id
stringlengths
14
16
text
stringlengths
36
2.73k
source
stringlengths
49
117
cc50dd8d2294-9
[Document(page_content="\n\n\n\n\n\n\n\n\nESPN - Serving Sports Fans. Anytime. Anywhere.\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n Skip to main content\n \n\n Skip to navigation\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n<\n\n>\n\n\n\n\n\n\n\n\n\nMenuESPN\n\n\nSearch\n\n\n\nscores\n\n\n\nNFLNBANCAAMNCAAWNHLSoccer…MLBNCAAFGolfTennisSports BettingBoxingCFLNCAACricketF1HorseLLWSMMANASCARNBA G LeagueOlympic SportsRacingRN BBRN FBRugbyWNBAWorld Baseball ClassicWWEX GamesXFLMore ESPNFantasyListenWatchESPN+\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n \n\nSUBSCRIBE NOW\n\n\n\n\n\nNHL: Select Games\n\n\n\n\n\n\n\nXFL\n\n\n\n\n\n\n\nMLB: Select Games\n\n\n\n\n\n\n\nNCAA Baseball\n\n\n\n\n\n\n\nNCAA Softball\n\n\n\n\n\n\n\nCricket: Select Matches\n\n\n\n\n\n\n\nMel Kiper's NFL
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/web_base.html
cc50dd8d2294-10
Select Matches\n\n\n\n\n\n\n\nMel Kiper's NFL Mock Draft 3.0\n\n\nQuick Links\n\n\n\n\nMen's Tournament Challenge\n\n\n\n\n\n\n\nWomen's Tournament Challenge\n\n\n\n\n\n\n\nNFL Draft Order\n\n\n\n\n\n\n\nHow To Watch NHL Games\n\n\n\n\n\n\n\nFantasy Baseball: Sign Up\n\n\n\n\n\n\n\nHow To Watch PGA TOUR\n\n\n\n\n\n\nFavorites\n\n\n\n\n\n\n Manage Favorites\n \n\n\n\nCustomize ESPNSign UpLog InESPN Sites\n\n\n\n\nESPN Deportes\n\n\n\n\n\n\n\nAndscape\n\n\n\n\n\n\n\nespnW\n\n\n\n\n\n\n\nESPNFC\n\n\n\n\n\n\n\nX Games\n\n\n\n\n\n\n\nSEC Network\n\n\nESPN Apps\n\n\n\n\nESPN\n\n\n\n\n\n\n\nESPN Fantasy\n\n\nFollow ESPN\n\n\n\n\nFacebook\n\n\n\n\n\n\n\nTwitter\n\n\n\n\n\n\n\nInstagram\n\n\n\n\n\n\n\nSnapchat\n\n\n\n\n\n\n\nYouTube\n\n\n\n\n\n\n\nThe ESPN Daily Podcast\n\n\nAre you ready for Opening Day? Here's your guide to MLB's offseason chaosWait, Jacob deGrom is on the Rangers now? Xander Bogaerts and Trea Turner signed where? And what about Carlos Correa? Yeah, you're going to need to read up before Opening Day.12hESPNIllustration by ESPNEverything you missed in the MLB offseason3h2:33World Series odds, win totals, props for every teamPlay fantasy baseball for free!TOP HEADLINESQB Jackson has requested trade from RavensSources: Texas
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/web_base.html
cc50dd8d2294-11
fantasy baseball for free!TOP HEADLINESQB Jackson has requested trade from RavensSources: Texas hiring Terry as full-time coachJets GM: No rush on Rodgers; Lamar not optionLove to leave North Carolina, enter transfer portalBelichick to angsty Pats fans: See last 25 yearsEmbiid out, Harden due back vs. Jokic, NuggetsLynch: Purdy 'earned the right' to start for NinersMan Utd, Wrexham plan July friendly in San DiegoOn paper, Padres overtake DodgersLAMAR WANTS OUT OF BALTIMOREMarcus Spears identifies the two teams that need Lamar Jackson the most7h2:00Would Lamar sit out? Will Ravens draft a QB? Jackson trade request insightsLamar Jackson has asked Baltimore to trade him, but Ravens coach John Harbaugh hopes the QB will be back.3hJamison HensleyBallard, Colts will consider trading for QB JacksonJackson to Indy? Washington? Barnwell ranks the QB's trade fitsSNYDER'S TUMULTUOUS 24-YEAR RUNHow Washington’s NFL franchise sank on and off the field under owner Dan SnyderSnyder purchased one of the NFL's marquee franchises in 1999. Twenty-four years later, and with the team up for sale, he leaves a legacy of on-field futility and off-field scandal.13hJohn KeimESPNIOWA STAR STEPS UP AGAINJ-Will: Caitlin Clark is the biggest brand in college sports right now8h0:47'The better the opponent, the better she plays': Clark draws comparisons to TaurasiCaitlin Clark's performance on Sunday had longtime observers going back decades to find comparisons.16hKevin PeltonWOMEN'S ELITE EIGHT SCOREBOARDMONDAY'S GAMESCheck your bracket!NBA DRAFTHow top prospects fared on the road to the Final FourThe 2023 NCAA tournament is down to four
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/web_base.html
cc50dd8d2294-12
prospects fared on the road to the Final FourThe 2023 NCAA tournament is down to four teams, and ESPN's Jonathan Givony recaps the players who saw their NBA draft stock change.11hJonathan GivonyAndy Lyons/Getty ImagesTALKING BASKETBALLWhy AD needs to be more assertive with LeBron on the court9h1:33Why Perk won't blame Kyrie for Mavs' woes8h1:48WHERE EVERY TEAM STANDSNew NFL Power Rankings: Post-free-agency 1-32 poll, plus underrated offseason movesThe free agent frenzy has come and gone. Which teams have improved their 2023 outlook, and which teams have taken a hit?12hNFL Nation reportersIllustration by ESPNTHE BUCK STOPS WITH BELICHICKBruschi: Fair to criticize Bill Belichick for Patriots' struggles10h1:27 Top HeadlinesQB Jackson has requested trade from RavensSources: Texas hiring Terry as full-time coachJets GM: No rush on Rodgers; Lamar not optionLove to leave North Carolina, enter transfer portalBelichick to angsty Pats fans: See last 25 yearsEmbiid out, Harden due back vs. Jokic, NuggetsLynch: Purdy 'earned the right' to start for NinersMan Utd, Wrexham plan July friendly in San DiegoOn paper, Padres overtake DodgersFavorites FantasyManage FavoritesFantasy HomeCustomize ESPNSign UpLog InMarch Madness LiveESPNMarch Madness LiveWatch every men's NCAA tournament game live! ICYMI1:42Austin Peay's coach, pitcher and catcher all ejected after retaliation pitchAustin Peay's pitcher, catcher and coach were all ejected after a pitch was thrown at Liberty's Nathan Keeter, who earlier in the game hit a home run and celebrated while running down the third-base line. Men's Tournament ChallengeIllustration by ESPNMen's Tournament ChallengeCheck your bracket(s) in the
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/web_base.html
cc50dd8d2294-13
Men's Tournament ChallengeIllustration by ESPNMen's Tournament ChallengeCheck your bracket(s) in the 2023 Men's Tournament Challenge, which you can follow throughout the Big Dance. Women's Tournament ChallengeIllustration by ESPNWomen's Tournament ChallengeCheck your bracket(s) in the 2023 Women's Tournament Challenge, which you can follow throughout the Big Dance. Best of ESPN+AP Photo/Lynne SladkyFantasy Baseball ESPN+ Cheat Sheet: Sleepers, busts, rookies and closersYou've read their names all preseason long, it'd be a shame to forget them on draft day. The ESPN+ Cheat Sheet is one way to make sure that doesn't happen.Steph Chambers/Getty ImagesPassan's 2023 MLB season preview: Bold predictions and moreOpening Day is just over a week away -- and Jeff Passan has everything you need to know covered from every possible angle.Photo by Bob Kupbens/Icon Sportswire2023 NFL free agency: Best team fits for unsigned playersWhere could Ezekiel Elliott land? Let's match remaining free agents to teams and find fits for two trade candidates.Illustration by ESPN2023 NFL mock draft: Mel Kiper's first-round pick predictionsMel Kiper Jr. makes his predictions for Round 1 of the NFL draft, including projecting a trade in the top five. Trending NowAnne-Marie Sorvin-USA TODAY SBoston Bruins record tracker: Wins, points, milestonesThe B's are on pace for NHL records in wins and points, along with some individual superlatives as well. Follow along here with our updated tracker.Mandatory Credit: William Purnell-USA TODAY Sports2023 NFL full draft order: AFC, NFC team picks for all roundsStarting with the Carolina Panthers at No. 1 overall, here's the entire 2023 NFL draft broken down round by round. How to Watch on ESPN+Gregory Fisher/Icon Sportswire2023 NCAA men's hockey: Results,
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/web_base.html
cc50dd8d2294-14
Watch on ESPN+Gregory Fisher/Icon Sportswire2023 NCAA men's hockey: Results, bracket, how to watchThe matchups in Tampa promise to be thrillers, featuring plenty of star power, high-octane offense and stellar defense.(AP Photo/Koji Sasahara, File)How to watch the PGA Tour, Masters, PGA Championship and FedEx Cup playoffs on ESPN, ESPN+Here's everything you need to know about how to watch the PGA Tour, Masters, PGA Championship and FedEx Cup playoffs on ESPN and ESPN+.Hailie Lynch/XFLHow to watch the XFL: 2023 schedule, teams, players, news, moreEvery XFL game will be streamed on ESPN+. Find out when and where else you can watch the eight teams compete. Sign up to play the #1 Fantasy Baseball GameReactivate A LeagueCreate A LeagueJoin a Public LeaguePractice With a Mock DraftSports BettingAP Photo/Mike KropfMarch Madness betting 2023: Bracket odds, lines, tips, moreThe 2023 NCAA tournament brackets have finally been released, and we have everything you need to know to make a bet on all of the March Madness games. Sign up to play the #1 Fantasy game!Create A LeagueJoin Public LeagueReactivateMock Draft Now\n\nESPN+\n\n\n\n\nNHL: Select Games\n\n\n\n\n\n\n\nXFL\n\n\n\n\n\n\n\nMLB: Select Games\n\n\n\n\n\n\n\nNCAA Baseball\n\n\n\n\n\n\n\nNCAA Softball\n\n\n\n\n\n\n\nCricket: Select Matches\n\n\n\n\n\n\n\nMel Kiper's NFL Mock Draft 3.0\n\n\nQuick Links\n\n\n\n\nMen's Tournament Challenge\n\n\n\n\n\n\n\nWomen's Tournament Challenge\n\n\n\n\n\n\n\nNFL Draft Order\n\n\n\n\n\n\n\nHow To Watch
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/web_base.html
cc50dd8d2294-15
Draft Order\n\n\n\n\n\n\n\nHow To Watch NHL Games\n\n\n\n\n\n\n\nFantasy Baseball: Sign Up\n\n\n\n\n\n\n\nHow To Watch PGA TOUR\n\n\nESPN Sites\n\n\n\n\nESPN Deportes\n\n\n\n\n\n\n\nAndscape\n\n\n\n\n\n\n\nespnW\n\n\n\n\n\n\n\nESPNFC\n\n\n\n\n\n\n\nX Games\n\n\n\n\n\n\n\nSEC Network\n\n\nESPN Apps\n\n\n\n\nESPN\n\n\n\n\n\n\n\nESPN Fantasy\n\n\nFollow ESPN\n\n\n\n\nFacebook\n\n\n\n\n\n\n\nTwitter\n\n\n\n\n\n\n\nInstagram\n\n\n\n\n\n\n\nSnapchat\n\n\n\n\n\n\n\nYouTube\n\n\n\n\n\n\n\nThe ESPN Daily Podcast\n\n\nTerms of UsePrivacy PolicyYour US State Privacy RightsChildren's Online Privacy PolicyInterest-Based AdsAbout Nielsen MeasurementDo Not Sell or Share My Personal InformationContact UsDisney Ad Sales SiteWork for ESPNCopyright: © ESPN Enterprises, Inc. All rights reserved.\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n", lookup_str='', metadata={'source': 'https://www.espn.com/'}, lookup_index=0),
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/web_base.html
cc50dd8d2294-16
Document(page_content='GoogleSearch Images Maps Play YouTube News Gmail Drive More »Web History | Settings | Sign in\xa0Advanced searchAdvertisingBusiness SolutionsAbout Google© 2023 - Privacy - Terms ', lookup_str='', metadata={'source': 'https://google.com'}, lookup_index=0)] Load multiple urls concurrently# You can speed up the scraping process by scraping and parsing multiple urls concurrently. There are reasonable limits to concurrent requests, defaulting to 2 per second. If you aren’t concerned about being a good citizen, or you control the server you are scraping and don’t care about load, you can change the requests_per_second parameter to increase the max concurrent requests. Note, while this will speed up the scraping process, but may cause the server to block you. Be careful! !pip install nest_asyncio # fixes a bug with asyncio and jupyter import nest_asyncio nest_asyncio.apply() Requirement already satisfied: nest_asyncio in /Users/harrisonchase/.pyenv/versions/3.9.1/envs/langchain/lib/python3.9/site-packages (1.5.6) loader = WebBaseLoader(["https://www.espn.com/", "https://google.com"]) loader.requests_per_second = 1 docs = loader.aload() docs
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/web_base.html
cc50dd8d2294-17
[Document(page_content="\n\n\n\n\n\n\n\n\nESPN - Serving Sports Fans. Anytime. Anywhere.\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n Skip to main content\n \n\n Skip to navigation\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n<\n\n>\n\n\n\n\n\n\n\n\n\nMenuESPN\n\n\nSearch\n\n\n\nscores\n\n\n\nNFLNBANCAAMNCAAWNHLSoccer…MLBNCAAFGolfTennisSports BettingBoxingCFLNCAACricketF1HorseLLWSMMANASCARNBA G LeagueOlympic SportsRacingRN BBRN FBRugbyWNBAWorld Baseball ClassicWWEX GamesXFLMore ESPNFantasyListenWatchESPN+\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n \n\nSUBSCRIBE NOW\n\n\n\n\n\nNHL: Select Games\n\n\n\n\n\n\n\nXFL\n\n\n\n\n\n\n\nMLB: Select Games\n\n\n\n\n\n\n\nNCAA Baseball\n\n\n\n\n\n\n\nNCAA Softball\n\n\n\n\n\n\n\nCricket: Select Matches\n\n\n\n\n\n\n\nMel Kiper's NFL
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/web_base.html
cc50dd8d2294-18
Select Matches\n\n\n\n\n\n\n\nMel Kiper's NFL Mock Draft 3.0\n\n\nQuick Links\n\n\n\n\nMen's Tournament Challenge\n\n\n\n\n\n\n\nWomen's Tournament Challenge\n\n\n\n\n\n\n\nNFL Draft Order\n\n\n\n\n\n\n\nHow To Watch NHL Games\n\n\n\n\n\n\n\nFantasy Baseball: Sign Up\n\n\n\n\n\n\n\nHow To Watch PGA TOUR\n\n\n\n\n\n\nFavorites\n\n\n\n\n\n\n Manage Favorites\n \n\n\n\nCustomize ESPNSign UpLog InESPN Sites\n\n\n\n\nESPN Deportes\n\n\n\n\n\n\n\nAndscape\n\n\n\n\n\n\n\nespnW\n\n\n\n\n\n\n\nESPNFC\n\n\n\n\n\n\n\nX Games\n\n\n\n\n\n\n\nSEC Network\n\n\nESPN Apps\n\n\n\n\nESPN\n\n\n\n\n\n\n\nESPN Fantasy\n\n\nFollow ESPN\n\n\n\n\nFacebook\n\n\n\n\n\n\n\nTwitter\n\n\n\n\n\n\n\nInstagram\n\n\n\n\n\n\n\nSnapchat\n\n\n\n\n\n\n\nYouTube\n\n\n\n\n\n\n\nThe ESPN Daily Podcast\n\n\nAre you ready for Opening Day? Here's your guide to MLB's offseason chaosWait, Jacob deGrom is on the Rangers now? Xander Bogaerts and Trea Turner signed where? And what about Carlos Correa? Yeah, you're going to need to read up before Opening Day.12hESPNIllustration by ESPNEverything you missed in the MLB offseason3h2:33World Series odds, win totals, props for every teamPlay fantasy baseball for free!TOP HEADLINESQB Jackson has requested trade from RavensSources: Texas
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/web_base.html
cc50dd8d2294-19
fantasy baseball for free!TOP HEADLINESQB Jackson has requested trade from RavensSources: Texas hiring Terry as full-time coachJets GM: No rush on Rodgers; Lamar not optionLove to leave North Carolina, enter transfer portalBelichick to angsty Pats fans: See last 25 yearsEmbiid out, Harden due back vs. Jokic, NuggetsLynch: Purdy 'earned the right' to start for NinersMan Utd, Wrexham plan July friendly in San DiegoOn paper, Padres overtake DodgersLAMAR WANTS OUT OF BALTIMOREMarcus Spears identifies the two teams that need Lamar Jackson the most7h2:00Would Lamar sit out? Will Ravens draft a QB? Jackson trade request insightsLamar Jackson has asked Baltimore to trade him, but Ravens coach John Harbaugh hopes the QB will be back.3hJamison HensleyBallard, Colts will consider trading for QB JacksonJackson to Indy? Washington? Barnwell ranks the QB's trade fitsSNYDER'S TUMULTUOUS 24-YEAR RUNHow Washington’s NFL franchise sank on and off the field under owner Dan SnyderSnyder purchased one of the NFL's marquee franchises in 1999. Twenty-four years later, and with the team up for sale, he leaves a legacy of on-field futility and off-field scandal.13hJohn KeimESPNIOWA STAR STEPS UP AGAINJ-Will: Caitlin Clark is the biggest brand in college sports right now8h0:47'The better the opponent, the better she plays': Clark draws comparisons to TaurasiCaitlin Clark's performance on Sunday had longtime observers going back decades to find comparisons.16hKevin PeltonWOMEN'S ELITE EIGHT SCOREBOARDMONDAY'S GAMESCheck your bracket!NBA DRAFTHow top prospects fared on the road to the Final FourThe 2023 NCAA tournament is down to four
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/web_base.html
cc50dd8d2294-20
