Upload metadata.yaml with huggingface_hub
Browse files- metadata.yaml +148 -0
metadata.yaml
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ag_news:
|
2 |
+
class_names:
|
3 |
+
- World
|
4 |
+
- Sports
|
5 |
+
- Business
|
6 |
+
- Technology
|
7 |
+
description: News categorization with 4 classes, known for similar content across
|
8 |
+
categories
|
9 |
+
name: AG News Classification
|
10 |
+
num_classes: 4
|
11 |
+
original_test_samples: 7600
|
12 |
+
original_train_samples: 120000
|
13 |
+
quality_issues:
|
14 |
+
- redundancy
|
15 |
+
- similar_content
|
16 |
+
- topic_overlap
|
17 |
+
target_column: label
|
18 |
+
task_type: multi_classification
|
19 |
+
test_samples: 7600
|
20 |
+
text_columns:
|
21 |
+
- text
|
22 |
+
total_samples: 127600
|
23 |
+
train_samples: 90000
|
24 |
+
validation_samples: 30000
|
25 |
+
amazon_polarity:
|
26 |
+
class_names:
|
27 |
+
- negative
|
28 |
+
- positive
|
29 |
+
description: Amazon reviews with noisy sentiment labels
|
30 |
+
name: Amazon Product Reviews
|
31 |
+
num_classes: 2
|
32 |
+
original_test_samples: 400000
|
33 |
+
original_train_samples: 3600000
|
34 |
+
quality_issues:
|
35 |
+
- label_noise
|
36 |
+
- rating_inconsistency
|
37 |
+
target_column: label
|
38 |
+
task_type: binary_classification
|
39 |
+
test_samples: 400000
|
40 |
+
text_columns:
|
41 |
+
- text
|
42 |
+
total_samples: 4000000
|
43 |
+
train_samples: 2700000
|
44 |
+
validation_samples: 900000
|
45 |
+
emotion:
|
46 |
+
class_names:
|
47 |
+
- sadness
|
48 |
+
- joy
|
49 |
+
- love
|
50 |
+
- anger
|
51 |
+
- fear
|
52 |
+
- surprise
|
53 |
+
description: Twitter emotion classification with text length outliers
|
54 |
+
name: Emotion Classification
|
55 |
+
num_classes: 6
|
56 |
+
original_test_samples: 41681
|
57 |
+
original_train_samples: 333447
|
58 |
+
quality_issues:
|
59 |
+
- length_outliers
|
60 |
+
- text_anomalies
|
61 |
+
target_column: label
|
62 |
+
task_type: multi_classification
|
63 |
+
test_samples: 41681
|
64 |
+
text_columns:
|
65 |
+
- text
|
66 |
+
total_samples: 375128
|
67 |
+
train_samples: 250085
|
68 |
+
validation_samples: 83362
|
69 |
+
imdb:
|
70 |
+
class_names:
|
71 |
+
- negative
|
72 |
+
- positive
|
73 |
+
description: Movie reviews with subjective sentiment labels and borderline cases
|
74 |
+
name: IMDB Movie Reviews
|
75 |
+
num_classes: 2
|
76 |
+
original_test_samples: 25000
|
77 |
+
original_train_samples: 25000
|
78 |
+
quality_issues:
|
79 |
+
- label_noise
|
80 |
+
- subjective_labels
|
81 |
+
- borderline_cases
|
82 |
+
target_column: label
|
83 |
+
task_type: binary_classification
|
84 |
+
test_samples: 25000
|
85 |
+
text_columns:
|
86 |
+
- text
|
87 |
+
total_samples: 50000
|
88 |
+
train_samples: 18750
|
89 |
+
validation_samples: 6250
|
90 |
+
twenty_newsgroups:
|
91 |
+
class_names:
|
92 |
+
- alt.atheism
|
93 |
+
- comp.graphics
|
94 |
+
- comp.os.ms-windows.misc
|
95 |
+
- comp.sys.ibm.pc.hardware
|
96 |
+
- comp.sys.mac.hardware
|
97 |
+
- comp.windows.x
|
98 |
+
- misc.forsale
|
99 |
+
- rec.autos
|
100 |
+
- rec.motorcycles
|
101 |
+
- rec.sport.baseball
|
102 |
+
- rec.sport.hockey
|
103 |
+
- sci.crypt
|
104 |
+
- sci.electronics
|
105 |
+
- sci.med
|
106 |
+
- sci.space
|
107 |
+
- soc.religion.christian
|
108 |
+
- talk.politics.guns
|
109 |
+
- talk.politics.mideast
|
110 |
+
- talk.politics.misc
|
111 |
+
- talk.religion.misc
|
112 |
+
description: Newsgroup posts with overlapping topics and cross-posting
|
113 |
+
name: 20 Newsgroups
|
114 |
+
num_classes: 20
|
115 |
+
original_test_samples: 7532
|
116 |
+
original_train_samples: 11314
|
117 |
+
quality_issues:
|
118 |
+
- redundancy
|
119 |
+
- cross_posting
|
120 |
+
- similar_topics
|
121 |
+
target_column: label
|
122 |
+
task_type: multi_classification
|
123 |
+
test_samples: 7532
|
124 |
+
text_columns:
|
125 |
+
- text
|
126 |
+
total_samples: 18846
|
127 |
+
train_samples: 8485
|
128 |
+
validation_samples: 2829
|
129 |
+
yelp_polarity:
|
130 |
+
class_names:
|
131 |
+
- negative
|
132 |
+
- positive
|
133 |
+
description: Yelp reviews with positive/negative sentiment, naturally imbalanced
|
134 |
+
name: Yelp Review Polarity
|
135 |
+
num_classes: 2
|
136 |
+
original_test_samples: 38000
|
137 |
+
original_train_samples: 560000
|
138 |
+
quality_issues:
|
139 |
+
- moderate_imbalance
|
140 |
+
- rating_bias
|
141 |
+
target_column: label
|
142 |
+
task_type: binary_classification
|
143 |
+
test_samples: 38000
|
144 |
+
text_columns:
|
145 |
+
- text
|
146 |
+
total_samples: 598000
|
147 |
+
train_samples: 420000
|
148 |
+
validation_samples: 140000
|