id
stringlengths 14
16
| text
stringlengths 36
2.73k
| source
stringlengths 49
117
|
---|---|---|
fff48a27f995-1 | huggingfacehub_api_token: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
huggingfacehub_api_token = get_from_dict_or_env(
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
)
try:
from huggingface_hub.hf_api import HfApi
try:
HfApi(
endpoint="https://huggingface.co", # Can be a Private Hub endpoint.
token=huggingfacehub_api_token,
).whoami()
except Exception as e:
raise ValueError(
"Could not authenticate with huggingface_hub. "
"Please check your API token."
) from e
except ImportError:
raise ValueError(
"Could not import huggingface_hub python package. "
"Please install it with `pip install huggingface_hub`."
)
values["huggingfacehub_api_token"] = huggingfacehub_api_token
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
_model_kwargs = self.model_kwargs or {}
return {
**{"endpoint_url": self.endpoint_url, "task": self.task},
**{"model_kwargs": _model_kwargs},
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "huggingface_endpoint"
def _call(
self, | https://python.langchain.com/en/latest/_modules/langchain/llms/huggingface_endpoint.html |
fff48a27f995-2 | return "huggingface_endpoint"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
"""Call out to HuggingFace Hub's inference endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = hf("Tell me a joke.")
"""
_model_kwargs = self.model_kwargs or {}
# payload samples
parameter_payload = {"inputs": prompt, "parameters": _model_kwargs}
# HTTP headers for authorization
headers = {
"Authorization": f"Bearer {self.huggingfacehub_api_token}",
"Content-Type": "application/json",
}
# send request
try:
response = requests.post(
self.endpoint_url, headers=headers, json=parameter_payload
)
except requests.exceptions.RequestException as e: # This is the correct syntax
raise ValueError(f"Error raised by inference endpoint: {e}")
generated_text = response.json()
if "error" in generated_text:
raise ValueError(
f"Error raised by inference API: {generated_text['error']}"
)
if self.task == "text-generation":
# Text generation return includes the starter text.
text = generated_text[0]["generated_text"][len(prompt) :]
elif self.task == "text2text-generation":
text = generated_text[0]["generated_text"]
elif self.task == "summarization": | https://python.langchain.com/en/latest/_modules/langchain/llms/huggingface_endpoint.html |
fff48a27f995-3 | elif self.task == "summarization":
text = generated_text[0]["summary_text"]
else:
raise ValueError(
f"Got invalid task {self.task}, "
f"currently only {VALID_TASKS} are supported"
)
if stop is not None:
# This is a bit hacky, but I can't figure out a better way to enforce
# stop tokens when making calls to huggingface_hub.
text = enforce_stop_tokens(text, stop)
return text
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/llms/huggingface_endpoint.html |
d09b2b732d43-0 | Source code for langchain.llms.petals
"""Wrapper around Petals API."""
import logging
from typing import Any, Dict, List, Mapping, Optional
from pydantic import Extra, Field, root_validator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
[docs]class Petals(LLM):
"""Wrapper around Petals Bloom models.
To use, you should have the ``petals`` python package installed, and the
environment variable ``HUGGINGFACE_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain.llms import petals
petals = Petals()
"""
client: Any
"""The client to use for the API calls."""
tokenizer: Any
"""The tokenizer to use for the API calls."""
model_name: str = "bigscience/bloom-petals"
"""The model to use."""
temperature: float = 0.7
"""What sampling temperature to use"""
max_new_tokens: int = 256
"""The maximum number of new tokens to generate in the completion."""
top_p: float = 0.9
"""The cumulative probability for top-p sampling."""
top_k: Optional[int] = None
"""The number of highest probability vocabulary tokens
to keep for top-k-filtering."""
do_sample: bool = True
"""Whether or not to use sampling; use greedy decoding otherwise.""" | https://python.langchain.com/en/latest/_modules/langchain/llms/petals.html |
d09b2b732d43-1 | """Whether or not to use sampling; use greedy decoding otherwise."""
max_length: Optional[int] = None
"""The maximum length of the sequence to be generated."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call
not explicitly specified."""
huggingface_api_key: Optional[str] = None
class Config:
"""Configuration for this pydantic config."""
extra = Extra.forbid
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = {field.alias for field in cls.__fields__.values()}
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name not in all_required_field_names:
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
logger.warning(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transfered to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
huggingface_api_key = get_from_dict_or_env(
values, "huggingface_api_key", "HUGGINGFACE_API_KEY"
)
try:
from petals import DistributedBloomForCausalLM
from transformers import BloomTokenizerFast | https://python.langchain.com/en/latest/_modules/langchain/llms/petals.html |
d09b2b732d43-2 | from petals import DistributedBloomForCausalLM
from transformers import BloomTokenizerFast
model_name = values["model_name"]
values["tokenizer"] = BloomTokenizerFast.from_pretrained(model_name)
values["client"] = DistributedBloomForCausalLM.from_pretrained(model_name)
values["huggingface_api_key"] = huggingface_api_key
except ImportError:
raise ValueError(
"Could not import transformers or petals python package."
"Please install with `pip install -U transformers petals`."
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Petals API."""
normal_params = {
"temperature": self.temperature,
"max_new_tokens": self.max_new_tokens,
"top_p": self.top_p,
"top_k": self.top_k,
"do_sample": self.do_sample,
"max_length": self.max_length,
}
return {**normal_params, **self.model_kwargs}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{"model_name": self.model_name}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "petals"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
"""Call the Petals API."""
params = self._default_params | https://python.langchain.com/en/latest/_modules/langchain/llms/petals.html |
d09b2b732d43-3 | """Call the Petals API."""
params = self._default_params
inputs = self.tokenizer(prompt, return_tensors="pt")["input_ids"]
outputs = self.client.generate(inputs, **params)
text = self.tokenizer.decode(outputs[0])
if stop is not None:
# I believe this is required since the stop tokens
# are not enforced by the model parameters
text = enforce_stop_tokens(text, stop)
return text
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/llms/petals.html |
4ca9156ea347-0 | Source code for langchain.llms.gpt4all
"""Wrapper for the GPT4All model."""
from functools import partial
from typing import Any, Dict, List, Mapping, Optional, Set
from pydantic import Extra, Field, root_validator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
[docs]class GPT4All(LLM):
r"""Wrapper around GPT4All language models.
To use, you should have the ``gpt4all`` python package installed, the
pre-trained model file, and the model's config information.
Example:
.. code-block:: python
from langchain.llms import GPT4All
model = GPT4All(model="./models/gpt4all-model.bin", n_ctx=512, n_threads=8)
# Simplest invocation
response = model("Once upon a time, ")
"""
model: str
"""Path to the pre-trained GPT4All model file."""
backend: Optional[str] = Field(None, alias="backend")
n_ctx: int = Field(512, alias="n_ctx")
"""Token context window."""
n_parts: int = Field(-1, alias="n_parts")
"""Number of parts to split the model into.
If -1, the number of parts is automatically determined."""
seed: int = Field(0, alias="seed")
"""Seed. If -1, a random seed is used."""
f16_kv: bool = Field(False, alias="f16_kv")
"""Use half-precision for key/value cache."""
logits_all: bool = Field(False, alias="logits_all") | https://python.langchain.com/en/latest/_modules/langchain/llms/gpt4all.html |
4ca9156ea347-1 | logits_all: bool = Field(False, alias="logits_all")
"""Return logits for all tokens, not just the last token."""
vocab_only: bool = Field(False, alias="vocab_only")
"""Only load the vocabulary, no weights."""
use_mlock: bool = Field(False, alias="use_mlock")
"""Force system to keep model in RAM."""
embedding: bool = Field(False, alias="embedding")
"""Use embedding mode only."""
n_threads: Optional[int] = Field(4, alias="n_threads")
"""Number of threads to use."""
n_predict: Optional[int] = 256
"""The maximum number of tokens to generate."""
temp: Optional[float] = 0.8
"""The temperature to use for sampling."""
top_p: Optional[float] = 0.95
"""The top-p value to use for sampling."""
top_k: Optional[int] = 40
"""The top-k value to use for sampling."""
echo: Optional[bool] = False
"""Whether to echo the prompt."""
stop: Optional[List[str]] = []
"""A list of strings to stop generation when encountered."""
repeat_last_n: Optional[int] = 64
"Last n tokens to penalize"
repeat_penalty: Optional[float] = 1.3
"""The penalty to apply to repeated tokens."""
n_batch: int = Field(1, alias="n_batch")
"""Batch size for prompt processing."""
streaming: bool = False
"""Whether to stream the results or not."""
context_erase: float = 0.5
"""Leave (n_ctx * context_erase) tokens
starting from beginning if the context has run out."""
allow_download: bool = False | https://python.langchain.com/en/latest/_modules/langchain/llms/gpt4all.html |
4ca9156ea347-2 | starting from beginning if the context has run out."""
allow_download: bool = False
"""If model does not exist in ~/.cache/gpt4all/, download it."""
client: Any = None #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@staticmethod
def _model_param_names() -> Set[str]:
return {
"n_ctx",
"n_predict",
"top_k",
"top_p",
"temp",
"n_batch",
"repeat_penalty",
"repeat_last_n",
"context_erase",
}
def _default_params(self) -> Dict[str, Any]:
return {
"n_ctx": self.n_ctx,
"n_predict": self.n_predict,
"top_k": self.top_k,
"top_p": self.top_p,
"temp": self.temp,
"n_batch": self.n_batch,
"repeat_penalty": self.repeat_penalty,
"repeat_last_n": self.repeat_last_n,
"context_erase": self.context_erase,
}
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in the environment."""
try:
from gpt4all import GPT4All as GPT4AllModel
except ImportError:
raise ImportError(
"Could not import gpt4all python package. "
"Please install it with `pip install gpt4all`."
)
full_path = values["model"]
model_path, delimiter, model_name = full_path.rpartition("/")
model_path += delimiter | https://python.langchain.com/en/latest/_modules/langchain/llms/gpt4all.html |
4ca9156ea347-3 | model_path += delimiter
values["client"] = GPT4AllModel(
model_name,
model_path=model_path or None,
model_type=values["backend"],
allow_download=values["allow_download"],
)
if values["n_threads"] is not None:
# set n_threads
values["client"].model.set_thread_count(values["n_threads"])
try:
values["backend"] = values["client"].model_type
except AttributeError:
# The below is for compatibility with GPT4All Python bindings <= 0.2.3.
values["backend"] = values["client"].model.model_type
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
"model": self.model,
**self._default_params(),
**{
k: v for k, v in self.__dict__.items() if k in self._model_param_names()
},
}
@property
def _llm_type(self) -> str:
"""Return the type of llm."""
return "gpt4all"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
r"""Call out to GPT4All's generate method.
Args:
prompt: The prompt to pass into the model.
stop: A list of strings to stop generation when encountered.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "Once upon a time, " | https://python.langchain.com/en/latest/_modules/langchain/llms/gpt4all.html |
4ca9156ea347-4 | .. code-block:: python
prompt = "Once upon a time, "
response = model(prompt, n_predict=55)
"""
text_callback = None
if run_manager:
text_callback = partial(run_manager.on_llm_new_token, verbose=self.verbose)
text = ""
for token in self.client.generate(prompt, **self._default_params()):
if text_callback:
text_callback(token)
text += token
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/llms/gpt4all.html |
8368fdfb8a68-0 | Source code for langchain.llms.deepinfra
"""Wrapper around DeepInfra APIs."""
from typing import Any, Dict, List, Mapping, Optional
import requests
from pydantic import Extra, root_validator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.utils import get_from_dict_or_env
DEFAULT_MODEL_ID = "google/flan-t5-xl"
[docs]class DeepInfra(LLM):
"""Wrapper around DeepInfra deployed models.
To use, you should have the ``requests`` python package installed, and the
environment variable ``DEEPINFRA_API_TOKEN`` set with your API token, or pass
it as a named parameter to the constructor.
Only supports `text-generation` and `text2text-generation` for now.
Example:
.. code-block:: python
from langchain.llms import DeepInfra
di = DeepInfra(model_id="google/flan-t5-xl",
deepinfra_api_token="my-api-key")
"""
model_id: str = DEFAULT_MODEL_ID
model_kwargs: Optional[dict] = None
deepinfra_api_token: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
deepinfra_api_token = get_from_dict_or_env(
values, "deepinfra_api_token", "DEEPINFRA_API_TOKEN"
)
values["deepinfra_api_token"] = deepinfra_api_token
return values
@property | https://python.langchain.com/en/latest/_modules/langchain/llms/deepinfra.html |
8368fdfb8a68-1 | return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
**{"model_id": self.model_id},
**{"model_kwargs": self.model_kwargs},
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "deepinfra"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
"""Call out to DeepInfra's inference API endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = di("Tell me a joke.")
"""
_model_kwargs = self.model_kwargs or {}
res = requests.post(
f"https://api.deepinfra.com/v1/inference/{self.model_id}",
headers={
"Authorization": f"bearer {self.deepinfra_api_token}",
"Content-Type": "application/json",
},
json={"input": prompt, **_model_kwargs},
)
if res.status_code != 200:
raise ValueError("Error raised by inference API")
t = res.json()
text = t["results"][0]["generated_text"]
if stop is not None:
# I believe this is required since the stop tokens
# are not enforced by the model parameters
text = enforce_stop_tokens(text, stop)
return text
By Harrison Chase | https://python.langchain.com/en/latest/_modules/langchain/llms/deepinfra.html |
8368fdfb8a68-2 | return text
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/llms/deepinfra.html |
97a7cadb080e-0 | Source code for langchain.llms.ctransformers
"""Wrapper around the C Transformers library."""
from typing import Any, Dict, Optional, Sequence
from pydantic import root_validator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
[docs]class CTransformers(LLM):
"""Wrapper around the C Transformers LLM interface.
