File size: 10,842 Bytes
d57171f 8010ada d57171f 8010ada d57171f 701721b d57171f 701721b d57171f 701721b d57171f 8010ada d57171f e489e2c d57171f 8010ada e489e2c d57171f 8010ada d57171f 701721b d57171f 8010ada d57171f 8010ada 701721b 8010ada 701721b 8010ada 701721b 8010ada 701721b 8010ada 701721b 8010ada d57171f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
#!/usr/bin/env python3
import os
os.environ["VRE_LOGLEVEL"] = "0"
from argparse import ArgumentParser, Namespace
import torch as tr
from torch.nn import functional as F
import numpy as np
from pathlib import Path
import sys
import random
from typing import Callable
from pprint import pprint
from lightning_module_enhanced import LME
from lightning_module_enhanced.utils import to_device
from omegaconf import DictConfig
from loggez import loggez_logger as logger
from vre.readers import MultiTaskDataset
from vre.utils import collage_fn, image_add_title, colorize_semantic_segmentation, lo, image_resize, image_write
from vre import FFmpegVideo
from functools import partial
from PIL import Image
import subprocess
from tqdm import tqdm
import matplotlib.pyplot as plt
from contexttimer import Timer
sys.path.append("/export/home/proiecte/aux/mihai_cristian.pirvu/code/neo-transformers")
from readers import VITMultiTaskDataset, build_representations
from models import build_model
from plots import vre_plot_fn
from algorithms import build_algorithm, ModelAlgorithmOutput
# os.environ["CUDA_VISIBLE_DEVICES"]="0" #"7"
device = tr.device("cuda") if tr.cuda.is_available() else tr.device("cpu")
def seed(seed: int):
random.seed(seed)
np.random.seed(seed)
tr.random.manual_seed(seed)
def fix_batch_(batch: dict, missing_tasks: list[str]) -> dict:
assert len(batch["data"]["rgb"]) == 1, batch["data"]["rgb"] # inference with bs=1 allowed for now only
assert set(missing_tasks).issubset({"semantic_output", "depth_output", "camera_normals_output"}), missing_tasks
if "semantic_output" in missing_tasks:
batch["data"]["semantic_output"] = [tr.zeros(8, 540, 960)]
batch["image_shape"][0]["semantic_output"] = 8
if "depth_output" in missing_tasks:
batch["data"]["depth_output"] = [tr.zeros(1, 540, 960)]
batch["image_shape"][0]["depth_output"] = 1
if "camera_normals_output" in missing_tasks:
batch["data"]["camera_normals_output"] = [tr.zeros(3, 540, 960)]
batch["image_shape"][0]["camera_normals_output"] = 3
batch["data"] = {k: batch["data"][k] for k in sorted(batch["data"].keys())}
batch["image_shape"] = [{k: batch["image_shape"][0][k] for k in sorted(batch["image_shape"][0].keys())}, ]
return batch
def fix_plot_fns_(plot_fns: dict[str, Callable], task_types: dict[str, "Repr"], stats: dict[str, tuple[list[float]]],
normalization: str):
for task_name in ["camera_normals_output", "depth_output", "semantic_output"]:
if hasattr(task_types[task_name], "set_normalization"):
task_types[task_name].set_normalization(normalization, tuple(stats[task_name]))
plot_fns[task_name] = partial(vre_plot_fn, node=task_types[task_name])
def load_model_from_path(weights_path):
data = tr.load(weights_path, map_location="cpu")
cfg = DictConfig(data["hyper_parameters"]["cfg"])
cfg.train.algorithm.metrics_only_on_masked = True
model = LME(build_model(cfg).to(device).eval())
print(f"DEVICE: {device}")
model.load_state_dict(data["state_dict"])
