id
stringlengths
14
16
text
stringlengths
36
2.73k
source
stringlengths
49
117
ef8d3deba77d-35
kwargs for requests requests_per_second: int = 2# Max number of concurrent requests to make. scrape(parser: Optional[str] = None) β†’ Any[source]# Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls: List[str], parser: Optional[str] = None) β†’ List[Any][source]# Fetch all urls, then return soups for all results. property web_path: str# web_paths: List[str]# class langchain.document_loaders.WhatsAppChatLoader(path: str)[source]# Loader that loads WhatsApp messages text file. load() β†’ List[langchain.schema.Document][source]# Load documents. class langchain.document_loaders.WikipediaLoader(query: str, lang: str = 'en', load_max_docs: Optional[int] = 100, load_all_available_meta: Optional[bool] = False)[source]# Loads a query result from www.wikipedia.org into a list of Documents. The hard limit on the number of downloaded Documents is 300 for now. Each wiki page represents one Document. load() β†’ List[langchain.schema.Document][source]# Load data into document objects. class langchain.document_loaders.YoutubeLoader(video_id: str, add_video_info: bool = False, language: Union[str, Sequence[str]] = 'en', translation: str = 'en', continue_on_failure: bool = False)[source]# Loader that loads Youtube transcripts. static extract_video_id(youtube_url: str) β†’ str[source]# Extract video id from common YT urls. classmethod from_youtube_url(youtube_url: str, **kwargs: Any) β†’ langchain.document_loaders.youtube.YoutubeLoader[source]# Given youtube URL, load video. load() β†’ List[langchain.schema.Document][source]# Load documents. previous
https://python.langchain.com/en/latest/reference/modules/document_loaders.html
ef8d3deba77d-36
load() β†’ List[langchain.schema.Document][source]# Load documents. previous Text Splitter next Vector Stores By Harrison Chase Β© Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/reference/modules/document_loaders.html
85d0ba3ce2f4-0
.rst .pdf Document Transformers Document Transformers# Transform documents pydantic model langchain.document_transformers.EmbeddingsRedundantFilter[source]# Filter that drops redundant documents by comparing their embeddings. field embeddings: langchain.embeddings.base.Embeddings [Required]# Embeddings to use for embedding document contents. field similarity_fn: Callable = <function cosine_similarity># Similarity function for comparing documents. Function expected to take as input two matrices (List[List[float]]) and return a matrix of scores where higher values indicate greater similarity. field similarity_threshold: float = 0.95# Threshold for determining when two documents are similar enough to be considered redundant. async atransform_documents(documents: Sequence[langchain.schema.Document], **kwargs: Any) β†’ Sequence[langchain.schema.Document][source]# Asynchronously transform a list of documents. transform_documents(documents: Sequence[langchain.schema.Document], **kwargs: Any) β†’ Sequence[langchain.schema.Document][source]# Filter down documents. langchain.document_transformers.get_stateful_documents(documents: Sequence[langchain.schema.Document]) β†’ Sequence[langchain.document_transformers._DocumentWithState][source]# previous Document Compressors next Memory By Harrison Chase Β© Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/reference/modules/document_transformers.html
93b712caa2fd-0
.rst .pdf Document Compressors Document Compressors# pydantic model langchain.retrievers.document_compressors.CohereRerank[source]# field client: Client [Required]# field model: str = 'rerank-english-v2.0'# field top_n: int = 3# async acompress_documents(documents: Sequence[langchain.schema.Document], query: str) β†’ Sequence[langchain.schema.Document][source]# Compress retrieved documents given the query context. compress_documents(documents: Sequence[langchain.schema.Document], query: str) β†’ Sequence[langchain.schema.Document][source]# Compress retrieved documents given the query context. pydantic model langchain.retrievers.document_compressors.DocumentCompressorPipeline[source]# Document compressor that uses a pipeline of transformers. field transformers: List[Union[langchain.schema.BaseDocumentTransformer, langchain.retrievers.document_compressors.base.BaseDocumentCompressor]] [Required]# List of document filters that are chained together and run in sequence. async acompress_documents(documents: Sequence[langchain.schema.Document], query: str) β†’ Sequence[langchain.schema.Document][source]# Compress retrieved documents given the query context. compress_documents(documents: Sequence[langchain.schema.Document], query: str) β†’ Sequence[langchain.schema.Document][source]# Transform a list of documents. pydantic model langchain.retrievers.document_compressors.EmbeddingsFilter[source]# field embeddings: langchain.embeddings.base.Embeddings [Required]# Embeddings to use for embedding document contents and queries. field k: Optional[int] = 20# The number of relevant documents to return. Can be set to None, in which case similarity_threshold must be specified. Defaults to 20.
https://python.langchain.com/en/latest/reference/modules/document_compressors.html
93b712caa2fd-1
similarity_threshold must be specified. Defaults to 20. field similarity_fn: Callable = <function cosine_similarity># Similarity function for comparing documents. Function expected to take as input two matrices (List[List[float]]) and return a matrix of scores where higher values indicate greater similarity. field similarity_threshold: Optional[float] = None# Threshold for determining when two documents are similar enough to be considered redundant. Defaults to None, must be specified if k is set to None. async acompress_documents(documents: Sequence[langchain.schema.Document], query: str) β†’ Sequence[langchain.schema.Document][source]# Filter down documents. compress_documents(documents: Sequence[langchain.schema.Document], query: str) β†’ Sequence[langchain.schema.Document][source]# Filter documents based on similarity of their embeddings to the query. pydantic model langchain.retrievers.document_compressors.LLMChainExtractor[source]# field get_input: Callable[[str, langchain.schema.Document], dict] = <function default_get_input># Callable for constructing the chain input from the query and a Document. field llm_chain: langchain.chains.llm.LLMChain [Required]# LLM wrapper to use for compressing documents. async acompress_documents(documents: Sequence[langchain.schema.Document], query: str) β†’ Sequence[langchain.schema.Document][source]# Compress page content of raw documents asynchronously. compress_documents(documents: Sequence[langchain.schema.Document], query: str) β†’ Sequence[langchain.schema.Document][source]# Compress page content of raw documents.
https://python.langchain.com/en/latest/reference/modules/document_compressors.html
93b712caa2fd-2
Compress page content of raw documents. classmethod from_llm(llm: langchain.base_language.BaseLanguageModel, prompt: Optional[langchain.prompts.prompt.PromptTemplate] = None, get_input: Optional[Callable[[str, langchain.schema.Document], str]] = None, llm_chain_kwargs: Optional[dict] = None) β†’ langchain.retrievers.document_compressors.chain_extract.LLMChainExtractor[source]# Initialize from LLM. pydantic model langchain.retrievers.document_compressors.LLMChainFilter[source]# Filter that drops documents that aren’t relevant to the query. field get_input: Callable[[str, langchain.schema.Document], dict] = <function default_get_input># Callable for constructing the chain input from the query and a Document. field llm_chain: langchain.chains.llm.LLMChain [Required]# LLM wrapper to use for filtering documents. The chain prompt is expected to have a BooleanOutputParser. async acompress_documents(documents: Sequence[langchain.schema.Document], query: str) β†’ Sequence[langchain.schema.Document][source]# Filter down documents. compress_documents(documents: Sequence[langchain.schema.Document], query: str) β†’ Sequence[langchain.schema.Document][source]# Filter down documents based on their relevance to the query. classmethod from_llm(llm: langchain.base_language.BaseLanguageModel, prompt: Optional[langchain.prompts.base.BasePromptTemplate] = None, **kwargs: Any) β†’ langchain.retrievers.document_compressors.chain_filter.LLMChainFilter[source]# previous Retrievers next Document Transformers By Harrison Chase Β© Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/reference/modules/document_compressors.html
93b3ad7e58c4-0
.rst .pdf Vector Stores Vector Stores# Wrappers on top of vector stores. class langchain.vectorstores.AnalyticDB(connection_string: str, embedding_function: langchain.embeddings.base.Embeddings, collection_name: str = 'langchain', collection_metadata: Optional[dict] = None, pre_delete_collection: bool = False, logger: Optional[logging.Logger] = None)[source]# VectorStore implementation using AnalyticDB. AnalyticDB is a distributed full PostgresSQL syntax cloud-native database. - connection_string is a postgres connection string. - embedding_function any embedding function implementing langchain.embeddings.base.Embeddings interface. collection_name is the name of the collection to use. (default: langchain) NOTE: This is not the name of the table, but the name of the collection.The tables will be created when initializing the store (if not exists) So, make sure the user has the right permissions to create tables. pre_delete_collection if True, will delete the collection if it exists.(default: False) - Useful for testing. add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) β†’ List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. connect() β†’ sqlalchemy.engine.base.Connection[source]# classmethod connection_string_from_db_params(driver: str, host: str, port: int, database: str, user: str, password: str) β†’ str[source]# Return connection string from database parameters.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-1
Return connection string from database parameters. create_collection() β†’ None[source]# create_tables_if_not_exists() β†’ None[source]# delete_collection() β†’ None[source]# drop_tables() β†’ None[source]# classmethod from_documents(documents: List[langchain.schema.Document], embedding: langchain.embeddings.base.Embeddings, collection_name: str = 'langchain', ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any) β†’ langchain.vectorstores.analyticdb.AnalyticDB[source]# Return VectorStore initialized from documents and embeddings. Postgres connection string is required Either pass it as a parameter or set the PGVECTOR_CONNECTION_STRING environment variable. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = 'langchain', ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any) β†’ langchain.vectorstores.analyticdb.AnalyticDB[source]# Return VectorStore initialized from texts and embeddings. Postgres connection string is required Either pass it as a parameter or set the PGVECTOR_CONNECTION_STRING environment variable. get_collection(session: sqlalchemy.orm.session.Session) β†’ Optional[langchain.vectorstores.analyticdb.CollectionStore][source]# classmethod get_connection_string(kwargs: Dict[str, Any]) β†’ str[source]# similarity_search(query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Run similarity search with AnalyticDB with distance. Parameters query (str) – Query text to search for. k (int) – Number of results to return. Defaults to 4.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-2
k (int) – Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. Returns List of Documents most similar to the query. similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[dict] = None, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. Returns List of Documents most similar to the query vector. similarity_search_with_score(query: str, k: int = 4, filter: Optional[dict] = None) β†’ List[Tuple[langchain.schema.Document, float]][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. Returns List of Documents most similar to the query and score for each similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, filter: Optional[dict] = None) β†’ List[Tuple[langchain.schema.Document, float]][source]# class langchain.vectorstores.Annoy(embedding_function: Callable, index: Any, metric: str, docstore: langchain.docstore.base.Docstore, index_to_docstore_id: Dict[int, str])[source]# Wrapper around Annoy vector database. To use, you should have the annoy python package installed. Example from langchain import Annoy
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-3
Example from langchain import Annoy db = Annoy(embedding_function, index, docstore, index_to_docstore_id) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) β†’ List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. classmethod from_embeddings(text_embeddings: List[Tuple[str, List[float]]], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, metric: str = 'angular', trees: int = 100, n_jobs: int = - 1, **kwargs: Any) β†’ langchain.vectorstores.annoy.Annoy[source]# Construct Annoy wrapper from embeddings. Parameters text_embeddings – List of tuples of (text, embedding) embedding – Embedding function to use. metadatas – List of metadata dictionaries to associate with documents. metric – Metric to use for indexing. Defaults to β€œangular”. trees – Number of trees to use for indexing. Defaults to 100. n_jobs – Number of jobs to use for indexing. Defaults to -1 This is a user friendly interface that: Creates an in memory docstore with provided embeddings Initializes the Annoy database This is intended to be a quick way to get started. Example from langchain import Annoy from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings))
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-4
text_embedding_pairs = list(zip(texts, text_embeddings)) db = Annoy.from_embeddings(text_embedding_pairs, embeddings) classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, metric: str = 'angular', trees: int = 100, n_jobs: int = - 1, **kwargs: Any) β†’ langchain.vectorstores.annoy.Annoy[source]# Construct Annoy wrapper from raw documents. Parameters texts – List of documents to index. embedding – Embedding function to use. metadatas – List of metadata dictionaries to associate with documents. metric – Metric to use for indexing. Defaults to β€œangular”. trees – Number of trees to use for indexing. Defaults to 100. n_jobs – Number of jobs to use for indexing. Defaults to -1. This is a user friendly interface that: Embeds documents. Creates an in memory docstore Initializes the Annoy database This is intended to be a quick way to get started. Example from langchain import Annoy from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() index = Annoy.from_texts(texts, embeddings) classmethod load_local(folder_path: str, embeddings: langchain.embeddings.base.Embeddings) β†’ langchain.vectorstores.annoy.Annoy[source]# Load Annoy index, docstore, and index_to_docstore_id to disk. Parameters folder_path – folder path to load index, docstore, and index_to_docstore_id from. embeddings – Embeddings to use when generating queries.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-5
embeddings – Embeddings to use when generating queries. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. fetch_k – Number of Documents to fetch to pass to MMR algorithm. k – Number of Documents to return. Defaults to 4. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-6
Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. process_index_results(idxs: List[int], dists: List[float]) β†’ List[Tuple[langchain.schema.Document, float]][source]# Turns annoy results into a list of documents and scores. Parameters idxs – List of indices of the documents in the index. dists – List of distances of the documents in the index. Returns List of Documents and scores. save_local(folder_path: str, prefault: bool = False) β†’ None[source]# Save Annoy index, docstore, and index_to_docstore_id to disk. Parameters folder_path – folder path to save index, docstore, and index_to_docstore_id to. prefault – Whether to pre-load the index into memory. similarity_search(query: str, k: int = 4, search_k: int = - 1, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. search_k – inspect up to search_k nodes which defaults to n_trees * n if not provided Returns List of Documents most similar to the query. similarity_search_by_index(docstore_index: int, k: int = 4, search_k: int = - 1, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs most similar to docstore_index. Parameters docstore_index – Index of document in docstore k – Number of Documents to return. Defaults to 4. search_k – inspect up to search_k nodes which defaults to n_trees * n if not provided Returns
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-7
to n_trees * n if not provided Returns List of Documents most similar to the embedding. similarity_search_by_vector(embedding: List[float], k: int = 4, search_k: int = - 1, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. search_k – inspect up to search_k nodes which defaults to n_trees * n if not provided Returns List of Documents most similar to the embedding. similarity_search_with_score(query: str, k: int = 4, search_k: int = - 1) β†’ List[Tuple[langchain.schema.Document, float]][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. search_k – inspect up to search_k nodes which defaults to n_trees * n if not provided Returns List of Documents most similar to the query and score for each similarity_search_with_score_by_index(docstore_index: int, k: int = 4, search_k: int = - 1) β†’ List[Tuple[langchain.schema.Document, float]][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. search_k – inspect up to search_k nodes which defaults to n_trees * n if not provided Returns List of Documents most similar to the query and score for each
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-8
Returns List of Documents most similar to the query and score for each similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, search_k: int = - 1) β†’ List[Tuple[langchain.schema.Document, float]][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. search_k – inspect up to search_k nodes which defaults to n_trees * n if not provided Returns List of Documents most similar to the query and score for each class langchain.vectorstores.AtlasDB(name: str, embedding_function: Optional[langchain.embeddings.base.Embeddings] = None, api_key: Optional[str] = None, description: str = 'A description for your project', is_public: bool = True, reset_project_if_exists: bool = False)[source]# Wrapper around Atlas: Nomic’s neural database and rhizomatic instrument. To use, you should have the nomic python package installed. Example from langchain.vectorstores import AtlasDB from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = AtlasDB("my_project", embeddings.embed_query) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, refresh: bool = True, **kwargs: Any) β†’ List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts (Iterable[str]) – Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional) – Optional list of metadatas. ids (Optional[List[str]]) – An optional list of ids.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-9
ids (Optional[List[str]]) – An optional list of ids. refresh (bool) – Whether or not to refresh indices with the updated data. Default True. Returns List of IDs of the added texts. Return type List[str] create_index(**kwargs: Any) β†’ Any[source]# Creates an index in your project. See https://docs.nomic.ai/atlas_api.html#nomic.project.AtlasProject.create_index for full detail. classmethod from_documents(documents: List[langchain.schema.Document], embedding: Optional[langchain.embeddings.base.Embeddings] = None, ids: Optional[List[str]] = None, name: Optional[str] = None, api_key: Optional[str] = None, persist_directory: Optional[str] = None, description: str = 'A description for your project', is_public: bool = True, reset_project_if_exists: bool = False, index_kwargs: Optional[dict] = None, **kwargs: Any) β†’ langchain.vectorstores.atlas.AtlasDB[source]# Create an AtlasDB vectorstore from a list of documents. Parameters name (str) – Name of the collection to create. api_key (str) – Your nomic API key, documents (List[Document]) – List of documents to add to the vectorstore. embedding (Optional[Embeddings]) – Embedding function. Defaults to None. ids (Optional[List[str]]) – Optional list of document IDs. If None, ids will be auto created description (str) – A description for your project. is_public (bool) – Whether your project is publicly accessible. True by default. reset_project_if_exists (bool) – Whether to reset this project if it already exists. Default False. Generally userful during development and testing. index_kwargs (Optional[dict]) – Dict of kwargs for index creation.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-10
index_kwargs (Optional[dict]) – Dict of kwargs for index creation. See https://docs.nomic.ai/atlas_api.html Returns Nomic’s neural database and finest rhizomatic instrument Return type AtlasDB classmethod from_texts(texts: List[str], embedding: Optional[langchain.embeddings.base.Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, name: Optional[str] = None, api_key: Optional[str] = None, description: str = 'A description for your project', is_public: bool = True, reset_project_if_exists: bool = False, index_kwargs: Optional[dict] = None, **kwargs: Any) β†’ langchain.vectorstores.atlas.AtlasDB[source]# Create an AtlasDB vectorstore from a raw documents. Parameters texts (List[str]) – The list of texts to ingest. name (str) – Name of the project to create. api_key (str) – Your nomic API key, embedding (Optional[Embeddings]) – Embedding function. Defaults to None. metadatas (Optional[List[dict]]) – List of metadatas. Defaults to None. ids (Optional[List[str]]) – Optional list of document IDs. If None, ids will be auto created description (str) – A description for your project. is_public (bool) – Whether your project is publicly accessible. True by default. reset_project_if_exists (bool) – Whether to reset this project if it already exists. Default False. Generally userful during development and testing. index_kwargs (Optional[dict]) – Dict of kwargs for index creation. See https://docs.nomic.ai/atlas_api.html Returns Nomic’s neural database and finest rhizomatic instrument Return type AtlasDB
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-11
Returns Nomic’s neural database and finest rhizomatic instrument Return type AtlasDB similarity_search(query: str, k: int = 4, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Run similarity search with AtlasDB Parameters query (str) – Query text to search for. k (int) – Number of results to return. Defaults to 4. Returns List of documents most similar to the query text. Return type List[Document] class langchain.vectorstores.Chroma(collection_name: str = 'langchain', embedding_function: Optional[Embeddings] = None, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, collection_metadata: Optional[Dict] = None, client: Optional[chromadb.Client] = None)[source]# Wrapper around ChromaDB embeddings platform. To use, you should have the chromadb python package installed. Example from langchain.vectorstores import Chroma from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = Chroma("langchain_store", embeddings) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) β†’ List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts (Iterable[str]) – Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional) – Optional list of metadatas. ids (Optional[List[str]], optional) – Optional list of IDs. Returns List of IDs of the added texts. Return type List[str] delete_collection() β†’ None[source]# Delete the collection.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-12
List[str] delete_collection() β†’ None[source]# Delete the collection. classmethod from_documents(documents: List[Document], embedding: Optional[Embeddings] = None, ids: Optional[List[str]] = None, collection_name: str = 'langchain', persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, client: Optional[chromadb.Client] = None, **kwargs: Any) β†’ Chroma[source]# Create a Chroma vectorstore from a list of documents. If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory. Parameters collection_name (str) – Name of the collection to create. persist_directory (Optional[str]) – Directory to persist the collection. ids (Optional[List[str]]) – List of document IDs. Defaults to None. documents (List[Document]) – List of documents to add to the vectorstore. embedding (Optional[Embeddings]) – Embedding function. Defaults to None. client_settings (Optional[chromadb.config.Settings]) – Chroma client settings Returns Chroma vectorstore. Return type Chroma classmethod from_texts(texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, collection_name: str = 'langchain', persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, client: Optional[chromadb.Client] = None, **kwargs: Any) β†’ Chroma[source]# Create a Chroma vectorstore from a raw documents. If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory. Parameters
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-13
Otherwise, the data will be ephemeral in-memory. Parameters texts (List[str]) – List of texts to add to the collection. collection_name (str) – Name of the collection to create. persist_directory (Optional[str]) – Directory to persist the collection. embedding (Optional[Embeddings]) – Embedding function. Defaults to None. metadatas (Optional[List[dict]]) – List of metadatas. Defaults to None. ids (Optional[List[str]]) – List of document IDs. Defaults to None. client_settings (Optional[chromadb.config.Settings]) – Chroma client settings Returns Chroma vectorstore. Return type Chroma get(include: Optional[List[str]] = None) β†’ Dict[str, Any][source]# Gets the collection. Parameters include (Optional[List[str]]) – List of fields to include from db. Defaults to None. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. Returns
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-14
Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. Returns List of Documents selected by maximal marginal relevance. persist() β†’ None[source]# Persist the collection. This can be used to explicitly persist the data to disk. It will also be called automatically when the object is destroyed. similarity_search(query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Run similarity search with Chroma. Parameters query (str) – Query text to search for. k (int) – Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. Returns List of documents most similar to the query text. Return type List[Document]
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-15
List of documents most similar to the query text. Return type List[Document] similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs most similar to embedding vector. :param embedding: Embedding to look up documents similar to. :type embedding: str :param k: Number of Documents to return. Defaults to 4. :type k: int :param filter: Filter by metadata. Defaults to None. :type filter: Optional[Dict[str, str]] Returns List of Documents most similar to the query vector. similarity_search_with_score(query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any) β†’ List[Tuple[langchain.schema.Document, float]][source]# Run similarity search with Chroma with distance. Parameters query (str) – Query text to search for. k (int) – Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. Returns List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. Return type List[Tuple[Document, float]] update_document(document_id: str, document: langchain.schema.Document) β†’ None[source]# Update a document in the collection. Parameters document_id (str) – ID of the document to update. document (Document) – Document to update. class langchain.vectorstores.Clickhouse(embedding: langchain.embeddings.base.Embeddings, config: Optional[langchain.vectorstores.clickhouse.ClickhouseSettings] = None, **kwargs: Any)[source]#
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-16
Wrapper around ClickHouse vector database You need a clickhouse-connect python package, and a valid account to connect to ClickHouse. ClickHouse can not only search with simple vector indexes, it also supports complex query with multiple conditions, constraints and even sub-queries. For more information, please visit[ClickHouse official site](https://clickhouse.com/clickhouse) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, batch_size: int = 32, ids: Optional[Iterable[str]] = None, **kwargs: Any) β†’ List[str][source]# Insert more texts through the embeddings and add to the VectorStore. Parameters texts – Iterable of strings to add to the VectorStore. ids – Optional list of ids to associate with the texts. batch_size – Batch size of insertion metadata – Optional column data to be inserted Returns List of ids from adding the texts into the VectorStore. drop() β†’ None[source]# Helper function: Drop data escape_str(value: str) β†’ str[source]# classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[Dict[Any, Any]]] = None, config: Optional[langchain.vectorstores.clickhouse.ClickhouseSettings] = None, text_ids: Optional[Iterable[str]] = None, batch_size: int = 32, **kwargs: Any) β†’ langchain.vectorstores.clickhouse.Clickhouse[source]# Create ClickHouse wrapper with existing texts Parameters embedding_function (Embeddings) – Function to extract text embedding texts (Iterable[str]) – List or tuple of strings to be added config (ClickHouseSettings, Optional) – ClickHouse configuration text_ids (Optional[Iterable], optional) – IDs for the texts. Defaults to None.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-17
Defaults to None. batch_size (int, optional) – Batchsize when transmitting data to ClickHouse. Defaults to 32. metadata (List[dict], optional) – metadata to texts. Defaults to None. into (Other keyword arguments will pass) – [clickhouse-connect](https://clickhouse.com/docs/en/integrations/python#clickhouse-connect-driver-api) Returns ClickHouse Index property metadata_column: str# similarity_search(query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Perform a similarity search with ClickHouse Parameters query (str) – query string k (int, optional) – Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional) – where condition string. Defaults to None. NOTE – Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use {self.metadata_column}.attribute instead of attribute alone. The default name for it is metadata. Returns List of Documents Return type List[Document] similarity_search_by_vector(embedding: List[float], k: int = 4, where_str: Optional[str] = None, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Perform a similarity search with ClickHouse by vectors Parameters query (str) – query string k (int, optional) – Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional) – where condition string. Defaults to None. NOTE – Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use {self.metadata_column}.attribute instead of attribute
