|
|
|
import os |
|
os.environ["VRE_LOGLEVEL"] = "0" |
|
from argparse import ArgumentParser, Namespace |
|
import torch as tr |
|
from torch.nn import functional as F |
|
import numpy as np |
|
from pathlib import Path |
|
import sys |
|
import random |
|
from typing import Callable |
|
from pprint import pprint |
|
from lightning_module_enhanced import LME |
|
from lightning_module_enhanced.utils import to_device |
|
from omegaconf import DictConfig |
|
from loggez import loggez_logger as logger |
|
from vre.readers import MultiTaskDataset |
|
from vre.utils import collage_fn, image_add_title, colorize_semantic_segmentation, lo, image_resize, image_write |
|
from vre import FFmpegVideo |
|
from functools import partial |
|
from PIL import Image |
|
import subprocess |
|
from tqdm import tqdm |
|
import matplotlib.pyplot as plt |
|
from contexttimer import Timer |
|
|
|
sys.path.append("/export/home/proiecte/aux/mihai_cristian.pirvu/code/neo-transformers") |
|
from readers import VITMultiTaskDataset, build_representations |
|
from models import build_model |
|
from plots import vre_plot_fn |
|
from algorithms import build_algorithm, ModelAlgorithmOutput |
|
|
|
|
|
device = tr.device("cuda") if tr.cuda.is_available() else tr.device("cpu") |
|
|
|
def seed(seed: int): |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
tr.random.manual_seed(seed) |
|
|
|
def fix_batch_(batch: dict, missing_tasks: list[str]) -> dict: |
|
assert len(batch["data"]["rgb"]) == 1, batch["data"]["rgb"] |
|
assert set(missing_tasks).issubset({"semantic_output", "depth_output", "camera_normals_output"}), missing_tasks |
|
if "semantic_output" in missing_tasks: |
|
batch["data"]["semantic_output"] = [tr.zeros(8, 540, 960)] |
|
batch["image_shape"][0]["semantic_output"] = 8 |
|
if "depth_output" in missing_tasks: |
|
batch["data"]["depth_output"] = [tr.zeros(1, 540, 960)] |
|
batch["image_shape"][0]["depth_output"] = 1 |
|
if "camera_normals_output" in missing_tasks: |
|
batch["data"]["camera_normals_output"] = [tr.zeros(3, 540, 960)] |
|
batch["image_shape"][0]["camera_normals_output"] = 3 |
|
batch["data"] = {k: batch["data"][k] for k in sorted(batch["data"].keys())} |
|
batch["image_shape"] = [{k: batch["image_shape"][0][k] for k in sorted(batch["image_shape"][0].keys())}, ] |
|
return batch |
|
|
|
def fix_plot_fns_(plot_fns: dict[str, Callable], task_types: dict[str, "Repr"], stats: dict[str, tuple[list[float]]], |
|
normalization: str): |
|
for task_name in ["camera_normals_output", "depth_output", "semantic_output"]: |
|
if hasattr(task_types[task_name], "set_normalization"): |
|
task_types[task_name].set_normalization(normalization, tuple(stats[task_name])) |
|
plot_fns[task_name] = partial(vre_plot_fn, node=task_types[task_name]) |
|
|
|
def load_model_from_path(weights_path): |
|
data = tr.load(weights_path, map_location="cpu") |
|
cfg = DictConfig(data["hyper_parameters"]["cfg"]) |
|
cfg.train.algorithm.metrics_only_on_masked = True |
|
model = LME(build_model(cfg).to(device).eval()) |
|
print(f"DEVICE: {device}") |
|
model.load_state_dict(data["state_dict"]) |
|
model.model_algorithm = build_algorithm(cfg.model.type, cfg.train.algorithm, loss_computer=None) |
