|
--- |
|
language: |
|
- en |
|
tags: |
|
- recommendation |
|
- reviews |
|
size_categories: |
|
- 10B<n<100B |
|
dataset_info: |
|
config_name: raw_meta_All_Beauty |
|
features: |
|
- name: main_category |
|
dtype: string |
|
- name: title |
|
dtype: string |
|
- name: average_rating |
|
dtype: float64 |
|
- name: rating_number |
|
dtype: int64 |
|
- name: features |
|
sequence: string |
|
- name: description |
|
sequence: string |
|
- name: price |
|
dtype: string |
|
- name: images |
|
sequence: |
|
- name: hi_res |
|
dtype: string |
|
- name: large |
|
dtype: string |
|
- name: thumb |
|
dtype: string |
|
- name: variant |
|
dtype: string |
|
- name: videos |
|
sequence: |
|
- name: title |
|
dtype: string |
|
- name: url |
|
dtype: string |
|
- name: user_id |
|
dtype: string |
|
- name: store |
|
dtype: string |
|
- name: categories |
|
sequence: string |
|
- name: details |
|
dtype: string |
|
- name: parent_asin |
|
dtype: string |
|
- name: bought_together |
|
dtype: string |
|
- name: subtitle |
|
dtype: string |
|
- name: author |
|
dtype: string |
|
splits: |
|
- name: full |
|
num_bytes: 172622243 |
|
num_examples: 112590 |
|
download_size: 59635138 |
|
dataset_size: 172622243 |
|
configs: |
|
- config_name: raw_meta_All_Beauty |
|
data_files: |
|
- split: full |
|
path: raw_meta_All_Beauty/full-* |
|
--- |
|
|
|
# Amazon Reviews 2023 |
|
|
|
**Please also visit [amazon-reviews-2023.github.io/](https://amazon-reviews-2023.github.io/) for more details, loading scripts, and preprocessed benchmark files.** |
|
|
|
**[April 7, 2024]** We add two useful files: |
|
|
|
1. `all_categories.txt`: 34 lines (33 categories + "Unknown"), each line contains a category name. |
|
2. `asin2category.json`: A mapping between `parent_asin` (item ID) to its corresponding category name. |
|
|
|
--- |
|
|
|
<!-- Provide a quick summary of the dataset. --> |
|
|
|
This is a large-scale **Amazon Reviews** dataset, collected in **2023** by [McAuley Lab](https://cseweb.ucsd.edu/~jmcauley/), and it includes rich features such as: |
|
1. **User Reviews** (*ratings*, *text*, *helpfulness votes*, etc.); |
|
2. **Item Metadata** (*descriptions*, *price*, *raw image*, etc.); |
|
3. **Links** (*user-item* / *bought together* graphs). |
|
|
|
## What's New? |
|
|
|
In the Amazon Reviews'23, we provide: |
|
|
|
1. **Larger Dataset:** We collected 571.54M reviews, 245.2% larger than the last version; |
|
2. **Newer Interactions:** Current interactions range from May. 1996 to Sep. 2023; |
|
3. **Richer Metadata:** More descriptive features in item metadata; |
|
4. **Fine-grained Timestamp:** Interaction timestamp at the second or finer level; |
|
5. **Cleaner Processing:** Cleaner item metadata than previous versions; |
|
6. **Standard Splitting:** Standard data splits to encourage RecSys benchmarking. |
|
|
|
## Basic Statistics |
|
|
|
> We define the <b>#R_Tokens</b> as the number of [tokens](https://pypi.org/project/tiktoken/) in user reviews and <b>#M_Tokens</b> as the number of [tokens](https://pypi.org/project/tiktoken/) if treating the dictionaries of item attributes as strings. We emphasize them as important statistics in the era of LLMs. |
|
|
|
> We count the number of items based on user reviews rather than item metadata files. Note that some items lack metadata. |
|
|
|
### Compared to Previous Versions |
|
|
|
| Year | #Review | #User | #Item | #R_Token | #M_Token | #Domain | Timespan | |
|
| ----------- | ---------: | -------: | -------: | ---------: | ------------: | ------------: | ------------: | |
|
| [2013](https://snap.stanford.edu/data/web-Amazon-links.html) | 34.69M | 6.64M | 2.44M | 5.91B | -- | 28 | Jun'96 - Mar'13 | |
|
| [2014](https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html) | 82.83M | 21.13M | 9.86M | 9.16B | 4.14B | 24 | May'96 - Jul'14 | |
|
| [2018](https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/) | 233.10M | 43.53M | 15.17M | 15.73B | 7.99B | 29 | May'96 - Oct'18 | |
|
| <b>[2023](https://)</b> | **571.54M** | **54.51M** | **48.19M** | **30.14B** | **30.78B** | **33** | **May'96 - Sep'23** | |
|
|
|
|
|
### Grouped by Category |
|
|
|
| Category | #User | #Item | #Rating | #R_Token | #M_Token | Download | |
|
| ------------------------ | ------: | ------: | --------: | -------: | -------: | ------------------------------: | |
|