To use, you should have the ``ctransformers`` python package installed.
See https://github.com/marella/ctransformers
Example:
.. code-block:: python
from langchain.llms import CTransformers
llm = CTransformers(model="/path/to/ggml-gpt-2.bin", model_type="gpt2")
"""
client: Any #: :meta private:
model: str
"""The path to a model file or directory or the name of a Hugging Face Hub
model repo."""
model_type: Optional[str] = None
"""The model type."""
model_file: Optional[str] = None
"""The name of the model file in repo or directory."""
config: Optional[Dict[str, Any]] = None
"""The config parameters.
See https://github.com/marella/ctransformers#config"""
lib: Optional[str] = None
"""The path to a shared library or one of `avx2`, `avx`, `basic`."""
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {
"model": self.model,
"model_type": self.model_type,
"model_file": self.model_file,
"config": self.config,
}
@property | https://python.langchain.com/en/latest/_modules/langchain/llms/ctransformers.html |
97a7cadb080e-1 | "config": self.config,
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "ctransformers"
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that ``ctransformers`` package is installed."""
try:
from ctransformers import AutoModelForCausalLM
except ImportError:
raise ImportError(
"Could not import `ctransformers` package. "
"Please install it with `pip install ctransformers`"
)
config = values["config"] or {}
values["client"] = AutoModelForCausalLM.from_pretrained(
values["model"],
model_type=values["model_type"],
model_file=values["model_file"],
lib=values["lib"],
**config,
)
return values
def _call(
self,
prompt: str,
stop: Optional[Sequence[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
"""Generate text from a prompt.
Args:
prompt: The prompt to generate text from.
stop: A list of sequences to stop generation when encountered.
Returns:
The generated text.
Example:
.. code-block:: python
response = llm("Tell me a joke.")
"""
text = []
_run_manager = run_manager or CallbackManagerForLLMRun.get_noop_manager()
for chunk in self.client(prompt, stop=stop, stream=True):
text.append(chunk) | https://python.langchain.com/en/latest/_modules/langchain/llms/ctransformers.html |
97a7cadb080e-2 | text.append(chunk)
_run_manager.on_llm_new_token(chunk, verbose=self.verbose)
return "".join(text)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/llms/ctransformers.html |
88742429db96-0 | Source code for langchain.llms.cohere
"""Wrapper around Cohere APIs."""
from __future__ import annotations
import logging
from typing import Any, Callable, Dict, List, Optional
from pydantic import Extra, root_validator
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
def _create_retry_decorator(llm: Cohere) -> Callable[[Any], Any]:
import cohere
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
return retry(
reraise=True,
stop=stop_after_attempt(llm.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(retry_if_exception_type(cohere.error.CohereError)),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def completion_with_retry(llm: Cohere, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(llm)
@retry_decorator
def _completion_with_retry(**kwargs: Any) -> Any:
return llm.client.generate(**kwargs)
return _completion_with_retry(**kwargs)
[docs]class Cohere(LLM):
"""Wrapper around Cohere large language models. | https://python.langchain.com/en/latest/_modules/langchain/llms/cohere.html |
88742429db96-1 | """Wrapper around Cohere large language models.
To use, you should have the ``cohere`` python package installed, and the
environment variable ``COHERE_API_KEY`` set with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.llms import Cohere
cohere = Cohere(model="gptd-instruct-tft", cohere_api_key="my-api-key")
"""
client: Any #: :meta private:
model: Optional[str] = None
"""Model name to use."""
max_tokens: int = 256
"""Denotes the number of tokens to predict per generation."""
temperature: float = 0.75
"""A non-negative float that tunes the degree of randomness in generation."""
k: int = 0
"""Number of most likely tokens to consider at each step."""
p: int = 1
"""Total probability mass of tokens to consider at each step."""
frequency_penalty: float = 0.0
"""Penalizes repeated tokens according to frequency. Between 0 and 1."""
presence_penalty: float = 0.0
"""Penalizes repeated tokens. Between 0 and 1."""
truncate: Optional[str] = None
"""Specify how the client handles inputs longer than the maximum token
length: Truncate from START, END or NONE"""
max_retries: int = 10
"""Maximum number of retries to make when generating."""
cohere_api_key: Optional[str] = None
stop: Optional[List[str]] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator() | https://python.langchain.com/en/latest/_modules/langchain/llms/cohere.html |
88742429db96-2 | extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
cohere_api_key = get_from_dict_or_env(
values, "cohere_api_key", "COHERE_API_KEY"
)
try:
import cohere
values["client"] = cohere.Client(cohere_api_key)
except ImportError:
raise ImportError(
"Could not import cohere python package. "
"Please install it with `pip install cohere`."
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Cohere API."""
return {
"max_tokens": self.max_tokens,
"temperature": self.temperature,
"k": self.k,
"p": self.p,
"frequency_penalty": self.frequency_penalty,
"presence_penalty": self.presence_penalty,
"truncate": self.truncate,
}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**{"model": self.model}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "cohere"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
"""Call out to Cohere's generate endpoint.
Args:
prompt: The prompt to pass into the model. | https://python.langchain.com/en/latest/_modules/langchain/llms/cohere.html |
88742429db96-3 | Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = cohere("Tell me a joke.")
"""
params = self._default_params
if self.stop is not None and stop is not None:
raise ValueError("`stop` found in both the input and default params.")
elif self.stop is not None:
params["stop_sequences"] = self.stop
else:
params["stop_sequences"] = stop
response = completion_with_retry(
self, model=self.model, prompt=prompt, **params
)
text = response.generations[0].text
# If stop tokens are provided, Cohere's endpoint returns them.
# In order to make this consistent with other endpoints, we strip them.
if stop is not None or self.stop is not None:
text = enforce_stop_tokens(text, params["stop_sequences"])
return text
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/llms/cohere.html |
9f8b79599f04-0 | Source code for langchain.llms.bedrock
import json
from typing import Any, Dict, List, Mapping, Optional
from pydantic import Extra, root_validator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
class LLMInputOutputAdapter:
"""Adapter class to prepare the inputs from Langchain to a format
that LLM model expects. Also, provides helper function to extract
the generated text from the model response."""
@classmethod
def prepare_input(
cls, provider: str, prompt: str, model_kwargs: Dict[str, Any]
) -> Dict[str, Any]:
input_body = {**model_kwargs}
if provider == "anthropic" or provider == "ai21":
input_body["prompt"] = prompt
else:
input_body["inputText"] = prompt
if provider == "anthropic" and "max_tokens_to_sample" not in input_body:
input_body["max_tokens_to_sample"] = 50
return input_body
@classmethod
def prepare_output(cls, provider: str, response: Any) -> str:
if provider == "anthropic":
response_body = json.loads(response.get("body").read().decode())
return response_body.get("completion")
else:
response_body = json.loads(response.get("body").read())
if provider == "ai21":
return response_body.get("completions")[0].get("data").get("text")
else:
return response_body.get("results")[0].get("outputText")
[docs]class Bedrock(LLM):
"""LLM provider to invoke Bedrock models. | https://python.langchain.com/en/latest/_modules/langchain/llms/bedrock.html |
9f8b79599f04-1 | """LLM provider to invoke Bedrock models.
To authenticate, the AWS client uses the following methods to
automatically load credentials:
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
If a specific credential profile should be used, you must pass
the name of the profile from the ~/.aws/credentials file that is to be used.
Make sure the credentials / roles used have the required policies to
access the Bedrock service.
"""
"""
Example:
.. code-block:: python
from bedrock_langchain.bedrock_llm import BedrockLLM
llm = BedrockLLM(
credentials_profile_name="default",
model_id="amazon.titan-tg1-large"
)
"""
client: Any #: :meta private:
region_name: Optional[str] = None
"""The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable
or region specified in ~/.aws/config in case it is not provided here.
"""
credentials_profile_name: Optional[str] = None
"""The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which
has either access keys or role information specified.
If not specified, the default credential profile or, if on an EC2 instance,
credentials from IMDS will be used.
See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
"""
model_id: str
"""Id of the model to call, e.g., amazon.titan-tg1-large, this is
equivalent to the modelId property in the list-foundation-models api"""
model_kwargs: Optional[Dict] = None | https://python.langchain.com/en/latest/_modules/langchain/llms/bedrock.html |
9f8b79599f04-2 | model_kwargs: Optional[Dict] = None
"""Key word arguments to pass to the model."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that AWS credentials to and python package exists in environment."""
# Skip creating new client if passed in constructor
if values["client"] is not None:
return values
try:
import boto3
if values["credentials_profile_name"] is not None:
session = boto3.Session(profile_name=values["credentials_profile_name"])
else:
# use default credentials
session = boto3.Session()
client_params = {}
if values["region_name"]:
client_params["region_name"] = values["region_name"]
values["client"] = session.client("bedrock", **client_params)
except ImportError:
raise ModuleNotFoundError(
"Could not import boto3 python package. "
"Please install it with `pip install boto3`."
)
except Exception as e:
raise ValueError(
"Could not load credentials to authenticate with AWS client. "
"Please check that credentials in the specified "
"profile name are valid."
) from e
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
_model_kwargs = self.model_kwargs or {}
return {
**{"model_kwargs": _model_kwargs},
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "amazon_bedrock"
def _call( | https://python.langchain.com/en/latest/_modules/langchain/llms/bedrock.html |
9f8b79599f04-3 | return "amazon_bedrock"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
"""Call out to Bedrock service model.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = se("Tell me a joke.")
"""
_model_kwargs = self.model_kwargs or {}
provider = self.model_id.split(".")[0]
input_body = LLMInputOutputAdapter.prepare_input(
provider, prompt, _model_kwargs
)
body = json.dumps(input_body)
accept = "application/json"
contentType = "application/json"
try:
response = self.client.invoke_model(
body=body, modelId=self.model_id, accept=accept, contentType=contentType
)
text = LLMInputOutputAdapter.prepare_output(provider, response)
except Exception as e:
raise ValueError(f"Error raised by bedrock service: {e}")
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/llms/bedrock.html |
58b3c5f1dca4-0 | Source code for langchain.llms.rwkv
"""Wrapper for the RWKV model.
Based on https://github.com/saharNooby/rwkv.cpp/blob/master/rwkv/chat_with_bot.py
https://github.com/BlinkDL/ChatRWKV/blob/main/v2/chat.py
"""
from typing import Any, Dict, List, Mapping, Optional, Set
from pydantic import BaseModel, Extra, root_validator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
[docs]class RWKV(LLM, BaseModel):
r"""Wrapper around RWKV language models.
To use, you should have the ``rwkv`` python package installed, the
pre-trained model file, and the model's config information.
Example:
.. code-block:: python
from langchain.llms import RWKV
model = RWKV(model="./models/rwkv-3b-fp16.bin", strategy="cpu fp32")
# Simplest invocation
response = model("Once upon a time, ")
"""
model: str
"""Path to the pre-trained RWKV model file."""
tokens_path: str
"""Path to the RWKV tokens file."""
strategy: str = "cpu fp32"
"""Token context window."""
rwkv_verbose: bool = True
"""Print debug information."""
temperature: float = 1.0
"""The temperature to use for sampling."""
top_p: float = 0.5
"""The top-p value to use for sampling."""
penalty_alpha_frequency: float = 0.4
"""Positive values penalize new tokens based on their existing frequency | https://python.langchain.com/en/latest/_modules/langchain/llms/rwkv.html |
58b3c5f1dca4-1 | """Positive values penalize new tokens based on their existing frequency
in the text so far, decreasing the model's likelihood to repeat the same
line verbatim.."""
penalty_alpha_presence: float = 0.4
"""Positive values penalize new tokens based on whether they appear
in the text so far, increasing the model's likelihood to talk about
new topics.."""
CHUNK_LEN: int = 256
"""Batch size for prompt processing."""
max_tokens_per_generation: int = 256
"""Maximum number of tokens to generate."""
client: Any = None #: :meta private:
tokenizer: Any = None #: :meta private:
pipeline: Any = None #: :meta private:
model_tokens: Any = None #: :meta private:
model_state: Any = None #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {
"verbose": self.verbose,
"top_p": self.top_p,
"temperature": self.temperature,
"penalty_alpha_frequency": self.penalty_alpha_frequency,
"penalty_alpha_presence": self.penalty_alpha_presence,
"CHUNK_LEN": self.CHUNK_LEN,
"max_tokens_per_generation": self.max_tokens_per_generation,
}
@staticmethod
def _rwkv_param_names() -> Set[str]:
"""Get the identifying parameters."""
return {
"verbose",
}
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in the environment.""" | https://python.langchain.com/en/latest/_modules/langchain/llms/rwkv.html |
58b3c5f1dca4-2 | """Validate that the python package exists in the environment."""
try:
import tokenizers
except ImportError:
raise ImportError(
"Could not import tokenizers python package. "
"Please install it with `pip install tokenizers`."
