|
"""Dronescapes representations -- adds various loading/writing/image showing capabilities to dronescapes tasks""" |
|
from __future__ import annotations |
|
from pathlib import Path |
|
from typing import Callable |
|
import numpy as np |
|
import torch as tr |
|
import flow_vis |
|
from skimage.color import rgb2hsv |
|
from overrides import overrides |
|
from matplotlib.cm import Spectral |
|
from torch.nn import functional as F |
|
|
|
try: |
|
from npz_representation import NpzRepresentation |
|
except ImportError: |
|
from .npz_representation import NpzRepresentation |
|
|
|
class RGBRepresentation(NpzRepresentation): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, n_channels=3, **kwargs) |
|
|
|
class HSVRepresentation(RGBRepresentation): |
|
@overrides |
|
def load_from_disk(self, path: Path) -> tr.Tensor: |
|
rgb = super().load_from_disk(path) |
|
return tr.from_numpy(rgb2hsv(rgb)).float() |
|
|
|
class EdgesRepresentation(NpzRepresentation): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, n_channels=1, **kwargs) |
|
|
|
class DepthRepresentation(NpzRepresentation): |
|
"""DepthRepresentation. Implements depth task-specific stuff, like spectral map for plots.""" |
|
def __init__(self, name: str, min_depth: float, max_depth: float, *args, **kwargs): |
|
super().__init__(name, n_channels=1, *args, **kwargs) |
|
self.min_depth = min_depth |
|
self.max_depth = max_depth |
|
|
|
@overrides |
|
def load_from_disk(self, path: Path) -> tr.Tensor: |
|
"""Reads the npz data from the disk and transforms it properly""" |
|
res = super().load_from_disk(path) |
|
res_clip = res.clip(self.min_depth, self.max_depth) |
|
return res_clip |
|
|
|
@overrides |
|
def plot_fn(self, x: tr.Tensor) -> np.ndarray: |
|
x = x.detach().clip(0, 1).squeeze().cpu().numpy() |
|
_min, _max = np.percentile(x, [1, 95]) |
|
x = np.nan_to_num((x - _min) / (_max - _min), False, 0, 0, 0).clip(0, 1) |
|
y: np.ndarray = Spectral(x)[..., 0:3] * 255 |
|
return y.astype(np.uint8) |
|
|
|
class NormalsRepresentation(NpzRepresentation): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, n_channels=3, **kwargs) |
|
|
|
class SemanticRepresentation(NpzRepresentation): |
|
"""SemanticRepresentation. Implements semantic task-specific stuff, like argmaxing if needed""" |
|
def __init__(self, *args, classes: int | list[str], color_map: list[tuple[int, int, int]], **kwargs): |
|
self.n_classes = len(list(range(classes)) if isinstance(classes, int) else classes) |
|
super().__init__(*args, **kwargs, n_channels=self.n_classes) |
|
self.classes = list(range(classes)) if isinstance(classes, int) else classes |
|
self.color_map = color_map |
|
assert len(color_map) == self.n_classes and self.n_classes > 1, (color_map, self.n_classes) |
|
|
|
@overrides |
|
def load_from_disk(self, path: Path) -> tr.Tensor: |
|
res = super().load_from_disk(path) |
|
if len(res.shape) == 3: |
|
assert res.shape[-1] == self.n_classes, f"Expected {self.n_classes} (HxWxC), got {res.shape[-1]}" |
|
res = res.argmax(-1) |
|
assert len(res.shape) == 2, f"Only argmaxed data supported, got: {res.shape}" |
|
res = F.one_hot(res.long(), num_classes=self.n_classes).float() |
|
return res |
|
|
|
@overrides |
|
def plot_fn(self, x: tr.Tensor) -> np.ndarray: |
|
x_argmax = x.squeeze().nan_to_num(0).detach().argmax(-1).cpu().numpy() |
|
new_images = np.zeros((*x_argmax.shape, 3), dtype=np.uint8) |
|
for i in range(self.n_classes): |
|
new_images[x_argmax == i] = self.color_map[i] |
|
return new_images |
|
|
|
color_map_8classes = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255], |
|
[255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]] |
|
classes_8 = ["land", "forest", "residential", "road", "little-objects", "water", "sky", "hill"] |
|
|
|
_tasks: list[NpzRepresentation] = [ |
|
rgb := RGBRepresentation("rgb"), |
|
HSVRepresentation("hsv", dependencies=[rgb]), |
|
EdgesRepresentation("edges_gb"), |
|
DepthRepresentation("depth_sfm_manual202204", min_depth=0, max_depth=300), |
|
DepthRepresentation("depth_ufo", min_depth=0, max_depth=1), |
|
NormalsRepresentation("normals_sfm_manual202204"), |
|
SemanticRepresentation("semantic_segprop8", classes=classes_8, color_map=color_map_8classes), |
|
NpzRepresentation("softseg_gb", 3), |
|
] |
|
dronescapes_task_types: dict[str, NpzRepresentation] = {task.name: task for task in _tasks} |
|
|