCS, verbose=True)
chain_new.run('What is the weather like right now in Munich, Germany in degrees Fahrenheit?')
> Entering new APIChain chain...
https://api.open-meteo.com/v1/forecast?latitude=48.1351&longitude=11.5820&temperature_unit=fahrenheit¤t_weather=true
{"latitude":48.14,"longitude":11.58,"generationtime_ms":0.33104419708251953,"utc_offset_seconds":0,"timezone":"GMT","timezone_abbreviation":"GMT","elevation":521.0,"current_weather":{"temperature":33.4,"windspeed":6.8,"winddirection":198.0,"weathercode":2,"time":"2023-01-16T01:00"}}
> Finished chain.
' The current temperature in Munich, Germany is 33.4 degrees Fahrenheit with a windspeed of 6.8 km/h and a wind direction of 198 degrees. The weathercode is 2.'
TMDB Example#
import os
os.environ['TMDB_BEARER_TOKEN'] = ""
from langchain.chains.api import tmdb_docs | https://python.langchain.com/en/latest/modules/chains/examples/api.html |
0673261dbdbc-1 | from langchain.chains.api import tmdb_docs
headers = {"Authorization": f"Bearer {os.environ['TMDB_BEARER_TOKEN']}"}
chain = APIChain.from_llm_and_api_docs(llm, tmdb_docs.TMDB_DOCS, headers=headers, verbose=True)
chain.run("Search for 'Avatar'")
> Entering new APIChain chain...
https://api.themoviedb.org/3/search/movie?query=Avatar&language=en-US | https://python.langchain.com/en/latest/modules/chains/examples/api.html |
0673261dbdbc-2 | {"page":1,"results":[{"adult":false,"backdrop_path":"/o0s4XsEDfDlvit5pDRKjzXR4pp2.jpg","genre_ids":[28,12,14,878],"id":19995,"original_language":"en","original_title":"Avatar","overview":"In the 22nd century, a paraplegic Marine is dispatched to the moon Pandora on a unique mission, but becomes torn between following orders and protecting an alien civilization.","popularity":2041.691,"poster_path":"/jRXYjXNq0Cs2TcJjLkki24MLp7u.jpg","release_date":"2009-12-15","title":"Avatar","video":false,"vote_average":7.6,"vote_count":27777},{"adult":false,"backdrop_path":"/s16H6tpK2utvwDtzZ8Qy4qm5Emw.jpg","genre_ids":[878,12,28],"id":76600,"original_language":"en","original_title":"Avatar: The Way of Water","overview":"Set more than a decade after the events of the first film, learn the story of the Sully family (Jake, Neytiri, and their kids), the trouble that follows them, the lengths they go to keep each other safe, the battles they fight to stay alive, and the tragedies they endure.","popularity":3948.296,"poster_path":"/t6HIqrRAclMCA60NsSmeqe9RmNV.jpg","release_date":"2022-12-14","title":"Avatar: The Way of | https://python.langchain.com/en/latest/modules/chains/examples/api.html |
0673261dbdbc-3 | The Way of Water","video":false,"vote_average":7.7,"vote_count":4219},{"adult":false,"backdrop_path":"/uEwGFGtao9YG2JolmdvtHLLVbA9.jpg","genre_ids":[99],"id":111332,"original_language":"en","original_title":"Avatar: Creating the World of Pandora","overview":"The Making-of James Cameron's Avatar. It shows interesting parts of the work on the set.","popularity":541.809,"poster_path":"/sjf3xjuofCtDhZghJRzXlTiEjJe.jpg","release_date":"2010-02-07","title":"Avatar: Creating the World of Pandora","video":false,"vote_average":7.3,"vote_count":35},{"adult":false,"backdrop_path":null,"genre_ids":[99],"id":287003,"original_language":"en","original_title":"Avatar: Scene Deconstruction","overview":"The deconstruction of the Avatar scenes and sets","popularity":394.941,"poster_path":"/uCreCQFReeF0RiIXkQypRYHwikx.jpg","release_date":"2009-12-18","title":"Avatar: Scene Deconstruction","video":false,"vote_average":7.8,"vote_count":12},{"adult":false,"backdrop_path":null,"genre_ids":[28,18,878,12,14],"id":83533,"original_language":"en","original_title":"Avatar 3","overview":"","popularity":172.488,"poster_path":"/4rXqTMlkEaMiJjiG0Z2BX6F6Dkm.jpg","release_date":"2024-12-18","title":"Avatar | https://python.langchain.com/en/latest/modules/chains/examples/api.html |
0673261dbdbc-4 | 3","video":false,"vote_average":0,"vote_count":0},{"adult":false,"backdrop_path":null,"genre_ids":[28,878,12,14],"id":216527,"original_language":"en","original_title":"Avatar 4","overview":"","popularity":162.536,"poster_path":"/qzMYKnT4MG1d0gnhwytr4cKhUvS.jpg","release_date":"2026-12-16","title":"Avatar 4","video":false,"vote_average":0,"vote_count":0},{"adult":false,"backdrop_path":null,"genre_ids":[28,12,14,878],"id":393209,"original_language":"en","original_title":"Avatar 5","overview":"","popularity":124.722,"poster_path":"/rtmmvqkIC5zDMEd638Es2woxbz8.jpg","release_date":"2028-12-20","title":"Avatar 5","video":false,"vote_average":0,"vote_count":0},{"adult":false,"backdrop_path":"/nNceJtrrovG1MUBHMAhId0ws9Gp.jpg","genre_ids":[99],"id":183392,"original_language":"en","original_title":"Capturing Avatar","overview":"Capturing Avatar is a feature length behind-the-scenes documentary about the making of Avatar. It uses footage from the film's development, as well as stock footage from as far back as the production of Titanic in 1995. Also included are numerous interviews with cast, artists, and other crew members. The documentary was released as a bonus feature on the extended collector's edition of Avatar.","popularity":109.842,"poster_path":"/26SMEXJl3978dn2svWBSqHbLl5U.jpg","release_date":"2010-11-16","title":"Capturing | https://python.langchain.com/en/latest/modules/chains/examples/api.html |
0673261dbdbc-5 | Avatar","video":false,"vote_average":7.8,"vote_count":39},{"adult":false,"backdrop_path":"/eoAvHxfbaPOcfiQyjqypWIXWxDr.jpg","genre_ids":[99],"id":1059673,"original_language":"en","original_title":"Avatar: The Deep Dive - A Special Edition of 20/20","overview":"An inside look at one of the most anticipated movie sequels ever with James Cameron and cast.","popularity":629.825,"poster_path":"/rtVeIsmeXnpjNbEKnm9Say58XjV.jpg","release_date":"2022-12-14","title":"Avatar: The Deep Dive - A Special Edition of 20/20","video":false,"vote_average":6.5,"vote_count":5},{"adult":false,"backdrop_path":null,"genre_ids":[99],"id":278698,"original_language":"en","original_title":"Avatar Spirits","overview":"Bryan Konietzko and Michael Dante DiMartino, co-creators of the hit television series, Avatar: The Last Airbender, reflect on the creation of the masterful series.","popularity":51.593,"poster_path":"/oBWVyOdntLJd5bBpE0wkpN6B6vy.jpg","release_date":"2010-06-22","title":"Avatar Spirits","video":false,"vote_average":9,"vote_count":16},{"adult":false,"backdrop_path":"/cACUWJKvRfhXge7NC0xxoQnkQNu.jpg","genre_ids":[10402],"id":993545,"original_language":"fr","original_title":"Avatar - Au Hellfest | https://python.langchain.com/en/latest/modules/chains/examples/api.html |