| All_Beauty | 632.0K | 112.6K | 701.5K | 31.6M | 74.1M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/All_Beauty.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_All_Beauty.jsonl.gz' download> meta </a> | |
|
| Amazon_Fashion | 2.0M | 825.9K | 2.5M | 94.9M | 510.5M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Amazon_Fashion.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Amazon_Fashion.jsonl.gz' download> meta </a> | |
|
| Appliances | 1.8M | 94.3K | 2.1M | 92.8M | 95.3M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Appliances.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Appliances.jsonl.gz' download> meta </a> | |
|
| Arts_Crafts_and_Sewing | 4.6M | 801.3K | 9.0M | 350.0M | 695.4M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Arts_Crafts_and_Sewing.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Arts_Crafts_and_Sewing.jsonl.gz' download> meta </a> | |
|
| Automotive | 8.0M | 2.0M | 20.0M | 824.9M | 1.7B | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Automotive.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Automotive.jsonl.gz' download> meta </a> | |
|
| Baby_Products | 3.4M | 217.7K | 6.0M | 323.3M | 218.6M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Baby_Products.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Baby_Products.jsonl.gz' download> meta </a> | |
|
| Beauty_and_Personal_Care | 11.3M | 1.0M | 23.9M | 1.1B | 913.7M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Beauty_and_Personal_Care.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Beauty_and_Personal_Care.jsonl.gz' download> meta </a> | |
|
| Books | 10.3M | 4.4M | 29.5M | 2.9B | 3.7B | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Books.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Books.jsonl.gz' download> meta </a> | |
|
| CDs_and_Vinyl | 1.8M | 701.7K | 4.8M | 514.8M | 287.5M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/CDs_and_Vinyl.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_CDs_and_Vinyl.jsonl.gz' download> meta </a> | |
|
| Cell_Phones_and_Accessories | 11.6M | 1.3M | 20.8M | 935.4M | 1.3B | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Cell_Phones_and_Accessories.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Cell_Phones_and_Accessories.jsonl.gz' download> meta </a> | |
|
| Clothing_Shoes_and_Jewelry | 22.6M | 7.2M | 66.0M | 2.6B | 5.9B | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Clothing_Shoes_and_Jewelry.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Clothing_Shoes_and_Jewelry.jsonl.gz' download> meta </a> | |
|
| Digital_Music | 101.0K | 70.5K | 130.4K | 11.4M | 22.3M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Digital_Music.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Digital_Music.jsonl.gz' download> meta </a> | |
|
| Electronics | 18.3M | 1.6M | 43.9M | 2.7B | 1.7B | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Electronics.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Electronics.jsonl.gz' download> meta </a> | |
|
| Gift_Cards | 132.7K | 1.1K | 152.4K | 3.6M | 630.0K | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Gift_Cards.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Gift_Cards.jsonl.gz' download> meta </a> | |
|
| Grocery_and_Gourmet_Food | 7.0M | 603.2K | 14.3M | 579.5M | 462.8M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Grocery_and_Gourmet_Food.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Grocery_and_Gourmet_Food.jsonl.gz' download> meta </a> | |
|
| Handmade_Products | 586.6K | 164.7K | 664.2K | 23.3M | 125.8M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Handmade_Products.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Handmade_Products.jsonl.gz' download> meta </a> | |
|
| Health_and_Household | 12.5M | 797.4K | 25.6M | 1.2B | 787.2M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Health_and_Household.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Health_and_Household.jsonl.gz' download> meta </a> | |
|
| Health_and_Personal_Care | 461.7K | 60.3K | 494.1K | 23.9M | 40.3M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Health_and_Personal_Care.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Health_and_Personal_Care.jsonl.gz' download> meta </a> | |
|
| Home_and_Kitchen | 23.2M | 3.7M | 67.4M | 3.1B | 3.8B | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Home_and_Kitchen.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Home_and_Kitchen.jsonl.gz' download> meta </a> | |
