File size: 4,501 Bytes
61740cb
630cdf5
61740cb
58c45ab
61740cb
 
 
0094b94
61740cb
22a896e
630cdf5
 
85a37ac
 
 
 
5e6866e
0094b94
58c45ab
 
f755e76
0094b94
f755e76
630cdf5
0094b94
f755e76
 
120d732
58c45ab
 
f755e76
61740cb
58c45ab
 
 
8475432
 
 
 
 
 
 
 
 
61740cb
 
 
120d732
8475432
0094b94
22a896e
120d732
61740cb
f755e76
58c45ab
 
f755e76
61740cb
58c45ab
61740cb
0094b94
 
61740cb
 
630cdf5
61740cb
 
 
 
6a58a50
 
 
61740cb
630cdf5
61740cb
 
 
 
0094b94
 
61740cb
0094b94
61740cb
f755e76
7b47e95
 
c853138
3a808fd
 
 
 
7b47e95
 
 
 
c853138
7b47e95
 
3a808fd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
"""Dronescapes representations -- adds various loading/writing/image showing capabilities to dronescapes tasks"""
from __future__ import annotations
from pathlib import Path
from typing import Callable
import numpy as np
import torch as tr
import flow_vis
from skimage.color import rgb2hsv
from overrides import overrides
from matplotlib.cm import Spectral # pylint: disable=no-name-in-module
from torch.nn import functional as F

try:
    from npz_representation import NpzRepresentation
except ImportError:
    from .npz_representation import NpzRepresentation

class RGBRepresentation(NpzRepresentation):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, n_channels=3, **kwargs)

class HSVRepresentation(RGBRepresentation):
    @overrides
    def load_from_disk(self, path: Path) -> tr.Tensor:
        rgb = super().load_from_disk(path)
        return tr.from_numpy(rgb2hsv(rgb)).float()

class EdgesRepresentation(NpzRepresentation):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, n_channels=1, **kwargs)

class DepthRepresentation(NpzRepresentation):
    """DepthRepresentation. Implements depth task-specific stuff, like spectral map for plots."""
    def __init__(self, name: str, min_depth: float, max_depth: float, *args, **kwargs):
        super().__init__(name, n_channels=1, *args, **kwargs)
        self.min_depth = min_depth
        self.max_depth = max_depth

    @overrides
    def load_from_disk(self, path: Path) -> tr.Tensor:
        """Reads the npz data from the disk and transforms it properly"""
        res = super().load_from_disk(path)
        res_clip = res.clip(self.min_depth, self.max_depth)
        return res_clip

    @overrides
    def plot_fn(self, x: tr.Tensor) -> np.ndarray:
        x = x.detach().clip(0, 1).squeeze().cpu().numpy()
        _min, _max = np.percentile(x, [1, 95])
        x = np.nan_to_num((x - _min) / (_max - _min), False, 0, 0, 0).clip(0, 1)
        y: np.ndarray = Spectral(x)[..., 0:3] * 255
        return y.astype(np.uint8)

class NormalsRepresentation(NpzRepresentation):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, n_channels=3, **kwargs)

class SemanticRepresentation(NpzRepresentation):
    """SemanticRepresentation. Implements semantic task-specific stuff, like argmaxing if needed"""
    def __init__(self, *args, classes: int | list[str], color_map: list[tuple[int, int, int]], **kwargs):
        self.n_classes = len(list(range(classes)) if isinstance(classes, int) else classes)
        super().__init__(*args, **kwargs, n_channels=self.n_classes)
        self.classes = list(range(classes)) if isinstance(classes, int) else classes
        self.color_map = color_map
        assert len(color_map) == self.n_classes and self.n_classes > 1, (color_map, self.n_classes)

    @overrides
    def load_from_disk(self, path: Path) -> tr.Tensor:
        res = super().load_from_disk(path)
        if len(res.shape) == 3:
            assert res.shape[-1] == self.n_classes, f"Expected {self.n_classes} (HxWxC), got {res.shape[-1]}"
            res = res.argmax(-1)
        assert len(res.shape) == 2, f"Only argmaxed data supported, got: {res.shape}"
        res = F.one_hot(res.long(), num_classes=self.n_classes).float()
        return res

    @overrides
    def plot_fn(self, x: tr.Tensor) -> np.ndarray:
        x_argmax = x.squeeze().nan_to_num(0).detach().argmax(-1).cpu().numpy()
        new_images = np.zeros((*x_argmax.shape, 3), dtype=np.uint8)
        for i in range(self.n_classes):
            new_images[x_argmax == i] = self.color_map[i]
        return new_images

color_map_8classes = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255],
                      [255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]
classes_8 = ["land", "forest", "residential", "road", "little-objects", "water", "sky", "hill"]

_tasks: list[NpzRepresentation] = [ # some pre-baked representations
    rgb := RGBRepresentation("rgb"),
    HSVRepresentation("hsv", dependencies=[rgb]),
    EdgesRepresentation("edges_gb"),
    DepthRepresentation("depth_sfm_manual202204", min_depth=0, max_depth=300),
    DepthRepresentation("depth_ufo", min_depth=0, max_depth=1),
    NormalsRepresentation("normals_sfm_manual202204"),
    SemanticRepresentation("semantic_segprop8", classes=classes_8, color_map=color_map_8classes),
    NpzRepresentation("softseg_gb", 3),
]
dronescapes_task_types: dict[str, NpzRepresentation] = {task.name: task for task in _tasks}