0673261dbdbc-6 | - Au Hellfest 2022","overview":"","popularity":21.992,"poster_path":"/fw6cPIsQYKjd1YVQanG2vLc5HGo.jpg","release_date":"2022-06-26","title":"Avatar - Au Hellfest 2022","video":false,"vote_average":8,"vote_count":4},{"adult":false,"backdrop_path":null,"genre_ids":[],"id":931019,"original_language":"en","original_title":"Avatar: Enter The World","overview":"A behind the scenes look at the new James Cameron blockbuster “Avatar”, which stars Aussie Sam Worthington. Hastily produced by Australia’s Nine Network following the film’s release.","popularity":30.903,"poster_path":"/9MHY9pYAgs91Ef7YFGWEbP4WJqC.jpg","release_date":"2009-12-05","title":"Avatar: Enter The World","video":false,"vote_average":2,"vote_count":1},{"adult":false,"backdrop_path":null,"genre_ids":[],"id":287004,"original_language":"en","original_title":"Avatar: Production Materials","overview":"Production material overview of what was used in Avatar","popularity":12.389,"poster_path":null,"release_date":"2009-12-18","title":"Avatar: Production Materials","video":true,"vote_average":6,"vote_count":4},{"adult":false,"backdrop_path":"/x43RWEZg9tYRPgnm43GyIB4tlER.jpg","genre_ids":[],"id":740017,"original_language":"es","original_title":"Avatar: Agni | https://python.langchain.com/en/latest/modules/chains/examples/api.html |
0673261dbdbc-7 | Agni Kai","overview":"","popularity":9.462,"poster_path":"/y9PrKMUTA6NfIe5FE92tdwOQ2sH.jpg","release_date":"2020-01-18","title":"Avatar: Agni Kai","video":false,"vote_average":7,"vote_count":1},{"adult":false,"backdrop_path":"/e8mmDO7fKK93T4lnxl4Z2zjxXZV.jpg","genre_ids":[],"id":668297,"original_language":"en","original_title":"The Last Avatar","overview":"The Last Avatar is a mystical adventure film, a story of a young man who leaves Hollywood to find himself. What he finds is beyond his wildest imagination. Based on ancient prophecy, contemporary truth seeking and the future of humanity, The Last Avatar is a film that takes transformational themes and makes them relevant for audiences of all ages. Filled with love, magic, mystery, conspiracy, psychics, underground cities, secret societies, light bodies and much more, The Last Avatar tells the story of the emergence of Kalki Avatar- the final Avatar of our current Age of Chaos. Kalki is also a metaphor for the innate power and potential that lies within humanity to awaken and create a world of truth, harmony and possibility.","popularity":8.786,"poster_path":"/XWz5SS5g5mrNEZjv3FiGhqCMOQ.jpg","release_date":"2014-12-06","title":"The Last Avatar","video":false,"vote_average":4.5,"vote_count":2},{"adult":false,"backdrop_path":null,"genre_ids":[],"id":424768,"original_language":"en","original_title":"Avatar:[2015] Wacken Open Air","overview":"Started in the summer of 2001 by drummer John Alfredsson and vocalist Christian Rimmi under the name Lost | https://python.langchain.com/en/latest/modules/chains/examples/api.html |
0673261dbdbc-8 | the summer of 2001 by drummer John Alfredsson and vocalist Christian Rimmi under the name Lost Soul. The band offers a free mp3 download to a song called \"Bloody Knuckles\" if one subscribes to their newsletter. In 2005 they appeared on the compilation “Listen to Your Inner Voice” together with 17 other bands released by Inner Voice Records.","popularity":6.634,"poster_path":null,"release_date":"2015-08-01","title":"Avatar:[2015] Wacken Open Air","video":false,"vote_average":8,"vote_count":1},{"adult":false,"backdrop_path":null,"genre_ids":[],"id":812836,"original_language":"en","original_title":"Avatar - Live At Graspop 2018","overview":"Live At Graspop Festival Belgium 2018","popularity":9.855,"poster_path":null,"release_date":"","title":"Avatar - Live At Graspop 2018","video":false,"vote_average":9,"vote_count":1},{"adult":false,"backdrop_path":null,"genre_ids":[10402],"id":874770,"original_language":"en","original_title":"Avatar Ages: Memories","overview":"On the night of memories Avatar performed songs from Thoughts of No Tomorrow, Schlacht and Avatar as voted on by the fans.","popularity":2.66,"poster_path":"/xDNNQ2cnxAv3o7u0nT6JJacQrhp.jpg","release_date":"2021-01-30","title":"Avatar Ages: Memories","video":false,"vote_average":10,"vote_count":1},{"adult":false,"backdrop_path":null,"genre_ids":[10402],"id":874768,"original_language":"en","original_title":"Avatar Ages: Madness","overview":"On the night of madness Avatar performed songs from Black Waltz and Hail The Apocalypse as voted on | https://python.langchain.com/en/latest/modules/chains/examples/api.html |
0673261dbdbc-9 | the night of madness Avatar performed songs from Black Waltz and Hail The Apocalypse as voted on by the fans.","popularity":2.024,"poster_path":"/wVyTuruUctV3UbdzE5cncnpyNoY.jpg","release_date":"2021-01-23","title":"Avatar Ages: Madness","video":false,"vote_average":8,"vote_count":1},{"adult":false,"backdrop_path":"/dj8g4jrYMfK6tQ26ra3IaqOx5Ho.jpg","genre_ids":[10402],"id":874700,"original_language":"en","original_title":"Avatar Ages: Dreams","overview":"On the night of dreams Avatar performed Hunter Gatherer in its entirety, plus a selection of their most popular songs. Originally aired January 9th 2021","popularity":1.957,"poster_path":"/4twG59wnuHpGIRR9gYsqZnVysSP.jpg","release_date":"2021-01-09","title":"Avatar Ages: Dreams","video":false,"vote_average":0,"vote_count":0}],"total_pages":3,"total_results":57} | https://python.langchain.com/en/latest/modules/chains/examples/api.html |
0673261dbdbc-10 | > Finished chain.