)
try:
from rwkv.model import RWKV as RWKVMODEL
from rwkv.utils import PIPELINE
values["tokenizer"] = tokenizers.Tokenizer.from_file(values["tokens_path"])
rwkv_keys = cls._rwkv_param_names()
model_kwargs = {k: v for k, v in values.items() if k in rwkv_keys}
model_kwargs["verbose"] = values["rwkv_verbose"]
values["client"] = RWKVMODEL(
values["model"], strategy=values["strategy"], **model_kwargs
)
values["pipeline"] = PIPELINE(values["client"], values["tokens_path"])
except ImportError:
raise ValueError(
"Could not import rwkv python package. "
"Please install it with `pip install rwkv`."
)
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
"model": self.model,
**self._default_params,
**{k: v for k, v in self.__dict__.items() if k in RWKV._rwkv_param_names()},
}
@property
def _llm_type(self) -> str:
"""Return the type of llm."""
return "rwkv-4"
def run_rnn(self, _tokens: List[str], newline_adj: int = 0) -> Any:
AVOID_REPEAT_TOKENS = [] | https://python.langchain.com/en/latest/_modules/langchain/llms/rwkv.html |
58b3c5f1dca4-3 | AVOID_REPEAT_TOKENS = []
AVOID_REPEAT = ",:?!"
for i in AVOID_REPEAT:
dd = self.pipeline.encode(i)
assert len(dd) == 1
AVOID_REPEAT_TOKENS += dd
tokens = [int(x) for x in _tokens]
self.model_tokens += tokens
out: Any = None
while len(tokens) > 0:
out, self.model_state = self.client.forward(
tokens[: self.CHUNK_LEN], self.model_state
)
tokens = tokens[self.CHUNK_LEN :]
END_OF_LINE = 187
out[END_OF_LINE] += newline_adj # adjust \n probability
if self.model_tokens[-1] in AVOID_REPEAT_TOKENS:
out[self.model_tokens[-1]] = -999999999
return out
def rwkv_generate(self, prompt: str) -> str:
self.model_state = None
self.model_tokens = []
logits = self.run_rnn(self.tokenizer.encode(prompt).ids)
begin = len(self.model_tokens)
out_last = begin
occurrence: Dict = {}
decoded = ""
for i in range(self.max_tokens_per_generation):
for n in occurrence:
logits[n] -= (
self.penalty_alpha_presence
+ occurrence[n] * self.penalty_alpha_frequency
)
token = self.pipeline.sample_logits(
logits, temperature=self.temperature, top_p=self.top_p
)
END_OF_TEXT = 0
if token == END_OF_TEXT:
break
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
logits = self.run_rnn([token]) | https://python.langchain.com/en/latest/_modules/langchain/llms/rwkv.html |
58b3c5f1dca4-4 | occurrence[token] += 1
logits = self.run_rnn([token])
xxx = self.tokenizer.decode(self.model_tokens[out_last:])
if "\ufffd" not in xxx: # avoid utf-8 display issues
decoded += xxx
out_last = begin + i + 1
if i >= self.max_tokens_per_generation - 100:
break
return decoded
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
r"""RWKV generation
Args:
prompt: The prompt to pass into the model.
stop: A list of strings to stop generation when encountered.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "Once upon a time, "
response = model(prompt, n_predict=55)
"""
text = self.rwkv_generate(prompt)
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/llms/rwkv.html |
77e6b0bade67-0 | Source code for langchain.llms.ai21
"""Wrapper around AI21 APIs."""
from typing import Any, Dict, List, Optional
import requests
from pydantic import BaseModel, Extra, root_validator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.utils import get_from_dict_or_env
class AI21PenaltyData(BaseModel):
"""Parameters for AI21 penalty data."""
scale: int = 0
applyToWhitespaces: bool = True
applyToPunctuations: bool = True
applyToNumbers: bool = True
applyToStopwords: bool = True
applyToEmojis: bool = True
[docs]class AI21(LLM):
"""Wrapper around AI21 large language models.
To use, you should have the environment variable ``AI21_API_KEY``
set with your API key.
Example:
.. code-block:: python
from langchain.llms import AI21
ai21 = AI21(model="j2-jumbo-instruct")
"""
model: str = "j2-jumbo-instruct"
"""Model name to use."""
temperature: float = 0.7
"""What sampling temperature to use."""
maxTokens: int = 256
"""The maximum number of tokens to generate in the completion."""
minTokens: int = 0
"""The minimum number of tokens to generate in the completion."""
topP: float = 1.0
"""Total probability mass of tokens to consider at each step."""
presencePenalty: AI21PenaltyData = AI21PenaltyData()
"""Penalizes repeated tokens."""
countPenalty: AI21PenaltyData = AI21PenaltyData() | https://python.langchain.com/en/latest/_modules/langchain/llms/ai21.html |
77e6b0bade67-1 | countPenalty: AI21PenaltyData = AI21PenaltyData()
"""Penalizes repeated tokens according to count."""
frequencyPenalty: AI21PenaltyData = AI21PenaltyData()
"""Penalizes repeated tokens according to frequency."""
numResults: int = 1
"""How many completions to generate for each prompt."""
logitBias: Optional[Dict[str, float]] = None
"""Adjust the probability of specific tokens being generated."""
ai21_api_key: Optional[str] = None
stop: Optional[List[str]] = None
base_url: Optional[str] = None
"""Base url to use, if None decides based on model name."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key exists in environment."""
ai21_api_key = get_from_dict_or_env(values, "ai21_api_key", "AI21_API_KEY")
values["ai21_api_key"] = ai21_api_key
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling AI21 API."""
return {
"temperature": self.temperature,
"maxTokens": self.maxTokens,
"minTokens": self.minTokens,
"topP": self.topP,
"presencePenalty": self.presencePenalty.dict(),
"countPenalty": self.countPenalty.dict(),
"frequencyPenalty": self.frequencyPenalty.dict(),
"numResults": self.numResults,
"logitBias": self.logitBias,
}
@property | https://python.langchain.com/en/latest/_modules/langchain/llms/ai21.html |
77e6b0bade67-2 | "logitBias": self.logitBias,
}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**{"model": self.model}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "ai21"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
"""Call out to AI21's complete endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = ai21("Tell me a joke.")
"""
if self.stop is not None and stop is not None:
raise ValueError("`stop` found in both the input and default params.")
elif self.stop is not None:
stop = self.stop
elif stop is None:
stop = []
if self.base_url is not None:
base_url = self.base_url
else:
if self.model in ("j1-grande-instruct",):
base_url = "https://api.ai21.com/studio/v1/experimental"
else:
base_url = "https://api.ai21.com/studio/v1"
response = requests.post(
url=f"{base_url}/{self.model}/complete",
headers={"Authorization": f"Bearer {self.ai21_api_key}"}, | https://python.langchain.com/en/latest/_modules/langchain/llms/ai21.html |
77e6b0bade67-3 | headers={"Authorization": f"Bearer {self.ai21_api_key}"},
json={"prompt": prompt, "stopSequences": stop, **self._default_params},
)
if response.status_code != 200:
optional_detail = response.json().get("error")
raise ValueError(
f"AI21 /complete call failed with status code {response.status_code}."
f" Details: {optional_detail}"
)
response_json = response.json()
return response_json["completions"][0]["data"]["text"]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/llms/ai21.html |
8717022db4a5-0 | Source code for langchain.llms.llamacpp
"""Wrapper around llama.cpp."""
import logging
from typing import Any, Dict, Generator, List, Optional
from pydantic import Field, root_validator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
logger = logging.getLogger(__name__)
[docs]class LlamaCpp(LLM):
"""Wrapper around the llama.cpp model.
To use, you should have the llama-cpp-python library installed, and provide the
path to the Llama model as a named parameter to the constructor.
Check out: https://github.com/abetlen/llama-cpp-python
Example:
.. code-block:: python
from langchain.llms import LlamaCppEmbeddings
llm = LlamaCppEmbeddings(model_path="/path/to/llama/model")
"""
client: Any #: :meta private:
model_path: str
"""The path to the Llama model file."""
lora_base: Optional[str] = None
"""The path to the Llama LoRA base model."""
lora_path: Optional[str] = None
"""The path to the Llama LoRA. If None, no LoRa is loaded."""
n_ctx: int = Field(512, alias="n_ctx")
"""Token context window."""
n_parts: int = Field(-1, alias="n_parts")
"""Number of parts to split the model into.
If -1, the number of parts is automatically determined."""
seed: int = Field(-1, alias="seed")
"""Seed. If -1, a random seed is used."""
f16_kv: bool = Field(True, alias="f16_kv") | https://python.langchain.com/en/latest/_modules/langchain/llms/llamacpp.html |
8717022db4a5-1 | f16_kv: bool = Field(True, alias="f16_kv")
"""Use half-precision for key/value cache."""
logits_all: bool = Field(False, alias="logits_all")
"""Return logits for all tokens, not just the last token."""
vocab_only: bool = Field(False, alias="vocab_only")
"""Only load the vocabulary, no weights."""
use_mlock: bool = Field(False, alias="use_mlock")
"""Force system to keep model in RAM."""
n_threads: Optional[int] = Field(None, alias="n_threads")
"""Number of threads to use.
If None, the number of threads is automatically determined."""
n_batch: Optional[int] = Field(8, alias="n_batch")
"""Number of tokens to process in parallel.
Should be a number between 1 and n_ctx."""
n_gpu_layers: Optional[int] = Field(None, alias="n_gpu_layers")
"""Number of layers to be loaded into gpu memory. Default None."""
suffix: Optional[str] = Field(None)
"""A suffix to append to the generated text. If None, no suffix is appended."""
max_tokens: Optional[int] = 256
"""The maximum number of tokens to generate."""
temperature: Optional[float] = 0.8
"""The temperature to use for sampling."""
top_p: Optional[float] = 0.95
"""The top-p value to use for sampling."""
logprobs: Optional[int] = Field(None)
"""The number of logprobs to return. If None, no logprobs are returned."""
echo: Optional[bool] = False
"""Whether to echo the prompt."""
stop: Optional[List[str]] = [] | https://python.langchain.com/en/latest/_modules/langchain/llms/llamacpp.html |
8717022db4a5-2 | """Whether to echo the prompt."""
stop: Optional[List[str]] = []
"""A list of strings to stop generation when encountered."""
repeat_penalty: Optional[float] = 1.1
"""The penalty to apply to repeated tokens."""
top_k: Optional[int] = 40
"""The top-k value to use for sampling."""
last_n_tokens_size: Optional[int] = 64
"""The number of tokens to look back when applying the repeat_penalty."""
use_mmap: Optional[bool] = True
"""Whether to keep the model loaded in RAM"""
streaming: bool = True
"""Whether to stream the results, token by token."""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that llama-cpp-python library is installed."""
model_path = values["model_path"]
model_param_names = [
"lora_path",
"lora_base",
"n_ctx",
"n_parts",
"seed",
"f16_kv",
"logits_all",
"vocab_only",
"use_mlock",
"n_threads",
"n_batch",
"use_mmap",
"last_n_tokens_size",
]
model_params = {k: values[k] for k in model_param_names}
# For backwards compatibility, only include if non-null.
if values["n_gpu_layers"] is not None:
model_params["n_gpu_layers"] = values["n_gpu_layers"]
try:
from llama_cpp import Llama
values["client"] = Llama(model_path, **model_params)
except ImportError:
raise ModuleNotFoundError( | https://python.langchain.com/en/latest/_modules/langchain/llms/llamacpp.html |
8717022db4a5-3 | except ImportError:
raise ModuleNotFoundError(
"Could not import llama-cpp-python library. "
"Please install the llama-cpp-python library to "
"use this embedding model: pip install llama-cpp-python"
)
except Exception as e:
raise ValueError(
f"Could not load Llama model from path: {model_path}. "
f"Received error {e}"
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling llama_cpp."""
return {
"suffix": self.suffix,
"max_tokens": self.max_tokens,
"temperature": self.temperature,
"top_p": self.top_p,
"logprobs": self.logprobs,
"echo": self.echo,
"stop_sequences": self.stop, # key here is convention among LLM classes
"repeat_penalty": self.repeat_penalty,
"top_k": self.top_k,
}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**{"model_path": self.model_path}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "llama.cpp"
def _get_parameters(self, stop: Optional[List[str]] = None) -> Dict[str, Any]:
"""
Performs sanity check, preparing parameters in format needed by llama_cpp.
Args:
stop (Optional[List[str]]): List of stop sequences for llama_cpp.
Returns:
Dictionary containing the combined parameters.
""" | https://python.langchain.com/en/latest/_modules/langchain/llms/llamacpp.html |
8717022db4a5-4 | Returns:
Dictionary containing the combined parameters.
"""
# Raise error if stop sequences are in both input and default params
if self.stop and stop is not None:
raise ValueError("`stop` found in both the input and default params.")
params = self._default_params
# llama_cpp expects the "stop" key not this, so we remove it:
params.pop("stop_sequences")
# then sets it as configured, or default to an empty list:
params["stop"] = self.stop or stop or []
return params
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
"""Call the Llama model and return the output.
Args:
prompt: The prompt to use for generation.
stop: A list of strings to stop generation when encountered.
Returns:
The generated text.
Example:
.. code-block:: python
from langchain.llms import LlamaCpp
llm = LlamaCpp(model_path="/path/to/local/llama/model.bin")
llm("This is a prompt.")
