dronescapes-extended / scripts /dronescapes_viewer /dronescapes_representations.py
Meehai's picture
upgrade to vre 1.9.0
66dd702
import sys
from pathlib import Path
from vre.representations import Representation
from vre_repository.color.rgb import RGB
from vre_repository.color.hsv import HSV
from vre_repository.depth import DepthRepresentation
from vre_repository.normals import NormalsRepresentation
from vre_repository.edges import EdgesRepresentation
# from vre_repository.optical_flow import OpticalFlowRepresentation
from vre_repository.semantic_segmentation import SemanticRepresentation
def get_gt_tasks() -> dict[str, Representation]:
color_map = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255],
[255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]
classes_8 = ["land", "forest", "residential", "road", "little-objects", "water", "sky", "hill"]
tasks = [
SemanticRepresentation("semantic_output", classes=classes_8, color_map=color_map, disk_data_argmax=True),
DepthRepresentation("depth_output", min_depth=0, max_depth=300),
NormalsRepresentation("camera_normals_output"),
]
return {t.name: t for t in tasks}
def get_other_tasks(include_semantics_original: bool, include_ci: bool) -> dict[str, Representation]:
sys.path.append(str(Path(__file__).parents[1] / "semantic_mapper"))
from semantic_mapper import (m2f_mapillary, m2f_coco, m2f_r50_mapillary,
BinaryMapper, mapillary_classes, coco_classes)
tasks = [
rgb := RGB("rgb"),
# OpticalFlowRepresentation("opticalflow_rife"),
DepthRepresentation("depth_marigold", min_depth=0, max_depth=1),
NormalsRepresentation("normals_svd(depth_marigold)")
]
if include_semantics_original:
tasks.extend([m2f_mapillary, m2f_coco, m2f_r50_mapillary])
if include_ci:
transportation_mapping = [
{
"others": [c for c in mapillary_classes if c not in
(cls := ["Bike Lane", "Crosswalk - Plain", "Curb Cut", "Parking", "Rail Track", "Road",
"Service Lane", "Sidewalk", "Bridge", "Tunnel", "Bicyclist", "Motorcyclist",
"Other Rider", "Lane Marking - Crosswalk", "Lane Marking - General",
"Traffic Light", "Traffic Sign (Back)", "Traffic Sign (Front)", "Bicycle", "Boat",
"Bus", "Car", "Caravan", "Motorcycle", "On Rails", "Other Vehicle", "Trailer",
"Truck", "Wheeled Slow", "Car Mount", "Ego Vehicle"])],
"transportation": cls,
},
{
"others": [c for c in coco_classes if c not in
(cls := ["bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat",
"road", "railroad", "pavement-merged"])],
"transportation": cls,
},
]
tasks.extend([
HSV("hsv", [rgb]),
DepthRepresentation("depth_dpt", min_depth=0, max_depth=1),
EdgesRepresentation("edges_dexined"),
BinaryMapper("transportation_ci", [m2f_mapillary, m2f_coco], transportation_mapping, mode="at_least_one"),
])
return {t.name: t for t in tasks}
def get_dronescapes_task_types(include_semantics_original: bool, include_gt: bool,
include_ci: bool) -> dict[str, Representation]:
sys.path.append(str(Path(__file__).parents[1] / "semantic_mapper"))
from semantic_mapper import get_new_semantic_mapped_tasks
res = {
**get_new_semantic_mapped_tasks(),
**get_other_tasks(include_semantics_original, include_ci),
**(get_gt_tasks() if include_gt else {}),
}
return res
dronescapes_task_types = get_dronescapes_task_types(include_semantics_original=False, include_gt=True, include_ci=False)