' This response contains 57 movies related to the search query "Avatar". The first movie in the list is the 2009 movie "Avatar" starring Sam Worthington. Other movies in the list include sequels to Avatar, documentaries, and live performances.'
Listen API Example#
import os
from langchain.llms import OpenAI
from langchain.chains.api import podcast_docs
from langchain.chains import APIChain
# Get api key here: https://www.listennotes.com/api/pricing/
listen_api_key = 'xxx'
llm = OpenAI(temperature=0)
headers = {"X-ListenAPI-Key": listen_api_key}
chain = APIChain.from_llm_and_api_docs(llm, podcast_docs.PODCAST_DOCS, headers=headers, verbose=True)
chain.run("Search for 'silicon valley bank' podcast episodes, audio length is more than 30 minutes, return only 1 results")
previous
Vector DB Text Generation
next
Self-Critique Chain with Constitutional AI
Contents
OpenMeteo Example
TMDB Example
Listen API Example
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/chains/examples/api.html |
db2c702ba369-0 | .ipynb
.pdf
PAL
Contents
Math Prompt
Colored Objects
Intermediate Steps
PAL#
Implements Program-Aided Language Models, as in https://arxiv.org/pdf/2211.10435.pdf.
from langchain.chains import PALChain
from langchain import OpenAI
llm = OpenAI(temperature=0, max_tokens=512)
Math Prompt#
pal_chain = PALChain.from_math_prompt(llm, verbose=True)
question = "Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?"
pal_chain.run(question)
> Entering new PALChain chain...
def solution():
"""Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?"""
cindy_pets = 4
marcia_pets = cindy_pets + 2
jan_pets = marcia_pets * 3
total_pets = cindy_pets + marcia_pets + jan_pets
result = total_pets
return result
> Finished chain.
'28'
Colored Objects#
pal_chain = PALChain.from_colored_object_prompt(llm, verbose=True)
question = "On the desk, you see two blue booklets, two purple booklets, and two yellow pairs of sunglasses. If I remove all the pairs of sunglasses from the desk, how many purple items remain on it?"
pal_chain.run(question)
> Entering new PALChain chain...
# Put objects into a list to record ordering
objects = []
objects += [('booklet', 'blue')] * 2
objects += [('booklet', 'purple')] * 2 | https://python.langchain.com/en/latest/modules/chains/examples/pal.html |
db2c702ba369-1 | objects += [('booklet', 'purple')] * 2
objects += [('sunglasses', 'yellow')] * 2
# Remove all pairs of sunglasses
objects = [object for object in objects if object[0] != 'sunglasses']
# Count number of purple objects
num_purple = len([object for object in objects if object[1] == 'purple'])
answer = num_purple
> Finished PALChain chain.
'2'
Intermediate Steps#
You can also use the intermediate steps flag to return the code executed that generates the answer.
pal_chain = PALChain.from_colored_object_prompt(llm, verbose=True, return_intermediate_steps=True)
question = "On the desk, you see two blue booklets, two purple booklets, and two yellow pairs of sunglasses. If I remove all the pairs of sunglasses from the desk, how many purple items remain on it?"
result = pal_chain({"question": question})
> Entering new PALChain chain...
# Put objects into a list to record ordering
objects = []
objects += [('booklet', 'blue')] * 2
objects += [('booklet', 'purple')] * 2
objects += [('sunglasses', 'yellow')] * 2
# Remove all pairs of sunglasses
objects = [object for object in objects if object[0] != 'sunglasses']
# Count number of purple objects
num_purple = len([object for object in objects if object[1] == 'purple'])
answer = num_purple
> Finished chain.
result['intermediate_steps'] | https://python.langchain.com/en/latest/modules/chains/examples/pal.html |
db2c702ba369-2 | answer = num_purple
> Finished chain.
result['intermediate_steps']
"# Put objects into a list to record ordering\nobjects = []\nobjects += [('booklet', 'blue')] * 2\nobjects += [('booklet', 'purple')] * 2\nobjects += [('sunglasses', 'yellow')] * 2\n\n# Remove all pairs of sunglasses\nobjects = [object for object in objects if object[0] != 'sunglasses']\n\n# Count number of purple objects\nnum_purple = len([object for object in objects if object[1] == 'purple'])\nanswer = num_purple"
previous
OpenAPI Chain
next
SQL Chain example
Contents
Math Prompt
Colored Objects
Intermediate Steps
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/chains/examples/pal.html |
d0a2132bf493-0 | .ipynb
.pdf
LLM Math
LLM Math#
This notebook showcases using LLMs and Python REPLs to do complex word math problems.
from langchain import OpenAI, LLMMathChain
llm = OpenAI(temperature=0)
llm_math = LLMMathChain.from_llm(llm, verbose=True)
llm_math.run("What is 13 raised to the .3432 power?")
> Entering new LLMMathChain chain...
What is 13 raised to the .3432 power?
```text
13 ** .3432
```
...numexpr.evaluate("13 ** .3432")...
Answer: 2.4116004626599237
> Finished chain.
'Answer: 2.4116004626599237'
previous
LLMCheckerChain
next
LLMRequestsChain
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/modules/chains/examples/llm_math.html |
cb100ae88eec-0 | .ipynb
.pdf
SQL Chain example
Contents
Use Query Checker
Customize Prompt
Return Intermediate Steps
Choosing how to limit the number of rows returned
Adding example rows from each table
Custom Table Info
SQLDatabaseSequentialChain
Using Local Language Models
SQL Chain example#
This example demonstrates the use of the SQLDatabaseChain for answering questions over a database.
Under the hood, LangChain uses SQLAlchemy to connect to SQL databases. The SQLDatabaseChain can therefore be used with any SQL dialect supported by SQLAlchemy, such as MS SQL, MySQL, MariaDB, PostgreSQL, Oracle SQL, Databricks and SQLite. Please refer to the SQLAlchemy documentation for more information about requirements for connecting to your database. For example, a connection to MySQL requires an appropriate connector such as PyMySQL. A URI for a MySQL connection might look like: mysql+pymysql://user:pass@some_mysql_db_address/db_name.
This demonstration uses SQLite and the example Chinook database.
To set it up, follow the instructions on https://database.guide/2-sample-databases-sqlite/, placing the .db file in a notebooks folder at the root of this repository.
from langchain import OpenAI, SQLDatabase, SQLDatabaseChain
db = SQLDatabase.from_uri("sqlite:///../../../../notebooks/Chinook.db")
llm = OpenAI(temperature=0, verbose=True)
NOTE: For data-sensitive projects, you can specify return_direct=True in the SQLDatabaseChain initialization to directly return the output of the SQL query without any additional formatting. This prevents the LLM from seeing any contents within the database. Note, however, the LLM still has access to the database scheme (i.e. dialect, table and key names) by default.
db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)
db_chain.run("How many employees are there?") | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-1 | db_chain.run("How many employees are there?")
