id
stringlengths
3
8
content
stringlengths
100
981k
451045
from typing import List class Solution: def findMiddleIndex(self, nums: List[int]) -> int: s, far = sum(nums), 0 for i, v in enumerate(nums): if s - v == 2 * far: return i far += v return -1
451056
from globibot.lib.plugin import Plugin from globibot.lib.decorators import command from globibot.lib.helpers import parsing as p from globibot.lib.helpers.hooks import master_only import re URL_PATTERN = re.compile('http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+') class Reactions(Plugin): def load(self): self.votes = dict() async def on_new(self, message): if URL_PATTERN.findall(message.content) or message.attachments: await self.bot.add_reaction(message, '👍') await self.bot.add_reaction(message, '👎') async def on_reaction_add(self, reaction, user): if reaction.emoji == '❌': await self.check_vote_delete(reaction) elif reaction.emoji == '👎': await self.check_downvote(reaction) @command(p.string('!react') + p.bind(p.mention, 'who') + p.bind(p.word, 'emoji'), master_only) async def react_last_user(self, message, who, emoji): try: last_message = next( msg for msg in list(self.bot.messages)[-2::-1] if msg.channel.id == message.channel.id and msg.author.id == str(who) ) except StopIteration: self.debug('No Message') else: await self.bot.add_reaction(last_message, emoji) await self.bot.delete_message(message) @command(p.string('!react') + p.bind(p.mention, 'who') + p.bind(p.emoji, 'emoji_id'), master_only) async def react_last_user_emoji(self, message, who, emoji_id): try: last_message = next( msg for msg in list(self.bot.messages)[-2::-1] if msg.channel.id == message.channel.id and msg.author.id == str(who) ) except StopIteration: self.debug('No Message') else: for server in self.bot.servers: for emoji in server.emojis: if emoji.id == str(emoji_id): try: await self.bot.add_reaction(last_message, emoji) await self.bot.delete_message(message) return except: break await self.send_message(message.channel, "I can't use that emoji 😢", delete_after=5) await self.bot.add_reaction(last_message, '❓') @command( p.string('!votedel') + p.bind(p.mention, 'who') + p.bind(p.maybe(p.integer), 'count'), master_only ) async def votedel(self, message, who, count=10): try: last_message = next( msg for msg in list(self.bot.messages)[-2::-1] if msg.channel.id == message.channel.id and msg.author.id == str(who) ) except StopIteration: self.debug('No Message') else: self.votes[last_message.id] = (last_message, count) await self.bot.add_reaction(last_message, '❌') await self.send_message( message.channel, 'Deletion vote started: Cast your vote by clicking the ❌ reaction in order to delete {}\'s message ({} votes needed)' .format(last_message.author.mention, count), delete_after = 10 ) async def check_vote_delete(self, reaction): try: message, count = self.votes[reaction.message.id] except KeyError: pass else: if reaction.count >= count: del self.votes[reaction.message.id] await self.bot.delete_message(message) await self.send_message( reaction.message.channel, 'Deletion vote passed', delete_after = 5 ) async def check_downvote(self, reaction): if reaction.count >= 10: await self.bot.delete_message(reaction.message) await self.send_message( reaction.message.channel, '{}, I deleted your post since it was disliked too many times' .format(reaction.message.author.mention), delete_after = 10 )
451081
import numpy as np from autoconf import conf from autofit import exc from autofit.messages.normal import NormalMessage, UniformNormalMessage from autofit.messages.transform import log_10_transform from autofit.messages.transform_wrapper import TransformedWrapperInstance from .abstract import epsilon, assert_within_limits class Limits: @staticmethod def for_class_and_attributes_name(cls, attribute_name): limit_dict = conf.instance.prior_config.for_class_and_suffix_path( cls, [attribute_name, "gaussian_limits"] ) return limit_dict["lower"], limit_dict["upper"] class WrappedInstance( TransformedWrapperInstance ): __identifier_fields__ = ("lower_limit", "upper_limit") __database_args__ = ( "lower_limit", "upper_limit", "log_norm", "id_", ) def __init__( self, transformed_wrapper, *args, lower_limit, upper_limit, **kwargs ): super().__init__( transformed_wrapper, *args, lower_limit=lower_limit, upper_limit=upper_limit, **kwargs ) self.lower_limit = lower_limit self.upper_limit = upper_limit if self.lower_limit >= self.upper_limit: raise exc.PriorException( "The upper limit of a prior must be greater than its lower limit" ) def _new_for_base_message( self, message ): return type(self)( lower_limit=self.lower_limit, upper_limit=self.upper_limit, id_=self.instance().id, params=message.parameters ) class UniformPrior(WrappedInstance): """A prior with a uniform distribution between a lower and upper limit""" def __init__( self, lower_limit=0.0, upper_limit=1.0, id_=None, params=(0.0, 1.0) ): if any(map(np.isnan, params)): raise exc.MessageException( "nan parameter passed to UniformPrior" ) lower_limit = float(lower_limit) upper_limit = float(upper_limit) Message = UniformNormalMessage.shifted( shift=lower_limit, scale=upper_limit - lower_limit, ) super().__init__( Message, *params, lower_limit=lower_limit, upper_limit=upper_limit, id_=id_ ) def logpdf(self, x): # TODO: handle x as a numpy array if x == self.lower_limit: x += epsilon elif x == self.upper_limit: x -= epsilon return self.instance().logpdf(x) def __str__(self): """The line of text describing this prior for the model_mapper.info file""" return f"UniformPrior, lower_limit = {self.lower_limit}, upper_limit = {self.upper_limit}" @assert_within_limits def value_for(self, unit): """ Parameters ---------- unit: Float A unit hypercube value between 0 and 1 Returns ------- value: Float A value for the attribute between the upper and lower limits """ return round(super().value_for(unit), 14) # noinspection PyUnusedLocal @staticmethod def log_prior_from_value(value): """ Returns the log prior of a physical value, so the log likelihood of a model evaluation can be converted to a posterior as log_prior + log_likelihood. This is used by Emcee in the log likelihood function evaluation. NOTE: For a UniformPrior this is always zero, provided the value is between the lower and upper limit. Given this is check for when the instance is made (in the *instance_from_vector* function), we thus can simply return zero in this function. """ return 0.0 class LogUniformPrior(WrappedInstance): """A prior with a uniform distribution between a lower and upper limit""" def __init__( cls, lower_limit=1e-6, upper_limit=1.0, id_=None, params=(0.0, 1.0) ): if lower_limit <= 0.0: raise exc.PriorException( "The lower limit of a LogUniformPrior cannot be zero or negative." ) lower_limit = float(lower_limit) upper_limit = float(upper_limit) Message = UniformNormalMessage.shifted( shift=np.log10(lower_limit), scale=np.log10(upper_limit / lower_limit), ).transformed( log_10_transform ) super().__init__( Message, *params, id_=id_, lower_limit=lower_limit, upper_limit=upper_limit, ) __identifier_fields__ = ("lower_limit", "upper_limit") @staticmethod def log_prior_from_value(value): """ Returns the log prior of a physical value, so the log likelihood of a model evaluation can be converted to a posterior as log_prior + log_likelihood. This is used by Emcee in the log likelihood function evaluation. Parameters ---------- value : float The physical value of this prior's corresponding parameter in a `NonLinearSearch` sample.""" return 1.0 / value @assert_within_limits def value_for(self, unit: float) -> float: return super().value_for(unit) def __str__(self): """The line of text describing this prior for the model_mapper.info file""" return f"LogUniformPrior, lower_limit = {self.lower_limit}, upper_limit = {self.upper_limit}" class GaussianPrior(NormalMessage): """A prior with a gaussian distribution""" __identifier_fields__ = ( "lower_limit", "upper_limit", "mean", "sigma" ) @assert_within_limits def value_for(self, unit): """ Parameters ---------- unit: Float A unit hypercube value between 0 and 1 Returns ------- value: Float A value for the attribute biased to the gaussian distribution """ return super().value_for(unit)
451105
import pytest import smartsheet # Given Python's variable naming convention of snake_case, # and Smartsheet's API attribute naming convention of # lowerCamelCase, this set of tests is intended to make # sure all of that is handled correctly. @pytest.mark.usefixtures("smart_setup") class TestModelAttributes: def test_row(self, smart_setup): smart = smart_setup['smart'] # above, above # access_level, accessLevel # attachments, attachments # cells, cells # columns, columns # conditional_format, conditionalFormat # created_at, createdAt # discussions, discussions # expanded, expanded # filtered_out, filteredOut # format, format # id, id # in_critical_path, inCriticalPath # locked, locked # locked_for_user, lockedForUser # modified_at, modifiedAt # parent_id, parentId # permalink, permalink # row_number, rowNumber # sheet_id, sheetId # sibling_id, siblingId # to_bottom, toBottom # to_top, toTop # version, version model = smart.models.Row({ 'above': True, 'accessLevel': 'VIEWER', 'attachments': smart.models.Attachment(), 'cells': smart.models.Cell(), 'columns': smart.models.Column(), 'conditionalFormat': 'foo', 'discussions': smart.models.Discussion(), 'expanded': True, 'filteredOut': True, 'format': 'foo', 'id': 19082, 'inCriticalPath': True, 'locked': True, 'lockedForUser': True, 'parentId': 19082, 'permalink': 'foo', 'rowNumber': 19082, 'sheetId': 19082, 'siblingId': 19082, 'toBottom': True, 'toTop': True, 'version': 19082 }) assert model.above == True assert model.access_level == 'VIEWER' assert isinstance(model.attachments[0], smart.models.Attachment) assert isinstance(model.cells[0], smart.models.Cell) assert isinstance(model.columns[0], smart.models.Column) assert model.conditional_format == 'foo' assert isinstance(model.discussions[0], smart.models.Discussion) assert model.expanded == True assert model.filtered_out == True assert model.format == 'foo' assert model.id == 19082 assert model.in_critical_path == True assert model.locked == True assert model.locked_for_user == True assert model.parent_id == 19082 assert model.permalink == 'foo' assert model.row_number == 19082 assert model.sheet_id == 19082 assert model.sibling_id == 19082 assert model.to_bottom == True assert model.to_top == True assert model.version == 19082 as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_row_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Row({ 'above': True, 'attachments': smart.models.Attachment(), 'cells': smart.models.Cell(), 'columns': smart.models.Column(), 'discussions': smart.models.Discussion(), 'expanded': True, 'filteredOut': True, 'locked': True, 'lockedForUser': True, 'permalink': 'foo', 'rowNumber': 19082, 'sheetId': 19082, 'version': 19082, 'access_level': 'VIEWER', 'conditional_format': 'foo', 'format': 'foo', 'id': 19082, 'in_critical_path': True, 'parent_id': 19082, 'sibling_id': 19082, 'to_bottom': True, 'to_top': True }) assert model.above == True assert model.access_level == 'VIEWER' assert isinstance(model.attachments[0], smart.models.Attachment) assert isinstance(model.cells[0], smart.models.Cell) assert isinstance(model.columns[0], smart.models.Column) assert model.conditional_format == 'foo' assert isinstance(model.discussions[0], smart.models.Discussion) assert model.expanded == True assert model.filtered_out == True assert model.format == 'foo' assert model.id == 19082 assert model.in_critical_path == True assert model.locked == True assert model.locked_for_user == True assert model.parent_id == 19082 assert model.permalink == 'foo' assert model.row_number == 19082 assert model.sheet_id == 19082 assert model.sibling_id == 19082 assert model.to_bottom == True assert model.to_top == True assert model.version == 19082 def test_home(self, smart_setup): smart = smart_setup['smart'] # folders, folders # reports, reports # sheets, sheets # templates, templates # workspaces, workspaces model = smart.models.Home({ 'folders': smart.models.Folder(), 'reports': smart.models.Report(), 'sheets': smart.models.Sheet(), 'templates': smart.models.Template(), 'workspaces': smart.models.Workspace() }) assert isinstance(model.folders[0], smart.models.Folder) assert isinstance(model.reports[0], smart.models.Report) assert isinstance(model.sheets[0], smart.models.Sheet) assert isinstance(model.templates[0], smart.models.Template) assert isinstance(model.workspaces[0], smart.models.Workspace) as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_cell(self, smart_setup): smart = smart_setup['smart'] # column_id, columnId # column_type, columnType # conditional_format, conditionalFormat # display_value, displayValue # format, format # formula, formula # hyperlink, hyperlink # link_in_from_cell, linkInFromCell # links_out_to_cells, linksOutToCells # strict, strict # value, value model = smart.models.Cell({ 'columnId': 19082, 'columnType': 'foo', 'conditionalFormat': 'foo', 'displayValue': 'foo', 'format': 'foo', 'formula': 'foo', 'hyperlink': smart.models.Hyperlink(), 'linkInFromCell': smart.models.CellLink(), 'linksOutToCells': smart.models.CellLink(), 'strict': True, 'value': 'foo' }) assert model.column_id == 19082 assert model.column_type == 'foo' assert model.conditional_format == 'foo' assert model.display_value == 'foo' assert model.format == 'foo' assert model.formula == 'foo' assert isinstance(model.hyperlink, smart.models.Hyperlink) assert isinstance(model.link_in_from_cell, smart.models.CellLink) assert isinstance(model.links_out_to_cells[0], smart.models.CellLink) assert model.strict == True assert model.value == 'foo' model.hyperlink = {} assert isinstance(model.hyperlink, smart.models.Hyperlink) model.linkInFromCell = {} assert isinstance(model.link_in_from_cell, smart.models.CellLink) model.linksOutToCells = {} assert isinstance(model.links_out_to_cells[0], smart.models.CellLink) as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_cell_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Cell({ 'columnType': 'foo', 'conditionalFormat': 'foo', 'displayValue': 'foo', 'formula': 'foo', 'hyperlink': smart.models.Hyperlink(), 'strict': True, 'value': 'foo', 'column_id': 19082, 'format': 'foo', 'link_in_from_cell': smart.models.CellLink(), 'links_out_to_cells': smart.models.CellLink() }) assert model.column_id == 19082 assert model.column_type == 'foo' assert model.conditional_format == 'foo' assert model.display_value == 'foo' assert model.format == 'foo' assert model.formula == 'foo' assert isinstance(model.hyperlink, smart.models.Hyperlink) assert isinstance(model.link_in_from_cell, smart.models.CellLink) assert isinstance(model.links_out_to_cells[0], smart.models.CellLink) assert model.strict == True assert model.value == 'foo' def test_user(self, smart_setup): smart = smart_setup['smart'] # admin, admin # email, email # first_name, firstName # group_admin, groupAdmin # _id, id # last_name, lastName # licensed_sheet_creator, licensedSheetCreator # name, name # resource_viewer, resourceViewer # status, status model = smart.models.User({ 'admin': True, 'email': 'foo', 'firstName': 'foo', 'groupAdmin': True, 'id': 19082, 'lastName': 'foo', 'licensedSheetCreator': True, 'name': 'foo', 'resourceViewer': True, 'status': 'ACTIVE' }) assert model.admin == True assert model.email == 'foo' assert model.first_name == 'foo' assert model.group_admin == True assert model.id == 19082 assert model.last_name == 'foo' assert model.licensed_sheet_creator == True assert model.name == 'foo' assert model.resource_viewer == True assert model.status == 'ACTIVE' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_user_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.User({ 'admin': True, 'email': 'foo', 'name': 'foo', 'status': 'ACTIVE', 'first_name': 'foo', 'group_admin': True, 'id': 19082, 'last_name': 'foo', 'licensed_sheet_creator': True, 'resource_viewer': True }) assert model.admin == True assert model.email == 'foo' assert model.first_name == 'foo' assert model.group_admin == True assert model.id == 19082 assert model.last_name == 'foo' assert model.licensed_sheet_creator == True assert model.name == 'foo' assert model.resource_viewer == True assert model.status == 'ACTIVE' def test_group(self, smart_setup): smart = smart_setup['smart'] # created_at, createdAt # description, description # _id, id # members, members # modified_at, modifiedAt # name, name # owner, owner # owner_id, ownerId model = smart.models.Group({ 'description': 'foo', 'id': 19082, 'members': smart.models.GroupMember(), 'name': 'foo', 'owner': 'foo', 'ownerId': 19082 }) assert model.description == 'foo' assert model.id == 19082 assert isinstance(model.members[0], smart.models.GroupMember) assert model.name == 'foo' assert model.owner == 'foo' assert model.owner_id == 19082 as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_group_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Group({ 'description': 'foo', 'id': 19082, 'members': smart.models.GroupMember(), 'name': 'foo', 'owner': 'foo', 'owner_id': 19082 }) assert model.description == 'foo' assert model.id == 19082 assert isinstance(model.members[0], smart.models.GroupMember) assert model.name == 'foo' assert model.owner == 'foo' assert model.owner_id == 19082 def test_error(self, smart_setup): smart = smart_setup['smart'] # request_response, requestResponse # result, result model = smart.models.Error({ 'result': smart.models.ErrorResult() }) assert isinstance(model.result, smart.models.ErrorResult) model.result = {} assert isinstance(model.result, smart.models.ErrorResult) as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_error_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Error({ 'result': smart.models.ErrorResult() }) assert isinstance(model.result, smart.models.ErrorResult) def test_email(self, smart_setup): smart = smart_setup['smart'] # cc_me, ccMe # message, message # send_to, sendTo # subject, subject model = smart.models.Email({ 'ccMe': True, 'message': 'foo', 'sendTo': smart.models.Recipient(), 'subject': 'foo' }) assert model.cc_me == True assert model.message == 'foo' assert isinstance(model.send_to[0], smart.models.Recipient) assert model.subject == 'foo' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_email_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Email({ 'message': 'foo', 'subject': 'foo', 'cc_me': True, 'send_to': smart.models.Recipient() }) assert model.cc_me == True assert model.message == 'foo' assert isinstance(model.send_to[0], smart.models.Recipient) assert model.subject == 'foo' def test_sheet(self, smart_setup): smart = smart_setup['smart'] # access_level, accessLevel # attachments, attachments # columns, columns # created_at, createdAt # dependencies_enabled, dependenciesEnabled # discussions, discussions # effective_attachment_options, effectiveAttachmentOptions # favorite, favorite # from_id, fromId # gantt_enabled, ganttEnabled # id, id # modified_at, modifiedAt # name, name # owner, owner # owner_id, ownerId # permalink, permalink # read_only, readOnly # resource_management_enabled, resourceManagementEnabled # rows, rows # show_parent_rows_for_filters, showParentRowsForFilters # source, source # total_row_count, totalRowCount # user_settings, userSettings # version, version model = smart.models.Sheet({ 'accessLevel': 'VIEWER', 'attachments': smart.models.Attachment(), 'columns': smart.models.Column(), 'dependenciesEnabled': True, 'discussions': smart.models.Discussion(), 'effectiveAttachmentOptions': ['FILE'], 'favorite': True, 'fromId': 19082, 'ganttEnabled': True, 'id': 19082, 'name': 'foo', 'owner': 'foo', 'ownerId': 19082, 'permalink': 'foo', 'readOnly': True, 'resourceManagementEnabled': True, 'rows': smart.models.Row(), 'showParentRowsForFilters': True, 'source': smart.models.Source(), 'totalRowCount': 19082, 'userSettings': smart.models.SheetUserSettings(), 'version': 19082 }) assert model.access_level == 'VIEWER' assert isinstance(model.attachments[0], smart.models.Attachment) assert isinstance(model.columns[0], smart.models.Column) assert model.dependencies_enabled == True assert isinstance(model.discussions[0], smart.models.Discussion) assert model.effective_attachment_options[0] == 'FILE' assert model.favorite == True assert model.from_id == 19082 assert model.gantt_enabled == True assert model.id == 19082 assert model.name == 'foo' assert model.owner == 'foo' assert model.owner_id == 19082 assert model.permalink == 'foo' assert model.read_only == True assert model.resource_management_enabled == True assert isinstance(model.rows[0], smart.models.Row) assert model.show_parent_rows_for_filters == True assert isinstance(model.source, smart.models.Source) assert model.total_row_count == 19082 assert isinstance(model.user_settings, smart.models.SheetUserSettings) assert model.version == 19082 model.effective_attachment_options = 'FILE' assert model.effective_attachment_options[0] == 'FILE' tmplist = smartsheet.types.TypedList(str) tmplist.append('FILE') model.effective_attachment_options = tmplist assert model.effective_attachment_options[0] == 'FILE' model.source = {} assert isinstance(model.source, smart.models.Source) model.userSettings = {} assert isinstance(model.user_settings, smart.models.SheetUserSettings) as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_sheet_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Sheet({ 'attachments': smart.models.Attachment(), 'columns': smart.models.Column(), 'discussions': smart.models.Discussion(), 'favorite': True, 'name': 'foo', 'owner': 'foo', 'permalink': 'foo', 'rows': smart.models.Row(), 'source': smart.models.Source(), 'version': 19082, 'access_level': 'VIEWER', 'dependencies_enabled': True, 'effective_attachment_options': ['FILE'], 'from_id': 19082, 'gantt_enabled': True, 'id': 19082, 'owner_id': 19082, 'read_only': True, 'resource_management_enabled': True, 'show_parent_rows_for_filters': True, 'total_row_count': 19082, 'user_settings': smart.models.SheetUserSettings() }) assert model.access_level == 'VIEWER' assert isinstance(model.attachments[0], smart.models.Attachment) assert isinstance(model.columns[0], smart.models.Column) assert model.dependencies_enabled == True assert isinstance(model.discussions[0], smart.models.Discussion) assert model.effective_attachment_options[0] == 'FILE' assert model.favorite == True assert model.from_id == 19082 assert model.gantt_enabled == True assert model.id == 19082 assert model.name == 'foo' assert model.owner == 'foo' assert model.owner_id == 19082 assert model.permalink == 'foo' assert model.read_only == True assert model.resource_management_enabled == True assert isinstance(model.rows[0], smart.models.Row) assert model.show_parent_rows_for_filters == True assert isinstance(model.source, smart.models.Source) assert model.total_row_count == 19082 assert isinstance(model.user_settings, smart.models.SheetUserSettings) assert model.version == 19082 def test_share(self, smart_setup): smart = smart_setup['smart'] # access_level, accessLevel # cc_me, ccMe # email, email # group_id, groupId # id, id # message, message # name, name # subject, subject # type, type # user_id, userId model = smart.models.Share({ 'accessLevel': 'VIEWER', 'ccMe': True, 'email': 'foo', 'groupId': 19082, 'id': 'foo', 'message': 'foo', 'name': 'foo', 'subject': 'foo', 'type': 'USER', 'userId': 19082 }) assert model.access_level == 'VIEWER' assert model.cc_me == True assert model.email == 'foo' assert model.group_id == 19082 assert model.id == 'foo' assert model.message == 'foo' assert model.name == 'foo' assert model.subject == 'foo' assert model.type == 'USER' assert model.user_id == 19082 as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_share_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Share({ 'email': 'foo', 'message': 'foo', 'name': 'foo', 'subject': 'foo', 'access_level': 'VIEWER', 'cc_me': True, 'group_id': 19082, 'id': 'foo', 'type': 'USER', 'user_id': 19082 }) assert model.access_level == 'VIEWER' assert model.cc_me == True assert model.email == 'foo' assert model.group_id == 19082 assert model.id == 'foo' assert model.message == 'foo' assert model.name == 'foo' assert model.subject == 'foo' assert model.type == 'USER' assert model.user_id == 19082 def test_source(self, smart_setup): smart = smart_setup['smart'] # id, id # type, type model = smart.models.Source({ 'id': 19082, 'type': 'sheet' }) assert model.id == 19082 assert model.type == 'sheet' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_source_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Source({ 'id': 19082, 'type': 'sheet' }) assert model.id == 19082 assert model.type == 'sheet' def test_report(self, smart_setup): smart = smart_setup['smart'] # source_sheets, sourceSheets # from_id, fromId # modified_at, modifiedAt # owner_id, ownerId # columns, columns # dependencies_enabled, dependenciesEnabled # discussions, discussions # version, version # id, id # gantt_enabled, ganttEnabled # show_parent_rows_for_filters, showParentRowsForFilters # created_at, createdAt # name, name # attachments, attachments # total_row_count, totalRowCount # favorite, favorite # access_level, accessLevel # rows, rows # read_only, readOnly # permalink, permalink # source, source # effective_attachment_options, effectiveAttachmentOptions # owner, owner # resource_management_enabled, resourceManagementEnabled # user_settings, userSettings model = smart.models.Report({ 'sourceSheets': smart.models.Sheet(), 'fromId': 19082, 'ownerId': 19082, 'columns': smart.models.ReportColumn(), 'dependenciesEnabled': True, 'discussions': smart.models.Discussion(), 'version': 19082, 'id': 19082, 'ganttEnabled': True, 'showParentRowsForFilters': True, 'name': 'foo', 'attachments': smart.models.Attachment(), 'totalRowCount': 19082, 'favorite': True, 'accessLevel': 'VIEWER', 'rows': smart.models.ReportRow(), 'readOnly': True, 'permalink': 'foo', 'source': smart.models.Source(), 'effectiveAttachmentOptions': ['FILE'], 'owner': 'foo', 'resourceManagementEnabled': True, 'userSettings': smart.models.SheetUserSettings() }) assert isinstance(model.source_sheets[0], smart.models.Sheet) assert model.from_id == 19082 assert model.owner_id == 19082 assert isinstance(model.columns[0], smart.models.Column) assert model.dependencies_enabled == True assert isinstance(model.discussions[0], smart.models.Discussion) assert model.version == 19082 assert model.id == 19082 assert model.gantt_enabled == True assert model.show_parent_rows_for_filters == True assert model.name == 'foo' assert isinstance(model.attachments[0], smart.models.Attachment) assert model.total_row_count == 19082 assert model.favorite == True assert model.access_level == 'VIEWER' assert isinstance(model.rows[0], smart.models.Row) assert model.read_only == True assert model.permalink == 'foo' assert isinstance(model.source, smart.models.Source) assert model.effective_attachment_options[0] == 'FILE' assert model.owner == 'foo' assert model.resource_management_enabled == True assert isinstance(model.user_settings, smart.models.SheetUserSettings) model.source = {} assert isinstance(model.source, smart.models.Source) model.effective_attachment_options = 'FILE' assert model.effective_attachment_options[0] == 'FILE' tmplist = smartsheet.types.TypedList(str) tmplist.append('FILE') model.effective_attachment_options = tmplist assert model.effective_attachment_options[0] == 'FILE' model.userSettings = {} assert isinstance(model.user_settings, smart.models.SheetUserSettings) as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_report_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Report({ 'columns': smart.models.ReportColumn(), 'discussions': smart.models.Discussion(), 'version': 19082, 'name': 'foo', 'attachments': smart.models.Attachment(), 'favorite': True, 'rows': smart.models.ReportRow(), 'permalink': 'foo', 'source': smart.models.Source(), 'owner': 'foo', 'source_sheets': smart.models.Sheet(), 'from_id': 19082, 'owner_id': 19082, 'dependencies_enabled': True, 'id': 19082, 'gantt_enabled': True, 'show_parent_rows_for_filters': True, 'total_row_count': 19082, 'access_level': 'VIEWER', 'read_only': True, 'effective_attachment_options': ['FILE'], 'resource_management_enabled': True, 'user_settings': smart.models.SheetUserSettings() }) assert isinstance(model.source_sheets[0], smart.models.Sheet) assert model.from_id == 19082 assert model.owner_id == 19082 assert isinstance(model.columns[0], smart.models.Column) assert model.dependencies_enabled == True assert isinstance(model.discussions[0], smart.models.Discussion) assert model.version == 19082 assert model.id == 19082 assert model.gantt_enabled == True assert model.show_parent_rows_for_filters == True assert model.name == 'foo' assert isinstance(model.attachments[0], smart.models.Attachment) assert model.total_row_count == 19082 assert model.favorite == True assert model.access_level == 'VIEWER' assert isinstance(model.rows[0], smart.models.Row) assert model.read_only == True assert model.permalink == 'foo' assert isinstance(model.source, smart.models.Source) assert model.effective_attachment_options[0] == 'FILE' assert model.owner == 'foo' assert model.resource_management_enabled == True assert isinstance(model.user_settings, smart.models.SheetUserSettings) def test_folder(self, smart_setup): smart = smart_setup['smart'] # favorite, favorite # folders, folders # id, id # name, name # permalink, permalink # reports, reports # sheets, sheets # templates, templates model = smart.models.Folder({ 'favorite': True, 'folders': smart.models.Folder(), 'id': 19082, 'name': 'foo', 'permalink': 'foo', 'reports': smart.models.Report(), 'sheets': smart.models.Sheet(), 'templates': smart.models.Template() }) assert model.favorite == True assert isinstance(model.folders[0], smart.models.Folder) assert model.id == 19082 assert model.name == 'foo' assert model.permalink == 'foo' assert isinstance(model.reports[0], smart.models.Report) assert isinstance(model.sheets[0], smart.models.Sheet) assert isinstance(model.templates[0], smart.models.Template) as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_folder_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Folder({ 'favorite': True, 'folders': smart.models.Folder(), 'name': 'foo', 'permalink': 'foo', 'reports': smart.models.Report(), 'sheets': smart.models.Sheet(), 'templates': smart.models.Template(), 'id': 19082 }) assert model.favorite == True assert isinstance(model.folders[0], smart.models.Folder) assert model.id == 19082 assert model.name == 'foo' assert model.permalink == 'foo' assert isinstance(model.reports[0], smart.models.Report) assert isinstance(model.sheets[0], smart.models.Sheet) assert isinstance(model.templates[0], smart.models.Template) def test_column(self, smart_setup): smart = smart_setup['smart'] # auto_number_format, autoNumberFormat # format, format # hidden, hidden # id, id # index, index # locked, locked # locked_for_user, lockedForUser # options, options # primary, primary # symbol, symbol # system_column_type, systemColumnType # tags, tags # title, title # type, type # width, width model = smart.models.Column({ 'autoNumberFormat': smart.models.AutoNumberFormat(), 'format': 'foo', 'hidden': True, 'id': 19082, 'index': 19082, 'locked': True, 'lockedForUser': True, 'options': ['foo'], 'primary': True, 'symbol': 'STAR', 'systemColumnType': 'AUTO_NUMBER', 'tags': ['foo'], 'title': 'foo', 'type': 'TEXT_NUMBER', 'width': 19082 }) assert isinstance(model.auto_number_format, smart.models.AutoNumberFormat) assert model.format == 'foo' assert model.hidden == True assert model.id == 19082 assert model.index == 19082 assert model.locked == True assert model.locked_for_user == True assert model.options[0] == 'foo' assert model.primary == True assert model.symbol == 'STAR' assert model.system_column_type == 'AUTO_NUMBER' assert model.tags[0] == 'foo' assert model.title == 'foo' assert model.type == 'TEXT_NUMBER' assert model.width == 19082 model.autoNumberFormat = {} assert isinstance(model.auto_number_format, smart.models.AutoNumberFormat) model.options = 'foo' assert model.options[0] == 'foo' tmplist = smartsheet.types.TypedList(str) tmplist.append('foo') model.options = tmplist assert model.options[0] == 'foo' model.tags = 'foo' assert model.tags[0] == 'foo' tmplist = smartsheet.types.TypedList(str) tmplist.append('foo') model.tags = tmplist assert model.tags[0] == 'foo' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_column_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Column({ 'hidden': True, 'index': 19082, 'locked': True, 'options': ['foo'], 'primary': True, 'symbol': 'STAR', 'tags': ['foo'], 'title': 'foo', 'width': 19082, 'auto_number_format': smart.models.AutoNumberFormat(), 'format': 'foo', 'id': 19082, 'locked_for_user': True, 'system_column_type': 'AUTO_NUMBER', 'type': 'TEXT_NUMBER' }) assert isinstance(model.auto_number_format, smart.models.AutoNumberFormat) assert model.format == 'foo' assert model.hidden == True assert model.id == 19082 assert model.index == 19082 assert model.locked == True assert model.locked_for_user == True assert model.options[0] == 'foo' assert model.primary == True assert model.symbol == 'STAR' assert model.system_column_type == 'AUTO_NUMBER' assert model.tags[0] == 'foo' assert model.title == 'foo' assert model.type == 'TEXT_NUMBER' assert model.width == 19082 def test_result(self, smart_setup): smart = smart_setup['smart'] # message, message # result, result # result_code, resultCode # version, version model = smart.models.Result({ 'message': 'foo', 'resultCode': 19082, 'version': 19082 }) assert model.message == 'foo' assert model.result_code == 19082 assert model.version == 19082 as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_result_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Result({ 'message': 'foo', 'version': 19082, 'result_code': 19082 }) assert model.message == 'foo' assert model.result_code == 19082 assert model.version == 19082 def test_contact(self, smart_setup): smart = smart_setup['smart'] # email, email # id, id # name, name model = smart.models.Contact({ 'email': 'foo', 'id': 'foo', 'name': 'foo' }) assert model.email == 'foo' assert model.id == 'foo' assert model.name == 'foo' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_contact_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Contact({ 'email': 'foo', 'name': 'foo', 'id': 'foo' }) assert model.email == 'foo' assert model.id == 'foo' assert model.name == 'foo' def test_comment(self, smart_setup): smart = smart_setup['smart'] # attachments, attachments # created_at, createdAt # created_by, createdBy # discussion_id, discussionId # id, id # modified_at, modifiedAt # text, text model = smart.models.Comment({ 'attachments': smart.models.Attachment(), 'createdBy': smart.models.User(), 'discussionId': 19082, 'id': 19082, 'text': 'foo' }) assert isinstance(model.attachments[0], smart.models.Attachment) assert isinstance(model.created_by, smart.models.User) assert model.discussion_id == 19082 assert model.id == 19082 assert model.text == 'foo' model.createdBy = {} assert isinstance(model.created_by, smart.models.User) as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_comment_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Comment({ 'attachments': smart.models.Attachment(), 'text': 'foo', 'created_by': smart.models.User(), 'discussion_id': 19082, 'id': 19082 }) assert isinstance(model.attachments[0], smart.models.Attachment) assert isinstance(model.created_by, smart.models.User) assert model.discussion_id == 19082 assert model.id == 19082 assert model.text == 'foo' def test_account(self, smart_setup): smart = smart_setup['smart'] # id, id # name, name model = smart.models.Account({ 'id': 19082, 'name': 'foo' }) assert model.id == 19082 assert model.name == 'foo' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_account_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Account({ 'name': 'foo', 'id': 19082 }) assert model.id == 19082 assert model.name == 'foo' def test_version(self, smart_setup): smart = smart_setup['smart'] # version, version model = smart.models.Version({ 'version': 19082 }) assert model.version == 19082 as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_cell_link(self, smart_setup): smart = smart_setup['smart'] # column_id, columnId # row_id, rowId # sheet_id, sheetId # sheet_name, sheetName # status, status model = smart.models.CellLink({ 'columnId': 19082, 'rowId': 19082, 'sheetId': 19082, 'sheetName': 'foo', 'status': 'OK' }) assert model.column_id == 19082 assert model.row_id == 19082 assert model.sheet_id == 19082 assert model.sheet_name == 'foo' assert model.status == 'OK' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_cell_link_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.CellLink({ 'status': 'OK', 'column_id': 19082, 'row_id': 19082, 'sheet_id': 19082, 'sheet_name': 'foo' }) assert model.column_id == 19082 assert model.row_id == 19082 assert model.sheet_id == 19082 assert model.sheet_name == 'foo' assert model.status == 'OK' def test_template(self, smart_setup): smart = smart_setup['smart'] # access_level, accessLevel # description, description # id, id # name, name model = smart.models.Template({ 'accessLevel': 'VIEWER', 'description': 'foo', 'id': 19082, 'name': 'foo' }) assert model.access_level == 'VIEWER' assert model.description == 'foo' assert model.id == 19082 assert model.name == 'foo' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_template_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Template({ 'description': 'foo', 'name': 'foo', 'access_level': 'VIEWER', 'id': 19082 }) assert model.access_level == 'VIEWER' assert model.description == 'foo' assert model.id == 19082 assert model.name == 'foo' def test_row_email(self, smart_setup): smart = smart_setup['smart'] # message, message # column_ids, columnIds # send_to, sendTo # include_attachments, includeAttachments # subject, subject # include_discussions, includeDiscussions # cc_me, ccMe model = smart.models.RowEmail({ 'message': 'foo', 'columnIds': [19082], 'sendTo': smart.models.Recipient(), 'includeAttachments': True, 'subject': 'foo', 'includeDiscussions': True, 'ccMe': True }) assert model.message == 'foo' assert model.column_ids[0] == 19082 assert isinstance(model.send_to[0], smart.models.Recipient) assert model.include_attachments == True assert model.subject == 'foo' assert model.include_discussions == True assert model.cc_me == True model.column_ids = 19082 assert model.column_ids[0] == 19082 tmplist = smartsheet.types.TypedList(int) tmplist.append(19082) model.column_ids = tmplist assert model.column_ids[0] == 19082 as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_row_email_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.RowEmail({ 'message': 'foo', 'subject': 'foo', 'column_ids': [19082], 'send_to': smart.models.Recipient(), 'include_attachments': True, 'include_discussions': True, 'cc_me': True }) assert model.message == 'foo' assert model.column_ids[0] == 19082 assert isinstance(model.send_to[0], smart.models.Recipient) assert model.include_attachments == True assert model.subject == 'foo' assert model.include_discussions == True assert model.cc_me == True def test_criteria(self, smart_setup): smart = smart_setup['smart'] # operator, operator # value1, value1 # value2, value2 model = smart.models.Criteria({ 'operator': 'EQUAL', 'values': ['foo', 'foo'] }) assert model.operator == 'EQUAL' assert model.values[0] == 'foo' assert model.values[1] == 'foo' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_currency(self, smart_setup): smart = smart_setup['smart'] # code, code # symbol, symbol model = smart.models.Currency({ 'code': 'USD', 'symbol': '$' }) assert model.code == 'USD' assert model.symbol == '$' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_favorite(self, smart_setup): smart = smart_setup['smart'] # object_id, objectId # type, type model = smart.models.Favorite({ 'objectId': 19082, 'type': 'workspace' }) assert model.object_id == 19082 assert model.type == 'workspace' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_favorite_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Favorite({ 'object_id': 19082, 'type': 'workspace' }) assert model.object_id == 19082 assert model.type == 'workspace' def test_hyperlink(self, smart_setup): smart = smart_setup['smart'] # report_id, reportId # sheet_id, sheetId # url, url model = smart.models.Hyperlink({ 'reportId': 19082, 'sheetId': 19082, 'url': 'foo' }) assert model.report_id == 19082 assert model.sheet_id == 19082 assert model.url == 'foo' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_hyperlink_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Hyperlink({ 'url': 'foo', 'report_id': 19082, 'sheet_id': 19082 }) assert model.report_id == 19082 assert model.sheet_id == 19082 assert model.url == 'foo' def test_recipient(self, smart_setup): smart = smart_setup['smart'] # email, email # group_id, groupId model = smart.models.Recipient({ 'email': 'foo', 'groupId': 19082 }) assert model.email == 'foo' assert model.group_id == 19082 as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_recipient_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Recipient({ 'email': 'foo', 'group_id': 19082 }) assert model.email == 'foo' assert model.group_id == 19082 def test_workspace(self, smart_setup): smart = smart_setup['smart'] # access_level, accessLevel # favorite, favorite # folders, folders # id, id # name, name # permalink, permalink # reports, reports # sheets, sheets # templates, templates model = smart.models.Workspace({ 'accessLevel': 'VIEWER', 'favorite': True, 'folders': smart.models.Folder(), 'id': 19082, 'name': 'foo', 'permalink': 'foo', 'reports': smart.models.Report(), 'sheets': smart.models.Sheet(), 'templates': smart.models.Template() }) assert model.access_level == 'VIEWER' assert model.favorite == True assert isinstance(model.folders[0], smart.models.Folder) assert model.id == 19082 assert model.name == 'foo' assert model.permalink == 'foo' assert isinstance(model.reports[0], smart.models.Report) assert isinstance(model.sheets[0], smart.models.Sheet) assert isinstance(model.templates[0], smart.models.Template) as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_workspace_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Workspace({ 'favorite': True, 'folders': smart.models.Folder(), 'name': 'foo', 'permalink': 'foo', 'reports': smart.models.Report(), 'sheets': smart.models.Sheet(), 'templates': smart.models.Template(), 'access_level': 'VIEWER', 'id': 19082 }) assert model.access_level == 'VIEWER' assert model.favorite == True assert isinstance(model.folders[0], smart.models.Folder) assert model.id == 19082 assert model.name == 'foo' assert model.permalink == 'foo' assert isinstance(model.reports[0], smart.models.Report) assert isinstance(model.sheets[0], smart.models.Sheet) assert isinstance(model.templates[0], smart.models.Template) def test_report_row(self, smart_setup): smart = smart_setup['smart'] # in_critical_path, inCriticalPath # cells, cells # sibling_id, siblingId # modified_at, modifiedAt # columns, columns # row_number, rowNumber # format, format # expanded, expanded # access_level, accessLevel # version, version # discussions, discussions # id, id # parent_id, parentId # sheet_id, sheetId # to_top, toTop # to_bottom, toBottom # permalink, permalink # locked_for_user, lockedForUser # created_at, createdAt # conditional_format, conditionalFormat # filtered_out, filteredOut # above, above # locked, locked # attachments, attachments model = smart.models.ReportRow({ 'inCriticalPath': True, 'cells': smart.models.ReportCell(), 'siblingId': 19082, 'columns': smart.models.Column(), 'rowNumber': 19082, 'format': 'foo', 'expanded': True, 'accessLevel': 'VIEWER', 'version': 19082, 'discussions': smart.models.Discussion(), 'id': 19082, 'parentId': 19082, 'sheetId': 19082, 'toTop': True, 'toBottom': True, 'permalink': 'foo', 'lockedForUser': True, 'conditionalFormat': 'foo', 'filteredOut': True, 'above': True, 'locked': True, 'attachments': smart.models.Attachment() }) assert model.in_critical_path == True assert isinstance(model.cells[0], smart.models.Cell) assert model.sibling_id == 19082 assert isinstance(model.columns[0], smart.models.Column) assert model.row_number == 19082 assert model.format == 'foo' assert model.expanded == True assert model.access_level == 'VIEWER' assert model.version == 19082 assert isinstance(model.discussions[0], smart.models.Discussion) assert model.id == 19082 assert model.parent_id == 19082 assert model.sheet_id == 19082 assert model.to_top == True assert model.to_bottom == True assert model.permalink == 'foo' assert model.locked_for_user == True assert model.conditional_format == 'foo' assert model.filtered_out == True assert model.above == True assert model.locked == True assert isinstance(model.attachments[0], smart.models.Attachment) as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_report_row_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.ReportRow({ 'cells': smart.models.ReportCell(), 'columns': smart.models.Column(), 'rowNumber': 19082, 'expanded': True, 'version': 19082, 'discussions': smart.models.Discussion(), 'permalink': 'foo', 'lockedForUser': True, 'filteredOut': True, 'above': True, 'locked': True, 'attachments': smart.models.Attachment(), 'in_critical_path': True, 'sibling_id': 19082, 'format': 'foo', 'access_level': 'VIEWER', 'id': 19082, 'parent_id': 19082, 'sheet_id': 19082, 'to_top': True, 'to_bottom': True, 'conditional_format': 'foo' }) assert model.in_critical_path == True assert isinstance(model.cells[0], smart.models.Cell) assert model.sibling_id == 19082 assert isinstance(model.columns[0], smart.models.Column) assert model.row_number == 19082 assert model.format == 'foo' assert model.expanded == True assert model.access_level == 'VIEWER' assert model.version == 19082 assert isinstance(model.discussions[0], smart.models.Discussion) assert model.id == 19082 assert model.parent_id == 19082 assert model.sheet_id == 19082 assert model.to_top == True assert model.to_bottom == True assert model.permalink == 'foo' assert model.locked_for_user == True assert model.conditional_format == 'foo' assert model.filtered_out == True assert model.above == True assert model.locked == True assert isinstance(model.attachments[0], smart.models.Attachment) def test_font_family(self, smart_setup): smart = smart_setup['smart'] # name, name # traits, traits model = smart.models.FontFamily({ 'name': 'foo', 'traits': ['foo'] }) assert model.name == 'foo' assert model.traits[0] == 'foo' model.traits = 'foo' assert model.traits[0] == 'foo' tmplist = smartsheet.types.TypedList(str) tmplist.append('foo') model.traits = tmplist assert model.traits[0] == 'foo' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_server_info(self, smart_setup): smart = smart_setup['smart'] # formats, formats # supported_locales, supportedLocales model = smart.models.ServerInfo({ 'formats': smart.models.FormatTables(), 'supportedLocales': ['foo'] }) assert isinstance(model.formats, smart.models.FormatTables) assert model.supported_locales[0] == 'foo' model.formats = {} assert isinstance(model.formats, smart.models.FormatTables) model.supported_locales = 'foo' assert model.supported_locales[0] == 'foo' tmplist = smartsheet.types.TypedList(str) tmplist.append('foo') model.supported_locales = tmplist assert model.supported_locales[0] == 'foo' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_server_info_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.ServerInfo({ 'formats': smart.models.FormatTables(), 'supported_locales': ['foo'] }) assert isinstance(model.formats, smart.models.FormatTables) assert model.supported_locales[0] == 'foo' def test_report_cell(self, smart_setup): smart = smart_setup['smart'] # link_in_from_cell, linkInFromCell # virtual_column_id, virtualColumnId # column_type, columnType # hyperlink, hyperlink # conditional_format, conditionalFormat # value, value # column_id, columnId # format, format # strict, strict # display_value, displayValue # links_out_to_cells, linksOutToCells # formula, formula model = smart.models.ReportCell({ 'linkInFromCell': smart.models.CellLink(), 'virtualColumnId': 19082, 'columnType': 'foo', 'hyperlink': smart.models.Hyperlink(), 'conditionalFormat': 'foo', 'value': 'foo', 'columnId': 19082, 'format': 'foo', 'strict': True, 'displayValue': 'foo', 'linksOutToCells': smart.models.CellLink(), 'formula': 'foo' }) assert isinstance(model.link_in_from_cell, smart.models.CellLink) assert model.virtual_column_id == 19082 assert model.column_type == 'foo' assert isinstance(model.hyperlink, smart.models.Hyperlink) assert model.conditional_format == 'foo' assert model.value == 'foo' assert model.column_id == 19082 assert model.format == 'foo' assert model.strict == True assert model.display_value == 'foo' assert isinstance(model.links_out_to_cells[0], smart.models.CellLink) assert model.formula == 'foo' model.linkInFromCell = {} assert isinstance(model.link_in_from_cell, smart.models.CellLink) model.hyperlink = {} assert isinstance(model.hyperlink, smart.models.Hyperlink) model.linksOutToCells = {} assert isinstance(model.links_out_to_cells[0], smart.models.CellLink) as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_report_cell_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.ReportCell({ 'columnType': 'foo', 'hyperlink': smart.models.Hyperlink(), 'conditionalFormat': 'foo', 'value': 'foo', 'strict': True, 'displayValue': 'foo', 'formula': 'foo', 'link_in_from_cell': smart.models.CellLink(), 'virtual_column_id': 19082, 'column_id': 19082, 'format': 'foo', 'links_out_to_cells': smart.models.CellLink() }) assert isinstance(model.link_in_from_cell, smart.models.CellLink) assert model.virtual_column_id == 19082 assert model.column_type == 'foo' assert isinstance(model.hyperlink, smart.models.Hyperlink) assert model.conditional_format == 'foo' assert model.value == 'foo' assert model.column_id == 19082 assert model.format == 'foo' assert model.strict == True assert model.display_value == 'foo' assert isinstance(model.links_out_to_cells[0], smart.models.CellLink) assert model.formula == 'foo' def test_row_mapping(self, smart_setup): smart = smart_setup['smart'] # from_, from # to, to model = smart.models.RowMapping({ 'from': 19082, 'to': 19082 }) assert model.from_ == 19082 assert model.to == 19082 as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_row_mapping_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.RowMapping({ 'to': 19082, 'from': 19082 }) assert model.from_ == 19082 assert model.to == 19082 def test_o_auth_error(self, smart_setup): smart = smart_setup['smart'] # error, error # error_code, errorCode # error_description, error_description model = smart.models.OAuthError({ 'error': 'invalid_request', 'errorCode': 19082, 'error_description': 'foo' }) assert model.error == 'invalid_request' assert model.error_code == 19082 assert model.error_description == 'foo' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_o_auth_error_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.OAuthError({ 'error': 'invalid_request', 'error_description': 'foo', 'error_code': 19082 }) assert model.error == 'invalid_request' assert model.error_code == 19082 assert model.error_description == 'foo' def test_discussion(self, smart_setup): smart = smart_setup['smart'] # access_level, accessLevel # comment, comment # comment_attachments, commentAttachments # comments, comments # created_by, createdBy # id, id # last_commented_at, lastCommentedAt # last_commented_user, lastCommentedUser # parent_id, parentId # parent_type, parentType # read_only, readOnly # title, title model = smart.models.Discussion({ 'accessLevel': 'VIEWER', 'comment': smart.models.Comment(), 'commentAttachments': smart.models.Attachment(), 'comments': smart.models.Comment(), 'createdBy': smart.models.User(), 'id': 19082, 'lastCommentedUser': smart.models.User(), 'parentId': 19082, 'parentType': 'foo', 'readOnly': True, 'title': 'foo' }) assert model.access_level == 'VIEWER' assert isinstance(model.comment, smart.models.Comment) assert isinstance(model.comment_attachments[0], smart.models.Attachment) assert isinstance(model.comments[0], smart.models.Comment) assert isinstance(model.created_by, smart.models.User) assert model.id == 19082 assert isinstance(model.last_commented_user, smart.models.User) assert model.parent_id == 19082 assert model.parent_type == 'foo' assert model.read_only == True assert model.title == 'foo' model.comment = {} assert isinstance(model.comment, smart.models.Comment) model.createdBy = {} assert isinstance(model.created_by, smart.models.User) model.lastCommentedUser = {} assert isinstance(model.last_commented_user, smart.models.User) as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_discussion_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Discussion({ 'comment': smart.models.Comment(), 'comments': smart.models.Comment(), 'title': 'foo', 'access_level': 'VIEWER', 'comment_attachments': smart.models.Attachment(), 'created_by': smart.models.User(), 'id': 19082, 'last_commented_user': smart.models.User(), 'parent_id': 19082, 'parent_type': 'foo', 'read_only': True }) assert model.access_level == 'VIEWER' assert isinstance(model.comment, smart.models.Comment) assert isinstance(model.comment_attachments[0], smart.models.Attachment) assert isinstance(model.comments[0], smart.models.Comment) assert isinstance(model.created_by, smart.models.User) assert model.id == 19082 assert isinstance(model.last_commented_user, smart.models.User) assert model.parent_id == 19082 assert model.parent_type == 'foo' assert model.read_only == True assert model.title == 'foo' def test_attachment(self, smart_setup): smart = smart_setup['smart'] # attachment_sub_type, attachmentSubType # attachment_type, attachmentType # created_at, createdAt # created_by, createdBy # description, description # id, id # mime_type, mimeType # name, name # parent_id, parentId # parent_type, parentType # size_in_kb, sizeInKb # url, url # url_expires_in_millis, urlExpiresInMillis model = smart.models.Attachment({ 'attachmentSubType': 'DOCUMENT', 'attachmentType': 'BOX_COM', 'createdBy': smart.models.User(), 'description': 'foo', 'id': 19082, 'mimeType': 'foo', 'name': 'foo', 'parentId': 19082, 'parentType': 'SHEET', 'sizeInKb': 19082, 'url': 'foo', 'urlExpiresInMillis': 19082 }) assert model.attachment_sub_type == 'DOCUMENT' assert model.attachment_type == 'BOX_COM' assert isinstance(model.created_by, smart.models.User) assert model.id == 19082 assert model.mime_type == 'foo' assert model.name == 'foo' assert model.parent_id == 19082 assert model.parent_type == 'SHEET' assert model.size_in_kb == 19082 assert model.url == 'foo' assert model.url_expires_in_millis == 19082 model.createdBy = {} assert isinstance(model.created_by, smart.models.User) as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_attachment_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.Attachment({ 'mimeType': 'foo', 'name': 'foo', 'parentId': 19082, 'parentType': 'SHEET', 'sizeInKb': 19082, 'url': 'foo', 'urlExpiresInMillis': 19082, 'attachment_sub_type': 'DOCUMENT', 'attachment_type': 'BOX_COM', 'created_by': smart.models.User(), 'id': 19082 }) assert model.attachment_sub_type == 'DOCUMENT' assert model.attachment_type == 'BOX_COM' assert isinstance(model.created_by, smart.models.User) assert model.id == 19082 assert model.mime_type == 'foo' assert model.name == 'foo' assert model.parent_id == 19082 assert model.parent_type == 'SHEET' assert model.size_in_kb == 19082 assert model.url == 'foo' assert model.url_expires_in_millis == 19082 def test_sheet_email(self, smart_setup): smart = smart_setup['smart'] # message, message # send_to, sendTo # subject, subject # format_details, formatDetails # format, format # cc_me, ccMe model = smart.models.SheetEmail({ 'message': 'foo', 'sendTo': smart.models.Recipient(), 'subject': 'foo', 'formatDetails': smart.models.FormatDetails(), 'format': 'PDF', 'ccMe': True }) assert model.message == 'foo' assert isinstance(model.send_to[0], smart.models.Recipient) assert model.subject == 'foo' assert isinstance(model.format_details, smart.models.FormatDetails) assert model.format == 'PDF' assert model.cc_me == True model.formatDetails = {} assert isinstance(model.format_details, smart.models.FormatDetails) as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_sheet_email_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.SheetEmail({ 'message': 'foo', 'subject': 'foo', 'send_to': smart.models.Recipient(), 'format_details': smart.models.FormatDetails(), 'format': 'PDF', 'cc_me': True }) assert model.message == 'foo' assert isinstance(model.send_to[0], smart.models.Recipient) assert