|
import sys |
|
from vre.readers import MultiTaskDataset |
|
from vre.representations import build_representations_from_cfg, Representation |
|
from vre.representations.cv_representations import SemanticRepresentation |
|
from vre.logger import vre_logger as logger |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import pandas as pd |
|
import io |
|
import base64 |
|
import bs4 |
|
from PIL import Image |
|
import seaborn as sns |
|
|
|
def extract_pil_from_b64_image(base64_buf: str) -> Image: |
|
return Image.open(io.BytesIO(base64.b64decode(base64_buf))) |
|
|
|
def extract_b64_image_from_fig(fig: plt.Figure) -> str: |
|
buffer = io.BytesIO() |
|
fig.savefig(buffer, format="png", dpi=fig.dpi) |
|
buffer.seek(0) |
|
base64_buf = base64.b64encode(buffer.getvalue()).decode("utf-8") |
|
return base64_buf |
|
|
|
def extract_b64_imgsrc_from_fig(fig: plt.Figure) -> str: |
|
base64_buf = extract_b64_image_from_fig(fig) |
|
return f"""<img src="data:image/png;base64,{base64_buf}" alt="Sample Plot">""" |
|
|
|
def save_html(html_imgs: list[str], description: str, out_path: str): |
|
html = bs4.BeautifulSoup(f""" |
|
<!DOCTYPE html> |
|
<html> |
|
<head> |
|
<title>VRE Dataset Analysis</title> |
|
</head> |
|
<body> |
|
<h1 id="description">Description</h1> |
|
<h1 id="plots">Plots</h1> |
|
</body> |
|
</html>""", features="lxml") |
|
html.find(id="description").insert_after(bs4.BeautifulSoup(description.replace("\n", "<br/>"), features="lxml")) |
|
for html_img in html_imgs[::-1]: |
|
html.find(id="plots").insert_after(bs4.BeautifulSoup(html_img, features="lxml")) |
|
open(out_path, "w").write(str(html)) |
|
print(f"Written html at '{out_path}'") |
|
|
|
|
|
def histogram_from_classification_task(reader: MultiTaskDataset, classif: SemanticRepresentation, |
|
n: int | None = None, mode: str = "sequential", **figkwargs) -> plt.Figure: |
|
fig = plt.Figure(**figkwargs) |
|
counts = np.zeros(len(classif.classes), dtype=np.uint64) |
|
ixs = np.arange(len(reader)) if mode == "sequential" else np.random.permutation(len(reader)) |
|
ixs = ixs[0:n] if n is not None and n < len(reader) else ixs |
|
assert getattr(classif, "load_mode", "binary") == "binary", classif.load_mode |
|
for i in ixs: |
|
item = reader.get_one_item(i.item(), subset_tasks=[classif.name]) |
|
data_cnts = item[0][classif.name].unique(return_counts=True) |
|
item_classes, item_counts = data_cnts[0].numpy().astype(int), data_cnts[1].numpy().astype(int) |
|
counts[item_classes] = counts[item_classes] + item_counts |
|
|
|
df = pd.DataFrame({"Labels": classif.classes, "Values": counts}) |
|
df["Values"] = df["Values"] / df["Values"].sum() |
|
df = df.sort_values("Values", ascending=True) |
|
df = df[df["Values"] > 0.005] |
|
|
|
ax = fig.gca() |
|
sns.barplot(data=df, y="Labels", x="Values", palette="viridis", legend=True, ax=ax, width=1) |
|
|
|
|
|
ax.set_title(classif.name, fontsize=14, fontweight='bold') |
|
ax.set_ylabel("Labels", fontsize=12) |
|
|
|
fig.set_size_inches(8, 2 if len(df) <= 2 else len(df) * 0.5) |
|
fig.gca().set_xlim(0, 1) |
|
fig.tight_layout() |
|
plt.close() |
|
return fig |
|
|
|
def gaussian_from_statistics(reader: MultiTaskDataset, regression_task: Representation) -> plt.Figure: |
|
_, __, mean, std = [x.numpy() for x in reader.statistics[regression_task.name]] |
|
fig, ax = plt.subplots(1, n_ch := mean.shape[0], figsize=(10, 5)) |
|
ax = [ax] if n_ch == 1 else ax |
|
x = np.linspace(mean - 4*std, mean + 4*std, 1000) |
|
y = (1 / (std * np.sqrt(2 * np.pi))) * np.exp(-0.5 * ((x - mean) / std) ** 2) |
|
for i in range(n_ch): |
|
ax[i].plot(x[:, i], y[:, i]) |
|
fig.suptitle(regression_task.name) |
|
return fig |
|
|
|
if __name__ == "__main__": |
|
data_path = sys.argv[1] |
|
cfg_path = sys.argv[2] |
|
representations = build_representations_from_cfg(cfg_path) |
|
print(representations) |
|
reader = MultiTaskDataset(data_path, task_names=list(representations), |
|
task_types=representations, normalization="min_max") |
|
print(reader) |
|
|
|
imgsrcs = [] |
|
for classif_task in reader.classification_tasks: |
|
fig = histogram_from_classification_task(reader, classif_task) |
|
imgsrcs.append(extract_b64_imgsrc_from_fig(fig)) |
|
|
|
regression_tasks = [t for t in reader.tasks if t not in reader.classification_tasks] |
|
for regression_task in regression_tasks: |
|
fig = gaussian_from_statistics(reader, regression_task) |
|
imgsrcs.append(extract_b64_imgsrc_from_fig(fig)) |
|
|
|
save_html(imgsrcs, str(reader), "plot.html") |
|
|