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-18
use {self.metadata_column}.attribute instead of attribute alone. The default name for it is metadata. Returns List of (Document, similarity) Return type List[Document] similarity_search_with_relevance_scores(query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any) β†’ List[Tuple[langchain.schema.Document, float]][source]# Perform a similarity search with ClickHouse Parameters query (str) – query string k (int, optional) – Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional) – where condition string. Defaults to None. NOTE – Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use {self.metadata_column}.attribute instead of attribute alone. The default name for it is metadata. Returns List of documents Return type List[Document] pydantic settings langchain.vectorstores.ClickhouseSettings[source]# ClickHouse Client Configuration Attribute: clickhouse_host (str)An URL to connect to MyScale backend.Defaults to β€˜localhost’. clickhouse_port (int) : URL port to connect with HTTP. Defaults to 8443. username (str) : Username to login. Defaults to None. password (str) : Password to login. Defaults to None. index_type (str): index type string. index_param (list): index build parameter. index_query_params(dict): index query parameters. database (str) : Database name to find the table. Defaults to β€˜default’. table (str) : Table name to operate on. Defaults to β€˜vector_table’. metric (str)Metric to compute distance,supported are (β€˜angular’, β€˜euclidean’, β€˜manhattan’, β€˜hamming’,
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-19
β€˜dot’). Defaults to β€˜angular’. spotify/annoy column_map (Dict)Column type map to project column name onto langchainsemantics. Must have keys: text, id, vector, must be same size to number of columns. For example: .. code-block:: python {β€˜id’: β€˜text_id’, β€˜uuid’: β€˜global_unique_id’ β€˜embedding’: β€˜text_embedding’, β€˜document’: β€˜text_plain’, β€˜metadata’: β€˜metadata_dictionary_in_json’, } Defaults to identity map. Show JSON schema{ "title": "ClickhouseSettings",
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-20
Show JSON schema{ "title": "ClickhouseSettings", "description": "ClickHouse Client Configuration\n\nAttribute:\n clickhouse_host (str) : An URL to connect to MyScale backend.\n Defaults to 'localhost'.\n clickhouse_port (int) : URL port to connect with HTTP. Defaults to 8443.\n username (str) : Username to login. Defaults to None.\n password (str) : Password to login. Defaults to None.\n index_type (str): index type string.\n index_param (list): index build parameter.\n index_query_params(dict): index query parameters.\n database (str) : Database name to find the table. Defaults to 'default'.\n table (str) : Table name to operate on.\n Defaults to 'vector_table'.\n metric (str) : Metric to compute distance,\n supported are ('angular', 'euclidean', 'manhattan', 'hamming',\n 'dot'). Defaults to 'angular'.\n https://github.com/spotify/annoy/blob/main/src/annoymodule.cc#L149-L169\n\n column_map (Dict) : Column type map to project column name onto langchain\n semantics. Must have keys: `text`, `id`, `vector`,\n must be same size to number of columns. For example:\n .. code-block:: python\n\n {\n 'id': 'text_id',\n 'uuid': 'global_unique_id'\n 'embedding': 'text_embedding',\n 'document': 'text_plain',\n 'metadata': 'metadata_dictionary_in_json',\n }\n\n Defaults to identity map.", "type": "object", "properties": { "host": {
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-21
"type": "object", "properties": { "host": { "title": "Host", "default": "localhost", "env_names": "{'clickhouse_host'}", "type": "string" }, "port": { "title": "Port", "default": 8123, "env_names": "{'clickhouse_port'}", "type": "integer" }, "username": { "title": "Username", "env_names": "{'clickhouse_username'}", "type": "string" }, "password": { "title": "Password", "env_names": "{'clickhouse_password'}", "type": "string" }, "index_type": { "title": "Index Type", "default": "annoy", "env_names": "{'clickhouse_index_type'}", "type": "string" }, "index_param": { "title": "Index Param", "default": [ 100, "'L2Distance'" ], "env_names": "{'clickhouse_index_param'}", "anyOf": [ { "type": "array", "items": {} }, { "type": "object" } ] }, "index_query_params": { "title": "Index Query Params", "default": {}, "env_names": "{'clickhouse_index_query_params'}", "type": "object", "additionalProperties": { "type": "string" } },
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-22
"type": "string" } }, "column_map": { "title": "Column Map", "default": { "id": "id", "uuid": "uuid", "document": "document", "embedding": "embedding", "metadata": "metadata" }, "env_names": "{'clickhouse_column_map'}", "type": "object", "additionalProperties": { "type": "string" } }, "database": { "title": "Database", "default": "default", "env_names": "{'clickhouse_database'}", "type": "string" }, "table": { "title": "Table", "default": "langchain", "env_names": "{'clickhouse_table'}", "type": "string" }, "metric": { "title": "Metric", "default": "angular", "env_names": "{'clickhouse_metric'}", "type": "string" } }, "additionalProperties": false } Config env_file: str = .env env_file_encoding: str = utf-8 env_prefix: str = clickhouse_ Fields column_map (Dict[str, str]) database (str) host (str) index_param (Optional[Union[List, Dict]]) index_query_params (Dict[str, str]) index_type (str) metric (str) password (Optional[str]) port (int) table (str) username (Optional[str])
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-23
port (int) table (str) username (Optional[str]) field column_map: Dict[str, str] = {'document': 'document', 'embedding': 'embedding', 'id': 'id', 'metadata': 'metadata', 'uuid': 'uuid'}# field database: str = 'default'# field host: str = 'localhost'# field index_param: Optional[Union[List, Dict]] = [100, "'L2Distance'"]# field index_query_params: Dict[str, str] = {}# field index_type: str = 'annoy'# field metric: str = 'angular'# field password: Optional[str] = None# field port: int = 8123# field table: str = 'langchain'# field username: Optional[str] = None# class langchain.vectorstores.DeepLake(dataset_path: str = './deeplake/', token: Optional[str] = None, embedding_function: Optional[langchain.embeddings.base.Embeddings] = None, read_only: Optional[bool] = False, ingestion_batch_size: int = 1024, num_workers: int = 0, verbose: bool = True, **kwargs: Any)[source]# Wrapper around Deep Lake, a data lake for deep learning applications. We implement naive similarity search and filtering for fast prototyping, but it can be extended with Tensor Query Language (TQL) for production use cases over billion rows. Why Deep Lake? Not only stores embeddings, but also the original data with version control. Serverless, doesn’t require another service and can be used with majorcloud providers (S3, GCS, etc.) More than just a multi-modal vector store. You can use the datasetto fine-tune your own LLM models. To use, you should have the deeplake python package installed. Example
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-24
To use, you should have the deeplake python package installed. Example from langchain.vectorstores import DeepLake from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = DeepLake("langchain_store", embeddings.embed_query) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) β†’ List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts (Iterable[str]) – Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional) – Optional list of metadatas. ids (Optional[List[str]], optional) – Optional list of IDs. Returns List of IDs of the added texts. Return type List[str] delete(ids: Any[List[str], None] = None, filter: Any[Dict[str, str], None] = None, delete_all: Any[bool, None] = None) β†’ bool[source]# Delete the entities in the dataset Parameters ids (Optional[List[str]], optional) – The document_ids to delete. Defaults to None. filter (Optional[Dict[str, str]], optional) – The filter to delete by. Defaults to None. delete_all (Optional[bool], optional) – Whether to drop the dataset. Defaults to None. delete_dataset() β†’ None[source]# Delete the collection. classmethod force_delete_by_path(path: str) β†’ None[source]# Force delete dataset by path
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-25
Force delete dataset by path classmethod from_texts(texts: List[str], embedding: Optional[langchain.embeddings.base.Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, dataset_path: str = './deeplake/', **kwargs: Any) β†’ langchain.vectorstores.deeplake.DeepLake[source]# Create a Deep Lake dataset from a raw documents. If a dataset_path is specified, the dataset will be persisted in that location, otherwise by default at ./deeplake Parameters path (str, pathlib.Path) – The full path to the dataset. Can be: Deep Lake cloud path of the form hub://username/dataset_name.To write to Deep Lake cloud datasets, ensure that you are logged in to Deep Lake (use β€˜activeloop login’ from command line) AWS S3 path of the form s3://bucketname/path/to/dataset.Credentials are required in either the environment Google Cloud Storage path of the formgcs://bucketname/path/to/dataset Credentials are required in either the environment Local file system path of the form ./path/to/dataset or~/path/to/dataset or path/to/dataset. In-memory path of the form mem://path/to/dataset which doesn’tsave the dataset, but keeps it in memory instead. Should be used only for testing as it does not persist. documents (List[Document]) – List of documents to add. embedding (Optional[Embeddings]) – Embedding function. Defaults to None. metadatas (Optional[List[dict]]) – List of metadatas. Defaults to None. ids (Optional[List[str]]) – List of document IDs. Defaults to None. Returns Deep Lake dataset. Return type DeepLake
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-26
Returns Deep Lake dataset. Return type DeepLake max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. :param query: Text to look up documents similar to. :param k: Number of Documents to return. Defaults to 4. :param fetch_k: Number of Documents to fetch to pass to MMR algorithm. :param lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. persist() β†’ None[source]# Persist the collection.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-27
persist() β†’ None[source]# Persist the collection. similarity_search(query: str, k: int = 4, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs most similar to query. Parameters query – text to embed and run the query on. k – Number of Documents to return. Defaults to 4. query – Text to look up documents similar to. embedding – Embedding function to use. Defaults to None. k – Number of Documents to return. Defaults to 4. distance_metric – L2 for Euclidean, L1 for Nuclear, max L-infinity distance, cos for cosine similarity, β€˜dot’ for dot product Defaults to L2. filter – Attribute filter by metadata example {β€˜key’: β€˜value’}. Defaults to None. maximal_marginal_relevance – Whether to use maximal marginal relevance. Defaults to False. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. return_score – Whether to return the score. Defaults to False. Returns List of Documents most similar to the query vector. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_score(query: str, distance_metric: str = 'L2', k: int = 4, filter: Optional[Dict[str, str]] = None) β†’ List[Tuple[langchain.schema.Document, float]][source]# Run similarity search with Deep Lake with distance returned.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-28
Run similarity search with Deep Lake with distance returned. Parameters query (str) – Query text to search for. distance_metric – L2 for Euclidean, L1 for Nuclear, max L-infinity distance, cos for cosine similarity, β€˜dot’ for dot product. Defaults to L2. k (int) – Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. Returns List of documents most similar to the querytext with distance in float. Return type List[Tuple[Document, float]] class langchain.vectorstores.DocArrayHnswSearch(doc_index: BaseDocIndex, embedding: langchain.embeddings.base.Embeddings)[source]# Wrapper around HnswLib storage. To use it, you should have the docarray package with version >=0.32.0 installed. You can install it with pip install β€œlangchain[docarray]”. classmethod from_params(embedding: langchain.embeddings.base.Embeddings, work_dir: str, n_dim: int, dist_metric: Literal['cosine', 'ip', 'l2'] = 'cosine', max_elements: int = 1024, index: bool = True, ef_construction: int = 200, ef: int = 10, M: int = 16, allow_replace_deleted: bool = True, num_threads: int = 1, **kwargs: Any) β†’ langchain.vectorstores.docarray.hnsw.DocArrayHnswSearch[source]# Initialize DocArrayHnswSearch store. Parameters embedding (Embeddings) – Embedding function. work_dir (str) – path to the location where all the data will be stored. n_dim (int) – dimension of an embedding.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-29
n_dim (int) – dimension of an embedding. dist_metric (str) – Distance metric for DocArrayHnswSearch can be one of: β€œcosine”, β€œip”, and β€œl2”. Defaults to β€œcosine”. max_elements (int) – Maximum number of vectors that can be stored. Defaults to 1024. index (bool) – Whether an index should be built for this field. Defaults to True. ef_construction (int) – defines a construction time/accuracy trade-off. Defaults to 200. ef (int) – parameter controlling query time/accuracy trade-off. Defaults to 10. M (int) – parameter that defines the maximum number of outgoing connections in the graph. Defaults to 16. allow_replace_deleted (bool) – Enables replacing of deleted elements with new added ones. Defaults to True. num_threads (int) – Sets the number of cpu threads to use. Defaults to 1. **kwargs – Other keyword arguments to be passed to the get_doc_cls method. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, work_dir: Optional[str] = None, n_dim: Optional[int] = None, **kwargs: Any) β†’ langchain.vectorstores.docarray.hnsw.DocArrayHnswSearch[source]# Create an DocArrayHnswSearch store and insert data. Parameters texts (List[str]) – Text data. embedding (Embeddings) – Embedding function. metadatas (Optional[List[dict]]) – Metadata for each text if it exists. Defaults to None. work_dir (str) – path to the location where all the data will be stored. n_dim (int) – dimension of an embedding.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-30
n_dim (int) – dimension of an embedding. **kwargs – Other keyword arguments to be passed to the __init__ method. Returns DocArrayHnswSearch Vector Store class langchain.vectorstores.DocArrayInMemorySearch(doc_index: BaseDocIndex, embedding: langchain.embeddings.base.Embeddings)[source]# Wrapper around in-memory storage for exact search. To use it, you should have the docarray package with version >=0.32.0 installed. You can install it with pip install β€œlangchain[docarray]”. classmethod from_params(embedding: langchain.embeddings.base.Embeddings, metric: Literal['cosine_sim', 'euclidian_dist', 'sgeuclidean_dist'] = 'cosine_sim', **kwargs: Any) β†’ langchain.vectorstores.docarray.in_memory.DocArrayInMemorySearch[source]# Initialize DocArrayInMemorySearch store. Parameters embedding (Embeddings) – Embedding function. metric (str) – metric for exact nearest-neighbor search. Can be one of: β€œcosine_sim”, β€œeuclidean_dist” and β€œsqeuclidean_dist”. Defaults to β€œcosine_sim”. **kwargs – Other keyword arguments to be passed to the get_doc_cls method. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[Dict[Any, Any]]] = None, **kwargs: Any) β†’ langchain.vectorstores.docarray.in_memory.DocArrayInMemorySearch[source]# Create an DocArrayInMemorySearch store and insert data. Parameters texts (List[str]) – Text data. embedding (Embeddings) – Embedding function. metadatas (Optional[List[Dict[Any, Any]]]) – Metadata for each text if it exists. Defaults to None.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-31