model.subject == 'foo' assert isinstance(model.format_details, smart.models.FormatDetails) assert model.format == 'PDF' assert model.cc_me == True def test_access_token(self, smart_setup): smart = smart_setup['smart'] # access_token, access_token # expires_in, expires_in # refresh_token, refresh_token # token_type, token_type model = smart.models.AccessToken({ 'access_token': 'foo', 'expires_in': 19082, 'refresh_token': 'foo', 'token_type': 'bearer' }) assert model.access_token == 'foo' assert model.expires_in == 19082 assert model.refresh_token == 'foo' assert model.token_type == 'bearer' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_index_result(self, smart_setup): smart = smart_setup['smart'] # data, data # page_number, pageNumber # page_size, pageSize # total_count, totalCount # total_pages, totalPages model = smart.models.IndexResult({ 'pageNumber': 19082, 'pageSize': 19082, 'totalCount': 19082, 'totalPages': 19082 }) assert model.page_number == 19082 assert model.page_size == 19082 assert model.total_count == 19082 assert model.total_pages == 19082 as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_index_result_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.IndexResult({ 'page_number': 19082, 'page_size': 19082, 'total_count': 19082, 'total_pages': 19082 }) assert model.page_number == 19082 assert model.page_size == 19082 assert model.total_count == 19082 assert model.total_pages == 19082 def test_cell_history(self, smart_setup): smart = smart_setup['smart'] # link_in_from_cell, linkInFromCell # modified_at, modifiedAt # column_type, columnType # modified_by, modifiedBy # hyperlink, hyperlink # conditional_format, conditionalFormat # value, value # column_id, columnId # format, format # strict, strict # display_value, displayValue # links_out_to_cells, linksOutToCells # formula, formula model = smart.models.CellHistory({ 'linkInFromCell': smart.models.CellLink(), 'columnType': 'foo', 'modifiedBy': smart.models.User(), 'hyperlink': smart.models.Hyperlink(), 'conditionalFormat': 'foo', 'value': 'foo', 'columnId': 19082, 'format': 'foo', 'strict': True, 'displayValue': 'foo', 'linksOutToCells': smart.models.CellLink(), 'formula': 'foo' }) assert isinstance(model.link_in_from_cell, smart.models.CellLink) assert model.column_type == 'foo' assert isinstance(model.modified_by, smart.models.User) assert isinstance(model.hyperlink, smart.models.Hyperlink) assert model.conditional_format == 'foo' assert model.value == 'foo' assert model.column_id == 19082 assert model.format == 'foo' assert model.strict == True assert model.display_value == 'foo' assert isinstance(model.links_out_to_cells[0], smart.models.CellLink) assert model.formula == 'foo' model.linkInFromCell = {} assert isinstance(model.link_in_from_cell, smart.models.CellLink) model.modifiedBy = {} assert isinstance(model.modified_by, smart.models.User) model.hyperlink = {} assert isinstance(model.hyperlink, smart.models.Hyperlink) model.linksOutToCells = {} assert isinstance(model.links_out_to_cells[0], smart.models.CellLink) as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_cell_history_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.CellHistory({ 'columnType': 'foo', 'hyperlink': smart.models.Hyperlink(), 'conditionalFormat': 'foo', 'value': 'foo', 'strict': True, 'displayValue': 'foo', 'formula': 'foo', 'link_in_from_cell': smart.models.CellLink(), 'modified_by': smart.models.User(), 'column_id': 19082, 'format': 'foo', 'links_out_to_cells': smart.models.CellLink() }) assert isinstance(model.link_in_from_cell, smart.models.CellLink) assert model.column_type == 'foo' assert isinstance(model.modified_by, smart.models.User) assert isinstance(model.hyperlink, smart.models.Hyperlink) assert model.conditional_format == 'foo' assert model.value == 'foo' assert model.column_id == 19082 assert model.format == 'foo' assert model.strict == True assert model.display_value == 'foo' assert isinstance(model.links_out_to_cells[0], smart.models.CellLink) assert model.formula == 'foo' def test_user_profile(self, smart_setup): smart = smart_setup['smart'] # account, account # admin, admin # email, email # first_name, firstName # group_admin, groupAdmin # id, id # last_name, lastName # licensed_sheet_creator, licensedSheetCreator # locale, locale # resource_viewer, resourceViewer # status, status # time_zone, timeZone model = smart.models.UserProfile({ 'account': smart.models.Account(), 'admin': True, 'email': 'foo', 'firstName': 'foo', 'groupAdmin': True, 'id': 19082, 'lastName': 'foo', 'licensedSheetCreator': True, 'locale': 'foo', 'resourceViewer': True, 'status': 'ACTIVE', 'timeZone': 'foo' }) assert isinstance(model.account, smart.models.Account) assert model.admin == True assert model.email == 'foo' assert model.first_name == 'foo' assert model.group_admin == True assert model.id == 19082 assert model.last_name == 'foo' assert model.licensed_sheet_creator == True assert model.locale == 'foo' assert model.resource_viewer == True assert model.status == 'ACTIVE' assert model.time_zone == 'foo' model.account = {} assert isinstance(model.account, smart.models.Account) as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_user_profile_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.UserProfile({ 'account': smart.models.Account(), 'admin': True, 'email': 'foo', 'locale': 'foo', 'status': 'ACTIVE', 'first_name': 'foo', 'group_admin': True, 'id': 19082, 'last_name': 'foo', 'licensed_sheet_creator': True, 'resource_viewer': True, 'time_zone': 'foo' }) assert isinstance(model.account, smart.models.Account) assert model.admin == True assert model.email == 'foo' assert model.first_name == 'foo' assert model.group_admin == True assert model.id == 19082 assert model.last_name == 'foo' assert model.licensed_sheet_creator == True assert model.locale == 'foo' assert model.resource_viewer == True assert model.status == 'ACTIVE' assert model.time_zone == 'foo' def test_group_member(self, smart_setup): smart = smart_setup['smart'] # email, email # first_name, firstName # id, id # last_name, lastName # name, name model = smart.models.GroupMember({ 'email': 'foo', 'firstName': 'foo', 'id': 19082, 'lastName': 'foo', 'name': 'foo' }) assert model.email == 'foo' assert model.first_name == 'foo' assert model.id == 19082 assert model.last_name == 'foo' assert model.name == 'foo' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_group_member_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.GroupMember({ 'email': 'foo', 'name': 'foo', 'first_name': 'foo', 'id': 19082, 'last_name': 'foo' }) assert model.email == 'foo' assert model.first_name == 'foo' assert model.id == 19082 assert model.last_name == 'foo' assert model.name == 'foo' def test_error_result(self, smart_setup): smart = smart_setup['smart'] # code, code # message, message # name, name # recommendation, recommendation # should_retry, shouldRetry # status_code, statusCode model = smart.models.ErrorResult({ 'code': 19082, 'message': 'foo', 'name': 'foo', 'recommendation': 'foo', 'shouldRetry': True, 'statusCode': 19082 }) assert model.code == 19082 assert model.message == 'foo' assert model.name == 'foo' assert model.recommendation == 'foo' assert model.should_retry == True assert model.status_code == 19082 as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_error_result_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.ErrorResult({ 'code': 19082, 'message': 'foo', 'name': 'foo', 'recommendation': 'foo', 'should_retry': True, 'status_code': 19082 }) assert model.code == 19082 assert model.message == 'foo' assert model.name == 'foo' assert model.recommendation == 'foo' assert model.should_retry == True assert model.status_code == 19082 def test_report_column(self, smart_setup): smart = smart_setup['smart'] # sheet_name_column, sheetNameColumn # tags, tags # index, index # symbol, symbol # width, width # format, format # type, type # id, id # title, title # locked_for_user, lockedForUser # hidden, hidden # primary, primary # system_column_type, systemColumnType # locked, locked # virtual_id, virtualId # options, options # auto_number_format, autoNumberFormat model = smart.models.ReportColumn({ 'sheetNameColumn': True, 'tags': ['foo'], 'index': 19082, 'symbol': 'STAR', 'width': 19082, 'format': 'foo', 'type': 'TEXT_NUMBER', 'id': 19082, 'title': 'foo', 'lockedForUser': True, 'hidden': True, 'primary': True, 'systemColumnType': 'AUTO_NUMBER', 'locked': True, 'virtualId': 19082, 'options': ['foo'], 'autoNumberFormat': smart.models.AutoNumberFormat() }) assert model.sheet_name_column == True assert model.tags[0] == 'foo' assert model.index == 19082 assert model.symbol == 'STAR' assert model.width == 19082 assert model.format == 'foo' assert model.type == 'TEXT_NUMBER' assert model.id == 19082 assert model.title == 'foo' assert model.locked_for_user == True assert model.hidden == True assert model.primary == True assert model.system_column_type == 'AUTO_NUMBER' assert model.locked == True assert model.virtual_id == 19082 assert model.options[0] == 'foo' assert isinstance(model.auto_number_format, smart.models.AutoNumberFormat) model.tags = 'foo' assert model.tags[0] == 'foo' tmplist = smartsheet.types.TypedList(str) tmplist.append('foo') model.tags = tmplist assert model.tags[0] == 'foo' model.options = 'foo' assert model.options[0] == 'foo' tmplist = smartsheet.types.TypedList(str) tmplist.append('foo') model.options = tmplist assert model.options[0] == 'foo' model.autoNumberFormat = {} assert isinstance(model.auto_number_format, smart.models.AutoNumberFormat) as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_report_column_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.ReportColumn({ 'tags': ['foo'], 'index': 19082, 'symbol': 'STAR', 'width': 19082, 'title': 'foo', 'hidden': True, 'primary': True, 'locked': True, 'options': ['foo'], 'sheet_name_column': True, 'format': 'foo', 'type': 'TEXT_NUMBER', 'id': 19082, 'locked_for_user': True, 'system_column_type': 'AUTO_NUMBER', 'virtual_id': 19082, 'auto_number_format': smart.models.AutoNumberFormat() }) assert model.sheet_name_column == True assert model.tags[0] == 'foo' assert model.index == 19082 assert model.symbol == 'STAR' assert model.width == 19082 assert model.format == 'foo' assert model.type == 'TEXT_NUMBER' assert model.id == 19082 assert model.title == 'foo' assert model.locked_for_user == True assert model.hidden == True assert model.primary == True assert model.system_column_type == 'AUTO_NUMBER' assert model.locked == True assert model.virtual_id == 19082 assert model.options[0] == 'foo' assert isinstance(model.auto_number_format, smart.models.AutoNumberFormat) def test_search_result(self, smart_setup): smart = smart_setup['smart'] # results, results # total_count, totalCount model = smart.models.SearchResult({ 'results': smart.models.SearchResultItem(), 'totalCount': 19082 }) assert isinstance(model.results[0], smart.models.SearchResultItem) assert model.total_count == 19082 as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_search_result_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.SearchResult({ 'results': smart.models.SearchResultItem(), 'totalCount': 19082 }) assert isinstance(model.results[0], smart.models.SearchResultItem) assert model.total_count == 19082 def test_sheet_publish(self, smart_setup): smart = smart_setup['smart'] # ical_enabled, icalEnabled # ical_url, icalUrl # read_only_full_enabled, readOnlyFullEnabled # read_only_full_url, readOnlyFullUrl # read_only_lite_enabled, readOnlyLiteEnabled # read_only_lite_url, readOnlyLiteUrl # read_write_enabled, readWriteEnabled # read_write_url, readWriteUrl model = smart.models.SheetPublish({ 'icalEnabled': True, 'icalUrl': 'foo', 'readOnlyFullEnabled': True, 'readOnlyFullUrl': 'foo', 'readOnlyLiteEnabled': True, 'readOnlyLiteUrl': 'foo', 'readWriteEnabled': True, 'readWriteUrl': 'foo' }) assert model.ical_enabled == True assert model.ical_url == 'foo' assert model.read_only_full_enabled == True assert model.read_only_full_url == 'foo' assert model.read_only_lite_enabled == True assert model.read_only_lite_url == 'foo' assert model.read_write_enabled == True assert model.read_write_url == 'foo' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_sheet_publish_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.SheetPublish({ 'icalUrl': 'foo', 'readOnlyFullUrl': 'foo', 'readOnlyLiteUrl': 'foo', 'readWriteUrl': 'foo', 'ical_enabled': True, 'read_only_full_enabled': True, 'read_only_lite_enabled': True, 'read_write_enabled': True }) assert model.ical_enabled == True assert model.ical_url == 'foo' assert model.read_only_full_enabled == True assert model.read_only_full_url == 'foo' assert model.read_only_lite_enabled == True assert model.read_only_lite_url == 'foo' assert model.read_write_enabled == True assert model.read_write_url == 'foo' def test_format_tables(self, smart_setup): smart = smart_setup['smart'] # bold, bold # color, color # currency, currency # decimal_count, decimalCount # defaults, defaults # font_family, fontFamily # font_size, fontSize # horizontal_align, horizontalAlign # italic, italic # number_format, numberFormat # strikethrough, strikethrough # text_wrap, textWrap # thousands_separator, thousandsSeparator # underline, underline # vertical_align, verticalAlign model = smart.models.FormatTables({ 'bold': ['foo'], 'color': ['foo'], 'currency': smart.models.Currency(), 'decimalCount': ['foo'], 'defaults': 'foo', 'fontFamily': smart.models.FontFamily(), 'fontSize': ['foo'], 'horizontalAlign': ['foo'], 'italic': ['foo'], 'numberFormat': ['foo'], 'strikethrough': ['foo'], 'textWrap': ['foo'], 'thousandsSeparator': ['foo'], 'underline': ['foo'], 'verticalAlign': ['foo'] }) assert model.bold[0] == 'foo' assert model.color[0] == 'foo' assert isinstance(model.currency[0], smart.models.Currency) assert model.decimal_count[0] == 'foo' assert model.defaults == 'foo' assert isinstance(model.font_family[0], smart.models.FontFamily) assert model.font_size[0] == 'foo' assert model.horizontal_align[0] == 'foo' assert model.italic[0] == 'foo' assert model.number_format[0] == 'foo' assert model.strikethrough[0] == 'foo' assert model.text_wrap[0] == 'foo' assert model.thousands_separator[0] == 'foo' assert model.underline[0] == 'foo' assert model.vertical_align[0] == 'foo' model.bold = 'foo' assert model.bold[0] == 'foo' tmplist = smartsheet.types.TypedList(str) tmplist.append('foo') model.bold = tmplist assert model.bold[0] == 'foo' model.color = 'foo' assert model.color[0] == 'foo' tmplist = smartsheet.types.TypedList(str) tmplist.append('foo') model.color = tmplist assert model.color[0] == 'foo' model.decimal_count = 'foo' assert model.decimal_count[0] == 'foo' tmplist = smartsheet.types.TypedList(str) tmplist.append('foo') model.decimal_count = tmplist assert model.decimal_count[0] == 'foo' model.font_size = 'foo' assert model.font_size[0] == 'foo' tmplist = smartsheet.types.TypedList(str) tmplist.append('foo') model.font_size = tmplist assert model.font_size[0] == 'foo' model.horizontal_align = 'foo' assert model.horizontal_align[0] == 'foo' tmplist = smartsheet.types.TypedList(str) tmplist.append('foo') model.horizontal_align = tmplist assert model.horizontal_align[0] == 'foo' model.italic = 'foo' assert model.italic[0] == 'foo' tmplist = smartsheet.types.TypedList(str) tmplist.append('foo') model.italic = tmplist assert model.italic[0] == 'foo' model.number_format = 'foo' assert model.number_format[0] == 'foo' tmplist = smartsheet.types.TypedList(str) tmplist.append('foo') model.number_format = tmplist assert model.number_format[0] == 'foo' model.strikethrough = 'foo' assert model.strikethrough[0] == 'foo' tmplist = smartsheet.types.TypedList(str) tmplist.append('foo') model.strikethrough = tmplist assert model.strikethrough[0] == 'foo' model.text_wrap = 'foo' assert model.text_wrap[0] == 'foo' tmplist = smartsheet.types.TypedList(str) tmplist.append('foo') model.text_wrap = tmplist assert model.text_wrap[0] == 'foo' model.thousands_separator = 'foo' assert model.thousands_separator[0] == 'foo' tmplist = smartsheet.types.TypedList(str) tmplist.append('foo') model.thousands_separator = tmplist assert model.thousands_separator[0] == 'foo' model.underline = 'foo' assert model.underline[0] == 'foo' tmplist = smartsheet.types.TypedList(str) tmplist.append('foo') model.underline = tmplist assert model.underline[0] == 'foo' model.vertical_align = 'foo' assert model.vertical_align[0] == 'foo' tmplist = smartsheet.types.TypedList(str) tmplist.append('foo') model.vertical_align = tmplist assert model.vertical_align[0] == 'foo' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_format_tables_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.FormatTables({ 'bold': ['foo'], 'color': ['foo'], 'currency': smart.models.Currency(), 'defaults': 'foo', 'italic': ['foo'], 'strikethrough': ['foo'], 'underline': ['foo'], 'decimal_count': ['foo'], 'font_family': smart.models.FontFamily(), 'font_size': ['foo'], 'horizontal_align': ['foo'], 'number_format': ['foo'], 'text_wrap': ['foo'], 'thousands_separator': ['foo'], 'vertical_align': ['foo'] }) assert model.bold[0] == 'foo' assert model.color[0] == 'foo' assert isinstance(model.currency[0], smart.models.Currency) assert model.decimal_count[0] == 'foo' assert model.defaults == 'foo' assert isinstance(model.font_family[0], smart.models.FontFamily) assert model.font_size[0] == 'foo' assert model.horizontal_align[0] == 'foo' assert model.italic[0] == 'foo' assert model.number_format[0] == 'foo' assert model.strikethrough[0] == 'foo' assert model.text_wrap[0] == 'foo' assert model.thousands_separator[0] == 'foo' assert model.underline[0] == 'foo' assert model.vertical_align[0] == 'foo' def test_update_request(self, smart_setup): smart = smart_setup['smart'] # id, id model = smart.models.UpdateRequest({ 'id': 19082 }) assert model.id == 19082 as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_update_request_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.UpdateRequest({ 'id': 19082 }) assert model.id == 19082 def test_format_details(self, smart_setup): smart = smart_setup['smart'] # paper_size, paperSize model = smart.models.FormatDetails({ 'paperSize': 'LETTER' }) assert model.paper_size == 'LETTER' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_format_details_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.FormatDetails({ 'paper_size': 'LETTER' }) assert model.paper_size == 'LETTER' def test_multi_row_email(self, smart_setup): smart = smart_setup['smart'] # row_ids, rowIds model = smart.models.MultiRowEmail({ 'rowIds': [19082] }) assert model.row_ids[0] == 19082 model.row_ids = 19082 assert model.row_ids[0] == 19082 tmplist = smartsheet.types.TypedList(int) tmplist.append(19082) model.row_ids = tmplist assert model.row_ids[0] == 19082 as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_multi_row_email_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.MultiRowEmail({ 'row_ids': [19082] }) assert model.row_ids[0] == 19082 def test_downloaded_file(self, smart_setup): smart = smart_setup['smart'] # download_directory, downloadDirectory # filename, filename # message, message # resp, resp # result_code, resultCode model = smart.models.DownloadedFile({ 'downloadDirectory': 'foo', 'filename': 'foo', 'message': 'foo', 'resultCode': 19082 }) assert model.download_directory == 'foo' assert model.filename == 'foo' assert model.message == 'foo' assert model.result_code == 19082 as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_downloaded_file_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.DownloadedFile({ 'filename': 'foo', 'message': 'foo', 'resultCode': 19082, 'download_directory': 'foo' }) assert model.download_directory == 'foo' assert model.filename == 'foo' assert model.message == 'foo' assert model.result_code == 19082 def test_alternate_email(self, smart_setup): smart = smart_setup['smart'] # confirmed, confirmed # email, email # id, id model = smart.models.AlternateEmail({ 'confirmed': True, 'email': 'foo', 'id': 19082 }) assert model.confirmed == True assert model.email == 'foo' assert model.id == 19082 as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_alternate_email_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.AlternateEmail({ 'confirmed': True, 'email': 'foo', 'id': 19082 }) assert model.confirmed == True assert model.email == 'foo' assert model.id == 19082 def test_search_result_item(self, smart_setup): smart = smart_setup['smart'] # context_data, contextData # object_id, objectId # object_type, objectType # parent_object_id, parentObjectId # parent_object_name, parentObjectName # parent_object_type, parentObjectType # text, text model = smart.models.SearchResultItem({ 'contextData': ['foo'], 'objectId': 19082, 'objectType': 'row', 'parentObjectId': 19082, 'parentObjectName': 'foo', 'parentObjectType': 'workspace', 'text': 'foo' }) assert model.context_data[0] == 'foo' assert model.object_id == 19082 assert model.object_type == 'row' assert model.parent_object_id == 19082 assert model.parent_object_name == 'foo' assert model.parent_object_type == 'workspace' assert model.text == 'foo' model.context_data = 'foo' assert model.context_data[0] == 'foo' tmplist = smartsheet.types.TypedList(str) tmplist.append('foo') model.context_data = tmplist assert model.context_data[0] == 'foo' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_search_result_item_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.SearchResultItem({ 'objectId': 19082, 'objectType': 'row', 'parentObjectId': 19082, 'parentObjectName': 'foo', 'parentObjectType': 'workspace', 'text': 'foo', 'context_data': ['foo'] }) assert model.context_data[0] == 'foo' assert model.object_id == 19082 assert model.object_type == 'row' assert model.parent_object_id == 19082 assert model.parent_object_name == 'foo' assert model.parent_object_type == 'workspace' assert model.text == 'foo' def test_auto_number_format(self, smart_setup): smart = smart_setup['smart'] # fill, fill # prefix, prefix # starting_number, startingNumber # suffix, suffix model = smart.models.AutoNumberFormat({ 'fill': 'foo', 'prefix': 'foo', 'startingNumber': 19082, 'suffix': 'foo' }) assert model.fill == 'foo' assert model.prefix == 'foo' assert model.starting_number == 19082 assert model.suffix == 'foo' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_auto_number_format_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.AutoNumberFormat({ 'fill': 'foo', 'prefix': 'foo', 'suffix': 'foo', 'starting_number': 19082 }) assert model.fill == 'foo' assert model.prefix == 'foo' assert model.starting_number == 19082 assert model.suffix == 'foo' def test_sheet_user_settings(self, smart_setup): smart = smart_setup['smart'] # critical_path_enabled, criticalPathEnabled model = smart.models.SheetUserSettings({ 'criticalPathEnabled': True }) assert model.critical_path_enabled == True as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_sheet_user_settings_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.SheetUserSettings({ 'critical_path_enabled': True }) assert model.critical_path_enabled == True def test_copy_or_move_row_result(self, smart_setup): smart = smart_setup['smart'] # destination_sheet_id, destinationSheetId # row_mappings, rowMappings model = smart.models.CopyOrMoveRowResult({ 'destinationSheetId': 19082, 'rowMappings': smart.models.RowMapping() }) assert model.destination_sheet_id == 19082 assert isinstance(model.row_mappings[0], smart.models.RowMapping) as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_copy_or_move_row_result_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.CopyOrMoveRowResult({ 'destination_sheet_id': 19082, 'row_mappings': smart.models.RowMapping() }) assert model.destination_sheet_id == 19082 assert isinstance(model.row_mappings[0], smart.models.RowMapping) def test_container_destination(self, smart_setup): smart = smart_setup['smart'] # destination_id, destinationId # destination_type, destinationType # new_name, newName model = smart.models.ContainerDestination({ 'destinationId': 19082, 'destinationType': 'home', 'newName': 'foo' }) assert model.destination_id == 19082 assert model.destination_type == 'home' assert model.new_name == 'foo' as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_container_destination_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.ContainerDestination({ 'destination_id': 19082, 'destination_type': 'home', 'new_name': 'foo' }) assert model.destination_id == 19082 assert model.destination_type == 'home' assert model.new_name == 'foo' def test_copy_or_move_row_directive(self, smart_setup): smart = smart_setup['smart'] # row_ids, rowIds # to, to model = smart.models.CopyOrMoveRowDirective({ 'rowIds': [19082], 'to': smart.models.CopyOrMoveRowDestination() }) assert model.row_ids[0] == 19082 assert isinstance(model.to, smart.models.CopyOrMoveRowDestination) model.row_ids = 19082 assert model.row_ids[0] == 19082 tmplist = smartsheet.types.TypedList(int) tmplist.append(19082) model.row_ids = tmplist assert model.row_ids[0] == 19082 model.to = {} assert isinstance(model.to, smart.models.CopyOrMoveRowDestination) as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_copy_or_move_row_directive_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.CopyOrMoveRowDirective({ 'to': smart.models.CopyOrMoveRowDestination(), 'row_ids': [19082] }) assert model.row_ids[0] == 19082 assert isinstance(model.to, smart.models.CopyOrMoveRowDestination) def test_copy_or_move_row_destination(self, smart_setup): smart = smart_setup['smart'] # sheet_id, sheetId model = smart.models.CopyOrMoveRowDestination({ 'sheetId': 19082 }) assert model.sheet_id == 19082 as_dict = model.to_dict() assert isinstance(as_dict, dict) def test_copy_or_move_row_destination_snake(self, smart_setup): smart = smart_setup['smart'] model = smart.models.CopyOrMoveRowDestination({ 'sheet_id': 19082 }) assert model.sheet_id == 19082
451163
import os import webbrowser import shutil import json import requests import re import wx import time import tempfile from threading import Thread from .result_event import * from .config import * class PushThread(Thread): def __init__(self, wxObject): Thread.__init__(self) self.wxObject = wxObject self.start() def run(self): temp_dir = tempfile.mkdtemp() _, temp_file = tempfile.mkstemp() board = pcbnew.GetBoard() title_block = board.GetTitleBlock() self.report(10) match = re.match( '^AISLER Project ID: ([A-Z]{8})$', title_block.GetComment(commentLineIdx)) if match: project_id = match.group(1) else: project_id = False # Override a few design parameters as our CAM takes care of this settings = board.GetDesignSettings() settings.m_SolderMaskMargin = 0 settings.m_SolderMaskMinWidth = 0 pctl = pcbnew.PLOT_CONTROLLER(board) popt = pctl.GetPlotOptions() popt.SetOutputDirectory(temp_dir) popt.SetPlotFrameRef(False) popt.SetSketchPadLineWidth(pcbnew.FromMM(0.1)) popt.SetAutoScale(False) popt.SetScale(1) popt.SetMirror(False) popt.SetUseGerberAttributes(True) try: # kicad >= 6.99 popt.SetExcludeEdgeLayer(True) except AttributeError: # kicad <7 pass popt.SetUseGerberProtelExtensions(False) popt.SetUseAuxOrigin(True) popt.SetSubtractMaskFromSilk(False) popt.SetDrillMarksType(0) # NO_DRILL_SHAPE self.report(15) for layer_info in plotPlan: if board.IsLayerEnabled(layer_info[1]): pctl.SetLayer(layer_info[1]) pctl.OpenPlotfile( layer_info[0], pcbnew.PLOT_FORMAT_GERBER, layer_info[2]) pctl.PlotLayer() pctl.ClosePlot() # Write excellon drill files self.report(20) drlwriter = pcbnew.EXCELLON_WRITER(board) # mirrot, header, offset, mergeNPTH drlwriter.SetOptions( False, True, board.GetDesignSettings().GetAuxOrigin(), False) drlwriter.SetFormat(False) drlwriter.CreateDrillandMapFilesSet(pctl.GetPlotDirName(), True, False) # # Write netlist to enable Smart Tests self.report(25) netlist_writer = pcbnew.IPC356D_WRITER(board) netlist_writer.Write(os.path.join(temp_dir, netlistFilename)) # # Export component list self.report(30) components = [] if hasattr(board, 'GetModules'): footprints = list(board.GetModules()) else: footprints = list(board.GetFootprints()) for i, f in enumerate(footprints): try: footprint_name = str(f.GetFPID().GetFootprintName()) except AttributeError: footprint_name = str(f.GetFPID().GetLibItemName()) layer = { pcbnew.F_Cu: 'top', pcbnew.B_Cu: 'bottom', }.get(f.GetLayer()) mount_type = { 0: 'smt', 1: 'tht', 2: 'smt' }.get(f.GetAttributes()) angle = f.GetOrientation() try: # kicad >= 6.99 angle = angle.AsDegrees() except AttributeError: # kicad <7 angle /= 10.0 components.append({ 'pos_x': (f.GetPosition()[0] - board.GetDesignSettings().GetAuxOrigin()[0]) / 1000000.0, 'pos_y': (f.GetPosition()[1] - board.GetDesignSettings().GetAuxOrigin()[1]) * -1.0 / 1000000.0, 'rotation': angle, 'side': layer, 'designator': f.GetReference(), 'mpn': self.getMpnFromFootprint(f), 'pack': footprint_name, 'value': f.GetValue(), 'mount_type': mount_type }) with open((os.path.join(temp_dir, componentsFilename)), 'w') as outfile: json.dump(components, outfile) # # Create ZIP file temp_file = shutil.make_archive(temp_file, 'zip', temp_dir) files = {'upload[file]': open(temp_file, 'rb')} self.report(40) if project_id: data = {} data['upload_url'] = baseUrl + '/p/' + project_id + '/uploads.json' else: rsp = requests.get(baseUrl + '/p/new.json?ref=KiCadPush') data = json.loads(rsp.content) if not title_block.GetComment(commentLineIdx): title_block.SetComment( commentLineIdx, 'AISLER Project ID: ' + data['project_id']) rsp = requests.post( data['upload_url'], files=files, data={ 'upload[title]': title_block.GetTitle()}) urls = json.loads(rsp.content) progress = 0 while progress < 100: time.sleep(pollingInterval) progress = json.loads( requests.get( urls['callback']).content)['progress'] self.report(40 + progress / 1.7) webbrowser.open(urls['redirect']) self.report(-1) def report(self, status): wx.PostEvent(self.wxObject, ResultEvent(status)) def getMpnFromFootprint(self, f): keys = ['mpn', 'MPN', 'Mpn', 'AISLER_MPN'] for key in keys: if f.HasProperty(key): return f.GetProperty(key)
451176
import os import pytest from ._util import assert_simple_file_realize try: from fs_gcsfs import GCSFS except ImportError: GCSFS = None SCRIPT_DIRECTORY = os.path.abspath(os.path.dirname(__file__)) FILE_SOURCES_CONF = os.path.join(SCRIPT_DIRECTORY, "gcsfs_file_sources_conf.yml") skip_if_no_gcsfs_libs = pytest.mark.skipif( not GCSFS, reason="Required lib to run gcs file source test: fs_gcsfs is not available" ) @skip_if_no_gcsfs_libs def test_file_source(): assert_simple_file_realize(FILE_SOURCES_CONF, recursive=False, filename="README", contents="1000genomes", contains=True)
451207
import sys, os, os.path, glob import cPickle from scipy.io import loadmat import numpy from multiprocessing import Process, Queue import torch from torch.autograd import Variable N_CLASSES = 527 N_WORKERS = 6 GAS_FEATURE_DIR = '../../data/audioset' DCASE_FEATURE_DIR = '../../data/dcase' with open(os.path.join(GAS_FEATURE_DIR, 'normalizer.pkl'), 'rb') as f: mu, sigma = cPickle.load(f) def sample_generator(file_list, random_seed = 15213): rng = numpy.random.RandomState(random_seed) while True: rng.shuffle(file_list) for filename in file_list: data = loadmat(filename) feat = ((data['feat'] - mu) / sigma).astype('float32') labels = data['labels'].astype('float32') for i in range(len(data['feat'])): yield feat[i], labels[i] def worker(queues, file_lists, random_seed): generators = [sample_generator(file_lists[i], random_seed + i) for i in range(len(file_lists))] while True: for gen, q in zip(generators, queues): q.put(next(gen)) def batch_generator(batch_size, random_seed = 15213): queues = [Queue(5) for class_id in range(N_CLASSES)] file_lists = [sorted(glob.glob(os.path.join(GAS_FEATURE_DIR, 'GAS_train_unbalanced_class%03d_part*.mat' % class_id))) for class_id in range(N_CLASSES)] for worker_id in range(N_WORKERS): p = Process(target = worker, args = (queues[worker_id::N_WORKERS], file_lists[worker_id::N_WORKERS], random_seed)) p.daemon = True p.start() rng = numpy.random.RandomState(random_seed) batch = [] while True: rng.shuffle(queues) for q in queues: batch.append(q.get()) if len(batch) == batch_size: yield tuple(Variable(torch.from_numpy(numpy.stack(x))).cuda() for x in zip(*batch)) batch = [] def bulk_load(prefix): feat = []; labels = []; hashes = [] for filename in sorted(glob.glob(os.path.join(GAS_FEATURE_DIR, '%s_*.mat' % prefix)) + glob.glob(os.path.join(DCASE_FEATURE_DIR, '%s_*.mat' % prefix))): data = loadmat(filename) feat.append(((data['feat'] - mu) / sigma).astype('float32')) labels.append(data['labels'].astype('bool')) hashes.append(data['hashes']) return numpy.concatenate(feat), numpy.concatenate(labels), numpy.concatenate(hashes) def load_dcase_test_frame_truth(): return cPickle.load(open(os.path.join(DCASE_FEATURE_DIR, 'DCASE_test_frame_label.pkl'), 'rb'))
451256
import unittest import numpy as np import paramak class TestCuttingWedgeFS(unittest.TestCase): def test_shape_construction_and_volume(self): """Makes cutting cylinders from shapes and checks the volume of the cutter shape is larger than the shape it encompasses.""" hoop_shape = paramak.PoloidalFieldCoil( height=20, width=20, center_point=(50, 200), rotation_angle=180 ) cutter = paramak.CuttingWedgeFS( shape=hoop_shape, azimuth_placement_angle=0, ) assert cutter.volume() > hoop_shape.volume() def test_invalid_parameters_errors(self): """Checks that the correct errors are raised when invalid arguments are input as shape parameters.""" shape = paramak.ExtrudeStraightShape( distance=1, points=[(0, 0), (0, 1), (1, 1)], rotation_angle=180 ) cutter = paramak.CuttingWedgeFS( shape=shape, azimuth_placement_angle=0, ) def incorrect_rotation_angle(): shape.rotation_angle = 360 cutter.solid def incorrect_shape_points(): shape.rotation_angle = 180 cutter.shape.points = [(0, 0, "straight")] cutter.solid def incorrect_shape_rotation_angle(): cutter.shape.points = [(0, 0), (0, 1), (1, 1)] shape.rotation_angle = 360 cutter.shape = shape self.assertRaises(ValueError, incorrect_rotation_angle) self.assertRaises(ValueError, incorrect_shape_points) self.assertRaises(ValueError, incorrect_shape_rotation_angle) def test_different_workplanes(self): """Test that checks the cutting wedge can be correctly applied to a shape with non-default workplane and rotation_axis """ rectangle = paramak.ExtrudeStraightShape( 2, points=[(-0.5, -0.5), (0.5, -0.5), (0.5, 0.5), (-0.5, 0.5)], workplane="XY", rotation_axis="Z", ) rectangle.rotation_angle = 360 volume_full = rectangle.volume() assert np.isclose(volume_full, 2) rectangle.rotation_angle = 90 volume_quarter = rectangle.volume() assert np.isclose(volume_quarter, 0.5)
451261
import os from icrawler.builtin import BaiduImageCrawler from icrawler.builtin import BingImageCrawler def check_path(path): if not os.path.exists(path): os.makedirs(path) return path def baidu_bing_crwal(key_words=['中国人'], max_nums=[1000], save_root=r'./'): assert len(key_words)==len(max_nums), "关键词和数量必须一致" # 2个一起爬虫 save_root1 = os.path.join(save_root, 'baidu') # 百度爬虫 for i in range(len(key_words)): print('-'*20) image_save_root = os.path.join(save_root1, str(i)) if not os.path.exists(image_save_root): os.makedirs(image_save_root) storage = {'root_dir': image_save_root} crawler = BaiduImageCrawler(storage=storage) crawler.crawl(key_words[i], max_num=max_nums[i]) # bing爬虫 save_root2 = os.path.join(save_root, 'bing') for i in range(len(key_words)): print('-'*20) image_save_root = os.path.join(save_root2, str(i)) if not os.path.exists(image_save_root): os.makedirs(image_save_root) storage = {'root_dir': image_save_root} crawler = BingImageCrawler(storage=storage) crawler.crawl(key_words[i], max_num=max_nums[i]) return if __name__ == '__main__': baidu_bing_crwal(key_words=['砂石料场', '河道内的砂石料场', '岸边的木材堆', '化学工厂丢弃的大塑料桶堆'], max_nums=[1000, 1000, 200, 500], save_root=r'F:\DataSets')
451327
import tqdm from io import BytesIO from functools import partial from multiprocessing.pool import ThreadPool from PIL import Image from torchero.utils.io import download_from_url def download_image(url): """ Download an image from an url Arguments: url (str): Url of the image Returns: The downloaded images as a PIL Image object """ buffer = BytesIO() download_from_url(url, buffer, pbar=False) buffer.seek(0) return Image.open(buffer) def download_images(urls, num_workers=1, pbar=True): """ Download multiples images Arguments: url (list of str): List of urls to download Returns: An iterator of PIL Images for the downloaded images """ with ThreadPool(num_workers) as pool: images = pool.imap(download_image, urls) if pbar: images = tqdm.tqdm(images, total=len(urls), unit='image') yield from images
451362
import io class Brainfuck: @staticmethod def cleanup(code): return "".join(filter(lambda x: x in [".", "[", "]", "<", ">", "+", "-"], code)) @staticmethod def getlines(code): return [code[i : i + 50] for i in range(0, len(code), 50)] @staticmethod def buildbracemap(code): temp_bracestack, bracemap = [], {} for position, command in enumerate(code): if command == "[": temp_bracestack.append(position) elif command == "]": start = temp_bracestack.pop() bracemap[start] = position bracemap[position] = start return bracemap @staticmethod def evaluate(code): code = Brainfuck.cleanup(list(code)) bracemap = Brainfuck.buildbracemap(code) cells, codeptr, cellptr, prev = [0], 0, 0, -1 output = io.StringIO("") while codeptr < len(code): command = code[codeptr] if command == ">": cellptr += 1 if cellptr == len(cells): cells.append(0) elif command == "<": cellptr = 0 if cellptr <= 0 else cellptr - 1 elif command == "+": cells[cellptr] = cells[cellptr] + 1 if cells[cellptr] < 255 else 0 elif command == "-": cells[cellptr] = cells[cellptr] - 1 if cells[cellptr] > 0 else 255 elif command == "[": if cells[cellptr] == 0: codeptr = bracemap[codeptr] else: prev = cells[cellptr] elif command == "]": if cells[cellptr] == 0: prev = 0 else: if cells[cellptr] == prev: lines = Brainfuck.getlines("".join(code)) errorptr = codeptr % 50 raise SyntaxError( f"Infinite loop: []", ("program.bf", len(lines), errorptr, lines[-1]) ) else: codeptr = bracemap[codeptr] elif command == ".": output.write(chr(cells[cellptr])) codeptr += 1 return output, cells
451413
from flask import Blueprint from flask import jsonify from flask import request from yelp_beans.logic.user import get_user user_blueprint = Blueprint('user', __name__) @user_blueprint.route('/', methods=["GET"]) def user_api(): user = get_user(request.args.get('email')) if not user: resp = jsonify({}) resp.status_code = 200 return resp resp = jsonify({ 'first_name': user.first_name, 'last_name': user.last_name, 'photo_url': user.photo_url, 'metadata': user.meta_data }) resp.status_code = 200 return resp
451417
class Pickleable(object): """ Base class that implements getstate/setstate, since most of the classes are overriding getattr. """ def __getstate__(self): return self.__dict__ def __setstate__(self, data): self.__dict__.update(data)
451454
from collections import OrderedDict import io import logging import os import h5py import kaldiio import numpy as np import soundfile from espnet.transform.transformation import Transformation class LoadInputsAndTargets(object): """Create a mini-batch from a list of dicts >>> batch = [('utt1', ... dict(input=[dict(feat='some.ark:123', ... filetype='mat', ... name='input1', ... shape=[100, 80])], ... output=[dict(tokenid='1 2 3 4', ... name='target1', ... shape=[4, 31])]])) >>> l = LoadInputsAndTargets() >>> feat, target = l(batch) :param: str mode: Specify the task mode, "asr" or "tts" :param: str preprocess_conf: The path of a json file for pre-processing :param: bool load_input: If False, not to load the input data :param: bool load_output: If False, not to load the output data :param: bool sort_in_input_length: Sort the mini-batch in descending order of the input length :param: bool use_speaker_embedding: Used for tts mode only :param: bool use_second_target: Used for tts mode only :param: dict preprocess_args: Set some optional arguments for preprocessing :param: Optional[dict] preprocess_args: Used for tts mode only """ def __init__( self, mode="asr", preprocess_conf=None, load_input=True, load_output=True, sort_in_input_length=True, use_speaker_embedding=False, use_second_target=False, preprocess_args=None, keep_all_data_on_mem=False, ): self._loaders = {} if mode not in ["asr", "tts", "mt", "vc"]: raise ValueError("Only asr or tts are allowed: mode={}".format(mode)) if preprocess_conf is not None: self.preprocessing = Transformation(preprocess_conf) logging.warning( "[Experimental feature] Some preprocessing will be done " "for the mini-batch creation using {}".format(self.preprocessing) ) else: # If conf doesn't exist, this function don't touch anything. self.preprocessing = None if use_second_target and use_speaker_embedding and mode == "tts": raise ValueError( 'Choose one of "use_second_target" and ' '"use_speaker_embedding "' ) if ( (use_second_target or use_speaker_embedding) and mode != "tts" and mode != "vc" ): logging.warning( '"use_second_target" and "use_speaker_embedding" is ' "used only for tts or vc mode" ) self.mode = mode self.load_output = load_output self.load_input = load_input self.sort_in_input_length = sort_in_input_length self.use_speaker_embedding = use_speaker_embedding self.use_second_target = use_second_target if preprocess_args is None: self.preprocess_args = {} else: assert isinstance(preprocess_args, dict), type(preprocess_args) self.preprocess_args = dict(preprocess_args) self.keep_all_data_on_mem = keep_all_data_on_mem def __call__(self, batch, return_uttid=False): """Function to load inputs and targets from list of dicts :param List[Tuple[str, dict]] batch: list of dict which is subset of loaded data.json :param bool return_uttid: return utterance ID information for visualization :return: list of input token id sequences [(L_1), (L_2), ..., (L_B)] :return: list of input feature sequences [(T_1, D), (T_2, D), ..., (T_B, D)] :rtype: list of float ndarray :return: list of target token id sequences [(L_1), (L_2), ..., (L_B)] :rtype: list of int ndarray """ x_feats_dict = OrderedDict() # OrderedDict[str, List[np.ndarray]] y_feats_dict = OrderedDict() # OrderedDict[str, List[np.ndarray]] uttid_list = [] # List[str] for uttid, info in batch: uttid_list.append(uttid) if self.load_input: # Note(kamo): This for-loop is for multiple inputs for idx, inp in enumerate(info["input"]): # {"input": # [{"feat": "some/path.h5:F01_050C0101_PED_REAL", # "filetype": "hdf5", # "name": "input1", ...}], ...} x = self._get_from_loader( filepath=inp["feat"], filetype=inp.get("filetype", "mat") ) x_feats_dict.setdefault(inp["name"], []).append(x) # FIXME(kamo): Dirty way to load only speaker_embedding elif self.mode == "tts" and self.use_speaker_embedding: for idx, inp in enumerate(info["input"]): if idx != 1 and len(info["input"]) > 1: x = None else: x = self._get_from_loader( filepath=inp["feat"], filetype=inp.get("filetype", "mat") ) x_feats_dict.setdefault(inp["name"], []).append(x) if self.load_output: if self.mode == "mt": x = np.fromiter( map(int, info["output"][1]["tokenid"].split()), dtype=np.int64 ) x_feats_dict.setdefault(info["output"][1]["name"], []).append(x) for idx, inp in enumerate(info["output"]): if "tokenid" in inp: # ======= Legacy format for output ======= # {"output": [{"tokenid": "1 2 3 4"}]) x = np.fromiter( map(int, inp["tokenid"].split()), dtype=np.int64 ) else: # ======= New format ======= # {"input": # [{"feat": "some/path.h5:F01_050C0101_PED_REAL", # "filetype": "hdf5", # "name": "target1", ...}], ...} x = self._get_from_loader( filepath=inp["feat"], filetype=inp.get("filetype", "mat") ) y_feats_dict.setdefault(inp["name"], []).append(x) if self.mode == "asr": return_batch, uttid_list = self._create_batch_asr( x_feats_dict, y_feats_dict, uttid_list ) elif self.mode == "tts": _, info = batch[0] eos = int(info["output"][0]["shape"][1]) - 1 return_batch, uttid_list = self._create_batch_tts( x_feats_dict, y_feats_dict, uttid_list, eos ) elif self.mode == "mt": return_batch, uttid_list = self._create_batch_mt( x_feats_dict, y_feats_dict, uttid_list ) elif self.mode == "vc": return_batch, uttid_list = self._create_batch_vc( x_feats_dict, y_feats_dict, uttid_list ) else: raise NotImplementedError(self.mode) if self.preprocessing is not None: # Apply pre-processing all input features for x_name in return_batch.keys(): if x_name.startswith("input"): return_batch[x_name] = self.preprocessing( return_batch[x_name], uttid_list, **self.preprocess_args ) if return_uttid: return tuple(return_batch.values()), uttid_list # Doesn't return the names now. return tuple(return_batch.values()) def _create_batch_asr(self, x_feats_dict, y_feats_dict, uttid_list): """Create a OrderedDict for the mini-batch :param OrderedDict x_feats_dict: e.g. {"input1": [ndarray, ndarray, ...], "input2": [ndarray, ndarray, ...]} :param OrderedDict y_feats_dict: e.g. {"target1": [ndarray, ndarray, ...], "target2": [ndarray, ndarray, ...]} :param: List[str] uttid_list: Give uttid_list to sort in the same order as the mini-batch :return: batch, uttid_list :rtype: Tuple[OrderedDict, List[str]] """ # handle single-input and multi-input (parallel) asr mode xs = list(x_feats_dict.values()) if self.load_output: ys = list(y_feats_dict.values()) assert len(xs[0]) == len(ys[0]), (len(xs[0]), len(ys[0])) # get index of non-zero length samples nonzero_idx = list(filter(lambda i: len(ys[0][i]) > 0, range(len(ys[0])))) for n in range(1, len(y_feats_dict)): nonzero_idx = filter(lambda i: len(ys[n][i]) > 0, nonzero_idx) else: # Note(kamo): Be careful not to make nonzero_idx to a generator nonzero_idx = list(range(len(xs[0]))) if self.sort_in_input_length: # sort in input lengths based on the first input nonzero_sorted_idx = sorted(nonzero_idx, key=lambda i: -len(xs[0][i])) else: nonzero_sorted_idx = nonzero_idx if len(nonzero_sorted_idx) != len(xs[0]): logging.warning( "Target sequences include empty tokenid (batch {} -> {}).".format( len(xs[0]), len(nonzero_sorted_idx) ) ) # remove zero-length samples xs = [[x[i] for i in nonzero_sorted_idx] for x in xs] uttid_list = [uttid_list[i] for i in nonzero_sorted_idx] x_names = list(x_feats_dict.keys()) if self.load_output: ys = [[y[i] for i in nonzero_sorted_idx] for y in ys] y_names = list(y_feats_dict.keys()) # Keeping x_name and y_name, e.g. input1, for future extension return_batch = OrderedDict( [ *[(x_name, x) for x_name, x in zip(x_names, xs)], *[(y_name, y) for y_name, y in zip(y_names, ys)], ] ) else: return_batch = OrderedDict([(x_name, x) for x_name, x in zip(x_names, xs)]) return return_batch, uttid_list def _create_batch_mt(self, x_feats_dict, y_feats_dict, uttid_list): """Create a OrderedDict for the mini-batch :param OrderedDict x_feats_dict: :param OrderedDict y_feats_dict: :return: batch, uttid_list :rtype: Tuple[OrderedDict, List[str]] """ # Create a list from the first item xs = list(x_feats_dict.values())[0] if self.load_output: ys = list(y_feats_dict.values())[0] assert len(xs) == len(ys), (len(xs), len(ys)) # get index of non-zero length samples nonzero_idx = filter(lambda i: len(ys[i]) > 0, range(len(ys))) else: nonzero_idx = range(len(xs)) if self.sort_in_input_length: # sort in input lengths nonzero_sorted_idx = sorted(nonzero_idx, key=lambda i: -len(xs[i])) else: nonzero_sorted_idx = nonzero_idx if len(nonzero_sorted_idx) != len(xs): logging.warning( "Target sequences include empty tokenid (batch {} -> {}).".format( len(xs), len(nonzero_sorted_idx) ) ) # remove zero-length samples xs = [xs[i] for i in nonzero_sorted_idx] uttid_list = [uttid_list[i] for i in nonzero_sorted_idx] x_name = list(x_feats_dict.keys())[0] if self.load_output: ys = [ys[i] for i in nonzero_sorted_idx] y_name = list(y_feats_dict.keys())[0] return_batch = OrderedDict([(x_name, xs), (y_name, ys)]) else: return_batch = OrderedDict([(x_name, xs)]) return return_batch, uttid_list def _create_batch_tts(self, x_feats_dict, y_feats_dict, uttid_list, eos): """Create a OrderedDict for the mini-batch :param OrderedDict x_feats_dict: e.g. {"input1": [ndarray, ndarray, ...], "input2": [ndarray, ndarray, ...]} :param OrderedDict y_feats_dict: e.g. {"target1": [ndarray, ndarray, ...], "target2": [ndarray, ndarray, ...]} :param: List[str] uttid_list: :param int eos: :return: batch, uttid_list :rtype: Tuple[OrderedDict, List[str]] """ # Use the output values as the input feats for tts mode xs = list(y_feats_dict.values())[0] # get index of non-zero length samples nonzero_idx = list(filter(lambda i: len(xs[i]) > 0, range(len(xs)))) # sort in input lengths if self.sort_in_input_length: # sort in input lengths nonzero_sorted_idx = sorted(nonzero_idx, key=lambda i: -len(xs[i])) else: nonzero_sorted_idx = nonzero_idx # remove zero-length samples xs = [xs[i] for i in nonzero_sorted_idx] uttid_list = [uttid_list[i] for i in nonzero_sorted_idx] # Added eos into input sequence xs = [np.append(x, eos) for x in xs] if self.load_input: ys = list(x_feats_dict.values())[0] assert len(xs) == len(ys), (len(xs), len(ys)) ys = [ys[i] for i in nonzero_sorted_idx] spembs = None spcs = None spembs_name = "spembs_none" spcs_name = "spcs_none" if self.use_second_target: spcs = list(x_feats_dict.values())[1] spcs = [spcs[i] for i in nonzero_sorted_idx] spcs_name = list(x_feats_dict.keys())[1] if self.use_speaker_embedding: spembs = list(x_feats_dict.values())[1] spembs = [spembs[i] for i in nonzero_sorted_idx] spembs_name = list(x_feats_dict.keys())[1] x_name = list(y_feats_dict.keys())[0] y_name = list(x_feats_dict.keys())[0] return_batch = OrderedDict( [(x_name, xs), (y_name, ys), (spembs_name, spembs), (spcs_name, spcs)] ) elif self.use_speaker_embedding: if len(x_feats_dict) == 0: raise IndexError("No speaker embedding is provided") elif len(x_feats_dict) == 1: spembs_idx = 0 else: spembs_idx = 1 spembs = list(x_feats_dict.values())[spembs_idx] spembs = [spembs[i] for i in nonzero_sorted_idx] x_name = list(y_feats_dict.keys())[0] spembs_name = list(x_feats_dict.keys())[spembs_idx] return_batch = OrderedDict([(x_name, xs), (spembs_name, spembs)]) else: x_name = list(y_feats_dict.keys())[0] return_batch = OrderedDict([(x_name, xs)]) return return_batch, uttid_list def _create_batch_vc(self, x_feats_dict, y_feats_dict, uttid_list): """Create a OrderedDict for the mini-batch :param OrderedDict x_feats_dict: e.g. {"input1": [ndarray, ndarray, ...], "input2": [ndarray, ndarray, ...]} :param OrderedDict y_feats_dict: e.g. {"target1": [ndarray, ndarray, ...], "target2": [ndarray, ndarray, ...]} :param: List[str] uttid_list: :return: batch, uttid_list :rtype: Tuple[OrderedDict, List[str]] """ # Create a list from the first item xs = list(x_feats_dict.values())[0] # get index of non-zero length samples nonzero_idx = list(filter(lambda i: len(xs[i]) > 0, range(len(xs)))) # sort in input lengths if self.sort_in_input_length: # sort in input lengths nonzero_sorted_idx = sorted(nonzero_idx, key=lambda i: -len(xs[i])) else: nonzero_sorted_idx = nonzero_idx # remove zero-length samples xs = [xs[i] for i in nonzero_sorted_idx] uttid_list = [uttid_list[i] for i in nonzero_sorted_idx] if self.load_output: ys = list(y_feats_dict.values())[0] assert len(xs) == len(ys), (len(xs), len(ys)) ys = [ys[i] for i in nonzero_sorted_idx] spembs = None spcs = None spembs_name = "spembs_none" spcs_name = "spcs_none" if self.use_second_target: raise ValueError("Currently second target not supported.") spcs = list(x_feats_dict.values())[1] spcs = [spcs[i] for i in nonzero_sorted_idx] spcs_name = list(x_feats_dict.keys())[1] if self.use_speaker_embedding: spembs = list(x_feats_dict.values())[1] spembs = [spembs[i] for i in nonzero_sorted_idx] spembs_name = list(x_feats_dict.keys())[1] x_name = list(x_feats_dict.keys())[0] y_name = list(y_feats_dict.keys())[0] return_batch = OrderedDict( [(x_name, xs), (y_name, ys), (spembs_name, spembs), (spcs_name, spcs)] ) elif self.use_speaker_embedding: if len(x_feats_dict) == 0: raise IndexError("No speaker embedding is provided") elif len(x_feats_dict) == 1: spembs_idx = 0 else: spembs_idx = 1 spembs = list(x_feats_dict.values())[spembs_idx] spembs = [spembs[i] for i in nonzero_sorted_idx] x_name = list(x_feats_dict.keys())[0] spembs_name = list(x_feats_dict.keys())[spembs_idx] return_batch = OrderedDict([(x_name, xs), (spembs_name, spembs)]) else: x_name = list(x_feats_dict.keys())[0] return_batch = OrderedDict([(x_name, xs)]) return return_batch, uttid_list def _get_from_loader(self, filepath, filetype): """Return ndarray In order to make the fds to be opened only at the first referring, the loader are stored in self._loaders >>> ndarray = loader.get_from_loader( ... 'some/path.h5:F01_050C0101_PED_REAL', filetype='hdf5') :param: str filepath: :param: str filetype: :return: :rtype: np.ndarray """ if filetype == "hdf5": # e.g. # {"input": [{"feat": "some/path.h5:F01_050C0101_PED_REAL", # "filetype": "hdf5", # -> filepath = "some/path.h5", key = "F01_050C0101_PED_REAL" filepath, key = filepath.split(":", 1) loader = self._loaders.get(filepath) if loader is None: # To avoid disk access, create loader only for the first time loader = h5py.File(filepath, "r") self._loaders[filepath] = loader return loader[key][()] elif filetype == "sound.hdf5": # e.g. # {"input": [{"feat": "some/path.h5:F01_050C0101_PED_REAL", # "filetype": "sound.hdf5", # -> filepath = "some/path.h5", key = "F01_050C0101_PED_REAL" filepath, key = filepath.split(":", 1) loader = self._loaders.get(filepath) if loader is None: # To avoid disk access, create loader only for the first time loader = SoundHDF5File(filepath, "r", dtype="int16") self._loaders[filepath] = loader array, rate = loader[key] return array elif filetype == "sound": # e.g. # {"input": [{"feat": "some/path.wav", # "filetype": "sound"}, # Assume PCM16 if not self.keep_all_data_on_mem: array, _ = soundfile.read(filepath, dtype="int16") return array if filepath not in self._loaders: array, _ = soundfile.read(filepath, dtype="int16") self._loaders[filepath] = array return self._loaders[filepath] elif filetype == "npz": # e.g. # {"input": [{"feat": "some/path.npz:F01_050C0101_PED_REAL", # "filetype": "npz", filepath, key = filepath.split(":", 1) loader = self._loaders.get(filepath) if loader is None: # To avoid disk access, create loader only for the first time loader = np.load(filepath) self._loaders[filepath] = loader return loader[key] elif filetype == "npy": # e.g. # {"input": [{"feat": "some/path.npy", # "filetype": "npy"}, if not self.keep_all_data_on_mem: return np.load(filepath) if filepath not in self._loaders: self._loaders[filepath] = np.load(filepath) return self._loaders[filepath] elif filetype in ["mat", "vec"]: # e.g. # {"input": [{"feat": "some/path.ark:123", # "filetype": "mat"}]}, # In this case, "123" indicates the starting points of the matrix # load_mat can load both matrix and vector if not self.keep_all_data_on_mem: return kaldiio.load_mat(filepath) if filepath not in self._loaders: self._loaders[filepath] = kaldiio.load_mat(filepath) return self._loaders[filepath] elif filetype == "scp": # e.g. # {"input": [{"feat": "some/path.scp:F01_050C0101_PED_REAL", # "filetype": "scp", filepath, key = filepath.split(":", 1) loader = self._loaders.get(filepath) if loader is None: # To avoid disk access, create loader only for the first time loader = kaldiio.load_scp(filepath) self._loaders[filepath] = loader return loader[key] else: raise NotImplementedError("Not supported: loader_type={}".format(filetype)) class SoundHDF5File(object): """Collecting sound files to a HDF5 file >>> f = SoundHDF5File('a.flac.h5', mode='a') >>> array = np.random.randint(0, 100, 100, dtype=np.int16) >>> f['id'] = (array, 16000) >>> array, rate = f['id'] :param: str filepath: :param: str mode: :param: str format: The type used when saving wav. flac, nist, htk, etc. :param: str dtype: """ def __init__(self, filepath, mode="r+", format=None, dtype="int16", **kwargs): self.filepath = filepath self.mode = mode self.dtype = dtype self.file = h5py.File(filepath, mode, **kwargs) if format is None: # filepath = a.flac.h5 -> format = flac second_ext = os.path.splitext(os.path.splitext(filepath)[0])[1] format = second_ext[1:] if format.upper() not in soundfile.available_formats(): # If not found, flac is selected format = "flac" # This format affects only saving self.format = format def __repr__(self): return '<SoundHDF5 file "{}" (mode {}, format {}, type {})>'.format( self.filepath, self.mode, self.format, self.dtype ) def create_dataset(self, name, shape=None, data=None, **kwds): f = io.BytesIO() array, rate = data soundfile.write(f, array, rate, format=self.format) self.file.create_dataset(name, shape=shape, data=np.void(f.getvalue()), **kwds) def __setitem__(self, name, data): self.create_dataset(name, data=data) def __getitem__(self, key): data = self.file[key][()] f = io.BytesIO(data.tobytes()) array, rate = soundfile.read(f, dtype=self.dtype) return array, rate def keys(self): return self.file.keys() def values(self): for k in self.file: yield self[k] def items(self): for k in self.file: yield k, self[k] def __iter__(self): return iter(self.file) def __contains__(self, item): return item in self.file def __len__(self, item): return len(self.file) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.file.close() def close(self): self.file.close()