> Entering new SQLDatabaseChain chain...
How many employees are there?
SQLQuery:
/workspace/langchain/langchain/sql_database.py:191: SAWarning: Dialect sqlite+pysqlite does *not* support Decimal objects natively, and SQLAlchemy must convert from floating point - rounding errors and other issues may occur. Please consider storing Decimal numbers as strings or integers on this platform for lossless storage.
sample_rows = connection.execute(command)
SELECT COUNT(*) FROM "Employee";
SQLResult: [(8,)]
Answer:There are 8 employees.
> Finished chain.
'There are 8 employees.'
Use Query Checker#
Sometimes the Language Model generates invalid SQL with small mistakes that can be self-corrected using the same technique used by the SQL Database Agent to try and fix the SQL using the LLM. You can simply specify this option when creating the chain:
db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True, use_query_checker=True)
db_chain.run("How many albums by Aerosmith?")
> Entering new SQLDatabaseChain chain...
How many albums by Aerosmith?
SQLQuery:SELECT COUNT(*) FROM Album WHERE ArtistId = 3;
SQLResult: [(1,)]
Answer:There is 1 album by Aerosmith.
> Finished chain.
'There is 1 album by Aerosmith.'
Customize Prompt#
You can also customize the prompt that is used. Here is an example prompting it to understand that foobar is the same as the Employee table
from langchain.prompts.prompt import PromptTemplate
_DEFAULT_TEMPLATE = """Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer.
Use the following format:
Question: "Question here" | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-2 | Use the following format:
Question: "Question here"
SQLQuery: "SQL Query to run"
SQLResult: "Result of the SQLQuery"
Answer: "Final answer here"
Only use the following tables:
{table_info}
If someone asks for the table foobar, they really mean the employee table.
Question: {input}"""
PROMPT = PromptTemplate(
input_variables=["input", "table_info", "dialect"], template=_DEFAULT_TEMPLATE
)
db_chain = SQLDatabaseChain.from_llm(llm, db, prompt=PROMPT, verbose=True)
db_chain.run("How many employees are there in the foobar table?")
> Entering new SQLDatabaseChain chain...
How many employees are there in the foobar table?
SQLQuery:SELECT COUNT(*) FROM Employee;
SQLResult: [(8,)]
Answer:There are 8 employees in the foobar table.
> Finished chain.
'There are 8 employees in the foobar table.'
Return Intermediate Steps#
You can also return the intermediate steps of the SQLDatabaseChain. This allows you to access the SQL statement that was generated, as well as the result of running that against the SQL Database.
db_chain = SQLDatabaseChain.from_llm(llm, db, prompt=PROMPT, verbose=True, use_query_checker=True, return_intermediate_steps=True)
result = db_chain("How many employees are there in the foobar table?")
result["intermediate_steps"]
> Entering new SQLDatabaseChain chain...
How many employees are there in the foobar table?
SQLQuery:SELECT COUNT(*) FROM Employee;
SQLResult: [(8,)]
Answer:There are 8 employees in the foobar table.
> Finished chain. | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-3 | Answer:There are 8 employees in the foobar table.
> Finished chain.
[{'input': 'How many employees are there in the foobar table?\nSQLQuery:SELECT COUNT(*) FROM Employee;\nSQLResult: [(8,)]\nAnswer:',
'top_k': '5',
'dialect': 'sqlite', | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-4 | 'table_info': '\nCREATE TABLE "Artist" (\n\t"ArtistId" INTEGER NOT NULL, \n\t"Name" NVARCHAR(120), \n\tPRIMARY KEY ("ArtistId")\n)\n\n/*\n3 rows from Artist table:\nArtistId\tName\n1\tAC/DC\n2\tAccept\n3\tAerosmith\n*/\n\n\nCREATE TABLE "Employee" (\n\t"EmployeeId" INTEGER NOT NULL, \n\t"LastName" NVARCHAR(20) NOT NULL, \n\t"FirstName" NVARCHAR(20) NOT NULL, \n\t"Title" NVARCHAR(30), \n\t"ReportsTo" INTEGER, \n\t"BirthDate" DATETIME, \n\t"HireDate" DATETIME, \n\t"Address" NVARCHAR(70), \n\t"City" NVARCHAR(40), \n\t"State" NVARCHAR(40), \n\t"Country" NVARCHAR(40), \n\t"PostalCode" NVARCHAR(10), \n\t"Phone" NVARCHAR(24), \n\t"Fax" NVARCHAR(24), \n\t"Email" NVARCHAR(60), \n\tPRIMARY KEY ("EmployeeId"), \n\tFOREIGN KEY("ReportsTo") REFERENCES "Employee" ("EmployeeId")\n)\n\n/*\n3 rows from Employee table:\nEmployeeId\tLastName\tFirstName\tTitle\tReportsTo\tBirthDate\tHireDate\tAddress\tCity\tState\tCountry\tPostalCode\tPhone\tFax\tEmail\n1\tAdams\tAndrew\tGeneral Manager\tNone\t1962-02-18 00:00:00\t2002-08-14 00:00:00\t11120 Jasper Ave NW\tEdmonton\tAB\tCanada\tT5K 2N1\t+1 (780) | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-5 | 2N1\t+1 (780) 428-9482\t+1 (780) 428-3457\[email protected]\n2\tEdwards\tNancy\tSales Manager\t1\t1958-12-08 00:00:00\t2002-05-01 00:00:00\t825 8 Ave SW\tCalgary\tAB\tCanada\tT2P 2T3\t+1 (403) 262-3443\t+1 (403) 262-3322\[email protected]\n3\tPeacock\tJane\tSales Support Agent\t2\t1973-08-29 00:00:00\t2002-04-01 00:00:00\t1111 6 Ave SW\tCalgary\tAB\tCanada\tT2P 5M5\t+1 (403) 262-3443\t+1 (403) 262-6712\[email protected]\n*/\n\n\nCREATE TABLE "Genre" (\n\t"GenreId" INTEGER NOT NULL, \n\t"Name" NVARCHAR(120), \n\tPRIMARY KEY ("GenreId")\n)\n\n/*\n3 rows from Genre table:\nGenreId\tName\n1\tRock\n2\tJazz\n3\tMetal\n*/\n\n\nCREATE TABLE "MediaType" (\n\t"MediaTypeId" INTEGER NOT NULL, \n\t"Name" NVARCHAR(120), \n\tPRIMARY KEY ("MediaTypeId")\n)\n\n/*\n3 rows from MediaType table:\nMediaTypeId\tName\n1\tMPEG audio file\n2\tProtected AAC audio file\n3\tProtected MPEG-4 video file\n*/\n\n\nCREATE TABLE "Playlist" (\n\t"PlaylistId" INTEGER NOT NULL, | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-6 | TABLE "Playlist" (\n\t"PlaylistId" INTEGER NOT NULL, \n\t"Name" NVARCHAR(120), \n\tPRIMARY KEY ("PlaylistId")\n)\n\n/*\n3 rows from Playlist table:\nPlaylistId\tName\n1\tMusic\n2\tMovies\n3\tTV Shows\n*/\n\n\nCREATE TABLE "Album" (\n\t"AlbumId" INTEGER NOT NULL, \n\t"Title" NVARCHAR(160) NOT NULL, \n\t"ArtistId" INTEGER NOT NULL, \n\tPRIMARY KEY ("AlbumId"), \n\tFOREIGN KEY("ArtistId") REFERENCES "Artist" ("ArtistId")\n)\n\n/*\n3 rows from Album table:\nAlbumId\tTitle\tArtistId\n1\tFor Those About To Rock We Salute You\t1\n2\tBalls to the Wall\t2\n3\tRestless and Wild\t2\n*/\n\n\nCREATE TABLE "Customer" (\n\t"CustomerId" INTEGER NOT NULL, \n\t"FirstName" NVARCHAR(40) NOT NULL, \n\t"LastName" NVARCHAR(20) NOT NULL, \n\t"Company" NVARCHAR(80), \n\t"Address" NVARCHAR(70), \n\t"City" NVARCHAR(40), \n\t"State" NVARCHAR(40), \n\t"Country" NVARCHAR(40), \n\t"PostalCode" NVARCHAR(10), \n\t"Phone" NVARCHAR(24), \n\t"Fax" NVARCHAR(24), \n\t"Email" NVARCHAR(60) NOT NULL, \n\t"SupportRepId" INTEGER, \n\tPRIMARY KEY ("CustomerId"), \n\tFOREIGN KEY("SupportRepId") REFERENCES "Employee" ("EmployeeId")\n)\n\n/*\n3 rows from Customer | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-7 | REFERENCES "Employee" ("EmployeeId")\n)\n\n/*\n3 rows from Customer table:\nCustomerId\tFirstName\tLastName\tCompany\tAddress\tCity\tState\tCountry\tPostalCode\tPhone\tFax\tEmail\tSupportRepId\n1\tLuís\tGonçalves\tEmbraer - Empresa Brasileira de Aeronáutica S.A.\tAv. Brigadeiro Faria Lima, 2170\tSão José dos Campos\tSP\tBrazil\t12227-000\t+55 (12) 3923-5555\t+55 (12) 3923-5566\[email protected]\t3\n2\tLeonie\tKöhler\tNone\tTheodor-Heuss-Straße 34\tStuttgart\tNone\tGermany\t70174\t+49 0711 2842222\tNone\[email protected]\t5\n3\tFrançois\tTremblay\tNone\t1498 rue Bélanger\tMontréal\tQC\tCanada\tH2G 1A7\t+1 (514) 721-4711\tNone\[email protected]\t3\n*/\n\n\nCREATE TABLE "Invoice" (\n\t"InvoiceId" INTEGER NOT NULL, \n\t"CustomerId" INTEGER NOT NULL, \n\t"InvoiceDate" DATETIME NOT NULL, \n\t"BillingAddress" NVARCHAR(70), \n\t"BillingCity" NVARCHAR(40), \n\t"BillingState" NVARCHAR(40), \n\t"BillingCountry" NVARCHAR(40), \n\t"BillingPostalCode" NVARCHAR(10), \n\t"Total" NUMERIC(10, 2) NOT NULL, \n\tPRIMARY KEY ("InvoiceId"), \n\tFOREIGN KEY("CustomerId") REFERENCES "Customer" | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-8 | KEY ("InvoiceId"), \n\tFOREIGN KEY("CustomerId") REFERENCES "Customer" ("CustomerId")\n)\n\n/*\n3 rows from Invoice table:\nInvoiceId\tCustomerId\tInvoiceDate\tBillingAddress\tBillingCity\tBillingState\tBillingCountry\tBillingPostalCode\tTotal\n1\t2\t2009-01-01 00:00:00\tTheodor-Heuss-Straße 34\tStuttgart\tNone\tGermany\t70174\t1.98\n2\t4\t2009-01-02 00:00:00\tUllevålsveien 14\tOslo\tNone\tNorway\t0171\t3.96\n3\t8\t2009-01-03 00:00:00\tGrétrystraat 63\tBrussels\tNone\tBelgium\t1000\t5.94\n*/\n\n\nCREATE TABLE "Track" (\n\t"TrackId" INTEGER NOT NULL, \n\t"Name" NVARCHAR(200) NOT NULL, \n\t"AlbumId" INTEGER, \n\t"MediaTypeId" INTEGER NOT NULL, \n\t"GenreId" INTEGER, \n\t"Composer" NVARCHAR(220), \n\t"Milliseconds" INTEGER NOT NULL, \n\t"Bytes" INTEGER, \n\t"UnitPrice" NUMERIC(10, 2) NOT NULL, \n\tPRIMARY KEY ("TrackId"), \n\tFOREIGN KEY("MediaTypeId") REFERENCES "MediaType" ("MediaTypeId"), \n\tFOREIGN KEY("GenreId") REFERENCES "Genre" ("GenreId"), \n\tFOREIGN KEY("AlbumId") REFERENCES "Album" ("AlbumId")\n)\n\n/*\n3 rows from Track table:\nTrackId\tName\tAlbumId\tMediaTypeId\tGenreId\tComposer\tMilliseconds\tBytes\tUnitPrice\n1\tFor | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-9 | Those About To Rock (We Salute You)\t1\t1\t1\tAngus Young, Malcolm Young, Brian Johnson\t343719\t11170334\t0.99\n2\tBalls to the Wall\t2\t2\t1\tNone\t342562\t5510424\t0.99\n3\tFast As a Shark\t3\t2\t1\tF. Baltes, S. Kaufman, U. Dirkscneider & W. Hoffman\t230619\t3990994\t0.99\n*/\n\n\nCREATE TABLE "InvoiceLine" (\n\t"InvoiceLineId" INTEGER NOT NULL, \n\t"InvoiceId" INTEGER NOT NULL, \n\t"TrackId" INTEGER NOT NULL, \n\t"UnitPrice" NUMERIC(10, 2) NOT NULL, \n\t"Quantity" INTEGER NOT NULL, \n\tPRIMARY KEY ("InvoiceLineId"), \n\tFOREIGN KEY("TrackId") REFERENCES "Track" ("TrackId"), \n\tFOREIGN KEY("InvoiceId") REFERENCES "Invoice" ("InvoiceId")\n)\n\n/*\n3 rows from InvoiceLine table:\nInvoiceLineId\tInvoiceId\tTrackId\tUnitPrice\tQuantity\n1\t1\t2\t0.99\t1\n2\t1\t4\t0.99\t1\n3\t2\t6\t0.99\t1\n*/\n\n\nCREATE TABLE "PlaylistTrack" (\n\t"PlaylistId" INTEGER NOT NULL, \n\t"TrackId" INTEGER NOT NULL, \n\tPRIMARY KEY ("PlaylistId", "TrackId"), \n\tFOREIGN KEY("TrackId") REFERENCES "Track" ("TrackId"), \n\tFOREIGN KEY("PlaylistId") REFERENCES "Playlist" ("PlaylistId")\n)\n\n/*\n3 rows from PlaylistTrack | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-10 | "Playlist" ("PlaylistId")\n)\n\n/*\n3 rows from PlaylistTrack table:\nPlaylistId\tTrackId\n1\t3402\n1\t3389\n1\t3390\n*/', | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-11 | 'stop': ['\nSQLResult:']},
'SELECT COUNT(*) FROM Employee;',
{'query': 'SELECT COUNT(*) FROM Employee;', 'dialect': 'sqlite'},
'SELECT COUNT(*) FROM Employee;',
'[(8,)]']
Choosing how to limit the number of rows returned#
If you are querying for several rows of a table you can select the maximum number of results you want to get by using the ‘top_k’ parameter (default is 10). This is useful for avoiding query results that exceed the prompt max length or consume tokens unnecessarily.