"""
if self.streaming:
# If streaming is enabled, we use the stream
# method that yields as they are generated
# and return the combined strings from the first choices's text:
combined_text_output = ""
for token in self.stream(prompt=prompt, stop=stop, run_manager=run_manager):
combined_text_output += token["choices"][0]["text"]
return combined_text_output
else:
params = self._get_parameters(stop)
result = self.client(prompt=prompt, **params) | https://python.langchain.com/en/latest/_modules/langchain/llms/llamacpp.html |
8717022db4a5-5 | result = self.client(prompt=prompt, **params)
return result["choices"][0]["text"]
[docs] def stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> Generator[Dict, None, None]:
"""Yields results objects as they are generated in real time.
BETA: this is a beta feature while we figure out the right abstraction.
Once that happens, this interface could change.
It also calls the callback manager's on_llm_new_token event with
similar parameters to the OpenAI LLM class method of the same name.
Args:
prompt: The prompts to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens being generated.
Yields:
A dictionary like objects containing a string token and metadata.
See llama-cpp-python docs and below for more.
Example:
.. code-block:: python
from langchain.llms import LlamaCpp
llm = LlamaCpp(
model_path="/path/to/local/model.bin",
temperature = 0.5
)
for chunk in llm.stream("Ask 'Hi, how are you?' like a pirate:'",
stop=["'","\n"]):
result = chunk["choices"][0]
print(result["text"], end='', flush=True)
"""
params = self._get_parameters(stop)
result = self.client(prompt=prompt, stream=True, **params)
for chunk in result:
token = chunk["choices"][0]["text"] | https://python.langchain.com/en/latest/_modules/langchain/llms/llamacpp.html |
8717022db4a5-6 | for chunk in result:
token = chunk["choices"][0]["text"]
log_probs = chunk["choices"][0].get("logprobs", None)
if run_manager:
run_manager.on_llm_new_token(
token=token, verbose=self.verbose, log_probs=log_probs
)
yield chunk
[docs] def get_num_tokens(self, text: str) -> int:
tokenized_text = self.client.tokenize(text.encode("utf-8"))
return len(tokenized_text)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/llms/llamacpp.html |
681f00e3ed8c-0 | Source code for langchain.llms.predictionguard
"""Wrapper around Prediction Guard APIs."""
import logging
from typing import Any, Dict, List, Optional
from pydantic import Extra, root_validator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
[docs]class PredictionGuard(LLM):
"""Wrapper around Prediction Guard large language models.
To use, you should have the ``predictionguard`` python package installed, and the
environment variable ``PREDICTIONGUARD_TOKEN`` set with your access token, or pass
it as a named parameter to the constructor. To use Prediction Guard's API along
with OpenAI models, set the environment variable ``OPENAI_API_KEY`` with your
OpenAI API key as well.
Example:
.. code-block:: python
pgllm = PredictionGuard(model="MPT-7B-Instruct",
token="my-access-token",
output={
"type": "boolean"
})
"""
client: Any #: :meta private:
model: Optional[str] = "MPT-7B-Instruct"
"""Model name to use."""
output: Optional[Dict[str, Any]] = None
"""The output type or structure for controlling the LLM output."""
max_tokens: int = 256
"""Denotes the number of tokens to predict per generation."""
temperature: float = 0.75
"""A non-negative float that tunes the degree of randomness in generation."""
token: Optional[str] = None
"""Your Prediction Guard access token."""
stop: Optional[List[str]] = None | https://python.langchain.com/en/latest/_modules/langchain/llms/predictionguard.html |
681f00e3ed8c-1 | """Your Prediction Guard access token."""
stop: Optional[List[str]] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the access token and python package exists in environment."""
token = get_from_dict_or_env(values, "token", "PREDICTIONGUARD_TOKEN")
try:
import predictionguard as pg
values["client"] = pg.Client(token=token)
except ImportError:
raise ImportError(
"Could not import predictionguard python package. "
"Please install it with `pip install predictionguard`."
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling the Prediction Guard API."""
return {
"max_tokens": self.max_tokens,
"temperature": self.temperature,
}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**{"model": self.model}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "predictionguard"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
"""Call out to Prediction Guard's model API.
Args:
prompt: The prompt to pass into the model.
Returns:
The string generated by the model.
Example: | https://python.langchain.com/en/latest/_modules/langchain/llms/predictionguard.html |
681f00e3ed8c-2 | Returns:
The string generated by the model.
Example:
.. code-block:: python
response = pgllm("Tell me a joke.")
"""
import predictionguard as pg
params = self._default_params
if self.stop is not None and stop is not None:
raise ValueError("`stop` found in both the input and default params.")
elif self.stop is not None:
params["stop_sequences"] = self.stop
else:
params["stop_sequences"] = stop
response = pg.Completion.create(
model=self.model,
prompt=prompt,
output=self.output,
temperature=params["temperature"],
max_tokens=params["max_tokens"],
)
text = response["choices"][0]["text"]
# If stop tokens are provided, Prediction Guard's endpoint returns them.
# In order to make this consistent with other endpoints, we strip them.
if stop is not None or self.stop is not None:
text = enforce_stop_tokens(text, params["stop_sequences"])
return text
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/llms/predictionguard.html |
a526d01e799e-0 | Source code for langchain.llms.vertexai
"""Wrapper around Google VertexAI models."""
from typing import TYPE_CHECKING, Any, Dict, List, Optional
from pydantic import BaseModel, root_validator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.utilities.vertexai import (
init_vertexai,
raise_vertex_import_error,
)
if TYPE_CHECKING:
from vertexai.language_models._language_models import _LanguageModel
class _VertexAICommon(BaseModel):
client: "_LanguageModel" = None #: :meta private:
model_name: str
"Model name to use."
temperature: float = 0.0
"Sampling temperature, it controls the degree of randomness in token selection."
max_output_tokens: int = 128
"Token limit determines the maximum amount of text output from one prompt."
top_p: float = 0.95
"Tokens are selected from most probable to least until the sum of their "
"probabilities equals the top-p value."
top_k: int = 40
"How the model selects tokens for output, the next token is selected from "
"among the top-k most probable tokens."
project: Optional[str] = None
"The default GCP project to use when making Vertex API calls."
location: str = "us-central1"
"The default location to use when making API calls."
credentials: Any = None
"The default custom credentials (google.auth.credentials.Credentials) to use "
"when making API calls. If not provided, credentials will be ascertained from "
"the environment."
@property | https://python.langchain.com/en/latest/_modules/langchain/llms/vertexai.html |
a526d01e799e-1 | "the environment."
@property
def _default_params(self) -> Dict[str, Any]:
base_params = {
"temperature": self.temperature,
"max_output_tokens": self.max_output_tokens,
"top_k": self.top_k,
"top_p": self.top_p,
}
return {**base_params}
def _predict(self, prompt: str, stop: Optional[List[str]]) -> str:
res = self.client.predict(prompt, **self._default_params)
return self._enforce_stop_words(res.text, stop)
def _enforce_stop_words(self, text: str, stop: Optional[List[str]]) -> str:
if stop:
return enforce_stop_tokens(text, stop)
return text
@property
def _llm_type(self) -> str:
return "vertexai"
@classmethod
def _try_init_vertexai(cls, values: Dict) -> None:
allowed_params = ["project", "location", "credentials"]
params = {k: v for k, v in values.items() if v in allowed_params}
init_vertexai(**params)
return None
[docs]class VertexAI(_VertexAICommon, LLM):
"""Wrapper around Google Vertex AI large language models."""
model_name: str = "text-bison"
tuned_model_name: Optional[str] = None
"The name of a tuned model, if it's provided, model_name is ignored."
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in environment."""
cls._try_init_vertexai(values)
try:
from vertexai.preview.language_models import TextGenerationModel
except ImportError: | https://python.langchain.com/en/latest/_modules/langchain/llms/vertexai.html |
a526d01e799e-2 | from vertexai.preview.language_models import TextGenerationModel
except ImportError:
raise_vertex_import_error()
tuned_model_name = values.get("tuned_model_name")
if tuned_model_name:
values["client"] = TextGenerationModel.get_tuned_model(tuned_model_name)
else:
values["client"] = TextGenerationModel.from_pretrained(values["model_name"])
return values
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
"""Call Vertex model to get predictions based on the prompt.
Args:
prompt: The prompt to pass into the model.
stop: A list of stop words (optional).
run_manager: A Callbackmanager for LLM run, optional.
Returns:
The string generated by the model.
"""
return self._predict(prompt, stop)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/llms/vertexai.html |
422ec23bf772-0 | Source code for langchain.chat_models.openai
"""OpenAI chat wrapper."""
from __future__ import annotations
import logging
import sys
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
List,
Mapping,
Optional,
Tuple,
Union,
)
from pydantic import Extra, Field, root_validator
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.chat_models.base import BaseChatModel
from langchain.schema import (
AIMessage,
BaseMessage,
ChatGeneration,
ChatMessage,
ChatResult,
HumanMessage,
SystemMessage,
)
from langchain.utils import get_from_dict_or_env
if TYPE_CHECKING:
import tiktoken
logger = logging.getLogger(__name__)
def _import_tiktoken() -> Any:
try:
import tiktoken
except ImportError:
raise ValueError(
"Could not import tiktoken python package. "
"This is needed in order to calculate get_token_ids. "
"Please install it with `pip install tiktoken`."
)
return tiktoken
def _create_retry_decorator(llm: ChatOpenAI) -> Callable[[Any], Any]:
import openai
min_seconds = 1
max_seconds = 60
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
return retry( | https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
422ec23bf772-1 | return retry(
reraise=True,
stop=stop_after_attempt(llm.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
async def acompletion_with_retry(llm: ChatOpenAI, **kwargs: Any) -> Any:
"""Use tenacity to retry the async completion call."""
retry_decorator = _create_retry_decorator(llm)
@retry_decorator
async def _completion_with_retry(**kwargs: Any) -> Any:
# Use OpenAI's async api https://github.com/openai/openai-python#async-api
return await llm.client.acreate(**kwargs)
return await _completion_with_retry(**kwargs)
def _convert_dict_to_message(_dict: dict) -> BaseMessage:
role = _dict["role"]
if role == "user":
return HumanMessage(content=_dict["content"])
elif role == "assistant":
return AIMessage(content=_dict["content"])
elif role == "system":
return SystemMessage(content=_dict["content"])
else:
return ChatMessage(content=_dict["content"], role=role)
def _convert_message_to_dict(message: BaseMessage) -> dict:
if isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
elif isinstance(message, HumanMessage): | https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
422ec23bf772-2 | elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
elif isinstance(message, SystemMessage):
message_dict = {"role": "system", "content": message.content}
else:
raise ValueError(f"Got unknown type {message}")
if "name" in message.additional_kwargs:
message_dict["name"] = message.additional_kwargs["name"]
return message_dict
[docs]class ChatOpenAI(BaseChatModel):
"""Wrapper around OpenAI Chat large language models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain.chat_models import ChatOpenAI
openai = ChatOpenAI(model_name="gpt-3.5-turbo")
"""
client: Any #: :meta private:
model_name: str = Field(default="gpt-3.5-turbo", alias="model")
"""Model name to use."""
temperature: float = 0.7
"""What sampling temperature to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
openai_api_key: Optional[str] = None
"""Base URL path for API requests,
leave blank if not using a proxy or service emulator.""" | https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
422ec23bf772-3 | leave blank if not using a proxy or service emulator."""
openai_api_base: Optional[str] = None
openai_organization: Optional[str] = None
# to support explicit proxy for OpenAI
openai_proxy: Optional[str] = None
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
"""Timeout for requests to OpenAI completion API. Default is 600 seconds."""
max_retries: int = 6
"""Maximum number of retries to make when generating."""
streaming: bool = False
"""Whether to stream the results or not."""
n: int = 1
"""Number of chat completions to generate for each prompt."""
max_tokens: Optional[int] = None
"""Maximum number of tokens to generate."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.ignore
allow_population_by_field_name = True
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = cls.all_required_field_names()
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
if field_name not in all_required_field_names:
logger.warning(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
if invalid_model_kwargs: | https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
422ec23bf772-4 | if invalid_model_kwargs:
raise ValueError(
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
f"Instead they were passed in as part of `model_kwargs` parameter."
)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
values["openai_organization"] = get_from_dict_or_env(
values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="",
)
values["openai_api_base"] = get_from_dict_or_env(
values,
"openai_api_base",
"OPENAI_API_BASE",
default="",
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
try:
import openai
except ImportError:
raise ValueError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
try:
values["client"] = openai.ChatCompletion
except AttributeError:
raise ValueError(
"`openai` has no `ChatCompletion` attribute, this is likely "
"due to an old version of the openai package. Try upgrading it "
"with `pip install --upgrade openai`."
)
if values["n"] < 1: | https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
422ec23bf772-5 | )
if values["n"] < 1:
raise ValueError("n must be at least 1.")
if values["n"] > 1 and values["streaming"]:
raise ValueError("n must be 1 when streaming.")