prospects fared on the road to the Final FourThe 2023 NCAA tournament is down to four teams, and ESPN's Jonathan Givony recaps the players who saw their NBA draft stock change.11hJonathan GivonyAndy Lyons/Getty ImagesTALKING BASKETBALLWhy AD needs to be more assertive with LeBron on the court9h1:33Why Perk won't blame Kyrie for Mavs' woes8h1:48WHERE EVERY TEAM STANDSNew NFL Power Rankings: Post-free-agency 1-32 poll, plus underrated offseason movesThe free agent frenzy has come and gone. Which teams have improved their 2023 outlook, and which teams have taken a hit?12hNFL Nation reportersIllustration by ESPNTHE BUCK STOPS WITH BELICHICKBruschi: Fair to criticize Bill Belichick for Patriots' struggles10h1:27 Top HeadlinesQB Jackson has requested trade from RavensSources: Texas hiring Terry as full-time coachJets GM: No rush on Rodgers; Lamar not optionLove to leave North Carolina, enter transfer portalBelichick to angsty Pats fans: See last 25 yearsEmbiid out, Harden due back vs. Jokic, NuggetsLynch: Purdy 'earned the right' to start for NinersMan Utd, Wrexham plan July friendly in San DiegoOn paper, Padres overtake DodgersFavorites FantasyManage FavoritesFantasy HomeCustomize ESPNSign UpLog InMarch Madness LiveESPNMarch Madness LiveWatch every men's NCAA tournament game live! ICYMI1:42Austin Peay's coach, pitcher and catcher all ejected after retaliation pitchAustin Peay's pitcher, catcher and coach were all ejected after a pitch was thrown at Liberty's Nathan Keeter, who earlier in the game hit a home run and celebrated while running down the third-base line. Men's Tournament ChallengeIllustration by ESPNMen's Tournament ChallengeCheck your bracket(s) in the
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/web_base.html
cc50dd8d2294-21
Men's Tournament ChallengeIllustration by ESPNMen's Tournament ChallengeCheck your bracket(s) in the 2023 Men's Tournament Challenge, which you can follow throughout the Big Dance. Women's Tournament ChallengeIllustration by ESPNWomen's Tournament ChallengeCheck your bracket(s) in the 2023 Women's Tournament Challenge, which you can follow throughout the Big Dance. Best of ESPN+AP Photo/Lynne SladkyFantasy Baseball ESPN+ Cheat Sheet: Sleepers, busts, rookies and closersYou've read their names all preseason long, it'd be a shame to forget them on draft day. The ESPN+ Cheat Sheet is one way to make sure that doesn't happen.Steph Chambers/Getty ImagesPassan's 2023 MLB season preview: Bold predictions and moreOpening Day is just over a week away -- and Jeff Passan has everything you need to know covered from every possible angle.Photo by Bob Kupbens/Icon Sportswire2023 NFL free agency: Best team fits for unsigned playersWhere could Ezekiel Elliott land? Let's match remaining free agents to teams and find fits for two trade candidates.Illustration by ESPN2023 NFL mock draft: Mel Kiper's first-round pick predictionsMel Kiper Jr. makes his predictions for Round 1 of the NFL draft, including projecting a trade in the top five. Trending NowAnne-Marie Sorvin-USA TODAY SBoston Bruins record tracker: Wins, points, milestonesThe B's are on pace for NHL records in wins and points, along with some individual superlatives as well. Follow along here with our updated tracker.Mandatory Credit: William Purnell-USA TODAY Sports2023 NFL full draft order: AFC, NFC team picks for all roundsStarting with the Carolina Panthers at No. 1 overall, here's the entire 2023 NFL draft broken down round by round. How to Watch on ESPN+Gregory Fisher/Icon Sportswire2023 NCAA men's hockey: Results,
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/web_base.html
cc50dd8d2294-22
Watch on ESPN+Gregory Fisher/Icon Sportswire2023 NCAA men's hockey: Results, bracket, how to watchThe matchups in Tampa promise to be thrillers, featuring plenty of star power, high-octane offense and stellar defense.(AP Photo/Koji Sasahara, File)How to watch the PGA Tour, Masters, PGA Championship and FedEx Cup playoffs on ESPN, ESPN+Here's everything you need to know about how to watch the PGA Tour, Masters, PGA Championship and FedEx Cup playoffs on ESPN and ESPN+.Hailie Lynch/XFLHow to watch the XFL: 2023 schedule, teams, players, news, moreEvery XFL game will be streamed on ESPN+. Find out when and where else you can watch the eight teams compete. Sign up to play the #1 Fantasy Baseball GameReactivate A LeagueCreate A LeagueJoin a Public LeaguePractice With a Mock DraftSports BettingAP Photo/Mike KropfMarch Madness betting 2023: Bracket odds, lines, tips, moreThe 2023 NCAA tournament brackets have finally been released, and we have everything you need to know to make a bet on all of the March Madness games. Sign up to play the #1 Fantasy game!Create A LeagueJoin Public LeagueReactivateMock Draft Now\n\nESPN+\n\n\n\n\nNHL: Select Games\n\n\n\n\n\n\n\nXFL\n\n\n\n\n\n\n\nMLB: Select Games\n\n\n\n\n\n\n\nNCAA Baseball\n\n\n\n\n\n\n\nNCAA Softball\n\n\n\n\n\n\n\nCricket: Select Matches\n\n\n\n\n\n\n\nMel Kiper's NFL Mock Draft 3.0\n\n\nQuick Links\n\n\n\n\nMen's Tournament Challenge\n\n\n\n\n\n\n\nWomen's Tournament Challenge\n\n\n\n\n\n\n\nNFL Draft Order\n\n\n\n\n\n\n\nHow To Watch
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/web_base.html
cc50dd8d2294-23
Draft Order\n\n\n\n\n\n\n\nHow To Watch NHL Games\n\n\n\n\n\n\n\nFantasy Baseball: Sign Up\n\n\n\n\n\n\n\nHow To Watch PGA TOUR\n\n\nESPN Sites\n\n\n\n\nESPN Deportes\n\n\n\n\n\n\n\nAndscape\n\n\n\n\n\n\n\nespnW\n\n\n\n\n\n\n\nESPNFC\n\n\n\n\n\n\n\nX Games\n\n\n\n\n\n\n\nSEC Network\n\n\nESPN Apps\n\n\n\n\nESPN\n\n\n\n\n\n\n\nESPN Fantasy\n\n\nFollow ESPN\n\n\n\n\nFacebook\n\n\n\n\n\n\n\nTwitter\n\n\n\n\n\n\n\nInstagram\n\n\n\n\n\n\n\nSnapchat\n\n\n\n\n\n\n\nYouTube\n\n\n\n\n\n\n\nThe ESPN Daily Podcast\n\n\nTerms of UsePrivacy PolicyYour US State Privacy RightsChildren's Online Privacy PolicyInterest-Based AdsAbout Nielsen MeasurementDo Not Sell or Share My Personal InformationContact UsDisney Ad Sales SiteWork for ESPNCopyright: © ESPN Enterprises, Inc. All rights reserved.\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n", lookup_str='', metadata={'source': 'https://www.espn.com/'}, lookup_index=0),
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/web_base.html
cc50dd8d2294-24
Document(page_content='GoogleSearch Images Maps Play YouTube News Gmail Drive More »Web History | Settings | Sign in\xa0Advanced searchAdvertisingBusiness SolutionsAbout Google© 2023 - Privacy - Terms ', lookup_str='', metadata={'source': 'https://google.com'}, lookup_index=0)] Loading a xml file, or using a different BeautifulSoup parser# You can also look at SitemapLoader for an example of how to load a sitemap file, which is an example of using this feature. loader = WebBaseLoader("https://www.govinfo.gov/content/pkg/CFR-2018-title10-vol3/xml/CFR-2018-title10-vol3-sec431-86.xml") loader.default_parser = "xml" docs = loader.load() docs
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/web_base.html
cc50dd8d2294-25
[Document(page_content='\n\n10\nEnergy\n3\n2018-01-01\n2018-01-01\nfalse\nUniform test method for the measurement of energy efficiency of commercial packaged boilers.\n§ 431.86\nSection § 431.86\n\nEnergy\nDEPARTMENT OF ENERGY\nENERGY CONSERVATION\nENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT\nCommercial Packaged Boilers\nTest Procedures\n\n\n\n\n§\u2009431.86\nUniform test method for the measurement of energy efficiency of commercial packaged boilers.\n(a) Scope. This section provides test procedures, pursuant to the Energy Policy and Conservation Act (EPCA), as amended, which must be followed for measuring the combustion efficiency and/or thermal efficiency of a gas- or oil-fired commercial packaged boiler.\n(b) Testing and Calculations. Determine the thermal efficiency or combustion efficiency of commercial packaged boilers by conducting the appropriate test procedure(s) indicated in Table 1 of this section.\n\nTable 1—Test Requirements for Commercial Packaged Boiler Equipment Classes\n\nEquipment category\nSubcategory\nCertified rated inputBtu/h\n\nStandards efficiency metric(§\u2009431.87)\n\nTest procedure(corresponding to\nstandards efficiency\nmetric required\nby §\u2009431.87)\n\n\n\nHot Water\nGas-fired\n≥300,000 and ≤2,500,000\nThermal Efficiency\nAppendix A, Section 2.\n\n\nHot Water\nGas-fired\n>2,500,000\nCombustion Efficiency\nAppendix A, Section 3.\n\n\nHot Water\nOil-fired\n≥300,000 and ≤2,500,000\nThermal Efficiency\nAppendix A, Section 2.\n\n\nHot
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/web_base.html
cc50dd8d2294-26
Efficiency\nAppendix A, Section 2.\n\n\nHot Water\nOil-fired\n>2,500,000\nCombustion Efficiency\nAppendix A, Section 3.\n\n\nSteam\nGas-fired (all*)\n≥300,000 and ≤2,500,000\nThermal Efficiency\nAppendix A, Section 2.\n\n\nSteam\nGas-fired (all*)\n>2,500,000 and ≤5,000,000\nThermal Efficiency\nAppendix A, Section 2.\n\n\n\u2003\n\n>5,000,000\nThermal Efficiency\nAppendix A, Section 2.OR\nAppendix A, Section 3 with Section 2.4.3.2.\n\n\n\nSteam\nOil-fired\n≥300,000 and ≤2,500,000\nThermal Efficiency\nAppendix A, Section 2.\n\n\nSteam\nOil-fired\n>2,500,000 and ≤5,000,000\nThermal Efficiency\nAppendix A, Section 2.\n\n\n\u2003\n\n>5,000,000\nThermal Efficiency\nAppendix A, Section 2.OR\nAppendix A, Section 3. with Section 2.4.3.2.\n\n\n\n*\u2009Equipment classes for commercial packaged boilers as of July 22, 2009 (74 FR 36355) distinguish between gas-fired natural draft and all other gas-fired (except natural draft).\n\n(c) Field Tests. The field test provisions of appendix A may be used only to test a unit of commercial packaged boiler with rated input greater than 5,000,000 Btu/h.\n[81 FR 89305, Dec. 9, 2016]\n\n\nEnergy Efficiency Standards\n\n', lookup_str='', metadata={'source':
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/web_base.html
cc50dd8d2294-27
2016]\n\n\nEnergy Efficiency Standards\n\n', lookup_str='', metadata={'source': 'https://www.govinfo.gov/content/pkg/CFR-2018-title10-vol3/xml/CFR-2018-title10-vol3-sec431-86.xml'}, lookup_index=0)]
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/web_base.html
cc50dd8d2294-28
previous URL next Weather Contents Loading multiple webpages Load multiple urls concurrently Loading a xml file, or using a different BeautifulSoup parser By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/web_base.html
c38162e03abc-0
.ipynb .pdf EverNote EverNote# EverNote is intended for archiving and creating notes in which photos, audio and saved web content can be embedded. Notes are stored in virtual “notebooks” and can be tagged, annotated, edited, searched, and exported. This notebook shows how to load an Evernote export file (.enex) from disk. A document will be created for each note in the export. # lxml and html2text are required to parse EverNote notes # !pip install lxml # !pip install html2text from langchain.document_loaders import EverNoteLoader # By default all notes are combined into a single Document loader = EverNoteLoader("example_data/testing.enex") loader.load() [Document(page_content='testing this\n\nwhat happens?\n\nto the world?**Jan - March 2022**', metadata={'source': 'example_data/testing.enex'})] # It's likely more useful to return a Document for each note loader = EverNoteLoader("example_data/testing.enex", load_single_document=False) loader.load() [Document(page_content='testing this\n\nwhat happens?\n\nto the world?', metadata={'title': 'testing', 'created': time.struct_time(tm_year=2023, tm_mon=2, tm_mday=9, tm_hour=3, tm_min=47, tm_sec=46, tm_wday=3, tm_yday=40, tm_isdst=-1), 'updated': time.struct_time(tm_year=2023, tm_mon=2, tm_mday=9, tm_hour=3, tm_min=53, tm_sec=28, tm_wday=3, tm_yday=40, tm_isdst=-1), 'note-attributes.author': 'Harrison Chase', 'source': 'example_data/testing.enex'}),
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/evernote.html
c38162e03abc-1
Document(page_content='**Jan - March 2022**', metadata={'title': 'Summer Training Program', 'created': time.struct_time(tm_year=2022, tm_mon=12, tm_mday=27, tm_hour=1, tm_min=59, tm_sec=48, tm_wday=1, tm_yday=361, tm_isdst=-1), 'note-attributes.author': 'Mike McGarry', 'note-attributes.source': 'mobile.iphone', 'source': 'example_data/testing.enex'})] previous EPub next Microsoft Excel By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/evernote.html
4d4b2ead01bf-0
.ipynb .pdf WhatsApp Chat WhatsApp Chat# WhatsApp (also called WhatsApp Messenger) is a freeware, cross-platform, centralized instant messaging (IM) and voice-over-IP (VoIP) service. It allows users to send text and voice messages, make voice and video calls, and share images, documents, user locations, and other content. This notebook covers how to load data from the WhatsApp Chats into a format that can be ingested into LangChain. from langchain.document_loaders import WhatsAppChatLoader loader = WhatsAppChatLoader("example_data/whatsapp_chat.txt") loader.load() previous Weather next Arxiv By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/whatsapp_chat.html
076231b5099c-0
.ipynb .pdf Jupyter Notebook Jupyter Notebook# Jupyter Notebook (formerly IPython Notebook) is a web-based interactive computational environment for creating notebook documents. This notebook covers how to load data from a Jupyter notebook (.ipynb) into a format suitable by LangChain. from langchain.document_loaders import NotebookLoader loader = NotebookLoader("example_data/notebook.ipynb", include_outputs=True, max_output_length=20, remove_newline=True) NotebookLoader.load() loads the .ipynb notebook file into a Document object. Parameters: include_outputs (bool): whether to include cell outputs in the resulting document (default is False). max_output_length (int): the maximum number of characters to include from each cell output (default is 10). remove_newline (bool): whether to remove newline characters from the cell sources and outputs (default is False). traceback (bool): whether to include full traceback (default is False). loader.load()
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/jupyter_notebook.html
076231b5099c-1
traceback (bool): whether to include full traceback (default is False). loader.load() [Document(page_content='\'markdown\' cell: \'[\'# Notebook\', \'\', \'This notebook covers how to load data from an .ipynb notebook into a format suitable by LangChain.\']\'\n\n \'code\' cell: \'[\'from langchain.document_loaders import NotebookLoader\']\'\n\n \'code\' cell: \'[\'loader = NotebookLoader("example_data/notebook.ipynb")\']\'\n\n \'markdown\' cell: \'[\'`NotebookLoader.load()` loads the `.ipynb` notebook file into a `Document` object.\', \'\', \'**Parameters**:\', \'\', \'* `include_outputs` (bool): whether to include cell outputs in the resulting document (default is False).\', \'* `max_output_length` (int): the maximum number of characters to include from each cell output (default is 10).\', \'* `remove_newline` (bool): whether to remove newline characters from the cell sources and outputs (default is False).\', \'* `traceback` (bool): whether to include full traceback (default is False).\']\'\n\n \'code\' cell: \'[\'loader.load(include_outputs=True, max_output_length=20, remove_newline=True)\']\'\n\n', metadata={'source': 'example_data/notebook.ipynb'})] previous Images next JSON By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/jupyter_notebook.html
18e0bb96c634-0