model.model_algorithm = build_algorithm(cfg.model.type, cfg.train.algorithm, loss_computer=None)
model.hparams.cfg = cfg
stats = data["hyper_parameters"]["statistics"]
model.hparams.stats = stats
logger.info(f"Loaded '{cfg.model.type}' with {model.num_params} parameters from '{weights_path}'")
logger.info(f"Excluded (fully masked) tasks: {cfg.train.algorithm.masking.parameters.excluded_tasks}")
return model
def colorize_dronescapes(item: np.ndarray) -> np.ndarray:
# colorize_semantic_segmentation
assert len(item.shape) == 2, item.shape
color_map = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255],
[255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]
classes_8 = ["land", "forest", "residential", "road", "little-objects", "water", "sky", "hill"]
return colorize_semantic_segmentation(item[None], color_map=color_map, classes=classes_8)[0]
@tr.no_grad
def inference(model: LME | str, batch: dict, n_ens: int | None = None) -> np.ndarray:
assert len(batch["name"]) == 1, batch["name"]
if isinstance(model, str) and model == "semantic_mask2former_r50_mapillary_converted":
item = batch["data"]["semantic_mask2former_r50_mapillary_converted"][0]
else:
tasks = model.hparams["cfg"]["train"]["algorithm"]["masking"]["parameters"]["tasks"]
if len(tasks) == 2:
batch = {
"data": {"rgb": batch["data"]["rgb"], "semantic_output": [tr.zeros(8, 540, 960)]},
"image_shape": [{"rgb": 3, "semantic_output": 8}, *batch["image_shape"][1:]],
}
y_model: ModelAlgorithmOutput = to_device(model.model_algorithm(model, batch).y, "cpu")
item = y_model.pred["semantic_output"][0]
else:
assert n_ens is not None, n_ens
batch = fix_batch_(batch, model.hparams.cfg.train.algorithm.masking.parameters.excluded_tasks)
acc_sema = None
for i in range(n_ens):
y_model: ModelAlgorithmOutput = to_device(model.model_algorithm(model, batch).y, "cpu")
curr_sema = y_model.pred["semantic_output"].to("cpu")
if acc_sema is None:
acc_sema = curr_sema
else:
acc_sema = (acc_sema * i + curr_sema) / (i + 1)
item = acc_sema[0]
return item.permute(1, 2, 0).numpy().argmax(-1).astype(np.uint8)
def get_args() -> Namespace:
parser = ArgumentParser()
parser.add_argument("video_path", type=Path)
parser.add_argument("--frames")
return parser.parse_args()
def main(args: Namespace):
video = FFmpegVideo(video_path := args.video_path)
frames = list(range(len(video)))
if args.frames is not None:
frames = list(range(*map(int, args.frames.split(".."))))
(vre_dir := Path.cwd() / f"data_{video_path.name}").mkdir(exist_ok=True)
cfg_path = Path(__file__).parent / "cfg.yaml"
assert cfg_path.exists(), cfg_path
# frames = sorted(map(str, set([random.randint(0, N) for _ in range(5)])))
representations = ["semantic_mask2former_coco_47429163_0", "semantic_mask2former_mapillary_49189528_0",
"semantic_mask2former_mapillary_49189528_1", "depth_marigold", "normals_svd(depth_marigold)",
"semantic_mask2former_swin_mapillary_converted", "semantic_mask2former_r50_mapillary_converted",
"semantic_mask2former_swin_coco_converted", "semantic_median_expert",
"buildings", "buildings(nearby)", "containing", "rgb", "safe-landing-no-sseg",
"safe-landing-semantics", "sky-and-water", "transportation", "vegetation"]