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
return {
"model": self.model_name,
"request_timeout": self.request_timeout,
"max_tokens": self.max_tokens,
"stream": self.streaming,
"n": self.n,
"temperature": self.temperature,
**self.model_kwargs,
}
def _create_retry_decorator(self) -> Callable[[Any], Any]:
import openai
min_seconds = 1
max_seconds = 60
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
return retry(
reraise=True,
stop=stop_after_attempt(self.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
[docs] def completion_with_retry(self, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call.""" | https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
422ec23bf772-6 | """Use tenacity to retry the completion call."""
retry_decorator = self._create_retry_decorator()
@retry_decorator
def _completion_with_retry(**kwargs: Any) -> Any:
return self.client.create(**kwargs)
return _completion_with_retry(**kwargs)
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
overall_token_usage: dict = {}
for output in llm_outputs:
if output is None:
# Happens in streaming
continue
token_usage = output["token_usage"]
for k, v in token_usage.items():
if k in overall_token_usage:
overall_token_usage[k] += v
else:
overall_token_usage[k] = v
return {"token_usage": overall_token_usage, "model_name": self.model_name}
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> ChatResult:
message_dicts, params = self._create_message_dicts(messages, stop)
if self.streaming:
inner_completion = ""
role = "assistant"
params["stream"] = True
for stream_resp in self.completion_with_retry(
messages=message_dicts, **params
):
role = stream_resp["choices"][0]["delta"].get("role", role)
token = stream_resp["choices"][0]["delta"].get("content", "")
inner_completion += token
if run_manager:
run_manager.on_llm_new_token(token)
message = _convert_dict_to_message(
{"content": inner_completion, "role": role}
) | https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
422ec23bf772-7 | {"content": inner_completion, "role": role}
)
return ChatResult(generations=[ChatGeneration(message=message)])
response = self.completion_with_retry(messages=message_dicts, **params)
return self._create_chat_result(response)
def _create_message_dicts(
self, messages: List[BaseMessage], stop: Optional[List[str]]
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
params = dict(self._invocation_params)
if stop is not None:
if "stop" in params:
raise ValueError("`stop` found in both the input and default params.")
params["stop"] = stop
message_dicts = [_convert_message_to_dict(m) for m in messages]
return message_dicts, params
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
generations = []
for res in response["choices"]:
message = _convert_dict_to_message(res["message"])
gen = ChatGeneration(message=message)
generations.append(gen)
llm_output = {"token_usage": response["usage"], "model_name": self.model_name}
return ChatResult(generations=generations, llm_output=llm_output)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
) -> ChatResult:
message_dicts, params = self._create_message_dicts(messages, stop)
if self.streaming:
inner_completion = ""
role = "assistant"
params["stream"] = True
async for stream_resp in await acompletion_with_retry( | https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
422ec23bf772-8 | async for stream_resp in await acompletion_with_retry(
self, messages=message_dicts, **params
):
role = stream_resp["choices"][0]["delta"].get("role", role)
token = stream_resp["choices"][0]["delta"].get("content", "")
inner_completion += token
if run_manager:
await run_manager.on_llm_new_token(token)
message = _convert_dict_to_message(
{"content": inner_completion, "role": role}
)
return ChatResult(generations=[ChatGeneration(message=message)])
else:
response = await acompletion_with_retry(
self, messages=message_dicts, **params
)
return self._create_chat_result(response)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{"model_name": self.model_name}, **self._default_params}
@property
def _invocation_params(self) -> Mapping[str, Any]:
"""Get the parameters used to invoke the model."""
openai_creds: Dict[str, Any] = {
"api_key": self.openai_api_key,
"api_base": self.openai_api_base,
"organization": self.openai_organization,
"model": self.model_name,
}
if self.openai_proxy:
openai_creds["proxy"] = (
{"http": self.openai_proxy, "https": self.openai_proxy},
)
return {**openai_creds, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "openai-chat" | https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
422ec23bf772-9 | """Return type of chat model."""
return "openai-chat"
def _get_encoding_model(self) -> Tuple[str, tiktoken.Encoding]:
tiktoken_ = _import_tiktoken()
model = self.model_name
if model == "gpt-3.5-turbo":
# gpt-3.5-turbo may change over time.
# Returning num tokens assuming gpt-3.5-turbo-0301.
model = "gpt-3.5-turbo-0301"
elif model == "gpt-4":
# gpt-4 may change over time.
# Returning num tokens assuming gpt-4-0314.
model = "gpt-4-0314"
# Returns the number of tokens used by a list of messages.
try:
encoding = tiktoken_.encoding_for_model(model)
except KeyError:
logger.warning("Warning: model not found. Using cl100k_base encoding.")
model = "cl100k_base"
encoding = tiktoken_.get_encoding(model)
return model, encoding
[docs] def get_token_ids(self, text: str) -> List[int]:
"""Get the tokens present in the text with tiktoken package."""
# tiktoken NOT supported for Python 3.7 or below
if sys.version_info[1] <= 7:
return super().get_token_ids(text)
_, encoding_model = self._get_encoding_model()
return encoding_model.encode(text)
[docs] def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int:
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package. | https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
422ec23bf772-10 | Official documentation: https://github.com/openai/openai-cookbook/blob/
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
if sys.version_info[1] <= 7:
return super().get_num_tokens_from_messages(messages)
model, encoding = self._get_encoding_model()
if model == "gpt-3.5-turbo-0301":
# every message follows <im_start>{role/name}\n{content}<im_end>\n
tokens_per_message = 4
# if there's a name, the role is omitted
tokens_per_name = -1
elif model == "gpt-4-0314":
tokens_per_message = 3
tokens_per_name = 1
else:
raise NotImplementedError(
f"get_num_tokens_from_messages() is not presently implemented "
f"for model {model}."
"See https://github.com/openai/openai-python/blob/main/chatml.md for "
"information on how messages are converted to tokens."
)
num_tokens = 0
messages_dict = [_convert_message_to_dict(m) for m in messages]
for message in messages_dict:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
# every reply is primed with <im_start>assistant
num_tokens += 3
return num_tokens
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html |
3edcc25a6e06-0 | Source code for langchain.chat_models.promptlayer_openai
"""PromptLayer wrapper."""
import datetime
from typing import Any, List, Mapping, Optional
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.chat_models import ChatOpenAI
from langchain.schema import BaseMessage, ChatResult
[docs]class PromptLayerChatOpenAI(ChatOpenAI):
"""Wrapper around OpenAI Chat large language models and PromptLayer.
To use, you should have the ``openai`` and ``promptlayer`` python
package installed, and the environment variable ``OPENAI_API_KEY``
and ``PROMPTLAYER_API_KEY`` set with your openAI API key and
promptlayer key respectively.
All parameters that can be passed to the OpenAI LLM can also
be passed here. The PromptLayerChatOpenAI adds to optional
parameters:
``pl_tags``: List of strings to tag the request with.
``return_pl_id``: If True, the PromptLayer request ID will be
returned in the ``generation_info`` field of the
``Generation`` object.
Example:
.. code-block:: python
from langchain.chat_models import PromptLayerChatOpenAI
openai = PromptLayerChatOpenAI(model_name="gpt-3.5-turbo")
"""
pl_tags: Optional[List[str]]
return_pl_id: Optional[bool] = False
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> ChatResult: | https://python.langchain.com/en/latest/_modules/langchain/chat_models/promptlayer_openai.html |
3edcc25a6e06-1 | ) -> ChatResult:
"""Call ChatOpenAI generate and then call PromptLayer API to log the request."""
from promptlayer.utils import get_api_key, promptlayer_api_request
request_start_time = datetime.datetime.now().timestamp()
generated_responses = super()._generate(messages, stop, run_manager)
request_end_time = datetime.datetime.now().timestamp()
message_dicts, params = super()._create_message_dicts(messages, stop)
for i, generation in enumerate(generated_responses.generations):
response_dict, params = super()._create_message_dicts(
[generation.message], stop
)
pl_request_id = promptlayer_api_request(
"langchain.PromptLayerChatOpenAI",
"langchain",
message_dicts,
params,
self.pl_tags,
response_dict,
request_start_time,
request_end_time,
get_api_key(),
return_pl_id=self.return_pl_id,
)
if self.return_pl_id:
if generation.generation_info is None or not isinstance(
generation.generation_info, dict
):
generation.generation_info = {}
generation.generation_info["pl_request_id"] = pl_request_id
return generated_responses
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
) -> ChatResult:
"""Call ChatOpenAI agenerate and then call PromptLayer to log."""
from promptlayer.utils import get_api_key, promptlayer_api_request_async
request_start_time = datetime.datetime.now().timestamp()
generated_responses = await super()._agenerate(messages, stop, run_manager) | https://python.langchain.com/en/latest/_modules/langchain/chat_models/promptlayer_openai.html |
3edcc25a6e06-2 | generated_responses = await super()._agenerate(messages, stop, run_manager)
request_end_time = datetime.datetime.now().timestamp()
message_dicts, params = super()._create_message_dicts(messages, stop)
for i, generation in enumerate(generated_responses.generations):
response_dict, params = super()._create_message_dicts(
[generation.message], stop
)
pl_request_id = await promptlayer_api_request_async(
"langchain.PromptLayerChatOpenAI.async",
"langchain",
message_dicts,
params,
self.pl_tags,
response_dict,
request_start_time,
request_end_time,
get_api_key(),
return_pl_id=self.return_pl_id,
)
if self.return_pl_id:
if generation.generation_info is None or not isinstance(
generation.generation_info, dict
):
generation.generation_info = {}
generation.generation_info["pl_request_id"] = pl_request_id
return generated_responses
@property
def _llm_type(self) -> str:
return "promptlayer-openai-chat"
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {
**super()._identifying_params,
"pl_tags": self.pl_tags,
"return_pl_id": self.return_pl_id,
}
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chat_models/promptlayer_openai.html |
ca113d213aa3-0 | Source code for langchain.chat_models.azure_openai
"""Azure OpenAI chat wrapper."""
from __future__ import annotations
import logging
from typing import Any, Dict, Mapping
from pydantic import root_validator
from langchain.chat_models.openai import ChatOpenAI
from langchain.schema import ChatResult
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
[docs]class AzureChatOpenAI(ChatOpenAI):
"""Wrapper around Azure OpenAI Chat Completion API. To use this class you
must have a deployed model on Azure OpenAI. Use `deployment_name` in the
constructor to refer to the "Model deployment name" in the Azure portal.
In addition, you should have the ``openai`` python package installed, and the
following environment variables set or passed in constructor in lower case:
- ``OPENAI_API_TYPE`` (default: ``azure``)
- ``OPENAI_API_KEY``
- ``OPENAI_API_BASE``
- ``OPENAI_API_VERSION``
- ``OPENAI_PROXY``
For exmaple, if you have `gpt-35-turbo` deployed, with the deployment name
`35-turbo-dev`, the constructor should look like:
.. code-block:: python
AzureChatOpenAI(
deployment_name="35-turbo-dev",
openai_api_version="2023-03-15-preview",
)
Be aware the API version may change.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
"""
deployment_name: str = ""
openai_api_type: str = "azure"
openai_api_base: str = "" | https://python.langchain.com/en/latest/_modules/langchain/chat_models/azure_openai.html |
ca113d213aa3-1 | openai_api_base: str = ""
openai_api_version: str = ""
openai_api_key: str = ""
openai_organization: str = ""
openai_proxy: str = ""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(
values,
"openai_api_key",
"OPENAI_API_KEY",
)
values["openai_api_base"] = get_from_dict_or_env(
values,
"openai_api_base",
"OPENAI_API_BASE",
)
values["openai_api_version"] = get_from_dict_or_env(
values,
"openai_api_version",
"OPENAI_API_VERSION",
)
values["openai_api_type"] = get_from_dict_or_env(
values,
"openai_api_type",
"OPENAI_API_TYPE",
)
values["openai_organization"] = get_from_dict_or_env(
values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="",
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
try:
import openai
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
try:
values["client"] = openai.ChatCompletion
except AttributeError:
raise ValueError( | https://python.langchain.com/en/latest/_modules/langchain/chat_models/azure_openai.html |
ca113d213aa3-2 | except AttributeError:
raise ValueError(
"`openai` has no `ChatCompletion` attribute, this is likely "
"due to an old version of the openai package. Try upgrading it "
"with `pip install --upgrade openai`."
)
if values["n"] < 1:
raise ValueError("n must be at least 1.")
if values["n"] > 1 and values["streaming"]:
raise ValueError("n must be 1 when streaming.")
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
return {
**super()._default_params,
"engine": self.deployment_name,
}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**self._default_params}
@property
def _invocation_params(self) -> Mapping[str, Any]:
openai_creds = {
"api_type": self.openai_api_type,
"api_version": self.openai_api_version,
}
return {**openai_creds, **super()._invocation_params}
@property
def _llm_type(self) -> str:
return "azure-openai-chat"
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
for res in response["choices"]:
if res.get("finish_reason", None) == "content_filter":
raise ValueError(
"Azure has not provided the response due to a content"
" filter being triggered"
)
return super()._create_chat_result(response)
By Harrison Chase | https://python.langchain.com/en/latest/_modules/langchain/chat_models/azure_openai.html |
ca113d213aa3-3 | )
return super()._create_chat_result(response)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chat_models/azure_openai.html |
e3c83b06ce31-0 | Source code for langchain.chat_models.anthropic
from typing import Any, Dict, List, Optional
from pydantic import Extra
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.chat_models.base import BaseChatModel
from langchain.llms.anthropic import _AnthropicCommon
from langchain.schema import (
AIMessage,
BaseMessage,
ChatGeneration,
ChatMessage,
ChatResult,
HumanMessage,
SystemMessage,
)
[docs]class ChatAnthropic(BaseChatModel, _AnthropicCommon):
r"""Wrapper around Anthropic's large language model.