.ipynb .pdf Arxiv Contents Installation Examples Arxiv# arXiv is an open-access archive for 2 million scholarly articles in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, statistics, electrical engineering and systems science, and economics. This notebook shows how to load scientific articles from Arxiv.org into a document format that we can use downstream. Installation# First, you need to install arxiv python package. #!pip install arxiv Second, you need to install PyMuPDF python package which transforms PDF files downloaded from the arxiv.org site into the text format. #!pip install pymupdf Examples# ArxivLoader has these arguments: query: free text which used to find documents in the Arxiv optional load_max_docs: default=100. Use it to limit number of downloaded documents. It takes time to download all 100 documents, so use a small number for experiments. optional load_all_available_meta: default=False. By default only the most important fields downloaded: Published (date when document was published/last updated), Title, Authors, Summary. If True, other fields also downloaded. from langchain.document_loaders import ArxivLoader docs = ArxivLoader(query="1605.08386", load_max_docs=2).load() len(docs) docs[0].metadata # meta-information of the Document {'Published': '2016-05-26', 'Title': 'Heat-bath random walks with Markov bases', 'Authors': 'Caprice Stanley, Tobias Windisch',
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/arxiv.html
18e0bb96c634-1
'Authors': 'Caprice Stanley, Tobias Windisch', 'Summary': 'Graphs on lattice points are studied whose edges come from a finite set of\nallowed moves of arbitrary length. We show that the diameter of these graphs on\nfibers of a fixed integer matrix can be bounded from above by a constant. We\nthen study the mixing behaviour of heat-bath random walks on these graphs. We\nalso state explicit conditions on the set of moves so that the heat-bath random\nwalk, a generalization of the Glauber dynamics, is an expander in fixed\ndimension.'} docs[0].page_content[:400] # all pages of the Document content 'arXiv:1605.08386v1 [math.CO] 26 May 2016\nHEAT-BATH RANDOM WALKS WITH MARKOV BASES\nCAPRICE STANLEY AND TOBIAS WINDISCH\nAbstract. Graphs on lattice points are studied whose edges come from a finite set of\nallowed moves of arbitrary length. We show that the diameter of these graphs on fibers of a\nfixed integer matrix can be bounded from above by a constant. We then study the mixing\nbehaviour of heat-b' previous WhatsApp Chat next AZLyrics Contents Installation Examples By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/arxiv.html
ad9dbfee44a6-0
.ipynb .pdf Facebook Chat Facebook Chat# Messenger is an American proprietary instant messaging app and platform developed by Meta Platforms. Originally developed as Facebook Chat in 2008, the company revamped its messaging service in 2010. This notebook covers how to load data from the Facebook Chats into a format that can be ingested into LangChain. #pip install pandas from langchain.document_loaders import FacebookChatLoader loader = FacebookChatLoader("example_data/facebook_chat.json") loader.load()
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/facebook_chat.html
ad9dbfee44a6-1
loader = FacebookChatLoader("example_data/facebook_chat.json") loader.load() [Document(page_content='User 2 on 2023-02-05 03:46:11: Bye!\n\nUser 1 on 2023-02-05 03:43:55: Oh no worries! Bye\n\nUser 2 on 2023-02-05 03:24:37: No Im sorry it was my mistake, the blue one is not for sale\n\nUser 1 on 2023-02-05 03:05:40: I thought you were selling the blue one!\n\nUser 1 on 2023-02-05 03:05:09: Im not interested in this bag. Im interested in the blue one!\n\nUser 2 on 2023-02-05 03:04:28: Here is $129\n\nUser 2 on 2023-02-05 03:04:05: Online is at least $100\n\nUser 1 on 2023-02-05 02:59:59: How much do you want?\n\nUser 2 on 2023-02-04 22:17:56: Goodmorning! $50 is too low.\n\nUser 1 on 2023-02-04 14:17:02: Hi! Im interested in your bag. Im offering $50. Let me know if you are interested. Thanks!\n\n', metadata={'source': 'example_data/facebook_chat.json'})] previous Microsoft Excel next File Directory By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/facebook_chat.html
8d4d12cbe439-0
.ipynb .pdf EPub Contents Retain Elements EPub# EPUB is an e-book file format that uses the “.epub” file extension. The term is short for electronic publication and is sometimes styled ePub. EPUB is supported by many e-readers, and compatible software is available for most smartphones, tablets, and computers. This covers how to load .epub documents into the Document format that we can use downstream. You’ll need to install the pandocs package for this loader to work. #!pip install pandocs from langchain.document_loaders import UnstructuredEPubLoader loader = UnstructuredEPubLoader("winter-sports.epub") data = loader.load() Retain Elements# Under the hood, Unstructured creates different “elements” for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying mode="elements". loader = UnstructuredEPubLoader("winter-sports.epub", mode="elements") data = loader.load() data[0] Document(page_content='The Project Gutenberg eBook of Winter Sports in\nSwitzerland, by E. F. Benson', lookup_str='', metadata={'source': 'winter-sports.epub', 'page_number': 1, 'category': 'Title'}, lookup_index=0) previous Email next EverNote Contents Retain Elements By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/epub.html
1cd9b5351448-0
.ipynb .pdf Diffbot Diffbot# Unlike traditional web scraping tools, Diffbot doesn’t require any rules to read the content on a page. It starts with computer vision, which classifies a page into one of 20 possible types. Content is then interpreted by a machine learning model trained to identify the key attributes on a page based on its type. The result is a website transformed into clean structured data (like JSON or CSV), ready for your application. This covers how to extract HTML documents from a list of URLs using the Diffbot extract API, into a document format that we can use downstream. urls = [ "https://python.langchain.com/en/latest/index.html", ] The Diffbot Extract API Requires an API token. Once you have it, you can extract the data. Read instructions how to get the Diffbot API Token. import os from langchain.document_loaders import DiffbotLoader loader = DiffbotLoader(urls=urls, api_token=os.environ.get("DIFFBOT_API_TOKEN")) With the .load() method, you can see the documents loaded loader.load()
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/diffbot.html
1cd9b5351448-1
[Document(page_content='LangChain is a framework for developing applications powered by language models. We believe that the most powerful and differentiated applications will not only call out to a language model via an API, but will also:\nBe data-aware: connect a language model to other sources of data\nBe agentic: allow a language model to interact with its environment\nThe LangChain framework is designed with the above principles in mind.\nThis is the Python specific portion of the documentation. For a purely conceptual guide to LangChain, see here. For the JavaScript documentation, see here.\nGetting Started\nCheckout the below guide for a walkthrough of how to get started using LangChain to create an Language Model application.\nGetting Started Documentation\nModules\nThere are several main modules that LangChain provides support for. For each module we provide some examples to get started, how-to guides, reference docs, and conceptual guides. These modules are, in increasing order of complexity:\nModels: The various model types and model integrations LangChain supports.\nPrompts: This includes prompt management, prompt optimization, and prompt serialization.\nMemory: Memory is the concept of persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.\nIndexes: Language models are often more powerful when combined with your own text data - this module covers best practices for doing exactly that.\nChains: Chains go beyond just a single LLM call, and are sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.\nAgents: Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from,
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/diffbot.html
1cd9b5351448-2
until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end to end agents.\nUse Cases\nThe above modules can be used in a variety of ways. LangChain also provides guidance and assistance in this. Below are some of the common use cases LangChain supports.\nPersonal Assistants: The main LangChain use case. Personal assistants need to take actions, remember interactions, and have knowledge about your data.\nQuestion Answering: The second big LangChain use case. Answering questions over specific documents, only utilizing the information in those documents to construct an answer.\nChatbots: Since language models are good at producing text, that makes them ideal for creating chatbots.\nQuerying Tabular Data: If you want to understand how to use LLMs to query data that is stored in a tabular format (csvs, SQL, dataframes, etc) you should read this page.\nInteracting with APIs: Enabling LLMs to interact with APIs is extremely powerful in order to give them more up-to-date information and allow them to take actions.\nExtraction: Extract structured information from text.\nSummarization: Summarizing longer documents into shorter, more condensed chunks of information. A type of Data Augmented Generation.\nEvaluation: Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.\nReference Docs\nAll of LangChain’s reference documentation, in one place. Full documentation on all methods, classes, installation methods, and integration setups for LangChain.\nReference Documentation\nLangChain Ecosystem\nGuides for how other companies/products can be used with LangChain\nLangChain Ecosystem\nAdditional Resources\nAdditional collection of resources we think may be useful as you develop your application!\nLangChainHub: The LangChainHub is
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/diffbot.html
1cd9b5351448-3
think may be useful as you develop your application!\nLangChainHub: The LangChainHub is a place to share and explore other prompts, chains, and agents.\nGlossary: A glossary of all related terms, papers, methods, etc. Whether implemented in LangChain or not!\nGallery: A collection of our favorite projects that use LangChain. Useful for finding inspiration or seeing how things were done in other applications.\nDeployments: A collection of instructions, code snippets, and template repositories for deploying LangChain apps.\nTracing: A guide on using tracing in LangChain to visualize the execution of chains and agents.\nModel Laboratory: Experimenting with different prompts, models, and chains is a big part of developing the best possible application. The ModelLaboratory makes it easy to do so.\nDiscord: Join us on our Discord to discuss all things LangChain!\nProduction Support: As you move your LangChains into production, we’d love to offer more comprehensive support. Please fill out this form and we’ll set up a dedicated support Slack channel.', metadata={'source': 'https://python.langchain.com/en/latest/index.html'})]
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/diffbot.html
1cd9b5351448-4
previous Confluence next Docugami By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/diffbot.html
62181c9dc685-0
.ipynb .pdf Microsoft PowerPoint Contents Retain Elements Microsoft PowerPoint# Microsoft PowerPoint is a presentation program by Microsoft. This covers how to load Microsoft PowerPoint documents into a document format that we can use downstream. from langchain.document_loaders import UnstructuredPowerPointLoader loader = UnstructuredPowerPointLoader("example_data/fake-power-point.pptx") data = loader.load() data [Document(page_content='Adding a Bullet Slide\n\nFind the bullet slide layout\n\nUse _TextFrame.text for first bullet\n\nUse _TextFrame.add_paragraph() for subsequent bullets\n\nHere is a lot of text!\n\nHere is some text in a text box!', metadata={'source': 'example_data/fake-power-point.pptx'})] Retain Elements# Under the hood, Unstructured creates different “elements” for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying mode="elements". loader = UnstructuredPowerPointLoader("example_data/fake-power-point.pptx", mode="elements") data = loader.load() data[0] Document(page_content='Adding a Bullet Slide', lookup_str='', metadata={'source': 'example_data/fake-power-point.pptx'}, lookup_index=0) previous Markdown next Microsoft Word Contents Retain Elements By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/microsoft_powerpoint.html
2c01717d0e32-0
.ipynb .pdf Open Document Format (ODT) Open Document Format (ODT)# The Open Document Format for Office Applications (ODF), also known as OpenDocument, is an open file format for word processing documents, spreadsheets, presentations and graphics and using ZIP-compressed XML files. It was developed with the aim of providing an open, XML-based file format specification for office applications. The standard is developed and maintained by a technical committee in the Organization for the Advancement of Structured Information Standards (OASIS) consortium. It was based on the Sun Microsystems specification for OpenOffice.org XML, the default format for OpenOffice.org and LibreOffice. It was originally developed for StarOffice “to provide an open standard for office documents.” The UnstructuredODTLoader is used to load Open Office ODT files. from langchain.document_loaders import UnstructuredODTLoader loader = UnstructuredODTLoader("example_data/fake.odt", mode="elements") docs = loader.load() docs[0] Document(page_content='Lorem ipsum dolor sit amet.', metadata={'source': 'example_data/fake.odt', 'filename': 'example_data/fake.odt', 'category': 'Title'}) previous Microsoft Word next Pandas DataFrame By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/odt.html
b72afa279fae-0
.ipynb .pdf ReadTheDocs Documentation ReadTheDocs Documentation# Read the Docs is an open-sourced free software documentation hosting platform. It generates documentation written with the Sphinx documentation generator. This notebook covers how to load content from HTML that was generated as part of a Read-The-Docs build. For an example of this in the wild, see here. This assumes that the HTML has already been scraped into a folder. This can be done by uncommenting and running the following command #!pip install beautifulsoup4 #!wget -r -A.html -P rtdocs https://langchain.readthedocs.io/en/latest/ from langchain.document_loaders import ReadTheDocsLoader loader = ReadTheDocsLoader("rtdocs", features='html.parser') docs = loader.load() previous PySpark DataFrame Loader next Reddit By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/readthedocs_documentation.html
c6d47d65d518-0
.ipynb .pdf Joplin Joplin# Joplin is an open source note-taking app. Capture your thoughts and securely access them from any device. This notebook covers how to load documents from a Joplin database. Joplin has a REST API for accessing its local database. This loader uses the API to retrieve all notes in the database and their metadata. This requires an access token that can be obtained from the app by following these steps: Open the Joplin app. The app must stay open while the documents are being loaded. Go to settings / options and select “Web Clipper”. Make sure that the Web Clipper service is enabled. Under “Advanced Options”, copy the authorization token. You may either initialize the loader directly with the access token, or store it in the environment variable JOPLIN_ACCESS_TOKEN. An alternative to this approach is to export the Joplin’s note database to Markdown files (optionally, with Front Matter metadata) and use a Markdown loader, such as ObsidianLoader, to load them. from langchain.document_loaders import JoplinLoader loader = JoplinLoader(access_token="<access-token>") docs = loader.load() previous Iugu next Microsoft OneDrive By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/joplin.html