if it exists. Defaults to None. metric (str) – metric for exact nearest-neighbor search. Can be one of: β€œcosine_sim”, β€œeuclidean_dist” and β€œsqeuclidean_dist”. Defaults to β€œcosine_sim”. Returns DocArrayInMemorySearch Vector Store class langchain.vectorstores.ElasticVectorSearch(elasticsearch_url: str, index_name: str, embedding: langchain.embeddings.base.Embeddings, *, ssl_verify: Optional[Dict[str, Any]] = None)[source]# Wrapper around Elasticsearch as a vector database. To connect to an Elasticsearch instance that does not require login credentials, pass the Elasticsearch URL and index name along with the embedding object to the constructor. Example from langchain import ElasticVectorSearch from langchain.embeddings import OpenAIEmbeddings embedding = OpenAIEmbeddings() elastic_vector_search = ElasticVectorSearch( elasticsearch_url="http://localhost:9200", index_name="test_index", embedding=embedding ) To connect to an Elasticsearch instance that requires login credentials, including Elastic Cloud, use the Elasticsearch URL format https://username:password@es_host:9243. For example, to connect to Elastic Cloud, create the Elasticsearch URL with the required authentication details and pass it to the ElasticVectorSearch constructor as the named parameter elasticsearch_url. You can obtain your Elastic Cloud URL and login credentials by logging in to the Elastic Cloud console at https://cloud.elastic.co, selecting your deployment, and navigating to the β€œDeployments” page. To obtain your Elastic Cloud password for the default β€œelastic” user: Log in to the Elastic Cloud console at https://cloud.elastic.co Go to β€œSecurity” > β€œUsers” Locate the β€œelastic” user and click β€œEdit” Click β€œReset password”
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-32
Locate the β€œelastic” user and click β€œEdit” Click β€œReset password” Follow the prompts to reset the password The format for Elastic Cloud URLs is https://username:password@cluster_id.region_id.gcp.cloud.es.io:9243. Example from langchain import ElasticVectorSearch from langchain.embeddings import OpenAIEmbeddings embedding = OpenAIEmbeddings() elastic_host = "cluster_id.region_id.gcp.cloud.es.io" elasticsearch_url = f"https://username:password@{elastic_host}:9243" elastic_vector_search = ElasticVectorSearch( elasticsearch_url=elasticsearch_url, index_name="test_index", embedding=embedding ) Parameters elasticsearch_url (str) – The URL for the Elasticsearch instance. index_name (str) – The name of the Elasticsearch index for the embeddings. embedding (Embeddings) – An object that provides the ability to embed text. It should be an instance of a class that subclasses the Embeddings abstract base class, such as OpenAIEmbeddings() Raises ValueError – If the elasticsearch python package is not installed. add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, refresh_indices: bool = True, **kwargs: Any) β†’ List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. refresh_indices – bool to refresh ElasticSearch indices Returns List of ids from adding the texts into the vectorstore. client_search(client: Any, index_name: str, script_query: Dict, size: int) β†’ Any[source]#
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-33
create_index(client: Any, index_name: str, mapping: Dict) β†’ None[source]# classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, elasticsearch_url: Optional[str] = None, index_name: Optional[str] = None, refresh_indices: bool = True, **kwargs: Any) β†’ langchain.vectorstores.elastic_vector_search.ElasticVectorSearch[source]# Construct ElasticVectorSearch wrapper from raw documents. This is a user-friendly interface that: Embeds documents. Creates a new index for the embeddings in the Elasticsearch instance. Adds the documents to the newly created Elasticsearch index. This is intended to be a quick way to get started. Example from langchain import ElasticVectorSearch from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() elastic_vector_search = ElasticVectorSearch.from_texts( texts, embeddings, elasticsearch_url="http://localhost:9200" ) similarity_search(query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. similarity_search_with_score(query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any) β†’ List[Tuple[langchain.schema.Document, float]][source]# Return docs most similar to query. :param query: Text to look up documents similar to. :param k: Number of Documents to return. Defaults to 4. Returns
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-34
:param k: Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. class langchain.vectorstores.FAISS(embedding_function: typing.Callable, index: typing.Any, docstore: langchain.docstore.base.Docstore, index_to_docstore_id: typing.Dict[int, str], relevance_score_fn: typing.Optional[typing.Callable[[float], float]] = <function _default_relevance_score_fn>, normalize_L2: bool = False)[source]# Wrapper around FAISS vector database. To use, you should have the faiss python package installed. Example from langchain import FAISS faiss = FAISS(embedding_function, index, docstore, index_to_docstore_id) add_embeddings(text_embeddings: Iterable[Tuple[str, List[float]]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) β†’ List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters text_embeddings – Iterable pairs of string and embedding to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of unique IDs. Returns List of ids from adding the texts into the vectorstore. add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) β†’ List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of unique IDs. Returns List of ids from adding the texts into the vectorstore.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-35
Returns List of ids from adding the texts into the vectorstore. classmethod from_embeddings(text_embeddings: List[Tuple[str, List[float]]], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) β†’ langchain.vectorstores.faiss.FAISS[source]# Construct FAISS wrapper from raw documents. This is a user friendly interface that: Embeds documents. Creates an in memory docstore Initializes the FAISS database This is intended to be a quick way to get started. Example from langchain import FAISS from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) faiss = FAISS.from_embeddings(text_embedding_pairs, embeddings) classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) β†’ langchain.vectorstores.faiss.FAISS[source]# Construct FAISS wrapper from raw documents. This is a user friendly interface that: Embeds documents. Creates an in memory docstore Initializes the FAISS database This is intended to be a quick way to get started. Example from langchain import FAISS from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() faiss = FAISS.from_texts(texts, embeddings) classmethod load_local(folder_path: str, embeddings: langchain.embeddings.base.Embeddings, index_name: str = 'index') β†’ langchain.vectorstores.faiss.FAISS[source]#
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-36
Load FAISS index, docstore, and index_to_docstore_id from disk. Parameters folder_path – folder path to load index, docstore, and index_to_docstore_id from. embeddings – Embeddings to use when generating queries index_name – for saving with a specific index file name max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-37
of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. merge_from(target: langchain.vectorstores.faiss.FAISS) β†’ None[source]# Merge another FAISS object with the current one. Add the target FAISS to the current one. Parameters target – FAISS object you wish to merge into the current one Returns None. save_local(folder_path: str, index_name: str = 'index') β†’ None[source]# Save FAISS index, docstore, and index_to_docstore_id to disk. Parameters folder_path – folder path to save index, docstore, and index_to_docstore_id to. index_name – for saving with a specific index file name similarity_search(query: str, k: int = 4, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the embedding. similarity_search_with_score(query: str, k: int = 4) β†’ List[Tuple[langchain.schema.Document, float]][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-38
Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of documents most similar to the query text with L2 distance in float. Lower score represents more similarity. similarity_search_with_score_by_vector(embedding: List[float], k: int = 4) β†’ List[Tuple[langchain.schema.Document, float]][source]# Return docs most similar to query. Parameters embedding – Embedding vector to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of documents most similar to the query text and L2 distance in float for each. Lower score represents more similarity. class langchain.vectorstores.LanceDB(connection: Any, embedding: langchain.embeddings.base.Embeddings, vector_key: Optional[str] = 'vector', id_key: Optional[str] = 'id', text_key: Optional[str] = 'text')[source]# Wrapper around LanceDB vector database. To use, you should have lancedb python package installed. Example db = lancedb.connect('./lancedb') table = db.open_table('my_table') vectorstore = LanceDB(table, embedding_function) vectorstore.add_texts(['text1', 'text2']) result = vectorstore.similarity_search('text1') add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) β†’ List[str][source]# Turn texts into embedding and add it to the database Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of ids to associate with the texts. Returns List of ids of the added texts.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-39
Returns List of ids of the added texts. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, connection: Any = None, vector_key: Optional[str] = 'vector', id_key: Optional[str] = 'id', text_key: Optional[str] = 'text', **kwargs: Any) β†’ langchain.vectorstores.lancedb.LanceDB[source]# Return VectorStore initialized from texts and embeddings. similarity_search(query: str, k: int = 4, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return documents most similar to the query Parameters query – String to query the vectorstore with. k – Number of documents to return. Returns List of documents most similar to the query. class langchain.vectorstores.Milvus(embedding_function: langchain.embeddings.base.Embeddings, collection_name: str = 'LangChainCollection', connection_args: Optional[dict[str, Any]] = None, consistency_level: str = 'Session', index_params: Optional[dict] = None, search_params: Optional[dict] = None, drop_old: Optional[bool] = False)[source]# Wrapper around the Milvus vector database. add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, timeout: Optional[int] = None, batch_size: int = 1000, **kwargs: Any) β†’ List[str][source]# Insert text data into Milvus. Inserting data when the collection has not be made yet will result in creating a new Collection. The data of the first entity decides the schema of the new collection, the dim is extracted from the first embedding and the columns are decided by the first metadata dict.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-40
embedding and the columns are decided by the first metadata dict. Metada keys will need to be present for all inserted values. At the moment there is no None equivalent in Milvus. Parameters texts (Iterable[str]) – The texts to embed, it is assumed that they all fit in memory. metadatas (Optional[List[dict]]) – Metadata dicts attached to each of the texts. Defaults to None. timeout (Optional[int]) – Timeout for each batch insert. Defaults to None. batch_size (int, optional) – Batch size to use for insertion. Defaults to 1000. Raises MilvusException – Failure to add texts Returns The resulting keys for each inserted element. Return type List[str] classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = 'LangChainCollection', connection_args: dict[str, Any] = {'host': 'localhost', 'password': '', 'port': '19530', 'secure': False, 'user': ''}, consistency_level: str = 'Session', index_params: Optional[dict] = None, search_params: Optional[dict] = None, drop_old: bool = False, **kwargs: Any) β†’ langchain.vectorstores.milvus.Milvus[source]# Create a Milvus collection, indexes it with HNSW, and insert data. Parameters texts (List[str]) – Text data. embedding (Embeddings) – Embedding function. metadatas (Optional[List[dict]]) – Metadata for each text if it exists. Defaults to None. collection_name (str, optional) – Collection name to use. Defaults to β€œLangChainCollection”.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-41
β€œLangChainCollection”. connection_args (dict[str, Any], optional) – Connection args to use. Defaults to DEFAULT_MILVUS_CONNECTION. consistency_level (str, optional) – Which consistency level to use. Defaults to β€œSession”. index_params (Optional[dict], optional) – Which index_params to use. Defaults to None. search_params (Optional[dict], optional) – Which search params to use. Defaults to None. drop_old (Optional[bool], optional) – Whether to drop the collection with that name if it exists. Defaults to False. Returns Milvus Vector Store Return type Milvus max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Perform a search and return results that are reordered by MMR. Parameters query (str) – The text being searched. k (int, optional) – How many results to give. Defaults to 4. fetch_k (int, optional) – Total results to select k from. Defaults to 20. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5 param (dict, optional) – The search params for the specified index. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. timeout (int, optional) – How long to wait before timeout error. Defaults to None. kwargs – Collection.search() keyword arguments. Returns
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-42
Defaults to None. kwargs – Collection.search() keyword arguments. Returns Document results for search. Return type List[Document] max_marginal_relevance_search_by_vector(embedding: list[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Perform a search and return results that are reordered by MMR. Parameters embedding (str) – The embedding vector being searched. k (int, optional) – How many results to give. Defaults to 4. fetch_k (int, optional) – Total results to select k from. Defaults to 20. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5 param (dict, optional) – The search params for the specified index. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. timeout (int, optional) – How long to wait before timeout error. Defaults to None. kwargs – Collection.search() keyword arguments. Returns Document results for search. Return type List[Document] similarity_search(query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Perform a similarity search against the query string. Parameters query (str) – The text to search.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-43