To use, you should have the ``anthropic`` python package installed, and the
environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
import anthropic
from langchain.llms import Anthropic
model = ChatAnthropic(model="<model_name>", anthropic_api_key="my-api-key")
"""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "anthropic-chat"
def _convert_one_message_to_text(self, message: BaseMessage) -> str:
if isinstance(message, ChatMessage):
message_text = f"\n\n{message.role.capitalize()}: {message.content}"
elif isinstance(message, HumanMessage):
message_text = f"{self.HUMAN_PROMPT} {message.content}"
elif isinstance(message, AIMessage): | https://python.langchain.com/en/latest/_modules/langchain/chat_models/anthropic.html |
e3c83b06ce31-1 | elif isinstance(message, AIMessage):
message_text = f"{self.AI_PROMPT} {message.content}"
elif isinstance(message, SystemMessage):
message_text = f"{self.HUMAN_PROMPT} <admin>{message.content}</admin>"
else:
raise ValueError(f"Got unknown type {message}")
return message_text
def _convert_messages_to_text(self, messages: List[BaseMessage]) -> str:
"""Format a list of strings into a single string with necessary newlines.
Args:
messages (List[BaseMessage]): List of BaseMessage to combine.
Returns:
str: Combined string with necessary newlines.
"""
return "".join(
self._convert_one_message_to_text(message) for message in messages
)
def _convert_messages_to_prompt(self, messages: List[BaseMessage]) -> str:
"""Format a list of messages into a full prompt for the Anthropic model
Args:
messages (List[BaseMessage]): List of BaseMessage to combine.
Returns:
str: Combined string with necessary HUMAN_PROMPT and AI_PROMPT tags.
"""
if not self.AI_PROMPT:
raise NameError("Please ensure the anthropic package is loaded")
if not isinstance(messages[-1], AIMessage):
messages.append(AIMessage(content=""))
text = self._convert_messages_to_text(messages)
return (
text.rstrip()
) # trim off the trailing ' ' that might come from the "Assistant: "
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> ChatResult: | https://python.langchain.com/en/latest/_modules/langchain/chat_models/anthropic.html |
e3c83b06ce31-2 | ) -> ChatResult:
prompt = self._convert_messages_to_prompt(messages)
params: Dict[str, Any] = {"prompt": prompt, **self._default_params}
if stop:
params["stop_sequences"] = stop
if self.streaming:
completion = ""
stream_resp = self.client.completion_stream(**params)
for data in stream_resp:
delta = data["completion"][len(completion) :]
completion = data["completion"]
if run_manager:
run_manager.on_llm_new_token(
delta,
)
else:
response = self.client.completion(**params)
completion = response["completion"]
message = AIMessage(content=completion)
return ChatResult(generations=[ChatGeneration(message=message)])
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
) -> ChatResult:
prompt = self._convert_messages_to_prompt(messages)
params: Dict[str, Any] = {"prompt": prompt, **self._default_params}
if stop:
params["stop_sequences"] = stop
if self.streaming:
completion = ""
stream_resp = await self.client.acompletion_stream(**params)
async for data in stream_resp:
delta = data["completion"][len(completion) :]
completion = data["completion"]
if run_manager:
await run_manager.on_llm_new_token(
delta,
)
else:
response = await self.client.acompletion(**params)
completion = response["completion"]
message = AIMessage(content=completion) | https://python.langchain.com/en/latest/_modules/langchain/chat_models/anthropic.html |
e3c83b06ce31-3 | completion = response["completion"]
message = AIMessage(content=completion)
return ChatResult(generations=[ChatGeneration(message=message)])
[docs] def get_num_tokens(self, text: str) -> int:
"""Calculate number of tokens."""
if not self.count_tokens:
raise NameError("Please ensure the anthropic package is loaded")
return self.count_tokens(text)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chat_models/anthropic.html |
d72229ca084a-0 | Source code for langchain.chat_models.google_palm
"""Wrapper around Google's PaLM Chat API."""
from __future__ import annotations
import logging
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Mapping, Optional
from pydantic import BaseModel, root_validator
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.chat_models.base import BaseChatModel
from langchain.schema import (
AIMessage,
BaseMessage,
ChatGeneration,
ChatMessage,
ChatResult,
HumanMessage,
SystemMessage,
)
from langchain.utils import get_from_dict_or_env
if TYPE_CHECKING:
import google.generativeai as genai
logger = logging.getLogger(__name__)
class ChatGooglePalmError(Exception):
pass
def _truncate_at_stop_tokens(
text: str,
stop: Optional[List[str]],
) -> str:
"""Truncates text at the earliest stop token found."""
if stop is None:
return text
for stop_token in stop:
stop_token_idx = text.find(stop_token)
if stop_token_idx != -1:
text = text[:stop_token_idx]
return text
def _response_to_result(
response: genai.types.ChatResponse,
stop: Optional[List[str]],
) -> ChatResult:
"""Converts a PaLM API response into a LangChain ChatResult."""
if not response.candidates:
raise ChatGooglePalmError("ChatResponse must have at least one candidate.") | https://python.langchain.com/en/latest/_modules/langchain/chat_models/google_palm.html |
d72229ca084a-1 | raise ChatGooglePalmError("ChatResponse must have at least one candidate.")
generations: List[ChatGeneration] = []
for candidate in response.candidates:
author = candidate.get("author")
if author is None:
raise ChatGooglePalmError(f"ChatResponse must have an author: {candidate}")
content = _truncate_at_stop_tokens(candidate.get("content", ""), stop)
if content is None:
raise ChatGooglePalmError(f"ChatResponse must have a content: {candidate}")
if author == "ai":
generations.append(
ChatGeneration(text=content, message=AIMessage(content=content))
)
elif author == "human":
generations.append(
ChatGeneration(
text=content,
message=HumanMessage(content=content),
)
)
else:
generations.append(
ChatGeneration(
text=content,
message=ChatMessage(role=author, content=content),
)
)
return ChatResult(generations=generations)
def _messages_to_prompt_dict(
input_messages: List[BaseMessage],
) -> genai.types.MessagePromptDict:
"""Converts a list of LangChain messages into a PaLM API MessagePrompt structure."""
import google.generativeai as genai
context: str = ""
examples: List[genai.types.MessageDict] = []
messages: List[genai.types.MessageDict] = []
remaining = list(enumerate(input_messages))
while remaining:
index, input_message = remaining.pop(0)
if isinstance(input_message, SystemMessage):
if index != 0:
raise ChatGooglePalmError("System message must be first input message.") | https://python.langchain.com/en/latest/_modules/langchain/chat_models/google_palm.html |
d72229ca084a-2 | raise ChatGooglePalmError("System message must be first input message.")
context = input_message.content
elif isinstance(input_message, HumanMessage) and input_message.example:
if messages:
raise ChatGooglePalmError(
"Message examples must come before other messages."
)
_, next_input_message = remaining.pop(0)
if isinstance(next_input_message, AIMessage) and next_input_message.example:
examples.extend(
[
genai.types.MessageDict(
author="human", content=input_message.content
),
genai.types.MessageDict(
author="ai", content=next_input_message.content
),
]
)
else:
raise ChatGooglePalmError(
"Human example message must be immediately followed by an "
" AI example response."
)
elif isinstance(input_message, AIMessage) and input_message.example:
raise ChatGooglePalmError(
"AI example message must be immediately preceded by a Human "
"example message."
)
elif isinstance(input_message, AIMessage):
messages.append(
genai.types.MessageDict(author="ai", content=input_message.content)
)
elif isinstance(input_message, HumanMessage):
messages.append(
genai.types.MessageDict(author="human", content=input_message.content)
)
elif isinstance(input_message, ChatMessage):
messages.append(
genai.types.MessageDict(
author=input_message.role, content=input_message.content
)
)
else:
raise ChatGooglePalmError(
"Messages without an explicit role not supported by PaLM API."
)
return genai.types.MessagePromptDict(
context=context,
examples=examples, | https://python.langchain.com/en/latest/_modules/langchain/chat_models/google_palm.html |
d72229ca084a-3 | context=context,
examples=examples,
messages=messages,
)
def _create_retry_decorator() -> Callable[[Any], Any]:
"""Returns a tenacity retry decorator, preconfigured to handle PaLM exceptions"""
import google.api_core.exceptions
multiplier = 2
min_seconds = 1
max_seconds = 60
max_retries = 10
return retry(
reraise=True,
stop=stop_after_attempt(max_retries),
wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(google.api_core.exceptions.ResourceExhausted)
| retry_if_exception_type(google.api_core.exceptions.ServiceUnavailable)
| retry_if_exception_type(google.api_core.exceptions.GoogleAPIError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def chat_with_retry(llm: ChatGooglePalm, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator()
@retry_decorator
def _chat_with_retry(**kwargs: Any) -> Any:
return llm.client.chat(**kwargs)
return _chat_with_retry(**kwargs)
async def achat_with_retry(llm: ChatGooglePalm, **kwargs: Any) -> Any:
"""Use tenacity to retry the async completion call."""
retry_decorator = _create_retry_decorator()
@retry_decorator
async def _achat_with_retry(**kwargs: Any) -> Any:
# Use OpenAI's async api https://github.com/openai/openai-python#async-api
return await llm.client.chat_async(**kwargs)
return await _achat_with_retry(**kwargs) | https://python.langchain.com/en/latest/_modules/langchain/chat_models/google_palm.html |
d72229ca084a-4 | return await _achat_with_retry(**kwargs)
[docs]class ChatGooglePalm(BaseChatModel, BaseModel):
"""Wrapper around Google's PaLM Chat API.
To use you must have the google.generativeai Python package installed and
either:
1. The ``GOOGLE_API_KEY``` environment varaible set with your API key, or
2. Pass your API key using the google_api_key kwarg to the ChatGoogle
constructor.
Example:
.. code-block:: python
from langchain.chat_models import ChatGooglePalm
chat = ChatGooglePalm()
"""
client: Any #: :meta private:
model_name: str = "models/chat-bison-001"
"""Model name to use."""
google_api_key: Optional[str] = None
temperature: Optional[float] = None
"""Run inference with this temperature. Must by in the closed
interval [0.0, 1.0]."""
top_p: Optional[float] = None
"""Decode using nucleus sampling: consider the smallest set of tokens whose
probability sum is at least top_p. Must be in the closed interval [0.0, 1.0]."""
top_k: Optional[int] = None
"""Decode using top-k sampling: consider the set of top_k most probable tokens.
Must be positive."""
n: int = 1
"""Number of chat completions to generate for each prompt. Note that the API may
not return the full n completions if duplicates are generated."""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate api key, python package exists, temperature, top_p, and top_k.""" | https://python.langchain.com/en/latest/_modules/langchain/chat_models/google_palm.html |
d72229ca084a-5 | """Validate api key, python package exists, temperature, top_p, and top_k."""
google_api_key = get_from_dict_or_env(
values, "google_api_key", "GOOGLE_API_KEY"
)
try:
import google.generativeai as genai
genai.configure(api_key=google_api_key)
except ImportError:
raise ChatGooglePalmError(
"Could not import google.generativeai python package. "
"Please install it with `pip install google-generativeai`"
)
values["client"] = genai
if values["temperature"] is not None and not 0 <= values["temperature"] <= 1:
raise ValueError("temperature must be in the range [0.0, 1.0]")
if values["top_p"] is not None and not 0 <= values["top_p"] <= 1:
raise ValueError("top_p must be in the range [0.0, 1.0]")
if values["top_k"] is not None and values["top_k"] <= 0:
raise ValueError("top_k must be positive")
return values
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> ChatResult:
prompt = _messages_to_prompt_dict(messages)
response: genai.types.ChatResponse = chat_with_retry(
self,
model=self.model_name,
prompt=prompt,
temperature=self.temperature,
top_p=self.top_p,
top_k=self.top_k,
candidate_count=self.n,
)
return _response_to_result(response, stop) | https://python.langchain.com/en/latest/_modules/langchain/chat_models/google_palm.html |
d72229ca084a-6 | )
return _response_to_result(response, stop)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
) -> ChatResult:
prompt = _messages_to_prompt_dict(messages)
response: genai.types.ChatResponse = await achat_with_retry(
self,
model=self.model_name,
prompt=prompt,
temperature=self.temperature,
top_p=self.top_p,
top_k=self.top_k,
candidate_count=self.n,
)
return _response_to_result(response, stop)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
"model_name": self.model_name,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k,
"n": self.n,
}
@property
def _llm_type(self) -> str:
return "google-palm-chat"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chat_models/google_palm.html |
1de68951a0fd-0 | Source code for langchain.chat_models.vertexai
"""Wrapper around Google VertexAI chat-based models."""
from dataclasses import dataclass, field
from typing import Dict, List, Optional
from pydantic import root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.chat_models.base import BaseChatModel
from langchain.llms.vertexai import _VertexAICommon
from langchain.schema import (
AIMessage,
BaseMessage,
ChatGeneration,
ChatResult,
HumanMessage,
SystemMessage,
)
from langchain.utilities.vertexai import raise_vertex_import_error
@dataclass
class _MessagePair:
"""InputOutputTextPair represents a pair of input and output texts."""
question: HumanMessage
answer: AIMessage
@dataclass
class _ChatHistory:
"""InputOutputTextPair represents a pair of input and output texts."""
history: List[_MessagePair] = field(default_factory=list)
system_message: Optional[SystemMessage] = None
def _parse_chat_history(history: List[BaseMessage]) -> _ChatHistory:
"""Parse a sequence of messages into history.