42a4f228036e-0
.ipynb .pdf File Directory Contents Show a progress bar Use multithreading Change loader class Auto detect file encodings with TextLoader A. Default Behavior B. Silent fail C. Auto detect encodings File Directory# This covers how to use the DirectoryLoader to load all documents in a directory. Under the hood, by default this uses the UnstructuredLoader from langchain.document_loaders import DirectoryLoader We can use the glob parameter to control which files to load. Note that here it doesn’t load the .rst file or the .ipynb files. loader = DirectoryLoader('../', glob="**/*.md") docs = loader.load() len(docs) 1 Show a progress bar# By default a progress bar will not be shown. To show a progress bar, install the tqdm library (e.g. pip install tqdm), and set the show_progress parameter to True. %pip install tqdm loader = DirectoryLoader('../', glob="**/*.md", show_progress=True) docs = loader.load() Requirement already satisfied: tqdm in /Users/jon/.pyenv/versions/3.9.16/envs/microbiome-app/lib/python3.9/site-packages (4.65.0) 0it [00:00, ?it/s] Use multithreading# By default the loading happens in one thread. In order to utilize several threads set the use_multithreading flag to true. loader = DirectoryLoader('../', glob="**/*.md", use_multithreading=True) docs = loader.load() Change loader class# By default this uses the UnstructuredLoader class. However, you can change up the type of loader pretty easily. from langchain.document_loaders import TextLoader loader = DirectoryLoader('../', glob="**/*.md", loader_cls=TextLoader) docs = loader.load()
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/file_directory.html
42a4f228036e-1
docs = loader.load() len(docs) 1 If you need to load Python source code files, use the PythonLoader. from langchain.document_loaders import PythonLoader loader = DirectoryLoader('../../../../../', glob="**/*.py", loader_cls=PythonLoader) docs = loader.load() len(docs) 691 Auto detect file encodings with TextLoader# In this example we will see some strategies that can be useful when loading a big list of arbitrary files from a directory using the TextLoader class. First to illustrate the problem, let’s try to load multiple text with arbitrary encodings. path = '../../../../../tests/integration_tests/examples' loader = DirectoryLoader(path, glob="**/*.txt", loader_cls=TextLoader) A. Default Behavior# loader.load() ╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮ │ /data/source/langchain/langchain/document_loaders/text.py:29 in load │ │ │ │ 26 │ │ text = "" │ │ 27 │ │ with open(self.file_path, encoding=self.encoding) as f: │ │ 28 │ │ │ try: │ │ ❱ 29 │ │ │ │ text = f.read() │ │ 30 │ │ │ except UnicodeDecodeError as e: │ │ 31 │ │ │ │ if self.autodetect_encoding: │ │ 32 │ │ │ │ │ detected_encodings = self.detect_file_encodings() │ │ │ │ /home/spike/.pyenv/versions/3.9.11/lib/python3.9/codecs.py:322 in decode │
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/file_directory.html
42a4f228036e-2
│ │ │ 319 │ def decode(self, input, final=False): │ │ 320 │ │ # decode input (taking the buffer into account) │ │ 321 │ │ data = self.buffer + input │ │ ❱ 322 │ │ (result, consumed) = self._buffer_decode(data, self.errors, final) │ │ 323 │ │ # keep undecoded input until the next call │ │ 324 │ │ self.buffer = data[consumed:] │ │ 325 │ │ return result │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ UnicodeDecodeError: 'utf-8' codec can't decode byte 0xca in position 0: invalid continuation byte The above exception was the direct cause of the following exception: ╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮ │ in <module>:1 │ │ │ │ ❱ 1 loader.load() │ │ 2 │ │ │ │ /data/source/langchain/langchain/document_loaders/directory.py:84 in load │ │ │ │ 81 │ │ │ │ │ │ if self.silent_errors: │ │ 82 │ │ │ │ │ │ │ logger.warning(e) │ │ 83 │ │ │ │ │ │ else: │ │ ❱ 84 │ │ │ │ │ │ │ raise e │
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/file_directory.html
42a4f228036e-3
│ 85 │ │ │ │ │ finally: │ │ 86 │ │ │ │ │ │ if pbar: │ │ 87 │ │ │ │ │ │ │ pbar.update(1) │ │ │ │ /data/source/langchain/langchain/document_loaders/directory.py:78 in load │ │ │ │ 75 │ │ │ if i.is_file(): │ │ 76 │ │ │ │ if _is_visible(i.relative_to(p)) or self.load_hidden: │ │ 77 │ │ │ │ │ try: │ │ ❱ 78 │ │ │ │ │ │ sub_docs = self.loader_cls(str(i), **self.loader_kwargs).load() │ │ 79 │ │ │ │ │ │ docs.extend(sub_docs) │ │ 80 │ │ │ │ │ except Exception as e: │ │ 81 │ │ │ │ │ │ if self.silent_errors: │ │ │ │ /data/source/langchain/langchain/document_loaders/text.py:44 in load │ │ │ │ 41 │ │ │ │ │ │ except UnicodeDecodeError: │ │ 42 │ │ │ │ │ │ │ continue │ │ 43 │ │ │ │ else: │ │ ❱ 44 │ │ │ │ │ raise RuntimeError(f"Error loading {self.file_path}") from e │
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/file_directory.html
42a4f228036e-4
│ 45 │ │ │ except Exception as e: │ │ 46 │ │ │ │ raise RuntimeError(f"Error loading {self.file_path}") from e │ │ 47 │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ RuntimeError: Error loading ../../../../../tests/integration_tests/examples/example-non-utf8.txt The file example-non-utf8.txt uses a different encoding the load() function fails with a helpful message indicating which file failed decoding. With the default behavior of TextLoader any failure to load any of the documents will fail the whole loading process and no documents are loaded. B. Silent fail# We can pass the parameter silent_errors to the DirectoryLoader to skip the files which could not be loaded and continue the load process. loader = DirectoryLoader(path, glob="**/*.txt", loader_cls=TextLoader, silent_errors=True) docs = loader.load() Error loading ../../../../../tests/integration_tests/examples/example-non-utf8.txt doc_sources = [doc.metadata['source'] for doc in docs] doc_sources ['../../../../../tests/integration_tests/examples/whatsapp_chat.txt', '../../../../../tests/integration_tests/examples/example-utf8.txt'] C. Auto detect encodings# We can also ask TextLoader to auto detect the file encoding before failing, by passing the autodetect_encoding to the loader class. text_loader_kwargs={'autodetect_encoding': True} loader = DirectoryLoader(path, glob="**/*.txt", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs) docs = loader.load() doc_sources = [doc.metadata['source'] for doc in docs] doc_sources ['../../../../../tests/integration_tests/examples/example-non-utf8.txt', '../../../../../tests/integration_tests/examples/whatsapp_chat.txt',
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/file_directory.html
42a4f228036e-5
'../../../../../tests/integration_tests/examples/whatsapp_chat.txt', '../../../../../tests/integration_tests/examples/example-utf8.txt'] previous Facebook Chat next HTML Contents Show a progress bar Use multithreading Change loader class Auto detect file encodings with TextLoader A. Default Behavior B. Silent fail C. Auto detect encodings By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/file_directory.html
3569465f4968-0
.ipynb .pdf Microsoft Excel Microsoft Excel# The UnstructuredExcelLoader is used to load Microsoft Excel files. The loader works with both .xlsx and .xls files. The page content will be the raw text of the Excel file. If you use the loader in "elements" mode, an HTML representation of the Excel file will be available in the document metadata under the text_as_html key. from langchain.document_loaders import UnstructuredExcelLoader loader = UnstructuredExcelLoader( "example_data/stanley-cups.xlsx", mode="elements" ) docs = loader.load() docs[0]
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/excel.html
3569465f4968-1
mode="elements" ) docs = loader.load() docs[0] Document(page_content='\n \n \n Team\n Location\n Stanley Cups\n \n \n Blues\n STL\n 1\n \n \n Flyers\n PHI\n 2\n \n \n Maple Leafs\n TOR\n 13\n \n \n', metadata={'source': 'example_data/stanley-cups.xlsx', 'filename': 'stanley-cups.xlsx', 'file_directory': 'example_data', 'filetype': 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet', 'page_number': 1, 'page_name': 'Stanley Cups', 'text_as_html': '<table border="1" class="dataframe">\n <tbody>\n <tr>\n <td>Team</td>\n <td>Location</td>\n <td>Stanley Cups</td>\n </tr>\n <tr>\n <td>Blues</td>\n <td>STL</td>\n <td>1</td>\n </tr>\n <tr>\n <td>Flyers</td>\n <td>PHI</td>\n <td>2</td>\n </tr>\n <tr>\n <td>Maple Leafs</td>\n <td>TOR</td>\n <td>13</td>\n </tr>\n </tbody>\n</table>', 'category': 'Table'}) previous EverNote next Facebook Chat By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/excel.html
9c7e2bdeec38-0
.ipynb .pdf Figma Figma# Figma is a collaborative web application for interface design. This notebook covers how to load data from the Figma REST API into a format that can be ingested into LangChain, along with example usage for code generation. import os from langchain.document_loaders.figma import FigmaFileLoader from langchain.text_splitter import CharacterTextSplitter from langchain.chat_models import ChatOpenAI from langchain.indexes import VectorstoreIndexCreator from langchain.chains import ConversationChain, LLMChain from langchain.memory import ConversationBufferWindowMemory from langchain.prompts.chat import ( ChatPromptTemplate, SystemMessagePromptTemplate, AIMessagePromptTemplate, HumanMessagePromptTemplate, ) The Figma API Requires an access token, node_ids, and a file key. The file key can be pulled from the URL. https://www.figma.com/file/{filekey}/sampleFilename Node IDs are also available in the URL. Click on anything and look for the ‘?node-id={node_id}’ param. Access token instructions are in the Figma help center article: https://help.figma.com/hc/en-us/articles/8085703771159-Manage-personal-access-tokens figma_loader = FigmaFileLoader( os.environ.get('ACCESS_TOKEN'), os.environ.get('NODE_IDS'), os.environ.get('FILE_KEY') ) # see https://python.langchain.com/en/latest/modules/indexes/getting_started.html for more details index = VectorstoreIndexCreator().from_loaders([figma_loader]) figma_doc_retriever = index.vectorstore.as_retriever() def generate_code(human_input): # I have no idea if the Jon Carmack thing makes for better code. YMMV.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/figma.html
9c7e2bdeec38-1
# See https://python.langchain.com/en/latest/modules/models/chat/getting_started.html for chat info system_prompt_template = """You are expert coder Jon Carmack. Use the provided design context to create idomatic HTML/CSS code as possible based on the user request. Everything must be inline in one file and your response must be directly renderable by the browser. Figma file nodes and metadata: {context}""" human_prompt_template = "Code the {text}. Ensure it's mobile responsive" system_message_prompt = SystemMessagePromptTemplate.from_template(system_prompt_template) human_message_prompt = HumanMessagePromptTemplate.from_template(human_prompt_template) # delete the gpt-4 model_name to use the default gpt-3.5 turbo for faster results gpt_4 = ChatOpenAI(temperature=.02, model_name='gpt-4') # Use the retriever's 'get_relevant_documents' method if needed to filter down longer docs relevant_nodes = figma_doc_retriever.get_relevant_documents(human_input) conversation = [system_message_prompt, human_message_prompt] chat_prompt = ChatPromptTemplate.from_messages(conversation) response = gpt_4(chat_prompt.format_prompt( context=relevant_nodes, text=human_input).to_messages()) return response response = generate_code("page top header") Returns the following in response.content:
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/figma.html
9c7e2bdeec38-2
<!DOCTYPE html>\n<html lang="en">\n<head>\n <meta charset="UTF-8">\n <meta name="viewport" content="width=device-width, initial-scale=1.0">\n <style>\n @import url(\'https://fonts.googleapis.com/css2?family=DM+Sans:wght@500;700&family=Inter:wght@600&display=swap\');\n\n body {\n margin: 0;\n font-family: \'DM Sans\', sans-serif;\n }\n\n .header {\n display: flex;\n justify-content: space-between;\n align-items: center;\n padding: 20px;\n background-color: #fff;\n box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);\n }\n\n .header h1 {\n font-size: 16px;\n font-weight: 700;\n margin: 0;\n }\n\n .header nav {\n
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/figma.html
9c7e2bdeec38-3
}\n\n .header nav {\n display: flex;\n align-items: center;\n }\n\n .header nav a {\n font-size: 14px;\n font-weight: 500;\n text-decoration: none;\n color: #000;\n margin-left: 20px;\n }\n\n @media (max-width: 768px) {\n .header nav {\n display: none;\n }\n }\n </style>\n</head>\n<body>\n <header class="header">\n <h1>Company Contact</h1>\n <nav>\n <a href="#">Lorem Ipsum</a>\n <a href="#">Lorem Ipsum</a>\n <a href="#">Lorem Ipsum</a>\n </nav>\n </header>\n</body>\n</html>
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/figma.html
9c7e2bdeec38-4
previous DuckDB next GitBook By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/figma.html
d5cb5601ba09-0
.ipynb .pdf Azure Blob Storage File Azure Blob Storage File# Azure Files offers fully managed file shares in the cloud that are accessible via the industry standard Server Message Block (SMB) protocol, Network File System (NFS) protocol, and Azure Files REST API. This covers how to load document objects from a Azure Files. #!pip install azure-storage-blob from langchain.document_loaders import AzureBlobStorageFileLoader loader = AzureBlobStorageFileLoader(conn_str='<connection string>', container='<container name>', blob_name='<blob name>') loader.load() [Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmpxvave6wl/fake.docx'}, lookup_index=0)] previous Azure Blob Storage Container next Blackboard By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/azure_blob_storage_file.html
557ee08d2226-0
.ipynb .pdf 2Markdown 2Markdown# 2markdown service transforms website content into structured markdown files. # You will need to get your own API key. See https://2markdown.com/login api_key = "" from langchain.document_loaders import ToMarkdownLoader loader = ToMarkdownLoader.from_api_key(url="https://python.langchain.com/en/latest/", api_key=api_key) docs = loader.load() print(docs[0].page_content) ## Contents - [Getting Started](#getting-started) - [Modules](#modules) - [Use Cases](#use-cases) - [Reference Docs](#reference-docs) - [LangChain Ecosystem](#langchain-ecosystem) - [Additional Resources](#additional-resources) ## Welcome to LangChain [\#](\#welcome-to-langchain "Permalink to this headline") **LangChain** is a framework for developing applications powered by language models. We believe that the most powerful and differentiated applications will not only call out to a language model, but will also be: 1. _Data-aware_: connect a language model to other sources of data 2. _Agentic_: allow a language model to interact with its environment The LangChain framework is designed around these principles. This is the Python specific portion of the documentation. For a purely conceptual guide to LangChain, see [here](https://docs.langchain.com/docs/). For the JavaScript documentation, see [here](https://js.langchain.com/docs/). ## Getting Started [\#](\#getting-started "Permalink to this headline") How to get started using LangChain to create an Language Model application. - [Quickstart Guide](https://python.langchain.com/en/latest/getting_started/getting_started.html) Concepts and terminology.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/tomarkdown.html