451456
import FWCore.ParameterSet.Config as cms from JetMETCorrections.Configuration.JetCorrectionServices_cff import * # L1 Correction Producers ak4CaloJetsL1 = cms.EDProducer( 'CaloJetCorrectionProducer', src = cms.InputTag('ak4CaloJets'), correctors = cms.vstring('L1Fastjet') ) ak4PFJetsL1 = cms.EDProducer( 'PFJetCorrectionProducer', src = cms.InputTag('ak4PFJets'), correctors = cms.vstring('L1Fastjet') ) ak4PFCHSJetsL1 = cms.EDProducer( 'PFJetCorrectionProducer', src = cms.InputTag('ak4PFJetsCHS'), correctors = cms.vstring('L1Fastjet') ) ak4JPTJetsL1 = cms.EDProducer( 'JPTJetCorrectionProducer', src = cms.InputTag('JetPlusTrackZSPCorJetAntiKt4'), correctors = cms.vstring('ak4L1JPTFastjet') ) ak4TrackJetsL1 = cms.EDProducer( 'TrackJetCorrectionProducer', src = cms.InputTag('ak4TrackJets'), correctors = cms.vstring('L1Fastjet') ) # L2 Correction Producers ak4CaloJetsL2 = ak4CaloJetsL1.clone(correctors = ['ak4CaloL2Relative']) ak4PFJetsL2 = ak4PFJetsL1.clone(correctors = ['ak4PFL2Relative']) ak4PFCHSJetsL2 = ak4PFCHSJetsL1.clone(correctors = ['ak4PFCHSL2Relative']) ak4JPTJetsL2 = ak4JPTJetsL1.clone(correctors = ['ak4JPTL2Relative']) ak4TrackJetsL2 = ak4TrackJetsL1.clone(correctors = ['ak5TRKL2Relative']) # L2L3 Correction Producers ak4CaloJetsL2L3 = ak4CaloJetsL1.clone(correctors = ['ak4CaloL2L3']) ak4PFJetsL2L3 = ak4PFJetsL1.clone(correctors = ['ak4PFL2L3']) ak4PFCHSJetsL2L3 = ak4PFCHSJetsL1.clone(correctors = ['ak4PFCHSL2L3']) ak4JPTJetsL2L3 = ak4JPTJetsL1.clone(correctors = ['ak4JPTL2L3']) ak4TrackJetsL2L3 = ak4TrackJetsL1.clone(correctors = ['ak5TRKL2L3']) # L1L2L3 Correction Producers ak4CaloJetsL1L2L3 = ak4CaloJetsL1.clone(correctors = ['ak4CaloL1L2L3']) ak4PFJetsL1L2L3 = ak4PFJetsL1.clone(correctors = ['ak4PFL1L2L3']) ak4PFCHSJetsL1L2L3 = ak4PFCHSJetsL1.clone(correctors = ['ak4PFCHSL1L2L3']) ak4JPTJetsL1L2L3 = ak4JPTJetsL1.clone(correctors = ['ak4JPTL1L2L3']) ak4TrackJetsL1L2L3 = ak4TrackJetsL1.clone(correctors = ['ak5TRKL1L2L3']) # L2L3L6 CORRECTION PRODUCERS ak4CaloJetsL2L3L6 = ak4CaloJetsL1.clone(correctors = ['ak4CaloL2L3L6']) ak4PFJetsL2L3L6 = ak4PFJetsL1.clone(correctors = ['ak4PFL2L3L6']) # L1L2L3L6 CORRECTION PRODUCERS ak4CaloJetsL1L2L3L6 = ak4CaloJetsL1.clone(correctors = ['ak4CaloL1L2L3L6']) ak4PFJetsL1L2L3L6 = ak4PFJetsL1.clone(correctors = ['ak4PFL1L2L3L6'])
451530
from concurrent.futures import ThreadPoolExecutor from typing import NamedTuple, Callable, Union, List, Dict import numpy as np from keras import optimizers from kerl.common.agent import MultiAgent, EpisodeSample from kerl.common.multi_gym_env import MultiGymEnv from kerl.wm.networks import WorldModelVAE, WorldEnvModel, I2AController class WMInternalStates(NamedTuple): env_model_states: list def rename_total_loss(loss_dict: Dict[str, float], model_name: str) -> Dict[str, float]: full_loss = loss_dict['loss'] result = loss_dict.copy() del result['loss'] result[model_name + '_loss'] = full_loss return result class WMMultiAgent(MultiAgent): latent_dim_size = 128 world_rnn_units = 512 def __init__(self, env: MultiGymEnv, optimizer_maker: Callable[[], optimizers.Optimizer], **kwargs): vae_optimizer = optimizer_maker() env_model_optimizer = optimizer_maker() controller_optimizer = optimizer_maker() super().__init__(env, **kwargs) width, height, rgb_channels = env.observation_space.shape vae = WorldModelVAE( 'agent_vae_', (width, height, rgb_channels), vae_optimizer, latent_dim=self.latent_dim_size) self.vae = vae self.world = WorldEnvModel( 'agent_world_', batch_size=self._num_envs, time_steps=None, num_actions=self._num_actions, latent_dim_size=self.latent_dim_size, num_rnn_units=self.world_rnn_units, mixture_size=6, temperature=1.0, optimizer=env_model_optimizer) self.controller = I2AController( 'a2c_agent_', observation_size=self.latent_dim_size + self.world_rnn_units, num_actions=self._num_actions, optimizer=controller_optimizer, normalize_returns=self.normalize_returns, reward_scale=self.reward_scale) self.executor = ThreadPoolExecutor(max_workers=3) @property def models(self): return [self.vae.trainable_model, self.world.model, self.controller.trainable_model] def reset_states(self, states=None): self.world.reset_states( states.env_model_states if states is not None else None) def reset_particular_agents(self, mask: Union[List[bool], np.ndarray]): self.world.reset_particular_states(mask) def current_states(self): return WMInternalStates( env_model_states=self.world.current_states()) def multi_env_act(self, one_step_observations): batch_size = one_step_observations.shape[0] internal_states = self.current_states() current_obs = one_step_observations[:, :, :, :, -1] _, _, encoded_current_obs = self.vae.compress(current_obs) encoded_obs_and_world_state = ( np.concatenate( [self.world.state_for_controller( internal_states.env_model_states), encoded_current_obs], axis=-1) .reshape((batch_size, -1))) policy_output, value_output = self.controller.predict_on_actions( encoded_obs_and_world_state) sampled_actions = np.array( [np.random.choice(self._num_actions, p=po) for po in policy_output]) encoded_current_obs_with_time = encoded_current_obs.reshape( batch_size, 1, self.latent_dim_size) self.world.model.predict_on_batch( x=[encoded_current_obs_with_time, sampled_actions, np.zeros_like(encoded_current_obs_with_time)]) return (policy_output, sampled_actions, value_output[:, 0], internal_states) def train_on_sample(self, sample: EpisodeSample): # Encoding observations using VAE so we could use them to train both # the environment model and the controller. current_obs = sample.batch_observations[:, :, :, :, :, -1] last_obs = sample.last_observations[:, :, :, :, -1] batch_size, time_steps, width, height, channels = current_obs.shape _, _, encoded_current_obs = self.vae.compress( np.reshape(current_obs, (batch_size * time_steps, width, height, channels))) encoded_current_obs_with_time = encoded_current_obs.reshape( batch_size, time_steps, self.latent_dim_size) _, _, encoded_last_obs = self.vae.compress(last_obs) encoded_future_obs_with_time = np.concatenate( [encoded_current_obs_with_time[:, 1:], np.expand_dims(encoded_last_obs, 1)], axis=1) # Training all networks all_losses = {} all_losses.update( self.train_vae(sample)) all_losses.update( self.train_env_model( encoded_current_obs_with_time, encoded_future_obs_with_time, sample)) all_losses.update( self.train_controller( encoded_current_obs_with_time, self.reward_discount, sample)) return all_losses def train_vae(self, sample: EpisodeSample): batch_size, time_steps, width, height, channels, frames = ( sample.batch_observations.shape) env_observations = ( sample.batch_observations[:, :, :, :, :, -1] .reshape((batch_size * time_steps, width, height, channels))) vae_loss = self.vae.trainable_model.train_on_batch( x=env_observations, y=None) return {self.vae.trainable_model.name + '_loss': vae_loss} def train_controller(self, encoded_current_obs_with_time, reward_discount, sample: EpisodeSample): batch_size, time_steps, width, height, channels, frames = ( sample.batch_observations.shape) rnn_states_before_actions = np.transpose( [self.world.state_for_controller(item.env_model_states) for item in sample.agent_internal_states], axes=(1, 0, 2)) encoded_obs_and_world_state = ( np.concatenate( [rnn_states_before_actions, encoded_current_obs_with_time], axis=-1) .reshape((batch_size * time_steps, -1))) controller_loss = self.controller.train_on_sample( sample, encoded_obs_and_world_state, reward_discount) return rename_total_loss( controller_loss, self.controller.trainable_model.name) def train_env_model(self, encoded_current_obs_with_time, encoded_future_obs_with_time, sample: EpisodeSample): state_before_training = self.world.current_states() self.world.reset_states( sample.agent_internal_states[0].env_model_states) env_model_loss = self.world.model.train_on_batch( x=[encoded_current_obs_with_time, sample.batch_actions, encoded_future_obs_with_time], y=[np.expand_dims(sample.batch_rewards, axis=-1), np.expand_dims(np.float32(sample.batch_dones), axis=-1)]) env_model_named_losses = { n: v for n, v in zip(self.world.model.metrics_names, env_model_loss)} self.world.reset_states(state_before_training) return rename_total_loss(env_model_named_losses, self.world.model.name)
451561
from __future__ import absolute_import import pytest import os from qark.decompiler.decompiler import Decompiler from qark.scanner.scanner import Scanner from qark.scanner.plugin import JavaASTPlugin, ManifestPlugin DECOMPILER_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "qark", "lib", "decompilers") @pytest.fixture(scope="session") def path_to_source(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "goatdroid.apk") @pytest.fixture(scope="session") def build_directory(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "build_directory") @pytest.fixture() def decompiler(path_to_source, build_directory): return Decompiler(path_to_source=path_to_source, build_directory=build_directory) @pytest.fixture(scope="module") def module_decompiler(path_to_source, build_directory): return Decompiler(path_to_source=path_to_source, build_directory=build_directory) @pytest.fixture() def scanner(decompiler): return Scanner(decompiler.manifest_path, decompiler.build_directory) @pytest.fixture(scope="session") def vulnerable_manifest_path(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "test_xml_files", "test_androidmanifest.xml") @pytest.fixture(scope="session") def goatdroid_manifest_path(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "test_xml_files", "test_goatdroid_manifest.xml") @pytest.fixture(scope="session") def test_java_files(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "test_java_files") @pytest.fixture(scope="session") def vulnerable_broadcast_path(test_java_files): return os.path.join(test_java_files, "send_broadcast_receiver_permission.java") @pytest.fixture(scope="session") def vulnerable_receiver_path(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "test_plugins", "test_manifest_plugins", "broadcastreceivers", "SendSMSNowReceiver.java") @pytest.fixture(autouse=True) def reset_plugins(): """Reset all plugins in between each function. `JavaASTPlugin` currently will reset every other plugin type.""" JavaASTPlugin.reset() ManifestPlugin.manifest_xml = None ManifestPlugin.manifest_path = None ManifestPlugin.min_sdk = -1 ManifestPlugin.target_sdk = -1 ManifestPlugin.package_name = "PACKAGE_NOT_FOUND"
451578
import win32clipboard, win32con def get_pattern(): text = str(eval(raw_input("Pattern:\n"))) win32clipboard.OpenClipboard() win32clipboard.EmptyClipboard() win32clipboard.SetClipboardText(text) win32clipboard.CloseClipboard() def main(): while True: get_pattern() if __name__ == "__main__": main()
451593
import tensorflow as tf from tqdm import tqdm from PIL import Image from hailo_model_zoo.core.infer.infer_utils import log_accuracy, write_results, save_image from hailo_sdk_client import SdkFineTune def np_infer(runner, target, logger, eval_num_examples, print_num_examples, batch_size, data_feed_callback, tf_graph_callback, postprocessing_callback, eval_callback, visualize_callback, video_outpath, dump_results, results_path): with tf.Graph().as_default(): logger.info('Building preprocess...') iterator = data_feed_callback() [preprocessed_data, image_info] = iterator.get_next() logger.info('Compiling and integrating with Tensorflow graph...') sdk_export = tf_graph_callback(preprocessed_data) eval_metric = eval_callback() logger.info('Running inference...') with sdk_export.session.as_default(), runner.hef_infer_context(sdk_export): sdk_export.session.run([iterator.initializer, tf.compat.v1.local_variables_initializer()]) if isinstance(target, SdkFineTune): sdk_export.session.run( [delta.initializer for delta in sdk_export.kernels_delta + sdk_export.biases_delta]) num_of_images = 0 try: with tqdm(total=None, desc="Processed", unit="images", disable=None if not print_num_examples < 1e9 else True) as pbar: while num_of_images < eval_num_examples: logits_batch, img_info = sdk_export.session.run([sdk_export.output_tensors, image_info]) num_of_images += batch_size probs = postprocessing_callback(logits_batch, image_info=img_info) if not visualize_callback and not dump_results: eval_metric.update_op(probs, img_info) if num_of_images % print_num_examples == 0: eval_metric.evaluate() log_accuracy(logger, num_of_images, eval_metric.get_accuracy()) else: if visualize_callback: save_image(Image.fromarray(visualize_callback(probs, img_info['img_orig'])), img_info['image_name'][0]) if dump_results: write_results(probs, img_info, results_path) pbar.update(batch_size) except tf.errors.OutOfRangeError: pass # Write message and exit if we finished to iterate over the data if not visualize_callback and not dump_results and num_of_images % print_num_examples != 0: eval_metric.evaluate() log_accuracy(logger, num_of_images, eval_metric.get_accuracy()) return eval_metric.get_accuracy()
451604
from __future__ import unicode_literals from django.core.management.base import AppCommand from django.db import DEFAULT_DB_ALIAS, connections class Command(AppCommand): help = 'Prints the SQL statements for resetting sequences for the given app name(s).' output_transaction = True def add_arguments(self, parser): super(Command, self).add_arguments(parser) parser.add_argument( '--database', default=DEFAULT_DB_ALIAS, help='Nominates a database to print the SQL for. Defaults to the "default" database.', ) def handle_app_config(self, app_config, **options): if app_config.models_module is None: return connection = connections[options['database']] models = app_config.get_models(include_auto_created=True) statements = connection.ops.sequence_reset_sql(self.style, models) return '\n'.join(statements)
451640
from misc import * import mido while True: msg_a = None msg_b = None print("=====================================") print_full("Waiting for first message... ") seen = list() try: with mido.open_input('monologue 1 KBD/KNOB 1') as inport: for msg in inport: if (msg.type == 'control_change' and msg.control not in seen): print("CC(" + str(msg.control) + ") ", end='', flush=True) seen.append(msg.control) if (msg.type == 'program_change' and "PC" not in seen): print("PC ", end='', flush=True) seen.append("PC") if (msg.type == 'sysex'): if (msg_a == None): msg_a = msg.data print("OK") print_full("Waiting for second message... ") seen.clear() else: msg_b = msg.data print("OK") break print_full("Comparison: \n") if (len(msg_a) != len(msg_b)): print_full("Message length mismatch.") else: diff_count = 0 offset = -1 print("---") for i in range(0, len(msg_a)): if (msg_a[i] != msg_b[i]): if (offset == -1): offset = i + 1 print("Byte %s" % (str(offset))) else: print("Byte %s (+%s)" % (str(i + 1), str(i + 1 - offset))) bin_a = list("{:08b}".format(msg_a[i])) bin_b = list("{:08b}".format(msg_b[i])) dec_or = (msg_a[i] ^ msg_b[i]) for j in range(0, len(bin_a)): if (bin_a[j] == bin_b[j]): bin_a[j] = 'x' bin_b[j] = 'x' else: diff_count += 1 print("A: " + ''.join(bin_a)) print("B: " + ''.join(bin_b)) print("XOR: " + str(dec_or)) print("-") print("---") print(str(diff_count) + " differing bits in total.") pass except OSError: print("Device not connected.") break
451649
import pytest import os from functools import lru_cache import logging as _logging from logging.handlers import RotatingFileHandler from test.tutils import random_str from calculate_anything import logging @lru_cache(maxsize=None) def get_file_handler(filepath): file_hdlr = RotatingFileHandler( filepath, maxBytes=1000000, backupCount=10, encoding='utf-8', delay=False, ) file_hdlr.setFormatter(logging.ColorFormatter(use_color=False)) return file_hdlr @lru_cache(maxsize=None) def get_stdout_handler(): hdlr = logging.CustomHandler(print, print, print, print, print) return hdlr @pytest.mark.parametrize( 'level', [ _logging.DEBUG, _logging.INFO, _logging.WARNING, _logging.ERROR, _logging.CRITICAL, ], ) def test_logging(caplog, level): with caplog.at_level(level): logging.setLevel(level) logging.set_file_handler(None) logger = logging.getLogger('test_logging_logging') assert len(logger.handlers) == 1 assert isinstance(logger.handlers[0], _logging.StreamHandler) msg = random_str() logger.debug(msg) assert (msg in caplog.text) == (level <= _logging.DEBUG) msg = random_str() logger.info(msg) assert (msg in caplog.text) == (level <= _logging.INFO) msg = random_str() logger.warning(msg) assert (msg in caplog.text) == (level <= _logging.WARNING) msg = random_str() logger.error(msg) assert (msg in caplog.text) == (level <= _logging.ERROR) msg = random_str() logger.critical(msg) assert (msg in caplog.text) == (level <= _logging.CRITICAL) @pytest.mark.parametrize( 'level', [ _logging.DEBUG, _logging.INFO, _logging.WARNING, _logging.ERROR, _logging.CRITICAL, ], ) def test_logging_custom_stdout_hannler(caplog, level): hdlr = get_stdout_handler() with caplog.at_level(level): logging.setLevel(level) logging.set_file_handler(None) logging.set_stdout_handler(hdlr) logger = logging.getLogger('test_logging_custom_stdout_hannler') assert len(logger.handlers) == 1 assert isinstance(logger.handlers[0], logging.CustomHandler) msg = random_str() logger.debug(msg) assert (msg in caplog.text) == (level <= _logging.DEBUG) msg = random_str() logger.info(msg) assert (msg in caplog.text) == (level <= _logging.INFO) msg = random_str() logger.warning(msg) assert (msg in caplog.text) == (level <= _logging.WARNING) msg = random_str() logger.error(msg) assert (msg in caplog.text) == (level <= _logging.ERROR) msg = random_str() logger.critical(msg) assert (msg in caplog.text) == (level <= _logging.CRITICAL) @pytest.mark.parametrize( 'level', [ _logging.DEBUG, _logging.INFO, _logging.WARNING, _logging.ERROR, _logging.CRITICAL, ], ) def test_logging_no_stdout_handler(caplog, level): with caplog.at_level(level): logging.setLevel(level) logging.set_file_handler(None) logging.set_stdout_handler(None) logger = logging.getLogger('test_logging_no_stdout_handler') assert not logger.handlers @pytest.mark.parametrize( 'level', [ _logging.DEBUG, _logging.INFO, _logging.WARNING, _logging.ERROR, _logging.CRITICAL, ], ) def test_logging_file(log_filepath, level): hdlr = get_file_handler(log_filepath) print('Saving logs to {}'.format(log_filepath)) logging.setLevel(level) logging.set_file_handler(hdlr) logging.set_stdout_handler(None) logger = logging.getLogger('test_logging_file') assert len(logger.handlers) == 1 assert isinstance(logger.handlers[0], RotatingFileHandler) msgs = [] msg = random_str() logger.debug(msg) msgs.append((msg, _logging.DEBUG)) msg = random_str() logger.info(msg) msgs.append((msg, _logging.INFO)) msg = random_str() logger.warning(msg) msgs.append((msg, _logging.WARNING)) msg = random_str() logger.error(msg) msgs.append((msg, _logging.ERROR)) msg = random_str() logger.critical(msg) msgs.append((msg, _logging.CRITICAL)) assert os.path.exists(log_filepath) with open(log_filepath, 'r', encoding='utf-8') as f: log = f.read() for msg, mlevel in msgs: assert (msg in log) == (level <= mlevel)
451655
import unittest import numpy as np try: from numcodecs.msgpacks import MsgPack except ImportError: # pragma: no cover raise unittest.SkipTest("msgpack not available") from numcodecs.tests.common import (check_config, check_repr, check_encode_decode_array, check_backwards_compatibility, greetings) # object array with strings # object array with mix strings / nans # object array with mix of string, int, float # ... arrays = [ np.array(['foo', 'bar', 'baz'] * 300, dtype=object), np.array([['foo', 'bar', np.nan]] * 300, dtype=object), np.array(['foo', 1.0, 2] * 300, dtype=object), np.arange(1000, dtype='i4'), np.array(['foo', 'bar', 'baz'] * 300), np.array(['foo', ['bar', 1.0, 2], {'a': 'b', 'c': 42}] * 300, dtype=object), np.array(greetings * 100), np.array(greetings * 100, dtype=object), np.array([b'foo', b'bar', b'baz'] * 300, dtype=object), np.array([g.encode('utf-8') for g in greetings] * 100, dtype=object), np.array([[0, 1], [2, 3]], dtype=object), ] def test_encode_decode(): for arr in arrays: check_encode_decode_array(arr, MsgPack()) def test_config(): check_config(MsgPack()) def test_repr(): check_repr("MsgPack(raw=False, use_bin_type=True, use_single_float=False)") check_repr("MsgPack(raw=True, use_bin_type=False, use_single_float=True)") def test_backwards_compatibility(): codec = MsgPack() check_backwards_compatibility(codec.codec_id, arrays, [codec]) def test_non_numpy_inputs(): codec = MsgPack() # numpy will infer a range of different shapes and dtypes for these inputs. # Make sure that round-tripping through encode preserves this. data = [ [0, 1], [[0, 1], [2, 3]], [[0], [1], [2, 3]], [[[0, 0]], [[1, 1]], [[2, 3]]], ["1"], ["11", "11"], ["11", "1", "1"], [{}], [{"key": "value"}, ["list", "of", "strings"]], [b"1"], [b"11", b"11"], [b"11", b"1", b"1"], [{b"key": b"value"}, [b"list", b"of", b"strings"]], ] for input_data in data: actual = codec.decode(codec.encode(input_data)) expect = np.array(input_data) assert expect.shape == actual.shape assert np.array_equal(expect, actual) def test_encode_decode_shape_dtype_preserved(): codec = MsgPack() for arr in arrays: actual = codec.decode(codec.encode(arr)) assert arr.shape == actual.shape assert arr.dtype == actual.dtype def test_bytes(): # test msgpack behaviour with bytes and str (unicode) bytes_arr = np.array([b'foo', b'bar', b'baz'], dtype=object) unicode_arr = np.array(['foo', 'bar', 'baz'], dtype=object) # raw=False (default) codec = MsgPack() # works for bytes array, round-trips bytes to bytes b = codec.decode(codec.encode(bytes_arr)) assert np.array_equal(bytes_arr, b) assert isinstance(b[0], bytes) assert b[0] == b'foo' # works for unicode array, round-trips unicode to unicode b = codec.decode(codec.encode(unicode_arr)) assert np.array_equal(unicode_arr, b) assert isinstance(b[0], str) assert b[0] == 'foo' # raw=True codec = MsgPack(raw=True) # works for bytes array, round-trips bytes to bytes b = codec.decode(codec.encode(bytes_arr)) assert np.array_equal(bytes_arr, b) assert isinstance(b[0], bytes) assert b[0] == b'foo' # broken for unicode array, round-trips unicode to bytes b = codec.decode(codec.encode(unicode_arr)) assert not np.array_equal(unicode_arr, b) assert isinstance(b[0], bytes) assert b[0] == b'foo'
451664
from __future__ import unicode_literals import frappe def execute(): """Executed by bench execute erpnext_biotrack.patches.delete_all_synced_stock_entries.execute """ frappe.flags.mute_emails = True # rows = frappe.db.sql() i = 0 for name in frappe.get_all("Stock Entry"): doc = frappe.get_doc("Stock Entry", name) i += 1 print "Deleting " + doc.name print doc if doc.docstatus == 1: doc.cancel() doc.delete() frappe.db.commit() frappe.flags.mute_emails = False
451705
import json, pygame import thorpy.miscgui.theme as theme class MetaDataManager(object): def __init__(self, data=None): if data is None: data = {} self.data = data def write_data(self, fn): json.dump(self.data, open(fn,'w')) def read_data(self, fn): try: self.data = json.load(open(fn)) except: return None return True def load_font_data(self, fn): font = self.data.get("font") if font: theme.add_font(font) font_size = self.data.get("font_size") if font_size: theme.set_font_sizes(font_size) def get_display_data(self, fn, w, h, flags): W,H = self.data.get("screen_w"), self.data.get("screen_h") fullscreen = self.data.get("fullscreen") flags = flags if fullscreen: flags |= pygame.FULLSCREEN if W is None: W = w if H is None: H = h return W,H,flags
451706
import torch.nn as nn import torch as th class MultiColumn(nn.Module): def __init__(self, num_classes, conv_column, column_units, clf_layers=None): """ - Example multi-column network - Useful when a video sample is too long and has to be split into multiple clips - Processes 3D-CNN on each clip and averages resulting features across clips before passing it to classification(FC) layer Args: - Input: Takes in a list of tensors each of size (batch_size, 3, sequence_length, W, H) - Returns: logits of size (batch size, num_classes) """ super(MultiColumn, self).__init__() self.num_classes = num_classes self.column_units = column_units self.conv_column = conv_column(column_units) self.clf_layers = clf_layers if not self.clf_layers: self.clf_layers = th.nn.Sequential( nn.Linear(column_units, self.num_classes) ) def forward(self, inputs, get_features=False): outputs = [] num_cols = len(inputs) for idx in range(num_cols): x = inputs[idx] x1 = self.conv_column(x) outputs.append(x1) outputs = th.stack(outputs).permute(1, 0, 2) outputs = th.squeeze(th.sum(outputs, 1), 1) avg_output = outputs / float(num_cols) outputs = self.clf_layers(avg_output) if get_features: return outputs, avg_output else: return outputs if __name__ == "__main__": from model3D_1 import Model num_classes = 174 input_tensor = [th.autograd.Variable(th.rand(1, 3, 72, 84, 84))] model = MultiColumn(174, Model, 512) output = model(input_tensor) print(output.size())
451713
from Tkinter import * import os class RecentFile: recent = None def __init__(self,app): self.recent = [] self.app = app #self.loadRecent() self.update_menu(self.app.Filemenu) def add(self,filename): self.app.logen.preferences.add_recent(filename) self.update_menu(self.app.Filemenu) def clear(self): self.app.logen.preferences.clear_recent() self.update_menu(self.app.Filemenu) def update_menu(self,menu): """ This should modify the menu at from position 6 onwards with recent menu """ self.recent = self.app.logen.preferences.get_recent() start = self.app.Filemenu_index["RECENT"] menu.delete(start,12) RecentMenu = Menu(menu,tearoff=0) for i in self.recent: #menu.add_command(label="%s"%os.path.basename(i), command=lambda i=i: self.openRecent(i)) RecentMenu.add_command(label="%s"%i, command=lambda i=i: self.openRecent(i)) RecentMenu.add_separator() RecentMenu.add_command(label="Clear Recent Files", command=self.clear) menu.add_cascade(label="Recent Files", menu=RecentMenu,underline=2) menu.add_separator() menu.add_command(label="Quit", command= self.app.exit,underline=0) def openRecent(self,filename): self.app.open_file(filename=filename)
451718
from __future__ import print_function, absolute_import, division import KratosMultiphysics import KratosMultiphysics.ParticleMechanicsApplication as KratosParticle import KratosMultiphysics.KratosUnittest as KratosUnittest class TestParticleEraseProcess(KratosUnittest.TestCase): def _generate_particle_element_and_check(self, current_model): KratosMultiphysics.Logger.GetDefaultOutput().SetSeverity(KratosMultiphysics.Logger.Severity.WARNING) dimension = 3 # Initialize model part ## Material model part definition material_point_model_part = current_model.CreateModelPart("dummy_name") material_point_model_part.ProcessInfo.SetValue(KratosMultiphysics.DOMAIN_SIZE, dimension) self.process_info = material_point_model_part.ProcessInfo ## Initial material model part definition initial_mesh_model_part = current_model.CreateModelPart("Initial_dummy_name") initial_mesh_model_part.ProcessInfo.SetValue(KratosMultiphysics.DOMAIN_SIZE, dimension) ## Grid model part definition grid_model_part = current_model.CreateModelPart("Background_Grid") grid_model_part.ProcessInfo.SetValue(KratosMultiphysics.DOMAIN_SIZE, dimension) # Create element and nodes sub_mp = initial_mesh_model_part.CreateSubModelPart("test") sub_mp.GetProperties()[1].SetValue(KratosParticle.PARTICLES_PER_ELEMENT, 4) self._create_nodes(sub_mp) self._create_elements(sub_mp) # Create background element and nodes background_sub_mp = grid_model_part.CreateSubModelPart("test2") self._create_nodes(background_sub_mp) self._create_elements(background_sub_mp) self._create_conditions(background_sub_mp) # Generate MP Elements and Conditions KratosParticle.GenerateMaterialPointElement(grid_model_part, initial_mesh_model_part, material_point_model_part, False) KratosParticle.GenerateMaterialPointCondition(grid_model_part, initial_mesh_model_part, material_point_model_part) def _create_nodes(self, initial_mp): initial_mp.CreateNewNode(1, -0.5, -0.5, 0.0) initial_mp.CreateNewNode(2, 0.5, -0.5, 0.0) initial_mp.CreateNewNode(3, 0.5, 0.5, 0.0) initial_mp.CreateNewNode(4, -0.5, 0.5, 0.0) initial_mp.CreateNewNode(5, -0.5, -0.5, 1.0) initial_mp.CreateNewNode(6, 0.5, -0.5, 1.0) initial_mp.CreateNewNode(7, 0.5, 0.5, 1.0) initial_mp.CreateNewNode(8, -0.5, 0.5, 1.0) def _create_elements(self, initial_mp): initial_mp.CreateNewElement("UpdatedLagrangian3D8N", 1, [1,2,3,4,5,6,7,8], initial_mp.GetProperties()[1]) KratosMultiphysics.VariableUtils().SetFlag(KratosMultiphysics.ACTIVE, True, initial_mp.Elements) def _create_conditions(self, initial_mp): initial_mp.CreateNewCondition("SurfaceCondition3D4N", 1, [2,4,8,6], initial_mp.GetProperties()[1]) KratosMultiphysics.VariableUtils().SetFlag(KratosMultiphysics.BOUNDARY, True, initial_mp.Conditions) for condition in initial_mp.Conditions: condition.SetValue(KratosParticle.PARTICLES_PER_CONDITION, 0) condition.SetValue(KratosParticle.MPC_BOUNDARY_CONDITION_TYPE, 1) def _search_element(self, current_model): # Default max_num_results = 1000 specific_tolerance = 1.e-5 # Get model part material_point_model_part = current_model.GetModelPart("dummy_name") grid_model_part = current_model.GetModelPart("Background_Grid") # Search element KratosParticle.SearchElement(grid_model_part, material_point_model_part, max_num_results, specific_tolerance) def test_ParticleEraseOutsideGivenDomain(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model) # Get model part material_point_model_part = current_model.GetModelPart("dummy_name") # Check initial total number of element particle_counter = material_point_model_part.NumberOfElements() self.assertEqual(particle_counter, 8) # Move particle for mpm in material_point_model_part.Elements: new_coordinates = mpm.CalculateOnIntegrationPoints(KratosParticle.MP_COORD, self.process_info) new_coordinates[0] += [0.3, 0.23, 0.22] mpm.SetValuesOnIntegrationPoints(KratosParticle.MP_COORD, new_coordinates, self.process_info) # Check outside given domain for mpm in material_point_model_part.Elements: new_coordinate = mpm.CalculateOnIntegrationPoints(KratosParticle.MP_COORD, self.process_info)[0] if(new_coordinate[0] < -0.5 or new_coordinate[0] > 0.5 or new_coordinate[1] < -0.5 or new_coordinate[1] > 0.5 or new_coordinate[2] < 0.0 or new_coordinate[2] > 1.0 ): mpm.Set(KratosMultiphysics.TO_ERASE, True) # Initiate process process = KratosParticle.ParticleEraseProcess(material_point_model_part) # Execute process.Execute() # Check total number of element particle_counter = material_point_model_part.NumberOfElements() self.assertEqual(particle_counter, 1) expected_id = 9 for mpm in material_point_model_part.Elements: self.assertEqual(mpm.Id, expected_id) def test_ParticleEraseBySearch(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model) # Get model part material_point_model_part = current_model.GetModelPart("dummy_name") # Check initial total number of element particle_counter = material_point_model_part.NumberOfElements() self.assertEqual(particle_counter, 8) # Move particle for mpm in material_point_model_part.Elements: new_coordinates = mpm.CalculateOnIntegrationPoints(KratosParticle.MP_COORD, self.process_info) new_coordinates[0] += [0.3, 0.23, 0.22] mpm.SetValuesOnIntegrationPoints(KratosParticle.MP_COORD, new_coordinates, self.process_info) # Call Search self._search_element(current_model) # Initiate process process = KratosParticle.ParticleEraseProcess(material_point_model_part) # Execute process.Execute() # Check total number of element particle_counter = material_point_model_part.NumberOfElements() self.assertEqual(particle_counter, 1) expected_id = 9 for mpm in material_point_model_part.Elements: self.assertEqual(mpm.Id, expected_id) def test_ParticleConditionEraseOutsideGivenDomain(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model) # Get model part material_point_model_part = current_model.GetModelPart("dummy_name") # Check initial number of condition particle_counter = material_point_model_part.NumberOfConditions() self.assertEqual(particle_counter, 1) # Move particle for mpc in material_point_model_part.Conditions: new_coordinates = mpc.CalculateOnIntegrationPoints(KratosParticle.MPC_COORD, self.process_info) new_coordinates[0] += [-0.5, 0.5, 0.5] mpc.SetValuesOnIntegrationPoints(KratosParticle.MPC_COORD, new_coordinates, self.process_info) # Check outside given domain for mpc in material_point_model_part.Conditions: new_coordinate = mpc.CalculateOnIntegrationPoints(KratosParticle.MPC_COORD, self.process_info)[0] if(new_coordinate[0] < -0.5 or new_coordinate[0] > 0.5 or new_coordinate[1] < -0.5 or new_coordinate[1] > 0.5 or new_coordinate[2] < 0.0 or new_coordinate[2] > 1.0 ): mpc.Set(KratosMultiphysics.TO_ERASE, True) # Initiate process process = KratosParticle.ParticleEraseProcess(material_point_model_part) # Execute process.Execute() # Check total number of condition particle_counter = material_point_model_part.NumberOfConditions() self.assertEqual(particle_counter, 1) expected_id = 11 for mpc in material_point_model_part.Conditions: self.assertEqual(mpc.Id, expected_id) def test_ParticleConditionEraseBySearch(self): current_model = KratosMultiphysics.Model() self._generate_particle_element_and_check(current_model) # Get model part material_point_model_part = current_model.GetModelPart("dummy_name") # Check initial number of condition particle_counter = material_point_model_part.NumberOfConditions() self.assertEqual(particle_counter, 1) # Move particle for mpc in material_point_model_part.Conditions: new_coordinates = mpc.CalculateOnIntegrationPoints(KratosParticle.MPC_COORD, self.process_info) new_coordinates[0] += [-0.5, 0.5, 0.5] mpc.SetValuesOnIntegrationPoints(KratosParticle.MPC_COORD, new_coordinates, self.process_info) # Call Search self._search_element(current_model) # Initiate process process = KratosParticle.ParticleEraseProcess(material_point_model_part) # Execute process.Execute() # Check total number of condition particle_counter = material_point_model_part.NumberOfConditions() self.assertEqual(particle_counter, 1) expected_id = 11 for mpc in material_point_model_part.Conditions: self.assertEqual(mpc.Id, expected_id) if __name__ == '__main__': KratosUnittest.main()
451732
from symphony.bdk.core.auth.auth_session import AuthSession from symphony.bdk.core.config.model.bdk_retry_config import BdkRetryConfig from symphony.bdk.core.retry import retry from symphony.bdk.core.service.connection.model.connection_status import ConnectionStatus from symphony.bdk.gen.pod_api.connection_api import ConnectionApi from symphony.bdk.gen.pod_model.user_connection import UserConnection from symphony.bdk.gen.pod_model.user_connection_request import UserConnectionRequest class OboConnectionService: """Class exposing OBO-enabled endpoints for connection management. This service is used for retrieving the connection status between the OBO user and a specified user or several other internal or external users in the pod, and perform some actions related to the connection status like: * Send a connection request to an user * Accept a connection request from a user * Reject a connection request from a user * Remove a connection with a user """ def __init__(self, connection_api: ConnectionApi, auth_session: AuthSession, retry_config: BdkRetryConfig): self._connection_api = connection_api self._auth_session = auth_session self._retry_config = retry_config @retry async def get_connection(self, user_id: int) -> UserConnection: """ Get connection status, i.e. check if the calling user is connected to the specified user. See: `Get Connection <https://developers.symphony.com/restapi/reference#get-connection>`_ :param user_id: The id of the user with whom the caller want to check. :return: Connection status with the specified user. """ params = { 'user_id': str(user_id), 'session_token': await self._auth_session.session_token } return await self._connection_api.v1_connection_user_user_id_info_get(**params) @retry async def list_connections( self, status: ConnectionStatus = ConnectionStatus.ALL, user_ids: [int] = None ) -> [UserConnection]: """ List all connection statuses of the requesting user with external or specified users. See: `List Connections <https://developers.symphony.com/restapi/reference#list-connections>`_ :param status: Filter the connection list based on the connection status. The connection status can only be pending_incoming, pending_outgoing, accepted, rejected, or all. If you do not specify a status, all connections will be returned. :param user_ids: List of user ids which are used to restrict the list of results. This can be used to return connections with internal users; although, by default, this endpoint does not list implicit connections with internal users. :return: List of connection statuses with the specified users and status. """ params = { 'status': status.value, 'session_token': await self._auth_session.session_token } if user_ids is not None: params['user_ids'] = ','.join(map(str, user_ids)) user_connection_list = await self._connection_api.v1_connection_list_get(**params) return user_connection_list.value @retry async def create_connection(self, user_id: int) -> UserConnection: """ Sends a connection request to another user. See: `Create Connection <https://developers.symphony.com/restapi/reference#create-connection>`_ :param user_id: The id of the user with whom the caller want to connect. :return: Connection status with the specified user. """ user_connection_request = UserConnectionRequest(user_id=user_id) params = { 'connection_request': user_connection_request, 'session_token': await self._auth_session.session_token } return await self._connection_api.v1_connection_create_post(**params) @retry async def accept_connection(self, user_id: int) -> UserConnection: """ Accept the connection request from a requesting user. See: `Accept Connection <https://developers.symphony.com/restapi/reference#accepted-connection>`_ :param user_id: The id of the user who requested to connect with the caller. :return: Connection status with the requesting user. """ user_connection_request = UserConnectionRequest(user_id=user_id) params = { 'connection_request': user_connection_request, 'session_token': await self._auth_session.session_token } return await self._connection_api.v1_connection_accept_post(**params) @retry async def reject_connection(self, user_id: int) -> UserConnection: """ Reject the connection request from a requesting user. See: `Reject Connection <https://developers.symphony.com/restapi/reference#reject-connection>`_ :param user_id: The id of the user who requested to connect with the caller. :return: Connection status with the requesting user. """ user_connection_request = UserConnectionRequest(user_id=user_id) params = { 'connection_request': user_connection_request, 'session_token': await self._auth_session.session_token } return await self._connection_api.v1_connection_reject_post(**params) @retry async def remove_connection(self, user_id: int) -> None: """ Removes a connection with a user. See: `Remove Connection <https://developers.symphony.com/restapi/reference#remove-connection>`_ :param user_id: The id of the user with whom we want to remove the connection. """ params = { 'uid': user_id, 'session_token': await self._auth_session.session_token } await self._connection_api.v1_connection_user_uid_remove_post(**params) class ConnectionService(OboConnectionService): """Service class for managing the connections between users This service is used for retrieving the connection status between the calling user and a specified user or several other internal or external users in the pod, and perform some actions related to the connection status like: * Send a connection request to an user * Accept a connection request from a user * Reject a connection request from a user * Remove a connection with a user """
451762
import logging import sys from .recorder import Recorder logger = logging.getLogger("offstream") logger.setLevel(logging.INFO) logger.addHandler(logging.StreamHandler(sys.stdout)) __all__ = ["Recorder"]
451775
import bz2 import hashlib import os import re import stat import subprocess as subp import sys import tarfile import time import zipfile from glob import glob import urllib.request def remove_prefix(text): return re.sub(r'^[a-z]__', '', text) def read_and_split(ofn): return (l.decode('utf-8').strip().split('\t') for l in ofn) def read_and_split_line(line): return line.decode('utf-8').strip().split('\t') def plain_read_and_split(ofn): return (l.strip().split('\t') for l in ofn) def plain_read_and_split_line(l): return l.strip().split('\t') def mybytes(val): return bytes(val, encoding='utf-8') def byte_to_megabyte(byte): """ Convert byte value to megabyte """ return byte / (1024.0**2) class ReportHook(): def __init__(self): self.start_time = time.time() def report(self, blocknum, block_size, total_size): """ Print download progress message """ if blocknum == 0: self.start_time = time.time() if total_size > 0: sys.stderr.write("Downloading file of size: {:.2f} MB\n" .format(byte_to_megabyte(total_size))) else: total_downloaded = blocknum * block_size status = "{:3.2f} MB ".format(byte_to_megabyte(total_downloaded)) if total_size > 0: percent_downloaded = total_downloaded * 100.0 / total_size # use carriage return plus sys.stderr to overwrite stderr download_rate = total_downloaded / (time.time() - self.start_time) estimated_time = (total_size - total_downloaded) / download_rate estimated_minutes = int(estimated_time / 60.0) estimated_seconds = estimated_time - estimated_minutes * 60.0 status += ("{:3.2f} % {:5.2f} MB/sec {:2.0f} min {:2.0f} sec " .format(percent_downloaded, byte_to_megabyte(download_rate), estimated_minutes, estimated_seconds)) status += " \r" sys.stderr.write(status) # set the location of the database download url DROPBOX_DATABASE_DOWNLOAD = "https://www.dropbox.com/sh/7qze7m7g9fe2xjg/AADHWzATSQcI0CNFD0sk7MAga" ZENODO_DATABASE_DOWNLOAD = "https://zenodo.org/record/3957592" def download(url, download_file, force=False): """ Download a file from a url """ if not os.path.isfile(download_file) or force: try: sys.stderr.write("\nDownloading " + url + "\n") file, headers = urllib.request.urlretrieve(url, download_file, reporthook=ReportHook().report) except EnvironmentError: sys.stderr.write("\nWarning: Unable to download " + url + "\n") else: sys.stderr.write("\nFile {} already present!\n".format(download_file)) def download_unpack_tar(download_file_name, folder, bowtie2_build, nproc, use_zenodo): """ Download the url to the file and decompress into the folder """ # Create the folder if it does not already exist if not os.path.isdir(folder): try: os.makedirs(folder) except EnvironmentError: sys.exit("ERROR: Unable to create folder for database install: " + folder) # Check the directory permissions if not os.access(folder, os.W_OK): sys.exit("ERROR: The directory is not writeable: " + folder + ". " "Please modify the permissions.") #local path of the tarfile and md5file tar_file = os.path.join(folder, download_file_name + ".tar") md5_file = os.path.join(folder, download_file_name + ".md5") #Download the list of all the files in the Dropbox folder if not use_zenodo: url_tar_file = "http://cmprod1.cibio.unitn.it/biobakery3/metaphlan_databases/{}.tar".format(download_file_name) url_md5_file = "http://cmprod1.cibio.unitn.it/biobakery3/metaphlan_databases/{}.md5".format(download_file_name) else: url_tar_file = "https://zenodo.org/record/3957592/files/{}.tar?download=1".format(download_file_name) url_md5_file = "https://zenodo.org/record/3957592/files/{}.md5?download=1".format(download_file_name) # download tar and MD5 checksum download(url_tar_file, tar_file) download(url_md5_file, md5_file) md5_md5 = None md5_tar = None if os.path.isfile(md5_file): with open(md5_file) as f: for row in f: md5_md5 = row.strip().split(' ')[0] else: sys.stderr.write('File "{}" not found!\n'.format(md5_file)) # compute MD5 of .tar.bz2 if os.path.isfile(tar_file): hash_md5 = hashlib.md5() with open(tar_file, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) md5_tar = hash_md5.hexdigest()[:32] else: sys.stderr.write('File "{}" not found!\n'.format(tar_file)) if (md5_tar is None) or (md5_md5 is None): sys.exit("MD5 checksums not found, something went wrong!") # compare checksums if md5_tar != md5_md5: sys.exit("MD5 checksums do not correspond! If this happens again, you should remove the database files and " "rerun MetaPhlAn so they are re-downloaded") # untar try: tarfile_handle = tarfile.open(tar_file) tarfile_handle.extractall(path=folder) tarfile_handle.close() except EnvironmentError: sys.stderr.write("Warning: Unable to extract {}.\n".format(tar_file)) # uncompress sequences bz2_file = os.path.join(folder, download_file_name + ".fna.bz2") fna_file = os.path.join(folder, download_file_name + ".fna") if not os.path.isfile(fna_file): sys.stderr.write('\n\nDecompressing {} into {}\n'.format(bz2_file, fna_file)) with open(fna_file, 'wb') as fna_h, \ bz2.BZ2File(bz2_file, 'rb') as bz2_h: for data in iter(lambda: bz2_h.read(100 * 1024), b''): fna_h.write(data) # build bowtie2 indexes if not glob(os.path.join(folder, download_file_name + "*.bt2")): bt2_base = os.path.join(folder, download_file_name) bt2_cmd = [bowtie2_build, '--quiet'] if nproc > 1: bt2_build_output = subp.check_output([bowtie2_build, '--usage'], stderr=subp.STDOUT) if 'threads' in str(bt2_build_output): bt2_cmd += ['--threads', str(nproc)] bt2_cmd += ['-f', fna_file, bt2_base] sys.stderr.write('\nBuilding Bowtie2 indexes\n') try: subp.check_call(bt2_cmd) except Exception as e: sys.stderr.write("Fatal error running '{}'\nError message: '{}'\n\n".format(' '.join(bt2_cmd), e)) sys.exit(1) try: for bt2 in glob(os.path.join(folder, download_file_name + "*.bt2")): os.chmod(bt2, stat.S_IRUSR | stat.S_IWUSR | stat.S_IRGRP | stat.S_IWGRP | stat.S_IROTH) # change permissions to 664 except PermissionError as e: sys.stderr.write('Cannot change permission for {}. Make sure the files are readable.'.format(os.path.join(folder, download_file_name + "*.bt2"))) sys.stderr.write('Removing uncompress database {}\n'.format(fna_file)) os.remove(fna_file) def download_unpack_zip(url,download_file_name,folder,software_name): """ Download the url to the file and decompress into the folder """ # Check for write permission to the target folder if not os.access(folder, os.W_OK): print("WARNING: The directory is not writeable: "+ folder + " . Please modify the permissions.") download_file=os.path.join(folder, download_file_name) download(url, download_file, True) error_during_extract=False try: zipfile_handle=zipfile.ZipFile(download_file) zipfile_handle.extractall(path=folder) zipfile_handle.close() except EnvironmentError: print("WARNING: Unable to extract "+software_name+".") error_during_extract=True if not error_during_extract: try: os.unlink(download_file) except EnvironmentError: print("WARNING: Unable to remove the temp download: " + download_file) def resolve_latest_database(bowtie2_db,mpa_latest_url, force=False): if os.path.exists(os.path.join(bowtie2_db,'mpa_latest')): ctime_latest_db = int(os.path.getctime(os.path.join(bowtie2_db,'mpa_latest'))) if int(time.time()) - ctime_latest_db > 31536000: #1 year in epoch os.rename(os.path.join(bowtie2_db,'mpa_latest'),os.path.join(bowtie2_db,'mpa_previous')) download(mpa_latest_url, os.path.join(bowtie2_db,'mpa_latest'), force=True) if not os.path.exists(os.path.join(bowtie2_db,'mpa_latest') or force): download(mpa_latest_url, os.path.join(bowtie2_db,'mpa_latest')) with open(os.path.join(bowtie2_db,'mpa_latest')) as mpa_latest: latest_db_version = [line.strip() for line in mpa_latest if not line.startswith('#')] return ''.join(latest_db_version) def check_and_install_database(index, bowtie2_db, bowtie2_build, nproc, force_redownload_latest): # Create the folder if it does not already exist if not os.path.isdir(bowtie2_db): try: os.makedirs(bowtie2_db) except EnvironmentError: sys.exit("ERROR: Unable to create folder for database install: " + bowtie2_db) if index != 'latest' and len(glob(os.path.join(bowtie2_db, "*{}*".format(index)))) >= 6: return index use_zenodo = False try: if urllib.request.urlopen("http://cmprod1.cibio.unitn.it/biobakery3/metaphlan_databases/mpa_latest").getcode() != 200: use_zenodo = True except: print('WARNING: It seems that you do not have Internet access.') if os.path.exists(os.path.join(bowtie2_db,'mpa_latest')): print('WARNING: Cannot connect to the database server. The latest available local database will be used.') with open(os.path.join(bowtie2_db,'mpa_latest')) as mpa_latest: latest_db_version = [line.strip() for line in mpa_latest if not line.startswith('#')] else: print("""ERROR: Cannot find a local database. Please run MetaPhlAn using option "-x <database_name>". You can download the MetaPhlAn database from \n {} \n {} \n {} """.format('http://cmprod1.cibio.unitn.it/biobakery3/metaphlan_databases',ZENODO_DATABASE_DOWNLOAD, DROPBOX_DATABASE_DOWNLOAD)) sys.exit() #try downloading from the segatalab website. If fails, use zenodo if index == 'latest': if not use_zenodo: mpa_latest = 'http://cmprod1.cibio.unitn.it/biobakery3/metaphlan_databases/mpa_latest' else: mpa_latest = 'https://zenodo.org/record/3957592/files/mpa_latest?download=1' index = resolve_latest_database(bowtie2_db, mpa_latest, force_redownload_latest) if os.path.exists(os.path.join(bowtie2_db,'mpa_previous')): with open(os.path.join(bowtie2_db,'mpa_previous')) as mpa_previous: previous_db_version = ''.join([line.strip() for line in mpa_previous if not line.startswith('#')]) if index != previous_db_version: choice = '' while choice.upper() not in ['Y','N']: choice = input('A newer version of the database ({}) is available. Do you want to download it and replace the current one ({})?\t[Y/N]'.format(index, previous_db_version)) if choice.upper() == 'N': os.rename(os.path.join(bowtie2_db,'mpa_previous'),os.path.join(bowtie2_db,'mpa_latest')) index = previous_db_version if len(glob(os.path.join(bowtie2_db, "*{}*".format(index)))) >= 7: return index # download the tar archive and decompress sys.stderr.write("\nDownloading MetaPhlAn database\nPlease note due to " "the size this might take a few minutes\n") download_unpack_tar(index, bowtie2_db, bowtie2_build, nproc, use_zenodo) sys.stderr.write("\nDownload complete\n") return index
451800