Parameters query (str) – The text to search. k (int, optional) – How many results to return. Defaults to 4. param (dict, optional) – The search params for the index type. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. timeout (int, optional) – How long to wait before timeout error. Defaults to None. kwargs – Collection.search() keyword arguments. Returns Document results for search. Return type List[Document] similarity_search_by_vector(embedding: List[float], k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Perform a similarity search against the query string. Parameters embedding (List[float]) – The embedding vector to search. k (int, optional) – How many results to return. Defaults to 4. param (dict, optional) – The search params for the index type. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. timeout (int, optional) – How long to wait before timeout error. Defaults to None. kwargs – Collection.search() keyword arguments. Returns Document results for search. Return type List[Document] similarity_search_with_score(query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) β†’ List[Tuple[langchain.schema.Document, float]][source]# Perform a search on a query string and return results with score. For more information about the search parameters, take a look at the pymilvus documentation found here:
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-44
documentation found here: https://milvus.io/api-reference/pymilvus/v2.2.6/Collection/search().md Parameters query (str) – The text being searched. k (int, optional) – The amount of results ot return. Defaults to 4. param (dict) – The search params for the specified index. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. timeout (int, optional) – How long to wait before timeout error. Defaults to None. kwargs – Collection.search() keyword arguments. Return type List[float], List[Tuple[Document, any, any]] similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) β†’ List[Tuple[langchain.schema.Document, float]][source]# Perform a search on a query string and return results with score. For more information about the search parameters, take a look at the pymilvus documentation found here: https://milvus.io/api-reference/pymilvus/v2.2.6/Collection/search().md Parameters embedding (List[float]) – The embedding vector being searched. k (int, optional) – The amount of results ot return. Defaults to 4. param (dict) – The search params for the specified index. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. timeout (int, optional) – How long to wait before timeout error. Defaults to None. kwargs – Collection.search() keyword arguments. Returns Result doc and score. Return type List[Tuple[Document, float]]
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-45
Returns Result doc and score. Return type List[Tuple[Document, float]] class langchain.vectorstores.MongoDBAtlasVectorSearch(collection: Collection[MongoDBDocumentType], embedding: Embeddings, *, index_name: str = 'default', text_key: str = 'text', embedding_key: str = 'embedding')[source]# Wrapper around MongoDB Atlas Vector Search. To use, you should have both: - the pymongo python package installed - a connection string associated with a MongoDB Atlas Cluster having deployed an Atlas Search index Example from langchain.vectorstores import MongoDBAtlasVectorSearch from langchain.embeddings.openai import OpenAIEmbeddings from pymongo import MongoClient mongo_client = MongoClient("<YOUR-CONNECTION-STRING>") collection = mongo_client["<db_name>"]["<collection_name>"] embeddings = OpenAIEmbeddings() vectorstore = MongoDBAtlasVectorSearch(collection, embeddings) add_texts(texts: Iterable[str], metadatas: Optional[List[Dict[str, Any]]] = None, **kwargs: Any) β†’ List[source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. Returns List of ids from adding the texts into the vectorstore. classmethod from_connection_string(connection_string: str, namespace: str, embedding: langchain.embeddings.base.Embeddings, **kwargs: Any) β†’ langchain.vectorstores.mongodb_atlas.MongoDBAtlasVectorSearch[source]# classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection: Optional[Collection[MongoDBDocumentType]] = None, **kwargs: Any) β†’ MongoDBAtlasVectorSearch[source]#
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-46
Construct MongoDBAtlasVectorSearch wrapper from raw documents. This is a user-friendly interface that: Embeds documents. Adds the documents to a provided MongoDB Atlas Vector Search index(Lucene) This is intended to be a quick way to get started. Example similarity_search(query: str, k: int = 4, pre_filter: Optional[dict] = None, post_filter_pipeline: Optional[List[Dict]] = None, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return MongoDB documents most similar to query. Use the knnBeta Operator available in MongoDB Atlas Search This feature is in early access and available only for evaluation purposes, to validate functionality, and to gather feedback from a small closed group of early access users. It is not recommended for production deployments as we may introduce breaking changes. For more: https://www.mongodb.com/docs/atlas/atlas-search/knn-beta Parameters query – Text to look up documents similar to. k – Optional Number of Documents to return. Defaults to 4. pre_filter – Optional Dictionary of argument(s) to prefilter on document fields. post_filter_pipeline – Optional Pipeline of MongoDB aggregation stages following the knnBeta search. Returns List of Documents most similar to the query and score for each similarity_search_with_score(query: str, *, k: int = 4, pre_filter: Optional[dict] = None, post_filter_pipeline: Optional[List[Dict]] = None) β†’ List[Tuple[langchain.schema.Document, float]][source]# Return MongoDB documents most similar to query, along with scores. Use the knnBeta Operator available in MongoDB Atlas Search This feature is in early access and available only for evaluation purposes, to validate functionality, and to gather feedback from a small closed group of early access users. It is not recommended for production deployments as we
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-47
early access users. It is not recommended for production deployments as we may introduce breaking changes. For more: https://www.mongodb.com/docs/atlas/atlas-search/knn-beta Parameters query – Text to look up documents similar to. k – Optional Number of Documents to return. Defaults to 4. pre_filter – Optional Dictionary of argument(s) to prefilter on document fields. post_filter_pipeline – Optional Pipeline of MongoDB aggregation stages following the knnBeta search. Returns List of Documents most similar to the query and score for each class langchain.vectorstores.MyScale(embedding: langchain.embeddings.base.Embeddings, config: Optional[langchain.vectorstores.myscale.MyScaleSettings] = None, **kwargs: Any)[source]# Wrapper around MyScale vector database You need a clickhouse-connect python package, and a valid account to connect to MyScale. MyScale can not only search with simple vector indexes, it also supports complex query with multiple conditions, constraints and even sub-queries. For more information, please visit[myscale official site](https://docs.myscale.com/en/overview/) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, batch_size: int = 32, ids: Optional[Iterable[str]] = None, **kwargs: Any) β†’ List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. ids – Optional list of ids to associate with the texts. batch_size – Batch size of insertion metadata – Optional column data to be inserted Returns List of ids from adding the texts into the vectorstore. drop() β†’ None[source]# Helper function: Drop data escape_str(value: str) β†’ str[source]#
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-48
Helper function: Drop data escape_str(value: str) β†’ str[source]# classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[Dict[Any, Any]]] = None, config: Optional[langchain.vectorstores.myscale.MyScaleSettings] = None, text_ids: Optional[Iterable[str]] = None, batch_size: int = 32, **kwargs: Any) β†’ langchain.vectorstores.myscale.MyScale[source]# Create Myscale wrapper with existing texts Parameters embedding_function (Embeddings) – Function to extract text embedding texts (Iterable[str]) – List or tuple of strings to be added config (MyScaleSettings, Optional) – Myscale configuration text_ids (Optional[Iterable], optional) – IDs for the texts. Defaults to None. batch_size (int, optional) – Batchsize when transmitting data to MyScale. Defaults to 32. metadata (List[dict], optional) – metadata to texts. Defaults to None. into (Other keyword arguments will pass) – [clickhouse-connect](https://clickhouse.com/docs/en/integrations/python#clickhouse-connect-driver-api) Returns MyScale Index property metadata_column: str# similarity_search(query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Perform a similarity search with MyScale Parameters query (str) – query string k (int, optional) – Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional) – where condition string. Defaults to None. NOTE – Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-49
of SQL injection. When dealing with metadatas, remember to use {self.metadata_column}.attribute instead of attribute alone. The default name for it is metadata. Returns List of Documents Return type List[Document] similarity_search_by_vector(embedding: List[float], k: int = 4, where_str: Optional[str] = None, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Perform a similarity search with MyScale by vectors Parameters query (str) – query string k (int, optional) – Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional) – where condition string. Defaults to None. NOTE – Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use {self.metadata_column}.attribute instead of attribute alone. The default name for it is metadata. Returns List of (Document, similarity) Return type List[Document] similarity_search_with_relevance_scores(query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any) β†’ List[Tuple[langchain.schema.Document, float]][source]# Perform a similarity search with MyScale Parameters query (str) – query string k (int, optional) – Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional) – where condition string. Defaults to None. NOTE – Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use {self.metadata_column}.attribute instead of attribute alone. The default name for it is metadata. Returns List of documents most similar to the query text and cosine distance in float for each.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-50
List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. Return type List[Document] pydantic settings langchain.vectorstores.MyScaleSettings[source]# MyScale Client Configuration Attribute: myscale_host (str)An URL to connect to MyScale backend.Defaults to β€˜localhost’. myscale_port (int) : URL port to connect with HTTP. Defaults to 8443. username (str) : Username to login. Defaults to None. password (str) : Password to login. Defaults to None. index_type (str): index type string. index_param (dict): index build parameter. database (str) : Database name to find the table. Defaults to β€˜default’. table (str) : Table name to operate on. Defaults to β€˜vector_table’. metric (str)Metric to compute distance,supported are (β€˜l2’, β€˜cosine’, β€˜ip’). Defaults to β€˜cosine’. column_map (Dict)Column type map to project column name onto langchainsemantics. Must have keys: text, id, vector, must be same size to number of columns. For example: .. code-block:: python {β€˜id’: β€˜text_id’, β€˜vector’: β€˜text_embedding’, β€˜text’: β€˜text_plain’, β€˜metadata’: β€˜metadata_dictionary_in_json’, } Defaults to identity map. Show JSON schema{ "title": "MyScaleSettings",
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-51
Show JSON schema{ "title": "MyScaleSettings", "description": "MyScale Client Configuration\n\nAttribute:\n myscale_host (str) : An URL to connect to MyScale backend.\n Defaults to 'localhost'.\n myscale_port (int) : URL port to connect with HTTP. Defaults to 8443.\n username (str) : Username to login. Defaults to None.\n password (str) : Password to login. Defaults to None.\n index_type (str): index type string.\n index_param (dict): index build parameter.\n database (str) : Database name to find the table. Defaults to 'default'.\n table (str) : Table name to operate on.\n Defaults to 'vector_table'.\n metric (str) : Metric to compute distance,\n supported are ('l2', 'cosine', 'ip'). Defaults to 'cosine'.\n column_map (Dict) : Column type map to project column name onto langchain\n semantics. Must have keys: `text`, `id`, `vector`,\n must be same size to number of columns. For example:\n .. code-block:: python\n\n {\n 'id': 'text_id',\n 'vector': 'text_embedding',\n 'text': 'text_plain',\n 'metadata': 'metadata_dictionary_in_json',\n }\n\n Defaults to identity map.", "type": "object", "properties": { "host": { "title": "Host", "default": "localhost", "env_names": "{'myscale_host'}", "type": "string" }, "port": { "title": "Port",
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-52
}, "port": { "title": "Port", "default": 8443, "env_names": "{'myscale_port'}", "type": "integer" }, "username": { "title": "Username", "env_names": "{'myscale_username'}", "type": "string" }, "password": { "title": "Password", "env_names": "{'myscale_password'}", "type": "string" }, "index_type": { "title": "Index Type", "default": "IVFFLAT", "env_names": "{'myscale_index_type'}", "type": "string" }, "index_param": { "title": "Index Param", "env_names": "{'myscale_index_param'}", "type": "object", "additionalProperties": { "type": "string" } }, "column_map": { "title": "Column Map", "default": { "id": "id", "text": "text", "vector": "vector", "metadata": "metadata" }, "env_names": "{'myscale_column_map'}", "type": "object", "additionalProperties": { "type": "string" } }, "database": { "title": "Database", "default": "default", "env_names": "{'myscale_database'}", "type": "string" }, "table": { "title": "Table",
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-53
}, "table": { "title": "Table", "default": "langchain", "env_names": "{'myscale_table'}", "type": "string" }, "metric": { "title": "Metric", "default": "cosine", "env_names": "{'myscale_metric'}", "type": "string" } }, "additionalProperties": false } Config env_file: str = .env env_file_encoding: str = utf-8 env_prefix: str = myscale_ Fields column_map (Dict[str, str]) database (str) host (str) index_param (Optional[Dict[str, str]]) index_type (str) metric (str) password (Optional[str]) port (int) table (str) username (Optional[str]) field column_map: Dict[str, str] = {'id': 'id', 'metadata': 'metadata', 'text': 'text', 'vector': 'vector'}# field database: str = 'default'# field host: str = 'localhost'# field index_param: Optional[Dict[str, str]] = None# field index_type: str = 'IVFFLAT'# field metric: str = 'cosine'# field password: Optional[str] = None# field port: int = 8443# field table: str = 'langchain'# field username: Optional[str] = None# class langchain.vectorstores.OpenSearchVectorSearch(opensearch_url: str, index_name: str, embedding_function: langchain.embeddings.base.Embeddings, **kwargs: Any)[source]# Wrapper around OpenSearch as a vector database. Example from langchain import OpenSearchVectorSearch
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-54
