Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Size:
100K - 1M
ArXiv:
Tags:
language-identification
License:
metadata
annotations_creators:
- no-annotation
language_creators:
- found
language:
- ace
- af
- als
- am
- an
- ang
- ar
- arz
- as
- ast
- av
- ay
- az
- azb
- ba
- bar
- bcl
- be
- bg
- bho
- bjn
- bn
- bo
- bpy
- br
- bs
- bxr
- ca
- cbk
- cdo
- ce
- ceb
- chr
- ckb
- co
- crh
- cs
- csb
- cv
- cy
- da
- de
- diq
- dsb
- dty
- dv
- egl
- el
- en
- eo
- es
- et
- eu
- ext
- fa
- fi
- fo
- fr
- frp
- fur
- fy
- ga
- gag
- gd
- gl
- glk
- gn
- gu
- gv
- ha
- hak
- he
- hi
- hif
- hr
- hsb
- ht
- hu
- hy
- ia
- id
- ie
- ig
- ilo
- io
- is
- it
- ja
- jam
- jbo
- jv
- ka
- kaa
- kab
- kbd
- kk
- km
- kn
- ko
- koi
- kok
- krc
- ksh
- ku
- kv
- kw
- ky
- la
- lad
- lb
- lez
- lg
- li
- lij
- lmo
- ln
- lo
- lrc
- lt
- ltg
- lv
- lzh
- mai
- map
- mdf
- mg
- mhr
- mi
- min
- mk
- ml
- mn
- mr
- mrj
- ms
- mt
- mwl
- my
- myv
- mzn
- nan
- nap
- nb
- nci
- nds
- ne
- new
- nl
- nn
- nrm
- nso
- nv
- oc
- olo
- om
- or
- os
- pa
- pag
- pam
- pap
- pcd
- pdc
- pfl
- pl
- pnb
- ps
- pt
- qu
- rm
- ro
- roa
- ru
- rue
- rup
- rw
- sa
- sah
- sc
- scn
- sco
- sd
- sgs
- sh
- si
- sk
- sl
- sme
- sn
- so
- sq
- sr
- srn
- stq
- su
- sv
- sw
- szl
- ta
- tcy
- te
- tet
- tg
- th
- tk
- tl
- tn
- to
- tr
- tt
- tyv
- udm
- ug
- uk
- ur
- uz
- vec
- vep
- vi
- vls
- vo
- vro
- wa
- war
- wo
- wuu
- xh
- xmf
- yi
- yo
- zea
- zh
license:
- odbl
multilinguality:
- multilingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-classification
task_ids: []
paperswithcode_id: wili-2018
pretty_name: Wili2018
language_bcp47:
- be-tarask
- map-bms
- nds-nl
- roa-tara
- zh-yue
tags:
- language-identification
dataset_info:
config_name: WiLI-2018 dataset
features:
- name: sentence
dtype: string
- name: label
dtype:
class_label:
names:
'0': cdo
'1': glk
'2': jam
'3': lug
'4': san
'5': rue
'6': wol
'7': new
'8': mwl
'9': bre
'10': ara
'11': hye
'12': xmf
'13': ext
'14': cor
'15': yor
'16': div
'17': asm
'18': lat
'19': cym
'20': hif
'21': ace
'22': kbd
'23': tgk
'24': rus
'25': nso
'26': mya
'27': msa
'28': ava
'29': cbk
'30': urd
'31': deu
'32': swa
'33': pus
'34': bxr
'35': udm
'36': csb
'37': yid
'38': vro
'39': por
'40': pdc
'41': eng
'42': tha
'43': hat
'44': lmo
'45': pag
'46': jav
'47': chv
'48': nan
'49': sco
'50': kat
'51': bho
'52': bos
'53': kok
'54': oss
'55': mri
'56': fry
'57': cat
'58': azb
'59': kin
'60': hin
'61': sna
'62': dan
'63': egl
'64': mkd
'65': ron
'66': bul
'67': hrv
'68': som
'69': pam
'70': nav
'71': ksh
'72': nci
'73': khm
'74': sgs
'75': srn
'76': bar
'77': cos
'78': ckb
'79': pfl
'80': arz
'81': roa-tara
'82': fra
'83': mai
'84': zh-yue
'85': guj
'86': fin
'87': kir
'88': vol
'89': hau
'90': afr
'91': uig
'92': lao
'93': swe
'94': slv
'95': kor
'96': szl
'97': srp
'98': dty
'99': nrm
'100': dsb
'101': ind
'102': wln
'103': pnb
'104': ukr
'105': bpy
'106': vie
'107': tur
'108': aym
'109': lit
'110': zea
'111': pol
'112': est
'113': scn
'114': vls
'115': stq
'116': gag
'117': grn
'118': kaz
'119': ben
'120': pcd
'121': bjn
'122': krc
'123': amh
'124': diq
'125': ltz
'126': ita
'127': kab
'128': bel
'129': ang
'130': mhr
'131': che
'132': koi
'133': glv
'134': ido
'135': fao
'136': bak
'137': isl
'138': bcl
'139': tet
'140': jpn
'141': kur
'142': map-bms
'143': tyv
'144': olo
'145': arg
'146': ori
'147': lim
'148': tel
'149': lin
'150': roh
'151': sqi
'152': xho
'153': mlg
'154': fas
'155': hbs
'156': tam
'157': aze
'158': lad
'159': nob
'160': sin
'161': gla
'162': nap
'163': snd
'164': ast
'165': mal
'166': mdf
'167': tsn
'168': nds
'169': tgl
'170': nno
'171': sun
'172': lzh
'173': jbo
'174': crh
'175': pap
'176': oci
'177': hak
'178': uzb
