Datasets:

Formats:
json
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:

Add computer-use-agents task category, link project page

#2
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +20 -11
README.md CHANGED
@@ -1,25 +1,26 @@
1
  ---
2
- license: apache-2.0
3
- task_categories:
4
- - question-answering
5
- - multiple-choice
6
  language:
7
  - en
 
8
  size_categories:
9
  - n<1K
 
 
 
 
 
10
  configs:
11
  - config_name: benchmark
12
  data_files:
13
  - split: test
14
  path: dataset.json
15
- paperswithcode_id: mapeval-api
16
  tags:
17
  - geospatial
18
  ---
19
 
20
  # MapEval-API
21
 
22
- [MapEval](https://arxiv.org/abs/2501.00316)-API is created using [MapQaTor](https://arxiv.org/abs/2412.21015).
23
 
24
  # Usage
25
 
@@ -34,17 +35,25 @@ for item in ds["test"]:
34
  # Start with a clear task description
35
  prompt = (
36
  "You are a highly intelligent assistant. "
37
- "Answer the multiple-choice question by selecting the correct option.\n\n"
38
- "Question:\n" + item["question"] + "\n\n"
39
- "Options:\n"
 
 
 
 
 
 
40
  )
41
 
42
  # List the options more clearly
43
  for i, option in enumerate(item["options"], start=1):
44
- prompt += f"{i}. {option}\n"
 
45
 
46
  # Add a concluding sentence to encourage selection of the answer
47
- prompt += "\nSelect the best option by choosing its number."
 
48
 
49
  # Use the prompt as needed
50
  print(prompt) # Replace with your processing logic
 
1
  ---
 
 
 
 
2
  language:
3
  - en
4
+ license: apache-2.0
5
  size_categories:
6
  - n<1K
7
+ task_categories:
8
+ - question-answering
9
+ - multiple-choice
10
+ - computer-use-agents
11
+ paperswithcode_id: mapeval-api
12
  configs:
13
  - config_name: benchmark
14
  data_files:
15
  - split: test
16
  path: dataset.json
 
17
  tags:
18
  - geospatial
19
  ---
20
 
21
  # MapEval-API
22
 
23
+ [MapEval](https://arxiv.org/abs/2501.00316)-API is created using [MapQaTor](https://arxiv.org/abs/2412.21015). [Project Page](https://mapeval.github.io/)
24
 
25
  # Usage
26
 
 
35
  # Start with a clear task description
36
  prompt = (
37
  "You are a highly intelligent assistant. "
38
+ "Answer the multiple-choice question by selecting the correct option.
39
+
40
+ "
41
+ "Question:
42
+ " + item["question"] + "
43
+
44
+ "
45
+ "Options:
46
+ "
47
  )
48
 
49
  # List the options more clearly
50
  for i, option in enumerate(item["options"], start=1):
51
+ prompt += f"{i}. {option}
52
+ "
53
 
54
  # Add a concluding sentence to encourage selection of the answer
55
+ prompt += "
56
+ Select the best option by choosing its number."
57
 
58
  # Use the prompt as needed
59
  print(prompt) # Replace with your processing logic