Example from langchain import OpenSearchVectorSearch opensearch_vector_search = OpenSearchVectorSearch( "http://localhost:9200", "embeddings", embedding_function ) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, bulk_size: int = 500, **kwargs: Any) β†’ List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. bulk_size – Bulk API request count; Default: 500 Returns List of ids from adding the texts into the vectorstore. Optional Args:vector_field: Document field embeddings are stored in. Defaults to β€œvector_field”. text_field: Document field the text of the document is stored in. Defaults to β€œtext”. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, bulk_size: int = 500, **kwargs: Any) β†’ langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch[source]# Construct OpenSearchVectorSearch wrapper from raw documents. Example from langchain import OpenSearchVectorSearch from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() opensearch_vector_search = OpenSearchVectorSearch.from_texts( texts, embeddings, opensearch_url="http://localhost:9200" ) OpenSearch by default supports Approximate Search powered by nmslib, faiss and lucene engines recommended for large datasets. Also supports brute force search through Script Scoring and Painless Scripting.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-55
search through Script Scoring and Painless Scripting. Optional Args:vector_field: Document field embeddings are stored in. Defaults to β€œvector_field”. text_field: Document field the text of the document is stored in. Defaults to β€œtext”. Optional Keyword Args for Approximate Search:engine: β€œnmslib”, β€œfaiss”, β€œlucene”; default: β€œnmslib” space_type: β€œl2”, β€œl1”, β€œcosinesimil”, β€œlinf”, β€œinnerproduct”; default: β€œl2” ef_search: Size of the dynamic list used during k-NN searches. Higher values lead to more accurate but slower searches; default: 512 ef_construction: Size of the dynamic list used during k-NN graph creation. Higher values lead to more accurate graph but slower indexing speed; default: 512 m: Number of bidirectional links created for each new element. Large impact on memory consumption. Between 2 and 100; default: 16 Keyword Args for Script Scoring or Painless Scripting:is_appx_search: False similarity_search(query: str, k: int = 4, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs most similar to query. By default supports Approximate Search. Also supports Script Scoring and Painless Scripting. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. Optional Args:vector_field: Document field embeddings are stored in. Defaults to β€œvector_field”. text_field: Document field the text of the document is stored in. Defaults to β€œtext”. metadata_field: Document field that metadata is stored in. Defaults to β€œmetadata”.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-56
metadata_field: Document field that metadata is stored in. Defaults to β€œmetadata”. Can be set to a special value β€œ*” to include the entire document. Optional Args for Approximate Search:search_type: β€œapproximate_search”; default: β€œapproximate_search” boolean_filter: A Boolean filter consists of a Boolean query that contains a k-NN query and a filter. subquery_clause: Query clause on the knn vector field; default: β€œmust” lucene_filter: the Lucene algorithm decides whether to perform an exact k-NN search with pre-filtering or an approximate search with modified post-filtering. Optional Args for Script Scoring Search:search_type: β€œscript_scoring”; default: β€œapproximate_search” space_type: β€œl2”, β€œl1”, β€œlinf”, β€œcosinesimil”, β€œinnerproduct”, β€œhammingbit”; default: β€œl2” pre_filter: script_score query to pre-filter documents before identifying nearest neighbors; default: {β€œmatch_all”: {}} Optional Args for Painless Scripting Search:search_type: β€œpainless_scripting”; default: β€œapproximate_search” space_type: β€œl2Squared”, β€œl1Norm”, β€œcosineSimilarity”; default: β€œl2Squared” pre_filter: script_score query to pre-filter documents before identifying nearest neighbors; default: {β€œmatch_all”: {}} similarity_search_with_score(query: str, k: int = 4, **kwargs: Any) β†’ List[Tuple[langchain.schema.Document, float]][source]# Return docs and it’s scores most similar to query. By default supports Approximate Search. Also supports Script Scoring and Painless Scripting. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-57
k – Number of Documents to return. Defaults to 4. Returns List of Documents along with its scores most similar to the query. Optional Args:same as similarity_search class langchain.vectorstores.Pinecone(index: Any, embedding_function: Callable, text_key: str, namespace: Optional[str] = None)[source]# Wrapper around Pinecone vector database. To use, you should have the pinecone-client python package installed. Example from langchain.vectorstores import Pinecone from langchain.embeddings.openai import OpenAIEmbeddings import pinecone # The environment should be the one specified next to the API key # in your Pinecone console pinecone.init(api_key="***", environment="...") index = pinecone.Index("langchain-demo") embeddings = OpenAIEmbeddings() vectorstore = Pinecone(index, embeddings.embed_query, "text") add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, namespace: Optional[str] = None, batch_size: int = 32, **kwargs: Any) β†’ List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of ids to associate with the texts. namespace – Optional pinecone namespace to add the texts to. Returns List of ids from adding the texts into the vectorstore. classmethod from_existing_index(index_name: str, embedding: langchain.embeddings.base.Embeddings, text_key: str = 'text', namespace: Optional[str] = None) β†’ langchain.vectorstores.pinecone.Pinecone[source]# Load pinecone vectorstore from index name.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-58
Load pinecone vectorstore from index name. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, batch_size: int = 32, text_key: str = 'text', index_name: Optional[str] = None, namespace: Optional[str] = None, **kwargs: Any) β†’ langchain.vectorstores.pinecone.Pinecone[source]# Construct Pinecone wrapper from raw documents. This is a user friendly interface that: Embeds documents. Adds the documents to a provided Pinecone index This is intended to be a quick way to get started. Example from langchain import Pinecone from langchain.embeddings import OpenAIEmbeddings import pinecone # The environment should be the one specified next to the API key # in your Pinecone console pinecone.init(api_key="***", environment="...") embeddings = OpenAIEmbeddings() pinecone = Pinecone.from_texts( texts, embeddings, index_name="langchain-demo" ) similarity_search(query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return pinecone documents most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Dictionary of argument(s) to filter on metadata namespace – Namespace to search in. Default will search in β€˜β€™ namespace. Returns List of Documents most similar to the query and score for each
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-59
Returns List of Documents most similar to the query and score for each similarity_search_with_score(query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None) β†’ List[Tuple[langchain.schema.Document, float]][source]# Return pinecone documents most similar to query, along with scores. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Dictionary of argument(s) to filter on metadata namespace – Namespace to search in. Default will search in β€˜β€™ namespace. Returns List of Documents most similar to the query and score for each class langchain.vectorstores.Qdrant(client: Any, collection_name: str, embeddings: Optional[langchain.embeddings.base.Embeddings] = None, content_payload_key: str = 'page_content', metadata_payload_key: str = 'metadata', embedding_function: Optional[Callable] = None)[source]# Wrapper around Qdrant vector database. To use you should have the qdrant-client package installed. Example from qdrant_client import QdrantClient from langchain import Qdrant client = QdrantClient() collection_name = "MyCollection" qdrant = Qdrant(client, collection_name, embedding_function) CONTENT_KEY = 'page_content'# METADATA_KEY = 'metadata'# add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[Sequence[str]] = None, batch_size: int = 64, **kwargs: Any) β†’ List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-60
Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of ids to associate with the texts. Ids have to be uuid-like strings. batch_size – How many vectors upload per-request. Default: 64 Returns List of ids from adding the texts into the vectorstore. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[Sequence[str]] = None, location: Optional[str] = None, url: Optional[str] = None, port: Optional[int] = 6333, grpc_port: int = 6334, prefer_grpc: bool = False, https: Optional[bool] = None, api_key: Optional[str] = None, prefix: Optional[str] = None, timeout: Optional[float] = None, host: Optional[str] = None, path: Optional[str] = None, collection_name: Optional[str] = None, distance_func: str = 'Cosine', content_payload_key: str = 'page_content', metadata_payload_key: str = 'metadata', batch_size: int = 64, **kwargs: Any) β†’ langchain.vectorstores.qdrant.Qdrant[source]# Construct Qdrant wrapper from a list of texts. Parameters texts – A list of texts to be indexed in Qdrant. embedding – A subclass of Embeddings, responsible for text vectorization. metadatas – An optional list of metadata. If provided it has to be of the same length as a list of texts. ids – Optional list of ids to associate with the texts. Ids have to be uuid-like strings. location – If :memory: - use in-memory Qdrant instance.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-61
location – If :memory: - use in-memory Qdrant instance. If str - use it as a url parameter. If None - fallback to relying on host and port parameters. url – either host or str of β€œOptional[scheme], host, Optional[port], Optional[prefix]”. Default: None port – Port of the REST API interface. Default: 6333 grpc_port – Port of the gRPC interface. Default: 6334 prefer_grpc – If true - use gPRC interface whenever possible in custom methods. Default: False https – If true - use HTTPS(SSL) protocol. Default: None api_key – API key for authentication in Qdrant Cloud. Default: None prefix – If not None - add prefix to the REST URL path. Example: service/v1 will result in http://localhost:6333/service/v1/{qdrant-endpoint} for REST API. Default: None timeout – Timeout for REST and gRPC API requests. Default: 5.0 seconds for REST and unlimited for gRPC host – Host name of Qdrant service. If url and host are None, set to β€˜localhost’. Default: None path – Path in which the vectors will be stored while using local mode. Default: None collection_name – Name of the Qdrant collection to be used. If not provided, it will be created randomly. Default: None distance_func – Distance function. One of: β€œCosine” / β€œEuclid” / β€œDot”. Default: β€œCosine” content_payload_key – A payload key used to store the content of the document. Default: β€œpage_content” metadata_payload_key – A payload key used to store the metadata of the document. Default: β€œmetadata” batch_size – How many vectors upload per-request. Default: 64
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-62
batch_size – How many vectors upload per-request. Default: 64 **kwargs – Additional arguments passed directly into REST client initialization This is a user-friendly interface that: 1. Creates embeddings, one for each text 2. Initializes the Qdrant database as an in-memory docstore by default (and overridable to a remote docstore) Adds the text embeddings to the Qdrant database This is intended to be a quick way to get started. Example from langchain import Qdrant from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() qdrant = Qdrant.from_texts(texts, embeddings, "localhost") max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. similarity_search(query: str, k: int = 4, filter: Optional[MetadataFilter] = None, **kwargs: Any) β†’ List[Document][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-63
Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Filter by metadata. Defaults to None. Returns List of Documents most similar to the query. similarity_search_with_score(query: str, k: int = 4, filter: Optional[MetadataFilter] = None) β†’ List[Tuple[Document, float]][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Filter by metadata. Defaults to None. Returns List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. class langchain.vectorstores.Redis(redis_url: str, index_name: str, embedding_function: typing.Callable, content_key: str = 'content', metadata_key: str = 'metadata', vector_key: str = 'content_vector', relevance_score_fn: typing.Optional[typing.Callable[[float], float]] = <function _default_relevance_score>, **kwargs: typing.Any)[source]# Wrapper around Redis vector database. To use, you should have the redis python package installed. Example from langchain.vectorstores import Redis from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = Redis( redis_url="redis://username:password@localhost:6379" index_name="my-index", embedding_function=embeddings.embed_query, ) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, embeddings: Optional[List[List[float]]] = None, keys: Optional[List[str]] = None, batch_size: int = 1000, **kwargs: Any) β†’ List[str][source]#
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-64
Add more texts to the vectorstore. Parameters texts (Iterable[str]) – Iterable of strings/text to add to the vectorstore. metadatas (Optional[List[dict]], optional) – Optional list of metadatas. Defaults to None. embeddings (Optional[List[List[float]]], optional) – Optional pre-generated embeddings. Defaults to None. keys (Optional[List[str]], optional) – Optional key values to use as ids. Defaults to None. batch_size (int, optional) – Batch size to use for writes. Defaults to 1000. Returns List of ids added to the vectorstore Return type List[str] as_retriever(**kwargs: Any) β†’ langchain.vectorstores.redis.RedisVectorStoreRetriever[source]# static drop_index(index_name: str, delete_documents: bool, **kwargs: Any) β†’ bool[source]# Drop a Redis search index. Parameters index_name (str) – Name of the index to drop. delete_documents (bool) – Whether to drop the associated documents. Returns Whether or not the drop was successful. Return type bool classmethod from_existing_index(embedding: langchain.embeddings.base.Embeddings, index_name: str, content_key: str = 'content', metadata_key: str = 'metadata', vector_key: str = 'content_vector', **kwargs: Any) β†’ langchain.vectorstores.redis.Redis[source]# Connect to an existing Redis index. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, index_name: Optional[str] = None, content_key: str = 'content', metadata_key: str = 'metadata', vector_key: str = 'content_vector', **kwargs: Any) β†’ langchain.vectorstores.redis.Redis[source]#
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-65