557ee08d2226-1
Concepts and terminology. - [Concepts and terminology](https://python.langchain.com/en/latest/getting_started/concepts.html) Tutorials created by community experts and presented on YouTube. - [Tutorials](https://python.langchain.com/en/latest/getting_started/tutorials.html) ## Modules [\#](\#modules "Permalink to this headline") These modules are the core abstractions which we view as the building blocks of any LLM-powered application. For each module LangChain provides standard, extendable interfaces. LanghChain also provides external integrations and even end-to-end implementations for off-the-shelf use. The docs for each module contain quickstart examples, how-to guides, reference docs, and conceptual guides. The modules are (from least to most complex): - [Models](https://python.langchain.com/en/latest/modules/models.html): Supported model types and integrations. - [Prompts](https://python.langchain.com/en/latest/modules/prompts.html): Prompt management, optimization, and serialization. - [Memory](https://python.langchain.com/en/latest/modules/memory.html): Memory refers to state that is persisted between calls of a chain/agent. - [Indexes](https://python.langchain.com/en/latest/modules/indexes.html): Language models become much more powerful when combined with application-specific data - this module contains interfaces and integrations for loading, querying and updating external data. - [Chains](https://python.langchain.com/en/latest/modules/chains.html): Chains are structured sequences of calls (to an LLM or to a different utility). - [Agents](https://python.langchain.com/en/latest/modules/agents.html): An agent is a Chain in which an LLM, given a high-level directive and a set of tools, repeatedly decides an action, executes the action and observes the outcome until the high-level directive is complete.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/tomarkdown.html
557ee08d2226-2
- [Callbacks](https://python.langchain.com/en/latest/modules/callbacks/getting_started.html): Callbacks let you log and stream the intermediate steps of any chain, making it easy to observe, debug, and evaluate the internals of an application. ## Use Cases [\#](\#use-cases "Permalink to this headline") Best practices and built-in implementations for common LangChain use cases: - [Autonomous Agents](https://python.langchain.com/en/latest/use_cases/autonomous_agents.html): Autonomous agents are long-running agents that take many steps in an attempt to accomplish an objective. Examples include AutoGPT and BabyAGI. - [Agent Simulations](https://python.langchain.com/en/latest/use_cases/agent_simulations.html): Putting agents in a sandbox and observing how they interact with each other and react to events can be an effective way to evaluate their long-range reasoning and planning abilities. - [Personal Assistants](https://python.langchain.com/en/latest/use_cases/personal_assistants.html): One of the primary LangChain use cases. Personal assistants need to take actions, remember interactions, and have knowledge about your data. - [Question Answering](https://python.langchain.com/en/latest/use_cases/question_answering.html): Another common LangChain use case. Answering questions over specific documents, only utilizing the information in those documents to construct an answer. - [Chatbots](https://python.langchain.com/en/latest/use_cases/chatbots.html): Language models love to chat, making this a very natural use of them. - [Querying Tabular Data](https://python.langchain.com/en/latest/use_cases/tabular.html): Recommended reading if you want to use language models to query structured data (CSVs, SQL, dataframes, etc).
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/tomarkdown.html
557ee08d2226-3
- [Code Understanding](https://python.langchain.com/en/latest/use_cases/code.html): Recommended reading if you want to use language models to analyze code. - [Interacting with APIs](https://python.langchain.com/en/latest/use_cases/apis.html): Enabling language models to interact with APIs is extremely powerful. It gives them access to up-to-date information and allows them to take actions. - [Extraction](https://python.langchain.com/en/latest/use_cases/extraction.html): Extract structured information from text. - [Summarization](https://python.langchain.com/en/latest/use_cases/summarization.html): Compressing longer documents. A type of Data-Augmented Generation. - [Evaluation](https://python.langchain.com/en/latest/use_cases/evaluation.html): Generative models are hard to evaluate with traditional metrics. One promising approach is to use language models themselves to do the evaluation. ## Reference Docs [\#](\#reference-docs "Permalink to this headline") Full documentation on all methods, classes, installation methods, and integration setups for LangChain. - [Reference Documentation](https://python.langchain.com/en/latest/reference.html) ## LangChain Ecosystem [\#](\#langchain-ecosystem "Permalink to this headline") Guides for how other companies/products can be used with LangChain. - [LangChain Ecosystem](https://python.langchain.com/en/latest/ecosystem.html) ## Additional Resources [\#](\#additional-resources "Permalink to this headline") Additional resources we think may be useful as you develop your application! - [LangChainHub](https://github.com/hwchase17/langchain-hub): The LangChainHub is a place to share and explore other prompts, chains, and agents.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/tomarkdown.html
557ee08d2226-4
- [Gallery](https://python.langchain.com/en/latest/additional_resources/gallery.html): A collection of our favorite projects that use LangChain. Useful for finding inspiration or seeing how things were done in other applications. - [Deployments](https://python.langchain.com/en/latest/additional_resources/deployments.html): A collection of instructions, code snippets, and template repositories for deploying LangChain apps. - [Tracing](https://python.langchain.com/en/latest/additional_resources/tracing.html): A guide on using tracing in LangChain to visualize the execution of chains and agents. - [Model Laboratory](https://python.langchain.com/en/latest/additional_resources/model_laboratory.html): Experimenting with different prompts, models, and chains is a big part of developing the best possible application. The ModelLaboratory makes it easy to do so. - [Discord](https://discord.gg/6adMQxSpJS): Join us on our Discord to discuss all things LangChain! - [YouTube](https://python.langchain.com/en/latest/additional_resources/youtube.html): A collection of the LangChain tutorials and videos. - [Production Support](https://forms.gle/57d8AmXBYp8PP8tZA): As you move your LangChains into production, we’d love to offer more comprehensive support. Please fill out this form and we’ll set up a dedicated support Slack channel. previous Stripe next Twitter By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/tomarkdown.html
bb1e56dc366e-0
.ipynb .pdf HTML Contents Loading HTML with BeautifulSoup4 HTML# The HyperText Markup Language or HTML is the standard markup language for documents designed to be displayed in a web browser. This covers how to load HTML documents into a document format that we can use downstream. from langchain.document_loaders import UnstructuredHTMLLoader loader = UnstructuredHTMLLoader("example_data/fake-content.html") data = loader.load() data [Document(page_content='My First Heading\n\nMy first paragraph.', lookup_str='', metadata={'source': 'example_data/fake-content.html'}, lookup_index=0)] Loading HTML with BeautifulSoup4# We can also use BeautifulSoup4 to load HTML documents using the BSHTMLLoader. This will extract the text from the HTML into page_content, and the page title as title into metadata. from langchain.document_loaders import BSHTMLLoader loader = BSHTMLLoader("example_data/fake-content.html") data = loader.load() data [Document(page_content='\n\nTest Title\n\n\nMy First Heading\nMy first paragraph.\n\n\n', metadata={'source': 'example_data/fake-content.html', 'title': 'Test Title'})] previous File Directory next Images Contents Loading HTML with BeautifulSoup4 By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/html.html
ae23c56d5c2d-0
.ipynb .pdf Telegram Telegram# Telegram Messenger is a globally accessible freemium, cross-platform, encrypted, cloud-based and centralized instant messaging service. The application also provides optional end-to-end encrypted chats and video calling, VoIP, file sharing and several other features. This notebook covers how to load data from Telegram into a format that can be ingested into LangChain. from langchain.document_loaders import TelegramChatFileLoader, TelegramChatApiLoader loader = TelegramChatFileLoader("example_data/telegram.json") loader.load() [Document(page_content="Henry on 2020-01-01T00:00:02: It's 2020...\n\nHenry on 2020-01-01T00:00:04: Fireworks!\n\nGrace 🧤 ðŸ\x8d’ on 2020-01-01T00:00:05: You're a minute late!\n\n", metadata={'source': 'example_data/telegram.json'})] TelegramChatApiLoader loads data directly from any specified chat from Telegram. In order to export the data, you will need to authenticate your Telegram account. You can get the API_HASH and API_ID from https://my.telegram.org/auth?to=apps chat_entity – recommended to be the entity of a channel. loader = TelegramChatApiLoader( chat_entity="<CHAT_URL>", # recommended to use Entity here api_hash="<API HASH >", api_id="<API_ID>", user_name ="", # needed only for caching the session. ) loader.load() previous Subtitle next TOML By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/telegram.html
94d714e0000c-0
.ipynb .pdf Sitemap Contents Filtering sitemap URLs Local Sitemap Sitemap# Extends from the WebBaseLoader, SitemapLoader loads a sitemap from a given URL, and then scrape and load all pages in the sitemap, returning each page as a Document. The scraping is done concurrently. There are reasonable limits to concurrent requests, defaulting to 2 per second. If you aren’t concerned about being a good citizen, or you control the scrapped server, or don’t care about load. Note, while this will speed up the scraping process, but it may cause the server to block you. Be careful! !pip install nest_asyncio Requirement already satisfied: nest_asyncio in /Users/tasp/Code/projects/langchain/.venv/lib/python3.10/site-packages (1.5.6) [notice] A new release of pip available: 22.3.1 -> 23.0.1 [notice] To update, run: pip install --upgrade pip # fixes a bug with asyncio and jupyter import nest_asyncio nest_asyncio.apply() from langchain.document_loaders.sitemap import SitemapLoader sitemap_loader = SitemapLoader(web_path="https://langchain.readthedocs.io/sitemap.xml") docs = sitemap_loader.load() You can change the requests_per_second parameter to increase the max concurrent requests. and use requests_kwargs to pass kwargs when send requests. sitemap_loader.requests_per_second = 2 # Optional: avoid `[SSL: CERTIFICATE_VERIFY_FAILED]` issue sitemap_loader.requests_kwargs = {"verify": False} docs[0]
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/sitemap.html
94d714e0000c-1
Document(page_content='\n\n\n\n\n\nWelcome to LangChain — 🦜🔗 LangChain 0.0.123\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nSkip to main content\n\n\n\n\n\n\n\n\n\n\nCtrl+K\n\n\n\n\n\n\n\n\n\n\n\n\n🦜🔗 LangChain 0.0.123\n\n\n\nGetting Started\n\nQuickstart Guide\n\nModules\n\nPrompt Templates\nGetting Started\nKey Concepts\nHow-To Guides\nCreate a custom prompt template\nCreate a custom example selector\nProvide few shot examples to a prompt\nPrompt Serialization\nExample Selectors\nOutput Parsers\n\n\nReference\nPromptTemplates\nExample Selector\n\n\n\n\nLLMs\nGetting Started\nKey Concepts\nHow-To Guides\nGeneric Functionality\nCustom LLM\nFake LLM\nLLM Caching\nLLM Serialization\nToken Usage Tracking\n\n\nIntegrations\nAI21\nAleph Alpha\nAnthropic\nAzure OpenAI LLM Example\nBanana\nCerebriumAI LLM Example\nCohere\nDeepInfra LLM Example\nForefrontAI LLM Example\nGooseAI LLM Example\nHugging Face Hub\nManifest\nModal\nOpenAI\nPetals LLM Example\nPromptLayer OpenAI\nSageMakerEndpoint\nSelf-Hosted Models via Runhouse\nStochasticAI\nWriter\n\n\nAsync API for LLM\nStreaming with LLMs\n\n\nReference\n\n\nDocument Loaders\nKey Concepts\nHow To Guides\nCoNLL-U\nAirbyte JSON\nAZLyrics\nBlackboard\nCollege Confidential\nCopy Paste\nCSV Loader\nDirectory
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/sitemap.html
94d714e0000c-2
JSON\nAZLyrics\nBlackboard\nCollege Confidential\nCopy Paste\nCSV Loader\nDirectory Loader\nEmail\nEverNote\nFacebook Chat\nFigma\nGCS Directory\nGCS File Storage\nGitBook\nGoogle Drive\nGutenberg\nHacker News\nHTML\niFixit\nImages\nIMSDb\nMarkdown\nNotebook\nNotion\nObsidian\nPDF\nPowerPoint\nReadTheDocs Documentation\nRoam\ns3 Directory\ns3 File\nSubtitle Files\nTelegram\nUnstructured File Loader\nURL\nWeb Base\nWord Documents\nYouTube\n\n\n\n\nUtils\nKey Concepts\nGeneric Utilities\nBash\nBing Search\nGoogle Search\nGoogle Serper API\nIFTTT WebHooks\nPython REPL\nRequests\nSearxNG Search API\nSerpAPI\nWolfram Alpha\nZapier Natural Language Actions API\n\n\nReference\nPython REPL\nSerpAPI\nSearxNG Search\nDocstore\nText Splitter\nEmbeddings\nVectorStores\n\n\n\n\nIndexes\nGetting Started\nKey Concepts\nHow To Guides\nEmbeddings\nHypothetical Document Embeddings\nText Splitter\nVectorStores\nAtlasDB\nChroma\nDeep Lake\nElasticSearch\nFAISS\nMilvus\nOpenSearch\nPGVector\nPinecone\nQdrant\nRedis\nWeaviate\nChatGPT Plugin Retriever\nVectorStore Retriever\nAnalyze Document\nChat Index\nGraph QA\nQuestion Answering with Sources\nQuestion Answering\nSummarization\nRetrieval Question/Answering\nRetrieval Question Answering with Sources\nVector DB Text Generation\n\n\n\n\nChains\nGetting Started\nHow-To Guides\nGeneric Chains\nLoading from LangChainHub\nLLM Chain\nSequential Chains\nSerialization\nTransformation Chain\n\n\nUtility Chains\nAPI Chains\nSelf-Critique Chain with Constitutional
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/sitemap.html
94d714e0000c-3
Chain\n\n\nUtility Chains\nAPI Chains\nSelf-Critique Chain with Constitutional AI\nBashChain\nLLMCheckerChain\nLLM Math\nLLMRequestsChain\nLLMSummarizationCheckerChain\nModeration\nPAL\nSQLite example\n\n\nAsync API for Chain\n\n\nKey Concepts\nReference\n\n\nAgents\nGetting Started\nKey Concepts\nHow-To Guides\nAgents and Vectorstores\nAsync API for Agent\nConversation Agent (for Chat Models)\nChatGPT Plugins\nCustom Agent\nDefining Custom Tools\nHuman as a tool\nIntermediate Steps\nLoading from LangChainHub\nMax Iterations\nMulti Input Tools\nSearch Tools\nSerialization\nAdding SharedMemory to an Agent and its Tools\nCSV Agent\nJSON Agent\nOpenAPI Agent\nPandas Dataframe Agent\nPython Agent\nSQL Database Agent\nVectorstore Agent\nMRKL\nMRKL Chat\nReAct\nSelf Ask With Search\n\n\nReference\n\n\nMemory\nGetting Started\nKey Concepts\nHow-To Guides\nConversationBufferMemory\nConversationBufferWindowMemory\nEntity Memory\nConversation Knowledge Graph Memory\nConversationSummaryMemory\nConversationSummaryBufferMemory\nConversationTokenBufferMemory\nAdding Memory To an LLMChain\nAdding Memory to a Multi-Input Chain\nAdding Memory to an Agent\nChatGPT Clone\nConversation Agent\nConversational Memory Customization\nCustom Memory\nMultiple Memory\n\n\n\n\nChat\nGetting Started\nKey Concepts\nHow-To Guides\nAgent\nChat Vector DB\nFew Shot Examples\nMemory\nPromptLayer ChatOpenAI\nStreaming\nRetrieval Question/Answering\nRetrieval Question Answering with Sources\n\n\n\n\n\nUse Cases\n\nAgents\nChatbots\nGenerate Examples\nData Augmented Generation\nQuestion Answering\nSummarization\nQuerying Tabular Data\nExtraction\nEvaluation\nAgent Benchmarking: Search + Calculator\nAgent VectorDB Question Answering Benchmarking\nBenchmarking
