metadata
license: mit
dataset_info:
features:
- name: filename
dtype: string
- name: cuda_source
dtype: string
- name: cuda_host
dtype: string
- name: cuda_device
dtype: string
- name: hip_source
dtype: string
- name: hip_host
dtype: string
- name: hip_device
dtype: string
splits:
- name: train
num_bytes: 18979794237
num_examples: 70694
- name: stack
num_bytes: 6087813411
num_examples: 24170
- name: synth
num_bytes: 11766271412
num_examples: 40591
- name: bench
num_bytes: 3676152
num_examples: 40
download_size: 10789629544
dataset_size: 36837555212
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: stack
path: data/stack-*
- split: synth
path: data/synth-*
- split: bench
path: data/bench-*
๐ป CASS: CUDAโAMD Assembly and Source Mapping
CASS is the first large-scale dataset for cross-architecture GPU transpilation, providing semantically aligned CUDAโHIP source pairs and their corresponding host/device assemblies for NVIDIA (SASS) and AMD (RDNA3) platforms. It enables research in:
- ๐ Source-to-source translation (CUDA โ HIP)
- โ๏ธ Assembly-level translation (SASS โ RDNA3)
- ๐ง LLM-guided GPU code transpilation
๐ Dataset Structure
Each sample contains the following fields:
Field | Description |
---|---|
filename |
Sample ID or file name |
cuda_source |
Original CUDA source code |
cuda_host |
Compiled x86 host-side assembly from CUDA |
cuda_device |
Compiled SASS (Nvidia GPU) device assembly |
hip_source |
Transpiled HIP source code (via HIPIFY) |
hip_host |
Compiled x86 host-side assembly from HIP |
hip_device |
Compiled RDNA3 (AMD GPU) device assembly |
๐ Dataset Splits
Split | Description | # Examples |
---|---|---|
train |
Union of synth , stack , and opencl |
70,694 |
synth |
LLM-synthesized CUDA programs | 40,591 |
stack |
Scraped and filtered CUDA from StackV2 | 24,170 |
bench |
40 curated eval tasks from 16 GPU domains | 40 |
๐ฆ How to Load
from datasets import load_dataset
# ๐ง Load the full dataset (default config with all splits)
cass = load_dataset("MBZUAI/cass", name="default")
# Access a specific split
train_data = cass["train"] # train = stack + synth + opencl
stack_data = cass["stack"]
synth_data = cass["synth"]
bench_data = cass["bench"]
๐ Benchmark and Evaluation
The bench
split includes 40 samples across 16 domains like:
- ๐งช Physics Simulation
- ๐ Data Structures
- ๐ธ Image Processing
- ๐งฎ Linear Algebra
All samples have been manually verified for semantic equivalence across CUDA and HIP and come with executable device/host binaries.
๐ License
Released under the MIT license.
๐ Useful Links
- ๐ค Hugging Face Collection: CASS on Hugging Face
- ๐ Code & Tools: GitHub Repository
- Paper: Arxiv CASS