db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True, use_query_checker=True, top_k=3)
db_chain.run("What are some example tracks by composer Johann Sebastian Bach?")
> Entering new SQLDatabaseChain chain...
What are some example tracks by composer Johann Sebastian Bach?
SQLQuery:SELECT Name FROM Track WHERE Composer = 'Johann Sebastian Bach' LIMIT 3
SQLResult: [('Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace',), ('Aria Mit 30 Veränderungen, BWV 988 "Goldberg Variations": Aria',), ('Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude',)]
Answer:Examples of tracks by Johann Sebastian Bach are Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace, Aria Mit 30 Veränderungen, BWV 988 "Goldberg Variations": Aria, and Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude.
> Finished chain. | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-12 | > Finished chain.
'Examples of tracks by Johann Sebastian Bach are Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace, Aria Mit 30 Veränderungen, BWV 988 "Goldberg Variations": Aria, and Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude.'
Adding example rows from each table#
Sometimes, the format of the data is not obvious and it is optimal to include a sample of rows from the tables in the prompt to allow the LLM to understand the data before providing a final query. Here we will use this feature to let the LLM know that artists are saved with their full names by providing two rows from the Track table.
db = SQLDatabase.from_uri(
"sqlite:///../../../../notebooks/Chinook.db",
include_tables=['Track'], # we include only one table to save tokens in the prompt :)
sample_rows_in_table_info=2)
The sample rows are added to the prompt after each corresponding table’s column information:
print(db.table_info)
CREATE TABLE "Track" (
"TrackId" INTEGER NOT NULL,
"Name" NVARCHAR(200) NOT NULL,
"AlbumId" INTEGER,
"MediaTypeId" INTEGER NOT NULL,
"GenreId" INTEGER,
"Composer" NVARCHAR(220),
"Milliseconds" INTEGER NOT NULL,
"Bytes" INTEGER,
"UnitPrice" NUMERIC(10, 2) NOT NULL,
PRIMARY KEY ("TrackId"),
FOREIGN KEY("MediaTypeId") REFERENCES "MediaType" ("MediaTypeId"),
FOREIGN KEY("GenreId") REFERENCES "Genre" ("GenreId"), | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-13 | FOREIGN KEY("GenreId") REFERENCES "Genre" ("GenreId"),
FOREIGN KEY("AlbumId") REFERENCES "Album" ("AlbumId")
)
/*
2 rows from Track table:
TrackId Name AlbumId MediaTypeId GenreId Composer Milliseconds Bytes UnitPrice
1 For Those About To Rock (We Salute You) 1 1 1 Angus Young, Malcolm Young, Brian Johnson 343719 11170334 0.99
2 Balls to the Wall 2 2 1 None 342562 5510424 0.99
*/
db_chain = SQLDatabaseChain.from_llm(llm, db, use_query_checker=True, verbose=True)
db_chain.run("What are some example tracks by Bach?")
> Entering new SQLDatabaseChain chain...
What are some example tracks by Bach?
SQLQuery:SELECT "Name", "Composer" FROM "Track" WHERE "Composer" LIKE '%Bach%' LIMIT 5
SQLResult: [('American Woman', 'B. Cummings/G. Peterson/M.J. Kale/R. Bachman'), ('Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace', 'Johann Sebastian Bach'), ('Aria Mit 30 Veränderungen, BWV 988 "Goldberg Variations": Aria', 'Johann Sebastian Bach'), ('Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude', 'Johann Sebastian Bach'), ('Toccata and Fugue in D Minor, BWV 565: I. Toccata', 'Johann Sebastian Bach')] | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-14 | Answer:Tracks by Bach include 'American Woman', 'Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace', 'Aria Mit 30 Veränderungen, BWV 988 "Goldberg Variations": Aria', 'Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude', and 'Toccata and Fugue in D Minor, BWV 565: I. Toccata'.
> Finished chain.
'Tracks by Bach include \'American Woman\', \'Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace\', \'Aria Mit 30 Veränderungen, BWV 988 "Goldberg Variations": Aria\', \'Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude\', and \'Toccata and Fugue in D Minor, BWV 565: I. Toccata\'.'
Custom Table Info#
In some cases, it can be useful to provide custom table information instead of using the automatically generated table definitions and the first sample_rows_in_table_info sample rows. For example, if you know that the first few rows of a table are uninformative, it could help to manually provide example rows that are more diverse or provide more information to the model. It is also possible to limit the columns that will be visible to the model if there are unnecessary columns.
