deepfashion-inshop / README.md
Jesse-marqo's picture
Update README.md
886fbe2 verified
---
dataset_info:
features:
- name: image
dtype: image
- name: category1
dtype: string
- name: category2
dtype: string
- name: category3
dtype: string
- name: color
dtype: string
- name: description
dtype: string
- name: text
dtype: string
- name: item_ID
dtype: string
splits:
- name: data
num_bytes: 225202378.037
num_examples: 52591
download_size: 216161269
dataset_size: 225202378.037
configs:
- config_name: default
data_files:
- split: data
path: data/data-*
---
**Disclaimer**: We do not own this dataset. DeepFashion dataset is a public dataset which can be accessed through its [website](https://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html).
This dataset was used to evaluate Marqo-FashionCLIP and Marqo-FashionSigLIP - see details below.
# Marqo-FashionSigLIP Model Card
Marqo-FashionSigLIP leverages Generalised Contrastive Learning ([GCL](https://www.marqo.ai/blog/generalized-contrastive-learning-for-multi-modal-retrieval-and-ranking)) which allows the model to be trained on not just text descriptions but also categories, style, colors, materials, keywords and fine-details to provide highly relevant search results on fashion products.
The model was fine-tuned from ViT-B-16-SigLIP (webli).
**Github Page**: [Marqo-FashionCLIP](https://github.com/marqo-ai/marqo-FashionCLIP)
**Blog**: [Marqo Blog](https://www.marqo.ai/blog/search-model-for-fashion)
## Usage
The model can be seamlessly used with [OpenCLIP](https://github.com/mlfoundations/open_clip) by
```python
import open_clip
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
import torch
from PIL import Image
image = preprocess_val(Image.open("docs/fashion-hippo.png")).unsqueeze(0)
text = tokenizer(["a hat", "a t-shirt", "shoes"])
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print("Label probs:", text_probs)
```
## Benchmark Results
Average evaluation results on 6 public multimodal fashion datasets ([Atlas](https://huggingface.co/datasets/Marqo/atlas), [DeepFashion (In-shop)](https://huggingface.co/datasets/Marqo/deepfashion-inshop), [DeepFashion (Multimodal)](https://huggingface.co/datasets/Marqo/deepfashion-multimodal), [Fashion200k](https://huggingface.co/datasets/Marqo/fashion200k), [KAGL](https://huggingface.co/datasets/Marqo/KAGL), and [Polyvore](https://huggingface.co/datasets/Marqo/polyvore)) are reported below:
**Text-To-Image (Averaged across 6 datasets)**
| Model | AvgRecall | Recall@1 | Recall@10 | MRR |
|----------------------------|-------------|------------|-------------|-----------|
| Marqo-FashionSigLIP | **0.231** | **0.121** | **0.340** | **0.239** |
| FashionCLIP2.0 | 0.163 | 0.077 | 0.249 | 0.165 |
| OpenFashionCLIP | 0.132 | 0.060 | 0.204 | 0.135 |
| ViT-B-16-laion2b_s34b_b88k | 0.174 | 0.088 | 0.261 | 0.180 |
| ViT-B-16-SigLIP-webli | 0.212 | 0.111 | 0.314 | 0.214 |
**Category-To-Product (Averaged across 5 datasets)**
| Model | AvgP | P@1 | P@10 | MRR |
|----------------------------|-----------|-----------|-----------|-----------|
| Marqo-FashionSigLIP | **0.737** | **0.758** | **0.716** | **0.812** |
| FashionCLIP2.0 | 0.684 | 0.681 | 0.686 | 0.741 |
| OpenFashionCLIP | 0.646 | 0.653 | 0.639 | 0.720 |
| ViT-B-16-laion2b_s34b_b88k | 0.662 | 0.673 | 0.652 | 0.743 |
| ViT-B-16-SigLIP-webli | 0.688 | 0.690 | 0.685 | 0.751 |
**Sub-Category-To-Product (Averaged across 4 datasets)**
| Model | AvgP | P@1 | P@10 | MRR |
|----------------------------|-----------|-----------|-----------|-----------|
| Marqo-FashionSigLIP | **0.725** | **0.767** | **0.683** | **0.811** |
| FashionCLIP2.0 | 0.657 | 0.676 | 0.638 | 0.733 |
| OpenFashionCLIP | 0.598 | 0.619 | 0.578 | 0.689 |
| ViT-B-16-laion2b_s34b_b88k | 0.638 | 0.651 | 0.624 | 0.712 |
| ViT-B-16-SigLIP-webli | 0.643 | 0.643 | 0.643 | 0.726 |
When using the datset, cite the original work.
```
@inproceedings{liu2016deepfashion,
author = {Liu, Ziwei and Luo, Ping and Qiu, Shi and Wang, Xiaogang and Tang, Xiaoou},
title = {DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations},
booktitle = {Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = June,
year = {2016}
}
```