Create a Redis vectorstore from raw documents. This is a user-friendly interface that: Embeds documents. Creates a new index for the embeddings in Redis. Adds the documents to the newly created Redis index. This is intended to be a quick way to get started. .. rubric:: Example classmethod from_texts_return_keys(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, index_name: Optional[str] = None, content_key: str = 'content', metadata_key: str = 'metadata', vector_key: str = 'content_vector', distance_metric: Literal['COSINE', 'IP', 'L2'] = 'COSINE', **kwargs: Any) β†’ Tuple[langchain.vectorstores.redis.Redis, List[str]][source]# Create a Redis vectorstore from raw documents. This is a user-friendly interface that: Embeds documents. Creates a new index for the embeddings in Redis. Adds the documents to the newly created Redis index. This is intended to be a quick way to get started. .. rubric:: Example similarity_search(query: str, k: int = 4, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Returns the most similar indexed documents to the query text. Parameters query (str) – The query text for which to find similar documents. k (int) – The number of documents to return. Default is 4. Returns A list of documents that are most similar to the query text. Return type List[Document] similarity_search_limit_score(query: str, k: int = 4, score_threshold: float = 0.2, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Returns the most similar indexed documents to the query text within the
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-66
Returns the most similar indexed documents to the query text within the score_threshold range. Parameters query (str) – The query text for which to find similar documents. k (int) – The number of documents to return. Default is 4. score_threshold (float) – The minimum matching score required for a document 0.2. (to be considered a match. Defaults to) – similarity (Because the similarity calculation algorithm is based on cosine) – :param : :param the smaller the angle: :param the higher the similarity.: Returns A list of documents that are most similar to the query text, including the match score for each document. Return type List[Document] Note If there are no documents that satisfy the score_threshold value, an empty list is returned. similarity_search_with_score(query: str, k: int = 4) β†’ List[Tuple[langchain.schema.Document, float]][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query and score for each class langchain.vectorstores.SKLearnVectorStore(embedding: langchain.embeddings.base.Embeddings, *, persist_path: Optional[str] = None, serializer: Literal['json', 'bson', 'parquet'] = 'json', metric: str = 'cosine', **kwargs: Any)[source]# A simple in-memory vector store based on the scikit-learn library NearestNeighbors implementation. add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) β†’ List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-67
Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, persist_path: Optional[str] = None, **kwargs: Any) β†’ langchain.vectorstores.sklearn.SKLearnVectorStore[source]# Return VectorStore initialized from texts and embeddings. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. :param query: Text to look up documents similar to. :param k: Number of Documents to return. Defaults to 4. :param fetch_k: Number of Documents to fetch to pass to MMR algorithm. :param lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-68
Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. :param embedding: Embedding to look up documents similar to. :param k: Number of Documents to return. Defaults to 4. :param fetch_k: Number of Documents to fetch to pass to MMR algorithm. :param lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. persist() β†’ None[source]# similarity_search(query: str, k: int = 4, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs most similar to query. similarity_search_with_score(query: str, *, k: int = 4, **kwargs: Any) β†’ List[Tuple[langchain.schema.Document, float]][source]# class langchain.vectorstores.SupabaseVectorStore(client: supabase.client.Client, embedding: Embeddings, table_name: str, query_name: Union[str, None] = None)[source]# VectorStore for a Supabase postgres database. Assumes you have the pgvector extension installed and a match_documents (or similar) function. For more details: https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabase You can implement your own match_documents function in order to limit the search space to a subset of documents based on your own authorization or business logic. Note that the Supabase Python client does not yet support async operations. If you’d like to use max_marginal_relevance_search, please review the instructions below on modifying the match_documents function to return matched embeddings.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-69
below on modifying the match_documents function to return matched embeddings. add_texts(texts: Iterable[str], metadatas: Optional[List[dict[Any, Any]]] = None, **kwargs: Any) β†’ List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. add_vectors(vectors: List[List[float]], documents: List[langchain.schema.Document]) β†’ List[str][source]# classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, client: Optional[supabase.client.Client] = None, table_name: Optional[str] = 'documents', query_name: Union[str, None] = 'match_documents', **kwargs: Any) β†’ SupabaseVectorStore[source]# Return VectorStore initialized from texts and embeddings. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-70
Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search requires that query_name returns matched embeddings alongside the match documents. The following function demonstrates how to do this: ```sql CREATE FUNCTION match_documents_embeddings(query_embedding vector(1536), match_count int) RETURNS TABLE(id bigint, content text, metadata jsonb, embedding vector(1536), similarity float) LANGUAGE plpgsql AS $$ # variable_conflict use_column BEGINRETURN query SELECT id, content, metadata, embedding, 1 -(docstore.embedding <=> query_embedding) AS similarity FROMdocstore ORDER BYdocstore.embedding <=> query_embedding LIMIT match_count; END; $$; ``` max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. query_name: str# similarity_search(query: str, k: int = 4, **kwargs: Any) β†’ List[langchain.schema.Document][source]#
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-71
Return docs most similar to query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_by_vector_returning_embeddings(query: List[float], k: int) β†’ List[Tuple[langchain.schema.Document, float, numpy.ndarray[numpy.float32, Any]]][source]# similarity_search_by_vector_with_relevance_scores(query: List[float], k: int) β†’ List[Tuple[langchain.schema.Document, float]][source]# similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) β†’ List[Tuple[langchain.schema.Document, float]][source]# Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) table_name: str# class langchain.vectorstores.Tair(embedding_function: langchain.embeddings.base.Embeddings, url: str, index_name: str, content_key: str = 'content', metadata_key: str = 'metadata', search_params: Optional[dict] = None, **kwargs: Any)[source]#
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-72
add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) β†’ List[str][source]# Add texts data to an existing index. create_index_if_not_exist(dim: int, distance_type: str, index_type: str, data_type: str, **kwargs: Any) β†’ bool[source]# static drop_index(index_name: str = 'langchain', **kwargs: Any) β†’ bool[source]# Drop an existing index. Parameters index_name (str) – Name of the index to drop. Returns True if the index is dropped successfully. Return type bool classmethod from_documents(documents: List[langchain.schema.Document], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, index_name: str = 'langchain', content_key: str = 'content', metadata_key: str = 'metadata', **kwargs: Any) β†’ langchain.vectorstores.tair.Tair[source]# Return VectorStore initialized from documents and embeddings. classmethod from_existing_index(embedding: langchain.embeddings.base.Embeddings, index_name: str = 'langchain', content_key: str = 'content', metadata_key: str = 'metadata', **kwargs: Any) β†’ langchain.vectorstores.tair.Tair[source]# Connect to an existing Tair index. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, index_name: str = 'langchain', content_key: str = 'content', metadata_key: str = 'metadata', **kwargs: Any) β†’ langchain.vectorstores.tair.Tair[source]# Return VectorStore initialized from texts and embeddings.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-73
Return VectorStore initialized from texts and embeddings. similarity_search(query: str, k: int = 4, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Returns the most similar indexed documents to the query text. Parameters query (str) – The query text for which to find similar documents. k (int) – The number of documents to return. Default is 4. Returns A list of documents that are most similar to the query text. Return type List[Document] class langchain.vectorstores.Tigris(client: TigrisClient, embeddings: Embeddings, index_name: str)[source]# add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) β†’ List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of ids for documents. Ids will be autogenerated if not provided. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, client: Optional[TigrisClient] = None, index_name: Optional[str] = None, **kwargs: Any) β†’ Tigris[source]# Return VectorStore initialized from texts and embeddings. property search_index: TigrisVectorStore# similarity_search(query: str, k: int = 4, filter: Optional[TigrisFilter] = None, **kwargs: Any) β†’ List[Document][source]#
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-74
Return docs most similar to query. similarity_search_with_score(query: str, k: int = 4, filter: Optional[TigrisFilter] = None) β†’ List[Tuple[Document, float]][source]# Run similarity search with Chroma with distance. Parameters query (str) – Query text to search for. k (int) – Number of results to return. Defaults to 4. filter (Optional[TigrisFilter]) – Filter by metadata. Defaults to None. Returns List of documents most similar to the querytext with distance in float. Return type List[Tuple[Document, float]] class langchain.vectorstores.Typesense(typesense_client: Client, embedding: Embeddings, *, typesense_collection_name: Optional[str] = None, text_key: str = 'text')[source]# Wrapper around Typesense vector search. To use, you should have the typesense python package installed. Example from langchain.embedding.openai import OpenAIEmbeddings from langchain.vectorstores import Typesense import typesense node = { "host": "localhost", # For Typesense Cloud use xxx.a1.typesense.net "port": "8108", # For Typesense Cloud use 443 "protocol": "http" # For Typesense Cloud use https } typesense_client = typesense.Client( { "nodes": [node], "api_key": "<API_KEY>", "connection_timeout_seconds": 2 } ) typesense_collection_name = "langchain-memory" embedding = OpenAIEmbeddings() vectorstore = Typesense( typesense_client, typesense_collection_name, embedding.embed_query, "text", )
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-75
typesense_collection_name, embedding.embed_query, "text", ) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) β†’ List[str][source]# Run more texts through the embedding and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of ids to associate with the texts. Returns List of ids from adding the texts into the vectorstore. classmethod from_client_params(embedding: langchain.embeddings.base.Embeddings, *, host: str = 'localhost', port: Union[str, int] = '8108', protocol: str = 'http', typesense_api_key: Optional[str] = None, connection_timeout_seconds: int = 2, **kwargs: Any) β†’ langchain.vectorstores.typesense.Typesense[source]# Initialize Typesense directly from client parameters. Example from langchain.embedding.openai import OpenAIEmbeddings from langchain.vectorstores import Typesense # Pass in typesense_api_key as kwarg or set env var "TYPESENSE_API_KEY". vectorstore = Typesense( OpenAIEmbeddings(), host="localhost", port="8108", protocol="http", typesense_collection_name="langchain-memory", )
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-76
protocol="http", typesense_collection_name="langchain-memory", ) classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, typesense_client: Optional[Client] = None, typesense_client_params: Optional[dict] = None, typesense_collection_name: Optional[str] = None, text_key: str = 'text', **kwargs: Any) β†’ Typesense[source]# Construct Typesense wrapper from raw text. similarity_search(query: str, k: int = 4, filter: Optional[str] = '', **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return typesense documents most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – typesense filter_by expression to filter documents on Returns List of Documents most similar to the query and score for each similarity_search_with_score(query: str, k: int = 4, filter: Optional[str] = '') β†’ List[Tuple[langchain.schema.Document, float]][source]# Return typesense documents most similar to query, along with scores. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – typesense filter_by expression to filter documents on Returns List of Documents most similar to the query and score for each class langchain.vectorstores.Vectara(vectara_customer_id: Optional[str] = None, vectara_corpus_id: Optional[str] = None, vectara_api_key: Optional[str] = None)[source]# Implementation of Vector Store using Vectara (https://vectara.com). .. rubric:: Example
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-77
.. rubric:: Example from langchain.vectorstores import Vectara vectorstore = Vectara( vectara_customer_id=vectara_customer_id, vectara_corpus_id=vectara_corpus_id, vectara_api_key=vectara_api_key ) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) β†’ List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. Returns List of ids from adding the texts into the vectorstore. as_retriever(**kwargs: Any) β†’ langchain.vectorstores.vectara.VectaraRetriever[source]# classmethod from_texts(texts: List[str], embedding: Optional[langchain.embeddings.base.Embeddings] = None, metadatas: Optional[List[dict]] = None, **kwargs: Any) β†’ langchain.vectorstores.vectara.Vectara[source]# Construct Vectara wrapper from raw documents. This is intended to be a quick way to get started. .. rubric:: Example from langchain import Vectara vectara = Vectara.from_texts( texts, vectara_customer_id=customer_id, vectara_corpus_id=corpus_id, vectara_api_key=api_key, ) similarity_search(query: str, k: int = 5, alpha: float = 0.025, filter: Optional[str] = None, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return Vectara documents most similar to query, along with scores. Parameters query – Text to look up documents similar to.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-78
Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 5. filter – Dictionary of argument(s) to filter on metadata. For example a filter can be β€œdoc.rating > 3.0 and part.lang = β€˜deu’”} see https://docs.vectara.com/docs/search-apis/sql/filter-overview for more details. Returns List of Documents most similar to the query similarity_search_with_score(query: str, k: int = 5, alpha: float = 0.025, filter: Optional[str] = None, **kwargs: Any) β†’ List[Tuple[langchain.schema.Document, float]][source]# Return Vectara documents most similar to query, along with scores. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 5. alpha – parameter for hybrid search (called β€œlambda” in Vectara documentation). filter – Dictionary of argument(s) to filter on metadata. For example a filter can be β€œdoc.rating > 3.0 and part.lang = β€˜deu’”} see https://docs.vectara.com/docs/search-apis/sql/filter-overview for more details. Returns List of Documents most similar to the query and score for each. class langchain.vectorstores.VectorStore[source]# Interface for vector stores. async aadd_documents(documents: List[langchain.schema.Document], **kwargs: Any) β†’ List[str][source]# Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str]