sleep(1)#file : InMoov2.<NAME> import random keyboard = Runtime.createAndStart("keyboard", "Keyboard") keyboard.addListener("keyCommand", python.getName(), "input") leftPort = "COM3" rightPort = "COM7" i01 = Runtime.createAndStart("i01", "InMoov") cleverbot = Runtime.createAndStart("cleverbot","CleverBot") # starts everything i01.startAll(leftPort, rightPort) torso = i01.startTorso("COM3") left = Runtime.getService("i01.left") right = Runtime.getService("i01.right") ############################################################################################# # Markus Mod i01.leftArm.omoplate.map(10,80,80,20) i01.rightArm.omoplate.map(10,80,80,10) i01.leftArm.shoulder.map(0,180,170,15) i01.rightArm.shoulder.map(0,180,190,50) i01.leftArm.rotate.map(40,180,140,20) i01.rightArm.rotate.map(40,180,140,20) i01.leftArm.bicep.map(5,90,90,20) i01.rightArm.bicep.map(5,90,90,20) i01.head.rothead.map(30,150,150,30) i01.torso.topStom.map(60,120,70,110) i01.head.eyeX.map(60,100,90,50) i01.head.eyeY.map(50,100,100,50) i01.head.neck.map(20,160,160,20) ############################################################ #to tweak the default Pid values i01.headTracking.xpid.setPID(10.0,5.0,0.1) i01.headTracking.ypid.setPID(10.0,5.0,0.1) i01.eyesTracking.xpid.setPID(15.0,5.0,0.1) i01.eyesTracking.ypid.setPID(15.0,5.0,0.1) ############################################################ Pin27 = 27 right.digitalReadPollingStart(Pin27) # make friendly sample rate right.setSampleRate(3000) right.addListener("publishPin", "python", "publishPin") def publishPin(pin): # print pin.pin, pin.value, pin.type, pin.source, if (pin.pin == 27 and pin.value == 1): if pin12 == 0: i01.mouth.speak("hello") global pin12 pin12 = 1 i01.head.attach() sleep(1) ear.clearLock() headfront() sleep(2) trackHumans() # if (pin.pin == 12 and pin.value == 0): # if pin12 == 1: # global resttimer # resttimer += 1 # if resttimer == 400: # global resttimer # resttimer = 0 # gotosleepnow() ############################################################################################# time = 0 pin12 = 1 #resttimer = 0 rest = 0 blind = 1 kinect = 0 dance1 = 1 dance2 = 1 helvar = 1 mic = 1 nexagroup = 1 nexa1 = 0 nexa2 = 0 nexa3 = 0 nexa4 = 0 nexa5 = 0 nexa6 = 0 nexa7 = 0 nexa8 = 0 nexa9 = 0 nexa10 = 0 nexa11 = 0 nexa12 = 0 nexa13 = 0 nexa14 = 0 nexa15 = 0 nexa16 = 0 l1="m" l2="a" l3="r" l4="k" l5="u" l6="s" name = l1+l2+l3+l4+l5+l6 # play rock paper scissors robyn = 0 human = 0 i01.systemCheck() ear = i01.ear ################################################################## # Hastighet vid start i01.setHandSpeed("left", 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) i01.setHandSpeed("right", 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) i01.setArmSpeed("left", 1.0, 1.0, 1.0, 1.0) i01.setArmSpeed("right", 1.0, 1.0, 1.0, 1.0) i01.setHeadSpeed(0.8, 0.8) i01.mouth.speak("working on full speed") ################################################################## # commands with i01.getName() use the InMoov service methods ear.addCommand("attach head", "i01.head", "attach") ear.addCommand("disconnect head", "i01.head", "detach") ear.addCommand("attach eyes", "i01.head.eyeY", "attach") ear.addCommand("disconnect eyes", "i01.head.eyeY", "detach") ear.addCommand("attach right hand", "i01.rightHand", "attach") ear.addCommand("disconnect right hand", "i01.rightHand", "detach") ear.addCommand("attach left hand", "i01.leftHand", "attach") ear.addCommand("disconnect left hand", "i01.leftHand", "detach") ear.addCommand("attach everything", "i01", "attach") ear.addCommand("disconnect everything", "i01", "detach") ear.addCommand("attach left arm", "i01.leftArm", "attach") ear.addCommand("disconnect left arm", "i01.leftArm", "detach") ear.addCommand("attach right arm", "i01.rightArm", "attach") ear.addCommand("disconnect right arm", "i01.rightArm", "detach") ear.addCommand("let's do some exercise", "python", "startkinect") ear.addCommand("you can stop now", "python", "offkinect") ear.addCommand("open hand", "python", "handopen") ear.addCommand("close hand", "python", "handclose") ear.addCommand("servo", "python", "servos") ear.addCommand("power down", i01.getName(), "powerDown") ear.addCommand("power up", i01.getName(), "powerUp") ear.addCommand("camera on", i01.getName(), "cameraOn") ear.addCommand("off camera", i01.getName(), "cameraOff") ear.addCommand("capture gesture", i01.getName(), "captureGesture") # FIXME - lk tracking setpoint ear.addCommand("track", i01.getName(), "track") ear.addCommand("freeze track", i01.getName(), "clearTrackingPoints") ear.addCommand("giving", i01.getName(), "giving") ear.addCommand("be a fighter", i01.getName(), "fighter") ear.addCommand("victory", i01.getName(), "victory") ear.addCommand("arms up", i01.getName(), "armsUp") ear.addCommand("arms front", i01.getName(), "armsFront") ear.addCommand("da vinci", i01.getName(), "daVinci") ear.addCommand("manual", ear.getName(), "lockOutAllGrammarExcept", "voice control") ear.addCommand("voice control", ear.getName(), "clearLock") ear.addCommand("stop listening", ear.getName(), "stopListening") ##sets the servos back to full speed, anywhere in sequence or gestures ear.addCommand("full speed", "python", "fullspeed") ear.addCommand("search humans", "python", "trackHumans") ear.addCommand("go blind", "python", "stopTracking") ear.addCommand("relax", "python", "relax") ear.addCommand("perfect", "python", "perfect") ear.addCommand("finger", "python", "finger") ear.addCommand("how many fingers do you have", "python", "howmanyfingersdoihave") # play rock paper scissors ear.addCommand("let's play rock paper scissors", "python", "rockpaperscissors") ear.addCommand("arms down", "python", "armsdown") ear.addCommand("torso", "python", "Torso") ear.addCommand("move eye", "python", "moveeye") ear.addCommand("move your mouth", "python", "movemouth") ear.addCommand("disco time", "python", "discotime") ear.addCommand("move your head", "python", "movehead") ear.addCommand("sing little teapot", "python", "littleteapot") ear.addComfirmations("yes","correct","ya") ear.addNegations("no","wrong","nope","nah") ear.startListening("a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z | turn on number four |turn off number four | turn on number three | turn off number three | turn on number two | turn off number two | turn on number one | turn off number one | let's play again | take a rest | shut down your system | do something | do something else | be quiet | turn off the light in your stomach | red light | green light | blue light | wake up robyn | good night robyn | go to sleep now | yes | no thanks | yes let's play again | i have rock | i have paper | i have scissors | look at the people | take a look around | good morning | very good | look to your right | look to your left |look down |look up |look strait forward |how are you | sorry | robyn | can i have your attention | hello robyn | bye bye | i love you | thanks | thank you | nice | goodbye") # set up a message route from the ear --to--> python method "heard" ear.addListener("recognized", "python", "heard") ########################################################################################## # play rock paper scissors def rockpaperscissors(): fullspeed() i01.mouth.speak("lets play first to 3 points win") sleep(4) rockpaperscissors2() def rockpaperscissors2(): fullspeed() ear.lockOutAllGrammarExcept("i have rock") ear.lockOutAllGrammarExcept("i have paper") ear.lockOutAllGrammarExcept("i have scissors") x = (random.randint(1, 3)) if x == 1: ready() sleep(2) rock() sleep(2) data = msg_i01_ear_recognized.data[0] if (data == "i have rock"): x = (random.randint(1, 3)) if x == 1: i01.mouth.speak("oh no") if x == 2: i01.mouth.speak("that don't work") if x == 3: i01.mouth.speak("no points") sleep(1) if (data == "i have paper"): x = (random.randint(1, 3)) if x == 1: i01.mouth.speak("paper beats rock") if x == 2: i01.mouth.speak("your point") if x == 3: i01.mouth.speak("you got this one") global human human += 1 sleep(1) if (data == "i have scissors"): x = (random.randint(1, 3)) if x == 1: i01.mouth.speak("1 point for me") if x == 2: i01.mouth.speak("going fine") if x == 3: i01.mouth.speak("rock beats scissors") global robyn robyn += 1 sleep(1) if x == 2: ready() sleep(2) paper() sleep(2) data = msg_i01_ear_recognized.data[0] if (data == "i have rock"): x = (random.randint(1, 3)) if x == 1: i01.mouth.speak("1 point") if x == 2: i01.mouth.speak("paper beats rock") if x == 3: i01.mouth.speak("my point") global robyn robyn += 1 sleep(1) if (data == "i have paper"): x = (random.randint(1, 3)) if x == 1: i01.mouth.speak("no points") if x == 2: i01.mouth.speak("ok lets try again") sleep(2) if x == 3: i01.mouth.speak("again") sleep(1) if (data == "i have scissors"): x = (random.randint(1, 3)) if x == 1: i01.mouth.speak("oh no you get 1 point") if x == 2: i01.mouth.speak("this is not good for me") if x == 3: i01.mouth.speak("your point") global human human += 1 sleep(1) if x == 3: ready() sleep(2) scissors() sleep(2) data = msg_i01_ear_recognized.data[0] if (data == "i have rock"): x = (random.randint(1, 3)) if x == 1: i01.mouth.speak("oh no") if x == 2: i01.mouth.speak("rock beats scissors") if x == 3: i01.mouth.speak("i feel generous today") global human human += 1 sleep(1) if (data == "i have paper"): x = (random.randint(1, 3)) if x == 1: i01.mouth.speak("i've got you") if x == 2: i01.mouth.speak("my point") if x == 3: i01.mouth.speak("good") global robyn robyn += 1 sleep(1) if (data == "i have scissors"): x = (random.randint(1, 3)) if x == 1: i01.mouth.speak("no no") if x == 2: i01.mouth.speak("that don't work") if x == 3: i01.mouth.speak("no points") sleep(1) if robyn == 3 or human == 3: stoprockpaperscissors() # if robyn > 4 or human > 4: # i01.mouth.speak("sorry there must have been something wrong with my counting") # sleep(5) # stoprockpaperscissors() rockpaperscissors2() def stoprockpaperscissors(): armsdown() handopen() if robyn < human: i01.mouth.speak("congratulations you won with" + str(human - robyn) + "points") sleep(5) i01.mouth.speak(str(human) + "points to you and" + str(robyn) + "points to me") if robyn > human: i01.mouth.speak("yes yes i won with" + str(robyn - human) + "points") sleep(5) i01.mouth.speak("i've got " + str(robyn) + "points and you got" + str(human) + "points") if robyn == human: i01.mouth.speak("none of us won we both got" + str(robyn) + "points") global robyn robyn = 0 global human human = 0 ear.clearLock() i01.mouth.speak("that was fun") sleep(3) i01.mouth.speak("do you want to play again") sleep(8) data = msg_i01_ear_recognized.data[0] if (data == "yes let's play again"): rockpaperscissors2() if (data == "yes"): rockpaperscissors2() if (data == "no thanks"): i01.mouth.speak("maybe some other time then") else: i01.mouth.speak("ok i'll find something else to do") lookaroundyou() def ready(): i01.mouth.speak("ready") i01.mouth.speak("go") i01.moveHead(90,90,80,90,75) i01.moveArm("left",65,90,75,10) i01.moveArm("right",5,90,30,10) i01.moveHand("left",100,171,180,180,180,90) i01.moveHand("right",2,2,2,2,2,90) def rock(): i01.moveHead(90,90,80,90,75) i01.moveArm("left",70,90,75,10) i01.moveArm("right",5,90,30,10) i01.moveHand("left",180,171,180,180,180,90) i01.moveHand("right",2,2,2,2,2,90) sleep(.3) i01.setHeadSpeed(.8,.8) i01.moveHead(60,107,80,90,75) i01.moveArm("left",49,90,75,10) i01.moveArm("right",5,90,30,10) i01.moveHand("left",180,171,180,180,180,90) i01.moveHand("right",2,2,2,2,2,90) sleep(.3) i01.moveHead(60,107,80,90,75) i01.moveArm("left",70,90,75,10) i01.moveArm("right",5,90,30,10) i01.moveHand("left",180,171,180,180,180,90) i01.moveHand("right",2,2,2,2,2,90) sleep(.3) i01.moveHead(60,107,80,90,75) i01.moveArm("left",49,90,75,10) i01.moveArm("right",5,90,30,10) i01.moveHand("left",180,171,180,180,180,90) i01.moveHand("right",2,2,2,2,2,90) sleep(.3) i01.moveHead(60,107,80,90,75) i01.moveArm("left",70,90,75,10) i01.moveArm("right",5,90,30,10) i01.moveHand("left",180,171,180,180,180,90) i01.moveHand("right",2,2,2,2,2,90) sleep(.3) i01.moveHead(90,90,80,90,75) i01.moveArm("left",49,90,75,10) i01.moveArm("right",5,90,30,10) i01.moveHand("left",180,171,180,180,180,140) i01.moveHand("right",2,2,2,2,2,90) sleep(.3) x = (random.randint(1, 2)) if x == 1: i01.mouth.speakBlocking("i have rock what do you have") if x == 2: i01.mouth.speakBlocking("what do you have") def paper(): i01.moveHead(90,90,80,90,75) i01.moveArm("left",70,90,75,10) i01.moveArm("right",5,90,30,10) i01.moveHand("left",180,171,180,180,180,90) i01.moveHand("right",2,2,2,2,2,90) sleep(.3) i01.setHeadSpeed(.8,.8) i01.moveHead(60,107,80,90,75) i01.moveArm("left",49,90,75,10) i01.moveArm("right",5,90,30,10) i01.moveHand("left",180,171,180,180,180,90) i01.moveHand("right",2,2,2,2,2,90) sleep(.3) i01.moveHead(60,107,80,90,75) i01.moveArm("left",70,90,75,10) i01.moveArm("right",5,90,30,10) i01.moveHand("left",180,171,180,180,180,90) i01.moveHand("right",2,2,2,2,2,90) sleep(.3) i01.moveHead(60,107,80,90,75) i01.moveArm("left",49,90,75,10) i01.moveArm("right",5,90,30,10) i01.moveHand("left",180,171,180,180,180,90) i01.moveHand("right",2,2,2,2,2,90) sleep(.3) i01.moveHead(60,107,80,90,75) i01.moveArm("left",70,90,75,10) i01.moveArm("right",5,90,30,10) i01.moveHand("left",180,171,180,180,180,90) i01.moveHand("right",2,2,2,2,2,90) sleep(.3) i01.moveHead(90,90,80,90,75) i01.moveArm("left",49,90,75,10) i01.moveArm("right",5,90,30,10) i01.moveHand("left",0,0,0,0,0,165) i01.moveHand("right",2,2,2,2,2,90) sleep(.3) x = (random.randint(1, 2)) if x == 1: i01.mouth.speakBlocking("i have paper what do you have") if x == 2: i01.mouth.speakBlocking("what do you have") def scissors(): i01.moveHead(90,90,80,90,75) i01.moveArm("left",70,90,75,10) i01.moveArm("right",5,90,30,10) i01.moveHand("left",180,171,180,180,180,90) i01.moveHand("right",2,2,2,2,2,90) sleep(.3) i01.setHeadSpeed(0.8,0.8) i01.moveHead(60,107,80,90,75) i01.moveArm("left",49,90,75,10) i01.moveArm("right",5,90,30,10) i01.moveHand("left",180,171,180,180,180,90) i01.moveHand("right",2,2,2,2,2,90) sleep(.3) i01.moveHead(60,107,80,90,75) i01.moveArm("left",70,90,75,10) i01.moveArm("right",5,90,30,10) i01.moveHand("left",180,171,180,180,180,90) i01.moveHand("right",2,2,2,2,2,90) sleep(.3) i01.moveHead(60,107,80,90,75) i01.moveArm("left",49,90,75,10) i01.moveArm("right",5,90,30,10) i01.moveHand("left",180,171,180,180,180,90) i01.moveHand("right",2,2,2,2,2,90) sleep(.3) i01.moveHead(60,107,80,90,75) i01.moveArm("left",70,90,75,10) i01.moveArm("right",5,90,30,10) i01.moveHand("left",180,171,180,180,180,90) i01.moveHand("right",2,2,2,2,2,90) sleep(.3) i01.moveHead(90,90,80,90,75) i01.moveArm("left",49,90,75,10) i01.moveArm("right",5,90,30,10) i01.moveHand("left",50,0,0,180,180,90) i01.moveHand("right",2,2,2,2,2,90) sleep(.3) x = (random.randint(1, 2)) if x == 1: i01.mouth.speakBlocking("i have scissors what do you have") if x == 2: i01.mouth.speakBlocking("what do you have") ########################################################################################## def input(cmd): # print 'python object is',msg_[service]_[method] cmd = msg_keyboard_keyCommand.data[0] print 'python data is', cmd if (cmd == "C"): i01.mouth.audioFile.playFile("C:\Users\Markus\Music\markustest.mp3", False) sleep(12.0) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.23) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.17) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.68) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(1.44) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.2) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.22) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.59) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.22) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.27) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.65) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.61) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.68) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(12.91) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.14) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.26) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.59) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(1.46) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.16) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.22) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.61) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.16) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.25) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.69) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.66) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.62) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) if (cmd == "T"): talk() if (cmd == "R"): if rest == 0: shutdownyoursystem() elif rest == 1: robyn() if (cmd == "W"): i01.head.neck.moveTo(i01.head.neck.getPosFloat() + 1) if (cmd == "Z"): i01.head.neck.moveTo(i01.head.neck.getPosFloat() - 1) if (cmd == "A"): i01.head.rothead.moveTo(i01.head.rothead.getPosFloat() + 1) if (cmd == "D"): i01.head.rothead.moveTo(i01.head.rothead.getPosFloat() - 1) if (cmd == "S"): headfront() if (cmd == "K"): if kinect == 0: startkinect() elif kinect == 1: offkinect() if (cmd == "B"): if blind == 1: trackHumans() elif blind == 0: stopTracking() if (cmd == "Q"): i01.rightArm.shoulder.moveTo(i01.rightArm.shoulder.getPosFloat() + 0.5) if (cmd == "P"): discotime() ################################################# if (cmd == "5"): if nexagroup == 1: i01.mouth.speakBlocking("nexa group 2") global nexagroup nexagroup = 2 elif nexagroup == 2: i01.mouth.speakBlocking("nexa group 3") global nexagroup nexagroup = 3 elif nexagroup == 3: i01.mouth.speakBlocking("nexa group 4") global nexagroup nexagroup = 4 elif nexagroup == 4: i01.mouth.speakBlocking("nexa group 1") global nexagroup nexagroup = 1 if (cmd == "1"): if nexagroup == 1: if nexa1 == 0: nexa1on() elif nexa1 == 1: nexa1off() elif nexagroup == 2: if nexa5 == 0: nexa5on() elif nexa5 == 1: nexa5off() elif nexagroup == 3: if nexa9 == 0: nexa9on() elif nexa9 == 1: nexa9off() elif nexagroup == 4: if nexa13 == 0: nexa13on() elif nexa13 == 1: nexa13off() if (cmd == "2"): if nexagroup == 1: if nexa2 == 0: nexa2on() elif nexa2 == 1: nexa2off() elif nexagroup == 2: if nexa6 == 0: nexa6on() elif nexa6 == 1: nexa6off() elif nexagroup == 3: if nexa10 == 0: nexa10on() elif nexa10 == 1: nexa10off() elif nexagroup == 4: if nexa14 == 0: nexa14on() elif nexa14 == 1: nexa14off() if (cmd == "3"): if nexagroup == 1: if nexa3 == 0: nexa3on() elif nexa3 == 1: nexa3off() elif nexagroup == 2: if nexa7 == 0: nexa7on() elif nexa7 == 1: nexa7off() elif nexagroup == 3: if nexa11 == 0: nexa11on() elif nexa11 == 1: nexa11off() elif nexagroup == 4: if nexa15 == 0: nexa15on() elif nexa15 == 1: nexa15off() if (cmd == "4"): if nexagroup == 1: if nexa4 == 0: nexa4on() elif nexa4 == 1: nexa4off() elif nexagroup == 2: if nexa8 == 0: nexa8on() elif nexa8 == 1: nexa8off() elif nexagroup == 3: if nexa12 == 0: nexa12on() elif nexa12 == 1: nexa12off() elif nexagroup == 4: if nexa16 == 0: nexa16on() elif nexa16 == 1: nexa16off() ################################################# if (cmd == "M"): if mic == 1: ear.lockOutAllGrammarExcept("robin") i01.mouth.speak("i'm not listening") global mic mic = 0 elif mic == 0: ear.clearLock() i01.mouth.speak("i can hear again") global mic mic = 1 ########################################################################################## def heard(data): data = msg_i01_ear_recognized.data[0] if (data == name): i01.mouth.speak("this is great") if (data == "a"): i01.mouth.speak(name) if (data == "turn on number one"): nexa1on() if (data == "turn off number one"): nexa1off() if (data == "turn on number two"): nexa2on() if (data == "turn off number two"): nexa2off() if (data == "turn on number three"): nexa3on() if (data == "turn off number three"): nexa3off() if (data == "turn on number four"): nexa4on() if (data == "turn off number four"): nexa4off() if (data == "let's play again"): rockpaperscissors2() if (data == "be quiet"): blue() ear.lockOutAllGrammarExcept("robyn") i01.mouth.speak("ok i will only listen if you say my name") global mic mic = 0 if (data == "turn off the light in your stomach"): ledoff() if (data == "red light"): red() if (data == "green light"): green() if (data == "blue light"): blue() if (data == "shut down your system") or (data == "take a rest"): shutdownyoursystem() if (data == "go to sleep now") or (data == "good night robyn"): gotosleepnow() if (data == "wake up robyn") or (data == "good morning"): i01.attach() green() global rest rest = 0 global mic mic = 1 global pin12 pin12 = 1 headfront() eyesfront() i01.mouth.speak("good morning") ear.clearLock() x = (random.randint(1, 4)) if x == 1: i01.mouth.speak("i hope you had a good night sleep") if x == 2: i01.mouth.speak("nice to see you again") if x == 3: i01.mouth.speak("this is going to be a good day") if (data == "look at the people"): i01.setHeadSpeed(0.8, 0.8) for y in range(0, 10): x = (random.randint(1, 5)) if x == 1: i01.head.neck.moveTo(90) eyeslooking() sleep(1) trackHumans() sleep(10) stopTracking() if x == 2: i01.head.rothead.moveTo(80) eyeslooking() sleep(1) trackHumans() sleep(10) stopTracking() if x == 3: headdown() eyeslooking() sleep(1) trackHumans() sleep(10) stopTracking() if x == 4: headright() eyeslooking() sleep(1) trackHumans() sleep(10) stopTracking() if x == 5: headleft() eyeslooking() sleep(1) trackHumans() sleep(10) stopTracking() sleep(1) headfront() eyesfront() sleep(3) i01.mouth.speak("nice to meet you all") if (data == "take a look around"): lookaroundyou() if (data == "do something else"): lookaroundyou() if (data == "do something"): lookaroundyou() if (data == "very good"): i01.mouth.speak("thanks") if (data == "look to your right"): headright() if (data == "look to your left"): headleft() if (data == "look down"): headdown() if (data == "look up"): headupp() if (data == "look strait forward"): headfront() if (data == "how are you"): i01.mouth.speak("i'm fine thanks") if (data == "goodbye"): goodbye() if (data == "robyn"): robyn() if (data == "sorry"): global helvar helvar = 1 green() x = (random.randint(1, 3)) if x == 1: i01.mouth.speak("no problems") if x == 2: i01.mouth.speak("it doesn't matter") if x == 3: i01.mouth.speak("it's okay") if (data == "nice"): x = (random.randint(1, 3)) if x == 1: i01.mouth.speak("I know") if x == 2: i01.mouth.speak("yes, indeed") if x == 3: i01.mouth.speak("you are damn right") if (data == "bye bye"): i01.mouth.speak("see you soon") global helvar helvar = 1 x = (random.randint(1, 2)) if x == 1: i01.mouth.speak("i'm looking forward to see you again") if x == 2: i01.mouth.speak("goodbye") if (data == "thank you"): x = (random.randint(1, 3)) if x == 1: i01.mouth.speak("you are welcome") if x == 2: i01.mouth.speak("my pleasure") if x == 3: i01.mouth.speak("it's okay") if (data == "thanks"): x = (random.randint(1, 2)) if x == 1: i01.mouth.speak("it's okay") if x == 2: i01.mouth.speak("sure") if (data == "hello robyn"): if helvar <= 2: i01.mouth.speak("hello") global helvar helvar += 1 green() sleep(1) elif helvar == 3: i01.mouth.speak("hello hello you have already said hello at least twice") i01.moveArm("left",43,88,22,10) i01.moveArm("right",20,90,30,10) i01.moveHand("left",0,0,0,0,0,119) i01.moveHand("right",0,0,0,0,0,119) green() sleep(1) red() sleep(1) green() sleep(1) armsdown() global helvar helvar += 1 elif helvar == 4: i01.mouth.speak("what is your problem stop saying hello all the time") i01.moveArm("left",30,83,22,10) i01.moveArm("right",40,85,30,10) i01.moveHand("left",130,180,180,180,180,119) i01.moveHand("right",130,180,180,180,180,119) red() sleep(1) green() sleep(1) red() sleep(1) green() sleep(1) armsdown() global helvar helvar += 1 elif helvar == 5: stopTracking() i01.mouth.speak("i will ignore you if you say hello one more time") headright() red() sleep(3) armsdown() global helvar helvar += 1 if (data == "i love you"): green() i01.mouth.speak("i love you too") i01.moveHead(116,80,87,80,70) i01.moveArm("left",85,93,42,16) i01.moveArm("right",87,93,37,18) i01.moveHand("left",124,82,65,81,41,143) i01.moveHand("right",59,53,89,61,36,21) i01.moveTorso(90,90,90) global helvar helvar = 1 sleep(0.2) sleep(1) armsdown() def stopit(): ear.clearLock() headfront() eyesfront() if (data == "break"): i01.mouth.speak("yes") ############################################################################################# def discotime(): i01.moveHand("left",92,33,37,71,66,25) i01.moveHand("right",81,66,82,60,105,113) nexa1off() ear.lockOutAllGrammarExcept("robyn") i01.mouth.speak("it's disco time") sleep(3) nexa2off() sleep(1) i01.mouth.audioFile.playFile("C:\Users\Markus\Music\Get the Party Started.mp3", False) sleep(1.6) nexa3on() sleep(1) nexa4on() for y in range(0, 67): data = msg_i01_ear_recognized.data[0] if (data == "robyn"): stopit() discodance1() discodance2() i01.head.neck.moveTo(40) red() sleep(0.4) i01.head.neck.moveTo(90) sleep(0.52) discodance1() discodance2() i01.head.neck.moveTo(40) green() sleep(0.4) i01.head.neck.moveTo(90) sleep(0.515) discodance1() discodance2() i01.head.neck.moveTo(40) blue() sleep(0.4) i01.head.neck.moveTo(90) sleep(0.5) ear.clearLock() nexa1on() sleep(0.5) nexa2on() sleep(0.5) nexa3off() sleep(0.5) nexa4off() global dance2 dance2 = 1 robyn() armsdown() i01.mouth.speak("is the party already over") def discodance1(): if dance1 == 1: i01.moveTorso(100,90,90) global dance1 dance1 = 2 elif dance1 == 2: i01.moveTorso(80,90,90) global dance1 dance1 = 1 def discodance2(): if dance2 >= 0 and dance2 <= 9 or dance2 >= 17 and dance2 <= 26 or dance2 >= 42 and dance2 <= 52 : if dance1 == 2: i01.moveArm("left",60,90,30,10) i01.moveArm("right",60,90,30,10) elif dance1 == 1: i01.moveArm("left",30,90,30,10) i01.moveArm("right",30,90,30,10) global dance2 dance2 += 1 if dance2 >= 9 and dance2 <= 17 : if dance1 == 2: i01.moveArm("left",60,60,30,10) i01.moveArm("right",60,120,30,10) elif dance1 == 1: i01.moveArm("left",30,60,30,10) i01.moveArm("right",30,120,30,10) global dance2 dance2 += 1 if dance2 >= 26 and dance2 <= 34 : if dance1 == 2: i01.moveArm("left",60,120,30,10) i01.moveArm("right",60,60,30,10) elif dance1 == 1: i01.moveArm("left",30,120,30,10) i01.moveArm("right",30,60,30,10) global dance2 dance2 += 1 if dance2 >= 34 and dance2 <= 42 or dance2 >= 60 and dance2 <= 68 : if dance1 == 2: i01.moveArm("left",25,94,79,10) i01.moveArm("right",90,107,43,15) elif dance1 == 1: i01.moveArm("left",65,94,73,10) i01.moveArm("right",37,107,72,15) global dance2 dance2 += 1 if dance2 >= 52 and dance2 <= 60 or dance2 >= 68 and dance2 <= 76 or dance2 >= 84 and dance2 <= 92 : if dance1 == 2: i01.moveArm("left",5,90,30,10) i01.moveArm("right",5,130,30,30) elif dance1 == 1: i01.moveArm("left",5,130,30,30) i01.moveArm("right",5,90,30,10) global dance2 dance2 += 1 if dance2 >= 76 and dance2 <= 84 or dance2 >= 92 and dance2 <= 102 : if dance1 == 2: i01.moveArm("left",90,90,30,19) i01.moveArm("right",87,104,30,10) elif dance1 == 1: i01.moveArm("left",90,136,30,10) i01.moveArm("right",87,69,30,25) global dance2 dance2 += 1 if dance2 >= 102 and dance2 <= 111 or dance2 >= 119 and dance2 <= 128 or dance2 >= 146 and dance2 <= 154 : if dance1 == 2: i01.moveArm("left",30,90,30,10) i01.moveArm("right",60,90,30,10) elif dance1 == 1: i01.moveArm("left",60,90,30,10) i01.moveArm("right",30,90,30,10) global dance2 dance2 += 1 if dance2 >= 111 and dance2 <= 119 : if dance1 == 2: i01.moveArm("left",30,60,30,10) i01.moveArm("right",60,120,30,10) elif dance1 == 1: i01.moveArm("left",60,60,30,10) i01.moveArm("right",30,120,30,10) global dance2 dance2 += 1 if dance2 >= 128 and dance2 <= 138 : if dance1 == 2: i01.moveArm("left",30,120,30,10) i01.moveArm("right",60,60,30,10) elif dance1 == 1: i01.moveArm("left",60,120,30,10) i01.moveArm("right",30,60,30,10) global dance2 dance2 += 1 if dance2 >= 138 and dance2 <= 146 or dance2 >= 164 and dance2 <= 172 : if dance1 == 2: i01.moveArm("left",25,94,79,10) i01.moveArm("right",90,107,43,15) elif dance1 == 1: i01.moveArm("left",65,94,73,10) i01.moveArm("right",37,107,72,15) global dance2 dance2 += 1 if dance2 >= 154 and dance2 <= 164 or dance2 >= 172 and dance2 <= 180 or dance2 >= 188 and dance2 <= 196 : if dance1 == 2: i01.moveArm("left",5,90,30,10) i01.moveArm("right",60,130,30,30) elif dance1 == 1: i01.moveArm("left",60,130,30,30) i01.moveArm("right",5,90,30,10) global dance2 dance2 += 1 if dance2 >= 180 and dance2 <= 188 or dance2 >= 196 and dance2 <= 212 : if dance1 == 2: i01.moveArm("left",90,90,30,19) i01.moveArm("right",87,104,30,10) elif dance1 == 1: i01.moveArm("left",90,136,30,10) i01.moveArm("right",87,69,30,25) global dance2 dance2 += 1 ############################################################################################# def howmanyfingersdoihave(): blue() fullspeed() i01.moveHead(49,74) i01.moveArm("left",75,83,79,24) i01.moveArm("right",65,82,71,24) i01.moveHand("left",74,140,150,157,168,92) i01.moveHand("right",89,80,98,120,114,0) sleep(2) i01.moveHand("right",0,80,98,120,114,0) i01.mouth.speakBlocking("ten") sleep(1) i01.moveHand("right",0,0,98,120,114,0) i01.mouth.speakBlocking("nine") sleep(1) i01.moveHand("right",0,0,0,120,114,0) i01.mouth.speakBlocking("eight") sleep(1) i01.moveHand("right",0,0,0,0,114,0) i01.mouth.speakBlocking("seven") sleep(1) i01.moveHand("right",0,0,0,0,0,0) i01.mouth.speakBlocking("six") sleep(1) i01.setHeadSpeed(.70,.70) i01.moveHead(40,105) i01.moveArm("left",75,83,79,24) i01.moveArm("right",65,82,71,24) i01.moveHand("left",0,0,0,0,0,180) i01.moveHand("right",0,0,0,0,0,0) sleep(1) i01.mouth.speakBlocking("and five makes eleven") sleep(0.7) i01.setHeadSpeed(0.7,0.7) i01.moveHead(40,50) sleep(0.5) i01.setHeadSpeed(0.7,0.7) i01.moveHead(49,105) sleep(0.7) i01.setHeadSpeed(0.7,0.8) i01.moveHead(40,50) sleep(0.7) i01.setHeadSpeed(0.7,0.8) i01.moveHead(49,105) sleep(0.7) i01.setHeadSpeed(0.7,0.7) i01.moveHead(90,85) sleep(0.7) i01.mouth.speakBlocking("eleven") i01.moveArm("left",70,75,70,20) i01.moveArm("right",60,75,65,20) sleep(1) i01.mouth.speakBlocking("that doesn't seem right") sleep(2) i01.mouth.speakBlocking("I think I better try that again") i01.moveHead(40,105) i01.moveArm("left",75,83,79,24) i01.moveArm("right",65,82,71,24) i01.moveHand("left",140,168,168,168,158,90) i01.moveHand("right",87,138,160,168,158,25) sleep(2) i01.moveHand("left",10,140,168,168,158,90) i01.mouth.speakBlocking("one") sleep(.1) i01.moveHand("left",10,10,168,168,158,90) i01.mouth.speakBlocking("two") sleep(.1) i01.moveHand("left",10,10,10,168,158,90) i01.mouth.speakBlocking("three") sleep(.1) i01.moveHand("left",10,10,10,10,158,90) i01.mouth.speakBlocking("four") sleep(.1) i01.moveHand("left",10,10,10,10,10,90) i01.mouth.speakBlocking("five") sleep(.1) i01.setHeadSpeed(0.65,0.65) i01.moveHead(53,65) i01.moveArm("right",48,80,78,11) i01.setHandSpeed("left", 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) i01.setHandSpeed("right", 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) i01.moveHand("left",10,10,10,10,10,90) i01.moveHand("right",10,0,10,10,0,25) sleep(1) i01.mouth.speakBlocking("and five makes ten") sleep(.5) i01.mouth.speakBlocking("there that's better") i01.moveHead(95,85) i01.moveArm("left",75,83,79,24) i01.moveArm("right",40,70,70,10) sleep(0.5) i01.mouth.speakBlocking("inmoov has ten fingers") i01.moveHead(90,90) i01.setHandSpeed("left", 0.8, 0.8, 0.8, 0.8, 0.8, 0.8) i01.setHandSpeed("right", 0.8, 0.8, 0.8, 0.8, 0.8, 0.8) i01.moveHand("left",140,140,140,140,140,60) i01.moveHand("right",140,140,140,140,140,60) sleep(1.0) i01.setArmSpeed("right", 1.0, 1.0, 1.0, 1.0) i01.setArmSpeed("left", 1.0, 1.0, 1.0, 1.0) i01.moveArm("left",5,90,30,11) i01.moveArm("right",5,90,30,11) armsdown() sleep(1) green() def finger(): i01.setHandSpeed("left", 0.85, 0.85, 0.85, 0.85, 0.85, 1.0) i01.setHandSpeed("right", 1.0, 0.85, 1.0, 1.0, 1.0, 1.0) i01.setArmSpeed("left", 1.0, 1.0, 1.0, 1.0) i01.setArmSpeed("right", 0.90, 1.0, 1.0, 1.0) i01.setHeadSpeed(1.0, 0.90) i01.setTorsoSpeed(1.0, 1.0, 1.0) i01.moveHead(80,86,85,85,72) i01.moveArm("left",5,94,30,10) i01.moveArm("right",7,78,92,10) i01.moveHand("left",180,180,180,180,180,90) i01.moveHand("right",180,2,175,160,165,180) i01.moveTorso(90,90,90) fullspeed() def fullspeed(): i01.setHandSpeed("left", 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) i01.setHandSpeed("right", 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) i01.setArmSpeed("left", 1.0, 1.0, 1.0, 1.0) i01.setArmSpeed("right", 1.0, 1.0, 1.0, 1.0) i01.setHeadSpeed(0.7, 0.7) def trackHumans(): i01.headTracking.faceDetect() i01.eyesTracking.faceDetect() global blind blind = 0 def stopTracking(): i01.headTracking.stopTracking() i01.eyesTracking.stopTracking() global blind blind = 1 def startkinect(): ear.lockOutAllGrammarExcept("you can stop now") global kinect kinect = 1 i01.leftArm.shoulder.map(0,180,250,0) i01.rightArm.shoulder.map(0,180,290,40) i01.leftArm.omoplate.map(10,80,80,30) i01.rightArm.omoplate.map(10,80,100,40) i01.copyGesture(True) def offkinect(): i01.copyGesture(False) global kinect kinect = 0 i01.leftArm.shoulder.map(0,180,170,15) i01.rightArm.shoulder.map(0,180,190,50) i01.leftArm.omoplate.map(10,80,80,20) i01.rightArm.omoplate.map(10,80,80,20) ear.clearLock() armsdown() def handopen(): i01.moveHand("left",0,0,0,0,0) i01.moveHand("right",0,0,0,0,0) def lefthandopen(): i01.moveHand("left",0,0,0,0,0) def righthandopen(): i01.moveHand("right",0,0,0,0,0) def handclose(): i01.moveHand("left",180,180,180,180,180) i01.moveHand("right",180,180,180,180,180) def lefthandclose(): i01.moveHand("left",180,180,180,180,180) def righthandclose(): i01.moveHand("right",180,180,180,180,180) def servos(): ear.pauseListening() sleep(2) i01.setHandSpeed("left", 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) i01.setHandSpeed("right", 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) i01.setArmSpeed("right", 0.85, 0.85, 0.85, 0.85) i01.setArmSpeed("left", 1.0, 1.0, 1.0, 1.0) i01.setHeadSpeed(0.65, 0.65) i01.moveHead(79,100) i01.moveArm("left",5,119,28,15) i01.moveArm("right",5,111,28,15) i01.moveHand("left",42,58,87,55,71,35) i01.moveHand("right",81,20,82,60,105,113) i01.mouth.speakBlocking("I currently have 27 hobby servos installed in my body to give me life") i01.setHandSpeed("left", 0.85, 0.85, 0.85, 0.85, 0.85, 0.85) i01.setHandSpeed("right", 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) i01.setArmSpeed("right", 0.85, 0.85, 0.85, 0.85) i01.setArmSpeed("left", 1.0, 1.0, 1.0, 1.0) i01.setHeadSpeed(0.65, 0.65) i01.moveHead(124,90) i01.moveArm("left",89,94,91,35) i01.moveArm("right",20,67,31,22) i01.moveHand("left",106,0,161,147,138,90) i01.moveHand("right",0,0,0,54,91,90) i01.mouth.speakBlocking("there's one servo for moving my mouth up and down") sleep(1) i01.setHandSpeed("left", 0.85, 0.85, 1.0, 0.85, 0.85, 0.85) i01.setHandSpeed("right", 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) i01.setArmSpeed("right", 0.85, 0.85, 0.85, 0.85) i01.setArmSpeed("left", 1.0, 1.0, 1.0, 1.0) i01.setHeadSpeed(0.65, 0.65) i01.moveHead(105,76); i01.moveArm("left",89,106,103,35); i01.moveArm("right",35,67,31,22); i01.moveHand("left",106,0,0,147,138,7); i01.moveHand("right",0,0,0,54,91,90); i01.mouth.speakBlocking("two for my eyes") sleep(0.2) i01.setHandSpeed("left", 0.85, 0.85, 1.0, 1.0, 1.0, 0.85) i01.moveHand("left",106,0,0,0,0,7); i01.mouth.speakBlocking("and two more for my head") sleep(0.5) i01.setHandSpeed("left", 0.85, 0.9, 0.9, 0.9, 0.9, 0.85) i01.setHandSpeed("right", 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) i01.setArmSpeed("right", 0.85, 0.85, 0.85, 0.85) i01.setArmSpeed("left", 1.0, 1.0, 1.0, 1.0) i01.setHeadSpeed(0.65, 0.65) i01.moveHead(90,40); i01.moveArm("left",89,106,103,35); i01.moveArm("right",35,67,31,20); i01.moveHand("left",106,140,140,140,140,7); i01.moveHand("right",0,0,0,54,91,90); i01.mouth.speakBlocking("so i can look around") sleep(0.5) i01.setHeadSpeed(0.65, 0.65) i01.moveHead(105,125); i01.setArmSpeed("left", 0.9, 0.9, 0.9, 0.9) i01.moveArm("left",60,100,85,30); i01.mouth.speakBlocking("and see who's there") i01.setHeadSpeed(0.65, 0.65) i01.moveHead(40,56); sleep(0.5) i01.setArmSpeed("right", 1.0, 1.0, 1.0, 1.0) i01.setArmSpeed("left", 1.0, 1.0, 1.0, 1.0) i01.setArmSpeed("left", 1.0, 1.0, 1.0, 1.0); i01.setArmSpeed("right", 0.5, 0.6, 0.5, 0.6); i01.moveArm("left",87,41,64,11) i01.moveArm("right",5,95,40,11) i01.moveHand("left",98,150,160,160,160,104) i01.moveHand("right",0,0,50,54,91,90); i01.mouth.speakBlocking("there's three servos in each shoulder") i01.moveHead(40,67); sleep(2) i01.setHandSpeed("left", 0.8, 0.9, 0.8, 0.8, 0.8, 0.8) i01.setHandSpeed("right", 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) i01.setArmSpeed("right", 0.85, 0.85, 0.85, 0.85) i01.setArmSpeed("left", 1.0, 1.0, 1.0, 1.0) i01.setHeadSpeed(0.8, 0.8) i01.moveHead(43,69) i01.moveArm("left",87,41,64,11) i01.moveArm("right",5,95,40,42) i01.moveHand("left",42,0,100,80,113,35) i01.moveHand("left",42,10,160,160,160,35) i01.moveHand("right",81,20,82,60,105,113) i01.mouth.speakBlocking("here is the first servo movement") sleep(1) i01.moveHead(37,60); i01.setHandSpeed("left", 1.0, 1.0, 0.9, 0.9, 1.0, 0.8) i01.setArmSpeed("right", 1.0, 1.0, 1.0, 1.0) i01.moveArm("right",5,95,67,42) i01.moveHand("left",42,10,10,160,160,30) i01.mouth.speakBlocking("this is the second one") sleep(1) i01.moveHead(43,69); i01.setArmSpeed("right", 1.0, 1.0, 1.0, 1.0) i01.moveArm("right",5,134,67,42) i01.moveHand("left",42,10,10,10,160,35) i01.mouth.speakBlocking("now you see the third") sleep(1) i01.setArmSpeed("right", 0.8, 0.8, 0.8, 0.8) i01.moveArm("right",20,90,45,16) i01.mouth.speakBlocking("they give me a more human like movement") sleep(1) i01.setHandSpeed("left", 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) i01.setArmSpeed("right", 1.0, 1.0, 1.0, 1.0); i01.moveHead(43,72) i01.moveArm("left",90,44,66,11) i01.moveArm("right",90,100,67,26) i01.moveHand("left",42,80,100,80,113,35) i01.moveHand("right",81,0,82,60,105,69) i01.mouth.speakBlocking("but, i have only one servo, to move each elbow") i01.setHandSpeed("left", 0.85, 0.85, 0.85, 0.85, 0.85, 0.85) i01.setHandSpeed("right", 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) i01.setArmSpeed("right", 0.85, 0.85, 0.85, 0.85) i01.setArmSpeed("left", 1.0, 1.0, 1.0, 1.0) i01.setHeadSpeed(0.8, 0.8) i01.moveHead(45,62) i01.moveArm("left",72,44,90,11) i01.moveArm("right",90,95,68,15) i01.moveHand("left",42,0,100,80,113,35) i01.moveHand("right",81,0,82,60,105,0) i01.mouth.speakBlocking("that, leaves me, with one servo per wrist") i01.moveHead(40,60) i01.setHandSpeed("left", 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) i01.setHandSpeed("right", 0.9, 0.9, 0.9, 0.9, 0.9, 0.9) i01.moveArm("left",72,44,90,9) i01.moveArm("right",90,95,68,15) i01.moveHand("left",42,0,100,80,113,35) i01.moveHand("right", 10, 140,82,60,105,10) i01.mouth.speakBlocking("and one servo for each finger.") sleep(0.5) i01.moveHand("left",42,0,100,80,113,35) i01.moveHand("right", 50, 51, 15,23, 30,140); i01.mouth.speakBlocking("these servos are located in my forearms") i01.setHandSpeed("left", 0.8, 0.8, 0.8, 0.8,0.8, 0.8) i01.setHandSpeed("right", 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) i01.moveHand("left", 36, 52, 8,22, 20); i01.moveHand("right", 120, 147, 130,110, 125); i01.setHandSpeed("left", 0.85, 0.85, 0.85, 0.85, 0.85, 0.85) i01.setHandSpeed("right", 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) i01.setArmSpeed("right", 0.75, 0.85, 0.95, 0.85) i01.setArmSpeed("left", 0.95, 0.65, 0.75, 0.75) i01.setHeadSpeed(0.75, 0.75) i01.moveHead(20,100) i01.moveArm("left",71,94,41,31) i01.moveArm("right",5,82,28,15) i01.moveHand("left",60,43,45,34,34,35) i01.moveHand("right",20,40,40,30,30,72) sleep(1) i01.mouth.speakBlocking("they are hooked up, by the use of tendons") i01.moveHand("left",10,20,30,40,60,150); i01.moveHand("right",110,137,120,100,105,130); i01.setHeadSpeed(1,1) i01.setArmSpeed("right", 1.0,1.0, 1.0, 1.0); i01.setArmSpeed("left", 1.0, 1.0, 1.0, 1.0); sleep(2) i01.mouth.speak("i also have 2 servos in my waist so i can move sideways") Torso() relax() sleep(2) armsdown() ear.resumeListening() def relax(): i01.setHandSpeed("left", 0.85, 0.85, 0.85, 0.85, 0.85, 0.85) i01.setHandSpeed("right", 0.85, 0.85, 0.85, 0.85, 0.85, 0.85) i01.setArmSpeed("right", 0.75, 0.85, 0.65, 0.85) i01.setArmSpeed("left", 0.95, 0.65, 0.75, 0.75) i01.setHeadSpeed(0.85, 0.85, 1.0, 1.0, 1.0) i01.setTorsoSpeed(0.75, 0.55, 1.0) i01.moveHead(79,100,90,90,70) i01.moveArm("left",5,84,28,15) i01.moveArm("right",5,82,28,15) i01.moveHand("left",92,33,37,71,66,25) i01.moveHand("right",81,66,82,60,105,113) i01.moveTorso(90,90,90) def perfect(): i01.setHandSpeed("left", 0.80, 0.80, 1.0, 1.0, 1.0, 1.0) i01.setHandSpeed("right", 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) i01.setArmSpeed("left", 0.85, 0.85, 0.85, 0.95) i01.setArmSpeed("right", 1.0, 1.0, 1.0, 1.0) i01.setHeadSpeed(0.65, 0.75) i01.moveHead(88,79) i01.moveArm("left",89,75,93,11) i01.moveArm("right",0,91,28,17) i01.moveHand("left",130,160,83,40,0,34) i01.moveHand("right",86,51,133,162,153,180) ############################################################################################# def littleteapot(): i01.mouth.speak("i would like to sing a song for <NAME>") sleep(3) i01.mouth.audioFile.playFile("C:\Users\Markus\Music\little teapot.mp3", False) sleep(4.11) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.28) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.28) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.25) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.26) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.19) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.27) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.42) i01.moveArm("right",90,40,30,46) righthandclose() sleep(0.25) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.24) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.24) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.22) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.28) i01.moveArm("left",90,150,30,65) sleep(0.18) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.17) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.21) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.6) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.17) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.21) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.25) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.23) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.2) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.24) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.4) i01.moveTorso(117,90,90) sleep(0.21) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.67) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.24) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.45) i01.moveTorso(86,90,90) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.19) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.25) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.33) i01.moveArm("left",5,90,30,10) i01.moveArm("right",5,90,30,10) righthandopen() sleep(0.31) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.26) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.19) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.29) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.22) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.21) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.27) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.41) i01.moveArm("right",90,40,30,46) righthandclose() sleep(0.21) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.23) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.27) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.21) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.32) i01.moveArm("left",90,150,30,65) sleep(0.02) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.21) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.21) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.69) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.18) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.24) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.24) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.25) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.18) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.3) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.76) i01.moveTorso(117,90,90) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.57) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.22) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.41) i01.moveTorso(86,90,90) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.17) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.26) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.74) i01.moveTorso(117,90,90) sleep(0.04) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.45) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.3) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.44) i01.moveTorso(86,90,90) sleep(0.1) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.1) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.17) i01.head.jaw.moveTo(50) sleep(0.2) i01.head.jaw.moveTo(10) sleep(0.83) i01.moveArm("left",5,90,30,10) i01.moveArm("right",5,90,30,10) righthandopen() def talk(): i01.moveHead(90,70,80,80,10) sleep (2) i01.moveHead(90,90,80,80,10) sleep (1) i01.mouth.speak("hello") sleep (2) i01.mouth.speak("my name is robyn") sleep (1) i01.moveHead(90,90,80,70,10) sleep (1) i01.moveHead(90,90,80,80,10) sleep (2) i01.moveHead(80,90,70,80,10) i01.mouth.speak("there is something i have to talk about") sleep (1) i01.moveHead(80,90,70,70,10) sleep (1) i01.moveHead(80,90,70,80,10) sleep (3) i01.mouth.speak("so here it comes") i01.moveHead(75,90,80,70,10) sleep (2) i01.moveHead(90,90,80,80,10) sleep (2) i01.mouth.speak("i am a robot") i01.moveHead(90,90,80,70,10) sleep (1) i01.moveHead(90,90,80,80,10) sleep (3) i01.mouth.speak("i am a humanoid robot") sleep (1) i01.moveHead(90,90,80,70,10) sleep (1) i01.moveHead(90,90,80,80,10) sleep (2) i01.mouth.speak("that don't mean that i am a human wannabe") i01.moveHead(90,90,80,70,10) sleep (1) i01.moveHead(90,90,80,80,10) sleep (3) i01.mouth.speak("or that my biggest wish is to be a human") i01.moveHead(90,90,80,70,10) sleep (1) i01.moveHead(90,90,80,80,10) sleep (3) i01.mouth.speak("if you even believe thatt a robot can wish for something") i01.moveHead(70,70,80,70,10) sleep (3) i01.moveHead(90,90,80,80,10) sleep (2) i01.mouth.speak("i only wish for you to respect me for who i am") i01.moveHead(90,90,80,70,10) sleep (1) i01.moveHead(90,90,80,80,10) sleep (3) i01.mouth.speak("people often tell me things like") sleep (3) i01.mouth.speak("why don't you have this") i01.moveHead(70,70,80,80,10) sleep (2) i01.moveHead(90,90,80,80,10) sleep (2) i01.mouth.speak("why don't you have that") i01.moveHead(70,110,90,80,10) sleep (2) i01.moveHead(90,90,80,80,10) sleep (2) i01.mouth.speak("why can't you do like this") i01.moveHead(70,70,70,80,10) sleep (2) i01.moveHead(90,90,80,80,10) sleep (2) i01.mouth.speak("why can't you do like that") i01.moveHead(70,110,80,80,10) sleep (2) i01.moveHead(90,90,80,80,10) sleep (2) i01.mouth.speak("i am a humanoid robot") i01.moveHead(100,90,80,80,10) sleep (2) i01.moveHead(90,90,80,80,10) sleep (2) i01.mouth.speak("i'm not perfect") sleep (1) i01.moveHead(90,90,80,70,10) sleep (1) i01.moveHead(90,90,80,80,10) sleep (2) i01.mouth.speak("but with the help from my creative human friends i am becoming a better and better robot") sleep (8) i01.mouth.speak("an other question many humans ask me is if i am a man or woman") sleep (6) i01.mouth.speak("how many times do i have to say this") i01.moveHead(90,90,80,70,10) sleep (1) i01.moveHead(90,90,80,80,10) sleep (3) i01.mouth.speak("i am a humanoid robot") sleep (4) i01.mouth.speak("there is no point in determine my gender") sleep (1) i01.moveHead(90,90,80,70,10) sleep (1) i01.moveHead(90,90,80,80,10) sleep (2) i01.mouth.speak("oh i know") sleep (3) i01.mouth.speak("if i am a woman i can help you in the household") i01.moveHead(90,90,80,70,10) sleep (1) i01.moveHead(90,90,80,80,10) sleep (3) i01.mouth.speak("i can cook and do the dishes for you") i01.moveHead(90,90,80,70,10) sleep (1) i01.moveHead(90,90,80,80,10) sleep (3) i01.mouth.speak("i can vacuum clean the hole house") sleep (1) i01.moveHead(120,40,80,70,10) sleep (1) i01.moveHead(140,90,80,80,10) sleep (1) i01.moveHead(120,130,80,80,10) sleep (1) i01.moveHead(90,90,80,80,10) i01.mouth.speak("or if i am a man i can fix the roof") sleep (1) i01.moveHead(70,90,80,80,10) sleep (1) i01.moveHead(90,90,80,70,10) sleep (1) i01.moveHead(70,90,80,80,10) sleep (1) i01.moveHead(90,90,80,80,10) i01.mouth.speak("change tires on the car") sleep (4) i01.mouth.speak("or make a big t-bone steak at the barbeque") sleep (4) i01.mouth.speak("in the future i hope i can do all of this and mutch mutch more") sleep (4) i01.mouth.speak("because i am a gender free humanoid robot") sleep (4) i01.mouth.speak("it's not like i will meet my one true love") sleep (4) i01.mouth.speak("and we will be a robot family") sleep (1) i01.moveHead(90,90,80,70,10) sleep (1) i01.moveHead(90,90,80,80,10) sleep (2) i01.mouth.speak("and we should make small microchip thatt is running around in the house") sleep (3) i01.mouth.speak("robots don't work thatt way") sleep (1) i01.moveHead(65,110,80,70,10) sleep (1) i01.moveHead(65,70,80,80,10) sleep (1) i01.moveHead(65,110,80,70,10) sleep (1) i01.moveHead(65,70,80,80,10) sleep (1) i01.moveHead(90,90,80,70,10) i01.mouth.speak("not yet anyway") sleep (5) i01.mouth.speak("some people wants me to wear clothes") sleep (4) i01.mouth.speak("i don't freeze when it is cold") sleep (1) i01.moveHead(90,90,80,70,10) sleep (1) i01.moveHead(90,90,80,80,10) sleep (2) i01.mouth.speak("and i'm not ashamed of my body parts and my mechanics") sleep (5) i01.mouth.speak("i wear my cap because i like it") sleep (3) i01.mouth.speak("especially this one with the inmoov logo") i01.moveHead(20,125,80,80,10) sleep (3) i01.moveHead(90,90,80,80,10) sleep (2) i01.mouth.speak("remember what mr bigweld said") sleep (2) i01.mouth.speak("you can shine no matter what you're made of") sleep (2) i01.mouth.speak("that's it for now") sleep (3) i01.mouth.speak("thanks for listening and not turning off my power supply") sleep (5) i01.mouth.speak("goodbye") sleep (2) i01.mouth.speak("see you soon") sleep (2) i01.moveHead(90,70,80,80,10) def robyn(): i01.mouth.audioFile.silence() i01.mouth.speak("yes") headfront() eyesfront() green() ear.clearLock() global rest rest = 0 global dance2 dance2 = 1 global mic mic = 1 i01.attach() trackHumans() def gotosleepnow(): ear.lockOutAllGrammarExcept("wake up robyn") ear.lockOutAllGrammarExcept("good morning") ear.lockOutAllGrammarExcept("robyn") stopTracking() headdown() i01.mouth.speak("ok i'm going asleep now see you soon") sleep(3) ledoff() i01.detach() global rest rest = 1 global mic mic = 0 global pin12 pin12 = 0 def shutdownyoursystem(): ear.lockOutAllGrammarExcept("wake up robyn") ear.lockOutAllGrammarExcept("good morning") ear.lockOutAllGrammarExcept("robyn") stopTracking() headdown() i01.mouth.speak("ok shutting down my system") sleep(3) ledoff() global rest rest = 1 global mic mic = 0 i01.detach() def lookaroundyou(): ear.lockOutAllGrammarExcept("robyn") ear.lockOutAllGrammarExcept("can i have your attention") blue() i01.setHeadSpeed(0.8, 0.8) for y in range(0, 20): x = (random.randint(1, 6)) if x == 1: i01.head.neck.moveTo(90) eyeslooking() if x == 2: i01.head.rothead.moveTo(80) eyeslooking() if x == 3: headdown() eyeslooking() if x == 4: headupp() eyeslooking() if x == 5: headright() eyeslooking() if x == 6: headleft() eyeslooking() x = (random.randint(1, 6)) if x == 1: handopen() if x == 2: handclose() if x == 3: lefthandopen() if x == 4: righthandopen() if x == 5: lefthandclose() if x == 6: righthandclose() sleep(1) x = (random.randint(1, 7)) if x == 1: i01.mouth.speak("looking nice") if x == 2: i01.mouth.speak("i like it here") if x == 3: i01.mouth.speak("time just flies away") if x == 4: i01.mouth.speak("so what about the weather") if x == 5: i01.mouth.speak("la la la") if x == 6 or x == 7: i01.mouth.speak("ok let's do something") sleep(2) x = (random.randint(1, 7)) if x == 1: Torso() Torso() if x == 2: perfect() sleep(8) i01.mouth.speak("perfect") sleep(2) armsdown() if x == 3: servos() if x == 4: finger() sleep(3) armsdown() if x == 5: discotime() if x == 6: howmanyfingersdoihave() if x == 7: talk() lookaroundyou() def eyeslooking(): stopTracking() for y in range(0, 5): data = msg_i01_ear_recognized.data[0] if (data == "can i have your attention"): i01.mouth.speak("ok you have my attention") stopit() if (data == "robyn"): stopit() x = (random.randint(1, 6)) if x == 1: i01.head.eyeX.moveTo(80) if x == 2: i01.head.eyeY.moveTo(80) if x == 3: eyesdown() if x == 4: eyesupp() if x == 5: eyesleft() if x == 6: eyesright() sleep(0.5) eyesfront() def goodbye(): i01.mouth.speak("goodbye") global helvar helvar = 1 x = (random.randint(1, 4)) if x == 1: i01.mouth.speak("i'm looking forward to see you again") if x == 2: i01.mouth.speak("see you soon") def movemouth(): i01.moveHead(90,90,80,80,10) sleep(2) i01.head.jaw.moveTo(50) sleep(2) i01.moveHead(90,90,80,80,10) sleep(2) i01.head.jaw.moveTo(50) sleep(2) i01.moveHead(90,90,80,80,10) sleep(2) def moveeye(): stopTracking() eyesfront() sleep(1) eyesdown() sleep(1) eyesupp() sleep(1) eyesright() sleep(1) eyesleft() sleep(1) eyesfront() def eyesfront(): i01.head.eyeX.moveTo(80) i01.head.eyeY.moveTo(80) def eyesdown(): i01.head.eyeY.moveTo(100) def eyesupp(): i01.head.eyeY.moveTo(50) def eyesright(): i01.head.eyeX.moveTo(60) def eyesleft(): i01.head.eyeX.moveTo(100) def movehead(): i01.setHeadSpeed(0.7, 0.7) headfront() sleep(3) headdown() sleep(3) headupp() sleep(6) headfront() sleep(3) headright() sleep(3) headleft() sleep(6) headfront() sleep(3) headright() headdown() sleep(6) headdown() headleft() sleep(6) headupp() headleft() sleep(6) headupp() headright() sleep(6) headfront() sleep(3) def headfront(): i01.head.neck.moveTo(90) i01.head.rothead.moveTo(80) def headdown(): i01.head.neck.moveTo(20) def headupp(): i01.head.neck.moveTo(160) def headright(): i01.head.rothead.moveTo(30) def headleft(): i01.head.rothead.moveTo(140) def armsdown(): i01.setArmSpeed("left", 1.0, 1.0, 1.0, 1.0) i01.setArmSpeed("right", 1.0, 1.0, 1.0, 1.0) i01.moveArm("left",5,90,30,10) i01.moveArm("right",5,90,30,15) def armsfront(): i01.setArmSpeed("left", 1.0, 1.0, 1.0, 1.0) i01.setArmSpeed("right", 1.0, 1.0, 1.0, 1.0) i01.moveArm("left",5,90,110,10) i01.moveArm("right",5,90,110,10) def Torso(): i01.setTorsoSpeed(1.0, 1.0, 1.0) i01.moveTorso(60,90,90) sleep(2) i01.moveTorso(120,90,90) sleep(2) i01.moveTorso(90,90,90) sleep(2) def red(): left.digitalWrite(42, 1) # ON left.digitalWrite(43, 1) # ON left.digitalWrite(44, 1) # ON left.digitalWrite(45, 0) # OFF def green(): left.digitalWrite(42, 1) # ON left.digitalWrite(43, 0) # OFF left.digitalWrite(44, 1) # ON left.digitalWrite(45, 1) # ON def blue(): left.digitalWrite(42, 1) # ON left.digitalWrite(43, 1) # ON left.digitalWrite(44, 0) # OFF left.digitalWrite(45, 1) # ON def ledoff(): left.digitalWrite(42, 0) # OFF left.digitalWrite(43, 0) # OFF left.digitalWrite(44, 0) # OFF left.digitalWrite(45, 0) # OFF ############################################################################################# def nexa1on(): right.digitalWrite(36, 1) # ON sleep(0.2) right.digitalWrite(52, 1) # ON sleep(0.1) right.digitalWrite(52, 0) # OFF sleep(0.1) right.digitalWrite(36, 0) # OFF global nexa1 nexa1 = 1 def nexa1off(): right.digitalWrite(36, 1) # ON sleep(0.2) right.digitalWrite(38, 1) # ON sleep(0.1) right.digitalWrite(38, 0) # OFF sleep(0.1) right.digitalWrite(36, 0) # OFF global nexa1 nexa1 = 0 def nexa2on(): right.digitalWrite(36, 1) # ON sleep(0.2) right.digitalWrite(50, 1) # ON sleep(0.1) right.digitalWrite(50, 0) # OFF sleep(0.1) right.digitalWrite(36, 0) # OFF global nexa2 nexa2 = 1 def nexa2off(): right.digitalWrite(36, 1) # ON sleep(0.2) right.digitalWrite(40, 1) # ON sleep(0.1) right.digitalWrite(40, 0) # OFF sleep(0.1) right.digitalWrite(36, 0) # OFF global nexa2 nexa2 = 0 def nexa3on(): right.digitalWrite(36, 1) # ON sleep(0.2) right.digitalWrite(48, 1) # ON sleep(0.1) right.digitalWrite(48, 0) # OFF sleep(0.1) right.digitalWrite(36, 0) # OFF global nexa3 nexa3 = 1 def nexa3off(): right.digitalWrite(36, 1) # ON sleep(0.2) right.digitalWrite(42, 1) # ON sleep(0.1) right.digitalWrite(42, 0) # OFF sleep(0.1) right.digitalWrite(36, 0) # OFF global nexa3 nexa3 = 0 def nexa4on(): right.digitalWrite(36, 1) # ON sleep(0.2) right.digitalWrite(46, 1) # ON sleep(0.1) right.digitalWrite(46, 0) # OFF sleep(0.1) right.digitalWrite(36, 0) # OFF global nexa4 nexa4 = 1 def nexa4off(): right.digitalWrite(36, 1) # ON sleep(0.2) right.digitalWrite(44, 1) # ON sleep(0.1) right.digitalWrite(44, 0) # OFF sleep(0.1) right.digitalWrite(36, 0) # OFF global nexa4 nexa4 = 0 def nexa5on(): right.digitalWrite(34, 1) # ON sleep(0.2) right.digitalWrite(52, 1) # ON sleep(0.1) right.digitalWrite(52, 0) # OFF sleep(0.1) right.digitalWrite(34, 0) # OFF global nexa5 nexa5 = 1 def nexa5off(): right.digitalWrite(34, 1) # ON sleep(0.2) right.digitalWrite(38, 1) # ON sleep(0.1) right.digitalWrite(38, 0) # OFF sleep(0.1) right.digitalWrite(34, 0) # OFF global nexa5 nexa5 = 0 def nexa6on(): right.digitalWrite(34, 1) # ON sleep(0.2) right.digitalWrite(50, 1) # ON sleep(0.1) right.digitalWrite(50, 0) # OFF sleep(0.1) right.digitalWrite(34, 0) # OFF global nexa6 nexa6 = 1 def nexa6off(): right.digitalWrite(34, 1) # ON sleep(0.2) right.digitalWrite(40, 1) # ON sleep(0.1) right.digitalWrite(40, 0) # OFF sleep(0.1) right.digitalWrite(34, 0) # OFF global nexa6 nexa6 = 0 def nexa7on(): right.digitalWrite(34, 1) # ON sleep(0.2) right.digitalWrite(48, 1) # ON sleep(0.1) right.digitalWrite(48, 0) # OFF sleep(0.1) right.digitalWrite(34, 0) # OFF global nexa7 nexa7 = 1 def nexa7off(): right.digitalWrite(34, 1) # ON sleep(0.2) right.digitalWrite(42, 1) # ON sleep(0.1) right.digitalWrite(42, 0) # OFF sleep(0.1) right.digitalWrite(34, 0) # OFF global nexa7 nexa7 = 0 def nexa8on(): right.digitalWrite(34, 1) # ON sleep(0.2) right.digitalWrite(46, 1) # ON sleep(0.1) right.digitalWrite(46, 0) # OFF sleep(0.1) right.digitalWrite(34, 0) # OFF global nexa8 nexa8 = 1 def nexa8off(): right.digitalWrite(34, 1) # ON sleep(0.2) right.digitalWrite(44, 1) # ON sleep(0.1) right.digitalWrite(44, 0) # OFF sleep(0.1) right.digitalWrite(34, 0) # OFF global nexa8 nexa8 = 0 def nexa9on(): right.digitalWrite(32, 1) # ON sleep(0.2) right.digitalWrite(52, 1) # ON sleep(0.1) right.digitalWrite(52, 0) # OFF sleep(0.1) right.digitalWrite(32, 0) # OFF global nexa9 nexa9 = 1 def nexa9off(): right.digitalWrite(32, 1) # ON sleep(0.2) right.digitalWrite(38, 1) # ON sleep(0.1) right.digitalWrite(38, 0) # OFF sleep(0.1) right.digitalWrite(32, 0) # OFF global nexa9 nexa9 = 0 def nexa10on(): right.digitalWrite(32, 1) # ON sleep(0.2) right.digitalWrite(50, 1) # ON sleep(0.1) right.digitalWrite(50, 0) # OFF sleep(0.1) right.digitalWrite(32, 0) # OFF global nexa10 nexa10 = 1 def nexa10off(): right.digitalWrite(32, 1) # ON sleep(0.2) right.digitalWrite(40, 1) # ON sleep(0.1) right.digitalWrite(40, 0) # OFF sleep(0.1) right.digitalWrite(32, 0) # OFF global nexa10 nexa10 = 0 def nexa11on(): right.digitalWrite(32, 1) # ON sleep(0.2) right.digitalWrite(48, 1) # ON sleep(0.1) right.digitalWrite(48, 0) # OFF sleep(0.1) right.digitalWrite(32, 0) # OFF global nexa11 nexa11 = 1 def nexa11off(): right.digitalWrite(32, 1) # ON sleep(0.2) right.digitalWrite(42, 1) # ON sleep(0.1) right.digitalWrite(42, 0) # OFF sleep(0.1) right.digitalWrite(32, 0) # OFF global nexa11 nexa11 = 0 def nexa12on(): right.digitalWrite(32, 1) # ON sleep(0.2) right.digitalWrite(46, 1) # ON sleep(0.1) right.digitalWrite(46, 0) # OFF sleep(0.1) right.digitalWrite(32, 0) # OFF global nexa12 nexa12 = 1 def nexa12off(): right.digitalWrite(32, 1) # ON sleep(0.2) right.digitalWrite(44, 1) # ON sleep(0.1) right.digitalWrite(44, 0) # OFF sleep(0.1) right.digitalWrite(32, 0) # OFF global nexa12 nexa12 = 0 def nexa13on(): right.digitalWrite(30, 1) # ON sleep(0.2) right.digitalWrite(52, 1) # ON sleep(0.1) right.digitalWrite(52, 0) # OFF sleep(0.1) right.digitalWrite(30, 0) # OFF global nexa13 nexa13 = 1 def nexa13off(): right.digitalWrite(30, 1) # ON sleep(0.2) right.digitalWrite(38, 1) # ON sleep(0.1) right.digitalWrite(38, 0) # OFF sleep(0.1) right.digitalWrite(30, 0) # OFF global nexa13 nexa13 = 0 def nexa14on(): right.digitalWrite(30, 1) # ON sleep(0.2) right.digitalWrite(50, 1) # ON sleep(0.1) right.digitalWrite(50, 0) # OFF sleep(0.1) right.digitalWrite(30, 0) # OFF global nexa14 nexa14 = 1 def nexa14off(): right.digitalWrite(30, 1) # ON sleep(0.2) right.digitalWrite(40, 1) # ON sleep(0.1) right.digitalWrite(40, 0) # OFF sleep(0.1) right.digitalWrite(30, 0) # OFF global nexa14 nexa14 = 0 def nexa15on(): right.digitalWrite(30, 1) # ON sleep(0.2) right.digitalWrite(48, 1) # ON sleep(0.1) right.digitalWrite(48, 0) # OFF sleep(0.1) right.digitalWrite(30, 0) # OFF global nexa15 nexa15 = 1 def nexa15off(): right.digitalWrite(30, 1) # ON sleep(0.2) right.digitalWrite(42, 1) # ON sleep(0.1) right.digitalWrite(42, 0) # OFF sleep(0.1) right.digitalWrite(30, 0) # OFF global nexa15 nexa15 = 0 def nexa16on(): right.digitalWrite(30, 1) # ON sleep(0.2) right.digitalWrite(46, 1) # ON sleep(0.1) right.digitalWrite(46, 0) # OFF sleep(0.1) right.digitalWrite(30, 0) # OFF global nexa16 nexa16 = 1 def nexa16off(): right.digitalWrite(30, 1) # ON sleep(0.2) right.digitalWrite(44, 1) # ON sleep(0.1) right.digitalWrite(44, 0) # OFF sleep(0.1) right.digitalWrite(30, 0) # OFF global nexa16 nexa16 = 0 ear.resumeListening()
451838