|
model.hparams.cfg = cfg |
|
stats = data["hyper_parameters"]["statistics"] |
|
model.hparams.stats = stats |
|
|
|
logger.info(f"Loaded '{cfg.model.type}' with {model.num_params} parameters from '{weights_path}'") |
|
logger.info(f"Excluded (fully masked) tasks: {cfg.train.algorithm.masking.parameters.excluded_tasks}") |
|
return model |
|
|
|
def colorize_dronescapes(item: np.ndarray) -> np.ndarray: |
|
|
|
assert len(item.shape) == 2, item.shape |
|
color_map = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255], |
|
[255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]] |
|
classes_8 = ["land", "forest", "residential", "road", "little-objects", "water", "sky", "hill"] |
|
return colorize_semantic_segmentation(item[None], color_map=color_map, classes=classes_8)[0] |
|
|
|
@tr.no_grad |
|
def inference(model: LME | str, batch: dict, n_ens: int | None = None) -> np.ndarray: |
|
assert len(batch["name"]) == 1, batch["name"] |
|
if isinstance(model, str) and model == "semantic_mask2former_r50_mapillary_converted": |
|
item = batch["data"]["semantic_mask2former_r50_mapillary_converted"][0] |
|
else: |
|
tasks = model.hparams["cfg"]["train"]["algorithm"]["masking"]["parameters"]["tasks"] |
|
if len(tasks) == 2: |
|
batch = { |
|
"data": {"rgb": batch["data"]["rgb"], "semantic_output": [tr.zeros(8, 540, 960)]}, |
|
"image_shape": [{"rgb": 3, "semantic_output": 8}, *batch["image_shape"][1:]], |
|
} |
|
y_model: ModelAlgorithmOutput = to_device(model.model_algorithm(model, batch).y, "cpu") |
|
item = y_model.pred["semantic_output"][0] |
|
else: |
|
assert n_ens is not None, n_ens |
|
batch = fix_batch_(batch, model.hparams.cfg.train.algorithm.masking.parameters.excluded_tasks) |
|
acc_sema = None |
|
for i in range(n_ens): |
|
y_model: ModelAlgorithmOutput = to_device(model.model_algorithm(model, batch).y, "cpu") |
|
curr_sema = y_model.pred["semantic_output"].to("cpu") |
|
if acc_sema is None: |
|
acc_sema = curr_sema |
|
else: |
|
acc_sema = (acc_sema * i + curr_sema) / (i + 1) |
|
item = acc_sema[0] |
|
return item.permute(1, 2, 0).numpy().argmax(-1).astype(np.uint8) |
|
|
|
|
|
def get_args() -> Namespace: |
|
parser = ArgumentParser() |
|
parser.add_argument("video_path", type=Path) |
|
parser.add_argument("--frames") |
|
return parser.parse_args() |
|
|
|
def main(args: Namespace): |
|
video = FFmpegVideo(video_path := args.video_path) |
|
frames = list(range(len(video))) |
|
if args.frames is not None: |
|
frames = list(range(*map(int, args.frames.split("..")))) |
|
|
|
(vre_dir := Path.cwd() / f"data_{video_path.name}").mkdir(exist_ok=True) |
|
cfg_path = Path(__file__).parent / "cfg.yaml" |
|
assert cfg_path.exists(), cfg_path |
|
|
|
representations = ["semantic_mask2former_coco_47429163_0", "semantic_mask2former_mapillary_49189528_0", |
|
"semantic_mask2former_mapillary_49189528_1", "depth_marigold", "normals_svd(depth_marigold)", |
|
"semantic_mask2former_swin_mapillary_converted", "semantic_mask2former_r50_mapillary_converted", |
|
"semantic_mask2former_swin_coco_converted", "semantic_median_expert", |
|
"buildings", "buildings(nearby)", "containing", "rgb", "safe-landing-no-sseg", |
|