|
| Industrial_and_Scientific | 3.4M | 427.5K | 5.2M | 235.2M | 363.1M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Industrial_and_Scientific.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Industrial_and_Scientific.jsonl.gz' download> meta </a> | |
|
| Kindle_Store | 5.6M | 1.6M | 25.6M | 2.2B | 1.7B | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Kindle_Store.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Kindle_Store.jsonl.gz' download> meta </a> | |
|
| Magazine_Subscriptions | 60.1K | 3.4K | 71.5K | 3.8M | 1.3M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Magazine_Subscriptions.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Magazine_Subscriptions.jsonl.gz' download> meta </a> | |
|
| Movies_and_TV | 6.5M | 747.8K | 17.3M | 1.0B | 415.5M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Movies_and_TV.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Movies_and_TV.jsonl.gz' download> meta </a> | |
|
| Musical_Instruments | 1.8M | 213.6K | 3.0M | 182.2M | 200.1M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Musical_Instruments.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Musical_Instruments.jsonl.gz' download> meta </a> | |
|
| Office_Products | 7.6M | 710.4K | 12.8M | 574.7M | 682.8M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Office_Products.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Office_Products.jsonl.gz' download> meta </a> | |
|
| Patio_Lawn_and_Garden | 8.6M | 851.7K | 16.5M | 781.3M | 875.1M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Patio_Lawn_and_Garden.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Patio_Lawn_and_Garden.jsonl.gz' download> meta </a> | |
|
| Pet_Supplies | 7.8M | 492.7K | 16.8M | 905.9M | 511.0M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Pet_Supplies.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Pet_Supplies.jsonl.gz' download> meta </a> | |
|
| Software | 2.6M | 89.2K | 4.9M | 179.4M | 67.1M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Software.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Software.jsonl.gz' download> meta </a> | |
|
| Sports_and_Outdoors | 10.3M | 1.6M | 19.6M | 986.2M | 1.3B | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Sports_and_Outdoors.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Sports_and_Outdoors.jsonl.gz' download> meta </a> | |
|
| Subscription_Boxes | 15.2K | 641 | 16.2K | 1.0M | 447.0K | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Subscription_Boxes.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Subscription_Boxes.jsonl.gz' download> meta </a> | |
|
| Tools_and_Home_Improvement | 12.2M | 1.5M | 27.0M | 1.3B | 1.5B | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Tools_and_Home_Improvement.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Tools_and_Home_Improvement.jsonl.gz' download> meta </a> | |
|
| Toys_and_Games | 8.1M | 890.7K | 16.3M | 707.9M | 848.3M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Toys_and_Games.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Toys_and_Games.jsonl.gz' download> meta </a> | |
|
| Video_Games | 2.8M | 137.2K | 4.6M | 347.9M | 137.3M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Video_Games.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Video_Games.jsonl.gz' download> meta </a> | |
|
| Unknown | 23.1M | 13.2M | 63.8M | 3.3B | 232.8M | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Unknown.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Unknown.jsonl.gz' download> meta </a> | |
|
|
|
|
|
> Check Pure ID files and corresponding data splitting strategies in <b>[Common Data Processing](https://amazon-reviews-2023.github.io/data_processing/index.html)</b> section. |
|
|
|
## Quick Start |
|
|
|
### Load User Reviews |
|
|
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("McAuley-Lab/Amazon-Reviews-2023", "raw_review_All_Beauty", trust_remote_code=True) |
|
print(dataset["full"][0]) |
|
``` |
|
|
|
```json |
|
{'rating': 5.0, |
|
'title': 'Such a lovely scent but not overpowering.', |
|
'text': "This spray is really nice. It smells really good, goes on really fine, and does the trick. I will say it feels like you need a lot of it though to get the texture I want. I have a lot of hair, medium thickness. I am comparing to other brands with yucky chemicals so I'm gonna stick with this. Try it!", |