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-79
Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) β†’ List[str][source]# Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[langchain.schema.Document], **kwargs: Any) β†’ List[str][source]# Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] abstract add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) β†’ List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[langchain.schema.Document], embedding: langchain.embeddings.base.Embeddings, **kwargs: Any) β†’ langchain.vectorstores.base.VST[source]# Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) β†’ langchain.vectorstores.base.VST[source]# Return VectorStore initialized from texts and embeddings.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-80
Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) β†’ langchain.vectorstores.base.VectorStoreRetriever[source]# async asearch(query: str, search_type: str, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) β†’ List[Tuple[langchain.schema.Document, float]][source]# Return docs most similar to query. classmethod from_documents(documents: List[langchain.schema.Document], embedding: langchain.embeddings.base.Embeddings, **kwargs: Any) β†’ langchain.vectorstores.base.VST[source]# Return VectorStore initialized from documents and embeddings.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-81
Return VectorStore initialized from documents and embeddings. abstract classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) β†’ langchain.vectorstores.base.VST[source]# Return VectorStore initialized from texts and embeddings. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-82
lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs most similar to query using specified search type. abstract similarity_search(query: str, k: int = 4, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs most similar to query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) β†’ List[Tuple[langchain.schema.Document, float]][source]# Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score)
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-83
Returns List of Tuples of (doc, similarity_score) class langchain.vectorstores.Weaviate(client: typing.Any, index_name: str, text_key: str, embedding: typing.Optional[langchain.embeddings.base.Embeddings] = None, attributes: typing.Optional[typing.List[str]] = None, relevance_score_fn: typing.Optional[typing.Callable[[float], float]] = <function _default_score_normalizer>, by_text: bool = True)[source]# Wrapper around Weaviate vector database. To use, you should have the weaviate-client python package installed. Example import weaviate from langchain.vectorstores import Weaviate client = weaviate.Client(url=os.environ["WEAVIATE_URL"], ...) weaviate = Weaviate(client, index_name, text_key) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) β†’ List[str][source]# Upload texts with metadata (properties) to Weaviate. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) β†’ langchain.vectorstores.weaviate.Weaviate[source]# Construct Weaviate wrapper from raw documents. This is a user-friendly interface that: Embeds documents. Creates a new index for the embeddings in the Weaviate instance. Adds the documents to the newly created Weaviate index. This is intended to be a quick way to get started. Example from langchain.vectorstores.weaviate import Weaviate from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() weaviate = Weaviate.from_texts( texts, embeddings,
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-84
weaviate = Weaviate.from_texts( texts, embeddings, weaviate_url="http://localhost:8080" ) max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-85
Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. similarity_search(query: str, k: int = 4, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. similarity_search_by_text(query: str, k: int = 4, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) β†’ List[langchain.schema.Document][source]# Look up similar documents by embedding vector in Weaviate. similarity_search_with_score(query: str, k: int = 4, **kwargs: Any) β†’ List[Tuple[langchain.schema.Document, float]][source]# Return list of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. class langchain.vectorstores.Zilliz(embedding_function: langchain.embeddings.base.Embeddings, collection_name: str = 'LangChainCollection', connection_args: Optional[dict[str, Any]] = None, consistency_level: str = 'Session', index_params: Optional[dict] = None, search_params: Optional[dict] = None, drop_old: Optional[bool] = False)[source]#
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
93b3ad7e58c4-86
classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = 'LangChainCollection', connection_args: dict[str, Any] = {}, consistency_level: str = 'Session', index_params: Optional[dict] = None, search_params: Optional[dict] = None, drop_old: bool = False, **kwargs: Any) β†’ langchain.vectorstores.zilliz.Zilliz[source]# Create a Zilliz collection, indexes it with HNSW, and insert data. Parameters texts (List[str]) – Text data. embedding (Embeddings) – Embedding function. metadatas (Optional[List[dict]]) – Metadata for each text if it exists. Defaults to None. collection_name (str, optional) – Collection name to use. Defaults to β€œLangChainCollection”. connection_args (dict[str, Any], optional) – Connection args to use. Defaults to DEFAULT_MILVUS_CONNECTION. consistency_level (str, optional) – Which consistency level to use. Defaults to β€œSession”. index_params (Optional[dict], optional) – Which index_params to use. Defaults to None. search_params (Optional[dict], optional) – Which search params to use. Defaults to None. drop_old (Optional[bool], optional) – Whether to drop the collection with that name if it exists. Defaults to False. Returns Zilliz Vector Store Return type Zilliz previous Document Loaders next Retrievers By Harrison Chase Β© Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
bf38ac40fe32-0
.rst .pdf Memory Memory# class langchain.memory.CassandraChatMessageHistory(contact_points: List[str], session_id: str, port: int = 9042, username: str = 'cassandra', password: str = 'cassandra', keyspace_name: str = 'chat_history', table_name: str = 'message_store')[source]# Chat message history that stores history in Cassandra. Parameters contact_points – list of ips to connect to Cassandra cluster session_id – arbitrary key that is used to store the messages of a single chat session. port – port to connect to Cassandra cluster username – username to connect to Cassandra cluster password – password to connect to Cassandra cluster keyspace_name – name of the keyspace to use table_name – name of the table to use add_message(message: langchain.schema.BaseMessage) β†’ None[source]# Append the message to the record in Cassandra clear() β†’ None[source]# Clear session memory from Cassandra property messages: List[langchain.schema.BaseMessage]# Retrieve the messages from Cassandra pydantic model langchain.memory.ChatMessageHistory[source]# field messages: List[langchain.schema.BaseMessage] = []# add_message(message: langchain.schema.BaseMessage) β†’ None[source]# Add a self-created message to the store clear() β†’ None[source]# Remove all messages from the store pydantic model langchain.memory.CombinedMemory[source]# Class for combining multiple memories’ data together. Validators check_input_key Β» memories check_repeated_memory_variable Β» memories field memories: List[langchain.schema.BaseMemory] [Required]# For tracking all the memories that should be accessed. clear() β†’ None[source]# Clear context from this session for every memory.
https://python.langchain.com/en/latest/reference/modules/memory.html
bf38ac40fe32-1
clear() β†’ None[source]# Clear context from this session for every memory. load_memory_variables(inputs: Dict[str, Any]) β†’ Dict[str, str][source]# Load all vars from sub-memories. save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) β†’ None[source]# Save context from this session for every memory. property memory_variables: List[str]# All the memory variables that this instance provides. pydantic model langchain.memory.ConversationBufferMemory[source]# Buffer for storing conversation memory. field ai_prefix: str = 'AI'# field human_prefix: str = 'Human'# load_memory_variables(inputs: Dict[str, Any]) β†’ Dict[str, Any][source]# Return history buffer. property buffer: Any# String buffer of memory. pydantic model langchain.memory.ConversationBufferWindowMemory[source]# Buffer for storing conversation memory. field ai_prefix: str = 'AI'# field human_prefix: str = 'Human'# field k: int = 5# load_memory_variables(inputs: Dict[str, Any]) β†’ Dict[str, str][source]# Return history buffer. property buffer: List[langchain.schema.BaseMessage]# String buffer of memory. pydantic model langchain.memory.ConversationEntityMemory[source]# Entity extractor & summarizer to memory. field ai_prefix: str = 'AI'# field chat_history_key: str = 'history'# field entity_cache: List[str] = []#
https://python.langchain.com/en/latest/reference/modules/memory.html
bf38ac40fe32-2
field entity_extraction_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['history', 'input'], output_parser=None, partial_variables={}, template='You are an AI assistant reading the transcript of a conversation between an AI and a human. Extract all of the proper nouns from the last line of conversation. As a guideline, a proper noun is generally capitalized. You should definitely extract all names and places.\n\nThe conversation history is provided just in case of a coreference (e.g. "What do you know about him" where "him" is defined in a previous line) -- ignore items mentioned there that are not in the last line.\n\nReturn the output as a single comma-separated list, or NONE if there is nothing of note to return (e.g. the user is just issuing a greeting or having a simple conversation).\n\nEXAMPLE\nConversation history:\nPerson #1: how\'s it going today?\nAI: "It\'s going great! How about you?"\nPerson #1: good! busy working on Langchain. lots to do.\nAI: "That sounds like a lot of work! What kind of things are you doing to make Langchain better?"\nLast line:\nPerson #1: i\'m trying to improve Langchain\'s interfaces, the UX, its integrations with various products the user might want ... a lot of stuff.\nOutput: Langchain\nEND OF EXAMPLE\n\nEXAMPLE\nConversation history:\nPerson #1: how\'s it going today?\nAI: "It\'s going great! How about you?"\nPerson #1: good! busy working on Langchain. lots to do.\nAI: "That sounds like a lot of work! What kind of things are you doing to make Langchain better?"\nLast line:\nPerson #1: i\'m trying to improve Langchain\'s interfaces, the
https://python.langchain.com/en/latest/reference/modules/memory.html
bf38ac40fe32-3
line:\nPerson #1: i\'m trying to improve Langchain\'s interfaces, the UX, its integrations with various products the user might want ... a lot of stuff. I\'m working with Person #2.\nOutput: Langchain, Person #2\nEND OF EXAMPLE\n\nConversation history (for reference only):\n{history}\nLast line of conversation (for extraction):\nHuman: {input}\n\nOutput:', template_format='f-string', validate_template=True)#
https://python.langchain.com/en/latest/reference/modules/memory.html
bf38ac40fe32-4
field entity_store: langchain.memory.entity.BaseEntityStore [Optional]# field entity_summarization_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['entity', 'summary', 'history', 'input'], output_parser=None, partial_variables={}, template='You are an AI assistant helping a human keep track of facts about relevant people, places, and concepts in their life. Update the summary of the provided entity in the "Entity" section based on the last line of your conversation with the human. If you are writing the summary for the first time, return a single sentence.\nThe update should only include facts that are relayed in the last line of conversation about the provided entity, and should only contain facts about the provided entity.\n\nIf there is no new information about the provided entity or the information is not worth noting (not an important or relevant fact to remember long-term), return the existing summary unchanged.\n\nFull conversation history (for context):\n{history}\n\nEntity to summarize:\n{entity}\n\nExisting summary of {entity}:\n{summary}\n\nLast line of conversation:\nHuman: {input}\nUpdated summary:', template_format='f-string', validate_template=True)# field human_prefix: str = 'Human'# field k: int = 3# field llm: langchain.base_language.BaseLanguageModel [Required]# clear() β†’ None[source]# Clear memory contents. load_memory_variables(inputs: Dict[str, Any]) β†’ Dict[str, Any][source]# Return history buffer. save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) β†’ None[source]# Save context from this conversation to buffer. property buffer: List[langchain.schema.BaseMessage]# pydantic model langchain.memory.ConversationKGMemory[source]# Knowledge graph memory for storing conversation memory.
https://python.langchain.com/en/latest/reference/modules/memory.html
bf38ac40fe32-5
Knowledge graph memory for storing conversation memory. Integrates with external knowledge graph to store and retrieve information about knowledge triples in the conversation. field ai_prefix: str = 'AI'#
https://python.langchain.com/en/latest/reference/modules/memory.html
bf38ac40fe32-6
field entity_extraction_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['history', 'input'], output_parser=None, partial_variables={}, template='You are an AI assistant reading the transcript of a conversation between an AI and a human. Extract all of the proper nouns from the last line of conversation. As a guideline, a proper noun is generally capitalized. You should definitely extract all names and places.\n\nThe conversation history is provided just in case of a coreference (e.g. "What do you know about him" where "him" is defined in a previous line) -- ignore items mentioned there that are not in the last line.\n\nReturn the output as a single comma-separated list, or NONE if there is nothing of note to return (e.g. the user is just issuing a greeting or having a simple conversation).\n\nEXAMPLE\nConversation history:\nPerson #1: how\'s it going today?\nAI: "It\'s going great! How about you?"\nPerson #1: good! busy working on Langchain. lots to do.\nAI: "That sounds like a lot of work! What kind of things are you doing to make Langchain better?"\nLast line:\nPerson #1: i\'m trying to improve Langchain\'s interfaces, the UX, its integrations with various products the user might want ... a lot of stuff.\nOutput: Langchain\nEND OF EXAMPLE\n\nEXAMPLE\nConversation history:\nPerson #1: how\'s it going today?\nAI: "It\'s going great! How about you?"\nPerson #1: good! busy working on Langchain. lots to do.\nAI: "That sounds like a lot of work! What kind of things are you doing to make Langchain better?"\nLast line:\nPerson #1: i\'m trying to improve Langchain\'s interfaces, the
https://python.langchain.com/en/latest/reference/modules/memory.html