|
--- |
|
license: apache-2.0 |
|
task_categories: |
|
- object-detection |
|
language: |
|
- en |
|
pretty_name: Detection Moving MNIST (Easy) |
|
size_categories: |
|
- 100K<n<1M |
|
--- |
|
|
|
|
|
# Detection Moving MNIST (Easy) |
|
|
|
| | | |
|
|:--------:|:---------:| |
|
|  |  | |
|
|
|
|
|
### Description |
|
|
|
**Repository:** https://github.com/maxploter/detection-moving-mnist |
|
|
|
|
|
A synthetic video dataset for object detection and tracking, featuring moving MNIST digits with: |
|
- 1-10 digits per sequence |
|
- Linear trajectories with small random translations |
|
- 128x128 resolution grayscale frames |
|
- 20 frames per video sequence |
|
- Digit size 28x28 |
|
- Per-frame annotations including: |
|
- Digit labels (0-9) |
|
- Center coordinates (x,y) |
|
|
|
### Supported Tasks |
|
|
|
- Object detection in video |
|
- Multi-object tracking |
|
- Video understanding |
|
- Spatiotemporal modeling |
|
|
|
## Structure |
|
|
|
### Data Instances |
|
|
|
A typical example contains: |
|
```python |
|
{ |
|
'video': [video frames], # Array of shape (20, 128, 128, 3) |
|
'targets': [{ |
|
'labels': List[int], # Digit classes present |
|
'center_points': List[Tuple], # (x,y) coordinates |
|
} for each frame] |
|
} |
|
``` |
|
|
|
### Data Format |
|
- Arrow |
|
- Total dataset size: approximately {PLACEHOLDER} GB |
|
- Frame rate: 10 fps |
|
|
|
## Data Splits |
|
|
|
| Split | Size | |
|
|--------|----------| |
|
| Train | 60,000 | |
|
| Test | 10,000 | |
|
|
|
## Dataset Creation |
|
|
|
### Source Data |
|
- Original MNIST Dataset: http://yann.lecun.com/exdb/mnist/ |
|
- Synthetic Generation: Custom Moving MNIST implementation |
|
|
|
## Annotations |
|
|
|
- Automatically generated during sequence creation |
|
- Includes digit classes and trajectory coordinates |
|
|
|
### Simulation Parameters (Easy Mode) |
|
``` |
|
{ |
|
"angle": (0, 0), # No rotation |
|
"translate": ((-5, 5), (-5, 5)), # Small random translations |
|
"scale": (1, 1), # Fixed size |
|
"shear": (0, 0), # No deformation |
|
"num_digits": (1,2,3,4,5,6,7,8,9,10) # Variable object count |
|
} |
|
``` |
|
|
|
## Dataset Statistics |
|
|
|
| Statistic | Value | |
|
|------------------------------|-------------------| |
|
| Mean (Train) | 0.023958550628466375 | |
|
| Standard Deviation (Train) | 0.14140212075592035 | |
|
| Mean (Test) | 0.024210869560423308 | |
|
| Standard Deviation (Test) | 0.1423791946229605 | |
|
|
|
You can check those numbers in the file: [dataset_stats](./dataset_stats.json) |
|
|
|
 |
|
 |
|
|
|
 |
|
 |
|
|
|
## Using the Dataset |
|
|
|
### Basic Loading |
|
```python |
|
from datasets import load_dataset |
|
dataset = load_dataset("Max-Ploter/detection-moving-mnist-easy") |
|
``` |
|
|
|
### Visualization Example |
|
```python |
|
import matplotlib.pyplot as plt |
|
import matplotlib.patches as patches |
|
|
|
# Load a single example |
|
example = dataset['train'][0] |
|
frames = example['video'] |
|
annotations = example['targets'] |
|
|
|
# Visualize first frame with bounding boxes |
|
plt.figure(figsize=(8, 8)) |
|
plt.imshow(frames[0], cmap='gray') |
|
|
|
# Draw bounding boxes |
|
for label, center in zip(annotations[0]['labels'], annotations[0]['center_points']): |
|
x, y = center |
|
# Assuming digit size of approximately 28x28 pixels |
|
rect = patches.Rectangle((x-14, y-14), 28, 28, linewidth=1, |
|
edgecolor='r', facecolor='none') |
|
plt.gca().add_patch(rect) |
|
plt.text(x, y-20, str(label), color='white', fontsize=12, |
|
bbox=dict(facecolor='red', alpha=0.5)) |
|
|
|
plt.title('Frame 0 with Object Detection') |
|
plt.axis('off') |
|
plt.show() |
|
``` |
|
|
|
## Limitations |
|
|
|
- Synthetic dataset with simple black backgrounds |
|
- Linear trajectories may not represent complex real-world motion |
|
- No complex occlusion handling or object interactions |
|
- No lighting variations or perspective transformations |
|
|
|
## Related Datasets |
|
|
|
- Original Moving MNIST: http://www.cs.toronto.edu/~nitish/unsupervised_video/ |
|
|
|
|