This information can be provided as a dictionary with table names as the keys and table information as the values. For example, let’s provide a custom definition and sample rows for the Track table with only a few columns:
custom_table_info = {
"Track": """CREATE TABLE Track (
"TrackId" INTEGER NOT NULL, | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-15 | "TrackId" INTEGER NOT NULL,
"Name" NVARCHAR(200) NOT NULL,
"Composer" NVARCHAR(220),
PRIMARY KEY ("TrackId")
)
/*
3 rows from Track table:
TrackId Name Composer
1 For Those About To Rock (We Salute You) Angus Young, Malcolm Young, Brian Johnson
2 Balls to the Wall None
3 My favorite song ever The coolest composer of all time
*/"""
}
db = SQLDatabase.from_uri(
"sqlite:///../../../../notebooks/Chinook.db",
include_tables=['Track', 'Playlist'],
sample_rows_in_table_info=2,
custom_table_info=custom_table_info)
print(db.table_info)
CREATE TABLE "Playlist" (
"PlaylistId" INTEGER NOT NULL,
"Name" NVARCHAR(120),
PRIMARY KEY ("PlaylistId")
)
/*
2 rows from Playlist table:
PlaylistId Name
1 Music
2 Movies
*/
CREATE TABLE Track (
"TrackId" INTEGER NOT NULL,
"Name" NVARCHAR(200) NOT NULL,
"Composer" NVARCHAR(220),
PRIMARY KEY ("TrackId")
)
/*
3 rows from Track table:
TrackId Name Composer
1 For Those About To Rock (We Salute You) Angus Young, Malcolm Young, Brian Johnson
2 Balls to the Wall None
3 My favorite song ever The coolest composer of all time
*/
Note how our custom table definition and sample rows for Track overrides the sample_rows_in_table_info parameter. Tables that are not overridden by custom_table_info, in this example Playlist, will have their table info gathered automatically as usual. | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-16 | db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)
db_chain.run("What are some example tracks by Bach?")
> Entering new SQLDatabaseChain chain...
What are some example tracks by Bach?
SQLQuery:SELECT "Name" FROM Track WHERE "Composer" LIKE '%Bach%' LIMIT 5;
SQLResult: [('American Woman',), ('Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace',), ('Aria Mit 30 Veränderungen, BWV 988 "Goldberg Variations": Aria',), ('Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude',), ('Toccata and Fugue in D Minor, BWV 565: I. Toccata',)] | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-17 | Answer:text='You are a SQLite expert. Given an input question, first create a syntactically correct SQLite query to run, then look at the results of the query and return the answer to the input question.\nUnless the user specifies in the question a specific number of examples to obtain, query for at most 5 results using the LIMIT clause as per SQLite. You can order the results to return the most informative data in the database.\nNever query for all columns from a table. You must query only the columns that are needed to answer the question. Wrap each column name in double quotes (") to denote them as delimited identifiers.\nPay attention to use only the column names you can see in the tables below. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.\n\nUse the following format:\n\nQuestion: "Question here"\nSQLQuery: "SQL Query to run"\nSQLResult: "Result of the SQLQuery"\nAnswer: "Final answer here"\n\nOnly use the following tables:\n\nCREATE TABLE "Playlist" (\n\t"PlaylistId" INTEGER NOT NULL, \n\t"Name" NVARCHAR(120), \n\tPRIMARY KEY ("PlaylistId")\n)\n\n/*\n2 rows from Playlist table:\nPlaylistId\tName\n1\tMusic\n2\tMovies\n*/\n\nCREATE TABLE Track (\n\t"TrackId" INTEGER NOT NULL, \n\t"Name" NVARCHAR(200) NOT NULL,\n\t"Composer" NVARCHAR(220),\n\tPRIMARY KEY ("TrackId")\n)\n/*\n3 rows from Track table:\nTrackId\tName\tComposer\n1\tFor Those About To Rock (We Salute You)\tAngus Young, Malcolm Young, Brian Johnson\n2\tBalls to the Wall\tNone\n3\tMy favorite song | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-18 | Young, Brian Johnson\n2\tBalls to the Wall\tNone\n3\tMy favorite song ever\tThe coolest composer of all time\n*/\n\nQuestion: What are some example tracks by Bach?\nSQLQuery:SELECT "Name" FROM Track WHERE "Composer" LIKE \'%Bach%\' LIMIT 5;\nSQLResult: [(\'American Woman\',), (\'Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace\',), (\'Aria Mit 30 Veränderungen, BWV 988 "Goldberg Variations": Aria\',), (\'Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude\',), (\'Toccata and Fugue in D Minor, BWV 565: I. Toccata\',)]\nAnswer:' | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-19 | You are a SQLite expert. Given an input question, first create a syntactically correct SQLite query to run, then look at the results of the query and return the answer to the input question.
Unless the user specifies in the question a specific number of examples to obtain, query for at most 5 results using the LIMIT clause as per SQLite. You can order the results to return the most informative data in the database.
Never query for all columns from a table. You must query only the columns that are needed to answer the question. Wrap each column name in double quotes (") to denote them as delimited identifiers.
Pay attention to use only the column names you can see in the tables below. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.
Use the following format:
Question: "Question here"
SQLQuery: "SQL Query to run"
SQLResult: "Result of the SQLQuery"
Answer: "Final answer here"
Only use the following tables:
CREATE TABLE "Playlist" (
"PlaylistId" INTEGER NOT NULL,
"Name" NVARCHAR(120),
PRIMARY KEY ("PlaylistId")
)
/*
2 rows from Playlist table:
PlaylistId Name
1 Music
2 Movies
*/
CREATE TABLE Track (
"TrackId" INTEGER NOT NULL,
"Name" NVARCHAR(200) NOT NULL,
"Composer" NVARCHAR(220),
PRIMARY KEY ("TrackId")
)
/*
3 rows from Track table:
TrackId Name Composer
1 For Those About To Rock (We Salute You) Angus Young, Malcolm Young, Brian Johnson
2 Balls to the Wall None
3 My favorite song ever The coolest composer of all time
*/
Question: What are some example tracks by Bach? | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-20 | */
Question: What are some example tracks by Bach?
SQLQuery:SELECT "Name" FROM Track WHERE "Composer" LIKE '%Bach%' LIMIT 5;
SQLResult: [('American Woman',), ('Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace',), ('Aria Mit 30 Veränderungen, BWV 988 "Goldberg Variations": Aria',), ('Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude',), ('Toccata and Fugue in D Minor, BWV 565: I. Toccata',)]
Answer: | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-21 | Answer:
{'input': 'What are some example tracks by Bach?\nSQLQuery:SELECT "Name" FROM Track WHERE "Composer" LIKE \'%Bach%\' LIMIT 5;\nSQLResult: [(\'American Woman\',), (\'Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace\',), (\'Aria Mit 30 Veränderungen, BWV 988 "Goldberg Variations": Aria\',), (\'Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude\',), (\'Toccata and Fugue in D Minor, BWV 565: I. Toccata\',)]\nAnswer:', 'top_k': '5', 'dialect': 'sqlite', 'table_info': '\nCREATE TABLE "Playlist" (\n\t"PlaylistId" INTEGER NOT NULL, \n\t"Name" NVARCHAR(120), \n\tPRIMARY KEY ("PlaylistId")\n)\n\n/*\n2 rows from Playlist table:\nPlaylistId\tName\n1\tMusic\n2\tMovies\n*/\n\nCREATE TABLE Track (\n\t"TrackId" INTEGER NOT NULL, \n\t"Name" NVARCHAR(200) NOT NULL,\n\t"Composer" NVARCHAR(220),\n\tPRIMARY KEY ("TrackId")\n)\n/*\n3 rows from Track table:\nTrackId\tName\tComposer\n1\tFor Those About To Rock (We Salute You)\tAngus Young, Malcolm Young, Brian Johnson\n2\tBalls to the Wall\tNone\n3\tMy favorite song ever\tThe coolest composer of all time\n*/', 'stop': ['\nSQLResult:']} | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-22 | Examples of tracks by Bach include "American Woman", "Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace", "Aria Mit 30 Veränderungen, BWV 988 'Goldberg Variations': Aria", "Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude", and "Toccata and Fugue in D Minor, BWV 565: I. Toccata".