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/sitemap.html
94d714e0000c-4
Benchmarking: Search + Calculator\nAgent VectorDB Question Answering Benchmarking\nBenchmarking Template\nData Augmented Question Answering\nUsing Hugging Face Datasets\nLLM Math\nQuestion Answering Benchmarking: Paul Graham Essay\nQuestion Answering Benchmarking: State of the Union Address\nQA Generation\nQuestion Answering\nSQL Question Answering Benchmarking: Chinook\n\n\nModel Comparison\n\nReference\n\nInstallation\nIntegrations\nAPI References\nPrompts\nPromptTemplates\nExample Selector\n\n\nUtilities\nPython REPL\nSerpAPI\nSearxNG Search\nDocstore\nText Splitter\nEmbeddings\nVectorStores\n\n\nChains\nAgents\n\n\n\nEcosystem\n\nLangChain Ecosystem\nAI21 Labs\nAtlasDB\nBanana\nCerebriumAI\nChroma\nCohere\nDeepInfra\nDeep Lake\nForefrontAI\nGoogle Search Wrapper\nGoogle Serper Wrapper\nGooseAI\nGraphsignal\nHazy Research\nHelicone\nHugging Face\nMilvus\nModal\nNLPCloud\nOpenAI\nOpenSearch\nPetals\nPGVector\nPinecone\nPromptLayer\nQdrant\nRunhouse\nSearxNG Search API\nSerpAPI\nStochasticAI\nUnstructured\nWeights & Biases\nWeaviate\nWolfram Alpha Wrapper\nWriter\n\n\n\nAdditional Resources\n\nLangChainHub\nGlossary\nLangChain Gallery\nDeployments\nTracing\nDiscord\nProduction Support\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n.rst\n\n\n\n\n\n\n\n.pdf\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nWelcome to LangChain\n\n\n\n\n Contents
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/sitemap.html
94d714e0000c-5
to LangChain\n\n\n\n\n Contents \n\n\n\nGetting Started\nModules\nUse Cases\nReference Docs\nLangChain Ecosystem\nAdditional Resources\n\n\n\n\n\n\n\n\nWelcome to LangChain#\nLarge language models (LLMs) are emerging as a transformative technology, enabling\ndevelopers to build applications that they previously could not.\nBut using these LLMs in isolation is often not enough to\ncreate a truly powerful app - the real power comes when you are able to\ncombine them with other sources of computation or knowledge.\nThis library is aimed at assisting in the development of those types of applications. Common examples of these types of applications include:\n❓ Question Answering over specific documents\n\nDocumentation\nEnd-to-end Example: Question Answering over Notion Database\n\n💬 Chatbots\n\nDocumentation\nEnd-to-end Example: Chat-LangChain\n\n🤖 Agents\n\nDocumentation\nEnd-to-end Example: GPT+WolframAlpha\n\n\nGetting Started#\nCheckout the below guide for a walkthrough of how to get started using LangChain to create an Language Model application.\n\nGetting Started Documentation\n\n\n\n\n\nModules#\nThere are several main modules that LangChain provides support for.\nFor each module we provide some examples to get started, how-to guides, reference docs, and conceptual guides.\nThese modules are, in increasing order of complexity:\n\nPrompts: This includes prompt management, prompt optimization, and prompt serialization.\nLLMs: This includes a generic interface for all LLMs, and common utilities for working with LLMs.\nDocument Loaders: This includes a standard interface for loading documents, as well as specific integrations to all types of text data sources.\nUtils: Language models are often more powerful when interacting with other sources of knowledge or computation. This can include Python REPLs, embeddings, search engines, and more.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/sitemap.html
94d714e0000c-6
of knowledge or computation. This can include Python REPLs, embeddings, search engines, and more. LangChain provides a large collection of common utils to use in your application.\nChains: Chains go beyond just a single LLM call, and are sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.\nIndexes: Language models are often more powerful when combined with your own text data - this module covers best practices for doing exactly that.\nAgents: Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end to end agents.\nMemory: Memory is the concept of persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.\nChat: Chat models are a variation on Language Models that expose a different API - rather than working with raw text, they work with messages. LangChain provides a standard interface for working with them and doing all the same things as above.\n\n\n\n\n\nUse Cases#\nThe above modules can be used in a variety of ways. LangChain also provides guidance and assistance in this. Below are some of the common use cases LangChain supports.\n\nAgents: Agents are systems that use a language model to interact with other tools. These can be used to do more grounded question/answering, interact with APIs, or even take actions.\nChatbots: Since language models are good at producing text, that makes them ideal for creating chatbots.\nData Augmented Generation: Data Augmented Generation involves specific types of chains that first interact with an external datasource to fetch data to use in the
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/sitemap.html
94d714e0000c-7
Generation involves specific types of chains that first interact with an external datasource to fetch data to use in the generation step. Examples of this include summarization of long pieces of text and question/answering over specific data sources.\nQuestion Answering: Answering questions over specific documents, only utilizing the information in those documents to construct an answer. A type of Data Augmented Generation.\nSummarization: Summarizing longer documents into shorter, more condensed chunks of information. A type of Data Augmented Generation.\nQuerying Tabular Data: If you want to understand how to use LLMs to query data that is stored in a tabular format (csvs, SQL, dataframes, etc) you should read this page.\nEvaluation: Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.\nGenerate similar examples: Generating similar examples to a given input. This is a common use case for many applications, and LangChain provides some prompts/chains for assisting in this.\nCompare models: Experimenting with different prompts, models, and chains is a big part of developing the best possible application. The ModelLaboratory makes it easy to do so.\n\n\n\n\n\nReference Docs#\nAll of LangChain’s reference documentation, in one place. Full documentation on all methods, classes, installation methods, and integration setups for LangChain.\n\nReference Documentation\n\n\n\n\n\nLangChain Ecosystem#\nGuides for how other companies/products can be used with LangChain\n\nLangChain Ecosystem\n\n\n\n\n\nAdditional Resources#\nAdditional collection of resources we think may be useful as you develop your application!\n\nLangChainHub: The LangChainHub is a place to share and explore other prompts, chains, and agents.\nGlossary: A glossary of all
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/sitemap.html
94d714e0000c-8
and explore other prompts, chains, and agents.\nGlossary: A glossary of all related terms, papers, methods, etc. Whether implemented in LangChain or not!\nGallery: A collection of our favorite projects that use LangChain. Useful for finding inspiration or seeing how things were done in other applications.\nDeployments: A collection of instructions, code snippets, and template repositories for deploying LangChain apps.\nDiscord: Join us on our Discord to discuss all things LangChain!\nTracing: A guide on using tracing in LangChain to visualize the execution of chains and agents.\nProduction Support: As you move your LangChains into production, we’d love to offer more comprehensive support. Please fill out this form and we’ll set up a dedicated support Slack channel.\n\n\n\n\n\n\n\n\n\n\n\nnext\nQuickstart Guide\n\n\n\n\n\n\n\n\n\n Contents\n \n\n\nGetting Started\nModules\nUse Cases\nReference Docs\nLangChain Ecosystem\nAdditional Resources\n\n\n\n\n\n\n\n\n\nBy Harrison Chase\n\n\n\n\n \n © Copyright 2023, Harrison Chase.\n \n\n\n\n\n Last updated on Mar 24, 2023.\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n', lookup_str='', metadata={'source': 'https://python.langchain.com/en/stable/', 'loc': 'https://python.langchain.com/en/stable/', 'lastmod': '2023-03-24T19:30:54.647430+00:00', 'changefreq': 'weekly', 'priority': '1'}, lookup_index=0)
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/sitemap.html
94d714e0000c-9
Filtering sitemap URLs# Sitemaps can be massive files, with thousands of URLs. Often you don’t need every single one of them. You can filter the URLs by passing a list of strings or regex patterns to the url_filter parameter. Only URLs that match one of the patterns will be loaded. loader = SitemapLoader( "https://langchain.readthedocs.io/sitemap.xml", filter_urls=["https://python.langchain.com/en/latest/"] ) documents = loader.load() documents[0]
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/sitemap.html
94d714e0000c-10
Document(page_content='\n\n\n\n\n\nWelcome to LangChain — 🦜🔗 LangChain 0.0.123\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nSkip to main content\n\n\n\n\n\n\n\n\n\n\nCtrl+K\n\n\n\n\n\n\n\n\n\n\n\n\n🦜🔗 LangChain 0.0.123\n\n\n\nGetting Started\n\nQuickstart Guide\n\nModules\n\nModels\nLLMs\nGetting Started\nGeneric Functionality\nHow to use the async API for LLMs\nHow to write a custom LLM wrapper\nHow (and why) to use the fake LLM\nHow to cache LLM calls\nHow to serialize LLM classes\nHow to stream LLM responses\nHow to track token usage\n\n\nIntegrations\nAI21\nAleph Alpha\nAnthropic\nAzure OpenAI LLM Example\nBanana\nCerebriumAI LLM Example\nCohere\nDeepInfra LLM Example\nForefrontAI LLM Example\nGooseAI LLM Example\nHugging Face Hub\nManifest\nModal\nOpenAI\nPetals LLM Example\nPromptLayer OpenAI\nSageMakerEndpoint\nSelf-Hosted Models via Runhouse\nStochasticAI\nWriter\n\n\nReference\n\n\nChat Models\nGetting Started\nHow-To Guides\nHow to use few shot examples\nHow to stream responses\n\n\nIntegrations\nAzure\nOpenAI\nPromptLayer ChatOpenAI\n\n\n\n\nText Embedding Models\nAzureOpenAI\nCohere\nFake Embeddings\nHugging Face Hub\nInstructEmbeddings\nOpenAI\nSageMaker Endpoint Embeddings\nSelf
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/sitemap.html
94d714e0000c-11
Face Hub\nInstructEmbeddings\nOpenAI\nSageMaker Endpoint Embeddings\nSelf Hosted Embeddings\nTensorflowHub\n\n\n\n\nPrompts\nPrompt Templates\nGetting Started\nHow-To Guides\nHow to create a custom prompt template\nHow to create a prompt template that uses few shot examples\nHow to work with partial Prompt Templates\nHow to serialize prompts\n\n\nReference\nPromptTemplates\nExample Selector\n\n\n\n\nChat Prompt Template\nExample Selectors\nHow to create a custom example selector\nLengthBased ExampleSelector\nMaximal Marginal Relevance ExampleSelector\nNGram Overlap ExampleSelector\nSimilarity ExampleSelector\n\n\nOutput Parsers\nOutput Parsers\nCommaSeparatedListOutputParser\nOutputFixingParser\nPydanticOutputParser\nRetryOutputParser\nStructured Output Parser\n\n\n\n\nIndexes\nGetting Started\nDocument Loaders\nCoNLL-U\nAirbyte JSON\nAZLyrics\nBlackboard\nCollege Confidential\nCopy Paste\nCSV Loader\nDirectory Loader\nEmail\nEverNote\nFacebook Chat\nFigma\nGCS Directory\nGCS File Storage\nGitBook\nGoogle Drive\nGutenberg\nHacker News\nHTML\niFixit\nImages\nIMSDb\nMarkdown\nNotebook\nNotion\nObsidian\nPDF\nPowerPoint\nReadTheDocs Documentation\nRoam\ns3 Directory\ns3 File\nSubtitle Files\nTelegram\nUnstructured File Loader\nURL\nWeb Base\nWord Documents\nYouTube\n\n\nText Splitters\nGetting Started\nCharacter Text Splitter\nHuggingFace Length Function\nLatex Text Splitter\nMarkdown Text Splitter\nNLTK Text Splitter\nPython Code Text Splitter\nRecursiveCharacterTextSplitter\nSpacy Text Splitter\ntiktoken (OpenAI) Length Function\nTiktokenText Splitter\n\n\nVectorstores\nGetting Started\nAtlasDB\nChroma\nDeep
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/sitemap.html
94d714e0000c-12
Splitter\n\n\nVectorstores\nGetting Started\nAtlasDB\nChroma\nDeep Lake\nElasticSearch\nFAISS\nMilvus\nOpenSearch\nPGVector\nPinecone\nQdrant\nRedis\nWeaviate\n\n\nRetrievers\nChatGPT Plugin Retriever\nVectorStore Retriever\n\n\n\n\nMemory\nGetting Started\nHow-To Guides\nConversationBufferMemory\nConversationBufferWindowMemory\nEntity Memory\nConversation Knowledge Graph Memory\nConversationSummaryMemory\nConversationSummaryBufferMemory\nConversationTokenBufferMemory\nHow to add Memory to an LLMChain\nHow to add memory to a Multi-Input Chain\nHow to add Memory to an Agent\nHow to customize conversational memory\nHow to create a custom Memory class\nHow to use multiple memroy classes in the same chain\n\n\n\n\nChains\nGetting Started\nHow-To Guides\nAsync API for Chain\nLoading from LangChainHub\nLLM Chain\nSequential Chains\nSerialization\nTransformation Chain\nAnalyze Document\nChat Index\nGraph QA\nHypothetical Document Embeddings\nQuestion Answering with Sources\nQuestion Answering\nSummarization\nRetrieval Question/Answering\nRetrieval Question Answering with Sources\nVector DB Text Generation\nAPI Chains\nSelf-Critique Chain with Constitutional AI\nBashChain\nLLMCheckerChain\nLLM Math\nLLMRequestsChain\nLLMSummarizationCheckerChain\nModeration\nPAL\nSQLite example\n\n\nReference\n\n\nAgents\nGetting Started\nTools\nGetting Started\nDefining Custom Tools\nMulti Input Tools\nBash\nBing Search\nChatGPT Plugins\nGoogle Search\nGoogle Serper API\nHuman as a tool\nIFTTT WebHooks\nPython REPL\nRequests\nSearch Tools\nSearxNG Search API\nSerpAPI\nWolfram Alpha\nZapier Natural Language Actions
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/sitemap.html
94d714e0000c-13
Search API\nSerpAPI\nWolfram Alpha\nZapier Natural Language Actions API\n\n\nAgents\nAgent Types\nCustom Agent\nConversation Agent (for Chat Models)\nConversation Agent\nMRKL\nMRKL Chat\nReAct\nSelf Ask With Search\n\n\nToolkits\nCSV Agent\nJSON Agent\nOpenAPI Agent\nPandas Dataframe Agent\nPython Agent\nSQL Database Agent\nVectorstore Agent\n\n\nAgent Executors\nHow to combine agents and vectorstores\nHow to use the async API for Agents\nHow to create ChatGPT Clone\nHow to access intermediate steps\nHow to cap the max number of iterations\nHow to add SharedMemory to an Agent and its Tools\n\n\n\n\n\nUse Cases\n\nPersonal Assistants\nQuestion Answering over Docs\nChatbots\nQuerying Tabular Data\nInteracting with APIs\nSummarization\nExtraction\nEvaluation\nAgent Benchmarking: Search + Calculator\nAgent VectorDB Question Answering Benchmarking\nBenchmarking Template\nData Augmented Question Answering\nUsing Hugging Face Datasets\nLLM Math\nQuestion Answering Benchmarking: Paul Graham Essay\nQuestion Answering Benchmarking: State of the Union Address\nQA Generation\nQuestion Answering\nSQL Question Answering Benchmarking: Chinook\n\n\n\nReference\n\nInstallation\nIntegrations\nAPI References\nPrompts\nPromptTemplates\nExample Selector\n\n\nUtilities\nPython REPL\nSerpAPI\nSearxNG Search\nDocstore\nText Splitter\nEmbeddings\nVectorStores\n\n\nChains\nAgents\n\n\n\nEcosystem\n\nLangChain Ecosystem\nAI21 Labs\nAtlasDB\nBanana\nCerebriumAI\nChroma\nCohere\nDeepInfra\nDeep Lake\nForefrontAI\nGoogle Search Wrapper\nGoogle Serper Wrapper\nGooseAI\nGraphsignal\nHazy Research\nHelicone\nHugging