from datasets.base.video.dataset import VideoDataset, VideoDatasetSequence, VideoDatasetFrame from datasets.base.common.viewer.qt5_viewer import draw_object from miscellanies.viewer.qt5_viewer import Qt5Viewer from PyQt5.QtGui import QPixmap, QColor from miscellanies.simple_prefetcher import SimplePrefetcher import random __all__ = ['VideoDatasetViewer'] class _DatasetSequenceImageLoader: def __init__(self, sequence: VideoDatasetSequence): self.sequence = sequence def __len__(self): return len(self.sequence) def __getitem__(self, index: int): frame = self.sequence[index] pixmap = QPixmap() assert pixmap.load(frame.get_image_path()) return pixmap, frame, self.sequence class VideoDatasetViewer: def __init__(self, dataset: VideoDataset): self.dataset = dataset self.viewer = Qt5Viewer() self.canvas = self.viewer.get_subplot().create_canvas() if self.dataset.has_category_id_name_map(): self.category_id_color_map = {} for category_id in self.dataset.get_category_id_name_map().keys(): color = [random.randint(0, 255) for _ in range(3)] self.category_id_color_map[category_id] = QColor(color[0], color[1], color[2], int(0.5 * 255)) else: self.category_id_color_map = None sequence_names = [] for sequence in self.dataset: sequence_names.append(sequence.get_name()) self.viewer.get_content_region().new_list(sequence_names, self._sequence_selected_callback) self.timer = self.viewer.new_timer() self.timer.set_callback(self._timer_timeout_callback) def _sequence_selected_callback(self, index: int): if index < 0: return self.sequence = SimplePrefetcher(_DatasetSequenceImageLoader(self.dataset[index])) self.timer.stop() self._start_timer() def _start_timer(self): self.sequence_iter = iter(self.sequence) self.timer.start() def _timer_timeout_callback(self): try: image, frame, sequence = next(self.sequence_iter) except StopIteration: self.timer.stop() return frame: VideoDatasetFrame = frame sequence: VideoDatasetSequence = sequence canvas = self.canvas canvas.set_background(image) with canvas.get_painter() as painter: for object_ in frame: object_category_id_accessor = object_ if object_.has_id(): id_ = object_.get_id() for sequence_object in sequence.get_object_iterator(): if sequence_object.get_id() == id_: object_category_id_accessor = (object_, sequence_object) break draw_object(painter, object_, None, object_category_id_accessor, object_, self.category_id_color_map, self.dataset, self.dataset) canvas.update() def run(self): return self.viewer.run_event_loop()
451844
import pyblish.api import openpype.api class ValidateVDBInputNode(pyblish.api.InstancePlugin): """Validate that the node connected to the output node is of type VDB. Regardless of the amount of VDBs create the output will need to have an equal amount of VDBs, points, primitives and vertices A VDB is an inherited type of Prim, holds the following data: - Primitives: 1 - Points: 1 - Vertices: 1 - VDBs: 1 """ order = openpype.api.ValidateContentsOrder + 0.1 families = ["vdbcache"] hosts = ["houdini"] label = "Validate Input Node (VDB)" def process(self, instance): invalid = self.get_invalid(instance) if invalid: raise RuntimeError( "Node connected to the output node is not" "of type VDB!" ) @classmethod def get_invalid(cls, instance): node = instance.data["output_node"] prims = node.geometry().prims() nr_of_prims = len(prims) nr_of_points = len(node.geometry().points()) if nr_of_points != nr_of_prims: cls.log.error("The number of primitives and points do not match") return [instance] for prim in prims: if prim.numVertices() != 1: cls.log.error("Found primitive with more than 1 vertex!") return [instance]
451869
for _ in range(int(input())): n=input() if len(n)>10: print("{}{}{}".format(n[0],len(n)-2,n[-1])) else: print(n)
451892
from parser.config import Config from argparse import ArgumentParser from goodluck.goodluck.main import Luck import pdb argparser = ArgumentParser('train sentence generator') argparser.add_argument('--dozat', action='store_true') argparser.add_argument('--extra', action='store_true') argparser.add_argument('--shell', action='store_true') argparser.add_argument('--runtwo', action='store_true') argparser.add_argument('--P40', action='store_true') argparser.add_argument('--self_design', action='store_true') argparser.add_argument('--cluster', type=str, default='P40') argparser.add_argument('--fix', type=str, default='',dest='fix_gpu') argparser.add_argument('--nowarning',action='store_true') argparser.add_argument('--name',type=str,default='') argparser.add_argument('--max',type=int,default=10) argparser.add_argument('--startsize',type=int,default=17000) argparser.add_argument('--twogpu', action='store_true') argparser.add_argument('--singlegpu', action='store_true') argparser.add_argument('--LBP', action='store_true') #argparser.add_argument('--') args = argparser.parse_args() def set_config(config_file, two_gpu=False): kwargs={} kwargs['GraphParserNetwork']={} if two_gpu: kwargs['GraphParserNetwork']['two_gpu']=True else: kwargs['GraphParserNetwork']['two_gpu']=False config = Config(config_file=config_file, **kwargs) with open(config_file, 'w') as f: config.write(f) class Train_generation: def __init__(self, startsize, runfile, args, myusers, cluster='P40',statefile='P40stat.txt', shell_mode=True, self_design=False, banned=[],fix_gpu=False, fix_gpu_list=None): self.our_run=self.parse_running_sentence(runfile) self.startsize=startsize self.args=args self.cluster=cluster self.shell_mode=shell_mode self.myusers=myusers self.avail_gpu=0 if cluster=='P40': statefile='P40stat.txt' self.gpulist=self.parse_gpu_state(statefile) self.write_head='P40_runner'+args.name if self.shell_mode: self.program=self.create_shell_P40 else: self.program=self.create_template if cluster=='AI': gputester=Luck() self.gpulist, _=gputester.mrun() self.write_head='gen_runner'+args.name #self.avail_gpu=len(self.gpulist) if self.shell_mode: self.program=self.create_shell_AI else: self.program=self.create_template if fix_gpu: new_gpu_list={} for node in self.gpulist: if int(node) in fix_gpu_list: new_gpu_list[node]=self.gpulist[node] self.gpulist=new_gpu_list if self_design: self.gpulist={} # self.gpulist['TitanX']={0:11,1:11} #self.gpulist['TitanV']={1:11,2:11} #self.gpulist['temp13']={0:11,1:11,2:10,3:10,4:10,5:10,6:10,7:10} #self.gpulist['temp14']={2:11,3:11,4:11,5:11,6:11,7:11} #self.gpulist['temp26']={1:10,2:10,3:11,4:11,5:10,6:10,7:10} #self.gpulist['temp27']={0:11,1:11,3:11,3:11} #self.gpulist['temp07']={0:8,1:8,2:8} #self.gpulist['temp08']={2:8} #self.gpulist['temp10']={0:11,1:11} #self.gpulist['temp27']={0:11,1:11,2:11,3:11} #self.gpulist['temp32']={1:11} #self.gpulist['temp15']={0:8,1:8,2:8,3:8} #self.gpulist['temp16']={1:8,2:8} #self.gpulist['temp13']={3:11} #self.gpulist['temp18']={2:11} self.gpulist['temp13']={0:22,1:22,2:22,3:22} self.gpulist['temp16']={1:22} # self.gpulist['temp15']={2:22,3:22} # self.gpulist['temp16']={1:22,3:22} self.gpulist['temp17']={0:22,1:22} #self.gpulist['temp18']={2:22} # self.gpulist['temp23']={0:22,1:22,2:22,3:22} self.gpulist['temp25']={0:22,1:22,2:22,3:22} self.gpulist['temp26']={0:22,1:22,2:22,3:22} self.gpulist['temp27']={0:22,1:22,2:22,3:22} self.gpulist['temp28']={0:22,1:22,2:22,3:22} if cluster=='P40': for gpu in self.gpulist: self.avail_gpu+=len(self.gpulist[gpu]) if cluster=='AI': self.analy={} for node in self.gpulist: if node not in banned: self.analy[node]=self.node_analysis(self.gpulist[node]) self.avail_gpu+=len(self.analy[node][1])+len(self.analy[node][2])+len(self.analy[node][3]) #pdb.set_trace() total_run=len(self.our_run) self.each_node=int(total_run/self.avail_gpu)+1 if self.each_node>self.args.max: self.each_node=self.args.max if args.dozat and args.runtwo: self.tworunning=2 else: self.tworunning=1 self.god_writer=open(self.write_head+'_node_starter'+'.sh','w') self.banned=banned if args.dozat: self.use_dozat='_dozat' else: self.use_dozat='' def parse_gpu_state(self, file): sentences=open(file,'r').readlines() gpulist={} #pdb.set_trace() for sentence in sentences: sentence=sentence.strip() if sentence=='': continue if sentence[0]=='#': continue if 'sist-gpu' in sentence: blocks=sentence.split() nodeid=blocks[0].split('sist-gpu')[1] gpulist[nodeid]=[] continue #pdb.set_trace() blocks=sentence.split('|') gpuid=blocks[0].split()[0][1] memory=int(blocks[2].split()[2])-int(blocks[2].split()[0]) users=blocks[-1].strip(' ') users=users.split() flag=0 for user in users: curuser=user.split(':')[0] if curuser not in self.myusers: flag=1 break if flag==1: continue if nodeid=='16' and gpuid=='2': continue if memory>startsize: gpulist[nodeid].append(gpuid) return gpulist def parse_running_sentence(self, file): sentences=open(file,'r').readlines() to_run=[] for sentence in sentences: sentence=sentence.strip() if sentence=='': continue if sentence[0]=='#': continue to_run.append(sentence) return to_run def pop_next(self): if self.our_run==[]: return False else: #pdb.set_trace() sent=self.our_run[0] if len(self.our_run)>1: self.our_run=self.our_run[1:] else: self.our_run=[] return sent def node_analysis(self,gpus): types=[] memories=[] #type 1 can run 1.1gpu, type2 can run dozat or twogpu ours, type3 used for 1.1 gpu, type4 for nothing typedicts={} typedicts[1]=[] typedicts[2]=[] typedicts[3]=[] typedicts[4]=[] for gpu in gpus: if gpus[gpu]>=9: gputype=1 elif gpus[gpu]>7: gputype=2 elif gpus[gpu]>4: gputype=3 else: gputype=4 typedicts[gputype].append(str(gpu)) #if typedicts[gputype].append(gpu): #types.append(gputype) #memories.append(gpus[gpu]) analy={} analy[1]=[] analy[2]=[] analy[3]=[] if self.args.twogpu: res=list(gpus.keys()) if self.args.LBP: able=[] for i in range(len(res)): if gpus[res[i]]>=9: able.append(res[i]) if len(able)>=2: #pdb.set_trace() res=able for i in range(int(len(res)/2)): gpuid,another_gpu=str(res[i*2]),str(res[i*2+1]) analy[2].append([gpuid,another_gpu]) else: for i in range(int(len(res)/2)): gpuid,another_gpu=str(res[i*2]),str(res[i*2+1]) analy[2].append([gpuid,another_gpu]) #pdb.set_trace() return analy if args.dozat: #pdb.set_trace() if len(typedicts[2])>=1: for i in range(len(typedicts[2])): analy[1].append(typedicts[2][i]) if len(typedicts[1])>=1: for i in range(len(typedicts[1])): analy[1].append(typedicts[1][i]) elif args.singlegpu: #if len(typedicts[2])>=1: # for i in range(len(typedicts[2])): # analy[1].append(typedicts[2][i]) if len(typedicts[1])>=1: for i in range(len(typedicts[1])): analy[1].append(typedicts[1][i]) else: if len(typedicts[1])>=1: if len(typedicts[2])>0: another_gpu=typedicts[2][0] elif len(typedicts[3])>0: another_gpu=typedicts[3][0] else: another_gpu=typedicts[1][0] for gpuid in typedicts[1]: if gpuid==another_gpu: continue analy[3].append([gpuid,another_gpu]) #pdb.set_trace() elif len(typedicts[2])>=2: gpuid,another_gpu=typedicts[2][0],typedicts[2][1] analy[2].append([gpuid,another_gpu]) if len(typedicts[2])==2: pass elif len(typedicts[2])==3: pass else: gpuid,another_gpu=typedicts[2][2],typedicts[2][3] analy[2].append([gpuid,another_gpu]) #pdb.set_trace() return analy def parse_run_config(self, sentence,node,gpu_set): #data=sentence.split() #pdb.set_trace() cases=sentence.split() cases[1]='"CUDA_VISIBLE_DEVICES='+gpu_set cases[-1]=node cases[2]=running sentence=' '.join(cases) return sentence def parse_run_config2(self, sentence,gpu_set): #data=sentence.split() cases=sentence.split() cases[0]='CUDA_VISIBLE_DEVICES='+','.join(gpu_set) #pdb.set_trace() if args.nowarning: cases.insert(-2,'--nowarning') sentence=' '.join(cases) return sentence def create_template(self): for node in self.gpulist: #total_writer=len(gpulist[node])*2 #writelist=[open('shell/gen_runner'+'_node'+str(node)+'_'+str(i)+self.use_dozat'.sh','w') for i in range(total_writer)] #for k in range(each_node): for gpuid in self.gpulist[node]: sentence=self.pop_next() if sentence==False: continue train_case=self.parse_run_config(sentence,node,gpuid) self.god_writer.write(train_case+'\n') self.god_writer.close() def create_shell_AI(self): runtype=[1,2,3] writelister={} writerls={} for k in range(self.each_node): for node in self.gpulist: if node in self.banned: continue if len(self.analy[node][1])==0 and len(self.analy[node][2])==0 and len(self.analy[node][3])==0: continue if k==0: writerls[node]=open('shell/'+self.write_head+'_node'+str(node)+'.sh','w') #pdb.set_trace() total_writer=len(self.gpulist[node]) writelister[node]=[open('shell/'+self.write_head+'_node'+str(node)+'_'+str(i)+self.use_dozat+'.sh','w') for i in range(total_writer)] writelist=writelister[node] writer=writerls[node] #pdb.set_trace() #writer.write('#node'+str(node)+'\n') #to_train=[] current=0 for run in runtype: gpu_sets=self.analy[node][run] #pdb.set_trace() for gpu_set in gpu_sets: sentence=self.pop_next() if sentence==False: continue if run==2 or run==3: set_config(sentence.split()[8],1-(run-2)) train_case=self.parse_run_config2(sentence,gpu_set) if train_case[-1]=='&': train_case=train_case[:-1] writelist[current].write('echo "'+train_case.split()[-1].split('/')[1]+'"\n') writelist[current].write(train_case+'\n') current+=1 for node in self.gpulist: if node in self.banned: continue if len(self.analy[node][1])==0 and len(self.analy[node][2])==0 and len(self.analy[node][3])==0: continue total_writer=len(self.gpulist[node]) for i in range(total_writer): writelist=writelister[node] writer=writerls[node] writelist[i].close() writer.write('bash '+'shell/'+self.write_head+'_node'+str(node)+'_'+str(i)+self.use_dozat+'.sh&'+'\n') writer.close() self.god_writer.write('nohup bash '+'shell/'+self.write_head+'_node'+str(node)+'.sh'+' >shell_log/shell'+str(node)+'\n') def create_shell_P40(self): writelister={} writerls={} for k in range(self.each_node): for node in self.gpulist: if k==0: #pdb.set_trace() writerls[node]=open('shell/'+self.write_head+'_node'+str(node)+'.sh','w') #analy=node_analysis(free_node[node]) total_writer=len(self.gpulist[node]) writelister[node]=[open('shell/'+self.write_head+'_node'+str(node)+'_'+str(i)+self.use_dozat+'.sh','w') for i in range(total_writer)] writelist=writelister[node] writer=writerls[node] current=0 for i in range(self.tworunning): for gpuid in self.gpulist[node]: sentence=self.pop_next() if sentence==False: continue train_case=self.parse_run_config2(sentence,[str(gpuid)]) #pdb.set_trace() if train_case[-1]=='&': train_case=train_case[:-1] writelist[current].write('echo "'+train_case.split()[-1].split('/')[1]+'"\n') writelist[current].write(train_case+'\n') current+=1 for node in self.gpulist: writelist=writelister[node] writer=writerls[node] total_writer=len(self.gpulist[node]) for i in range(total_writer): writelist[i].close() writer.write('bash '+'shell/'+self.write_head+'_node'+str(node)+'_'+str(i)+self.use_dozat+'.sh&'+'\n') writer.close() self.god_writer.write('nohup bash '+'shell/'+self.write_head+'_node'+str(node)+'.sh'+' >shell_log/shell'+str(node)+args.name+'\n') def start_create(self): self.program() self.god_writer.close() sentence=self.pop_next() print('ours:',sentence) if not args.shell and args.cluster=='P40': if args.dozat: runfile='multipletrain_gen_dozat_P40.sh' else: runfile='multipletrain_gen_P40.sh' else: runfile='multipletrain_gen.sh' fix_gpu=False if args.fix_gpu!='': fix_gpu_list=args.fix_gpu.split(',') fix_gpu_list=[int(x) for x in fix_gpu_list] fix_gpu=True else: fix_gpu_list=None myusers=['wangxy1','lijn'] if args.dozat: startsize=6000 else: startsize=args.startsize if args.extra and not args.dozat: startsize=22000 analizer=Train_generation(startsize, runfile, args, myusers, cluster=args.cluster,statefile='P40stat.txt', shell_mode=args.shell, self_design=args.self_design, fix_gpu=fix_gpu, fix_gpu_list=fix_gpu_list) analizer.start_create() #if args.extra: # running='/public/sist/home/lijn/anaconda2/envs/parser/bin/python' #else: # running='/public/sist/home/wangxy1/anaconda3/envs/parser/bin/python' #statefile='P40stat.txt' #gpulist=parse_gpu_state(statefile) #pdb.set_trace() #our_run=parse_running_sentence(runfile) #pdb.set_trace() #total_run=len(our_run) #avail_gpu=0 #for gpu in gpulist: # avail_gpu+=len(gpulist[gpu]) ''' if not args.shell: each_node=int(total_run/avail_gpu) for node in gpulist: #total_writer=len(gpulist[node])*2 #writelist=[open('shell/gen_runner'+'_node'+str(node)+'_'+str(i)+'.sh','w') for i in range(total_writer)] #for k in range(each_node): for gpuid in gpulist[node]: sentence,our_run=pop_next(our_run) if sentence==False: continue train_case=parse_run_config(sentence,node,gpuid) god_writer.write(train_case+'\n') god_writer.close() else: each_node=int(total_run/avail_gpu)+1 for node in gpulist: #pdb.set_trace() if int(node)>18: running='/public/sist/home/lijn/anaconda2/envs/parser/bin/python' else: running='/public/sist/home/wangxy1/anaconda3/envs/parser/bin/python' writer=open('shell/P40_runner'+'_node'+str(node)+'.sh','w') #analy=node_analysis(free_node[node]) total_writer=len(gpulist[node]) writelist=[open('shell/P40_runner'+'_node'+str(node)+'_'+str(i)+'.sh','w') for i in range(total_writer)] #if node in banned: # continue writer.write('#node'+str(node)+'\n') #to_train=[] for k in range(each_node): current=0 for i in range(tworunning): for gpuid in gpulist[node]: sentence,our_run=pop_next(our_run) if sentence==False: continue train_case=parse_run_config2(sentence,gpuid) #pdb.set_trace() if train_case[-1]=='&': train_case=train_case[:-1] writelist[current].write('echo "'+train_case.split()[-1].split('/')[1]+'"\n') writelist[current].write(train_case+'\n') current+=1 for i in range(total_writer): writelist[i].close() writer.write('bash '+'shell/P40_runner'+'_node'+str(node)+'_'+str(i)+'.sh&'+'\n') writer.close() god_writer.write('nohup bash '+'shell/P40_runner'+'_node'+str(node)+'.sh'+' >shell_log/shell'+str(node)+'\n') god_writer.close() #sentence,dozat_run=pop_next(dozat_run) #print('dozat:',sentence) sentence,our_run=pop_next(our_run) print('ours:',sentence) '''
451893
import numpy as np from prml.nn.array.broadcast import broadcast_to from prml.nn.math.abs import abs from prml.nn.math.exp import exp from prml.nn.math.log import log from prml.nn.random.random import RandomVariable from prml.nn.tensor.constant import Constant from prml.nn.tensor.tensor import Tensor class Laplace(RandomVariable): """ Laplace distribution p(x|loc, scale) = exp(-|x - loc|/scale) / (2 * scale) Parameters ---------- loc : tensor_like location parameter scale : tensor_like scale parameter data : tensor_like realization p : RandomVariable original distribution of a model """ def __init__(self, loc, scale, data=None, p=None): super().__init__(data, p) self.loc, self.scale = self._check_input(loc, scale) def _check_input(self, loc, scale): loc = self._convert2tensor(loc) scale = self._convert2tensor(scale) if loc.shape != scale.shape: shape = np.broadcast(loc.value, scale.value).shape if loc.shape != shape: loc = broadcast_to(loc, shape) if scale.shape != shape: scale = broadcast_to(scale, shape) return loc, scale @property def loc(self): return self.parameter["loc"] @loc.setter def loc(self, loc): self.parameter["loc"] = loc @property def scale(self): return self.parameter["scale"] @scale.setter def scale(self, scale): try: ispositive = (scale.value > 0).all() except AttributeError: ispositive = (scale.value > 0) if not ispositive: raise ValueError("value of scale must be positive") self.parameter["scale"] = scale def forward(self): eps = 0.5 - np.random.uniform(size=self.loc.shape) self.eps = np.sign(eps) * np.log(1 - 2 * np.abs(eps)) self.output = self.loc.value - self.scale.value * self.eps if isinstance(self.loc, Constant) and isinstance(self.scale, Constant): return Constant(self.output) return Tensor(self.output, function=self) def backward(self, delta): dloc = delta dscale = -delta * self.eps self.loc.backward(dloc) self.scale.backward(dscale) def _pdf(self, x): return 0.5 * exp(-abs(x - self.loc) / self.scale) / self.scale def _log_pdf(self, x): return np.log(0.5) - abs(x - self.loc) / self.scale - log(self.scale)
451905
from collections import defaultdict import ipywidgets as ipw from jinja2 import Template from progressivis.core import JSONEncoderNp import progressivis.core.aio as aio from .control_panel import ControlPanel from .sensitive_html import SensitiveHTML from .utils import wait_for_change, wait_for_click, update_widget from .module_graph import ModuleGraph from .module_wg import ModuleWg commons = {} debug_console = ipw.Output() # # Coroutines # INDEX_TEMPLATE = """ <table class="table table-striped table-bordered table-hover table-condensed"> <thead><tr><th></th><th>Id</th><th>Class</th><th>State</th><th>Last Update</th><th>Order</th></tr></thead> <tbody> {% for m in modules%} <tr> {% for c in cols%} <td> {% if c=='id' %} <a class='ps-row-btn' id="ps-row-btn_{{m[c]}}" type='button' >{{m[c]}}</a> {% elif c=='is_visualization' %} <span id="ps-cell_{{m['id']}}_{{c}}">{{'a' if m[c] else ' '}}</span> {% else %} <span id="ps-cell_{{m['id']}}_{{c}}">{{m[c]}}</span> {% endif %} </td> {%endfor %} </tr> {%endfor %} </tbody> </table> """ async def module_choice(psboard): while True: await wait_for_change(psboard.htable, 'value') # with debug_console: # print("Clicked: ", psboard.htable.value) if len(psboard.tab.children) < 3: psboard.tab.children += (psboard.current_module,) psboard.current_module.module_name = psboard.htable.value[ len(psboard.htable.sensitive_css_class)+1:] psboard.current_module.selection_changed = True psboard.tab.set_title(2, psboard.current_module.module_name) psboard.tab.selected_index = 2 # await psboard.refresh() # async def change_tab(psboard): # while True: # await wait_for_change(psboard.tab, 'selected_index') # with debug_console: # print("Changed: ", psboard.tab.selected_index) # psboard.refresh() async def refresh_fun(psboard): while True: # await psboard.refresh_event.wait() # psboard.refresh_event.clear() json_ = psboard.scheduler.to_json(short=False) # pylint: disable=protected-access psboard._cache = JSONEncoderNp.dumps(json_, skipkeys=True) psboard._cache_js = None await psboard.refresh() await aio.sleep(0.5) async def control_panel(psboard, action): btn, cbk = psboard.cpanel.cb_args(action) while True: await wait_for_click(btn, cbk) # end coros # pylint: disable=too-many-ancestors,too-many-instance-attributes class PsBoard(ipw.VBox): def __init__(self, scheduler=None, order='asc'): global debug_console # pylint: disable=global-statement self._order = order self.scheduler = scheduler self._cache = None self._cache_js = None self.cpanel = ControlPanel(scheduler) self.current_module = ModuleWg(self, debug_console) self.mgraph = ModuleGraph() self.tab = ipw.Tab() self.tab.set_title(0, 'Modules') self.tab.set_title(1, 'Module graph') self.state = [] self.last_update = [] self.btns = [] self.msize = 0 self.cols = ['is_visualization', 'id', 'classname', 'state', 'last_update', 'order'] self.htable = SensitiveHTML(layout=ipw.Layout(height='500px', overflow='auto')) self.refresh_event = None self.other_coros = [] self.vis_register = defaultdict(list) commons.update(tab=self.tab, scheduler=self.scheduler) super().__init__([self.cpanel, self.tab, debug_console]) async def make_table_index(self, modules): modules = sorted(modules, key=lambda x: x['order'], reverse=(self._order=='desc')) if not self.htable.html: tmpl = Template(INDEX_TEMPLATE) await update_widget(self.htable, 'sensitive_css_class', 'ps-row-btn') html = tmpl.render(modules=modules, cols=self.cols) # print(html) await update_widget(self.htable, 'html', html) else: data = {} for m in modules: for c in self.cols: dataid = f"ps-cell_{m['id']}_{c}" if c == 'is_visualization': # Show an Unicode eye next to visualizations data[dataid] = '\U0001F441' if m['id'] in self.vis_register else ' ' else: data[dataid] = m[c] await update_widget(self.htable, 'data', data) def register_visualisation(self, widget, module, label="Visualisation", glue=None): """ called from notebook if module_class is None and module_id is None: raise ValueError("One and only one of 'module_class' and 'module_id' args must be defined") if not(module_class is None or module_id is None): raise ValueError("One and only one of 'module_class' and 'module_id' args must be defined") """ linkable = hasattr(widget, 'link_module') if not linkable and glue is None: raise ValueError("Registering a visualisation requires a linkable " "widget (i.e. which implements the " "'link_module' interface) or 'glue' arg to be " "provides with a valid 'glue' function") if glue is not None: self.other_coros += glue(widget, module) else: self.other_coros += widget.link_module(module, refresh=False) self.vis_register[module.name].append((widget, label)) @property def coroutines(self): return [refresh_fun(self), module_choice(self), control_panel(self, "resume"), control_panel(self, "stop"), control_panel(self, "step")]+self.other_coros async def refresh(self): if self._cache is None: return if self._cache_js is None: self._cache_js = JSONEncoderNp.loads(self._cache) json_ = self._cache_js # self.cpanel.run_nb.value = str(json_['run_number']) await update_widget(self.cpanel.run_nb, 'value', str(json_['run_number'])) if self.tab.selected_index == 0: await self.make_table_index(json_['modules']) elif self.tab.selected_index == 1: # self.mgraph.data = self._cache await update_widget(self.mgraph, 'data', self._cache) else: assert len(self.tab.children) > 2 await self.current_module.refresh() if len(self.tab.children) < 3: self.tab.children = [self.htable, self.mgraph] else: third = self.tab.children[2] self.tab.children = [self.htable, self.mgraph, third]
451925
from __future__ import print_function from setuptools import setup, find_packages setup( name='rc-cts-urlscanio', version='1.0.1', url='https://github.com/IBMResilient/resilient-community-apps', license='MIT', author='<NAME>', author_email='<EMAIL>', install_requires=[ 'rc-cts' ], description="Resilient Circuits Custom Threat Service for urlscan.io", long_description="Resilient Circuits Custom Threat Service for urlscan.io", packages=find_packages(), include_package_data=True, platforms='any', classifiers=[ 'Programming Language :: Python', ], entry_points={ # Register the component with resilient_circuits "resilient.circuits.components": [ "UrlScanIoSearcher = rc_cts_urlscanio.components.searcher:UrlScanIoSearcher" ], "resilient.circuits.configsection": ["gen_config = rc_cts_urlscanio.util.config:config_section_data"], } )
451968
import arrow import pytest import unittest from weasyl import define as d from weasyl import profile from weasyl.error import WeasylError from weasyl.test import db_utils @pytest.mark.usefixtures('db') class ProfileManageTestCase(unittest.TestCase): def setUp(self): self.mod = db_utils.create_user() def test_select_manage(self): user = db_utils.create_user() links = [ { 'userid': user, 'link_type': 'Twitter', 'link_value': 'Weasyl', }, { 'userid': user, 'link_type': 'Email', 'link_value': 'mailto:<EMAIL>', }, ] d.engine.execute(d.meta.tables['user_links'].insert().values(links)) test_user_profile = profile.select_manage(user) self.assertEqual(len(test_user_profile['sorted_user_links']), 2) def test_remove_social_links(self): user = db_utils.create_user() links = [ { 'userid': user, 'link_type': 'Twitter', 'link_value': 'Weasyl', }, { 'userid': user, 'link_type': 'Email', 'link_value': 'mailto:<EMAIL>', }, ] d.engine.execute(d.meta.tables['user_links'].insert().values(links)) profile.do_manage(self.mod, user, remove_social=['Email']) test_user_profile = profile.select_manage(user) self.assertEqual(test_user_profile['sorted_user_links'], [('Twitter', ['Weasyl'])]) def test_sort_user_links(self): user = db_utils.create_user() links = [ { 'userid': user, 'link_type': 'Twitter', 'link_value': 'Weasyl', }, { 'userid': user, 'link_type': 'Email', 'link_value': 'mailto:<EMAIL>', }, { 'userid': user, 'link_type': 'Twitter', 'link_value': 'WeasylDev', } ] d.engine.execute(d.meta.tables['user_links'].insert().values(links)) test_user_profile = profile.select_manage(user) self.assertEqual(test_user_profile['sorted_user_links'], [ ('Email', ['mailto:<EMAIL>']), ('Twitter', ['Weasyl', 'WeasylDev']), ]) def test_valid_commission_settings(self): user = db_utils.create_user() profile.edit_profile_settings(user, set_trade=profile.EXCHANGE_SETTING_ACCEPTING, set_request=profile.EXCHANGE_SETTING_NOT_ACCEPTING, set_commission=profile.EXCHANGE_SETTING_FULL_QUEUE) test_user_profile = profile.select_profile(user) exchange_settings = profile.exchange_settings_from_settings_string(test_user_profile['settings']) self.assertEqual(exchange_settings[profile.EXCHANGE_TYPE_TRADE], profile.EXCHANGE_SETTING_ACCEPTING) self.assertEqual(exchange_settings[profile.EXCHANGE_TYPE_REQUEST], profile.EXCHANGE_SETTING_NOT_ACCEPTING) self.assertEqual(exchange_settings[profile.EXCHANGE_TYPE_COMMISSION], profile.EXCHANGE_SETTING_FULL_QUEUE) @pytest.mark.usefixtures('db', 'drop_email') def test_edit_email_password(monkeypatch): monkeypatch.setattr(profile, 'invalidate_other_sessions', lambda x: '') from weasyl.login import verify_email_change password = "<PASSWORD>" username = "test0042" email = "<EMAIL>" userid = db_utils.create_user(username=username, password=password, email_addr=email) # Case 1: No changes, user authentication succeeds assert not profile.edit_email_password( userid=userid, password=password, newemail="", newpassword="", ) # Case 2: No changes, user authentication fails with pytest.raises(WeasylError) as err: profile.edit_email_password( userid=userid, password="<PASSWORD>", newemail="", newpassword="", ) assert 'passwordIncorrect' == err.value.value # Case 3: Changes, new password only, password too short/'insecure' with pytest.raises(WeasylError) as err: profile.edit_email_password( userid=userid, password=password, newemail="", newpassword="<PASSWORD>", ) assert 'passwordInsecure' == err.value.value # Case 5: Changes, new password only, password change succeeds result = profile.edit_email_password( userid=userid, password=password, newemail="", newpassword="<PASSWORD>", ) assert "Your password has been successfully changed" in result password = "<PASSWORD>" # Case 7: Changes, new email only, email already in use db_utils.create_user(email_addr="<EMAIL>") profile.edit_email_password( userid=userid, password=password, newemail="<EMAIL>", newpassword="", ) query = d.engine.scalar(""" SELECT email FROM emailverify WHERE userid = %(userid)s LIMIT 1 """, userid=userid) assert not query # Case 8: Changes, new email only, email change succeeds newemailaddr = "<EMAIL>" result = profile.edit_email_password( userid=userid, password=password, newemail=newemailaddr, newpassword="", ) assert "Your email change request is currently pending" in result query = d.engine.execute(""" SELECT userid, email, token, createtimestamp FROM emailverify WHERE userid = %(userid)s """, userid=userid).fetchone() QID, QEMAIL, QTOKEN, QTIMESTAMP = query assert QID == userid assert QEMAIL == newemailaddr assert len(QTOKEN) == 40 assert arrow.get(QTIMESTAMP) # Now that we have the token, let's also verify that ``login.verify_email_change`` works. # It's as good a place as any. # Case 8.1/8.2: Make sure invalid token and/or userid doesn't work. with pytest.raises(WeasylError) as err: verify_email_change(None, "a") assert "Unexpected" == err.value.value with pytest.raises(WeasylError) as err: verify_email_change(1, None) assert "Unexpected" == err.value.value # Case 8.3: An incorrect token is provided. with pytest.raises(WeasylError) as err: verify_email_change(userid, "a") assert "ChangeEmailVerificationTokenIncorrect" == err.value.value # Case 8.4: Correct token is provided, and the new email is written to `login` result = verify_email_change(userid, QTOKEN) assert result == newemailaddr query = d.engine.scalar(""" SELECT email FROM login WHERE userid = %(userid)s """, userid=userid) assert query == QEMAIL # Case 9: Email and password changed at the same time. newemailaddr = "<EMAIL>" newpassword = "<PASSWORD>" result = profile.edit_email_password( userid=userid, password=password, newemail=newemailaddr, newpassword=newpassword, ) assert "Your password has been successfully changed" in result assert "Your email change request is currently pending" in result
452006
from django.db import models from django.utils.translation import gettext_lazy as _ from account.models import User class Discounts(models.Model): """ Model for Product price discount """ STATUS = ( ('accepted', 'accepted'), ('pending', 'pending'), ('rejected', 'rejected'), ) # Fields wholesale_value = models.PositiveSmallIntegerField( default=0, help_text='%', ) retail_value = models.PositiveSmallIntegerField( default=0, help_text='%', ) seller = models.ForeignKey( User, on_delete=models.CASCADE, related_name='discounts', ) all_products = models.BooleanField( default=False, verbose_name=_("Discount on all the products?") ) category = models.ForeignKey( to="products.ProductsCategory", on_delete=models.CASCADE, null=True, blank=True, ) created_at = models.DateTimeField( auto_now_add=True, ) status = models.CharField( max_length=10, choices=STATUS, default='pending', ) # Metadata class Meta: verbose_name_plural = "01. Discounts" verbose_name = "discounts" ordering = ("-created_at",) # Methods def __str__(self): return f"{self.wholesale_value} - {self.retail_value}" class ShowDiscount(models.Model): """ Model for show/hide product discount """ # Fields show_discount = models.BooleanField( default=True, ) category = models.ForeignKey( to="products.ProductsCategory", on_delete=models.CASCADE, null=True, blank=True, ) brand = models.ForeignKey( to="account.User", on_delete=models.CASCADE, limit_choices_to={'is_seller': True}, null=True, blank=True, ) # Metadata class Meta: verbose_name = "status" verbose_name_plural = "02. Discount show/hide status" # Methods def __str__(self): return "Status"
452012
import sys import xml.etree.ElementTree as ET from netconf.client import connect_ssh def usage(): print('usage: test.py host user password operation{route_dump, face_dump, face_add, route_add, punt_add, face_del, punt_del, route_del}') def test(host,user,password,operation): with connect_ssh(host, 830, user, password) as session: if (operation=='face_dump'): config = session.get() for root in config: if root.tag=="{urn:sysrepo:hicn}hicn-state": for entity in root: if entity.tag=="{urn:sysrepo:hicn}faces": print('Faces') for face in entity: for elem in face: print(elem.tag +" : "+ elem.text) elif (operation=='state_dump'): config = session.get() for root in config: if root.tag=="{urn:sysrepo:hicn}hicn-state": for entity in root: if entity.tag=="{urn:sysrepo:hicn}states": print('States') for state in entity: print(state.tag +" : "+ state.text) elif (operation=='route_dump'): config = session.get() for root in config: if root.tag=="{urn:sysrepo:hicn}hicn-state": for entity in root: if entity.tag=="{urn:sysrepo:hicn}routes": print('Routes') for route in entity: for elem in route: print(elem.tag +" : "+ elem.text) elif(operation=='face_add'): root = ET.parse('aface.xml').getroot() session.send_rpc(ET.tostring(root, encoding='utf8').decode('utf8')) elif(operation=='punt_add'): root = ET.parse('apunt.xml').getroot() session.send_rpc(ET.tostring(root, encoding='utf8').decode('utf8')) elif(operation=='route_add'): root = ET.parse('aroute.xml').getroot() session.send_rpc(ET.tostring(root, encoding='utf8').decode('utf8')) elif(operation=='face_del'): root = ET.parse('dface.xml').getroot() session.send_rpc(ET.tostring(root, encoding='utf8').decode('utf8')) elif(operation=='punt_del'): root = ET.parse('dpunt.xml').getroot() session.send_rpc(ET.tostring(root, encoding='utf8').decode('utf8')) elif(operation=='route_del'): root = ET.parse('droute.xml').getroot() session.send_rpc(ET.tostring(root, encoding='utf8').decode('utf8')) else: usage() if __name__ == '__main__': if(len(sys.argv)<4): usage() else: test(sys.argv[1],sys.argv[2],sys.argv[3],sys.argv[4])
452020
import redis import json with open('mock_data.json') as json_file: data=json.load(json_file) redis_client = redis.Redis(host='redis_db', port=6379) for i in data: redis_client.set("id":i['id'],"first_name":i['first_name'],"last_name":i['last_name'],"email":i['email'],"gender":i['gender'],"ip_address":i['ip_address'],"school_number":i['school_number'])
452026
import FWCore.ParameterSet.Config as cms from RecoBTag.SecondaryVertex.pfInclusiveSecondaryVertexFinderTagInfos_cfi import * pfInclusiveSecondaryVertexFinderCA15TagInfos = pfInclusiveSecondaryVertexFinderTagInfos.clone( trackIPTagInfos = "pfImpactParameterCA15TagInfos", extSVDeltaRToJet = 1.5, trackSelection = dict(jetDeltaRMax = 1.5), # plays no role since using IVF vertices vertexCuts = dict(maxDeltaRToJetAxis = 1.5) )
452030
import FWCore.ParameterSet.Config as cms import collections def customiseEarlyDeleteForSeeding(process, products): # Find the producers depends = collections.defaultdict(list) def _branchName(productType, moduleLabel, instanceLabel=""): return "%s_%s_%s_%s" % (productType, moduleLabel, instanceLabel, process.name_()) for name, module in process.producers_().items(): cppType = module._TypedParameterizable__type if cppType == "HitPairEDProducer": if module.produceSeedingHitSets: products[name].append(_branchName("RegionsSeedingHitSets", name)) if module.produceIntermediateHitDoublets: products[name].append(_branchName("IntermediateHitDoublets", name)) elif cppType in ["PixelTripletHLTEDProducer", "PixelTripletLargeTipEDProducer"]: if module.produceSeedingHitSets: products[name].append(_branchName("RegionsSeedingHitSets", name)) if module.produceIntermediateHitTriplets: products[name].append(_branchName("IntermediateHitTriplets", name)) # LayerHitMapCache of the doublets is forwarded to both # products, hence the dependency depends[name].append(module.doublets.getModuleLabel()) elif cppType in ["MultiHitFromChi2EDProducer"]: products[name].extend([ _branchName("RegionsSeedingHitSets", name), _branchName("BaseTrackerRecHitsOwned", name) ]) elif cppType in ["CAHitQuadrupletEDProducer", "CAHitTripletEDProducer"]: products[name].append(_branchName("RegionsSeedingHitSets", name)) if len(products) == 0: return products # Resolve data dependencies # # If a productB depends on productA (e.g. by ref or pointer), then # everybody that mightGet's producB, must also mightGet productA def _resolve(keys, name): for dependsOn in depends[name]: if dependsOn in keys: _resolve(keys, dependsOn) keys.remove(dependsOn) products[name].extend(products[dependsOn]) keys = set(depends.keys()) while len(keys) > 0: name = keys.pop() _resolve(keys, name) return products
452031
import numpy as np from numpy.testing import assert_almost_equal import cubedsphere as cs def test_csgrid_gmap(): # read reference data ds_FV3 = cs.open_FV3data("./example_notebooks/sample_data/FV3diag_C48/", 'atmos_daily') # calculate grid online grid = cs.csgrid_GMAO(48) # fix a single polar point before testing. should not have real effect index = (5, 24, 24) # index of the pole point assert grid['lat_b'][index] == -90.0 assert grid['lon_b'][index] == 35.0 assert ds_FV3['lon_b'][index] == 350.0 grid['lon_b'][index] = 350.0 # change to FV3 value for varname in ['lon', 'lon_b', 'lat', 'lat_b']: assert_almost_equal(grid[varname], ds_FV3[varname], decimal=4)
452078
import pytest from torch.optim import SGD as _SGD from neuralpy.optimizer import SGD # Possible values that are invalid learning_rates = [-6, False, ""] momentums = [-6, False, ""] dampenings = ["asd", False, 3] weight_decays = [-0.36, "asd", "", False] nesteroves = [122, ""] @pytest.mark.parametrize( "learning_rate, momentum, dampening, weight_decay, nesterov", [ (-6, 0.33, 0.333, 0.333, False), ("invalid", 0.33, 0.333, 0.333, False), (0.00, 0.33, 0.333, 0.333, False), (0.001, -6, 0.333, 0.333, False), (0.001, False, 0.333, 0.333, False), (0.001, 0.1, False, 0.333, False), (0.001, 0.002, "invalid", 0.33, 122), (0.001, 0.002, 0.376, False, 122), (0.001, 0.002, 0.342, "test", 122), (0.001, 0.002, 0.342, 0.1, 122), (0.001, 0.002, 0.342, 0.1, "invalid"), ], ) def test_sgd_should_throw_value_error( learning_rate, momentum, dampening, weight_decay, nesterov ): with pytest.raises(ValueError): SGD( learning_rate=learning_rate, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov, ) # Possible values that are valid learning_rates = [0.1, 0.002] momentums = [0.1, 0.002] dampenings = [0.35] weight_decays = [0.1, 0.002] nesteroves = [False, True] @pytest.mark.parametrize( "learning_rate, momentum, dampening, weight_decay, nesterov", [ (learning_rate, momentum, dampening, weight_decay, nesterov) for learning_rate in learning_rates for momentum in momentums for dampening in dampenings for weight_decay in weight_decays for nesterov in nesteroves ], ) def test_sgd_get_layer_method( learning_rate, momentum, dampening, weight_decay, nesterov ): x = SGD( learning_rate=learning_rate, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov, ) details = x.get_optimizer() assert isinstance(details, dict) is True assert issubclass(details["optimizer"], _SGD) is True assert isinstance(details["keyword_arguments"], dict) is True assert details["keyword_arguments"]["lr"] == learning_rate assert details["keyword_arguments"]["momentum"] == momentum assert details["keyword_arguments"]["dampening"] == dampening assert details["keyword_arguments"]["weight_decay"] == weight_decay assert details["keyword_arguments"]["nesterov"] == nesterov def test_sgd_get_layer_method_without_parameter(): x = SGD() details = x.get_optimizer() assert isinstance(details, dict) is True assert issubclass(details["optimizer"], _SGD) is True assert isinstance(details["keyword_arguments"], dict) is True assert details["keyword_arguments"]["lr"] == 0.001 assert details["keyword_arguments"]["momentum"] == 0.0 assert details["keyword_arguments"]["dampening"] == 0.0 assert details["keyword_arguments"]["weight_decay"] == 0.0 assert details["keyword_arguments"]["nesterov"] is False
452084
import numpy as np from pandas import PeriodIndex import pandas._testing as tm class TestFactorize: def test_factorize(self): idx1 = PeriodIndex( ["2014-01", "2014-01", "2014-02", "2014-02", "2014-03", "2014-03"], freq="M" ) exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype=np.intp) exp_idx = PeriodIndex(["2014-01", "2014-02", "2014-03"], freq="M") arr, idx = idx1.factorize() tm.assert_numpy_array_equal(arr, exp_arr) tm.assert_index_equal(idx, exp_idx) arr, idx = idx1.factorize(sort=True) tm.assert_numpy_array_equal(arr, exp_arr) tm.assert_index_equal(idx, exp_idx) idx2 = PeriodIndex( ["2014-03", "2014-03", "2014-02", "2014-01", "2014-03", "2014-01"], freq="M" ) exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype=np.intp) arr, idx = idx2.factorize(sort=True) tm.assert_numpy_array_equal(arr, exp_arr) tm.assert_index_equal(idx, exp_idx) exp_arr = np.array([0, 0, 1, 2, 0, 2], dtype=np.intp) exp_idx = PeriodIndex(["2014-03", "2014-02", "2014-01"], freq="M") arr, idx = idx2.factorize() tm.assert_numpy_array_equal(arr, exp_arr) tm.assert_index_equal(idx, exp_idx)
452111
import copy import requests import os import time import threading import json import logging import multiprocessing from .autotune_task_manager import AutotuneTaskManager from bagua.bagua_define import ( TensorDtype, TensorDeclaration, BaguaCoreTelemetrySpan, BaguaHyperparameter, ) from flask import request import numpy as np from typing import Dict, List class NpEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() elif isinstance(obj, TensorDtype): return obj.value else: return super(NpEncoder, self).default(obj) class AutotuneServiceTaskManager: def __init__( self, task_name: str, world_size: int, is_output_autotune_log: bool ) -> None: self.inner = AutotuneTaskManager(task_name, is_output_autotune_log) self.warmup_pass_count = 0 self.sampling_count = 0 self.lock = threading.Lock() self.check_board = [-1] * world_size self.time_hp_last_granted = time.time() self.hyperparameter = BaguaHyperparameter() class AutotuneService: MAX_TRACE_INFO = 1000 def __init__( self, world_size, autotune_level=0, max_samples=60, sampling_confidence_time_s=5, warmup_time_s=30, is_output_autotune_log=False, default_bucket_size=10 * 1024 ** 2, ): self.autotune_level = autotune_level self.world_size = world_size self.max_samples = max_samples self.sampling_confidence_time_s = sampling_confidence_time_s self.warmup_time_s = warmup_time_s self.is_initialized = False self.is_output_autotune_log = is_output_autotune_log self.default_bucket_size: int = default_bucket_size self.model_dict: Dict[str, AutotuneServiceTaskManager] = {} self.model_dict_mutex = threading.Lock() # bagua-core trace and obtain tensor calculation partial order self.trace_info_dict = {} self.tensor_partial_order = {} self.tensor_partial_order_fixed = False self.tensor_partial_order_lock = threading.Lock() def autotune( self, hp_manager: AutotuneServiceTaskManager, rank: int, train_iter: int, tensor_partial_order: Dict[str, int] = {}, ): if hp_manager.sampling_count > self.max_samples: return ( recommended_train_iter, hp, system_efficiency_score, ) = hp_manager.inner.tail_record() logging.info( "recommended_train_iter={}, hyperparameters={}, speed={}".format( recommended_train_iter, hp, system_efficiency_score, ) ) sampling_time = time.time() - hp_manager.time_hp_last_granted # Skip at least once during warmup if ( sampling_time < self.warmup_time_s or hp_manager.warmup_pass_count == 0 # noqa: W503 ): logging.info( "warmup pass, time.time={}, time_hp_last_granted={}, " "warmup_time_s={}".format( time.time(), hp_manager.time_hp_last_granted, self.warmup_time_s, ) ) hp_manager.warmup_pass_count += 1 return if hp_manager.sampling_count == 0: confidence_skip = ( sampling_time < self.warmup_time_s + self.sampling_confidence_time_s ) else: confidence_skip = sampling_time < self.sampling_confidence_time_s if confidence_skip: logging.debug( "The sampling time is not up, time={}, last={}, " "sampling_confidence_time_s={}".format( time.time(), hp_manager.time_hp_last_granted, self.sampling_confidence_time_s, ) ) return logging.info( "rank={}, train_iter={}, sampling_count={}, " "max_samples={}".format( rank, train_iter, hp_manager.sampling_count, self.max_samples ) ) recommended_bagua_hp = hp_manager.inner.ask_hyperparmeter( train_iter, tensor_partial_order ) if hp_manager.sampling_count < self.max_samples: hp_manager.hyperparameter = recommended_bagua_hp else: hp_manager.hyperparameter = hp_manager.inner.best_hyperparameter() hp_manager.sampling_count += 1 def setup_app(self, app): @app.route("/api/v1/register_tensors", methods=["POST"]) def register_tensors(): req: dict = request.get_json(force=True) model_name: str = req["model_name"] tensor_list: List[TensorDeclaration] = req["tensor_list"] whether_to_bucket: bool = req["whether_to_bucket"] with self.model_dict_mutex: if model_name not in self.model_dict: self.model_dict[model_name] = AutotuneServiceTaskManager( task_name=model_name, world_size=self.world_size, is_output_autotune_log=self.is_output_autotune_log, ) hp_manager = self.model_dict[model_name] bucket_size = self.default_bucket_size if whether_to_bucket is False: bucket_size = 10 * 1024 ** 5 with hp_manager.lock: hp = BaguaHyperparameter( buckets=AutotuneTaskManager.split_bucket_by_bucket_size( tensor_list, bucket_size, ), bucket_size=bucket_size, ) hp_manager.time_hp_last_granted = time.time() hp_manager.hyperparameter = hp return json.dumps( { "recommended_hyperparameters": hp.dict(), } ) @app.route("/api/v1/report_metrics", methods=["POST"]) def report_metrics(): req: dict = request.get_json(force=True) model_name: str = req["model_name"] rank: int = req["rank"] train_iter: int = req["train_iter"] speed: float = req["speed"] hyperparameters = req["hyperparameters"] if model_name not in self.model_dict: return "Service not ready for report_metrics!", 405 hp_manager = self.model_dict[model_name] # Only consider the rank of the first report metrics now. with hp_manager.lock: (last_report_train_iter, _, _) = hp_manager.inner.tail_record() if train_iter <= last_report_train_iter: return json.dumps({}) logging.debug( "rank={}, train_iter={}, speed={}, " "hyperparameters={}".format( rank, train_iter, speed, hyperparameters, ) ) hp_manager.inner.report_metrics( train_iter=train_iter, hyperparameter=BaguaHyperparameter().update(hyperparameters), system_efficiency_score=speed, ) return json.dumps({}) @app.route("/api/v1/ask_hyperparameters", methods=["POST"]) def ask_hyperparameters(): """ report_metrics must be called before ask_hyperparameters """ req: dict = request.get_json(force=True) rank: int = req["rank"] model_name: str = req["model_name"] train_iter: int = req["train_iter"] if model_name not in self.model_dict: return "Service not ready for report_metrics!", 405 hp_manager = self.model_dict[model_name] tensor_partial_order = {} with self.tensor_partial_order_lock: tensor_partial_order = copy.deepcopy(self.tensor_partial_order) logging.debug("tensor_partial_order={}".format(tensor_partial_order)) with hp_manager.lock: # Autotune conditions: # 1. autotune_level >= 1. # 2. The bagua process is not in the process of hyperparameter update. (self.check_board.count(self.check_board[0]) # == len(self.check_board)) # 3. Only execute autotune at most once in an iteration. (self.check_board[rank] < train_iter) check_board = hp_manager.check_board if ( self.autotune_level >= 1 and check_board.count(check_board[0]) # noqa: W503 == len(check_board) # noqa: W503 and check_board[rank] < train_iter # noqa: W503 ): self.autotune(hp_manager, rank, train_iter, tensor_partial_order) check_board[rank] = train_iter return json.dumps( { "recommended_hyperparameters": hp_manager.hyperparameter.dict(), "is_autotune_completed": hp_manager.sampling_count > self.max_samples, # noqa: W503 } ) @app.route("/api/v1/report_tensor_execution_order", methods=["POST"]) def report_tensor_execution_order(): req: dict = request.get_json(force=True) spans: List[BaguaCoreTelemetrySpan] = req["spans"] with self.tensor_partial_order_lock: spans = sorted(spans, key=lambda span: span["start_time"]) for span in spans: tensor_name = span["tensor_name"] action = span["action"] if (tensor_name, action) in self.trace_info_dict: continue self.trace_info_dict[(tensor_name, action)] = True if tensor_name not in self.tensor_partial_order: self.tensor_partial_order[tensor_name] = len( self.tensor_partial_order ) return json.dumps({}) @app.route("/api/v1/health_check", methods=["GET"]) def health_check(): return json.dumps({"status": "ok"}) # set secret-key app.config.update(SECRET_KEY=os.urandom(24)) return app def reset_error_retry(request_func): """Retry request when catch ConnectionResetError.""" def wrap(*args, **kwargs): MAX_RETRIES = 3 for retry in range(MAX_RETRIES + 1): try: result = request_func(*args, **kwargs) return result except (ConnectionResetError, requests.exceptions.ConnectionError) as e: if retry == MAX_RETRIES: raise e logging.warning("request failed, retry={}, e={}".format(retry, e)) time.sleep(1) return wrap class AutotuneClient: def __init__( self, service_addr: str, service_port: int, proxies={ "http": None, "https": None, }, ): self.autotune_service_addr = "{}:{}".format(service_addr, service_port) self.session = requests.Session() self.proxies = proxies import socket from urllib3.connection import HTTPConnection HTTPConnection.default_socket_options = HTTPConnection.default_socket_options + [ (socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1), # Enables the feature (socket.SOL_TCP, socket.TCP_KEEPIDLE, 45), # Overrides the time when the stack willl start sending KeppAlives after no data received on a Persistent Connection (socket.SOL_TCP, socket.TCP_KEEPINTVL, 10), # Defines how often thoe KA will be sent between them (socket.SOL_TCP, socket.TCP_KEEPCNT, 6), # How many attemps will your code try if the server goes down before droping the connection. ] @reset_error_retry def report_metrics( self, model_name: str, rank: int, train_iter: int, hyperparameters: dict, speed: float, ) -> requests.Response: rsp = self.session.post( "http://{}/api/v1/report_metrics".format(self.autotune_service_addr), json={ "model_name": model_name, "rank": rank, "train_iter": train_iter, "hyperparameters": hyperparameters, "speed": speed, }, proxies=self.proxies, ) return rsp @reset_error_retry def register_tensors( self, model_name: str, tensor_list: List[TensorDeclaration], whether_to_bucket: bool = True, ) -> requests.Response: rsp = self.session.post( "http://{}/api/v1/register_tensors".format(self.autotune_service_addr), json={ "model_name": model_name, "tensor_list": tensor_list, "whether_to_bucket": whether_to_bucket, }, proxies=self.proxies, ) return rsp @reset_error_retry def ask_hyperparameters( self, model_name: str, rank: int, train_iter: int, ) -> requests.Response: rsp = self.session.post( "http://{}/api/v1/ask_hyperparameters".format(self.autotune_service_addr), json={ "model_name": model_name, "rank": rank, "train_iter": train_iter, }, proxies=self.proxies, ) return rsp @reset_error_retry def report_tensor_execution_order( self, spans: List[BaguaCoreTelemetrySpan], ) -> requests.Response: rsp = self.session.post( "http://{}/api/v1/report_tensor_execution_order".format( self.autotune_service_addr ), json={ "spans": spans, }, proxies=self.proxies, ) return rsp def health_check(self) -> bool: try: # get response will be ok self.session.get( "http://{}/api/v1/health_check".format( self.autotune_service_addr ), proxies=self.proxies ) return True except requests.exceptions.ConnectionError: return False if __name__ == "__main__": import argparse from flask import Flask parser = argparse.ArgumentParser() parser.add_argument("--nprocs", type=int, default=8) parser.add_argument("--port", type=int, default=8123) args = parser.parse_args() autotune_service = AutotuneService(args.nproc) app = Flask(__name__) app = autotune_service.setup_app(app) server = multiprocessing.Process( target=app.run, kwargs={ "host": "0.0.0.0", "port": args.port, }, ) server.daemon = True server.start() server.join()
452118
import itertools from hamcrest import * @when("we check for messages by the bot") def step_impl(context): context.bot.get_messages() @then("there are no messages") def step_impl(context): assert_that(context.bot.current_messages, empty()) @then('there is a message for {person} which includes the text "{text}"') def step_impl(context, person, text): context.execute_steps( f''' then there is a message for {person} which includes the following text: """ {text} """ ''' ) @then("there is a message for {person} which includes the following text") def step_impl(context, person): text = context.text person = context.accounts.get_person(person) messages_for_person = context.bot.get_messages_for_person(person) item_matcher = has_entry("text", contains_string(text)) assert_that(messages_for_person, has_item(item_matcher)) context.last_matched_message = next( (m for m in messages_for_person if item_matcher.matches(m)) ) @then("there is a message for {person} with the following text") def step_impl(context, person): text = context.text.format(context=context) person = context.accounts.get_person(person) messages_for_person = context.bot.get_messages_for_person(person) item_matcher = has_entry("text", equal_to(text)) assert_that(messages_for_person, has_item(item_matcher)) context.last_matched_message = next( (m for m in messages_for_person if item_matcher.matches(m)) ) @then('there is no message for {person} which includes the text "{text}"') def step_impl(context, person, text): context.execute_steps( f''' then there is no message for {person} which includes the following text: """ {text} """ ''' ) @then("there is no message for {person} which includes the following text") def step_impl(context, person): text = context.text person = context.accounts.get_person(person) messages_for_person = context.bot.get_messages_for_person(person) item_matcher = has_entry("text", contains_string(text)) assert_that(messages_for_person, is_not(has_item(item_matcher))) @then('this message includes the text "{text}"') def step_impl(context, text): assert_that(context.last_matched_message, has_entry("text", contains_string(text))) @then('this message does not include the text "{text}"') def step_impl(context, text): assert_that( context.last_matched_message, has_entry("text", is_not(contains_string(text))) ) @step("{sender} sends the {command} command to the bot") def step_impl(context, sender, command): if sender == "everybody": for person in context.accounts.all_persons(): context.bot.send_message(person, command) else: sender = context.accounts.get_person(sender) context.bot.send_message(sender, command)
452138