# args = ["vre", str(video_path), "--config_path", str(cfg_path),
# "-o", str(vre_dir), "--representations", *representations,
# "-I", f"{Path.cwd().parents[1]}/readers/semantic_mapper.py:get_new_semantic_mapped_tasks",
# "--output_dir_exists_mode", "skip_computed",
# ]
# print(" ".join(args))
# exit(0)
# frames = None#["5"]
# if frames is not None:
# args.extend(["--frames", *frames])
# # print(" ".join(args))
# subprocess.run(args=args, env={**os.environ.copy(), **{"VRE_DEVICE": "cuda" if tr.cuda.is_available() else "cpu", "CUDA_VISIBLE_DEVICES": "7"}})
assert (vre_dir / "rgb").exists(), vre_dir # run vre otherwise
for frame in frames:
assert (vre_dir / f"rgb/npz/{frame}.npz").exists(), frame
weights_path = "/export/home/proiecte/aux/mihai_cristian.pirvu/code/neo-transformers/ckpts/safeuav/sema/mae-4M-ext/epoch=37-val_semantic_output_mean_iou=0.470.ckpt"
weights_path_dstil = "/export/home/proiecte/aux/mihai_cristian.pirvu/code/neo-transformers/ckpts/safeuav/distil2/sl0-4M-ext2-distil/epoch=24-val_semantic_output_mean_iou=0.472.ckpt"
model_mae = load_model_from_path(weights_path)
model_distil = load_model_from_path(weights_path_dstil)
task_types = build_representations((cfg := model_mae.hparams.cfg).data.dataset)
stats = model_mae.hparams.stats
h, w = video.shape[1:3]
test_base_reader2 = MultiTaskDataset(vre_dir, task_types={k: task_types[k] for k in {"semantic_mask2former_r50_mapillary_converted", "rgb"}},
**{**cfg.data.parameters, "task_names": ["rgb", "semantic_mask2former_r50_mapillary_converted"], "normalization": None},
statistics=stats)
reader2 = VITMultiTaskDataset(test_base_reader2)
model_tasks = [t for t in cfg.data.parameters.task_names
if t not in cfg.train.algorithm.masking.parameters.excluded_tasks]
_task_types = {k: v for k, v in task_types.items() if k in model_tasks}
test_base_reader = MultiTaskDataset(vre_dir, task_types=_task_types,
**{**cfg.data.parameters, "task_names": list(_task_types)},
statistics=stats)
reader = VITMultiTaskDataset(test_base_reader)
plot_fns = dict(zip(reader.task_names, [partial(vre_plot_fn, node=n) for n in reader.tasks]))
fix_plot_fns_(plot_fns, task_types, stats, cfg["data"]["parameters"]["normalization"])
(out_dir := Path.cwd() / f"out_{video_path.name}").mkdir(exist_ok=True)
[(out_dir / x).mkdir(exist_ok=True) for x in ["ens", "m2f", "distil", "collage"]]
for frame_ix in tqdm(frames):
batch_m2f = reader2.collate_fn([reader2[frame_ix]])
batch = reader.collate_fn([reader[frame_ix]])
rgb = video[frame_ix]
if not (pth1 := out_dir / f"m2f/{frame_ix}.npz").exists():
y = inference("semantic_mask2former_r50_mapillary_converted", batch_m2f)
np.savez_compressed(pth1, y)
m2f = np.load(pth1)["arr_0"]
if not (pth2 := out_dir / f"ens/{frame_ix}.npz").exists():
y = inference(model_mae, batch, n_ens=30)
np.savez_compressed(pth2, y)
ens = np.load(pth2)["arr_0"]
if not (pth3 := out_dir / f"distil/{frame_ix}.npz").exists():
y = inference(model_distil, batch)
np.savez_compressed(pth3, y)
distil = np.load(pth3)["arr_0"]
if not (out_file := out_dir / f"collage/{frame_ix}.jpg").exists():
m2f_img = colorize_dronescapes(m2f)
ens_img = colorize_dronescapes(ens)
distil_img = colorize_dronescapes(distil)
titles = ["RGB", "Mask2Former (216M)", "Ensembles-30 (4M)", "Distillation (4M)"]
collage = collage_fn([rgb, m2f_img, ens_img, distil_img], titles=titles, rows_cols=(2, 2), size_px=40)
image_write(collage, out_file)
if __name__ == "__main__":
main(get_args())
|