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/sitemap.html
94d714e0000c-14
Serper Wrapper\nGooseAI\nGraphsignal\nHazy Research\nHelicone\nHugging Face\nMilvus\nModal\nNLPCloud\nOpenAI\nOpenSearch\nPetals\nPGVector\nPinecone\nPromptLayer\nQdrant\nRunhouse\nSearxNG Search API\nSerpAPI\nStochasticAI\nUnstructured\nWeights & Biases\nWeaviate\nWolfram Alpha Wrapper\nWriter\n\n\n\nAdditional Resources\n\nLangChainHub\nGlossary\nLangChain Gallery\nDeployments\nTracing\nDiscord\nProduction Support\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n.rst\n\n\n\n\n\n\n\n.pdf\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nWelcome to LangChain\n\n\n\n\n Contents \n\n\n\nGetting Started\nModules\nUse Cases\nReference Docs\nLangChain Ecosystem\nAdditional Resources\n\n\n\n\n\n\n\n\nWelcome to LangChain#\nLangChain is a framework for developing applications powered by language models. We believe that the most powerful and differentiated applications will not only call out to a language model via an API, but will also:\n\nBe data-aware: connect a language model to other sources of data\nBe agentic: allow a language model to interact with its environment\n\nThe LangChain framework is designed with the above principles in mind.\nThis is the Python specific portion of the documentation. For a purely conceptual guide to LangChain, see here. For the JavaScript documentation, see here.\n\nGetting Started#\nCheckout the below guide for a walkthrough of how to get started using LangChain to create an Language Model application.\n\nGetting Started Documentation\n\n\n\n\n\nModules#\nThere
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/sitemap.html
94d714e0000c-15
an Language Model application.\n\nGetting Started Documentation\n\n\n\n\n\nModules#\nThere are several main modules that LangChain provides support for.\nFor each module we provide some examples to get started, how-to guides, reference docs, and conceptual guides.\nThese modules are, in increasing order of complexity:\n\nModels: The various model types and model integrations LangChain supports.\nPrompts: This includes prompt management, prompt optimization, and prompt serialization.\nMemory: Memory is the concept of persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.\nIndexes: Language models are often more powerful when combined with your own text data - this module covers best practices for doing exactly that.\nChains: Chains go beyond just a single LLM call, and are sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.\nAgents: Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end to end agents.\n\n\n\n\n\nUse Cases#\nThe above modules can be used in a variety of ways. LangChain also provides guidance and assistance in this. Below are some of the common use cases LangChain supports.\n\nPersonal Assistants: The main LangChain use case. Personal assistants need to take actions, remember interactions, and have knowledge about your data.\nQuestion Answering: The second big LangChain use case. Answering questions over specific documents, only utilizing the information in those documents to construct an answer.\nChatbots: Since language models are good at producing text, that makes them
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/sitemap.html
94d714e0000c-16
construct an answer.\nChatbots: Since language models are good at producing text, that makes them ideal for creating chatbots.\nQuerying Tabular Data: If you want to understand how to use LLMs to query data that is stored in a tabular format (csvs, SQL, dataframes, etc) you should read this page.\nInteracting with APIs: Enabling LLMs to interact with APIs is extremely powerful in order to give them more up-to-date information and allow them to take actions.\nExtraction: Extract structured information from text.\nSummarization: Summarizing longer documents into shorter, more condensed chunks of information. A type of Data Augmented Generation.\nEvaluation: Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.\n\n\n\n\n\nReference Docs#\nAll of LangChain’s reference documentation, in one place. Full documentation on all methods, classes, installation methods, and integration setups for LangChain.\n\nReference Documentation\n\n\n\n\n\nLangChain Ecosystem#\nGuides for how other companies/products can be used with LangChain\n\nLangChain Ecosystem\n\n\n\n\n\nAdditional Resources#\nAdditional collection of resources we think may be useful as you develop your application!\n\nLangChainHub: The LangChainHub is a place to share and explore other prompts, chains, and agents.\nGlossary: A glossary of all related terms, papers, methods, etc. Whether implemented in LangChain or not!\nGallery: A collection of our favorite projects that use LangChain. Useful for finding inspiration or seeing how things were done in other applications.\nDeployments: A collection of instructions, code snippets, and template repositories for deploying LangChain apps.\nTracing: A guide on using tracing in LangChain
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/sitemap.html
94d714e0000c-17
template repositories for deploying LangChain apps.\nTracing: A guide on using tracing in LangChain to visualize the execution of chains and agents.\nModel Laboratory: Experimenting with different prompts, models, and chains is a big part of developing the best possible application. The ModelLaboratory makes it easy to do so.\nDiscord: Join us on our Discord to discuss all things LangChain!\nProduction Support: As you move your LangChains into production, we’d love to offer more comprehensive support. Please fill out this form and we’ll set up a dedicated support Slack channel.\n\n\n\n\n\n\n\n\n\n\n\nnext\nQuickstart Guide\n\n\n\n\n\n\n\n\n\n Contents\n \n\n\nGetting Started\nModules\nUse Cases\nReference Docs\nLangChain Ecosystem\nAdditional Resources\n\n\n\n\n\n\n\n\n\nBy Harrison Chase\n\n\n\n\n \n © Copyright 2023, Harrison Chase.\n \n\n\n\n\n Last updated on Mar 27, 2023.\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n', lookup_str='', metadata={'source': 'https://python.langchain.com/en/latest/', 'loc': 'https://python.langchain.com/en/latest/', 'lastmod': '2023-03-27T22:50:49.790324+00:00', 'changefreq': 'daily', 'priority': '0.9'}, lookup_index=0)
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/sitemap.html
94d714e0000c-18
Local Sitemap# The sitemap loader can also be used to load local files. sitemap_loader = SitemapLoader(web_path="example_data/sitemap.xml", is_local=True) docs = sitemap_loader.load() Fetching pages: 100%|####################################################################################################################################| 3/3 [00:00<00:00, 3.91it/s] previous PDF next Subtitle Contents Filtering sitemap URLs Local Sitemap By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/sitemap.html
17949b43f7d4-0
.ipynb .pdf Hacker News Hacker News# Hacker News (sometimes abbreviated as HN) is a social news website focusing on computer science and entrepreneurship. It is run by the investment fund and startup incubator Y Combinator. In general, content that can be submitted is defined as “anything that gratifies one’s intellectual curiosity.” This notebook covers how to pull page data and comments from Hacker News from langchain.document_loaders import HNLoader loader = HNLoader("https://news.ycombinator.com/item?id=34817881") data = loader.load() data[0].page_content[:300] "delta_p_delta_x 73 days ago \n | next [–] \n\nAstrophysical and cosmological simulations are often insightful. They're also very cross-disciplinary; besides the obvious astrophysics, there's networking and sysadmin, parallel computing and algorithm theory (so that the simulation programs a" data[0].metadata {'source': 'https://news.ycombinator.com/item?id=34817881', 'title': 'What Lights the Universe’s Standard Candles?'} previous Gutenberg next HuggingFace dataset By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hacker_news.html
73a3851f6d7a-0
.ipynb .pdf Notion DB 2/2 Contents Requirements Setup 1. Create a Notion Table Database 2. Create a Notion Integration 3. Connect the Integration to the Database 4. Get the Database ID Usage Notion DB 2/2# Notion is a collaboration platform with modified Markdown support that integrates kanban boards, tasks, wikis and databases. It is an all-in-one workspace for notetaking, knowledge and data management, and project and task management. NotionDBLoader is a Python class for loading content from a Notion database. It retrieves pages from the database, reads their content, and returns a list of Document objects. Requirements# A Notion Database Notion Integration Token Setup# 1. Create a Notion Table Database# Create a new table database in Notion. You can add any column to the database and they will be treated as metadata. For example you can add the following columns: Title: set Title as the default property. Categories: A Multi-select property to store categories associated with the page. Keywords: A Multi-select property to store keywords associated with the page. Add your content to the body of each page in the database. The NotionDBLoader will extract the content and metadata from these pages. 2. Create a Notion Integration# To create a Notion Integration, follow these steps: Visit the Notion Developers page and log in with your Notion account. Click on the “+ New integration” button. Give your integration a name and choose the workspace where your database is located. Select the require capabilities, this extension only need the Read content capability Click the “Submit” button to create the integration.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/notiondb.html
73a3851f6d7a-1
Click the “Submit” button to create the integration. Once the integration is created, you’ll be provided with an Integration Token (API key). Copy this token and keep it safe, as you’ll need it to use the NotionDBLoader. 3. Connect the Integration to the Database# To connect your integration to the database, follow these steps: Open your database in Notion. Click on the three-dot menu icon in the top right corner of the database view. Click on the “+ New integration” button. Find your integration, you may need to start typing its name in the search box. Click on the “Connect” button to connect the integration to the database. 4. Get the Database ID# To get the database ID, follow these steps: Open your database in Notion. Click on the three-dot menu icon in the top right corner of the database view. Select “Copy link” from the menu to copy the database URL to your clipboard. The database ID is the long string of alphanumeric characters found in the URL. It typically looks like this: https://www.notion.so/username/8935f9d140a04f95a872520c4f123456?v=…. In this example, the database ID is 8935f9d140a04f95a872520c4f123456. With the database properly set up and the integration token and database ID in hand, you can now use the NotionDBLoader code to load content and metadata from your Notion database. Usage# NotionDBLoader is part of the langchain package’s document loaders. You can use it as follows: from getpass import getpass NOTION_TOKEN = getpass() DATABASE_ID = getpass() ········ ········ from langchain.document_loaders import NotionDBLoader
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/notiondb.html
73a3851f6d7a-2
········ from langchain.document_loaders import NotionDBLoader loader = NotionDBLoader( integration_token=NOTION_TOKEN, database_id=DATABASE_ID, request_timeout_sec=30 # optional, defaults to 10 ) docs = loader.load() print(docs) previous Modern Treasury next Notion DB 1/2 Contents Requirements Setup 1. Create a Notion Table Database 2. Create a Notion Integration 3. Connect the Integration to the Database 4. Get the Database ID Usage By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/notiondb.html
f0f97174d8b2-0
.ipynb .pdf TOML TOML# TOML is a file format for configuration files. It is intended to be easy to read and write, and is designed to map unambiguously to a dictionary. Its specification is open-source. TOML is implemented in many programming languages. The name TOML is an acronym for “Tom’s Obvious, Minimal Language” referring to its creator, Tom Preston-Werner. If you need to load Toml files, use the TomlLoader. from langchain.document_loaders import TomlLoader loader = TomlLoader('example_data/fake_rule.toml') rule = loader.load() rule [Document(page_content='{"internal": {"creation_date": "2023-05-01", "updated_date": "2022-05-01", "release": ["release_type"], "min_endpoint_version": "some_semantic_version", "os_list": ["operating_system_list"]}, "rule": {"uuid": "some_uuid", "name": "Fake Rule Name", "description": "Fake description of rule", "query": "process where process.name : \\"somequery\\"\\n", "threat": [{"framework": "MITRE ATT&CK", "tactic": {"name": "Execution", "id": "TA0002", "reference": "https://attack.mitre.org/tactics/TA0002/"}}]}}', metadata={'source': 'example_data/fake_rule.toml'})] previous Telegram next Unstructured File By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/toml.html
8564c540a6cd-0
.ipynb .pdf Slack Contents 🧑 Instructions for ingesting your own dataset Slack# Slack is an instant messaging program. This notebook covers how to load documents from a Zipfile generated from a Slack export. In order to get this Slack export, follow these instructions: 🧑 Instructions for ingesting your own dataset# Export your Slack data. You can do this by going to your Workspace Management page and clicking the Import/Export option ({your_slack_domain}.slack.com/services/export). Then, choose the right date range and click Start export. Slack will send you an email and a DM when the export is ready. The download will produce a .zip file in your Downloads folder (or wherever your downloads can be found, depending on your OS configuration). Copy the path to the .zip file, and assign it as LOCAL_ZIPFILE below. from langchain.document_loaders import SlackDirectoryLoader # Optionally set your Slack URL. This will give you proper URLs in the docs sources. SLACK_WORKSPACE_URL = "https://xxx.slack.com" LOCAL_ZIPFILE = "" # Paste the local path to your Slack zip file here. loader = SlackDirectoryLoader(LOCAL_ZIPFILE, SLACK_WORKSPACE_URL) docs = loader.load() docs previous Roam next Spreedly Contents 🧑 Instructions for ingesting your own dataset By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/slack.html
2f824083c2fc-0