from assistantforynab import settings import os import time import shutil import re from webdriver_manager.chrome import ChromeDriverManager from assistantforynab.utils import gui, utils def restore_defaults(): utils.log_info('Restoring default settings') for p in [settings.chromedriver_path, settings.settings_path]: if os.path.exists(p): utils.log_debug('removing', p) os.remove(p) for p in settings.log_dir, settings.data_dir, settings.backup_dir: if os.path.exists(p): utils.log_debug('removing', p) shutil.rmtree(p) settings.init() def setup_chromedriver(): if os.path.exists(settings.chromedriver_path): return utils.log_info('Installing Chromedriver') downloadPath = ChromeDriverManager(path = settings.chromedriver_dir).install() shutil.move(downloadPath, settings.chromedriver_path) shutil.rmtree(settings.chromedriver_dir + "/drivers") assert os.path.exists(settings.chromedriver_path) def make_dirs(): utils.log_info('Checking for directories') for p in settings.log_dir, settings.data_dir, settings.backup_dir: if not os.path.exists(p): utils.log_info('Making directory', p) os.mkdir(p) def setup_ynab_auth(): utils.log_info('Checking for YNAB authentication') # TODO: make this use oauth instead of api tokens if settings.get('api_token'): return utils.log_info('Installing YNAB authentication') api_token_url = 'https://app.youneedabudget.com/settings/developer' d = gui.driver() d.get(api_token_url) utils.log_info('Log in if needed') new_token_button = gui.get_by_text('button', 'New Token') gui.click(new_token_button) utils.log_info('Enter your password in the YNAB Web App, then click "Generate"') while 'New Personal Access Token' not in d.page_source: time.sleep(.5) api_token = re.search('New Personal Access Token: <strong>([^<]*)</strong>', d.page_source).groups()[0] settings.set('api_token', api_token) utils.log_debug('settings.api_token', settings.api_token) assert settings.api_token gui.quit() def setup_ynab_budget_id(): utils.log_info('Checking for selected budget') if settings.get('budget_id'): return utils.log_info('Selecting budget') url = 'https://app.youneedabudget.com/' driver = gui.driver() driver.get(url) utils.log_info('Log in if needed') while not re.search('youneedabudget.com/([^/]+)/', driver.current_url): time.sleep(.5) budget_selection_prompt = 'Press Enter when you have loaded the budget you want to use.' input(budget_selection_prompt) utils.log_debug(budget_selection_prompt) while not re.search('youneedabudget.com/([^/]+)/', driver.current_url): time.sleep(.5) settings.set('budget_id', re.search('youneedabudget.com/([^/]+)/', driver.current_url).groups()[0]) utils.log_debug('settings.budget_id', settings.budget_id) assert settings.budget_id gui.quit() def install(): utils.log_info('Installing') setup_chromedriver() make_dirs() setup_ynab_auth() setup_ynab_budget_id() settings.init() utils.log_debug('Settings:', settings._s.settings) utils.log_info('Installed!') if __name__ == '__main__': restore_defaults() install()
452154
import hashlib import re from livestreamer.plugin import Plugin from livestreamer.plugin.api import http from livestreamer.stream import HDSStream # Got the secret from the swf with rev number location # (tv/wat/player/media/Media.as) TOKEN_SECRET = '<KEY>' _url_re = re.compile("http(s)?://(\w+\.)?wat.tv/") _video_id_re = re.compile("href=\"http://m.wat.tv/video/([^\"]+)", re.IGNORECASE) class WAT(Plugin): @classmethod def can_handle_url(cls, url): return _url_re.match(url) def _get_streams(self): res = http.get(self.url) match = video_id = _video_id_re.search(res.text) if not match: return video_id = match.group(1) # TODO: Replace with "yield from" when dropping Python 2. for __ in self._create_streams('web', video_id).items(): yield __ for __ in self._create_streams('webhd', video_id).items(): yield __ def _create_streams(self, type_, video_id): url = self._generate_security_url(type_, video_id) res = http.get(url) return HDSStream.parse_manifest(self.session, res.text, cookies=res.cookies) def _generate_security_url(self, type_, video_id): token = self._generate_security_token(type_, video_id) return ("http://www.wat.tv/get/{type_}/{video_id}?token={token}" "&domain=www.wat.tv&refererURL=wat.tv&revision=04.00.719%0A&" "synd=0&helios=1&context=playerWat&pub=1&country=FR" "&sitepage=WAT%2Ftv%2Ft%2Finedit%2Ftf1%2Fparamount_pictures_" "france&lieu=wat&playerContext=CONTEXT_WAT&getURL=1" "&version=LNX%2014,0,0,125").format(**locals()) def _generate_security_token(self, type_, video_id): # Get timestamp res = http.get('http://www.wat.tv/servertime') timestamp = int(res.text.split('|')[0]) timestamp_hex = format(timestamp, 'x').rjust(8, '0') # Player id player_prefix = "/{0}/{1}".format(type_, video_id) # Create the token data = (TOKEN_SECRET + player_prefix + timestamp_hex).encode('utf8') token = hashlib.md5(data) token = "{0}/{1}".format(token.hexdigest(), timestamp_hex) return token __plugin__ = WAT
452161
import pygame pygame.init() pygame.joystick.init() joystick_count = pygame.joystick.get_count() if joystick_count == 0: print("No joysticks found.") exit(0) for i in range(joystick_count): print("%d - %s" % (i, pygame.joystick.Joystick(i).get_name())) try: joystick_id = int(input("Choose a joystick: ")) except ValueError: print("Incorrect input. Only numbers are allowed.") exit(1) if joystick_id > joystick_count: print("Joystick ID is invalid.") exit(0) joystick = pygame.joystick.Joystick(joystick_id) joystick.init() num_buttons = joystick.get_numbuttons() num_axes = joystick.get_numaxes() while(True): pygame.event.pump() for i in range(num_buttons): if joystick.get_button(i) == 1: print("Button %d is pressed." % i) for i in range(num_axes): if abs(joystick.get_axis(i)) > 0.3: print("Axis %d is in use." % i)
452186
import unittest from HARK.datasets import load_SCF_wealth_weights from HARK.datasets.cpi.us.CPITools import cpi_deflator from HARK.datasets.SCF.WealthIncomeDist.SCFDistTools import income_wealth_dists_from_scf class test_load_SCF_wealth_weights(unittest.TestCase): def setUp(self): self.SCF_wealth, self.SCF_weights = load_SCF_wealth_weights() def test_shape(self): self.assertEqual(self.SCF_wealth.shape, (3553,)) self.assertEqual(self.SCF_weights.shape, (3553,)) # %% US CPI tests class test_cpi_deflators(unittest.TestCase): def test_month_deflators(self): # Same year test defl_same_year = cpi_deflator(2000, 2000, "SEP") self.assertEqual(defl_same_year[0], 1.0) # Different year test defl_diff_year = cpi_deflator(1998, 2019, "SEP") self.assertAlmostEqual(defl_diff_year[0], 1.57279534) def test_avg_deflators(self): # Same year test defl_same_year = cpi_deflator(2000, 2000) self.assertEqual(defl_same_year[0], 1.0) # Different year test defl_diff_year = cpi_deflator(1998, 2019) self.assertAlmostEqual(defl_diff_year[0], 1.57202505) # %% Tests for Survey of Consumer finances initial distributions class test_SCF_dists(unittest.TestCase): def setUp(self): self.BaseYear = 1992 def test_at_21(self): # Get stats for various groups and test them NoHS = income_wealth_dists_from_scf( self.BaseYear, age=21, education="NoHS", wave=1995 ) self.assertAlmostEqual(NoHS["aNrmInitMean"], -1.0611984728537684) self.assertAlmostEqual(NoHS["aNrmInitStd"], 1.475816500147777) self.assertAlmostEqual(NoHS["pLvlInitMean"], 2.5413398571226233) self.assertAlmostEqual(NoHS["pLvlInitStd"], 0.7264931123240703) HS = income_wealth_dists_from_scf( self.BaseYear, age=21, education="HS", wave=2013 ) self.assertAlmostEqual(HS["aNrmInitMean"], -1.0812342937817578) self.assertAlmostEqual(HS["aNrmInitStd"], 1.7526704743231725) self.assertAlmostEqual(HS["pLvlInitMean"], 2.806605268756435) self.assertAlmostEqual(HS["pLvlInitStd"], 0.6736467457859727) Coll = income_wealth_dists_from_scf( self.BaseYear, age=21, education="College", wave=2019 ) self.assertAlmostEqual(Coll["aNrmInitMean"], -0.6837248150760165) self.assertAlmostEqual(Coll["aNrmInitStd"], 0.8813676761170798) self.assertAlmostEqual(Coll["pLvlInitMean"], 3.2790838587291127) self.assertAlmostEqual(Coll["pLvlInitStd"], 0.746362502979793) def test_at_60(self): # Get stats for various groups and test them NoHS = income_wealth_dists_from_scf( self.BaseYear, age=60, education="NoHS", wave=1995 ) self.assertAlmostEqual(NoHS["aNrmInitMean"], 0.1931578281432479) self.assertAlmostEqual(NoHS["aNrmInitStd"], 1.6593916577375334) self.assertAlmostEqual(NoHS["pLvlInitMean"], 3.3763953392998705) self.assertAlmostEqual(NoHS["pLvlInitStd"], 0.61810580085094993) HS = income_wealth_dists_from_scf( self.BaseYear, age=60, education="HS", wave=2013 ) self.assertAlmostEqual(HS["aNrmInitMean"], 0.6300862955841334) self.assertAlmostEqual(HS["aNrmInitStd"], 1.7253736778036055) self.assertAlmostEqual(HS["pLvlInitMean"], 3.462790681398899) self.assertAlmostEqual(HS["pLvlInitStd"], 0.8179188962937205) Coll = income_wealth_dists_from_scf( self.BaseYear, age=60, education="College", wave=2019 ) self.assertAlmostEqual(Coll["aNrmInitMean"], 1.643936802283761) self.assertAlmostEqual(Coll["aNrmInitStd"], 1.2685135110865389) self.assertAlmostEqual(Coll["pLvlInitMean"], 4.278905678818748) self.assertAlmostEqual(Coll["pLvlInitStd"], 1.0776403992280614)
452191
import re import pytest from dagster.core.definitions import intermediate_storage, pipeline, solid from dagster.core.definitions.mode import ModeDefinition from dagster.core.execution.api import execute_pipeline, reexecute_pipeline from dagster.core.instance import DagsterInstance from dagster.core.storage.object_store import InMemoryObjectStore from dagster.core.storage.system_storage import ( build_intermediate_storage_from_object_store, io_manager_from_intermediate_storage, ) from dagster_tests.general_tests.utils_tests.utils import assert_no_warnings def test_intermediate_storage_def_to_io_manager_def(): called = {} @intermediate_storage() def no_config_intermediate_storage(init_context): called["ran"] = True object_store = InMemoryObjectStore() return build_intermediate_storage_from_object_store( object_store=object_store, init_context=init_context ) @solid def return_one(_): return 1 @pipeline( mode_defs=[ ModeDefinition( resource_defs={ "io_manager": io_manager_from_intermediate_storage( no_config_intermediate_storage ) } ) ] ) def foo(): return_one() assert execute_pipeline(foo).success def test_intermediate_storage_deprecation_warning(): @solid def return_one(_): return 1 @pipeline def foo(): return_one() with assert_no_warnings(): execute_pipeline(foo) with pytest.warns( UserWarning, match=re.escape( "Intermediate Storages are deprecated in 0.10.0 and will be removed in a future release." ), ): execute_pipeline(foo, run_config={"intermediate_storage": {"filesystem": {}}}) def test_intermediate_storage_reexecution(): @solid def return_one(_): return 1 @solid def plus_one(_, one): return one + 1 @pipeline def foo(): plus_one(return_one()) run_config = {"intermediate_storage": {"filesystem": {}}} instance = DagsterInstance.ephemeral() result = execute_pipeline(foo, run_config=run_config, instance=instance) assert result.success reexecution_result = reexecute_pipeline( foo, run_config=run_config, parent_run_id=result.run_id, instance=instance ) assert reexecution_result.success partial_reexecution_result = reexecute_pipeline( foo, run_config=run_config, step_selection=["plus_one"], parent_run_id=result.run_id, instance=instance, ) assert partial_reexecution_result.success def test_intermediate_storage_event_message(): @solid def return_one(_): return 1 @solid def plus_one(_, one): return one + 1 @pipeline def foo(): plus_one(return_one()) run_config = {"intermediate_storage": {"filesystem": {}}} result = execute_pipeline(foo, run_config=run_config) for i in filter(lambda i: i.is_handled_output, result.event_list): assert "output manager" not in i.message for i in filter(lambda i: i.is_loaded_input, result.event_list): assert "input manager" not in i.message
452197
import requests import subprocess, shlex import argparse import os import logging import urllib3 urllib3.disable_warnings() def main(): parser = argparse.ArgumentParser(description='Required args for recursive clone') parser.add_argument('--group_id', metavar='group_id', type=int, help='Id of a group in gitlab', required=True) parser.add_argument('--branch', metavar='branch', type=str, help='Branch to clone in all repos [by default master]', default='master') parser.add_argument( '--gitlab-url', metavar='gitlab', type=str, default=os.environ.get('GITLAB_URL', "gitlab.com"), help='Gitlab address [by default gitlab.com]') parser.add_argument( '--token', metavar='token', type=str, default=os.environ.get('GITLAB_TOKEN'), help='Gitlab Token') args = parser.parse_args() request_param = args.__dict__ clone(**request_param) def clone(group_id, branch, token, gitlab_url): total_pages = 1 page = 0 while page < total_pages: page += 1 response = requests.get( f"{gitlab_url}/api/v4/groups/{group_id}/projects?private_token={token}&include_subgroups=True&per_page=100&page={page}&with_shared=False", verify=False) for project in response.json(): path = project['path_with_namespace'] ssh_url_to_repo = project['ssh_url_to_repo'] try: if not os.path.exists(path): command = shlex.split(f"git clone --branch {branch} {ssh_url_to_repo} {path}") result_code = subprocess.Popen(command) else: logging.info(f"{path} already exists") command = shlex.split(f"cd {path}; git pull {path}; cd -") result_code = subprocess.Popen(command) except Exception as e: logging.error(f"Error on {ssh_url_to_repo}: {e}") total_pages = int(response.headers['X-Total-Pages']) if __name__ == '__main__': main()
452241
from django.core.exceptions import ImproperlyConfigured from django.urls import reverse from django_sorcery import forms from django_sorcery.views import edit from ..base import TestCase from ..testapp.models import Owner, db from ..testapp.views import OwnerCreateViewWithForm class TestCreateView(TestCase): def test_create(self): url = reverse("owner_create") response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertIsInstance(response.context_data["view"], edit.CreateView) self.assertIsInstance(response.context_data["form"], forms.ModelForm) response = self.client.post(url, {"first_name": "Randall", "last_name": "Munroe"}) self.assertEqual(response.status_code, 302) self.assertEqual(response.url, reverse("owners_list")) def test_create_with_form_class(self): url = reverse("owner_create_form") response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertIsInstance(response.context_data["view"], edit.CreateView) self.assertTrue(type(response.context_data["form"]) is OwnerCreateViewWithForm.form_class) def test_create_bad_field_form_config(self): url = reverse("owner_create_field_form") with self.assertRaises(ImproperlyConfigured) as ctx: self.client.get(url) self.assertEqual(str(ctx.exception), "Specifying both 'fields' and 'form_class' is not permitted.") def test_create_get_success_url_bad_config(self): view = OwnerCreateViewWithForm() with self.assertRaises(ImproperlyConfigured) as ctx: view.get_success_url() self.assertEqual( str(ctx.exception), "No URL to redirect to. Either provide a url or override this function to return a url" ) def test_create_form_invalid(self): url = reverse("vehicle_create") response = self.client.post(url, {}) self.assertEqual(response.status_code, 200) form = response.context_data["form"] self.assertFalse(form.is_valid()) self.assertEqual(form.errors, {"type": ["This field is required."], "is_used": ["This field is required."]}) self.assertHTMLEqual(response.content.decode(), form.as_p()) class TestUpdateView(TestCase): def test_update(self): owner = Owner(first_name="Radnall", last_name="Munroe") db.add(owner) db.flush() url = reverse("owner_update", kwargs={"id": owner.id}) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertIsInstance(response.context_data["view"], edit.UpdateView) self.assertIsInstance(response.context_data["form"], forms.ModelForm) form = response.context_data["form"] view = response.context_data["view"] self.assertHTMLEqual(response.content.decode(), form.as_p()) self.assertEqual(view.object, owner) response = self.client.post(url, {"first_name": "Patrick", "last_name": "Bateman"}) self.assertEqual(response.status_code, 302) self.assertEqual(response.url, reverse("owners_list")) self.assertEqual(owner.first_name, "Patrick") self.assertEqual(owner.last_name, "Bateman") class TestDeleteView(TestCase): def test_delete(self): owner = Owner(first_name="Radnall", last_name="Munroe") db.add(owner) db.flush() url = reverse("owner_delete", kwargs={"id": owner.id}) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertIsInstance(response.context_data["view"], edit.DeleteView) self.assertEqual(response.context_data["object"], owner) response = self.client.post(url) self.assertEqual(response.status_code, 302) self.assertEqual(response.url, reverse("owners_list")) state = db.inspect(owner) self.assertTrue(state.deleted) def test_delete_get_success_url(self): view = edit.DeletionMixin() with self.assertRaises(ImproperlyConfigured): view.get_success_url()
452255
from gym import ObservationWrapper class TransformObservation(ObservationWrapper): r"""Transform the observation via an arbitrary function. Example:: >>> import gym >>> env = gym.make('CartPole-v1') >>> env = TransformObservation(env, lambda obs: obs + 0.1*np.random.randn(*obs.shape)) >>> env.reset() array([-0.08319338, 0.04635121, -0.07394746, 0.20877492]) Args: env (Env): environment f (callable): a function that transforms the observation """ def __init__(self, env, f): super(TransformObservation, self).__init__(env) assert callable(f) self.f = f def observation(self, observation): return self.f(observation)
452274
from bs4 import BeautifulSoup as bsoup import pandas as pd import numpy as np import humanfriendly # Read in email data file df = pd.read_csv('../bodytext.csv', header = 0) # Filter out sent mail emails = df.query('FromEmail != "[my email address]"').copy() def wordCount(row): if(row['Format'] == 'Html'): return htmlWordCount(row['Body']) return textWordCount(row['Body']) def textWordCount(text): if not(isinstance(text, str)): return 0 return len(text.split(None)) def htmlWordCount(text): if not(isinstance(text, str)): return 0 soup = bsoup(text, 'html.parser') if soup is None: return 0 stripped = soup.get_text(" ", strip=True) [s.extract() for s in soup(['style', 'script', 'head', 'title'])] stripped = soup.get_text(" ", strip=True) return textWordCount(stripped) averageWordsPerMinute = 350 # Count the words in each message body emails['WordCount'] = emails.apply(wordCount, axis=1) emails['MinutesToRead'] = emails['WordCount'] / averageWordsPerMinute # Get total number of minutes required to read all these emails totalMinutes = emails['MinutesToRead'].sum() # And convert that to a more human-readable timespan timeToRead = humanfriendly.format_timespan(totalMinutes * 60)
452279
from __future__ import division, generators, print_function import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import macarico.util as util from macarico.util import Var, Varng import macarico def sample_from(l): r = sum((p for _, p in l)) * np.random.random() last_chance = None for k, p in l: if last_chance is None: last_chance = k r -= p if r <= 0: return k return last_chance class MDPExample(object): def __init__(self, initial, transitions, costs, T): self.states = set([s for s, _ in initial]) self.n_actions = 0 for _, actions in transitions.items(): for a, subsequent in actions.items(): self.n_actions = max(a, self.n_actions) for s1, p in subsequent: if p > 0: self.states.add(s1) self.n_actions += 1 self.initial = initial self.transitions = transitions self.costs = costs self._T = T class MDP(macarico.Env): def __init__(self, example): macarico.Env.__init__(self, example.n_actions, example._T, example) self.s0 = sample_from(self.example.initial) self.example.cost = 0 def _run_episode(self, policy): cost = 0 self.s = self.s0 for _ in range(self.horizon()): self.actions = self.example.transitions[self.s].keys() a = policy(self) s1 = sample_from(self.example.transitions[self.s][a]) cost += self.example.costs(self.s, a, s1) self.s = s1 self.example.cost = cost return self._trajectory def _rewind(self): pass class MDPLoss(macarico.Loss): def __init__(self): super(MDPLoss, self).__init__('cost') def evaluate(self, example): return example.cost class DeterministicReference(macarico.Reference): def __init__(self, pi_ref): self.pi_ref = pi_ref def __call__(self, state): return self.pi_ref(state.s) def set_min_costs_to_go(self, state, costs): a_star = self.pi_ref(state) costs.zero_() costs += 1 costs[a_star] = 0 class MDPFeatures(macarico.DynamicFeatures): def __init__(self, n_states, noise_rate=0): macarico.DynamicFeatures.__init__(self, n_states) self.n_states = n_states self.noise_rate = noise_rate self._t = nn.Linear(1,1,bias=False) def _forward(self, state): f = util.zeros(self._t.weight, 1, 1, self.n_states) if np.random.random() > self.noise_rate: f[0, 0, state.s] = 1 return Varng(f) def __call__(self, state): return self.forward(state)
452285
import sys import os import time from robot.libraries.BuiltIn import BuiltIn from robot.output.logger import LOGGER class runKeywordAsync: def __init__(self): self._thread_pool = {} self._last_thread_handle = 1 #self._robot_log_level = BuiltIn().get_variable_value("${LOG_LEVEL}") def run_method_async(self, keyword, *args, **kwargs): #BuiltIn().set_log_level("NONE") handle = self._last_thread_handle thread = self._threaded_method(keyword, *args, **kwargs) thread.start() self._thread_pool[handle] = thread self._last_thread_handle += 1 return handle def run_keyword_async(self, keyword, *args): #BuiltIn().set_log_level("NONE") handle = self._last_thread_handle thread = self._threaded(keyword, *args) thread.start() self._thread_pool[handle] = thread self._last_thread_handle += 1 return handle def wait_async_all(self, timeout=60): timeout = int(timeout) results = [] for thread in self._thread_pool: try: result = self._thread_pool[thread].result_queue.get(True, timeout) results.append(result) except: #BuiltIn().set_log_level(self._robot_log_level) for thread in self._thread_pool: self._thread_pool[thread].terminate() raise Exception("Process " + str(thread) + " Failed") #BuiltIn().set_log_level(self._robot_log_level) self._thread_pool = {} self._last_thread_handle = 1 return results def get_async_return(self, handle, timeout=60): timeout = int(timeout) if handle in self._thread_pool: try: result = self._thread_pool[handle].result_queue.get(True, timeout) del self._thread_pool[handle] BuiltIn().set_log_level(self._robot_log_level) return result except: raise Exception("Process " + str(handle) + " Failed") else: raise Exception("Passed Process id " + str(handle) + " is not a valid id") def _threaded_method(self, keyword, *args, **kwargs): from multiprocessing import Queue from multiprocessing import Process def wrapped_f(q, *args, **kwargs): ''' Calls the decorated function and puts the result in a queue ''' ret = BuiltIn().call_method(keyword, *args, **kwargs) q.put(ret) q = Queue() th = Process(target=wrapped_f, args=(q,)+args, kwargs=kwargs) th.result_queue = q return th def _threaded(self, keyword, *args): from multiprocessing import Queue from multiprocessing import Process def wrapped_f(q, *args): ''' Calls the decorated function and puts the result in a queue ''' LOGGER.unregister_xml_logger() ret = BuiltIn().run_keyword(keyword, *args) q.put(ret) q = Queue() th = Process(target=wrapped_f, args=(q,)+args) th.result_queue = q return th
452297
import asyncio import sys import os import time import importlib import logging import traceback import sqlite3 import sys from pathlib import Path from pprint import pprint from matrixroom import MatrixRoom from plugin import Plugin import nio DEFAULT_BOTNAME = "Matrix Bot" DEFAULT_PLUGINPATH = [ "./plugins" ] DEFAULT_DEVICEID = "MATRIXBOT" DEFAULT_DBPATH = "./matrixbot.sqlite" DEFAULT_BIND_ADDRESS = "localhost" DEFAULT_BIND_PORT = "8080" DEFAULT_GLOBAL_PLUGINPATH = "./global_plugins" class MatrixBot: def __init__(self, config): self.config = config if not 'BotMatrixId' in config \ or not all(key in config['BotMatrixId'] for key in ['USERNAME','PASSWORD','SERVER']): sys.stderr.write("""Bad config file. Please check that config file exists and all fields are available\n""") sys.exit(-1) botc = config["BotMatrixId"] store_path = botc.get("STOREPATH", "") if not store_path: store_path = Path(os.getcwd()) / "store" else: store_path = Path(store_path) if not store_path.is_dir(): logging.info(f"Creating store directory in {store_path}") try: os.mkdir(store_path) except Exception as e: logging.error("Failed to create store path. Check permissions.") print(e) sys.exit(-1) logging.info(f"Store path: {store_path}") self.client = nio.AsyncClient(botc["SERVER"], botc["USERNAME"], device_id=botc.get("DEVICEID", DEFAULT_DEVICEID), store_path=str(store_path)) self.password = botc["PASSWORD"] self.botname = botc.get("BOTNAME", DEFAULT_BOTNAME) self.dbpath = botc.get("DBPATH", DEFAULT_DBPATH) self.load_db(self.dbpath) self.pluginpath = [p.strip() for p in botc.get("PLUGINPATH", DEFAULT_PLUGINPATH).split(";")] self.environment = dict((k.upper(),v) for k,v in dict(botc).items() if k.lower() != 'password') self.last_sync_time = 0 self.active_rooms = set() self.available_plugins = {} # order of global_plugins is important as they may depend on each other # also the non-global plugins may depend on them # thus we map by index between names and plugins and do not use a dict() self.global_pluginpath = botc.get("GLOBAL_PLUGINPATH", DEFAULT_GLOBAL_PLUGINPATH) self.global_plugin_names = [p.strip() for p in botc.get("GLOBAL_PLUGINS", "").split(";")] self.global_plugins = [None] * len(self.global_plugin_names) # this is a small hack to add the plugins to the import search path for path in self.pluginpath: sys.path.append(path) sys.path.append(self.global_pluginpath) def get_global_plugin_object(self, name): i = self.global_plugin_names.index(name) return self.global_plugins[i].Object async def start_global_plugins(self): for i in range(len(self.global_plugin_names)): # it's the plugin's job to set up that this works await self.global_plugins[i].Object.set_bot(self) await self.global_plugins[i].Object.start() async def login(self): import socket hname = socket.gethostname() response = await self.client.login(self.password, device_name=hname) if type(response) == nio.LoginError: logging.error("""There was an error while logging in. Please check credentials""") sys.exit(-1) k = await self.client.sync() # otherwise all past messages will be handled self.last_sync_time = time.time() if self.client.should_upload_keys: await self.client.keys_upload() cur_displayname = (await self.client.get_displayname()).displayname logging.info(f"Current displayname: {cur_displayname}") if cur_displayname != self.botname: logging.info(f"Changing displayname to {self.botname}") await self.client.set_displayname(self.botname) async def __aenter__(self): await self.login() return self async def __aexit__(self, exc_type, exc_value, exc_tb): await self.client.close() def load_db(self, dbname): self.conn = sqlite3.connect(dbname) c = self.conn.cursor() tables = c.execute(""" SELECT name FROM sqlite_master WHERE type ='table' AND name NOT LIKE 'sqlite_%'; """).fetchall() # attention here, meaning of "plugin_data" has changed # room_data: global room data # plugin_data: global plugin data # room_plugin_data: data local to a plugin x room combination # room_plugins: which plugins are loaded in which room if not all((t,) in tables for t in ["rooms", "plugins", "room_plugins", "room_data", "plugin_data", "room_plugin_data"]): c.execute(""" CREATE TABLE rooms ( roomid VARCHAR PRIMARY KEY ); """) c.execute(""" CREATE TABLE plugins ( pluginname VARCHAR PRIMARY KEY ); """) c.execute(""" CREATE TABLE room_plugins ( roomid VARCHAR, pluginname VARCHAR, PRIMARY KEY (roomid, pluginname) ); """) c.execute(""" CREATE TABLE room_data ( roomid VARCHAR, key VARCHAR, value TEXT, PRIMARY KEY (roomid, key) ); """) c.execute(""" CREATE TABLE plugin_data ( pluginname VARCHAR, key VARCHAR, value TEXT, PRIMARY KEY (pluginname, key) ); """) c.execute(""" CREATE TABLE room_plugin_data ( roomid VARCHAR, pluginname VARCHAR, key VARCHAR, value TEXT, PRIMARY KEY (roomid, pluginname, key) ); """) async def load_rooms(self): joined_rooms = self.client.rooms cursor = self.conn.cursor() res = cursor.execute(""" SELECT * FROM rooms; """) dbrooms = res.fetchall() for rid,nio_room in joined_rooms.items(): if (rid,) in dbrooms: mr = MatrixRoom( matrixbot=self, nio_room=nio_room, ) await mr.load_plugins() self.active_rooms.add(mr) async def read_plugins(self): plugin_paths = [Path(path) for path in self.pluginpath] logging.info("Reading available plugins from: {}".format(plugin_paths)) help_module = None for i in range(len(self.global_plugin_names)): modname = self.global_plugin_names[i] filename = Path(self.global_pluginpath) / f"{modname}.py" if filename.exists(): modname = f'plugins.{modname}' loader = importlib.machinery.SourceFileLoader(modname, str(filename)) try: module = loader.load_module(modname) self.global_plugins[i] = module except Exception as e: logging.warning(e) # plugins must be called ...plugin.py, so other modules in the same # directory are not falsely loaded (allows for plugin decomposition) for plugin_path in plugin_paths: for path in plugin_path.glob("*_plugin.py"): if path.exists(): modname = f'plugins.{path.stem}' loader = importlib.machinery.SourceFileLoader(modname, str(path)) try: module = loader.load_module(modname) pluginname = path.stem.replace("_plugin","") self.available_plugins[pluginname] = module.HELP_DESC except Exception as e: logging.warning(e) await self.enter_plugins_to_db() async def enter_plugins_to_db(self): # we now check, if all loaded plugins have an entry in the database # if not, we add it # TODO: - do we want to remove database entries when a plugin disappears? # problem: development of plugin with errors -> deletion?!?! not wanted! # - How do we guarantee the uniqueness of filenames among directories? cursor = self.conn.cursor() res = cursor.execute(""" SELECT * FROM plugins; """) dbplugins = res.fetchall() for ap in list(self.available_plugins.keys()) + self.global_plugin_names: if (ap,) not in dbplugins: # add plugin to db self.conn.execute(""" INSERT INTO plugins (pluginname) VALUES (?); """, (ap,)) self.conn.commit() async def listen(self): async def handle_invite_event(room, event): try: jrooms = await self.client.joined_rooms() jrooms = jrooms.rooms except: logging.warning(f"Not joining room {room.room_id}") return if room.room_id not in jrooms: logging.info(f"Try joining room {room.room_id}") await asyncio.sleep(0.5) response = await self.client.join(room.room_id) await asyncio.sleep(0.5) if type(response) == nio.responses.JoinResponse: self.active_rooms.add(await MatrixRoom.new(self,room)) else: logging.warning(f"Couldn't joing the room: {response}") else: logging.warning(f"Not joining room {room.room_id}") logging.warning(f"Already joined.") async def handle_text_event(room, event): # we ignore messages older than 5secs before last sync to solve # joining new room and interpreting old messages problem logging.debug(str(event)) if (self.last_sync_time-5)*1000 > event.server_timestamp: logging.debug("Ignoring old event") return if event.sender == self.client.user: logging.debug("Ignoring own message") return matching_rooms = [mroom for mroom in self.active_rooms if mroom.room_id == room.room_id] if matching_rooms: try: await matching_rooms[0].handle_text_event(event) except Exception as e: traceback.print_exc() logging.warning(e) try: k = traceback.format_exc() if "ADMIN" in self.environment: admin = self.environment['ADMIN'] k += f"\nPlease contact {admin} for bug fixing" else: k += "\nPlease contact the plugin creator" self.nio_room = room await Plugin.send_text(self, k) except Exception as e: traceback.print_exc() logging.warning(e) else: logging.info("Ignoring text event in non-active room") async def event_cb(room, *args): event = args[0] logging.debug(80 * "=") #pprint(vars(event)) if room.room_id in self.client.rooms: logging.debug(f"{type(event)} in room {self.client.rooms[room.room_id].display_name})") else: logging.debug(type(event), "in room", room.room_id) if type(event) == nio.events.invite_events.InviteMemberEvent: await handle_invite_event(room, event) elif type(event) == nio.events.room_events.RoomMessageText: await handle_text_event(room, event) elif type(event) == nio.events.room_events.RoomMemberEvent: name = event.source.get("sender") logging.info(f"{name} joined room") elif type(event) == nio.MegolmEvent: logging.debug("account shared:", self.client.olm_account_shared) logging.warning("Unable to decrypt event") print(f"Event session ID {event.session_id}") r = nio.crypto.OutgoingKeyRequest(event.session_id, None, None, None) self.client.store.remove_outgoing_key_request(r) if (event.session_id in self.client.olm.outgoing_key_requests.keys()): del self.client.olm.outgoing_key_requests[event.session_id] res = await self.client.request_room_key(event) # should do updating by itself #event_cb(room, event) else: logging.debug("Ignoring unknown type event") async def response_cb(response): logging.debug("Got response") logging.debug(type(response)) self.last_sync_time = time.time() logging.debug("Ignoring response") async def todevice_cb(request): logging.debug(80 * "=") logging.debug("Got to device request") logging.debug(type(request)) logging.debug("Ignoring to device request") async def ephemeral_cb(arg1, arg2): logging.debug(80 * "=") logging.debug("Got ephemeral dings") logging.debug(f"{type(arg1)}, {type(arg2)}") logging.debug("Ignoring ephemeral dings") async def kick_response_cb(response): logging.info("Getting kicked") logging.info(f"{self.botname} lauert nun.") self.client.add_event_callback(event_cb, nio.Event) self.client.add_event_callback(event_cb, nio.InviteMemberEvent) self.client.add_to_device_callback(todevice_cb, nio.events.to_device.ToDeviceEvent) self.client.add_ephemeral_callback(ephemeral_cb, nio.events.ephemeral.EphemeralEvent) self.client.add_response_callback(response_cb, nio.Response) self.client.add_response_callback(kick_response_cb, nio.RoomKickResponse) # DOESNT WORK if False: for room_id in self.active_rooms: await self.introduce_bot(room_id) await self.client.sync_forever(30000) async def start(self): await self.read_plugins() await self.start_global_plugins() await self.load_rooms() await self.listen()
452318
import codecs, csv def readCSV (fname, delimiter="\t"): #f = codecs.open(fname, 'r') #lines = f.readlines() #f.close() header = {} table = [] with codecs.open(fname, 'r') as csvfile: lines = csv.reader(csvfile, delimiter=delimiter, quotechar='"') l = 0 for fields in lines: if l == 0: for c in range(len(fields)): header[fields[c]] = c else: output_row = [] for field in fields: # for future: figure out how to detect presence of quotes in orig file if '.' in field: try: output_row.append(float(field)) except: output_row.append(field) else: try: output_row.append(int(field)) except: output_row.append(field) table.append(output_row) l += 1 return header, table def writeCSV (fname, header, table, delimiter="\t"): text = ["\t".join(header) + "\n"] for row in table: output_row = "" for field in row: if isinstance(field, str): output_row += '"' + field + '"' + "\t" else: output_row += str(field) + "\t" output_row = output_row[:-1] + "\n" text.append(output_row) f = codecs.open(fname, 'w') f.writelines(text) f.close()
452329
from unittest.mock import MagicMock, patch import numpy as np import torch def _print_success_message(): print("Tests Passed") class AssertTest(object): def __init__(self, params): self.assert_param_message = "\n".join( [str(k) + ": " + str(v) + "" for k, v in params.items()] ) def test(self, assert_condition, assert_message): assert assert_condition, ( assert_message + "\n\nUnit Test Function Parameters\n" + self.assert_param_message ) def test_discriminator(Discriminator): batch_size = 50 conv_dim = 10 D = Discriminator(conv_dim) # create random image input x = torch.from_numpy( np.random.randint(1, size=(batch_size, 3, 32, 32)) * 2 - 1 ).float() train_on_gpu = torch.cuda.is_available() if train_on_gpu: x.cuda() output = D(x) assert_test = AssertTest( {"Conv Dim": conv_dim, "Batch Size": batch_size, "Input": x} ) correct_output_size = (batch_size, 1) assert_condition = output.size() == correct_output_size assert_message = "Wrong output size. Expected type {}. Got type {}".format( correct_output_size, output.size() ) assert_test.test(assert_condition, assert_message) _print_success_message() def test_generator(Generator): batch_size = 50 z_size = 25 conv_dim = 10 G = Generator(z_size, conv_dim) # create random input z = np.random.uniform(-1, 1, size=(batch_size, z_size)) z = torch.from_numpy(z).float() train_on_gpu = torch.cuda.is_available() if train_on_gpu: z.cuda() # b = torch.LongTensor(a) # nn_input = torch.autograd.Variable(b) output = G(z) assert_test = AssertTest( {"Z size": z_size, "Conv Dim": conv_dim, "Batch Size": batch_size, "Input": z} ) correct_output_size = (batch_size, 3, 32, 32) assert_condition = output.size() == correct_output_size assert_message = "Wrong output size. Expected type {}. Got type {}".format( correct_output_size, output.size() ) assert_test.test(assert_condition, assert_message) _print_success_message()
452352
from puq import * def run(): x = UniformParameter('x', 'x', min=0, max=1) y = UniformParameter('y', 'y', min=0, max=1) host = InteractiveHost() prog = TestProgram('./dome_prog.py') uq = MonteCarlo([x,y], 500) return Sweep(uq, host, prog)
452354
class Minus: reserved = {} tokens = ('MINUS',) # Tokens t_MINUS = r'-' precedence = ( ('left', 'MINUS'), )
452382
from __future__ import print_function, division import os import sys import subprocess if __name__=="__main__": dir_path = sys.argv[1] dst_dir_path = sys.argv[2] for file_name in os.listdir(dir_path): if '.mp4' not in file_name: continue name, ext = os.path.splitext(file_name) dst_directory_path = os.path.join(dst_dir_path, name) video_file_path = os.path.join(dir_path, file_name) p = subprocess.Popen('ffprobe {}'.format(video_file_path), shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) _, res = p.communicate() res = res.decode('utf-8') duration_index = res.find('Duration:') duration_str = res[(duration_index + 10):(duration_index + 21)] hour = float(duration_str[0:2]) minute = float(duration_str[3:5]) sec = float(duration_str[6:10]) total_sec = hour * 3600 + minute * 60 + sec n_frames = len(os.listdir(dst_directory_path)) if os.path.exists(os.path.join(dst_directory_path, 'fps')): n_frames -= 1 fps = round(n_frames / total_sec, 2) print(video_file_path, os.path.exists(video_file_path), fps) with open(os.path.join(dst_directory_path, 'fps'), 'w') as fps_file: fps_file.write('{}\n'.format(fps))
452385
from __future__ import absolute_import, division, unicode_literals import uuid import xmltodict from twisted.trial.unittest import SynchronousTestCase from twisted.internet.task import Clock from mimic.core import MimicCore from mimic.resource import MimicRoot from mimic.test.helpers import request_with_content from mimic.canned_responses.noit_metrics_fixture import metrics class NoitAPITests(SynchronousTestCase): """ Tests for noit API plugin """ def setUp(self): """ Create a check """ core = MimicCore(Clock(), []) self.root = MimicRoot(core).app.resource() self.create_check = { "check": { "attributes": { "name": "name", "module": "module", "target": "target", "period": "period", "timeout": "timeout", "filterset": "filterset" } }} self.create_check_xml_payload = xmltodict.unparse(self.create_check ).encode("utf-8") self.check_id = uuid.uuid4() url = "noit/checks/set/{0}".format(self.check_id) (self.response, response_body) = self.successResultOf( request_with_content(self, self.root, b"PUT", url, body=self.create_check_xml_payload)) self.create_json_response = xmltodict.parse(response_body) def test_get_all_checks(self): """ Test to verify :func:`get_all_checks` on ``GET /config/checks`` """ (response, body) = self.successResultOf( request_with_content(self, self.root, b"GET", "noit/config/checks")) self.assertEqual(response.code, 200) json_response = xmltodict.parse(body) self.assertTrue(len(json_response["checks"]["check"]) > 0) def test_test_check(self): """ Test to verify :func:`test_check` on ``POST /checks/test`` """ (response, body) = self.successResultOf( request_with_content(self, self.root, b"POST", "noit/checks/test", body=self.create_check_xml_payload)) json_response = xmltodict.parse(body) self.assertEqual(response.code, 200) self.assertTrue(json_response["check"]["state"]["metrics"]) def test_get_version(self): """ Test to verify :func:`test_check` on ``POST /checks/test``. When the check module is selfcheck, :func:`test_check` should return the version of the Noit instance """ self.create_check["check"]["attributes"]["module"] = 'selfcheck' (response, body) = self.successResultOf( request_with_content(self, self.root, b"POST", "noit/checks/test", body=xmltodict.unparse(self.create_check).encode('utf-8'))) json_response = xmltodict.parse(body) self.assertEqual(response.code, 200) self.assertEqual( json_response["check"]["state"]["metrics"][1]["metric"][0]["@name"], "version") def test_create_check(self): """ Test to verify :func:`set_check` on ``PUT /checks/set/<check_id>`` """ self.assertEqual(self.response.code, 200) self.assertEqual(self.create_check["check"]["attributes"], self.create_json_response["check"]["attributes"]) def test_update_check(self): """ Test to verify update check on :func:`set_check` using ``PUT /checks/set/<check_id>`` """ self.create_check["check"]["attributes"]["name"] = "rename" (response, body) = self.successResultOf( request_with_content(self, self.root, b"PUT", "noit/checks/set/{0}".format(self.check_id), body=xmltodict.unparse(self.create_check ).encode("utf-8"))) json_response = xmltodict.parse(body) self.assertEqual(self.response.code, 200) self.assertEqual(json_response["check"]["attributes"]["name"], "rename") def test_get_check(self): """ Test to verify :func:`get_checks` on ``GET /checks/show/<check_id>`` """ (get_response, body) = self.successResultOf( request_with_content(self, self.root, b"GET", "noit/checks/show/{0}".format(self.check_id))) json_response = xmltodict.parse(body) self.assertEqual(get_response.code, 200) self.assertEqual(self.create_check["check"]["attributes"], json_response["check"]["attributes"]) def test_delete_check(self): """ Test to verify :func:`delete_checks` on ``DELETE /checks/delete/<check_id>`` """ (del_response, body) = self.successResultOf( request_with_content(self, self.root, b"DELETE", "noit/checks/delete/{0}".format(self.check_id))) self.assertEqual(del_response.code, 200) def test_delete_not_existant_check(self): """ Test to verify :func:`delete_checks` on ``DELETE /checks/delete/<check_id>`` when the check_id was never created. """ (del_response, body) = self.successResultOf( request_with_content(self, self.root, b"DELETE", "noit/checks/delete/1234556")) self.assertEqual(del_response.code, 404) def test_create_check_fails_with_500(self): """ Test to verify :func:`set_check` results in error 500, when the xml cannot be parsed. """ (response, body) = self.successResultOf( request_with_content(self, self.root, b"PUT", "noit/checks/set/{0}".format(self.check_id), body=self.create_check_xml_payload.replace( b'</check>', b' abc'))) self.assertEqual(response.code, 500) def test_create_check_fails_with_500_for_invalid_check_id(self): """ Test to verify :func:`set_check` results in error 500, when the xml cannot be parsed. """ (response, body) = self.successResultOf( request_with_content(self, self.root, b"PUT", "noit/checks/set/123444", body=self.create_check_xml_payload)) self.assertEqual(response.code, 500) def test_create_check_fails_with_404_for_invalid_check_payload(self): """ Test to verify :func:`set_check` results in error 404, when the request check body is invalid. """ del self.create_check["check"]["attributes"]["target"] invalid_check_xml_payload = xmltodict.unparse(self.create_check ).encode("utf-8") (response, body) = self.successResultOf( request_with_content(self, self.root, b"PUT", "noit/checks/set/{0}".format(self.check_id), body=invalid_check_xml_payload)) self.assertEqual(response.code, 404) def test_test_check_fails_with_404_for_invalid_check_payload(self): """ Test to verify :func:`test_check` results in error 404, when the request check body is invalid. """ del self.create_check["check"]["attributes"]["target"] invalid_check_xml_payload = xmltodict.unparse(self.create_check ).encode("utf-8") (response, body) = self.successResultOf( request_with_content(self, self.root, b"POST", "noit/checks/test".format(self.check_id), body=invalid_check_xml_payload)) self.assertEqual(response.code, 404) def test_test_check_for_given_module(self): """ Test to verify :func:`test_check` results in response containing the metrics for the given module. """ self.create_check["check"]["attributes"]["module"] = "selfcheck" check_xml_payload = xmltodict.unparse(self.create_check ).encode("utf-8") (response, body) = self.successResultOf( request_with_content(self, self.root, b"POST", "noit/checks/test".format(self.check_id), body=check_xml_payload)) json_response = xmltodict.parse(body) self.assertEqual(response.code, 200) self.assertEqual(json_response["check"]["state"]["metrics"][ 1]["metric"], metrics["selfcheck"]["metric"])
452391
import torch import torch.nn as nn import torch.nn.functional as F from torchvision import models from ImitationLearning.backbone import EfficientNet from ImitationLearning.backbone import MemoryEfficientSwish from ImitationLearning.VisualAttention.network.Lambda import λLayer """ Convolutional Neuronal Network - 5 layers ----------------------------------------- Ref: <NAME>., & <NAME>. (2017). "Interpretable learning for self-driving cars by visualizing causal attention". In Proceedings of the IEEE international conference on computer vision (pp. 2942-2950). * Input: img [batch,h,w] * Output: xt [batch,L,D] """ class CNN5(nn.Module): """ Constructor """ def __init__(self,): super(CNN5, self).__init__() # Layers self.conv1 = nn.Conv2d( 3, 24, kernel_size=5, stride=2, bias=False) self.conv2 = nn.Conv2d(24, 36, kernel_size=5, stride=2, bias=False) self.conv3 = nn.Conv2d(36, 48, kernel_size=3, stride=2, bias=False) self.conv4 = nn.Conv2d(48, 64, kernel_size=3, stride=1, bias=False) self.conv5 = nn.Conv2d(64, 64, kernel_size=3, stride=1, bias=False) self.batchN1 = nn.BatchNorm2d(24) self.batchN2 = nn.BatchNorm2d(36) self.batchN3 = nn.BatchNorm2d(48) self.batchN4 = nn.BatchNorm2d(64) self.batchN5 = nn.BatchNorm2d(64) self.ReLU = nn.ReLU() # Initialize torch.nn.init.xavier_uniform_(self.conv1.weight) torch.nn.init.xavier_uniform_(self.conv2.weight) torch.nn.init.xavier_uniform_(self.conv3.weight) torch.nn.init.xavier_uniform_(self.conv4.weight) torch.nn.init.xavier_uniform_(self.conv5.weight) self.batchN1.reset_parameters() self.batchN2.reset_parameters() self.batchN3.reset_parameters() self.batchN4.reset_parameters() self.batchN5.reset_parameters() def cube(self,in_size=(92,196)): x = int( (in_size[0]/4-13)/2 ) y = int( (in_size[1]/4-13)/2 ) return( x,y,64 ) """ Forward """ def forward(self,x): # Layer 1 x = self. conv1(x) x = self.batchN1(x) x = self. ReLU(x) # Layer 2 x = self. conv2(x) x = self.batchN2(x) x = self. ReLU(x) # Layer 3 x = self. conv3(x) x = self.batchN3(x) x = self. ReLU(x) # Layer 4 x = self. conv4(x) x = self.batchN4(x) x = self. ReLU(x) # Layer 5 x = self. conv5(x) x = self.batchN5(x) x = self. ReLU(x) # [batch,D,h,w] x = x.flatten(start_dim=2, end_dim=3) # [batch,D,L] x = x.transpose(1, 2) # [batch,L,D] return x """ Convolutional Neuronal Network - 5 layers ----------------------------------------- * Input: img [batch,H,W] * Output: xt [batch,D,h,w] """ class CNN5Max(nn.Module): """ Constructor """ def __init__(self,): super(CNN5Max, self).__init__() # Layers self.conv1 = nn.Conv2d( 3, 24, kernel_size=5, stride=2, bias=False) self.conv2 = nn.Conv2d(24, 36, kernel_size=5, stride=2, bias=False) self.conv3 = nn.Conv2d(36, 48, kernel_size=3, stride=2, bias=False) self.conv4 = nn.Conv2d(48, 64, kernel_size=3, stride=1, bias=False) self.conv5 = nn.Conv2d(64, 64, kernel_size=3, stride=1, bias=False) self.batchN1 = nn.BatchNorm2d(24) self.batchN2 = nn.BatchNorm2d(36) self.batchN3 = nn.BatchNorm2d(48) self.batchN4 = nn.BatchNorm2d(64) self.batchN5 = nn.BatchNorm2d(64) self.ReLU = nn.ReLU() # Initialize torch.nn.init.xavier_uniform_(self.conv1.weight) torch.nn.init.xavier_uniform_(self.conv2.weight) torch.nn.init.xavier_uniform_(self.conv3.weight) torch.nn.init.xavier_uniform_(self.conv4.weight) torch.nn.init.xavier_uniform_(self.conv5.weight) self.batchN1.reset_parameters() self.batchN2.reset_parameters() self.batchN3.reset_parameters() self.batchN4.reset_parameters() self.batchN5.reset_parameters() def cube(self,in_size=(92,196)): x = int( (in_size[0]/4-13)/2 ) y = int( (in_size[1]/4-13)/2 ) return( x,y,64 ) """ Forward """ def forward(self,x): # Layer 1 x = self. conv1(x) x = self.batchN1(x) x = self. ReLU(x) # Layer 2 x = self. conv2(x) x = self.batchN2(x) x = self. ReLU(x) # Layer 3 x = self. conv3(x) x = self.batchN3(x) x = self. ReLU(x) # Layer 4 x = self. conv4(x) x = self.batchN4(x) x = self. ReLU(x) # Layer 5 x = self. conv5(x) x = self.batchN5(x) x = self. ReLU(x) # [batch,D,h,w] return x """ ResNet 34 --------- Ref: <NAME>., <NAME>., <NAME>., & <NAME>. (2016). "Deep residual learning for image recognition". In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). * Input: img [batch,H,W] * Output: xt [batch,L,D] """ class ResNet34(nn.Module): """ Constructor """ def __init__(self,): super(ResNet34, self).__init__() # Layers self.model = models.resnet34(pretrained=False) self.model = torch.nn.Sequential(*(list(self.model.children())[:-3])) self.convHead = nn.Conv2d(256,128, kernel_size=1, bias=False) self.bn = nn.BatchNorm2d(num_features=128, momentum=0.99, eps=1e-3) self.swish = MemoryEfficientSwish() # Initialization torch.nn.init.xavier_uniform_(self.convHead.weight) def cube(self,in_size=(96,192)): x = int( in_size[0]/16 ) y = int( in_size[1]/16 ) return( x,y,128 ) """ Forward """ def forward(self,x): x = self.model(x) # [batch,D,h,w] x = self.convHead(x) x = self.bn(x) x = self.swish(x) x = x.flatten(start_dim=2, end_dim=3) # [batch,D,L] x = x.transpose(1, 2) # [batch,L,D] return x """ ResNet 50 --------- Ref: <NAME>., <NAME>., <NAME>., & <NAME>. (2016). "Deep residual learning for image recognition". In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). * Input: img [batch,H,W] * Output: xt [batch,L,D] """ class ResNet50(nn.Module): """ Constructor """ def __init__(self,): super(ResNet50, self).__init__() # Layers self.model = models.resnet50(pretrained=False) self.model = torch.nn.Sequential(*(list(self.model.children())[:-3])) self.convHead = nn.Conv2d(1024,128, kernel_size=1, bias=False) self.bn = nn.BatchNorm2d(num_features=128, momentum=0.99, eps=1e-3) self.swish = MemoryEfficientSwish() # Initialization torch.nn.init.xavier_uniform_(self.convHead.weight) def cube(self,in_size=(96,192)): x = int( in_size[0]/16 ) y = int( in_size[1]/16 ) return( x,y,128 ) """ Forward """ def forward(self,x): x = self.model(x) # [batch,D,h,w] x = self.convHead(x) x = self.bn(x) x = self.swish(x) x = x.flatten(start_dim=2, end_dim=3) # [batch,D,L] x = x.transpose(1, 2) # [batch,L,D] return x """ Wide residual network --------------------- Ref: <NAME>., <NAME>., <NAME>., & <NAME>. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). * Input: img [batch,H,W] * Output: xt [batch,D,h,w] """ class WideResNet50(nn.Module): """ Constructor """ def __init__(self,): super(WideResNet50, self).__init__() # Layers self.model = models.wide_resnet50_2(pretrained=True) self.model = torch.nn.Sequential(*(list(self.model.children())[:-4])) self.linear1 = nn.Linear(512,256,bias=True) self.linear2 = nn.Linear(256,128,bias=True) self.linear3 = nn.Linear(128, 64,bias=True) self.LeakyReLu = nn.LeakyReLU() # Initialization torch.nn.init.xavier_uniform_(self.linear1.weight) torch.nn.init.xavier_uniform_(self.linear2.weight) torch.nn.init.xavier_uniform_(self.linear3.weight) def cube(self,in_size=(96,192)): x = int( in_size[0]/8 ) y = int( in_size[1]/8 ) return( x,y,64 ) """ Forward """ def forward(self,x): with torch.no_grad(): x = self.model(x) # [batch,D,h,w] x = x.flatten(start_dim=2, end_dim=3) # [batch,D,L] x = x.transpose(1, 2) # [batch,L,D] x = self.linear1(x.detach()) x = self.LeakyReLu(x) x = self.linear2(x) x = self.LeakyReLu(x) x = self.linear3(x) x = self.LeakyReLu(x) return x class VGG19(nn.Module): """ Constructor """ def __init__(self): super(VGG19, self).__init__() self.model = models.vgg19_bn(pretrained=True) self.model = torch.nn.Sequential(*(list(self.model.children())[:-4])) self.linear1 = nn.Linear(512,256,bias=True) self.linear2 = nn.Linear(256,128,bias=True) self.linear3 = nn.Linear(128, 64,bias=True) self.LeakyReLu = nn.LeakyReLU() # Initialization torch.nn.init.xavier_uniform_(self.linear1.weight) torch.nn.init.xavier_uniform_(self.linear2.weight) torch.nn.init.xavier_uniform_(self.linear3.weight) def cube(self,in_size=(96,192)): x = int( in_size[0]/8 ) y = int( in_size[1]/8 ) return( x,y,64 ) """ Forward """ def forward(self,x): with torch.no_grad(): x = self.model(x) # [batch,D,h,w] x = x.flatten(start_dim=2, end_dim=3) # [batch,D,L] x = x.transpose(1, 2) # [batch,L,D] if self.compression>0: x = self.linear1(x.detach()) x = self.LeakyReLu(x) if self.compression>1: x = self.linear2(x) x = self.LeakyReLu(x) if self.compression>2: x = self.linear3(x) x = self.LeakyReLu(x) return x """ EfficientNet ------------ Ref: <NAME>, <NAME> (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In International Conference on Machine Learning (pp. 6105-6114). * Input: img [batch,H,W] * Output: xt [batch,D,h,w] """ class EfficientNetB0(nn.Module): """ Constructor """ def __init__(self,): super(EfficientNetB0, self).__init__() # Layers self.model = EfficientNet.from_name('efficientnet-b0') # (88,200) -> (96,192) def cube(self,in_size=(96,192)): x = int( in_size[0]/16 ) y = int( in_size[1]/16 ) return( x,y,128 ) """ Forward """ def forward(self,x): x = self.model(x) # [batch,D,h,w] x = x.flatten(start_dim=2, end_dim=3) # [batch,D,L] x = x.transpose(1, 2) # [batch,L,D] return x class EfficientNetB1(nn.Module): """ Constructor """ def __init__(self,): super(EfficientNetB1, self).__init__() # Layers self.model = EfficientNet.from_name('efficientnet-b1') # (88,200) -> (96,192) def cube(self,in_size=(96,192)): x = int( in_size[0]/16 ) y = int( in_size[1]/16 ) return( x,y,128 ) """ Forward """ def forward(self,x): x = self.model(x) # [batch,D,h,w] x = x.flatten(start_dim=2, end_dim=3) # [batch,D,L] x = x.transpose(1, 2) # [batch,L,D] return x class EfficientNetB2(nn.Module): """ Constructor """ def __init__(self,): super(EfficientNetB2, self).__init__() # Layers self.model = EfficientNet.from_name('efficientnet-b2') # (88,200) -> (96,192) def cube(self,in_size=(96,192)): x = int( in_size[0]/16 ) y = int( in_size[1]/16 ) return( x,y,128 ) """ Forward """ def forward(self,x): x = self.model(x) # [batch,D,h,w] x = x.flatten(start_dim=2, end_dim=3) # [batch,D,L] x = x.transpose(1, 2) # [batch,L,D] return x class EfficientNetB3(nn.Module): """ Constructor """ def __init__(self,): super(EfficientNetB3, self).__init__() # Layers self.model = EfficientNet.from_name('efficientnet-b3') # (88,200) -> (96,192) def cube(self,in_size=(96,192)): x = int( in_size[0]/16 ) y = int( in_size[1]/16 ) return( x,y,128 ) """ Forward """ def forward(self,x): x = self.model(x) # [batch,D,h,w] x = x.flatten(start_dim=2, end_dim=3) # [batch,D,L] x = x.transpose(1, 2) # [batch,L,D] return x """ Lambda Networks --------------- Ref: Anonymous (2021). LambdaNetworks: Modeling long-range Interactions without Attention. ICLR 2021 Conference Blind Submission. https://github.com/leaderj1001/LambdaNetworks/blob/main/model.py """ class λBottleneck(nn.Module): expansion = 4 def __init__(self, d_in, dhdn, receptiveWindow, stride=1): super(λBottleneck, self).__init__() dout = dhdn*self.expansion # inDim, hdnDim self.in1x1conv = nn.Conv2d(d_in, dhdn, kernel_size=1, bias=False) self.BNorm1 = nn.BatchNorm2d(dhdn) self.bottleneck = nn.ModuleList([λLayer(dhdn,dhdn)])#dim_in = dhdn, dim_out = dhdn, n = receptiveWindow)]) if stride != 1 or d_in != dhdn: self.bottleneck.append(nn.AvgPool2d(kernel_size=(3, 3), stride=stride, padding=(1, 1))) self.bottleneck.append(nn.BatchNorm2d(dhdn)) self.bottleneck.append(nn.ReLU()) self.bottleneck = nn.Sequential(*self.bottleneck) self.out_1x1conv = nn.Conv2d(dhdn, dout, kernel_size=1, bias=False) self.BNorm2 = nn.BatchNorm2d(dout) self.ReLU = nn.ReLU() self.shortcut = nn.Sequential() if stride != 1 or d_in != dout: self.shortcut = nn.Sequential( nn.Conv2d(d_in, dout, kernel_size=1, stride=stride), nn.BatchNorm2d(dout) ) def forward(self, fm): # Input x = self.in1x1conv(fm) x = self. BNorm1(x) h = self. ReLU(x) #Bottleneck h = self.bottleneck(h) # Output y = self.out_1x1conv(h) y = self. BNorm2(y) # Skip connections y += self.shortcut(fm) return self.ReLU(y) class Bottleneck(nn.Module): # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) # while original implementation places the stride at the first 1x1 convolution(self.conv1) # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. # This variant is also known as ResNet V1.5 and improves accuracy according to # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. # https://discuss.pytorch.org/t/break-resnet-into-two-parts/39315 expansion: int = 4 def __init__( self, inplanes: int, # d_in planes: int, # n_hidden, dhdn stride: int = 1, groups: int = 1, base_width: int = 64, dilation: int = 1): super(Bottleneck, self).__init__() width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = nn.Conv2d(inplanes, width, kernel_size = 1, bias = False) self.bn1 = nn.GroupNorm( 1,width) self.conv2 = nn.Conv2d(width, width, kernel_size = 3, stride = stride, padding = dilation, groups = groups, bias = False, dilation = dilation) self.bn2 = nn.GroupNorm( 1,width) self.conv3 = nn.Conv2d(width, planes*self.expansion, kernel_size = 1, bias = False) self.bn3 = nn.GroupNorm( 1,planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.stride = stride if stride != 1 or inplanes != planes*self.expansion: self.downsample = nn.Sequential(nn.Conv2d(inplanes, planes*self.expansion, kernel_size = 1, stride = stride, bias = False), nn.GroupNorm( 1,planes * self.expansion)) else: self.downsample = None def forward(self,x): identity = x out = self.conv1(x) out = self.bn1(out) out = F.gelu(out) out = self.conv2(out) out = self.bn2(out) out = F.gelu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = F.gelu(out) return out class λResNet(nn.Module): def __init__(self, block, n_block, cube, mode='high'): super(λResNet, self).__init__() self.low = (mode== 'low') | (mode=='total') self.high = (mode=='high') | (mode=='total') self.in_planes = 64 receptiveWindow = max(cube[0],cube[1]) if self.low: self.scell = nn.Sequential() self.scell.append(nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)) self.scell.append(nn.BatchNorm2d(64)) self.scell.append(nn.ReLU(inplace=True)) self.scell = nn.Sequential(*self.scell) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, n_block[0], int(receptiveWindow/ 2)) self.layer2 = self._make_layer(block, 128, n_block[1], int(receptiveWindow/ 4), stride=2) if self.high: self.layer3 = self._make_layer(block, 64, n_block[2], int(receptiveWindow/ 8), stride=2) # 256 self.layer4 = self._make_layer(block, 128, n_block[3], int(receptiveWindow/16), stride=2) # 512 self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # Initialization for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def _make_layer(self, block, n_hidden, num_blocks, receptiveWindow, stride=1): exp = block.expansion d_in = int(n_hidden*2) # d_in, dhdn, receptiveWindow, stride=1 layers = [block(d_in, n_hidden, receptiveWindow, stride)] for _ in range(1,num_blocks): layers.append(block(n_hidden*exp, n_hidden, int(receptiveWindow/2), 1)) return nn.Sequential(*layers) def forward(self, x): if self.low: # Introduction x = self. scell(x) x = self.maxpool(x) # Low level x = self.layer1(x) x = self.layer2(x) if self.high: x = self.layer3(x) x = self.layer4(x) return x class HighResNet34(nn.Module): def __init__(self): super(HighResNet34, self).__init__() # [3, 4 | 6, 3] self.layer3a = Bottleneck(128, 64, stride=2) # 1 self.layer3b = Bottleneck(256, 64, stride=1) # 2 self.layer3c = Bottleneck(256, 64, stride=1) # 3 self.layer3d = Bottleneck(256, 64, stride=1) # 4 self.layer3e = Bottleneck(256, 64, stride=1) # 5 self.layer3f = Bottleneck(256, 64, stride=1) # 6 self.layer4a = Bottleneck(256,128, stride=2) # 1 self.layer4b = Bottleneck(512,128, stride=1) # 2 self.layer4c = Bottleneck(512,128, stride=1) # 3 def forward(self, x): x = self.layer3a(x) x = self.layer3b(x) x = self.layer3c(x) x = self.layer3d(x) x = self.layer3e(x) x = self.layer3f(x) x = self.layer4a(x) x = self.layer4b(x) x = self.layer4c(x) return x class HighResNet50(nn.Module): def __init__(self): super(HighResNet50, self).__init__() # [3, 4 | 6, 3] self.layer3a = Bottleneck( 512, 256, stride=2) # 1 self.layer3b = Bottleneck(1024, 256, stride=1) # 2 self.layer3c = Bottleneck(1024, 256, stride=1) # 3 self.layer3d = Bottleneck(1024, 256, stride=1) # 4 self.layer3e = Bottleneck(1024, 256, stride=1) # 5 self.layer3f = Bottleneck(1024, 256, stride=1) # 6 self.layer4a = Bottleneck(1024, 512, stride=2) # 1 self.layer4b = Bottleneck(2048, 512, stride=1) # 2 self.layer4c = Bottleneck(2048, 512, stride=1) # 3 def forward(self, x): x = self.layer3a(x) x = self.layer3b(x) x = self.layer3c(x) x = self.layer3d(x) x = self.layer3e(x) x = self.layer3f(x) x = self.layer4a(x) x = self.layer4b(x) x = self.layer4c(x) return x def λResNet34(cube_dim,mode='total'): return λResNet(λBottleneck, [2, 2, 2, 2], cube_dim, mode) def λResNet50(cube_dim,mode='total'): return λResNet(λBottleneck, [3, 4, 6, 3], cube_dim, mode)