"safe-landing-semantics", "sky-and-water", "transportation", "vegetation"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assert (vre_dir / "rgb").exists(), vre_dir |
|
for frame in frames: |
|
assert (vre_dir / f"rgb/npz/{frame}.npz").exists(), frame |
|
weights_path = "/export/home/proiecte/aux/mihai_cristian.pirvu/code/neo-transformers/ckpts/safeuav/sema/mae-4M-ext/epoch=37-val_semantic_output_mean_iou=0.470.ckpt" |
|
weights_path_dstil = "/export/home/proiecte/aux/mihai_cristian.pirvu/code/neo-transformers/ckpts/safeuav/distil2/sl0-4M-ext2-distil/epoch=24-val_semantic_output_mean_iou=0.472.ckpt" |
|
|
|
model_mae = load_model_from_path(weights_path) |
|
model_distil = load_model_from_path(weights_path_dstil) |
|
task_types = build_representations((cfg := model_mae.hparams.cfg).data.dataset) |
|
stats = model_mae.hparams.stats |
|
|
|
h, w = video.shape[1:3] |
|
|
|
test_base_reader2 = MultiTaskDataset(vre_dir, task_types={k: task_types[k] for k in {"semantic_mask2former_r50_mapillary_converted", "rgb"}}, |
|
**{**cfg.data.parameters, "task_names": ["rgb", "semantic_mask2former_r50_mapillary_converted"], "normalization": None}, |
|
statistics=stats) |
|
reader2 = VITMultiTaskDataset(test_base_reader2) |
|
model_tasks = [t for t in cfg.data.parameters.task_names |
|
if t not in cfg.train.algorithm.masking.parameters.excluded_tasks] |
|
_task_types = {k: v for k, v in task_types.items() if k in model_tasks} |
|
test_base_reader = MultiTaskDataset(vre_dir, task_types=_task_types, |
|
**{**cfg.data.parameters, "task_names": list(_task_types)}, |
|
statistics=stats) |
|
reader = VITMultiTaskDataset(test_base_reader) |
|
|
|
plot_fns = dict(zip(reader.task_names, [partial(vre_plot_fn, node=n) for n in reader.tasks])) |
|
fix_plot_fns_(plot_fns, task_types, stats, cfg["data"]["parameters"]["normalization"]) |
|
|
|
(out_dir := Path.cwd() / f"out_{video_path.name}").mkdir(exist_ok=True) |
|
[(out_dir / x).mkdir(exist_ok=True) for x in ["ens", "m2f", "distil", "collage"]] |
|
|
|
for frame_ix in tqdm(frames): |
|
batch_m2f = reader2.collate_fn([reader2[frame_ix]]) |
|
batch = reader.collate_fn([reader[frame_ix]]) |
|
rgb = video[frame_ix] |
|
|
|
if not (pth1 := out_dir / f"m2f/{frame_ix}.npz").exists(): |
|
y = inference("semantic_mask2former_r50_mapillary_converted", batch_m2f) |
|
np.savez_compressed(pth1, y) |
|
m2f = np.load(pth1)["arr_0"] |
|
|
|
if not (pth2 := out_dir / f"ens/{frame_ix}.npz").exists(): |
|
y = inference(model_mae, batch, n_ens=30) |
|
np.savez_compressed(pth2, y) |
|
ens = np.load(pth2)["arr_0"] |
|
|
|
if not (pth3 := out_dir / f"distil/{frame_ix}.npz").exists(): |
|
y = inference(model_distil, batch) |
|
np.savez_compressed(pth3, y) |
|
distil = np.load(pth3)["arr_0"] |
|
|
|
if not (out_file := out_dir / f"collage/{frame_ix}.jpg").exists(): |
|
m2f_img = colorize_dronescapes(m2f) |
|
ens_img = colorize_dronescapes(ens) |
|
distil_img = colorize_dronescapes(distil) |
|
titles = ["RGB", "Mask2Former (216M)", "Ensembles-30 (4M)", "Distillation (4M)"] |
|
collage = collage_fn([rgb, m2f_img, ens_img, distil_img], titles=titles, rows_cols=(2, 2), size_px=40) |
|
image_write(collage, out_file) |
|
|
|
if __name__ == "__main__": |
|
main(get_args()) |
|
|