dronescapes / dronescapes_reader /npz_representation.py
Meehai's picture
more updates to dronescapes. Added TaskMapper and more control over mappings. We can do generic dependencies now, not just semantic.
3a808fd
raw
history blame
4.58 kB
"""MultiTask representations stored as .npz files on the disk"""
from __future__ import annotations
from pathlib import Path
import numpy as np
import torch as tr
class NpzRepresentation:
"""Generic Task with data read from/saved to npz files. Tries to read data as-is from disk and store it as well"""
def __init__(self, name: str, n_channels: int, dependencies: list[NpzRepresentation] | None = None):
self.name = name
self.n_channels = n_channels
dependencies = deps = [self] if dependencies is None else dependencies
self.dependencies: list[NpzRepresentation] = dependencies
assert all(isinstance(dep, NpzRepresentation) for dep in deps), f"{self}: {dict(zip(deps, map(type, deps)))}"
self.classes: list[str] | None = None
self.normalization: str | None = None
self.min: tr.Tensor | None = None
self.max: tr.Tensor | None = None
self.mean: tr.Tensor | None = None
self.std: tr.Tensor | None = None
@property
def is_classification(self) -> bool:
"""if we have self.classes"""
return self.classes is not None
@property
def dep_names(self) -> list[str]:
"""The names of the dependencies of this representation"""
return [dep.name for dep in self.dependencies]
def set_normalization(self, normalization: str, stats: tuple[tr.Tensor, tr.Tensor, tr.Tensor, tr.Tensor]):
"""sets the normalization"""
assert normalization in ("min_max", "standardization"), normalization
assert isinstance(stats, tuple) and len(stats) == 4, stats
self.normalization = normalization
self.min, self.max, self.mean, self.std = stats
def load_from_disk(self, path: Path) -> tr.Tensor:
"""Reads the npz data from the disk and transforms it properly"""
data = np.load(path, allow_pickle=False)
data = data if isinstance(data, np.ndarray) else data["arr_0"] # in case on npz, we need this as well
data = data.astype(np.float32) if np.issubdtype(data.dtype, np.floating) else data # float16 is dangerous
res = tr.from_numpy(data)
res = res.unsqueeze(-1) if len(res.shape) == 2 and self.n_channels == 1 else res # (H, W) in some dph/edges
assert ((res.shape[-1] == self.n_channels and len(res.shape) == 3) or
(len(res.shape) == 2 and self.is_classification)), f"{self.name}: {res.shape} vs {self.n_channels}"
return res
def save_to_disk(self, data: tr.Tensor, path: Path):
"""stores this item to the disk which can then be loaded via `load_from_disk`"""
np.save(path, data.cpu().detach().numpy(), allow_pickle=False)
def plot_fn(self, x: tr.Tensor) -> np.ndarray:
"""very basic implementation of converting this representation to a viewable image. You should overwrite this"""
assert isinstance(x, tr.Tensor), type(x)
assert len(x.shape) == 3, x.shape # guaranteed to be (H, W, C) at this point
x = x.nan_to_num(0).cpu().detach()
if x.shape[-1] != 3:
x = x[..., 0:1]
if x.shape[-1] == 1: # guaranteed to be (H, W, 3) after this if statement hopefully
x = x.repeat(1, 1, 3)
if x.dtype == tr.uint8 or self.is_classification:
return x.numpy()
if self.normalization is not None:
x = (x * self.std + self.mean) if self.normalization == "standardization" else x
x = x * (self.max - self.min) + self.min if self.normalization == "min_max" else x
x = (x * 255) if (self.max <= 1).any() else x
x = x.numpy().astype(np.uint8)
return x
def normalize(self, x: tr.Tensor) -> tr.Tensor:
"""normalizes a data point read with self.load_from_disk(path) using external min/max information"""
assert self.min is not None, "self.statistics must be set from reader before task.normalize(x)"
return ((x.float() - self.min) / (self.max - self.min)).nan_to_num(0, 0, 0).float()
def standardize(self, x: tr.Tensor) -> tr.Tensor:
"""standardizes a data point read with self.load_from_disk(path) using external min/max information"""
assert self.min is not None, "self.statistics must be set from reader before task.normalize(x)"
res = ((x.float() - self.mean) / self.std).nan_to_num(0, 0, 0)
res[(res < -10) | (res > 10)] = 0
return res.float()
def __repr__(self):
return str(self)
def __str__(self):
return f"{str(type(self)).split('.')[-1][0:-2]}({self.name}[{self.n_channels}])"