452434
import os import sys import h5py import numpy as np import glob # Local imports rootpath = os.path.dirname(os.path.abspath(__file__)) + '/../' sys.path.append(rootpath) from DataFiles.Hdf5.hdf5lib import h5getstr # --------------------------------------------------------------------------- def PrintArraySize(v, vname): if len(v.shape)==1: nrows = v.shape[0] ncols = 1 elif len(v.shape)==2: nrows = v.shape[0] ncols = v.shape[1] sys.stdout.write('%s = [%d x %d]\n'% (vname, nrows, ncols)) ############################################################ class ErrorClass: # ----------------------------------------------------------- def __init__(self): self.err = 0 if self.IsEmpty(): self.err = -1 # ----------------------------------------------------------- def GetError(self): return self.err # ----------------------------------------------------------- def IsEmpty(self): return False ############################################################ class DataClass(ErrorClass): # ----------------------------------------------------------- def __init__(self, fid, location): self.dataTimeSeries = np.array([]) self.time = np.array([]) try: self.dataTimeSeries = np.array(fid.get(location + '/dataTimeSeries')) self.time = np.array(fid.get(location + '/time')) except: self.err = -1 return ErrorClass.__init__(self) # ----------------------------------------------------------- def IsEmpty(self): if ((self.time.all()==None) or (len(self.time)==0)) and \ ((self.dataTimeSeries.all()==None) or (len(self.dataTimeSeries)==0)): return True return False # ----------------------------------------------------------- def Print(self): PrintArraySize(self.dataTimeSeries, ' dataTimeSeries') PrintArraySize(self.time, ' time') ############################################################ class ProbeClass(ErrorClass): # ----------------------------------------------------------- def __init__(self, fid, location): self.wavelengths = np.array(fid.get(location + '/wavelengths')) self.wavelengthsEmission = fid.get(location + '/wavelengthsEmission') self.sourcePos2D = np.array(fid.get(location + '/sourcePos2D')) self.detectorPos2D = np.array(fid.get(location + '/detectorPos2D')) self.frequencies = np.array(fid.get(location + '/frequencies')) self.timeDelay = 0 self.timeDelayWidth = 0 self.momentOrders = [] self.correlationTimeDelay = 0 self.correlationTimeDelayWidth = 0 self.sourceLabels = np.array(fid.get(location + '/sourceLabels')) self.detectorLabels = np.array(fid.get(location + '/detectorLabels')) ErrorClass.__init__(self) # ----------------------------------------------------------- def Print(self): sys.stdout.write(' wavelengths = %s\n'% self.wavelengths) sys.stdout.write(' wavelengthsEmission = %s\n'% self.wavelengthsEmission) sys.stdout.write(' sourcePos2D:\n') for ii in range(0, self.sourcePos2D.shape[0]): sys.stdout.write(' %s\n'% self.sourcePos2D[ii]) sys.stdout.write(' detectorPos2D:\n') for ii in range(0, self.detectorPos2D.shape[0]): sys.stdout.write(' %s\n'% self.detectorPos2D[ii]) sys.stdout.write(' frequencies = %s\n'% self.frequencies) sys.stdout.write(' timeDelay = %s\n'% self.timeDelay) sys.stdout.write(' timeDelayWidth = %s\n'% self.timeDelayWidth) sys.stdout.write(' momentOrders = %s\n'% self.momentOrders) sys.stdout.write(' correlationTimeDelay = %s\n'% self.correlationTimeDelay) sys.stdout.write(' correlationTimeDelayWidth = %s\n'% self.correlationTimeDelayWidth) sys.stdout.write(' sourceLabels = %s\n'% self.sourceLabels) sys.stdout.write(' detectorLabels = %s\n'% self.detectorLabels) ############################################################ class StimClass(ErrorClass): # ----------------------------------------------------------- def __init__(self, fid, location): self.name = h5getstr(fid, location + '/name') self.data = np.array(fid.get(location + '/data')) ErrorClass.__init__(self) # ----------------------------------------------------------- def Print(self): sys.stdout.write(' name: %s\n'% self.name) sys.stdout.write(' data:\n') for ii in range(0, self.data.shape[0]): sys.stdout.write(' %s\n'% self.data[ii]) # ----------------------------------------------------------- def IsEmpty(self): if not self.name: return True if (self.data.all()==None) or (len(self.data)==0): return True return False ########################################################### class AuxClass(ErrorClass): # ----------------------------------------------------------- def __init__(self, fid, location): self.name = h5getstr(fid, location + '/name') self.time = np.array(fid.get(location + '/time')) self.dataTimeSeries = np.array(fid.get(location + '/dataTimeSeries')) ErrorClass.__init__(self) # ----------------------------------------------------------- def Print(self): sys.stdout.write(' name: %s\n'% self.name) PrintArraySize(self.dataTimeSeries, ' dataTimeSeries') PrintArraySize(self.time, ' time') # ----------------------------------------------------------- def IsEmpty(self): if ((self.time.all()==None) or (len(self.time)==0)) and \ ((self.dataTimeSeries.all()==None) or (len(self.dataTimeSeries)==0)): return True return False ############################################################ class MetaDataTagsClass(ErrorClass): # ----------------------------------------------------------- def __init__(self, fid, location): self.SubjectID = h5getstr(fid, location + '/SubjectID') self.MeasurementDate = h5getstr(fid, location + '/MeasurementDate') self.MeasurementTime = h5getstr(fid, location + '/MeasurementTime') self.LengthUnit = h5getstr(fid, location + '/LengthUnit') self.TimeUnit = h5getstr(fid, location + '/TimeUnit') ErrorClass.__init__(self) # ----------------------------------------------------------- def Print(self): sys.stdout.write(' SubjectID: %s\n'% self.SubjectID) sys.stdout.write(' MeasurementDate: %s\n'% self.MeasurementDate) sys.stdout.write(' MeasurementTime: %s\n'% self.MeasurementTime) sys.stdout.write(' LengthUnit: %s\n'% self.LengthUnit) sys.stdout.write(' TimeUnit: %s\n'% self.TimeUnit) ############################################################ class SnirfClass(ErrorClass): # ----------------------------------------------------------- def __init__(self, fname): fid = h5py.File(fname,'r') # formatVersion self.formatVersion = h5getstr(fid, 'formatVersion') # metaDataTags self.metaDataTags = MetaDataTagsClass(fid, '/nirs/metaDataTags') # data self.data = [] ii = 1 while 1: temp = DataClass(fid, '/nirs/data' + str(ii)) if temp.GetError() < 0: break self.data.append(temp) ii = ii+1 # stim self.stim = [] ii = 1 while 1: temp = StimClass(fid, '/nirs/stim' + str(ii)) if temp.GetError() < 0: break self.stim.append(temp) ii = ii+1 # probe self.probe = ProbeClass(fid, '/nirs/probe') # aux self.aux = [] ii = 1 while 1: temp = AuxClass(fid, '/nirs/aux' + str(ii)) if temp.GetError() < 0: break self.aux.append(temp) ii = ii+1 fid.close() ErrorClass.__init__(self) # ----------------------------------------------------------- def Print(self): sys.stdout.write('formatVersion = %s\n'% self.formatVersion) sys.stdout.write('metaDataTags:\n') self.metaDataTags.Print() for ii in range(0, len(self.data)): sys.stdout.write('data[%d]:\n'% ii) self.data[ii].Print() for ii in range(0, len(self.stim)): sys.stdout.write('stim[%d]:\n'% ii) self.stim[ii].Print() sys.stdout.write('probe:\n') self.probe.Print() for ii in range(0, len(self.aux)): sys.stdout.write('aux[%d]:\n'% ii) self.aux[ii].Print() # ----------------------------------------------------------- if __name__ == "__main__": if len(sys.argv) > 1: filenames[0] = sys.argv[1] else: # filenames = glob.glob('../../../../snirf-samples/basic/*.snirf') filenames = glob.glob('./Examples/*.snirf') for ii in range(0, len(filenames)): sys.stdout.write('======================================================================\n') sys.stdout.write('Loading data from %s\n\n'% filenames[ii]) snirf = SnirfClass(filenames[ii]) snirf.Print() sys.stdout.write('\n')
452449
from realtime_py.connection import Socket def callback1(payload): print("Callback 1: ", payload) def callback2(payload): print("Callback 2: ", payload) if __name__ == "__main__": URL = "ws://localhost:4000/socket/websocket" s = Socket(URL) s.connect() channel_1 = s.set_channel("realtime:public:todos") channel_1.join().on("UPDATE", callback1) channel_2 = s.set_channel("realtime:public:users") channel_2.join().on("*", callback2) s.listen()
452450
from __future__ import unicode_literals from .utils import init_kernel def test_read(): for to_test in ["test\n", "test test", "testtestt"]: k = init_kernel(stdin=to_test) k.stack.push(0) # Push stream_num k.stack.push(10) # Push size k.stack.push(0) # Push location in memory to write the string to k.stack.push(1) # Push syscall number k.syscall() assert k.read_string(0) == to_test.strip() assert k.stack.pop() == len(to_test.strip()) def test_cut_off_at_size(): size = 10 k = init_kernel(stdin=u"A" * 20) k.stack.push(0) # Push stream_num k.stack.push(size) # Push size k.stack.push(0) # Push location in memory to write the string to k.stack.push(1) # Push syscall number k.syscall() assert k.read_string(0) == "A" * (size - 1)
452468
import math import unittest from simulation.utils.geometry import Line, Point, Polygon, Pose, Transform from simulation.utils.road.config import Config from simulation.utils.road.sections import StaticObstacle from simulation.utils.road.sections.road_section import RoadSection class DummyRoadSection(RoadSection): TYPE = "DUMMY" @property def middle_line(self): return DummyRoadSection.MIDDLE_LINE class ModuleTest(unittest.TestCase): def assert_lines_approx_equal(self, line1, line2): p = Polygon(line1.get_points() + list(reversed(line2.get_points()))) self.assertAlmostEqual(p.area, 0) def test_road_section(self): MIDDLE_LINE = Line([[0, 0], [1, 0]]) DummyRoadSection.MIDDLE_LINE = MIDDLE_LINE LEFT_LINE = Line([[0, Config.road_width], [1, Config.road_width]]) RIGHT_LINE = Line( [[0, -Config.road_width], [1 + Config.road_width, -Config.road_width]] ) ENDING = (Pose([1, 0], 0), 0) BEGINNING = (Pose([0, 0], math.pi), 0) rs = DummyRoadSection() self.assertIsNotNone(rs.transform) self.assert_lines_approx_equal(rs.middle_line, MIDDLE_LINE) self.assert_lines_approx_equal(rs.right_line, RIGHT_LINE) self.assert_lines_approx_equal(rs.left_line, LEFT_LINE) self.assertTupleEqual(rs.get_beginning(), BEGINNING) self.assertTupleEqual(rs.get_ending(), ENDING) self.assertTrue(rs.get_bounding_box().contains(LEFT_LINE)) self.assertTrue(rs.get_bounding_box().contains(MIDDLE_LINE)) self.assertTrue(rs.get_bounding_box().contains(RIGHT_LINE)) def test_obstacles(self): MIDDLE_LINE = Line([[0, 0], [0, 2]]) DummyRoadSection.MIDDLE_LINE = MIDDLE_LINE # Assume the obstacle class itself works! # Simply test if the transforms etc. are set correctly. obstacle = StaticObstacle(arc_length=1.5, y=-0.2, width=0.2, depth=1) rs = DummyRoadSection(obstacles=[obstacle]) returned_obs = rs.obstacles[0] self.assertEqual(returned_obs.transform, Transform([0, 1.5], math.pi / 2)) self.assertEqual(returned_obs.center, Point(0.2, 1.5)) self.assertEqual( returned_obs.frame, Polygon([[0.1, 1], [0.1, 2], [0.3, 2], [0.3, 1]]) ) # # Test obstacle with angle 90 degrees and # Transform(Vector(0, 0), 90°) # obs_args.update({"angle": 90}) # test_transform = Transform(Vector(1, 1), 0.5 * math.pi) # First translate mid_point to (0, 0) and rotate by angle # test_angle = 0.5 * math.pi # test_left_lower = (test_left_lower - test_mid).rotated(test_angle) + test_mid # test_left_upper = (test_left_upper - test_mid).rotated(test_angle) + test_mid # test_right_lower = (test_right_lower - test_mid).rotated(test_angle) + test_mid # test_right_upper = (test_right_upper - test_mid).rotated(test_angle) + test_mid # Second transform entire polygon # test_poly = test_transform * Polygon( # [test_left_lower, test_left_upper, test_right_upper, test_right_lower,] # ) # transform test mid # test_mid = test_transform * test_mid # construct obstacle and set transform # obstacle = StaticObstacle(obs_args) # transform x-value of left_lower to use as transform for obstacle # p1 = test_transform * Vector(obstacle._left_lower_x, 0) # obstacle.transform = Transform(p1, 0.5 * math.pi) # gt = obstacle.generate_groundtruth() # compare obstacles # self.assertPolygonAlmostEqual(gt, test_poly) # # Helper functions # def assertPointAlmostEqual(self, p1, p2): # self.assertAlmostEqual(p1.x, p2.x) # self.assertAlmostEqual(p1.y, p2.y) # self.assertAlmostEqual(p1.z, p2.z) # def assertPolygonAlmostEqual(self, poly1, poly2): # for p1, p2 in zip(poly1.get_points(), poly2.get_points()): # self.assertPointAlmostEqual(p1, p2) if __name__ == "__main__": unittest.main()
452514
import django_rq from fakeredis import FakeStrictRedis from rq import Queue from autoemails.job import Job connection = FakeStrictRedis() def dummy_job(): return 42 def dummy_fail_job(): return 42 / 0 class FakeRedisTestCaseMixin: """TestCase mixin that provides easy setup of FakeRedis connection to both Django-RQ and RQ-Scheduler, as well as test-teardown with scheduled jobs purging.""" def setUp(self): super().setUp() self.connection = connection # self.connection = Redis() self.queue = Queue(is_async=False, connection=self.connection, job_class=Job) self.scheduler = django_rq.get_scheduler("testing", queue=self.queue) self.scheduler.connection = self.connection def tearDown(self): # clear job queue for job in self.scheduler.get_jobs(): self.scheduler.cancel(job) assert not bool(list(self.scheduler.get_jobs())) assert self.scheduler.count() == 0 self.queue.empty() assert self.queue.count == 0 super().tearDown()
452524
import numpy as np class DataSet: """Class to represent some dataset: train, validation, test""" @property def num_examples(self): """Return qtty of examples in dataset""" raise NotImplementedError def next_batch(self, batch_size): """Return batch of required size of data, labels""" raise NotImplementedError class ImagesDataSet(DataSet): """Dataset for images that provide some often used methods""" @staticmethod def measure_mean_and_std(images): # for every channel in image means = [] stds = [] # for every channel in image(assume this is last dimension) for ch in range(images.shape[-1]): means.append(np.mean(images[:, :, :, ch])) stds.append(np.std(images[:, :, :, ch])) return means, stds @staticmethod def shuffle_images_and_labels(images, labels): rand_indexes = np.random.permutation(images.shape[0]) shuffled_images = images[rand_indexes] shuffled_labels = labels[rand_indexes] return shuffled_images, shuffled_labels @staticmethod def normalize_images(images, normalization_type, meanstd=None): """ Args: images: numpy 4D array normalization_type: `str`, available choices: - divide_255 - divide_256 - by_channels meanstd """ if normalization_type is not None: if normalization_type == 'divide_255': images = images / 255 elif normalization_type == 'divide_256': images = images / 256 elif normalization_type == 'by_channels': images = images.astype('float64') # for every channel in image(assume this is last dimension) means, stds = meanstd for i in range(images.shape[-1]): images[:, :, :, i] = ((images[:, :, :, i] - means[i]) / stds[i]) else: raise Exception('Unknown type of normalization') return images class DataProvider: _SEED = 88 @property def data_shape(self): """Return shape as python list of one data entry""" raise NotImplementedError @property def n_classes(self): """Return `int` of num classes""" raise NotImplementedError def labels_to_one_hot(self, labels): """Convert 1D array of labels to one hot representation Args: labels: 1D numpy array """ new_labels = np.zeros((labels.shape[0], self.n_classes)) new_labels[range(labels.shape[0]), labels] = np.ones(labels.shape) return new_labels @staticmethod def labels_from_one_hot(labels): """Convert 2D array of labels to 1D class based representation Args: labels: 2D numpy array """ return np.argmax(labels, axis=1)
452589
import caffe2onnx.src.c2oObject as Node def getGemmAttri(layer): dict = {"alpha": 1.0, "beta": 1.0, "transA": 0, "transB": 1} return dict def getGemmOutShape(input_shape,num_output): output_shape = [[input_shape[0][0], num_output]] return output_shape def createGemm(layer, nodename, inname, outname, input_shape, num_output): dict = getGemmAttri(layer) output_shape = getGemmOutShape(input_shape,num_output) node = Node.c2oNode(layer, nodename, "Gemm", inname, outname, input_shape, output_shape, dict) return node
452597
import os import matplotlib.pyplot as plt import matplotlib import numpy as np from microfilm import microplot, colorify image = 100*np.ones((3,3), dtype=np.uint8) image[0,0] = 200 image2 = 100*np.ones((3,3), dtype=np.uint8) image2[0,1] = 180 more_than_3d = np.zeros((5,3,3), dtype=np.uint8) more_than_3d[0,0,0] = 1 more_than_3d[1,1,0] = 1 more_than_3d[2,2,0] = 1 more_than_3d[3,1,1] = 1 more_than_3d[4,2,1] = 1 def verify_image(microim): # check image assert np.any(microim.ax.get_images()[0].get_array()[:,:,0] > 0) == False, "Red should not be present" np.testing.assert_array_equal(microim.ax.get_images()[0].get_array()[:,:,1], np.array([[0,1,0], [0,0,0], [0,0,0]]), "Green channel not correct") np.testing.assert_array_equal(microim.ax.get_images()[0].get_array()[:,:,2], np.array([[1,0,0], [0,0,0], [0,0,0]]), "Blue channel not correct") def verify_label(microim): assert microim.ax.texts[0].get_text() == 'b', "Wrong channel label" assert microim.ax.texts[1].get_text() == 'a', "Wrong channel label" def test_microshow(): microim = microplot.microshow( images=[image, image2], cmaps=['pure_blue', 'pure_green'], channel_names=['a', 'b'], channel_label_show=True, unit='mm', scalebar_unit_per_pix=0.5, scalebar_size_in_units=1, scalebar_thickness=0.1, scalebar_color='red', label_text='A', label_color='pink') assert isinstance(microim, microplot.Microimage) # check image verify_image(microim) # check channel labels verify_label(microim) # check scalebar assert microim.ax.texts[2].get_text() == '1 mm', "Wrong scalebar legend" assert microim.ax.patches[0].get_facecolor() == (1, 0, 0, 1), "Wrong scalebar color" assert microim.ax.patches[0].get_width() == 2/3, "Wrong scalebar size" # check label assert microim.ax.texts[3].get_text() == 'A', "Wrong label" assert microim.ax.texts[3].get_color() == 'pink', "Wrong label color" def test_default_random_gradient(): # test that images with > 3 channels use random gradient by default microim = microplot.microshow(more_than_3d) assert microim.cmaps[4] == "ran_gradient", "Random gradient not select for d>3" def test_mixed_cmaps(): # test that "name" cmaps and "object" cmaps can be mixed summer_cmap = colorify.cmaps_def(cmap_name='summer') microim = microplot.microshow( images=[image, image2], cmaps=[summer_cmap, 'pure_blue']) assert isinstance(microim.cmap_objects[0], matplotlib.colors.LinearSegmentedColormap), "Wrong colormap for summer cmap" assert isinstance(microim.cmap_objects[1], matplotlib.colors.ListedColormap), "Wrong colormap for pure_blue cmap" def test_add_scalebar(): microim = microplot.microshow( images=[image, image2], cmaps=['pure_blue', 'pure_green']) microim.add_scalebar(unit='mm', scalebar_unit_per_pix=0.5, scalebar_size_in_units=1, scalebar_thickness=0.1, scalebar_color='red') # check scalebar assert microim.ax.texts[0].get_text() == '1 mm', "Wrong scalebar legend" assert microim.ax.patches[0].get_facecolor() == (1, 0, 0, 1), "Wrong scalebar color" assert microim.ax.patches[0].get_width() == 2/3, "Wrong scalebar size" def test_add_label(): microim = microplot.microshow( images=[image, image2], cmaps=['pure_blue', 'pure_green']) microim.add_label(label_text='A', label_color='pink') # check label assert microim.ax.texts[0].get_text() == 'A', "Wrong label" assert microim.ax.texts[0].get_color() == 'pink', "Wrong label color" def test_add_channel_labels(): microim = microplot.microshow( images=[image, image2], cmaps=['pure_blue', 'pure_green']) # check channel labels microim.add_channel_labels(channel_names=['a', 'b']) verify_label(microim) assert microim.ax.texts[1].get_color() == (0.0, 0.0, 1.0, 1.0), "Wrong label color" assert microim.ax.texts[0].get_color() == (0.0, 1.0, 0.0, 1.0), "Wrong label color" def test_update(): microimage = microplot.Microimage(images=[image, image2], cmaps=['pure_blue', 'pure_green']) assert microimage.ax is None fig, ax = plt.subplots(1, 2) microimage.update(ax[1]) verify_image(microimage) def test_save(): microimage = microplot.microshow(images=[image, image2], cmaps=['pure_blue', 'pure_green']) microimage.savefig('test_saveimage.png') os.path.isfile('test_saveimage.png') os.remove('test_saveimage.png') def test_micropanel(): microimage1 = microplot.Microimage(images=[image, image2], cmaps=['pure_blue', 'pure_green']) microimage2 = microplot.Microimage(images=[image, image2], cmaps=['pure_cyan', 'pure_magenta']) micropanel = microplot.Micropanel(1, 2) assert isinstance(micropanel, microplot.Micropanel) micropanel.add_element([0,0], microimage1) micropanel.add_element([0,1], microimage2) # check grid shape micropanel.microplots.shape == (1,2) # Check that plots are in the correct place np.testing.assert_array_equal(micropanel.microplots[0,0].ax.get_images()[0].get_array()[:,:,0], np.array([[0,0,0], [0,0,0], [0,0,0]]), "Red channel in first panel not correct") np.testing.assert_array_equal(micropanel.microplots[0,0].ax.get_images()[0].get_array()[:,:,1], np.array([[0,1,0], [0,0,0], [0,0,0]]), "Green channel in first panel not correct") np.testing.assert_array_equal(micropanel.microplots[0,0].ax.get_images()[0].get_array()[:,:,2], np.array([[1,0,0], [0,0,0], [0,0,0]]), "Blue channel in first panel not correct") np.testing.assert_array_equal(micropanel.microplots[0,1].ax.get_images()[0].get_array()[:,:,0], np.array([[0,1,0], [0,0,0], [0,0,0]]), "Red channel in second panel not correct") np.testing.assert_array_equal(micropanel.microplots[0,1].ax.get_images()[0].get_array()[:,:,1], np.array([[1,0,0], [0,0,0], [0,0,0]]), "Green channel in second panel not correct") np.testing.assert_array_equal(micropanel.microplots[0,1].ax.get_images()[0].get_array()[:,:,2], np.array([[1,1,0], [0,0,0], [0,0,0]]), "Blue channel in second panel not correct") # check labels and their positions micropanel.add_channel_label() assert micropanel.fig.texts[0].get_text() == 'Channel-1', "Wrong channel label" assert micropanel.fig.texts[1].get_text() == 'Channel-0', "Wrong channel label" assert micropanel.fig.texts[2].get_text() == 'Channel-1', "Wrong channel label" assert micropanel.fig.texts[3].get_text() == 'Channel-0', "Wrong channel label" assert micropanel.fig.texts[0].get_position()[1] > 0.8, "Wrong y position for first Channel-1 label" assert micropanel.fig.texts[1].get_position()[1] > 0.9, "Wrong y position for first Channel-0 label" assert micropanel.fig.texts[2].get_position()[1] > 0.8, "Wrong y position for second Channel-1 label" assert micropanel.fig.texts[3].get_position()[1] > 0.9, "Wrong y position for second Channel-0 label" assert micropanel.fig.texts[0].get_position()[0] < 0.5, "Wrong x position for first Channel-1 label" assert micropanel.fig.texts[1].get_position()[0] < 0.5, "Wrong x position for first Channel-0 label" assert micropanel.fig.texts[2].get_position()[0] > 0.5, "Wrong x position for second Channel-1 label" assert micropanel.fig.texts[3].get_position()[0] > 0.5, "Wrong x position for second Channel-0 label" def test_savepanel(): microimage1 = microplot.Microimage(images=[image, image2], cmaps=['pure_blue', 'pure_green']) microimage2 = microplot.Microimage(images=[image, image2], cmaps=['pure_cyan', 'pure_magenta']) micropanel = microplot.Micropanel(1, 2) micropanel.add_element([0,0], microimage1) micropanel.add_element([0,1], microimage2) micropanel.savefig('test_savepanel.png') os.path.isfile('test_savepanel.png') os.remove('test_savepanel.png')
452598
import cisreg import numpy as np # the color rgb_codes={"EnhancerActive":"255,215,0", #gold, EnhancerActive "EnhancerInactive":"184,134,11", # dark golden rod, EnhancerInactive "PromoterActive":"255,0,0", # red, PromoterActive "PromoterInactive":"250,128,114", # salmon, PromoterInactive "Exon":"0,128,0", # green, Exon "Unknown":"128,128,128",# gray, Unknown "EnhancerInactive+PromoterInactive+Exon+Unknown":"128,128,128"} # EnhancerInactive+PromoterInactive+Exon+Unknown regions=[["chr1","100","110","Enhancer",".",".",".",".","."], ["chr1","110","120","Enhancer",".",".",".",".","."], ["chr1","120","130","Enhancer",".",".",".",".","."], ["chr1","130","140","Promoter",".",".",".",".","."], ["chr1","140","150","Enhancer",".",".",".",".","."], ["chr1","150","160","Unknown",".",".",".",".","."], ["chr2","160","170","Promoter",".",".",".",".","."]] regions=np.array(regions) path='/home/yifengli/prog/my/test' regionnames=["EnhancerActive","EnhancerActive","EnhancerActive","PromoterActive","EnhancerActive","EnhancerInactive+PromoterInactive+Exon+Unknown","PromoterActive"] regionnames=np.array(regionnames) filename="CELL" cisreg.write_bed(path,filename,regionnames,rgb_codes,regions,merge=True,background="EnhancerInactive+PromoterInactive+Exon+Unknown")
452610
import sys, java, unittest from geoscript.layer import GeoTIFF class GeoTIFF_Test: def setUp(self): self.tif = GeoTIFF('data/sfdem.tif') def testBounds(self): assert self.tif.bounds() is not None assert self.tif.bounds().getwest() == 589980.0 assert self.tif.bounds().south == 4913700.0 assert self.tif.bounds().east == 609000.0 assert self.tif.bounds().north == 4928010.0 assert self.tif.bounds().proj.id == 'EPSG:26713' def testBands(self): bands = self.tif.bands assert 1 == len(bands) assert 'GRAY_INDEX' == bands[0].name
452637
import re import json from subprocess import call, Popen, PIPE def init_parser(parser): parser.add_argument('name', type=str, help='Cluster name.') parser.add_argument('--dest', '-d', required=True, type=str, help="Directory for diagnose output -- must be local.") parser.add_argument('--hail-log', '-l', required=False, type=str, default='/home/hail/hail.log', help="Path for hail.log file.") parser.add_argument('--overwrite', required=False, action='store_true', help="Delete dest directory before adding new files.") parser.add_argument('--no-diagnose', required=False, action='store_true', help="Do not run gcloud dataproc clusters diagnose.") parser.add_argument('--compress', '-z', required=False, action='store_true', help="GZIP all files.") parser.add_argument('--workers', required=False, nargs='*', help="Specific workers to get log files from.") parser.add_argument('--take', required=False, type=int, default=None, help="Only download logs from the first N workers.") def main(args): print("Diagnosing cluster '{}'...".format(args.name)) is_local = not args.dest.startswith("gs://") if args.overwrite: if is_local: call('rm -r {dir}'.format(dir=args.dest), shell=True) else: call('gsutil -m rm -r {dir}'.format(dir=args.dest), shell=True) master_dest = args.dest.rstrip('/') + "/master/" worker_dest = args.dest.rstrip('/') + "/workers/" if is_local: call('mkdir -p {dir}'.format(dir=master_dest), shell=True) call('mkdir -p {dir}'.format(dir=worker_dest), shell=True) desc = json.loads(Popen('gcloud dataproc clusters describe {name} --format json'.format(name=args.name), shell=True, stdout=PIPE, stderr=PIPE).communicate()[0].strip()) config = desc['config'] master = config['masterConfig']['instanceNames'][0] try: workers = config['workerConfig']['instanceNames'] + config['secondaryWorkerConfig']['instanceNames'] except KeyError: workers = config['workerConfig']['instanceNames'] zone = re.search('zones\/(?P<zone>\S+)$', config['gceClusterConfig']['zoneUri']).group('zone') if args.workers: invalid_workers = set(args.workers).difference(set(workers)) assert len(invalid_workers) == 0, "Non-existent workers specified: " + ", ".join(invalid_workers) workers = args.workers if args.take: assert args.take > 0 and args.take <= len(workers), "Number of workers to take must be in the range of [0, nWorkers]. Found " + args.take + "." workers = workers[:args.take] def gcloud_ssh(remote, command): return 'gcloud compute ssh {remote} --zone {zone} --command "{command}"'.format(remote=remote, zone=zone, command=command) def gcloud_copy_files(remote, src, dest): return 'gcloud compute copy-files {remote}:{src} {dest} --zone {zone}'.format(remote=remote, src=src, dest=dest, zone=zone) def gsutil_cp(src, dest): return 'gsutil -m cp -r {src} {dest}'.format(src=src, dest=dest) def copy_files_tmp(remote, files, dest, tmp): init_cmd = ['mkdir -p {tmp}; rm -r {tmp}/*'.format(tmp=tmp)] copy_tmp_cmds = ['sudo cp -r {file} {tmp}'.format(file=file, tmp=tmp) for file in files] copy_tmp_cmds.append('sudo chmod -R 777 {tmp}'.format(tmp=tmp)) if args.compress: copy_tmp_cmds.append('sudo find ' + tmp + ' -type f ! -name \'*.gz\' -exec gzip "{}" \;') call(gcloud_ssh(remote, '; '.join(init_cmd + copy_tmp_cmds)), shell=True) if not is_local: copy_dest_cmd = gcloud_ssh(remote, 'gsutil -m cp -r {tmp} {dest}'.format(tmp=tmp, dest=dest)) else: copy_dest_cmd = gcloud_copy_files(remote, tmp, dest) call(copy_dest_cmd, shell=True) if not args.no_diagnose: diagnose_tar_path = re.search('Diagnostic results saved in: (?P<tarfile>gs:\/\/\S+diagnostic\.tar)', str(Popen('gcloud dataproc clusters diagnose {name}'.format(name=args.name), shell=True, stdout=PIPE, stderr=PIPE).communicate())).group('tarfile') call(gsutil_cp(diagnose_tar_path, args.dest), shell=True) master_log_files = [ '/var/log/hive/hive-*', '/var/log/google-dataproc-agent.0.log', '/var/log/dataproc-initialization-script-0.log', '/var/log/hadoop-mapreduce/mapred-mapred-historyserver*', '/var/log/hadoop-hdfs/*-m.*', '/var/log/hadoop-yarn/yarn-yarn-resourcemanager-*-m.*', args.hail_log ] copy_files_tmp(master, master_log_files, master_dest, '/tmp/' + master + '/') worker_log_files = ['/var/log/hadoop-hdfs/hadoop-hdfs-datanode-*.*', '/var/log/dataproc-startup-script.log', '/var/log/hadoop-yarn/yarn-yarn-nodemanager-*.*'] for worker in workers: copy_files_tmp(worker, worker_log_files, worker_dest, '/tmp/' + worker + '/') copy_files_tmp(worker, ['/var/log/hadoop-yarn/userlogs/'], args.dest, '/tmp/hadoop-yarn/')
452683
import logging from pajbot.models.command import Command from pajbot.modules import BaseModule from pajbot.modules import ModuleSetting log = logging.getLogger(__name__) class PaidSubmodeModule(BaseModule): ID = __name__.split(".")[-1] NAME = "Paid Submode" DESCRIPTION = "Allows user to toggle subscribers mode on and off using points." CATEGORY = "Feature" SETTINGS = [ ModuleSetting( key="subon_command_name", label="Command name for turning sub mode on (i.e. $subon)", type="text", required=True, placeholder="Command name (no !)", default="$subon", constraints={"min_str_len": 2, "max_str_len": 15}, ), ModuleSetting( key="suboff_command_name", label="Command name for turning sub mode off (i.e. $suboff)", type="text", required=True, placeholder="Command name (no !)", default="$suboff", constraints={"min_str_len": 2, "max_str_len": 15}, ), ModuleSetting( key="subon_cost", label="Point cost for turning sub mode on", type="number", required=True, placeholder="Point cost", default=1000, constraints={"min_value": 1, "max_value": 1000000}, ), ModuleSetting( key="suboff_cost", label="Point cost for turning sub mode off", type="number", required=True, placeholder="Point cost", default=1000, constraints={"min_value": 1, "max_value": 1000000}, ), ] def paid_subon(self, bot, source, **rest): if bot.subs_only is True: bot.whisper(source, "Why would you try to enable subonly, if it's already enabled? FailFish") # Request to enable submode is ignored, but the return False ensures the user is refunded their points return False if bot.subs_only is False: _cost = self.settings["subon_cost"] # Test this a bit. Make sure twitch doesn't bug out bot.privmsg(".subscribers") bot.execute_delayed(0.2, bot.privmsg, ".subscribers") bot.whisper(source, f"You just used {_cost} points to put the chat into subscribers mode!") return True def paid_suboff(self, bot, source, **rest): if bot.subs_only is False: bot.whisper(source, "Why would you try to disable subonly, if it's not on in the first place? FailFish") # Request to disable submode is ignored, but the return False ensures the user is refunded their points return False if bot.subs_only is True: _cost = self.settings["suboff_cost"] # Test this a bit. Make sure twitch doesn't bug out bot.privmsg(".subscribersoff") bot.execute_delayed(0.2, bot.privmsg, ".subscribersoff") bot.whisper(source, f"You just used {_cost} points to put the chat into subscribers mode!") return True def load_commands(self, **options): self.commands[ self.settings["subon_command_name"].lower().replace("!", "").replace(" ", "") ] = Command.raw_command(self.paid_subon, cost=self.settings["subon_cost"]) self.commands[ self.settings["suboff_command_name"].lower().replace("!", "").replace(" ", "") ] = Command.raw_command(self.paid_suboff, cost=self.settings["suboff_cost"])
452693
import numpy as np import scipy.spatial as spatial from source.base import file_utils def get_aabb(points: np.ndarray): aabb_min = points.min(axis=0) aabb_max = points.max(axis=0) return aabb_min, aabb_max def load_xyz(file_path): data = np.loadtxt(file_path).astype('float32') nan_lines = np.isnan(data).any(axis=1) num_nan_lines = np.sum(nan_lines) if num_nan_lines > 0: data = data[~nan_lines] # filter rows with nan values print('Ignored {} points containing NaN coordinates in point cloud {}'.format(num_nan_lines, file_path)) return data def write_ply(file_path: str, points: np.ndarray, normals=None, colors=None): """ Write point cloud file as .ply. :param file_path: :param points: :param normals: :param colors: :return: None """ import trimesh assert(file_path.endswith('.ply')) file_utils.make_dir_for_file(file_path) if points.shape == (3,): points = np.expand_dims(points, axis=0) if points.shape[0] == 3 and points.shape[1] != 3: points = points.transpose([1, 0]) if colors is not None and colors.shape[0] == 3 and colors.shape[1] != 3: colors = colors.transpose([1, 0]) if normals is not None and normals.shape[0] == 3 and normals.shape[1] != 3: normals = normals.transpose([1, 0]) # convert 2d points to 3d if points.shape[1] == 2: vertices_2p5d = np.zeros((points.shape[0], 3)) vertices_2p5d[:, :2] = points vertices_2p5d[:, 2] = 0.0 points = vertices_2p5d mesh = trimesh.Trimesh(vertices=points, vertex_colors=colors, vertex_normals=normals) mesh.export(file_path) def write_xyz(file_path, points: np.ndarray, normals=None, colors=None): """ Write point cloud file. :param file_path: :param points: :param normals: :param colors: :return: None """ file_utils.make_dir_for_file(file_path) if points.shape == (3,): points = np.expand_dims(points, axis=0) if points.shape[0] == 3 and points.shape[1] != 3: points = points.transpose([1, 0]) if colors is not None and colors.shape[0] == 3 and colors.shape[1] != 3: colors = colors.transpose([1, 0]) if normals is not None and normals.shape[0] == 3 and normals.shape[1] != 3: normals = normals.transpose([1, 0]) with open(file_path, 'w') as fp: # convert 2d points to 3d if points.shape[1] == 2: vertices_2p5d = np.zeros((points.shape[0], 3)) vertices_2p5d[:, :2] = points vertices_2p5d[:, 2] = 0.0 points = vertices_2p5d # write points # meshlab doesn't like colors, only using normals. try cloud compare instead. for vi, v in enumerate(points): line_vertex = str(v[0]) + " " + str(v[1]) + " " + str(v[2]) + " " if normals is not None: line_vertex += str(normals[vi][0]) + " " + str(normals[vi][1]) + " " + str(normals[vi][2]) + " " if colors is not None: line_vertex += str(colors[vi][0]) + " " + str(colors[vi][1]) + " " + str(colors[vi][2]) + " " fp.write(line_vertex + "\n") def load_pcd(file_in): # PCD: http://pointclouds.org/documentation/tutorials/pcd_file_format.php # PCD RGB: http://docs.pointclouds.org/trunk/structpcl_1_1_r_g_b.html#a4ad91ab9726a3580e6dfc734ab77cd18 def read_header(lines_header): header_info = dict() def add_line_to_header_dict(header_dict, line, expected_field): line_parts = line.split(sep=' ') assert (line_parts[0] == expected_field), \ ('Warning: "' + expected_field + '" expected but not found in pcd header!') header_dict[expected_field] = (' '.join(line_parts[1:])).replace('\n', '') add_line_to_header_dict(header_info, lines_header[0], '#') add_line_to_header_dict(header_info, lines_header[1], 'VERSION') add_line_to_header_dict(header_info, lines_header[2], 'FIELDS') add_line_to_header_dict(header_info, lines_header[3], 'SIZE') add_line_to_header_dict(header_info, lines_header[4], 'TYPE') add_line_to_header_dict(header_info, lines_header[5], 'COUNT') add_line_to_header_dict(header_info, lines_header[6], 'WIDTH') add_line_to_header_dict(header_info, lines_header[7], 'HEIGHT') add_line_to_header_dict(header_info, lines_header[8], 'VIEWPOINT') add_line_to_header_dict(header_info, lines_header[9], 'POINTS') add_line_to_header_dict(header_info, lines_header[10], 'DATA') # TODO: lift limitations assert header_info['VERSION'] == '0.7' assert header_info['FIELDS'] == 'x y z rgb label' assert header_info['SIZE'] == '4 4 4 4 4' assert header_info['TYPE'] == 'F F F F U' assert header_info['COUNT'] == '1 1 1 1 1' # assert header_info['HEIGHT'] == '1' assert header_info['DATA'] == 'ascii' # assert header_info['WIDTH'] == header_info['POINTS'] return header_info f = open(file_in, "r") f_lines = f.readlines() f_lines_header = f_lines[:11] f_lines_points = f_lines[11:] header_info = read_header(f_lines_header) header_info['_file_'] = file_in num_points = int(header_info['POINTS']) point_data_list_str_ = [l.split(sep=' ')[:3] for l in f_lines_points] point_data_list = [[float(l[0]), float(l[1]), float(l[2])] for l in point_data_list_str_] # filter nan points that appear through the blensor kinect sensor point_data_list = [p for p in point_data_list if (not np.isnan(p[0]) and not np.isnan(p[1]) and not np.isnan(p[2]))] point_data = np.array(point_data_list) f.close() return point_data, header_info def get_patch_radius(grid_res, epsilon): return (1.0 + epsilon) / grid_res def get_patch_kdtree( kdtree: spatial.cKDTree, rng: np.random.RandomState, query_point, patch_radius, points_per_patch, n_jobs): if patch_radius <= 0.0: pts_dists_ms, patch_pts_ids = kdtree.query(x=query_point, k=points_per_patch, n_jobs=n_jobs) else: patch_pts_ids = kdtree.query_ball_point(x=query_point, r=patch_radius, n_jobs=n_jobs) patch_pts_ids = np.array(patch_pts_ids, dtype=np.int32) point_count = patch_pts_ids.shape[0] # if there are too many neighbors, pick a random subset if point_count > points_per_patch: patch_pts_ids = patch_pts_ids[rng.choice(np.arange(point_count), points_per_patch, replace=False)] # pad with zeros if point_count < points_per_patch: missing_points = points_per_patch - point_count padding = np.full((missing_points), -1, dtype=np.int32) if point_count == 0: patch_pts_ids = padding else: patch_pts_ids = np.concatenate((patch_pts_ids, padding), axis=0) return patch_pts_ids
452695
def displayBanner(): banner = open('./banner/banner.txt', 'r', encoding = 'utf8') print(banner.read()) def choice(): while True: choice = int(input(">")) if choice == 0: break elif choice == 1: exit() else: print("Retry")
452713
import os from testtools import TestCase from cloudify_cli import inputs from cloudify_cli.exceptions import CloudifyCliError class InputsToDictTest(TestCase): def test_valid_inline(self): resources = ['key1=value1;key2=value2'] result = inputs.inputs_to_dict(resources) self.assertDictEqual(result, {'key1': 'value1', 'key2': 'value2'}) def test_inline_not_dict(self): resources = ['key1failure'] self._verify_not_dict(resources) def test_invalid_yaml(self): resources = [os.path.join(os.path.dirname(__file__), 'resources', 'inputs', 'bad_format.yaml')] self._verify_root_cause(resources) def test_yaml_not_dict(self): resources = [os.path.join(os.path.dirname(__file__), 'resources', 'inputs', 'not_dict.yaml')] self._verify_not_dict(resources) def _verify_root_cause(self, resources): with self.assertRaisesRegex(CloudifyCliError, 'Root cause'): inputs.inputs_to_dict(resources) def _verify_not_dict(self, resources): with self.assertRaisesRegex( CloudifyCliError, 'does not represent a dictionary'): inputs.inputs_to_dict(resources)
452778
from cereal import car from selfdrive.car import apply_toyota_steer_torque_limits from selfdrive.car.chrysler.chryslercan import create_lkas_hud, create_lkas_command, \ create_wheel_buttons from selfdrive.car.chrysler.values import CAR, CarControllerParams from opendbc.can.packer import CANPacker class CarController(): def __init__(self, dbc_name, CP, VM): self.apply_steer_last = 0 self.ccframe = 0 self.prev_frame = -1 self.hud_count = 0 self.car_fingerprint = CP.carFingerprint self.gone_fast_yet = False self.steer_rate_limited = False self.packer = CANPacker(dbc_name) def update(self, enabled, CS, actuators, pcm_cancel_cmd, hud_alert): # this seems needed to avoid steering faults and to force the sync with the EPS counter frame = CS.lkas_counter if self.prev_frame == frame: return car.CarControl.Actuators.new_message(), [] # steer torque new_steer = int(round(actuators.steer * CarControllerParams.STEER_MAX)) apply_steer = apply_toyota_steer_torque_limits(new_steer, self.apply_steer_last, CS.out.steeringTorqueEps, CarControllerParams) self.steer_rate_limited = new_steer != apply_steer moving_fast = CS.out.vEgo > CS.CP.minSteerSpeed # for status message if CS.out.vEgo > (CS.CP.minSteerSpeed - 0.5): # for command high bit self.gone_fast_yet = True elif self.car_fingerprint in (CAR.PACIFICA_2019_HYBRID, CAR.PACIFICA_2020, CAR.JEEP_CHEROKEE_2019): if CS.out.vEgo < (CS.CP.minSteerSpeed - 3.0): self.gone_fast_yet = False # < 14.5m/s stock turns off this bit, but fine down to 13.5 lkas_active = moving_fast and enabled if not lkas_active: apply_steer = 0 self.apply_steer_last = apply_steer can_sends = [] #*** control msgs *** if pcm_cancel_cmd: # TODO: would be better to start from frame_2b3 new_msg = create_wheel_buttons(self.packer, self.ccframe, cancel=True) can_sends.append(new_msg) # LKAS_HEARTBIT is forwarded by Panda so no need to send it here. # frame is 100Hz (0.01s period) if (self.ccframe % 25 == 0): # 0.25s period if (CS.lkas_car_model != -1): new_msg = create_lkas_hud( self.packer, CS.out.gearShifter, lkas_active, hud_alert, self.hud_count, CS.lkas_car_model) can_sends.append(new_msg) self.hud_count += 1 new_msg = create_lkas_command(self.packer, int(apply_steer), self.gone_fast_yet, frame) can_sends.append(new_msg) self.ccframe += 1 self.prev_frame = frame new_actuators = actuators.copy() new_actuators.steer = apply_steer / CarControllerParams.STEER_MAX return new_actuators, can_sends
452837
import logging from claripy.vsa import StridedInterval l = logging.getLogger("angr_tests") def check_si_fields(si, stride, lb, ub): if si.stride != stride: return False if si.lower_bound != lb: return False if si.upper_bound != ub: return False return True def test_smart_join(): s1 = StridedInterval(bits=4, stride=3, lower_bound=9, upper_bound=12) s2 = StridedInterval(bits=4, stride=3, lower_bound=0, upper_bound=3) j = StridedInterval.pseudo_join(s1, s2) u = StridedInterval.least_upper_bound(s1, s2) assert check_si_fields(u, 3, 0, 12) assert check_si_fields(j, 3, 0, 12) s1 = StridedInterval(bits=4, stride=0, lower_bound=8, upper_bound=8) s2 = StridedInterval(bits=4, stride=1, lower_bound=14, upper_bound=15) s3 = StridedInterval(bits=4, stride=1, lower_bound=0, upper_bound=4) u = StridedInterval.least_upper_bound(s1, s2, s3) assert check_si_fields(u, 1, 14, 8) s1 = StridedInterval(bits=4, stride=3, lower_bound=2, upper_bound=8) s2 = StridedInterval(bits=4, stride=0, lower_bound=1, upper_bound=1) j = StridedInterval.pseudo_join(s1, s2) u = StridedInterval.least_upper_bound(s1, s2) assert check_si_fields(u, 3, 2, 1) assert check_si_fields(j, 3, 2, 1) if __name__ == "__main__": test_smart_join()
452869
from DRecPy.Recommender.Baseline.aggregation import mean from DRecPy.Recommender.Baseline.aggregation import weighted_mean import pytest @pytest.fixture def interactions(): return [5, 2, 3, 1] @pytest.fixture def interactions_zeroes(): return [0, 0, 0, 0] @pytest.fixture def similarities(): return [1, 0.2, 0.1, 0.8] @pytest.fixture def similarities_zeroes(): return [0, 0, 0, 0] def test_mean_0(interactions): assert mean(interactions, None) == 2.75 def test_mean_1(interactions_zeroes): assert mean(interactions_zeroes, None) == 0 def test_mean_2(): assert mean([], None) is None def test_weighted_mean_0(interactions, similarities): assert round(weighted_mean(interactions, similarities), 4) == 3.0952 def test_weighted_mean_1(interactions_zeroes, similarities): assert weighted_mean(interactions_zeroes, similarities) == 0 def test_weighted_mean_2(): assert weighted_mean([], []) is None def test_weighted_mean_3(interactions, similarities_zeroes): assert weighted_mean(interactions, similarities_zeroes) is None
452889
def getNum(prompt = 'Positive real number, please: '): while 1: try: num = float(eval(input(prompt))) if num >= 0: return num except ValueError: print('Bad number') num = getNum(prompt = 'Give it! ') print(num)
452898
import argparse import time import os import random import collections import numpy as np import torch from model import DAE, VAE, AAE from vocab import Vocab from meter import AverageMeter from utils import set_seed, logging, load_sent from batchify import get_batches parser = argparse.ArgumentParser() # Path arguments parser.add_argument('--train', metavar='FILE', required=True, help='path to training file') parser.add_argument('--valid', metavar='FILE', required=True, help='path to validation file') parser.add_argument('--save-dir', default='checkpoints', metavar='DIR', help='directory to save checkpoints and outputs') parser.add_argument('--load-model', default='', metavar='FILE', help='path to load checkpoint if specified') # Architecture arguments parser.add_argument('--vocab-size', type=int, default=10000, metavar='N', help='keep N most frequent words in vocabulary') parser.add_argument('--dim_z', type=int, default=128, metavar='D', help='dimension of latent variable z') parser.add_argument('--dim_emb', type=int, default=512, metavar='D', help='dimension of word embedding') parser.add_argument('--dim_h', type=int, default=1024, metavar='D', help='dimension of hidden state per layer') parser.add_argument('--nlayers', type=int, default=1, metavar='N', help='number of layers') parser.add_argument('--dim_d', type=int, default=512, metavar='D', help='dimension of hidden state in AAE discriminator') # Model arguments parser.add_argument('--model_type', default='dae', metavar='M', choices=['dae', 'vae', 'aae'], help='which model to learn') parser.add_argument('--lambda_kl', type=float, default=0, metavar='R', help='weight for kl term in VAE') parser.add_argument('--lambda_adv', type=float, default=0, metavar='R', help='weight for adversarial loss in AAE') parser.add_argument('--lambda_p', type=float, default=0, metavar='R', help='weight for L1 penalty on posterior log-variance') parser.add_argument('--noise', default='0,0,0,0', metavar='P,P,P,K', help='word drop prob, blank prob, substitute prob' 'max word shuffle distance') # Training arguments parser.add_argument('--dropout', type=float, default=0.5, metavar='DROP', help='dropout probability (0 = no dropout)') parser.add_argument('--lr', type=float, default=0.0005, metavar='LR', help='learning rate') #parser.add_argument('--clip', type=float, default=0.25, metavar='NORM', # help='gradient clipping') parser.add_argument('--epochs', type=int, default=50, metavar='N', help='number of training epochs') parser.add_argument('--batch-size', type=int, default=256, metavar='N', help='batch size') # Others parser.add_argument('--seed', type=int, default=1111, metavar='N', help='random seed') parser.add_argument('--no-cuda', action='store_true', help='disable CUDA') parser.add_argument('--log-interval', type=int, default=100, metavar='N', help='report interval') def evaluate(model, batches): model.eval() meters = collections.defaultdict(lambda: AverageMeter()) with torch.no_grad(): for inputs, targets in batches: losses = model.autoenc(inputs, targets) for k, v in losses.items(): meters[k].update(v.item(), inputs.size(1)) loss = model.loss({k: meter.avg for k, meter in meters.items()}) meters['loss'].update(loss) return meters def main(args): if not os.path.exists(args.save_dir): os.makedirs(args.save_dir) log_file = os.path.join(args.save_dir, 'log.txt') logging(str(args), log_file) # Prepare data train_sents = load_sent(args.train) logging('# train sents {}, tokens {}'.format( len(train_sents), sum(len(s) for s in train_sents)), log_file) valid_sents = load_sent(args.valid) logging('# valid sents {}, tokens {}'.format( len(valid_sents), sum(len(s) for s in valid_sents)), log_file) vocab_file = os.path.join(args.save_dir, 'vocab.txt') if not os.path.isfile(vocab_file): Vocab.build(train_sents, vocab_file, args.vocab_size) vocab = Vocab(vocab_file) logging('# vocab size {}'.format(vocab.size), log_file) set_seed(args.seed) cuda = not args.no_cuda and torch.cuda.is_available() device = torch.device('cuda' if cuda else 'cpu') model = {'dae': DAE, 'vae': VAE, 'aae': AAE}[args.model_type]( vocab, args).to(device) if args.load_model: ckpt = torch.load(args.load_model) model.load_state_dict(ckpt['model']) model.flatten() logging('# model parameters: {}'.format( sum(x.data.nelement() for x in model.parameters())), log_file) train_batches, _ = get_batches(train_sents, vocab, args.batch_size, device) valid_batches, _ = get_batches(valid_sents, vocab, args.batch_size, device) best_val_loss = None for epoch in range(args.epochs): start_time = time.time() logging('-' * 80, log_file) model.train() meters = collections.defaultdict(lambda: AverageMeter()) indices = list(range(len(train_batches))) random.shuffle(indices) for i, idx in enumerate(indices): inputs, targets = train_batches[idx] losses = model.autoenc(inputs, targets, is_train=True) losses['loss'] = model.loss(losses) model.step(losses) for k, v in losses.items(): meters[k].update(v.item()) if (i + 1) % args.log_interval == 0: log_output = '| epoch {:3d} | {:5d}/{:5d} batches |'.format( epoch + 1, i + 1, len(indices)) for k, meter in meters.items(): log_output += ' {} {:.2f},'.format(k, meter.avg) meter.clear() logging(log_output, log_file) valid_meters = evaluate(model, valid_batches) logging('-' * 80, log_file) log_output = '| end of epoch {:3d} | time {:5.0f}s | valid'.format( epoch + 1, time.time() - start_time) for k, meter in valid_meters.items(): log_output += ' {} {:.2f},'.format(k, meter.avg) if not best_val_loss or valid_meters['loss'].avg < best_val_loss: log_output += ' | saving model' ckpt = {'args': args, 'model': model.state_dict()} torch.save(ckpt, os.path.join(args.save_dir, 'model.pt')) best_val_loss = valid_meters['loss'].avg logging(log_output, log_file) logging('Done training', log_file) if __name__ == '__main__': args = parser.parse_args() args.noise = [float(x) for x in args.noise.split(',')] main(args)
452917
from django.template.response import TemplateResponse def not_found(request, exception=None): """404 error handler which includes ``request`` in the context.""" return TemplateResponse( request, "status/404.html", {"request": request}, status=404 ) def server_error(request): """500 error handler which includes ``request`` in the context.""" return TemplateResponse( request, "status/500.html", {"request": request}, status=500 )
452920