A sequence should be either (SystemMessage, HumanMessage, AIMessage,
HumanMessage, AIMessage, ...) or (HumanMessage, AIMessage, HumanMessage,
AIMessage, ...).
Args:
history: The list of messages to re-create the history of the chat.
Returns:
A parsed chat history.
Raises:
ValueError: If a sequence of message is odd, or a human message is not followed
by a message from AI (e.g., Human, Human, AI or AI, AI, Human).
"""
if not history: | https://python.langchain.com/en/latest/_modules/langchain/chat_models/vertexai.html |
1de68951a0fd-1 | """
if not history:
return _ChatHistory()
first_message = history[0]
system_message = first_message if isinstance(first_message, SystemMessage) else None
chat_history = _ChatHistory(system_message=system_message)
messages_left = history[1:] if system_message else history
if len(messages_left) % 2 != 0:
raise ValueError(
f"Amount of messages in history should be even, got {len(messages_left)}!"
)
for question, answer in zip(messages_left[::2], messages_left[1::2]):
if not isinstance(question, HumanMessage) or not isinstance(answer, AIMessage):
raise ValueError(
"A human message should follow a bot one, "
f"got {question.type}, {answer.type}."
)
chat_history.history.append(_MessagePair(question=question, answer=answer))
return chat_history
[docs]class ChatVertexAI(_VertexAICommon, BaseChatModel):
"""Wrapper around Vertex AI large language models."""
model_name: str = "chat-bison"
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in environment."""
cls._try_init_vertexai(values)
try:
from vertexai.preview.language_models import ChatModel
except ImportError:
raise_vertex_import_error()
values["client"] = ChatModel.from_pretrained(values["model_name"])
return values
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> ChatResult: | https://python.langchain.com/en/latest/_modules/langchain/chat_models/vertexai.html |
1de68951a0fd-2 | ) -> ChatResult:
"""Generate next turn in the conversation.
Args:
messages: The history of the conversation as a list of messages.
stop: The list of stop words (optional).
run_manager: The Callbackmanager for LLM run, it's not used at the moment.
Returns:
The ChatResult that contains outputs generated by the model.
Raises:
ValueError: if the last message in the list is not from human.
"""
if not messages:
raise ValueError(
"You should provide at least one message to start the chat!"
)
question = messages[-1]
if not isinstance(question, HumanMessage):
raise ValueError(
f"Last message in the list should be from human, got {question.type}."
)
history = _parse_chat_history(messages[:-1])
context = history.system_message.content if history.system_message else None
chat = self.client.start_chat(context=context, **self._default_params)
for pair in history.history:
chat._history.append((pair.question.content, pair.answer.content))
response = chat.send_message(question.content, **self._default_params)
text = self._enforce_stop_words(response.text, stop)
return ChatResult(generations=[ChatGeneration(message=AIMessage(content=text))])
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
) -> ChatResult:
raise NotImplementedError(
"""Vertex AI doesn't support async requests at the moment."""
)
By Harrison Chase
© Copyright 2023, Harrison Chase. | https://python.langchain.com/en/latest/_modules/langchain/chat_models/vertexai.html |
1de68951a0fd-3 | By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chat_models/vertexai.html |
1b2d87889c96-0 | Source code for langchain.document_loaders.wikipedia
from typing import List, Optional
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
from langchain.utilities.wikipedia import WikipediaAPIWrapper
[docs]class WikipediaLoader(BaseLoader):
"""Loads a query result from www.wikipedia.org into a list of Documents.
The hard limit on the number of downloaded Documents is 300 for now.
Each wiki page represents one Document.
"""
def __init__(
self,
query: str,
lang: str = "en",
load_max_docs: Optional[int] = 100,
load_all_available_meta: Optional[bool] = False,
):
self.query = query
self.lang = lang
self.load_max_docs = load_max_docs
self.load_all_available_meta = load_all_available_meta
[docs] def load(self) -> List[Document]:
client = WikipediaAPIWrapper(
lang=self.lang,
top_k_results=self.load_max_docs,
load_all_available_meta=self.load_all_available_meta,
)
docs = client.load(self.query)
return docs
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/document_loaders/wikipedia.html |
eeb2c87550cb-0 | Source code for langchain.document_loaders.roam
"""Loader that loads Roam directory dump."""
from pathlib import Path
from typing import List
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
[docs]class RoamLoader(BaseLoader):
"""Loader that loads Roam files from disk."""
def __init__(self, path: str):
"""Initialize with path."""
self.file_path = path
[docs] def load(self) -> List[Document]:
"""Load documents."""
ps = list(Path(self.file_path).glob("**/*.md"))
docs = []
for p in ps:
with open(p) as f:
text = f.read()
metadata = {"source": str(p)}
docs.append(Document(page_content=text, metadata=metadata))
return docs
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/document_loaders/roam.html |
15e8db3804bc-0 | Source code for langchain.document_loaders.url
"""Loader that uses unstructured to load HTML files."""
import logging
from typing import Any, List
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
logger = logging.getLogger(__name__)
[docs]class UnstructuredURLLoader(BaseLoader):
"""Loader that uses unstructured to load HTML files."""
def __init__(
self,
urls: List[str],
continue_on_failure: bool = True,
mode: str = "single",
**unstructured_kwargs: Any,
):
"""Initialize with file path."""
try:
import unstructured # noqa:F401
from unstructured.__version__ import __version__ as __unstructured_version__
self.__version = __unstructured_version__
except ImportError:
raise ValueError(
"unstructured package not found, please install it with "
"`pip install unstructured`"
)
self._validate_mode(mode)
self.mode = mode
headers = unstructured_kwargs.pop("headers", {})
if len(headers.keys()) != 0:
warn_about_headers = False
if self.__is_non_html_available():
warn_about_headers = not self.__is_headers_available_for_non_html()
else:
warn_about_headers = not self.__is_headers_available_for_html()
if warn_about_headers:
logger.warning(
"You are using an old version of unstructured. "
"The headers parameter is ignored"
)
self.urls = urls
self.continue_on_failure = continue_on_failure
self.headers = headers
self.unstructured_kwargs = unstructured_kwargs
def _validate_mode(self, mode: str) -> None: | https://python.langchain.com/en/latest/_modules/langchain/document_loaders/url.html |
15e8db3804bc-1 | def _validate_mode(self, mode: str) -> None:
_valid_modes = {"single", "elements"}
if mode not in _valid_modes:
raise ValueError(
f"Got {mode} for `mode`, but should be one of `{_valid_modes}`"
)
def __is_headers_available_for_html(self) -> bool:
_unstructured_version = self.__version.split("-")[0]
unstructured_version = tuple([int(x) for x in _unstructured_version.split(".")])
return unstructured_version >= (0, 5, 7)
def __is_headers_available_for_non_html(self) -> bool:
_unstructured_version = self.__version.split("-")[0]
unstructured_version = tuple([int(x) for x in _unstructured_version.split(".")])
return unstructured_version >= (0, 5, 13)
def __is_non_html_available(self) -> bool:
_unstructured_version = self.__version.split("-")[0]
unstructured_version = tuple([int(x) for x in _unstructured_version.split(".")])
return unstructured_version >= (0, 5, 12)
[docs] def load(self) -> List[Document]:
"""Load file."""
from unstructured.partition.auto import partition
from unstructured.partition.html import partition_html
docs: List[Document] = list()
for url in self.urls:
try:
if self.__is_non_html_available():
if self.__is_headers_available_for_non_html():
elements = partition(
url=url, headers=self.headers, **self.unstructured_kwargs
)
else:
elements = partition(url=url, **self.unstructured_kwargs)
else: | https://python.langchain.com/en/latest/_modules/langchain/document_loaders/url.html |
15e8db3804bc-2 | elements = partition(url=url, **self.unstructured_kwargs)
else:
if self.__is_headers_available_for_html():
elements = partition_html(
url=url, headers=self.headers, **self.unstructured_kwargs
)
else:
elements = partition_html(url=url, **self.unstructured_kwargs)
except Exception as e:
if self.continue_on_failure:
logger.error(f"Error fetching or processing {url}, exeption: {e}")
continue
else:
raise e
if self.mode == "single":
text = "\n\n".join([str(el) for el in elements])
metadata = {"source": url}
docs.append(Document(page_content=text, metadata=metadata))
elif self.mode == "elements":
for element in elements:
metadata = element.metadata.to_dict()
metadata["category"] = element.category
docs.append(Document(page_content=str(element), metadata=metadata))
return docs
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/document_loaders/url.html |
7d558d1c92ed-0 | Source code for langchain.document_loaders.json_loader
"""Loader that loads data from JSON."""
import json
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Union
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
[docs]class JSONLoader(BaseLoader):
"""Loads a JSON file and references a jq schema provided to load the text into
documents.
Example:
[{"text": ...}, {"text": ...}, {"text": ...}] -> schema = .[].text
{"key": [{"text": ...}, {"text": ...}, {"text": ...}]} -> schema = .key[].text
["", "", ""] -> schema = .[]
"""
def __init__(
self,
file_path: Union[str, Path],
jq_schema: str,
content_key: Optional[str] = None,
metadata_func: Optional[Callable[[Dict, Dict], Dict]] = None,
text_content: bool = True,
):
"""Initialize the JSONLoader.
Args:
file_path (Union[str, Path]): The path to the JSON file.
jq_schema (str): The jq schema to use to extract the data or text from
the JSON.
content_key (str): The key to use to extract the content from the JSON if
the jq_schema results to a list of objects (dict).
metadata_func (Callable[Dict, Dict]): A function that takes in the JSON
object extracted by the jq_schema and the default metadata and returns
a dict of the updated metadata.
text_content (bool): Boolean flag to indicates whether the content is in
string format, default to True
"""
try:
import jq # noqa:F401 | https://python.langchain.com/en/latest/_modules/langchain/document_loaders/json_loader.html |
7d558d1c92ed-1 | """
try:
import jq # noqa:F401
except ImportError:
raise ImportError(
"jq package not found, please install it with `pip install jq`"
)
self.file_path = Path(file_path).resolve()
self._jq_schema = jq.compile(jq_schema)
self._content_key = content_key
self._metadata_func = metadata_func
self._text_content = text_content
[docs] def load(self) -> List[Document]:
"""Load and return documents from the JSON file."""
data = self._jq_schema.input(json.loads(self.file_path.read_text()))
# Perform some validation
# This is not a perfect validation, but it should catch most cases
# and prevent the user from getting a cryptic error later on.
if self._content_key is not None:
self._validate_content_key(data)
docs = []
for i, sample in enumerate(data, 1):
metadata = dict(
source=str(self.file_path),
seq_num=i,
)
text = self._get_text(sample=sample, metadata=metadata)
docs.append(Document(page_content=text, metadata=metadata))
return docs
def _get_text(self, sample: Any, metadata: dict) -> str:
"""Convert sample to string format"""
if self._content_key is not None:
content = sample.get(self._content_key)
if self._metadata_func is not None:
# We pass in the metadata dict to the metadata_func
# so that the user can customize the default metadata
# based on the content of the JSON object.
metadata = self._metadata_func(sample, metadata)
else:
content = sample | https://python.langchain.com/en/latest/_modules/langchain/document_loaders/json_loader.html |
7d558d1c92ed-2 | else:
content = sample
if self._text_content and not isinstance(content, str):
raise ValueError(
f"Expected page_content is string, got {type(content)} instead. \
Set `text_content=False` if the desired input for \
`page_content` is not a string"
)
# In case the text is None, set it to an empty string
elif isinstance(content, str):
return content
elif isinstance(content, dict):
return json.dumps(content) if content else ""
else:
return str(content) if content is not None else ""
def _validate_content_key(self, data: Any) -> None:
"""Check if content key is valid"""
sample = data.first()
if not isinstance(sample, dict):
raise ValueError(
f"Expected the jq schema to result in a list of objects (dict), \
so sample must be a dict but got `{type(sample)}`"
)
if sample.get(self._content_key) is None:
raise ValueError(
f"Expected the jq schema to result in a list of objects (dict) \
with the key `{self._content_key}`"
)
if self._metadata_func is not None:
sample_metadata = self._metadata_func(sample, {})
if not isinstance(sample_metadata, dict):
raise ValueError(
f"Expected the metadata_func to return a dict but got \
`{type(sample_metadata)}`"
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/document_loaders/json_loader.html |
18af64af221c-0 | Source code for langchain.document_loaders.azure_blob_storage_container
"""Loading logic for loading documents from an Azure Blob Storage container."""
from typing import List
from langchain.docstore.document import Document
from langchain.document_loaders.azure_blob_storage_file import (
AzureBlobStorageFileLoader,
)
from langchain.document_loaders.base import BaseLoader
[docs]class AzureBlobStorageContainerLoader(BaseLoader):
"""Loading logic for loading documents from Azure Blob Storage."""
def __init__(self, conn_str: str, container: str, prefix: str = ""):
"""Initialize with connection string, container and blob prefix."""
self.conn_str = conn_str
self.container = container
self.prefix = prefix
[docs] def load(self) -> List[Document]:
"""Load documents."""
try:
from azure.storage.blob import ContainerClient
except ImportError as exc:
raise ValueError(
"Could not import azure storage blob python package. "
"Please install it with `pip install azure-storage-blob`."