.ipynb .pdf Apify Dataset Contents Prerequisites An example with question answering Apify Dataset# Apify Dataset is a scaleable append-only storage with sequential access built for storing structured web scraping results, such as a list of products or Google SERPs, and then export them to various formats like JSON, CSV, or Excel. Datasets are mainly used to save results of Apify Actors—serverless cloud programs for varius web scraping, crawling, and data extraction use cases. This notebook shows how to load Apify datasets to LangChain. Prerequisites# You need to have an existing dataset on the Apify platform. If you don’t have one, please first check out this notebook on how to use Apify to extract content from documentation, knowledge bases, help centers, or blogs. #!pip install apify-client First, import ApifyDatasetLoader into your source code: from langchain.document_loaders import ApifyDatasetLoader from langchain.document_loaders.base import Document Then provide a function that maps Apify dataset record fields to LangChain Document format. For example, if your dataset items are structured like this: { "url": "https://apify.com", "text": "Apify is the best web scraping and automation platform." } The mapping function in the code below will convert them to LangChain Document format, so that you can use them further with any LLM model (e.g. for question answering). loader = ApifyDatasetLoader( dataset_id="your-dataset-id", dataset_mapping_function=lambda dataset_item: Document( page_content=dataset_item["text"], metadata={"source": dataset_item["url"]} ), ) data = loader.load() An example with question answering# In this example, we use data from a dataset to answer a question.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/apify_dataset.html
2f824083c2fc-1
In this example, we use data from a dataset to answer a question. from langchain.docstore.document import Document from langchain.document_loaders import ApifyDatasetLoader from langchain.indexes import VectorstoreIndexCreator loader = ApifyDatasetLoader( dataset_id="your-dataset-id", dataset_mapping_function=lambda item: Document( page_content=item["text"] or "", metadata={"source": item["url"]} ), ) index = VectorstoreIndexCreator().from_loaders([loader]) query = "What is Apify?" result = index.query_with_sources(query) print(result["answer"]) print(result["sources"]) Apify is a platform for developing, running, and sharing serverless cloud programs. It enables users to create web scraping and automation tools and publish them on the Apify platform. https://docs.apify.com/platform/actors, https://docs.apify.com/platform/actors/running/actors-in-store, https://docs.apify.com/platform/security, https://docs.apify.com/platform/actors/examples previous Airbyte JSON next AWS S3 Directory Contents Prerequisites An example with question answering By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/apify_dataset.html
bd14aa35790f-0
.ipynb .pdf Microsoft Word Contents Using Docx2txt Using Unstructured Retain Elements Microsoft Word# Microsoft Word is a word processor developed by Microsoft. This covers how to load Word documents into a document format that we can use downstream. Using Docx2txt# Load .docx using Docx2txt into a document. from langchain.document_loaders import Docx2txtLoader loader = Docx2txtLoader("example_data/fake.docx") data = loader.load() data [Document(page_content='Lorem ipsum dolor sit amet.', metadata={'source': 'example_data/fake.docx'})] Using Unstructured# from langchain.document_loaders import UnstructuredWordDocumentLoader loader = UnstructuredWordDocumentLoader("example_data/fake.docx") data = loader.load() data [Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': 'fake.docx'}, lookup_index=0)] Retain Elements# Under the hood, Unstructured creates different “elements” for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying mode="elements". loader = UnstructuredWordDocumentLoader("example_data/fake.docx", mode="elements") data = loader.load() data[0] Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': 'fake.docx', 'filename': 'fake.docx', 'category': 'Title'}, lookup_index=0) previous Microsoft PowerPoint next Open Document Format (ODT) Contents Using Docx2txt Using Unstructured Retain Elements By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/microsoft_word.html
63325791f304-0
.ipynb .pdf Reddit Reddit# Reddit is an American social news aggregation, content rating, and discussion website. This loader fetches the text from the Posts of Subreddits or Reddit users, using the praw Python package. Make a Reddit Application and initialize the loader with with your Reddit API credentials. from langchain.document_loaders import RedditPostsLoader # !pip install praw # load using 'subreddit' mode loader = RedditPostsLoader( client_id="YOUR CLIENT ID", client_secret="YOUR CLIENT SECRET", user_agent="extractor by u/Master_Ocelot8179", categories=['new', 'hot'], # List of categories to load posts from mode = 'subreddit', search_queries=['investing', 'wallstreetbets'], # List of subreddits to load posts from number_posts=20 # Default value is 10 ) # # or load using 'username' mode # loader = RedditPostsLoader( # client_id="YOUR CLIENT ID", # client_secret="YOUR CLIENT SECRET", # user_agent="extractor by u/Master_Ocelot8179", # categories=['new', 'hot'], # mode = 'username', # search_queries=['ga3far', 'Master_Ocelot8179'], # List of usernames to load posts from # number_posts=20 # ) # Note: Categories can be only of following value - "controversial" "hot" "new" "rising" "top" documents = loader.load() documents[:5]
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/reddit.html
63325791f304-1
documents = loader.load() documents[:5] [Document(page_content='Hello, I am not looking for investment advice. I will apply my own due diligence. However, I am interested if anyone knows as a UK resident how fees and exchange rate differences would impact performance?\n\nI am planning to create a pie of index funds (perhaps UK, US, europe) or find a fund with a good track record of long term growth at low rates. \n\nDoes anyone have any ideas?', metadata={'post_subreddit': 'r/investing', 'post_category': 'new', 'post_title': 'Long term retirement funds fees/exchange rate query', 'post_score': 1, 'post_id': '130pa6m', 'post_url': 'https://www.reddit.com/r/investing/comments/130pa6m/long_term_retirement_funds_feesexchange_rate_query/', 'post_author': Redditor(name='Badmanshiz')}), Document(page_content='I much prefer the Roth IRA and would rather rollover my 401k to that every year instead of keeping it in the limited 401k options. But if I rollover, will I be able to continue contributing to my 401k? Or will that close my account? I realize that there are tax implications of doing this but I still think it is the better option.', metadata={'post_subreddit': 'r/investing', 'post_category': 'new', 'post_title': 'Is it possible to rollover my 401k every year?', 'post_score': 3, 'post_id': '130ja0h', 'post_url': 'https://www.reddit.com/r/investing/comments/130ja0h/is_it_possible_to_rollover_my_401k_every_year/', 'post_author': Redditor(name='AnCap_Catholic')}),
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/reddit.html
63325791f304-2
Document(page_content='Have a general question? Want to offer some commentary on markets? Maybe you would just like to throw out a neat fact that doesn\'t warrant a self post? Feel free to post here! \n\nIf your question is "I have $10,000, what do I do?" or other "advice for my personal situation" questions, you should include relevant information, such as the following:\n\n* How old are you? What country do you live in? \n* Are you employed/making income? How much? \n* What are your objectives with this money? (Buy a house? Retirement savings?) \n* What is your time horizon? Do you need this money next month? Next 20yrs? \n* What is your risk tolerance? (Do you mind risking it at blackjack or do you need to know its 100% safe?) \n* What are you current holdings? (Do you already have exposure to specific funds and sectors? Any other assets?) \n* Any big debts (include interest rate) or expenses? \n* And any other relevant financial information will be useful to give you a proper answer. \n\nPlease consider consulting our FAQ first - https://www.reddit.com/r/investing/wiki/faq\nAnd our [side bar](https://www.reddit.com/r/investing/about/sidebar) also has useful resources. \n\nIf you are new to investing - please refer to Wiki - [Getting Started](https://www.reddit.com/r/investing/wiki/index/gettingstarted/)\n\nThe reading list in the wiki has a list of books ranging from light reading to advanced topics depending on your knowledge level. Link here - [Reading List](https://www.reddit.com/r/investing/wiki/readinglist)\n\nCheck the resources in the sidebar.\n\nBe aware that these answers
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/reddit.html
63325791f304-3
the resources in the sidebar.\n\nBe aware that these answers are just opinions of Redditors and should be used as a starting point for your research. You should strongly consider seeing a registered investment adviser if you need professional support before making any financial decisions!', metadata={'post_subreddit': 'r/investing', 'post_category': 'new', 'post_title': 'Daily General Discussion and Advice Thread - April 27, 2023', 'post_score': 5, 'post_id': '130eszz', 'post_url': 'https://www.reddit.com/r/investing/comments/130eszz/daily_general_discussion_and_advice_thread_april/', 'post_author': Redditor(name='AutoModerator')}),
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/reddit.html
63325791f304-4
Document(page_content="Based on recent news about salt battery advancements and the overall issues of lithium, I was wondering what would be feasible ways to invest into non-lithium based battery technologies? CATL is of course a choice, but the selection of brokers I currently have in my disposal don't provide HK stocks at all.", metadata={'post_subreddit': 'r/investing', 'post_category': 'new', 'post_title': 'Investing in non-lithium battery technologies?', 'post_score': 2, 'post_id': '130d6qp', 'post_url': 'https://www.reddit.com/r/investing/comments/130d6qp/investing_in_nonlithium_battery_technologies/', 'post_author': Redditor(name='-manabreak')}),
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/reddit.html
63325791f304-5
Document(page_content='Hello everyone,\n\nI would really like to invest in an ETF that follows spy or another big index, as I think this form of investment suits me best. \n\nThe problem is, that I live in Denmark where ETFs and funds are taxed annually on unrealised gains at quite a steep rate. This means that an ETF growing say 10% per year will only grow about 6%, which really ruins the long term effects of compounding interest.\n\nHowever stocks are only taxed on realised gains which is why they look more interesting to hold long term.\n\nI do not like the lack of diversification this brings, as I am looking to spend tonnes of time picking the right long term stocks.\n\nIt would be ideal to find a few stocks that over the long term somewhat follows the indexes. Does anyone have suggestions?\n\nI have looked at Nasdaq Inc. which quite closely follows Nasdaq 100. \n\nI really appreciate any help.', metadata={'post_subreddit': 'r/investing', 'post_category': 'new', 'post_title': 'Stocks that track an index', 'post_score': 7, 'post_id': '130auvj', 'post_url': 'https://www.reddit.com/r/investing/comments/130auvj/stocks_that_track_an_index/', 'post_author': Redditor(name='LeAlbertP')})] previous ReadTheDocs Documentation next Roam By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/reddit.html
6291f5499fbd-0
.ipynb .pdf Spreedly Spreedly# Spreedly is a service that allows you to securely store credit cards and use them to transact against any number of payment gateways and third party APIs. It does this by simultaneously providing a card tokenization/vault service as well as a gateway and receiver integration service. Payment methods tokenized by Spreedly are stored at Spreedly, allowing you to independently store a card and then pass that card to different end points based on your business requirements. This notebook covers how to load data from the Spreedly REST API into a format that can be ingested into LangChain, along with example usage for vectorization. Note: this notebook assumes the following packages are installed: openai, chromadb, and tiktoken. import os from langchain.document_loaders import SpreedlyLoader from langchain.indexes import VectorstoreIndexCreator Spreedly API requires an access token, which can be found inside the Spreedly Admin Console. This document loader does not currently support pagination, nor access to more complex objects which require additional parameters. It also requires a resource option which defines what objects you want to load. Following resources are available: gateways_options: Documentation gateways: Documentation receivers_options: Documentation receivers: Documentation payment_methods: Documentation certificates: Documentation transactions: Documentation environments: Documentation spreedly_loader = SpreedlyLoader(os.environ["SPREEDLY_ACCESS_TOKEN"], "gateways_options") # Create a vectorstore retriver from the loader # see https://python.langchain.com/en/latest/modules/indexes/getting_started.html for more details index = VectorstoreIndexCreator().from_loaders([spreedly_loader]) spreedly_doc_retriever = index.vectorstore.as_retriever() Using embedded DuckDB without persistence: data will be transient
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/spreedly.html
6291f5499fbd-1
Using embedded DuckDB without persistence: data will be transient # Test the retriever spreedly_doc_retriever.get_relevant_documents("CRC") [Document(page_content='installment_grace_period_duration\nreference_data_code\ninvoice_number\ntax_management_indicator\noriginal_amount\ninvoice_amount\nvat_tax_rate\nmobile_remote_payment_type\ngratuity_amount\nmdd_field_1\nmdd_field_2\nmdd_field_3\nmdd_field_4\nmdd_field_5\nmdd_field_6\nmdd_field_7\nmdd_field_8\nmdd_field_9\nmdd_field_10\nmdd_field_11\nmdd_field_12\nmdd_field_13\nmdd_field_14\nmdd_field_15\nmdd_field_16\nmdd_field_17\nmdd_field_18\nmdd_field_19\nmdd_field_20\nsupported_countries: US\nAE\nBR\nCA\nCN\nDK\nFI\nFR\nDE\nIN\nJP\nMX\nNO\nSE\nGB\nSG\nLB\nPK\nsupported_cardtypes: visa\nmaster\namerican_express\ndiscover\ndiners_club\njcb\ndankort\nmaestro\nelo\nregions: asia_pacific\neurope\nlatin_america\nnorth_america\nhomepage: http://www.cybersource.com\ndisplay_api_url: https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor\ncompany_name: CyberSource', metadata={'source': 'https://core.spreedly.com/v1/gateways_options.json'}),
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/spreedly.html
6291f5499fbd-2
Document(page_content='BG\nBH\nBI\nBJ\nBM\nBN\nBO\nBR\nBS\nBT\nBW\nBY\nBZ\nCA\nCC\nCF\nCH\nCK\nCL\nCM\nCN\nCO\nCR\nCV\nCX\nCY\nCZ\nDE\nDJ\nDK\nDO\nDZ\nEC\nEE\nEG\nEH\nES\nET\nFI\nFJ\nFK\nFM\nFO\nFR\nGA\nGB\nGD\nGE\nGF\nGG\nGH\nGI\nGL\nGM\nGN\nGP\nGQ\nGR\nGT\nGU\nGW\nGY\nHK\nHM\nHN\nHR\nHT\nHU\nID\nIE\nIL\nIM\nIN\nIO\nIS\nIT\nJE\nJM\nJO\nJP\nKE\nKG\nKH\nKI\nKM\nKN\nKR\nKW\nKY\nKZ\nLA\nLC\nLI\nLK\n
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/spreedly.html
6291f5499fbd-3
KZ\nLA\nLC\nLI\nLK\nLS\nLT\nLU\nLV\nMA\nMC\nMD\nME\nMG\nMH\nMK\nML\nMN\nMO\nMP\nMQ\nMR\nMS\nMT\nMU\nMV\nMW\nMX\nMY\nMZ\nNA\nNC\nNE\nNF\nNG\nNI\nNL\nNO\nNP\nNR\nNU\nNZ\nOM\nPA\nPE\nPF\nPH\nPK\nPL\nPN\nPR\nPT\nPW\nPY\nQA\nRE\nRO\nRS\nRU\nRW\nSA\nSB\nSC\nSE\nSG\nSI\nSK\nSL\nSM\nSN\nST\nSV\nSZ\nTC\nTD\nTF\nTG\nTH\nTJ\nTK\nTM\nTO\nTR\nTT\nTV\nTW\nTZ\nUA\nUG\nUS\nUY\nUZ\nVA\nVC\nVE\nVI\nVN\nVU\nWF\nWS\n
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/spreedly.html
6291f5499fbd-4
VI\nVN\nVU\nWF\nWS\nYE\nYT\nZA\nZM\nsupported_cardtypes:
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/spreedly.html
6291f5499fbd-5
visa\nmaster\namerican_express\ndiscover\njcb\nmaestro\nelo\nnaranja\ncabal\nunionpay\nregions: asia_pacific\neurope\nmiddle_east\nnorth_america\nhomepage: http://worldpay.com\ndisplay_api_url: https://secure.worldpay.com/jsp/merchant/xml/paymentService.jsp\ncompany_name: WorldPay', metadata={'source': 'https://core.spreedly.com/v1/gateways_options.json'}),
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/spreedly.html