Datasets:
metadata
license: mit
task_categories:
- image-to-text
language:
- en
tags:
- ocr
- icdar
- icdar2013
pretty_name: ICDAR 2013
dataset_info:
features:
- name: image
dtype: image
- name: text
dtype: string
splits:
- name: train
num_bytes: 56543493
num_examples: 848
- name: train_numbers
num_bytes: 2042222
num_examples: 33
- name: test
num_bytes: 51675533.125
num_examples: 1015
- name: test_numbers
num_bytes: 1513622
num_examples: 71
download_size: 111842710
dataset_size: 111774870.125
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: train_numbers
path: data/train_numbers-*
- split: test
path: data/test-*
- split: test_numbers
path: data/test_numbers-*
META
https://github.com/open-mmlab/mmocr/blob/main/dataset_zoo/icdar2013/metafile.yml
Name: 'Incidental Scene Text IC13'
Paper:
Title: ICDAR 2013 Robust Reading Competition
URL: https://www.imlab.jp/publication_data/1352/icdar_competition_report.pdf
Venue: ICDAR
Year: '2013'
BibTeX: '@inproceedings{karatzas2013icdar,
title={ICDAR 2013 robust reading competition},
author={Karatzas, Dimosthenis and Shafait, Faisal and Uchida, Seiichi and Iwamura, Masakazu and i Bigorda, Lluis Gomez and Mestre, Sergi Robles and Mas, Joan and Mota, David Fernandez and Almazan, Jon Almazan and De Las Heras, Lluis Pere},
booktitle={2013 12th international conference on document analysis and recognition},
pages={1484--1493},
year={2013},
organization={IEEE}}'
Data:
Website: https://rrc.cvc.uab.es/?ch=2
Language:
- English
Scene:
- Natural Scene
Granularity:
- Word
Tasks:
- textdet
- textrecog
- textspotting
License:
Type: N/A
Link: N/A
Format: .txt