) from exc
container = ContainerClient.from_connection_string(
conn_str=self.conn_str, container_name=self.container
)
docs = []
blob_list = container.list_blobs(name_starts_with=self.prefix)
for blob in blob_list:
loader = AzureBlobStorageFileLoader(
self.conn_str, self.container, blob.name # type: ignore
)
docs.extend(loader.load())
return docs
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/document_loaders/azure_blob_storage_container.html |
566602d2f27e-0 | Source code for langchain.document_loaders.modern_treasury
"""Loader that fetches data from Modern Treasury"""
import json
import urllib.request
from base64 import b64encode
from typing import List, Optional
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
from langchain.utils import get_from_env, stringify_value
MODERN_TREASURY_ENDPOINTS = {
"payment_orders": "https://app.moderntreasury.com/api/payment_orders",
"expected_payments": "https://app.moderntreasury.com/api/expected_payments",
"returns": "https://app.moderntreasury.com/api/returns",
"incoming_payment_details": "https://app.moderntreasury.com/api/\
incoming_payment_details",
"counterparties": "https://app.moderntreasury.com/api/counterparties",
"internal_accounts": "https://app.moderntreasury.com/api/internal_accounts",
"external_accounts": "https://app.moderntreasury.com/api/external_accounts",
"transactions": "https://app.moderntreasury.com/api/transactions",
"ledgers": "https://app.moderntreasury.com/api/ledgers",
"ledger_accounts": "https://app.moderntreasury.com/api/ledger_accounts",
"ledger_transactions": "https://app.moderntreasury.com/api/ledger_transactions",
"events": "https://app.moderntreasury.com/api/events",
"invoices": "https://app.moderntreasury.com/api/invoices",
}
[docs]class ModernTreasuryLoader(BaseLoader):
def __init__(
self,
resource: str,
organization_id: Optional[str] = None, | https://python.langchain.com/en/latest/_modules/langchain/document_loaders/modern_treasury.html |
566602d2f27e-1 | resource: str,
organization_id: Optional[str] = None,
api_key: Optional[str] = None,
) -> None:
self.resource = resource
organization_id = organization_id or get_from_env(
"organization_id", "MODERN_TREASURY_ORGANIZATION_ID"
)
api_key = api_key or get_from_env("api_key", "MODERN_TREASURY_API_KEY")
credentials = f"{organization_id}:{api_key}".encode("utf-8")
basic_auth_token = b64encode(credentials).decode("utf-8")
self.headers = {"Authorization": f"Basic {basic_auth_token}"}
def _make_request(self, url: str) -> List[Document]:
request = urllib.request.Request(url, headers=self.headers)
with urllib.request.urlopen(request) as response:
json_data = json.loads(response.read().decode())
text = stringify_value(json_data)
metadata = {"source": url}
return [Document(page_content=text, metadata=metadata)]
def _get_resource(self) -> List[Document]:
endpoint = MODERN_TREASURY_ENDPOINTS.get(self.resource)
if endpoint is None:
return []
return self._make_request(endpoint)
[docs] def load(self) -> List[Document]:
return self._get_resource()
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/document_loaders/modern_treasury.html |
35b8a7300606-0 | Source code for langchain.document_loaders.max_compute
from __future__ import annotations
from typing import Any, Iterator, List, Optional, Sequence
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
from langchain.utilities.max_compute import MaxComputeAPIWrapper
[docs]class MaxComputeLoader(BaseLoader):
"""Loads a query result from Alibaba Cloud MaxCompute table into documents."""
def __init__(
self,
query: str,
api_wrapper: MaxComputeAPIWrapper,
*,
page_content_columns: Optional[Sequence[str]] = None,
metadata_columns: Optional[Sequence[str]] = None,
):
"""Initialize Alibaba Cloud MaxCompute document loader.
Args:
query: SQL query to execute.
api_wrapper: MaxCompute API wrapper.
page_content_columns: The columns to write into the `page_content` of the
Document. If unspecified, all columns will be written to `page_content`.
metadata_columns: The columns to write into the `metadata` of the Document.
If unspecified, all columns not added to `page_content` will be written.
"""
self.query = query
self.api_wrapper = api_wrapper
self.page_content_columns = page_content_columns
self.metadata_columns = metadata_columns
[docs] @classmethod
def from_params(
cls,
query: str,
endpoint: str,
project: str,
*,
access_id: Optional[str] = None,
secret_access_key: Optional[str] = None,
**kwargs: Any,
) -> MaxComputeLoader:
"""Convenience constructor that builds the MaxCompute API wrapper from
given parameters.
Args:
query: SQL query to execute. | https://python.langchain.com/en/latest/_modules/langchain/document_loaders/max_compute.html |
35b8a7300606-1 | given parameters.
Args:
query: SQL query to execute.
endpoint: MaxCompute endpoint.
project: A project is a basic organizational unit of MaxCompute, which is
similar to a database.
access_id: MaxCompute access ID. Should be passed in directly or set as the
environment variable `MAX_COMPUTE_ACCESS_ID`.
secret_access_key: MaxCompute secret access key. Should be passed in
directly or set as the environment variable
`MAX_COMPUTE_SECRET_ACCESS_KEY`.
"""
api_wrapper = MaxComputeAPIWrapper.from_params(
endpoint, project, access_id=access_id, secret_access_key=secret_access_key
)
return cls(query, api_wrapper, **kwargs)
[docs] def lazy_load(self) -> Iterator[Document]:
for row in self.api_wrapper.query(self.query):
if self.page_content_columns:
page_content_data = {
k: v for k, v in row.items() if k in self.page_content_columns
}
else:
page_content_data = row
page_content = "\n".join(f"{k}: {v}" for k, v in page_content_data.items())
if self.metadata_columns:
metadata = {k: v for k, v in row.items() if k in self.metadata_columns}
else:
metadata = {k: v for k, v in row.items() if k not in page_content_data}
yield Document(page_content=page_content, metadata=metadata)
[docs] def load(self) -> List[Document]:
return list(self.lazy_load())
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/document_loaders/max_compute.html |
c93b6a91a8e1-0 | Source code for langchain.document_loaders.email
"""Loader that loads email files."""
import os
from typing import List
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
from langchain.document_loaders.unstructured import (
UnstructuredFileLoader,
satisfies_min_unstructured_version,
)
[docs]class UnstructuredEmailLoader(UnstructuredFileLoader):
"""Loader that uses unstructured to load email files."""
def _get_elements(self) -> List:
from unstructured.file_utils.filetype import FileType, detect_filetype
filetype = detect_filetype(self.file_path)
if filetype == FileType.EML:
from unstructured.partition.email import partition_email
return partition_email(filename=self.file_path, **self.unstructured_kwargs)
elif satisfies_min_unstructured_version("0.5.8") and filetype == FileType.MSG:
from unstructured.partition.msg import partition_msg
return partition_msg(filename=self.file_path, **self.unstructured_kwargs)
else:
raise ValueError(
f"Filetype {filetype} is not supported in UnstructuredEmailLoader."
)
[docs]class OutlookMessageLoader(BaseLoader):
"""
Loader that loads Outlook Message files using extract_msg.
https://github.com/TeamMsgExtractor/msg-extractor
"""
def __init__(self, file_path: str):
"""Initialize with file path."""
self.file_path = file_path
if not os.path.isfile(self.file_path):
raise ValueError("File path %s is not a valid file" % self.file_path)
try:
import extract_msg # noqa:F401
except ImportError:
raise ImportError(
"extract_msg is not installed. Please install it with "
"`pip install extract_msg`" | https://python.langchain.com/en/latest/_modules/langchain/document_loaders/email.html |
c93b6a91a8e1-1 | "`pip install extract_msg`"
)
[docs] def load(self) -> List[Document]:
"""Load data into document objects."""
import extract_msg
msg = extract_msg.Message(self.file_path)
return [
Document(
page_content=msg.body,
metadata={
"subject": msg.subject,
"sender": msg.sender,
"date": msg.date,
},
)
]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 07, 2023. | https://python.langchain.com/en/latest/_modules/langchain/document_loaders/email.html |
b0bec2280ea5-0 | Source code for langchain.document_loaders.github
from abc import ABC
from datetime import datetime
from typing import Dict, Iterator, List, Literal, Optional, Union
import requests
from pydantic import BaseModel, root_validator, validator
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
from langchain.utils import get_from_dict_or_env
class BaseGitHubLoader(BaseLoader, BaseModel, ABC):
"""Load issues of a GitHub repository."""
repo: str
"""Name of repository"""
access_token: str
"""Personal access token - see https://github.com/settings/tokens?type=beta"""
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that access token exists in environment."""
values["access_token"] = get_from_dict_or_env(
values, "access_token", "GITHUB_PERSONAL_ACCESS_TOKEN"
)
return values
@property
def headers(self) -> Dict[str, str]:
return {
"Accept": "application/vnd.github+json",
"Authorization": f"Bearer {self.access_token}",
}
[docs]class GitHubIssuesLoader(BaseGitHubLoader):
include_prs: bool = True
"""If True include Pull Requests in results, otherwise ignore them."""
milestone: Union[int, Literal["*", "none"], None] = None
"""If integer is passed, it should be a milestone's number field.
If the string '*' is passed, issues with any milestone are accepted.
If the string 'none' is passed, issues without milestones are returned.
"""
state: Optional[Literal["open", "closed", "all"]] = None | https://python.langchain.com/en/latest/_modules/langchain/document_loaders/github.html |
b0bec2280ea5-1 | state: Optional[Literal["open", "closed", "all"]] = None
"""Filter on issue state. Can be one of: 'open', 'closed', 'all'."""
assignee: Optional[str] = None
"""Filter on assigned user. Pass 'none' for no user and '*' for any user."""
creator: Optional[str] = None
"""Filter on the user that created the issue."""
mentioned: Optional[str] = None
"""Filter on a user that's mentioned in the issue."""
labels: Optional[List[str]] = None
"""Label names to filter one. Example: bug,ui,@high."""
sort: Optional[Literal["created", "updated", "comments"]] = None
"""What to sort results by. Can be one of: 'created', 'updated', 'comments'.
Default is 'created'."""
direction: Optional[Literal["asc", "desc"]] = None
"""The direction to sort the results by. Can be one of: 'asc', 'desc'."""
since: Optional[str] = None
"""Only show notifications updated after the given time.
This is a timestamp in ISO 8601 format: YYYY-MM-DDTHH:MM:SSZ."""
@validator("since")
def validate_since(cls, v: Optional[str]) -> Optional[str]:
if v:
try:
datetime.strptime(v, "%Y-%m-%dT%H:%M:%SZ")
except ValueError:
raise ValueError(
"Invalid value for 'since'. Expected a date string in "
f"YYYY-MM-DDTHH:MM:SSZ format. Received: {v}"
)
return v
[docs] def lazy_load(self) -> Iterator[Document]:
""" | https://python.langchain.com/en/latest/_modules/langchain/document_loaders/github.html |
b0bec2280ea5-2 | [docs] def lazy_load(self) -> Iterator[Document]:
"""
Get issues of a GitHub repository.
Returns:
A list of Documents with attributes:
- page_content
- metadata
- url
- title
- creator
- created_at
- last_update_time
- closed_time
- number of comments
- state
- labels
- assignee
- assignees
- milestone
- locked
- number
- is_pull_request
"""
url: Optional[str] = self.url
while url:
response = requests.get(url, headers=self.headers)
response.raise_for_status()
issues = response.json()
for issue in issues:
doc = self.parse_issue(issue)
if not self.include_prs and doc.metadata["is_pull_request"]:
continue
yield doc
if response.links and response.links.get("next"):
url = response.links["next"]["url"]
else:
url = None
[docs] def load(self) -> List[Document]:
"""
Get issues of a GitHub repository.
Returns:
A list of Documents with attributes:
- page_content
- metadata
- url
- title
- creator
- created_at
- last_update_time
- closed_time
- number of comments
- state
- labels
- assignee
- assignees
- milestone
- locked
- number
- is_pull_request
"""
return list(self.lazy_load())
[docs] def parse_issue(self, issue: dict) -> Document:
"""Create Document objects from a list of GitHub issues."""
metadata = { | https://python.langchain.com/en/latest/_modules/langchain/document_loaders/github.html |
b0bec2280ea5-3 | """Create Document objects from a list of GitHub issues."""
metadata = {
"url": issue["html_url"],
"title": issue["title"],
"creator": issue["user"]["login"],
"created_at": issue["created_at"],
"comments": issue["comments"],
"state": issue["state"],
"labels": [label["name"] for label in issue["labels"]],
"assignee": issue["assignee"]["login"] if issue["assignee"] else None,
"milestone": issue["milestone"]["title"] if issue["milestone"] else None,
"locked": issue["locked"],
"number": issue["number"],
"is_pull_request": "pull_request" in issue,
}
content = issue["body"] if issue["body"] is not None else ""
return Document(page_content=content, metadata=metadata)
@property
def query_params(self) -> str:
labels = ",".join(self.labels) if self.labels else self.labels
query_params_dict = {
"milestone": self.milestone,
"state": self.state,
"assignee": self.assignee,
"creator": self.creator,
"mentioned": self.mentioned,
"labels": labels,
"sort": self.sort,
"direction": self.direction,
"since": self.since,
}
query_params_list = [
f"{k}={v}" for k, v in query_params_dict.items() if v is not None
]
query_params = "&".join(query_params_list)
return query_params
@property
def url(self) -> str: | https://python.langchain.com/en/latest/_modules/langchain/document_loaders/github.html |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.