> Finished chain.
'Examples of tracks by Bach include "American Woman", "Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace", "Aria Mit 30 Veränderungen, BWV 988 \'Goldberg Variations\': Aria", "Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude", and "Toccata and Fugue in D Minor, BWV 565: I. Toccata".'
SQLDatabaseSequentialChain#
Chain for querying SQL database that is a sequential chain.
The chain is as follows:
1. Based on the query, determine which tables to use.
2. Based on those tables, call the normal SQL database chain.
This is useful in cases where the number of tables in the database is large.
from langchain.chains import SQLDatabaseSequentialChain
db = SQLDatabase.from_uri("sqlite:///../../../../notebooks/Chinook.db")
chain = SQLDatabaseSequentialChain.from_llm(llm, db, verbose=True)
chain.run("How many employees are also customers?")
> Entering new SQLDatabaseSequentialChain chain...
Table names to use:
['Employee', 'Customer']
> Entering new SQLDatabaseChain chain...
How many employees are also customers? | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-23 | > Entering new SQLDatabaseChain chain...
How many employees are also customers?
SQLQuery:SELECT COUNT(*) FROM Employee e INNER JOIN Customer c ON e.EmployeeId = c.SupportRepId;
SQLResult: [(59,)]
Answer:59 employees are also customers.
> Finished chain.
> Finished chain.
'59 employees are also customers.'
Using Local Language Models#
Sometimes you may not have the luxury of using OpenAI or other service-hosted large language model. You can, ofcourse, try to use the SQLDatabaseChain with a local model, but will quickly realize that most models you can run locally even with a large GPU struggle to generate the right output.
import logging
import torch
from transformers import AutoTokenizer, GPT2TokenizerFast, pipeline, AutoModelForSeq2SeqLM, AutoModelForCausalLM
from langchain import HuggingFacePipeline
# Note: This model requires a large GPU, e.g. an 80GB A100. See documentation for other ways to run private non-OpenAI models.
model_id = "google/flan-ul2"
model = AutoModelForSeq2SeqLM.from_pretrained(model_id, temperature=0)
device_id = -1 # default to no-GPU, but use GPU and half precision mode if available
if torch.cuda.is_available():
device_id = 0
try:
model = model.half()
except RuntimeError as exc:
logging.warn(f"Could not run model in half precision mode: {str(exc)}")
tokenizer = AutoTokenizer.from_pretrained(model_id)
pipe = pipeline(task="text2text-generation", model=model, tokenizer=tokenizer, max_length=1024, device=device_id)
local_llm = HuggingFacePipeline(pipeline=pipe) | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-24 | local_llm = HuggingFacePipeline(pipeline=pipe)
/workspace/langchain/.venv/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
from .autonotebook import tqdm as notebook_tqdm
Loading checkpoint shards: 100%|██████████| 8/8 [00:32<00:00, 4.11s/it]
from langchain import SQLDatabase, SQLDatabaseChain
db = SQLDatabase.from_uri("sqlite:///../../../../notebooks/Chinook.db", include_tables=['Customer'])
local_chain = SQLDatabaseChain.from_llm(local_llm, db, verbose=True, return_intermediate_steps=True, use_query_checker=True)
This model should work for very simple SQL queries, as long as you use the query checker as specified above, e.g.:
local_chain("How many customers are there?")
> Entering new SQLDatabaseChain chain...
How many customers are there?
SQLQuery:
/workspace/langchain/.venv/lib/python3.9/site-packages/transformers/pipelines/base.py:1070: UserWarning: You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a dataset
warnings.warn(
/workspace/langchain/.venv/lib/python3.9/site-packages/transformers/pipelines/base.py:1070: UserWarning: You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a dataset
warnings.warn(
SELECT count(*) FROM Customer
SQLResult: [(59,)]
Answer: | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-25 | SELECT count(*) FROM Customer
SQLResult: [(59,)]
Answer:
/workspace/langchain/.venv/lib/python3.9/site-packages/transformers/pipelines/base.py:1070: UserWarning: You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a dataset
warnings.warn(
[59]
> Finished chain.
{'query': 'How many customers are there?',
'result': '[59]',
'intermediate_steps': [{'input': 'How many customers are there?\nSQLQuery:SELECT count(*) FROM Customer\nSQLResult: [(59,)]\nAnswer:',
'top_k': '5',
'dialect': 'sqlite', | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
cb100ae88eec-26 | 'table_info': '\nCREATE TABLE "Customer" (\n\t"CustomerId" INTEGER NOT NULL, \n\t"FirstName" NVARCHAR(40) NOT NULL, \n\t"LastName" NVARCHAR(20) NOT NULL, \n\t"Company" NVARCHAR(80), \n\t"Address" NVARCHAR(70), \n\t"City" NVARCHAR(40), \n\t"State" NVARCHAR(40), \n\t"Country" NVARCHAR(40), \n\t"PostalCode" NVARCHAR(10), \n\t"Phone" NVARCHAR(24), \n\t"Fax" NVARCHAR(24), \n\t"Email" NVARCHAR(60) NOT NULL, \n\t"SupportRepId" INTEGER, \n\tPRIMARY KEY ("CustomerId"), \n\tFOREIGN KEY("SupportRepId") REFERENCES "Employee" ("EmployeeId")\n)\n\n/*\n3 rows from Customer table:\nCustomerId\tFirstName\tLastName\tCompany\tAddress\tCity\tState\tCountry\tPostalCode\tPhone\tFax\tEmail\tSupportRepId\n1\tLuís\tGonçalves\tEmbraer - Empresa Brasileira de Aeronáutica S.A.\tAv. Brigadeiro Faria Lima, 2170\tSão José dos Campos\tSP\tBrazil\t12227-000\t+55 (12) 3923-5555\t+55 (12) 3923-5566\[email protected]\t3\n2\tLeonie\tKöhler\tNone\tTheodor-Heuss-Straße 34\tStuttgart\tNone\tGermany\t70174\t+49 0711 2842222\tNone\[email protected]\t5\n3\tFrançois\tTremblay\tNone\t1498 rue | https://python.langchain.com/en/latest/modules/chains/examples/sqlite.html |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.