|
'images': [], |
|
'asin': 'B00YQ6X8EO', |
|
'parent_asin': 'B00YQ6X8EO', |
|
'user_id': 'AGKHLEW2SOWHNMFQIJGBECAF7INQ', |
|
'timestamp': 1588687728923, |
|
'helpful_vote': 0, |
|
'verified_purchase': True} |
|
``` |
|
|
|
### Load Item Metadata |
|
|
|
```python |
|
dataset = load_dataset("McAuley-Lab/Amazon-Reviews-2023", "raw_meta_All_Beauty", split="full", trust_remote_code=True) |
|
print(dataset[0]) |
|
``` |
|
|
|
```json |
|
{'main_category': 'All Beauty', |
|
'title': 'Howard LC0008 Leather Conditioner, 8-Ounce (4-Pack)', |
|
'average_rating': 4.8, |
|
'rating_number': 10, |
|
'features': [], |
|
'description': [], |
|
'price': 'None', |
|
'images': {'hi_res': [None, |
|
'https://m.media-amazon.com/images/I/71i77AuI9xL._SL1500_.jpg'], |
|
'large': ['https://m.media-amazon.com/images/I/41qfjSfqNyL.jpg', |
|
'https://m.media-amazon.com/images/I/41w2yznfuZL.jpg'], |
|
'thumb': ['https://m.media-amazon.com/images/I/41qfjSfqNyL._SS40_.jpg', |
|
'https://m.media-amazon.com/images/I/41w2yznfuZL._SS40_.jpg'], |
|
'variant': ['MAIN', 'PT01']}, |
|
'videos': {'title': [], 'url': [], 'user_id': []}, |
|
'store': 'Howard Products', |
|
'categories': [], |
|
'details': '{"Package Dimensions": "7.1 x 5.5 x 3 inches; 2.38 Pounds", "UPC": "617390882781"}', |
|
'parent_asin': 'B01CUPMQZE', |
|
'bought_together': None, |
|
'subtitle': None, |
|
'author': None} |
|
``` |
|
|
|
> Check data loading examples and Huggingface datasets APIs in <b>[Common Data Loading](https://amazon-reviews-2023.github.io/data_loading/index.html)</b> section. |
|
|
|
|
|
## Data Fields |
|
|
|
### For User Reviews |
|
|
|
| Field | Type | Explanation | |
|
| ----- | ---- | ----------- | |
|
| rating | float | Rating of the product (from 1.0 to 5.0). | |
|
| title | str | Title of the user review. | |
|
| text | str | Text body of the user review. | |
|
| images | list | Images that users post after they have received the product. Each image has different sizes (small, medium, large), represented by the small_image_url, medium_image_url, and large_image_url respectively. | |
|
| asin | str | ID of the product. | |
|
| parent_asin | str | Parent ID of the product. Note: Products with different colors, styles, sizes usually belong to the same parent ID. The “asin” in previous Amazon datasets is actually parent ID. <b>Please use parent ID to find product meta.</b> | |
|
| user_id | str | ID of the reviewer | |
|
| timestamp | int | Time of the review (unix time) | |
|
| verified_purchase | bool | User purchase verification | |
|
| helpful_vote | int | Helpful votes of the review | |
|
|
|
### For Item Metadata |
|
|
|
| Field | Type | Explanation | |
|
| ----- | ---- | ----------- | |
|
| main_category | str | Main category (i.e., domain) of the product. | |
|
| title | str | Name of the product. | |
|
| average_rating | float | Rating of the product shown on the product page. | |
|
| rating_number | int | Number of ratings in the product. | |
|
| features | list | Bullet-point format features of the product. | |
|
| description | list | Description of the product. | |
|
| price | float | Price in US dollars (at time of crawling). | |
|
| images | list | Images of the product. Each image has different sizes (thumb, large, hi_res). The “variant” field shows the position of image. | |
|
| videos | list | Videos of the product including title and url. | |
|
| store | str | Store name of the product. | |
|
| categories | list | Hierarchical categories of the product. | |
|
| details | dict | Product details, including materials, brand, sizes, etc. | |
|
| parent_asin | str | Parent ID of the product. | |
|
| bought_together | list | Recommended bundles from the websites. | |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@article{hou2024bridging, |
|
title={Bridging Language and Items for Retrieval and Recommendation}, |
|
author={Hou, Yupeng and Li, Jiacheng and He, Zhankui and Yan, An and Chen, Xiusi and McAuley, Julian}, |
|
journal={arXiv preprint arXiv:2403.03952}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
## Contact Us |
|
|
|
- **Report Bugs**: To report bugs in the dataset, please file an issue on our [GitHub](https://github.com/hyp1231/AmazonReviews2023/issues/new). |
|
|
|
- **Others**: For research collaborations or other questions, please email **yphou AT ucsd.edu**. |