'179': zho
'180': hsb
'181': sme
'182': mlt
'183': vep
'184': lez
'185': nld
'186': nds-nl
'187': mrj
'188': spa
'189': ceb
'190': ina
'191': heb
'192': hun
'193': que
'194': kaa
'195': mar
'196': vec
'197': frp
'198': ell
'199': sah
'200': eus
'201': ces
'202': slk
'203': chr
'204': lij
'205': nep
'206': srd
'207': ilo
'208': be-tarask
'209': bod
'210': orm
'211': war
'212': glg
'213': mon
'214': gle
'215': min
'216': ibo
'217': ile
'218': epo
'219': lav
'220': lrc
'221': als
'222': mzn
'223': rup
'224': fur
'225': tat
'226': myv
'227': pan
'228': ton
'229': kom
'230': wuu
'231': tcy
'232': tuk
'233': kan
'234': ltg
splits:
- name: train
num_bytes: 65408153
num_examples: 117500
- name: test
num_bytes: 66491212
num_examples: 117500
download_size: 91718265
dataset_size: 131899365
configs:
- config_name: WiLI-2018 dataset
data_files:
- split: train
path: WiLI-2018 dataset/train-*
- split: test
path: WiLI-2018 dataset/test-*
default: true
Dataset Card for wili_2018
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: https://zenodo.org/record/841984
- Repository: [Needs More Information]
- Paper: https://arxiv.org/pdf/1801.07779
- Leaderboard: [Needs More Information]
- Point of Contact: Thoma, Martin (Email: [email protected])
Dataset Summary
WiLI-2018, the Wikipedia language identification benchmark dataset, contains 235000 paragraphs of 235 languages. The dataset is balanced and a train-test split is provided.
Supported Tasks and Leaderboards
[Needs More Information]
Languages
235 Different Languages
Dataset Structure
Data Instances
{
'label': 207,
'sentence': 'Ti Turkia ket maysa a demokrata, sekular, unitario, batay-linteg a republika nga addaan ti taga-ugma a tinawtawid a kultura. Ti Turkia ket umadadu a naipatipon iti Laud babaen ti panagkameng kadagiti organisasion a kas ti Konsilo iti Europa, NATO, OECD, OSCE ken ti G-20 a dagiti kangrunaan nga ekonomia. Ti Turkia ket nangrugi a nakitulag ti napno a panagkameng iti Kappon ti Europa idi 2005, nga isu ket maysa idin a kumaduaan a kameng iti Europeano a Komunidad ti Ekonomia manipud idi 1963 ken nakadanon ti maysa a tulagan ti kappon ti aduana idi 1995. Ti Turkia ket nagtaraken iti asideg a kultural, politikal, ekonomiko ken industria a panakibiang iti Tengnga a Daya, dagiti Turko nga estado iti Tengnga nga Asia ken dagiti pagilian ti Aprika babaen ti panagkameng kadagiti organisasion a kas ti Turko a Konsilo, Nagsaupan nga Administrasion iti Turko nga Arte ken Kultura, Organisasion iti Islamiko a Panagtitinnulong ken ti Organisasion ti Ekonomiko a Panagtitinnulong.'
}
Data Fields
[Needs More Information]
Data Splits
175000 lines of text each for train and test data.
Dataset Creation
Curation Rationale
[Needs More Information]
Source Data
Initial Data Collection and Normalization
[Needs More Information]
Who are the source language producers?
[Needs More Information]
Annotations
Annotation process
[Needs More Information]
Who are the annotators?
[Needs More Information]
Personal and Sensitive Information
[Needs More Information]
Considerations for Using the Data
Social Impact of Dataset
[Needs More Information]
Discussion of Biases
[Needs More Information]
Other Known Limitations
[Needs More Information]
Additional Information
Dataset Curators
The dataset was initially created by Thomas Martin
Licensing Information
ODC Open Database License v1.0
Citation Information
@dataset{thoma_martin_2018_841984,
author = {Thoma, Martin},
title = {{WiLI-2018 - Wikipedia Language Identification database}},
month = jan,
year = 2018,
publisher = {Zenodo},
version = {1.0.0},
doi = {10.5281/zenodo.841984},
url = {https://doi.org/10.5281/zenodo.841984}
}
Contributions
Thanks to @Shubhambindal2017 for adding this dataset.