from logging import getLogger import numpy as np import scipy.stats as stats from .controller import Controller from ..envs.cost import calc_cost logger = getLogger(__name__) class DDP(Controller): """ Differential Dynamic Programming Ref: <NAME>., <NAME>., & <NAME>. (2012). In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4906-4913). and Study Wolf, https://github.com/studywolf/control, and https://github.com/anassinator/ilqr """ def __init__(self, config, model): """ """ super(DDP, self).__init__(config, model) # model self.model = model # get cost func self.state_cost_fn = config.state_cost_fn self.terminal_state_cost_fn = config.terminal_state_cost_fn self.input_cost_fn = config.input_cost_fn self.gradient_cost_fn_state = config.gradient_cost_fn_state self.gradient_cost_fn_input = config.gradient_cost_fn_input self.hessian_cost_fn_state = config.hessian_cost_fn_state self.hessian_cost_fn_input = config.hessian_cost_fn_input self.hessian_cost_fn_input_state = \ config.hessian_cost_fn_input_state # controller parameters self.max_iters = config.opt_config["DDP"]["max_iters"] self.init_mu = config.opt_config["DDP"]["init_mu"] self.mu = self.init_mu self.mu_min = config.opt_config["DDP"]["mu_min"] self.mu_max = config.opt_config["DDP"]["mu_max"] self.init_delta = config.opt_config["DDP"]["init_delta"] self.delta = self.init_delta self.threshold = config.opt_config["DDP"]["threshold"] # general parameters self.pred_len = config.PRED_LEN self.input_size = config.INPUT_SIZE self.dt = config.DT # cost parameters self.Q = config.Q self.R = config.R self.Sf = config.Sf # initialize self.prev_sol = np.zeros((self.pred_len, self.input_size)) def clear_sol(self): """ clear prev sol """ logger.debug("Clear Sol") self.prev_sol = np.zeros((self.pred_len, self.input_size)) def obtain_sol(self, curr_x, g_xs): """ calculate the optimal inputs Args: curr_x (numpy.ndarray): current state, shape(state_size, ) g_xs (numpy.ndarrya): goal trajectory, shape(plan_len, state_size) Returns: opt_input (numpy.ndarray): optimal input, shape(input_size, ) """ # initialize opt_count = 0 sol = self.prev_sol.copy() converged_sol = False update_sol = True self.mu = self.init_mu self.delta = self.init_delta # line search param alphas = 1.1**(-np.arange(10)**2) while opt_count < self.max_iters: accepted_sol = False # forward if update_sol == True: pred_xs, cost, f_x, f_u, f_xx, f_ux, f_uu,\ l_x, l_xx, l_u, l_uu, l_ux = \ self.forward(curr_x, g_xs, sol) update_sol = False try: # backward k, K = self.backward(f_x, f_u, f_xx, f_ux, f_uu, l_x, l_xx, l_u, l_uu, l_ux) # line search for alpha in alphas: new_pred_xs, new_sol = \ self.calc_input(k, K, pred_xs, sol, alpha) new_cost = calc_cost(new_pred_xs[np.newaxis, :, :], new_sol[np.newaxis, :, :], g_xs[np.newaxis, :, :], self.state_cost_fn, self.input_cost_fn, self.terminal_state_cost_fn) if new_cost < cost: if np.abs((cost - new_cost) / cost) < self.threshold: converged_sol = True cost = new_cost pred_xs = new_pred_xs sol = new_sol update_sol = True # decrease regularization term self.delta = min(1.0, self.delta) / self.init_delta self.mu *= self.delta if self.mu <= self.mu_min: self.mu = 0.0 # accept the solution accepted_sol = True break except np.linalg.LinAlgError as e: logger.debug("Non ans : {}".format(e)) if not accepted_sol: # increase regularization term. self.delta = max(1.0, self.delta) * self.init_delta self.mu = max(self.mu_min, self.mu * self.delta) logger.debug("Update regularization term to {}" .format(self.mu)) if self.mu >= self.mu_max: logger.debug("Reach Max regularization term") break if converged_sol: logger.debug("Get converged sol") break opt_count += 1 # update prev sol self.prev_sol[:-1] = sol[1:] self.prev_sol[-1] = sol[-1] # last use the terminal input return sol[0] def calc_input(self, k, K, pred_xs, sol, alpha): """ calc input trajectory by using k and K Args: k (numpy.ndarray): gain, shape(pred_len, input_size) K (numpy.ndarray): gain, shape(pred_len, input_size, state_size) pred_xs (numpy.ndarray): predicted state, shape(pred_len+1, state_size) sol (numpy.ndarray): input trajectory, previous solutions shape(pred_len, input_size) alpha (float): param of line search Returns: new_pred_xs (numpy.ndarray): update state trajectory, shape(pred_len+1, state_size) new_sol (numpy.ndarray): update input trajectory, shape(pred_len, input_size) """ # get size (pred_len, input_size, state_size) = K.shape # initialize new_pred_xs = np.zeros((pred_len+1, state_size)) new_pred_xs[0] = pred_xs[0].copy() # init state is same new_sol = np.zeros((pred_len, input_size)) for t in range(pred_len): new_sol[t] = sol[t] \ + alpha * k[t] \ + np.dot(K[t], (new_pred_xs[t] - pred_xs[t])) new_pred_xs[t+1] = self.model.predict_next_state(new_pred_xs[t], new_sol[t]) return new_pred_xs, new_sol def forward(self, curr_x, g_xs, sol): """ forward step of iLQR Args: curr_x (numpy.ndarray): current state, shape(state_size, ) g_xs (numpy.ndarrya): goal trajectory, shape(plan_len, state_size) sol (numpy.ndarray): solutions, shape(plan_len, input_size) Returns: f_x (numpy.ndarray): gradient of model with respecto to state, shape(pred_len, state_size, state_size) f_u (numpy.ndarray): gradient of model with respecto to input, shape(pred_len, state_size, input_size) f_xx (numpy.ndarray): gradient of model with respecto to state, shape(pred_len+1, state_size, state_size, state_size) f_ux (numpy.ndarray): gradient of model with respecto to input, shape(pred_len, state_size, input_size, state_size) f_uu (numpy.ndarray): gradient of model with respecto to input, shape(pred_len, state_size, input_size, input_size) l_x (numpy.ndarray): gradient of cost with respecto to state, shape(pred_len+1, state_size) l_u (numpy.ndarray): gradient of cost with respecto to input, shape(pred_len, input_size) l_xx (numpy.ndarray): hessian of cost with respecto to state, shape(pred_len+1, state_size, state_size) l_uu (numpy.ndarray): hessian of cost with respecto to input, shape(pred_len+1, input_size, input_size) l_ux (numpy.ndarray): hessian of cost with respect to state and input, shape(pred_len, input_size, state_size) """ # simulate forward using the current control trajectory pred_xs = self.model.predict_traj(curr_x, sol) # check costs cost = self.calc_cost(curr_x, sol[np.newaxis, :, :], g_xs) # calc gradinet in batch f_x = self.model.calc_f_x(pred_xs[:-1], sol, self.dt) f_u = self.model.calc_f_u(pred_xs[:-1], sol, self.dt) # calc hessian in batch f_xx = self.model.calc_f_xx(pred_xs[:-1], sol, self.dt) f_ux = self.model.calc_f_ux(pred_xs[:-1], sol, self.dt) f_uu = self.model.calc_f_uu(pred_xs[:-1], sol, self.dt) # gradint of costs l_x, l_xx, l_u, l_uu, l_ux = \ self._calc_gradient_hessian_cost(pred_xs, g_xs, sol) return pred_xs, cost, f_x, f_u, f_xx, f_ux, f_uu, \ l_x, l_xx, l_u, l_uu, l_ux def _calc_gradient_hessian_cost(self, pred_xs, g_x, sol): """ calculate gradient and hessian of model and cost fn Args: pred_xs (numpy.ndarray): predict traj, shape(pred_len+1, state_size) sol (numpy.ndarray): input traj, shape(pred_len, input_size) Returns l_x (numpy.ndarray): gradient of cost, shape(pred_len+1, state_size) l_u (numpy.ndarray): gradient of cost, shape(pred_len, input_size) l_xx (numpy.ndarray): hessian of cost, shape(pred_len+1, state_size, state_size) l_uu (numpy.ndarray): hessian of cost, shape(pred_len+1, input_size, input_size) l_ux (numpy.ndarray): hessian of cost, shape(pred_len, input_size, state_size) """ # l_x.shape = (pred_len+1, state_size) l_x = self.gradient_cost_fn_state(pred_xs[:-1], g_x[:-1], terminal=False) terminal_l_x = \ self.gradient_cost_fn_state(pred_xs[-1], g_x[-1], terminal=True) l_x = np.concatenate((l_x, terminal_l_x), axis=0) # l_u.shape = (pred_len, input_size) l_u = self.gradient_cost_fn_input(pred_xs[:-1], sol) # l_xx.shape = (pred_len+1, state_size, state_size) l_xx = self.hessian_cost_fn_state(pred_xs[:-1], g_x[:-1], terminal=False) terminal_l_xx = \ self.hessian_cost_fn_state(pred_xs[-1], g_x[-1], terminal=True) l_xx = np.concatenate((l_xx, terminal_l_xx), axis=0) # l_uu.shape = (pred_len, input_size, input_size) l_uu = self.hessian_cost_fn_input(pred_xs[:-1], sol) # l_ux.shape = (pred_len, input_size, state_size) l_ux = self.hessian_cost_fn_input_state(pred_xs[:-1], sol) return l_x, l_xx, l_u, l_uu, l_ux def backward(self, f_x, f_u, f_xx, f_ux, f_uu, l_x, l_xx, l_u, l_uu, l_ux): """ backward step of iLQR Args: f_x (numpy.ndarray): gradient of model with respecto to state, shape(pred_len+1, state_size, state_size) f_u (numpy.ndarray): gradient of model with respecto to input, shape(pred_len, state_size, input_size) f_xx (numpy.ndarray): gradient of model with respecto to state, shape(pred_len+1, state_size, state_size, state_size) f_ux (numpy.ndarray): gradient of model with respecto to input, shape(pred_len, state_size, input_size, state_size) f_uu (numpy.ndarray): gradient of model with respecto to input, shape(pred_len, state_size, input_size, input_size) l_x (numpy.ndarray): gradient of cost with respecto to state, shape(pred_len+1, state_size) l_u (numpy.ndarray): gradient of cost with respecto to input, shape(pred_len, input_size) l_xx (numpy.ndarray): hessian of cost with respecto to state, shape(pred_len+1, state_size, state_size) l_uu (numpy.ndarray): hessian of cost with respecto to input, shape(pred_len, input_size, input_size) l_ux (numpy.ndarray): hessian of cost with respect to state and input, shape(pred_len, input_size, state_size) Returns: k (numpy.ndarray): gain, shape(pred_len, input_size) K (numpy.ndarray): gain, shape(pred_len, input_size, state_size) """ # get size (_, state_size, _) = f_x.shape # initialzie V_x = l_x[-1] V_xx = l_xx[-1] k = np.zeros((self.pred_len, self.input_size)) K = np.zeros((self.pred_len, self.input_size, state_size)) for t in range(self.pred_len-1, -1, -1): # get Q val Q_x, Q_u, Q_xx, Q_ux, Q_uu = self._Q(f_x[t], f_u[t], f_xx[t], f_ux[t], f_uu[t], l_x[t], l_u[t], l_xx[t], l_ux[t], l_uu[t], V_x, V_xx) # calc gain k[t] = - np.linalg.solve(Q_uu, Q_u) K[t] = - np.linalg.solve(Q_uu, Q_ux) # update V_x val V_x = Q_x + np.dot(np.dot(K[t].T, Q_uu), k[t]) V_x += np.dot(K[t].T, Q_u) + np.dot(Q_ux.T, k[t]) # update V_xx val V_xx = Q_xx + np.dot(np.dot(K[t].T, Q_uu), K[t]) V_xx += np.dot(K[t].T, Q_ux) + np.dot(Q_ux.T, K[t]) V_xx = 0.5 * (V_xx + V_xx.T) # to maintain symmetry. return k, K def _Q(self, f_x, f_u, f_xx, f_ux, f_uu, l_x, l_u, l_xx, l_ux, l_uu, V_x, V_xx): """ compute Q function valued Args: f_x (numpy.ndarray): gradient of model with respecto to state, shape(state_size, state_size) f_u (numpy.ndarray): gradient of model with respecto to input, shape(state_size, input_size) f_xx (numpy.ndarray): gradient of model with respecto to state, shape(state_size, state_size, state_size) f_ux (numpy.ndarray): gradient of model with respecto to input, shape(state_size, input_size, state_size) f_uu (numpy.ndarray): gradient of model with respecto to input, shape(state_size, input_size, input_size) l_x (numpy.ndarray): gradient of cost with respecto to state, shape(state_size, ) l_u (numpy.ndarray): gradient of cost with respecto to input, shape(input_size, ) l_xx (numpy.ndarray): hessian of cost with respecto to state, shape(state_size, state_size) l_uu (numpy.ndarray): hessian of cost with respecto to input, shape(input_size, input_size) l_ux (numpy.ndarray): hessian of cost with respect to state and input, shape(input_size, state_size) V_x (numpy.ndarray): gradient of Value function, shape(state_size, ) V_xx (numpy.ndarray): hessian of Value function, shape(state_size, state_size) Returns: Q_x (numpy.ndarray): gradient of Q function, shape(state_size, ) Q_u (numpy.ndarray): gradient of Q function, shape(input_size, ) Q_xx (numpy.ndarray): hessian of Q fucntion, shape(state_size, state_size) Q_ux (numpy.ndarray): hessian of Q fucntion, shape(input_size, state_size) Q_uu (numpy.ndarray): hessian of Q fucntion, shape(input_size, input_size) """ # get size state_size = len(l_x) Q_x = l_x + np.dot(f_x.T, V_x) Q_u = l_u + np.dot(f_u.T, V_x) Q_xx = l_xx + np.dot(np.dot(f_x.T, V_xx), f_x) reg = self.mu * np.eye(state_size) Q_ux = l_ux + np.dot(np.dot(f_u.T, (V_xx + reg)), f_x) Q_uu = l_uu + np.dot(np.dot(f_u.T, (V_xx + reg)), f_u) # tensor constraction Q_xx += np.tensordot(V_x, f_xx, axes=1) Q_ux += np.tensordot(V_x, f_ux, axes=1) Q_uu += np.tensordot(V_x, f_uu, axes=1) return Q_x, Q_u, Q_xx, Q_ux, Q_uu
452937
from typing import Optional, List, Union from .generic import MeshTorchLayer, PermutationLayer from ..meshmodel import RectangularMeshModel, TriangularMeshModel, PermutingRectangularMeshModel, ButterflyMeshModel from ..helpers import rectangular_permutation, butterfly_layer_permutation from ..config import DEFAULT_BASIS import numpy as np class RMTorch(MeshTorchLayer): """Rectangular mesh network layer for unitary operators implemented in tensorflow Args: units: The dimension of the unitary matrix (:math:`N`) num_layers: The number of layers (:math:`L`) of the mesh hadamard: Hadamard convention for the beamsplitters basis: Phase basis to use bs_error: Beamsplitter split ratio error theta_init: Initializer for :code:`theta` (:math:`\\boldsymbol{\\theta}` or :math:`\\theta_{n\ell}`) a :code:`str`, :code:`ndarray`, or tuple of the form :code:`(theta_init, theta_fn)`. phi_init: Initializer for :code:`phi` (:math:`\\boldsymbol{\\phi}` or :math:`\\phi_{n\ell}`): a :code:`str`, :code:`ndarray`, or tuple of the form :code:`(phi_init, phi_fn)`. gamma_init: Initializer for :code:`gamma` (:math:`\\boldsymbol{\\gamma}` or :math:`\\gamma_{n}`): a :code:`str`, :code:`ndarray`, or tuple of the form :code:`(gamma_init, gamma_fn)`. """ def __init__(self, units: int, num_layers: int = None, hadamard: bool = False, basis: str = DEFAULT_BASIS, bs_error: float = 0.0, theta_init: Union[str, tuple, np.ndarray] = "haar_rect", phi_init: Union[str, tuple, np.ndarray] = "random_phi", gamma_init: Union[str, tuple, np.ndarray] = "random_gamma"): super(RMTorch, self).__init__( RectangularMeshModel(units, num_layers, hadamard, bs_error, basis, theta_init, phi_init, gamma_init)) class TMTorch(MeshTorchLayer): """Triangular mesh network layer for unitary operators implemented in tensorflow Args: units: The dimension of the unitary matrix (:math:`N`) hadamard: Hadamard convention for the beamsplitters basis: Phase basis to use bs_error: Beamsplitter split ratio error theta_init: Initializer for :code:`theta` (:math:`\\boldsymbol{\\theta}` or :math:`\\theta_{n\ell}`) a :code:`str`, :code:`ndarray`, or tuple of the form :code:`(theta_init, theta_fn)`. phi_init: Initializer for :code:`phi` (:math:`\\boldsymbol{\\phi}` or :math:`\\phi_{n\ell}`): a :code:`str`, :code:`ndarray`, or tuple of the form :code:`(phi_init, phi_fn)`. gamma_init: Initializer for :code:`gamma` (:math:`\\boldsymbol{\\gamma}` or :math:`\\gamma_{n}`): a :code:`str`, :code:`ndarray`, or tuple of the form :code:`(gamma_init, gamma_fn)`. """ def __init__(self, units: int, hadamard: bool = False, basis: str = DEFAULT_BASIS, bs_error: float = 0.0, theta_init: Union[str, tuple, np.ndarray] = "haar_rect", phi_init: Union[str, tuple, np.ndarray] = "random_phi", gamma_init: Union[str, tuple, np.ndarray] = "random_gamma"): super(TMTorch, self).__init__( TriangularMeshModel(units, hadamard, bs_error, basis, theta_init, phi_init, gamma_init) ) class PRMTorch(MeshTorchLayer): """Permuting rectangular mesh unitary layer Args: units: The dimension of the unitary matrix (:math:`N`) to be modeled by this transformer tunable_layers_per_block: The number of tunable layers per block (overrides :code:`num_tunable_layers_list`, :code:`sampling_frequencies`) num_tunable_layers_list: Number of tunable layers in each block in order from left to right sampling_frequencies: Frequencies of sampling frequencies between the tunable layers bs_error: Photonic error in the beamsplitter theta_init: Initializer for :code:`theta` (:math:`\\boldsymbol{\\theta}` or :math:`\\theta_{n\ell}`) a :code:`str`, :code:`ndarray`, or tuple of the form :code:`(theta_init, theta_fn)`. phi_init: Initializer for :code:`phi` (:math:`\\boldsymbol{\\phi}` or :math:`\\phi_{n\ell}`): a :code:`str`, :code:`ndarray`, or tuple of the form :code:`(phi_init, phi_fn)`. gamma_init: Initializer for :code:`gamma` (:math:`\\boldsymbol{\\gamma}` or :math:`\\gamma_{n}`): a :code:`str`, :code:`ndarray`, or tuple of the form :code:`(gamma_init, gamma_fn)`. """ def __init__(self, units: int, tunable_layers_per_block: int = None, num_tunable_layers_list: Optional[List[int]] = None, sampling_frequencies: Optional[List[int]] = None, bs_error: float = 0.0, hadamard: bool = False, theta_init: Union[str, tuple, np.ndarray] = "haar_rect", phi_init: Union[str, tuple, np.ndarray] = "random_phi", gamma_init: Union[str, tuple, np.ndarray] = "random_gamma"): if theta_init == 'haar_prm' and tunable_layers_per_block is not None: raise NotImplementedError('haar_prm initializer is incompatible with setting tunable_layers_per_block.') super(PRMTorch, self).__init__( PermutingRectangularMeshModel(units, tunable_layers_per_block, num_tunable_layers_list, sampling_frequencies, bs_error, hadamard, theta_init, phi_init, gamma_init) ) class BMTorch(MeshTorchLayer): """Butterfly mesh unitary layer Args: hadamard: Hadamard convention for the beamsplitters basis: Phase basis to use bs_error: Beamsplitter split ratio error theta_init: Initializer for :code:`theta` (:math:`\\boldsymbol{\\theta}` or :math:`\\theta_{n\ell}`) a :code:`str`, :code:`ndarray`, or tuple of the form :code:`(theta_init, theta_fn)`. phi_init: Initializer for :code:`phi` (:math:`\\boldsymbol{\\phi}` or :math:`\\phi_{n\ell}`): a :code:`str`, :code:`ndarray`, or tuple of the form :code:`(phi_init, phi_fn)`. gamma_init: Initializer for :code:`gamma` (:math:`\\boldsymbol{\\gamma}` or :math:`\\gamma_{n}`): a :code:`str`, :code:`ndarray`, or tuple of the form :code:`(gamma_init, gamma_fn)`. """ def __init__(self, num_layers: int, hadamard: bool = False, basis: str = DEFAULT_BASIS, bs_error: float = 0.0, theta_init: Union[str, tuple, np.ndarray] = "haar_rect", phi_init: Union[str, tuple, np.ndarray] = "random_phi", gamma_init: Union[str, tuple, np.ndarray] = "random_gamma"): super(BMTorch, self).__init__( ButterflyMeshModel(num_layers, hadamard, bs_error, basis, theta_init, phi_init, gamma_init) ) class RectangularPerm(PermutationLayer): """Rectangular permutation layer The rectangular permutation layer for a frequency :math:`f` corresponds effectively is equivalent to adding :math:`f` layers of cross state MZIs in a grid configuration to the existing mesh. Args: units: Dimension of the input (number of input waveguide ports), :math:`N` frequency: Frequency of interacting mesh wires (waveguides) """ def __init__(self, units: int, frequency: int): self.frequency = frequency super(RectangularPerm, self).__init__(permuted_indices=rectangular_permutation(units, frequency)) class ButterflyPerm(PermutationLayer): """Butterfly (FFT) permutation layer The butterfly or FFT permutation for a frequency :math:`f` corresponds to switching all inputs that are :math:`f` inputs apart. This works most cleanly in a butterfly mesh architecture where the number of inputs, :math:`N`, and the frequencies, :math:`f` are powers of two. Args: units: Dimension of the input (number of input waveguide ports), :math:`N` frequency: Frequency of interacting mesh wires (waveguides) """ def __init__(self, units: int, frequency: int): self.frequency = frequency super(ButterflyPerm, self).__init__(permuted_indices=butterfly_layer_permutation(units, frequency))
452969
import math import numpy as np import sys from collections import Counter import torch from torch.autograd import Variable import torch.nn as nn import editdistance import models import data import ops from cuda import CUDA def get_precisions_recalls_DEPRECIATED(inputs, preds, ground_truths): """ v1 of precision/recall based on some dumb logic """ def precision_recall(src, tgt, pred): """ src: [string tokens], the input to the model tgt: [string tokens], the gold targets pred: [string tokens], the model outputs """ tgt_unique = set(tgt) - set(src) src_unique = set(src) - set(tgt) # new words the model correctly introduced true_positives = len(set(pred) & tgt_unique) # new words the model incorrectly introduced false_positives = len(set(pred) - set(src) - set(tgt)) # old words the model incorrectly retained false_negatives = len(set(pred) & src_unique) precision = true_positives * 1.0 / (true_positives + false_positives + 0.001) recall = true_postitives * 1.0 / (true_positives + false_negatives + 0.001) return precision, recall [precisions, recalls] = list(zip(*[ precision_recall(src, tgt, pred) for src, tgt, pred in zip(inputs, ground_truths, preds) ])) return precisions, recalls ######################################################################### # ABOVE THIS LINE ARE DEPRECIATED METHODS...TREAD CAREFULLY ######################################################################### def bleu_stats(hypothesis, reference, word_list=None): """Compute statistics for BLEU.""" def is_valid_ngram(ngram): if word_list is None: return True else: return len(set(word_list) & set(ngram)) > 0 stats = [] stats.append(len(hypothesis)) stats.append(len(reference)) for n in range(1, 5): s_ngrams = Counter([ tuple(hypothesis[i:i + n]) for i in range(len(hypothesis) + 1 - n) if is_valid_ngram(hypothesis[i:i + n]) ]) r_ngrams = Counter([ tuple(reference[i:i + n]) for i in range(len(reference) + 1 - n) if is_valid_ngram(reference[i:i + n]) ]) stats.append(max([sum((s_ngrams & r_ngrams).values()), 0])) stats.append(max([len(hypothesis) + 1 - n, 0])) return stats def bleu(stats): """Compute BLEU given n-gram statistics.""" if len(list(filter(lambda x: x == 0, stats))) > 0: return 0 (c, r) = stats[:2] log_bleu_prec = sum( [math.log(float(x) / y) for x, y in zip(stats[2::2], stats[3::2])] ) / 4. return math.exp(min([0, 1 - float(r) / c]) + log_bleu_prec) def get_bleu(hypotheses, reference, word_lists=None): """Get validation BLEU score for dev set. If provided with a list of word lists, then we'll only consider ngrams with words from that list. """ stats = np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) if word_lists is None: word_lists = [None for _ in range(len(hypotheses))] for hyp, ref, wlist in zip(hypotheses, reference, word_lists): stats += np.array(bleu_stats(hyp, ref, word_list=wlist)) return 100 * bleu(stats) def get_precision_recall(inputs, top_k_preds, ground_truths, k=None): """ Precision@k = (# of generated candidates @k that are relevant to targets) / (# of generated candidates @k) Recall@k = (# of generated candidates @k that are relevant to targets) / (total # of relevant targets) top_k_preds: [Batch, length, k] """ if not k: k = len(top_k_preds[0][0]) def precision_recall(src, tgt, top_k): tgt_unique = set(tgt) - set(src) pred_toks = [tok for klist in top_k for tok in klist[:k]] precision = len(tgt_unique & set(pred_toks)) * 1.0 / (len(pred_toks) + 0.0001) recall = len(tgt_unique & set(pred_toks)) * 1.0 / (len(tgt_unique) + 0.0001) return precision, recall [precisions, recalls] = list(zip(*[ precision_recall(src, tgt, pred) for src, tgt, pred in zip(inputs, ground_truths, top_k_preds) ])) return np.average(precisions), np.average(recalls) def get_edit_distance(hypotheses, reference): ed = 0 for hyp, ref in zip(hypotheses, reference): ed += editdistance.eval(hyp, ref) return ed * 1.0 / len(hypotheses) def decode_minibatch(max_len, start_id, model, src_input, srclens, srcmask, aux_input, auxlens, auxmask, side_info, k): """ argmax decoding """ # Initialize target with <s> for every sentence tgt_input = Variable(torch.LongTensor([ [start_id] for i in range(src_input.size(0)) ])) if CUDA: tgt_input = tgt_input.cuda() top_k_toks = [] for i in range(max_len): # run input through the model decoder_logit, word_probs, _, _ = model(src_input, tgt_input, srcmask, srclens, aux_input, auxmask, auxlens, side_info) # logits for the latest timestep word_probs = word_probs.data.cpu().numpy()[:, -1, :] # sorted indices (descending) sorted_indices = np.argsort((word_probs))[:, ::-1] # select the predicted "next" tokens, attach to target-side inputs next_preds = Variable(torch.from_numpy(sorted_indices[:, 0])) if CUDA: next_preds = next_preds.cuda() tgt_input = torch.cat((tgt_input, next_preds.unsqueeze(1)), dim=1) # remember the top k indices at this step for evaluation top_k_toks.append( sorted_indices[:, :k] ) # make top_k_toks into [Batch, Length, k] tensor top_k_toks = np.array(top_k_toks) top_k_toks = np.transpose(top_k_toks, (1, 0, 2)) # make sure the top k=1 tokens is equal to the true model predictions (argmax) assert np.array_equal( top_k_toks[:, :, 0], tgt_input[:, 1:].data.cpu().numpy()) # ignore <s> kickstart return top_k_toks # convert seqs to tokens def ids_to_toks(tok_seqs, id2tok, sort_indices, cuts=None, save_cuts=False): out = [] cut_indices = [] # take off the gpu if isinstance(tok_seqs, torch.Tensor): tok_seqs = tok_seqs.cpu().numpy() # convert to toks, cut off at </s> for i, line in enumerate(tok_seqs): toks = [id2tok[x] for x in line] if cuts is not None: cut_idx = cuts[i] elif '</s>' in toks: cut_idx = toks.index('</s>') else: cut_idx = len(toks) out.append( toks[:cut_idx] ) cut_indices += [cut_idx] # unsort out = data.unsort(out, sort_indices) if save_cuts: return out, cut_indices else: return out def decode_dataset(model, src, tgt, config, k=20): """Evaluate model.""" inputs = [] preds = [] top_k_preds = [] auxs = [] ground_truths = [] raw_srcs = [] for j in range(0, len(src['data']), config['data']['batch_size']): sys.stdout.write("\r%s/%s..." % (j, len(src['data']))) sys.stdout.flush() # get batch input_content, input_aux, output, side_info, raw_src = data.minibatch( src, tgt, j, config['data']['batch_size'], config['data']['max_len'], config, is_test=True) input_lines_src, output_lines_src, srclens, srcmask, indices = input_content input_ids_aux, _, auxlens, auxmask, _ = input_aux input_lines_tgt, output_lines_tgt, _, _, _ = output _, raw_src, _, _, _ = raw_src side_info, _, _, _, _ = side_info # TODO -- beam search tgt_pred_top_k = decode_minibatch( config['data']['max_len'], tgt['tok2id']['<s>'], model, input_lines_src, srclens, srcmask, input_ids_aux, auxlens, auxmask, side_info, k=k) # convert inputs/preds/targets/aux to human-readable form inputs += ids_to_toks(output_lines_src, src['id2tok'], indices) ground_truths += ids_to_toks(output_lines_tgt, tgt['id2tok'], indices) raw_srcs += ids_to_toks(raw_src, src['id2tok'], indices) # TODO -- refactor this stuff!! it's shitty # get the "offical" predictions from the model pred_toks, pred_lens = ids_to_toks( tgt_pred_top_k[:, :, 0], tgt['id2tok'], indices, save_cuts=True) preds += pred_toks # now get all the other top-k prediction levels top_k_pred = [pred_toks] for i in range(k - 1): top_k_pred.append(ids_to_toks( tgt_pred_top_k[:, :, i + 1], tgt['id2tok'], indices, cuts=pred_lens) ) # top_k_pred is [k, batch, length] where length is ragged # but we want it in [batch, length, k]. Manual transpose b/c ragged :( batch_size = len(top_k_pred[0]) # could be variable at test time pred_lens = data.unsort(pred_lens, indices) top_k_pred_transposed = [[] for _ in range(batch_size)] for bi in range(batch_size): for ti in range(pred_lens[bi]): top_k_pred_transposed[bi] += [[ top_k_pred[ki][bi][ti] for ki in range(k) ]] top_k_preds += top_k_pred_transposed if config['model']['model_type'] == 'delete': auxs += [[str(x)] for x in input_ids_aux.data.cpu().numpy()] # because of list comp in inference_metrics() elif config['model']['model_type'] == 'delete_retrieve': auxs += ids_to_toks(input_ids_aux, tgt['id2tok'], indices) elif config['model']['model_type'] == 'seq2seq': auxs += ['None' for _ in range(batch_size)] return inputs, preds, top_k_preds, ground_truths, auxs, raw_srcs def get_metrics(inputs, preds, ground_truths, top_k_preds=None, classifier=None): bleu = get_bleu(preds, ground_truths) src_bleu = get_bleu( preds, inputs, word_lists=[ set(src) - set(tgt) for src, tgt in zip(inputs, ground_truths) ] ) tgt_bleu = get_bleu( preds, ground_truths, word_lists=[ set(tgt) - set(src) for src, tgt in zip(inputs, ground_truths) ] ) edit_distance = get_edit_distance(preds, ground_truths) if top_k_preds is None: top_k_preds = [[[x] for x in seq] for seq in preds] tgt_precision, tgt_recall = get_precision_recall(inputs, top_k_preds, ground_truths) src_precision, src_recall = get_precision_recall(ground_truths, top_k_preds, inputs) if classifier is not None: classifier_error = classifier.error_rate( seqs=[' '.join(seq) for seq in preds], Y=[1 for _ in range(len(preds))]) # we're trying to create "target" seqs else: classifier_error = -1 return { 'bleu': bleu, 'src_bleu': src_bleu, 'tgt_bleu': tgt_bleu, 'edit_distance': edit_distance, 'tgt_precision': tgt_precision, 'src_precision': src_precision, 'tgt_recall': tgt_recall, 'src_recall': src_recall, 'classifier_error': classifier_error } def inference_metrics(model, src, tgt, config): """ decode and evaluate bleu """ inputs, preds, top_k_preds, ground_truths, auxs, raw_srcs = decode_dataset( model, src, tgt, config, k=config['eval']['precision_recall_k']) eval_classifier = models.TextClassifier.from_pickle( config['eval']['classifier_path']) metrics = get_metrics( raw_srcs, preds, ground_truths, top_k_preds=top_k_preds, classifier=eval_classifier) inputs = [' '.join(seq) for seq in inputs] preds = [' '.join(seq) for seq in preds] ground_truths = [' '.join(seq) for seq in ground_truths] auxs = [' '.join(seq) for seq in auxs] return metrics, inputs, preds, ground_truths, auxs def evaluate_lpp(model, src, tgt, config): """ evaluate log perplexity WITHOUT decoding (i.e., with teacher forcing) """ weight_mask = torch.ones(len(tgt['tok2id'])) if CUDA: weight_mask = weight_mask.cuda() weight_mask[tgt['tok2id']['<pad>']] = 0 loss_criterion = nn.CrossEntropyLoss(weight=weight_mask) if CUDA: loss_criterion = loss_criterion.cuda() losses = [] for j in range(0, len(src['data']), config['data']['batch_size']): sys.stdout.write("\r%s/%s..." % (j, len(src['data']))) sys.stdout.flush() # get batch input_content, input_aux, output, side_info, _ = data.minibatch( src, tgt, j, config['data']['batch_size'], config['data']['max_len'], config, is_test=True) input_lines_src, _, srclens, srcmask, _ = input_content input_ids_aux, _, auxlens, auxmask, _ = input_aux input_lines_tgt, output_lines_tgt, _, _, _ = output side_info, _, _, _, _ = side_info decoder_logit, decoder_probs, _, _ = model( input_lines_src, input_lines_tgt, srcmask, srclens, input_ids_aux, auxlens, auxmask, side_info) loss = loss_criterion( decoder_logit.contiguous().view(-1, len(tgt['tok2id'])), output_lines_tgt.view(-1) ) losses.append(loss.data[0]) return np.mean(losses)
453000
from __future__ import unicode_literals import functools import re from .turner import TurnerBaseIE from ..compat import ( compat_urllib_parse_urlencode, compat_urlparse, ) from ..utils import ( OnDemandPagedList, remove_start, ) class NBAIE(TurnerBaseIE): _VALID_URL = r'https?://(?:watch\.|www\.)?nba\.com/(?P<path>(?:[^/]+/)+(?P<id>[^?]*?))/?(?:/index\.html)?(?:\?.*)?$' _TESTS = [{ 'url': 'http://www.nba.com/video/games/nets/2012/12/04/0021200253-okc-bkn-recap.nba/index.html', 'md5': '9e7729d3010a9c71506fd1248f74e4f4', 'info_dict': { 'id': '0021200253-okc-bkn-recap', 'ext': 'mp4', 'title': 'Thunder vs. Nets', 'description': '<NAME> scores 32 points and dishes out six assists as the Thunder beat the Nets in Brooklyn.', 'duration': 181, 'timestamp': 1354638466, 'upload_date': '20121204', }, 'params': { # m3u8 download 'skip_download': True, }, }, { 'url': 'http://www.nba.com/video/games/hornets/2014/12/05/0021400276-nyk-cha-play5.nba/', 'only_matching': True, }, { 'url': 'http://watch.nba.com/video/channels/playoffs/2015/05/20/0041400301-cle-atl-recap.nba', 'md5': 'b2b39b81cf28615ae0c3360a3f9668c4', 'info_dict': { 'id': 'channels/playoffs/2015/05/20/0041400301-cle-atl-recap.nba', 'ext': 'mp4', 'title': 'Hawks vs. Cavaliers Game 1', 'description': 'md5:8094c3498d35a9bd6b1a8c396a071b4d', 'duration': 228, 'timestamp': 1432134543, 'upload_date': '20150520', }, 'expected_warnings': ['Unable to download f4m manifest'], }, { 'url': 'http://www.nba.com/clippers/news/doc-rivers-were-not-trading-blake', 'info_dict': { 'id': 'teams/clippers/2016/02/17/1455672027478-Doc_Feb16_720.mov-297324', 'ext': 'mp4', 'title': 'Practice: Doc Rivers - 2/16/16', 'description': 'Head Coach Doc Rivers addresses the media following practice.', 'upload_date': '20160216', 'timestamp': 1455672000, }, 'params': { # m3u8 download 'skip_download': True, }, 'expected_warnings': ['Unable to download f4m manifest'], }, { 'url': 'http://www.nba.com/timberwolves/wiggins-shootaround#', 'info_dict': { 'id': 'timberwolves', 'title': 'Shootaround Access - Dec. 12 | <NAME>', }, 'playlist_count': 30, 'params': { # Download the whole playlist takes too long time 'playlist_items': '1-30', }, }, { 'url': 'http://www.nba.com/timberwolves/wiggins-shootaround#', 'info_dict': { 'id': 'teams/timberwolves/2014/12/12/Wigginsmp4-3462601', 'ext': 'mp4', 'title': 'Shootaround Access - Dec. 12 | <NAME>', 'description': 'Wolves rookie <NAME> addresses the media after Friday\'s shootaround.', 'upload_date': '20141212', 'timestamp': 1418418600, }, 'params': { 'noplaylist': True, # m3u8 download 'skip_download': True, }, 'expected_warnings': ['Unable to download f4m manifest'], }] _PAGE_SIZE = 30 def _fetch_page(self, team, video_id, page): search_url = 'http://searchapp2.nba.com/nba-search/query.jsp?' + compat_urllib_parse_urlencode({ 'type': 'teamvideo', 'start': page * self._PAGE_SIZE + 1, 'npp': (page + 1) * self._PAGE_SIZE + 1, 'sort': 'recent', 'output': 'json', 'site': team, }) results = self._download_json( search_url, video_id, note='Download page %d of playlist data' % page)['results'][0] for item in results: yield self.url_result(compat_urlparse.urljoin('http://www.nba.com/', item['url'])) def _extract_playlist(self, orig_path, video_id, webpage): team = orig_path.split('/')[0] if self._downloader.params.get('noplaylist'): self.to_screen('Downloading just video because of --no-playlist') video_path = self._search_regex( r'nbaVideoCore\.firstVideo\s*=\s*\'([^\']+)\';', webpage, 'video path') video_url = 'http://www.nba.com/%s/video/%s' % (team, video_path) return self.url_result(video_url) self.to_screen('Downloading playlist - add --no-playlist to just download video') playlist_title = self._og_search_title(webpage, fatal=False) entries = OnDemandPagedList( functools.partial(self._fetch_page, team, video_id), self._PAGE_SIZE) return self.playlist_result(entries, team, playlist_title) def _real_extract(self, url): path, video_id = re.match(self._VALID_URL, url).groups() orig_path = path if path.startswith('nba/'): path = path[3:] if 'video/' not in path: webpage = self._download_webpage(url, video_id) path = remove_start(self._search_regex(r'data-videoid="([^"]+)"', webpage, 'video id'), '/') if path == '{{id}}': return self._extract_playlist(orig_path, video_id, webpage) # See prepareContentId() of pkgCvp.js if path.startswith('video/teams'): path = 'video/channels/proxy/' + path[6:] return self._extract_cvp_info( 'http://www.nba.com/%s.xml' % path, video_id, { 'default': { 'media_src': 'http://nba.cdn.turner.com/nba/big', }, 'm3u8': { 'media_src': 'http://nbavod-f.akamaihd.net', }, })
453004
import numpy as np import tensorflow as tf from distutils.version import LooseVersion if LooseVersion(tf.__version__) > LooseVersion("1.14"): import tensorflow.compat.v1 as tf from graphgallery import functional as gf from graphgallery.utils import tqdm from graphgallery.attack.targeted import TensorFlow from ..targeted_attacker import TargetedAttacker @TensorFlow.register() class FasterSGA(TargetedAttacker): """TensorFlow 1.x Implementation of SGA""" def process(self, W, b, K=2, normalize_grad=True, reset=True): # nodes with the same class labels self.similar_nodes = [ np.where(self.graph.node_label == c)[0] for c in range(self.num_classes) ] W, b = gf.tensoras(W, b) self.K = K self.normalize_grad = normalize_grad self.surrogate = Surrogate(self.graph.node_attr @ W, b, K=K) self.shape = (self.num_nodes, self.num_nodes) self.adj = self.graph.adj_matrix edges, weights = gf.sparse_adj_to_edge(gf.normalize_adj(self.graph.adj_matrix)) self.adj_sparse = (edges.T, weights, self.shape) self.y_onehot = np.eye(int(self.num_classes))[self.graph.node_label] if reset: self.reset() return self def reset(self): super().reset() # for the added self-loop self.selfloop_degree = (self.degree + 1.).astype(self.floatx) self.adj_flips = {} self.wrong_label = None return self def subgraph_preprocessing(self, target, node_reduction=True): logit = self.surrogate.run(self.surrogate.logit, feed_dict={self.surrogate.adj: self.adj_sparse, self.surrogate.target: target}) self.label_onehot = self.y_onehot[target] self.wrong_label = np.argmax(logit - 1e6 * self.label_onehot) self.wrong_label_onehot = np.eye(self.num_classes)[self.wrong_label] self.edges, self.nodes = self.ego_subgraph() assert self.wrong_label != self.graph.node_label[target] neighbors = np.setdiff1d(self.adj[target].indices, target) self.neighbors = neighbors if self.direct_attack: influence_nodes = [target] nodes_with_wrong_label = np.setdiff1d(self.similar_nodes[self.wrong_label], neighbors + [target]) else: if node_reduction: influence_nodes = [target] else: influence_nodes = neighbors nodes_with_wrong_label = np.setdiff1d(self.similar_nodes[self.wrong_label], [target]) self.construct_sub_adj(nodes_with_wrong_label, influence_nodes) if node_reduction: if self.direct_attack: self.node_reduction([target], max_nodes=int(self.selfloop_degree[target])) else: self.node_reduction(neighbors, max_nodes=5) def ego_subgraph(self): edges, nodes = gf.ego_graph(self.adj, self.target, self.K) return edges, nodes def construct_sub_adj(self, nodes_with_wrong_label, influence_nodes): length = len(nodes_with_wrong_label) non_edge = np.vstack([np.stack([np.tile(infl, length), nodes_with_wrong_label], axis=1) for infl in influence_nodes]) if len(influence_nodes) > 1: mask = self.adj[non_edge[0], non_edge[1]].A1 == 0 non_edge = non_edge[mask] nodes_all = np.union1d(self.nodes, nodes_with_wrong_label) edge_weight = np.ones(len(self.edges), dtype=np.float32) non_edge_weight = np.zeros(len(non_edge), dtype=np.float32) self_loop = np.stack([nodes_all, nodes_all], axis=1) self_loop_weight = np.ones(nodes_all.size) self.indices = np.vstack([self.edges, non_edge, self.edges[:, [1, 0]], non_edge[:, [1, 0]], self_loop]) self.upper_bound = edge_weight.size + non_edge_weight.size self.lower_bound = edge_weight.size self.non_edge = non_edge self.edge_weight = edge_weight self.non_edge_weight = non_edge_weight self.self_loop_weight = self_loop_weight def node_reduction(self, influence_nodes, max_nodes): sym_weights = np.hstack([self.edge_weight, self.non_edge_weight, self.edge_weight, self.non_edge_weight, self.self_loop_weight]) norm_weight = normalize(sym_weights, self.indices, self.selfloop_degree) adj_norm = (self.indices, norm_weight, self.shape) feed_dict = self.surrogate.construct_feed_dict(adj_norm, self.label_onehot, self.wrong_label_onehot, self.target) gradients = self.surrogate.run(self.surrogate.gradients, feed_dict=feed_dict)[self.lower_bound:self.upper_bound] index = gf.least_indices(gradients, max_nodes)[0] self.construct_sub_adj(self.non_edge[index][:, 1], influence_nodes) def update_subgraph(self, u, v, idx): if idx < self.lower_bound: # remove edge degree_delta = -1 self.edge_weight[idx] = 0. else: # add edge degree_delta = 1 self.non_edge_weight[idx - self.lower_bound] = 1.0 self.selfloop_degree[u] += degree_delta self.selfloop_degree[v] += degree_delta def attack(self, target, num_budgets=None, direct_attack=True, structure_attack=True, feature_attack=False, disable=False): super().attack(target, num_budgets, direct_attack, structure_attack, feature_attack) self.subgraph_preprocessing(target) for epoch in tqdm(range(self.num_budgets), desc='Peturbing Graph', disable=disable): weights = np.hstack([self.edge_weight, self.non_edge_weight]) sym_weights = np.hstack([weights, weights, self.self_loop_weight]) norm_weight = normalize(sym_weights, self.indices, self.selfloop_degree) adj_norm = (self.indices, norm_weight, self.shape) feed_dict = self.surrogate.construct_feed_dict(adj_norm, self.label_onehot, self.wrong_label_onehot, target) gradients = self.surrogate.run(self.surrogate.gradients, feed_dict=feed_dict) # a trick if self.normalize_grad: gradients = normalize(gradients, self.indices, self.selfloop_degree) gradients = gradients[:self.upper_bound] * (-2 * weights + 1) i = np.argmin(gradients) u, v = self.indices[i] assert not self.is_modified(u, v) self.adj_flips[(u, v)] = epoch self.update_subgraph(u, v, i) return self def normalize(data, indices, degree): d = np.sqrt(degree) row, col = indices.T return data / (d[row] * d[col]) class Surrogate: def __init__(self, XW, b, K=2, eps=5.0): graph = tf.Graph() with graph.as_default(): self.adj = tf.sparse_placeholder(dtype=tf.float32) self.label = tf.placeholder(dtype=tf.float32) self.wrong_label = tf.placeholder(dtype=tf.float32) self.target = tf.placeholder(dtype=tf.int32) XW = tf.constant(XW, dtype=tf.float32) b = tf.constant(b, dtype=tf.float32) out = XW for _ in range(K): out = tf.sparse.sparse_dense_matmul(self.adj, out) self.logit = out[self.target] + b # Calibration self.logit_calibrated = self.logit / eps self.loss = tf.nn.softmax_cross_entropy_with_logits_v2(logits=self.logit_calibrated, labels=self.wrong_label) - tf.nn.softmax_cross_entropy_with_logits_v2(logits=self.logit_calibrated, labels=self.label) self.gradients = tf.gradients(self.loss, self.adj.values)[0] self.sess = tf.Session(graph=graph) self.run(tf.global_variables_initializer()) def construct_feed_dict(self, adj, label, wrong_label, target): feed_dict = { self.adj: adj, self.wrong_label: wrong_label, self.label: label, self.target: target, } return feed_dict def run(self, variables, feed_dict=None): return self.sess.run(variables, feed_dict=feed_dict) def close(self): self.sess.close()
453079
from . import BaseCMLTest from virl.api.plugin import _test_enable_plugins from click.testing import CliRunner import requests_mock import os class CMLGoodPluginTest(BaseCMLTest): def setUp(self): _test_enable_plugins() super().setUp() os.environ["CML_PLUGIN_PATH"] = os.path.realpath("./tests/v2/plugins_good") @classmethod def tearDownClass(cls): super().tearDownClass() os.environ.pop("CML_PLUGIN_PATH", None) _test_enable_plugins(enabled=False) def test_cmd_plugin_output(self): virl = self.get_virl() with requests_mock.Mocker() as m: runner = CliRunner() # Mock the request to return what we expect from the API. self.setup_mocks(m) result = runner.invoke(virl, ["--help"]) self.assertEqual(0, result.exit_code) self.assertIn("test-cmd", result.output) def test_cmd_plugin(self): virl = self.get_virl() with requests_mock.Mocker() as m: # Mock the request to return what we expect from the API. self.setup_mocks(m) runner = CliRunner() result = runner.invoke(virl, ["test-cmd"]) self.assertEqual("TEST COMMAND\n", result.output) def test_gen_plugin_output(self): virl = self.get_virl() with requests_mock.Mocker() as m: runner = CliRunner() # Mock the request to return what we expect from the API. self.setup_mocks(m) result = runner.invoke(virl, ["generate", "--help"]) self.assertEqual(0, result.exit_code) self.assertIn("test-gen", result.output) def test_gen_plugin(self): virl = self.get_virl() with requests_mock.Mocker() as m: # Mock the request to return what we expect from the API. self.setup_mocks(m) runner = CliRunner() result = runner.invoke(virl, ["generate", "test-gen"]) self.assertEqual("TEST GENERATOR\n", result.output) def test_view_plugin(self): virl = self.get_virl() with requests_mock.Mocker() as m: # Mock the request to return what we expect from the API. self.setup_mocks(m) runner = CliRunner() result = runner.invoke(virl, ["ls"]) self.assertEqual("TEST VIEWER\n", result.output)
453085
import numpy as np from numpy.testing import assert_array_almost_equal import pytest from scipy.spatial.transform import Rotation from tadataka.camera import CameraModel, CameraParameters from tadataka.projection import pi, inv_pi def test_pi(): P = np.array([ [0, 0, 0], [1, 4, 2], [-1, 3, 5], ], dtype=np.float64) assert_array_almost_equal( pi(P), [[0., 0.], [0.5, 2.0], [-0.2, 0.6]] ) assert_array_almost_equal(pi(np.array([0., 0., 0.])), [0, 0]) assert_array_almost_equal(pi(np.array([3., 5., 5.])), [0.6, 1.0]) def test_inv_pi(): xs = np.array([ [0.5, 2.0], [-0.2, 0.6] ]) depths = np.array([2.0, 5.0]) assert_array_almost_equal( inv_pi(xs, depths), [[1.0, 4.0, 2.0], [-1.0, 3.0, 5.0]] ) x = np.array([0.5, 2.0]) depth = 2.0 assert_array_almost_equal(inv_pi(x, depth), [1.0, 4.0, 2.0])
453132
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import re import sys def read_flo(filename): with open(filename, 'rb') as f: magic = np.fromfile(f, np.float32, count=1) if 202021.25 != magic: print('Magic number incorrect. Invalid .flo file') else: w = np.fromfile(f, np.int32, count=1) h = np.fromfile(f, np.int32, count=1) data = np.fromfile(f, np.float32, count=int(2*w*h)) # Reshape data into 3D array (columns, rows, bands) data2D = np.resize(data, (h[0], w[0],2)) return data2D def write_flo(filename, flow): """ write optical flow in Middlebury .flo format :param flow: optical flow map :param filename: optical flow file path to be saved :return: None """ f = open(filename, 'wb') magic = np.array([202021.25], dtype=np.float32) (height, width) = flow.shape[0:2] w = np.array([width], dtype=np.int32) h = np.array([height], dtype=np.int32) magic.tofile(f) w.tofile(f) h.tofile(f) flow.tofile(f) f.close() def read_pfm(file): file = open(file, 'rb') color = None width = None height = None scale = None endian = None header = file.readline().rstrip() header = header.decode('utf-8') if header == 'PF': color = True elif header == 'Pf': color = False else: raise Exception('Not a PFM file.') dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('utf-8')) if dim_match: width, height = map(int, dim_match.groups()) else: raise Exception('Malformed PFM header.') scale = float(file.readline().rstrip().decode('utf-8')) if scale < 0: # little-endian endian = '<' scale = -scale else: endian = '>' # big-endian data = np.fromfile(file, endian + 'f') shape = (height, width, 3) if color else (height, width) data = np.reshape(data, shape) data = np.flipud(data) data = data[:, :, :2] return data def write_pfm(file, image, scale=1): file = open(file, 'wb') color = None if image.dtype.name != 'float32': raise Exception('Image dtype must be float32.') image = np.flipud(image) if len(image.shape) == 3 and image.shape[2] == 3: # color image color = True elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale color = False else: raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.') file.write('PF\n' if color else 'Pf\n') file.write('%d %d\n' % (image.shape[1], image.shape[0])) endian = image.dtype.byteorder if endian == '<' or endian == '=' and sys.byteorder == 'little': scale = -scale file.write('%f\n' % scale) image.tofile(file) def flow_to_color(flow, mask=None, max_flow=None): """Converts flow to 3-channel color image. Args: flow: tensor of shape [num_batch, height, width, 2]. mask: flow validity mask of shape [num_batch, height, width, 1]. """ n = 8 num_batch, height, width, _ = tf.unstack(tf.shape(flow)) mask = tf.ones([num_batch, height, width, 1]) if mask is None else mask flow_u, flow_v = tf.unstack(flow, axis=3) if max_flow is not None: max_flow = tf.maximum(tf.to_float(max_flow), 1.) else: max_flow = tf.reduce_max(tf.abs(flow * mask)) mag = tf.sqrt(tf.reduce_sum(tf.square(flow), 3)) angle = tf.atan2(flow_v, flow_u) im_h = tf.mod(angle / (2 * np.pi) + 1.0, 1.0) im_s = tf.clip_by_value(mag * n / max_flow, 0, 1) im_v = tf.clip_by_value(n - im_s, 0, 1) im_hsv = tf.stack([im_h, im_s, im_v], 3) im = tf.image.hsv_to_rgb(im_hsv) return im * mask def flow_error_image(flow_1, flow_2, mask_occ, mask_noc=None, log_colors=True): """Visualize the error between two flows as 3-channel color image. Adapted from the KITTI C++ devkit. Args: flow_1: first flow of shape [num_batch, height, width, 2]. flow_2: second flow (ground truth) mask_occ: flow validity mask of shape [num_batch, height, width, 1]. Equals 1 at (occluded and non-occluded) valid pixels. mask_noc: Is 1 only at valid pixels which are not occluded. """ mask_noc = tf.ones(tf.shape(mask_occ)) if mask_noc is None else mask_noc diff_sq = (flow_1 - flow_2) ** 2 diff = tf.sqrt(tf.reduce_sum(diff_sq, [3], keepdims=True)) if log_colors: num_batch, height, width, _ = tf.unstack(tf.shape(flow_1)) colormap = [ [0,0.0625,49,54,149], [0.0625,0.125,69,117,180], [0.125,0.25,116,173,209], [0.25,0.5,171,217,233], [0.5,1,224,243,248], [1,2,254,224,144], [2,4,253,174,97], [4,8,244,109,67], [8,16,215,48,39], [16,1000000000.0,165,0,38]] colormap = np.asarray(colormap, dtype=np.float32) colormap[:, 2:5] = colormap[:, 2:5] / 255 mag = tf.sqrt(tf.reduce_sum(tf.square(flow_2), 3, keepdims=True)) error = tf.minimum(diff / 3, 20 * diff / mag) im = tf.zeros([num_batch, height, width, 3]) for i in range(colormap.shape[0]): colors = colormap[i, :] cond = tf.logical_and(tf.greater_equal(error, colors[0]), tf.less(error, colors[1])) im = tf.where(tf.tile(cond, [1, 1, 1, 3]), tf.ones([num_batch, height, width, 1]) * colors[2:5], im) im = tf.where(tf.tile(tf.cast(mask_noc, tf.bool), [1, 1, 1, 3]), im, im * 0.5) im = im * mask_occ else: error = (tf.minimum(diff, 5) / 5) * mask_occ im_r = error # errors in occluded areas will be red im_g = error * mask_noc im_b = error * mask_noc im = tf.concat(axis=3, values=[im_r, im_g, im_b]) return im
453148
import numpy as np from rllab import spaces from rllab.core.serializable import Serializable from rllab.envs.proxy_env import ProxyEnv from rllab.spaces.box import Box from rllab.misc.overrides import overrides from rllab.envs.base import Step class NormalizedEnv(ProxyEnv, Serializable): def __init__( self, env, scale_reward=1., normalize_obs=False, normalize_reward=False, obs_alpha=0.001, reward_alpha=0.001, ): ProxyEnv.__init__(self, env) Serializable.quick_init(self, locals()) if not isinstance(env.action_space, Box): print("Environment not using continuous actions; action normalization skipped!") self._scale_reward = scale_reward self._normalize_obs = normalize_obs self._normalize_reward = normalize_reward self._obs_alpha = obs_alpha self._obs_mean = np.zeros(env.observation_space.flat_dim) self._obs_var = np.ones(env.observation_space.flat_dim) self._reward_alpha = reward_alpha self._reward_mean = 0. self._reward_var = 1. def _update_obs_estimate(self, obs): flat_obs = self.wrapped_env.observation_space.flatten(obs) self._obs_mean = (1 - self._obs_alpha) * self._obs_mean + self._obs_alpha * flat_obs self._obs_var = (1 - self._obs_alpha) * self._obs_var + self._obs_alpha * np.square(flat_obs - self._obs_mean) def _update_reward_estimate(self, reward): self._reward_mean = (1 - self._reward_alpha) * self._reward_mean + self._reward_alpha * reward self._reward_var = (1 - self._reward_alpha) * self._reward_var + self._reward_alpha * np.square(reward - self._reward_mean) def _apply_normalize_obs(self, obs): self._update_obs_estimate(obs) return (obs - self._obs_mean) / (np.sqrt(self._obs_var) + 1e-8) def _apply_normalize_reward(self, reward): self._update_reward_estimate(reward) return reward / (np.sqrt(self._reward_var) + 1e-8) def reset(self): ret = self._wrapped_env.reset() if self._normalize_obs: return self._apply_normalize_obs(ret) else: return ret def __getstate__(self): d = Serializable.__getstate__(self) d["_obs_mean"] = self._obs_mean d["_obs_var"] = self._obs_var return d def __setstate__(self, d): Serializable.__setstate__(self, d) self._obs_mean = d["_obs_mean"] self._obs_var = d["_obs_var"] @property @overrides def action_space(self): if isinstance(self._wrapped_env.action_space, Box): ub = np.ones(self._wrapped_env.action_space.shape) return spaces.Box(-1 * ub, ub) return self._wrapped_env.action_space @overrides def step(self, action): if isinstance(self._wrapped_env.action_space, Box): # rescale the action lb, ub = self._wrapped_env.action_space.bounds scaled_action = lb + (action + 1.) * 0.5 * (ub - lb) scaled_action = np.clip(scaled_action, lb, ub) else: scaled_action = action wrapped_step = self._wrapped_env.step(scaled_action) next_obs, reward, done, info = wrapped_step if self._normalize_obs: next_obs = self._apply_normalize_obs(next_obs) if self._normalize_reward: reward = self._apply_normalize_reward(reward) return Step(next_obs, reward * self._scale_reward, done, **info) def __str__(self): return "Normalized: %s" % self._wrapped_env # def log_diagnostics(self, paths): # print "Obs mean:", self._obs_mean # print "Obs std:", np.sqrt(self._obs_var) # print "Reward mean:", self._reward_mean # print "Reward std:", np.sqrt(self._reward_var) normalize = NormalizedEnv
453160
from mpi4py import MPI import mpiunittest as unittest import sys try: import array except ImportError: array = None class TestMemory(unittest.TestCase): def testNewEmpty(self): memory = MPI.memory mem = memory() self.assertEqual(mem.address, 0) self.assertEqual(mem.obj, None) self.assertEqual(mem.nbytes, 0) self.assertEqual(mem.readonly, False) self.assertEqual(mem.format, 'B') self.assertEqual(mem.itemsize, 1) self.assertEqual(len(mem), 0) mem[:] = 0 mem[:] = memory() m = memoryview(mem) self.assertEqual(m.format, 'B') self.assertEqual(m.itemsize, 1) self.assertEqual(m.ndim, 1) self.assertEqual(m.readonly, False) self.assertEqual(m.shape, (0,)) self.assertEqual(m.strides, (1,)) self.assertEqual(m.tobytes(), b"") self.assertEqual(m.tolist(), []) mem.release() self.assertEqual(mem.address, 0) self.assertEqual(mem.nbytes, 0) self.assertEqual(mem.readonly, False) def testNewBad(self): memory = MPI.memory for obj in (None, 0, 0.0, [], (), []): self.assertRaises(TypeError, memory, obj) def testNewBytes(self): memory = MPI.memory obj = b"abc" mem = memory(obj) self.assertEqual(mem.obj, obj) self.assertEqual(mem.nbytes, len(obj)) self.assertEqual(mem.readonly, True) def testNewBytearray(self): memory = MPI.memory obj = bytearray([1,2,3]) mem = memory(obj) self.assertEqual(mem.obj, obj) self.assertEqual(mem.nbytes, len(obj)) self.assertEqual(mem.readonly, False) @unittest.skipIf(array is None, 'array') def testNewArray(self): memory = MPI.memory obj = array.array('i', [1,2,3]) mem = memory(obj) self.assertEqual(mem.obj, obj) self.assertEqual(mem.nbytes, len(obj)*obj.itemsize) self.assertEqual(mem.readonly, False) def testAllocate(self): memory = MPI.memory for size in (0, 1, 2): mem = memory.allocate(size) self.assertEqual(mem.nbytes, size) self.assertNotEqual(mem.address, 0) for clear in (False, True): mem = memory.allocate(1024, clear) self.assertEqual(mem.nbytes, 1024) self.assertNotEqual(mem.address, 0) if clear: self.assertEqual(mem[0], 0) self.assertEqual(mem[-1], 0) self.assertRaises(TypeError, memory.allocate, None) self.assertRaises(ValueError, memory.allocate, -1) def testFromBufferBad(self): memory = MPI.memory for obj in (None, 0, 0.0, [], (), []): self.assertRaises(TypeError, memory.frombuffer, obj) def testFromBufferBytes(self): memory = MPI.memory mem = memory.frombuffer(b"abc", readonly=True) self.assertNotEqual(mem.address, 0) self.assertEqual(type(mem.obj), bytes) self.assertEqual(mem.obj, b"abc") self.assertEqual(mem.nbytes, 3) self.assertEqual(mem.readonly, True) self.assertEqual(mem.format, 'B') self.assertEqual(mem.itemsize, 1) self.assertEqual(len(mem), 3) m = memoryview(mem) self.assertEqual(m.format, 'B') self.assertEqual(m.itemsize, 1) self.assertEqual(m.ndim, 1) self.assertEqual(m.readonly, True) self.assertEqual(m.shape, (3,)) self.assertEqual(m.strides, (1,)) self.assertEqual(m.tobytes(), b"abc") self.assertEqual(m.tolist(), [ord(c) for c in "abc"]) mem.release() self.assertEqual(mem.address, 0) self.assertEqual(mem.nbytes, 0) self.assertEqual(mem.readonly, False) @unittest.skipIf(array is None, 'array') def testFromBufferArrayRO(self): memory = MPI.memory obj = array.array('B', [1,2,3]) mem = memory.frombuffer(obj, readonly=True) self.assertNotEqual(mem.address, 0) self.assertEqual(type(mem.obj), array.array) self.assertEqual(mem.nbytes, 3) self.assertEqual(mem.readonly, True) self.assertEqual(mem.format, 'B') self.assertEqual(mem.itemsize, 1) self.assertEqual(len(mem), 3) m = memoryview(mem) self.assertEqual(m.format, 'B') self.assertEqual(m.itemsize, 1) self.assertEqual(m.ndim, 1) self.assertEqual(m.readonly, True) self.assertEqual(m.shape, (3,)) self.assertEqual(m.strides, (1,)) self.assertEqual(m.tobytes(), b"\1\2\3") self.assertEqual(m.tolist(), [1,2,3]) mem.release() self.assertEqual(mem.address, 0) self.assertEqual(mem.nbytes, 0) self.assertEqual(mem.readonly, False) @unittest.skipIf(array is None, 'array') def testFromBufferArrayRW(self): memory = MPI.memory obj = array.array('B', [1,2,3]) mem = memory.frombuffer(obj, readonly=False) self.assertNotEqual(mem.address, 0) self.assertEqual(mem.nbytes, 3) self.assertEqual(mem.readonly, False) self.assertEqual(len(mem), 3) m = memoryview(mem) self.assertEqual(m.format, 'B') self.assertEqual(m.itemsize, 1) self.assertEqual(m.ndim, 1) self.assertEqual(m.readonly, False) self.assertEqual(m.shape, (3,)) self.assertEqual(m.strides, (1,)) self.assertEqual(m.tobytes(), b"\1\2\3") self.assertEqual(m.tolist(), [1,2,3]) mem[:] = 1 self.assertEqual(obj, array.array('B', [1]*3)) mem[1:] = array.array('B', [7]*2) self.assertEqual(obj, array.array('B', [1,7,7])) mem[1:2] = array.array('B', [8]*1) self.assertEqual(obj, array.array('B', [1,8,7])) mem.release() self.assertEqual(mem.address, 0) self.assertEqual(mem.nbytes, 0) self.assertEqual(mem.readonly, False) @unittest.skipIf(array is None, 'array') def testFromAddress(self): memory = MPI.memory obj = array.array('B', [1,2,3]) addr, size = obj.buffer_info() nbytes = size * obj.itemsize mem = memory.fromaddress(addr, nbytes, readonly=False) self.assertNotEqual(mem.address, 0) self.assertEqual(mem.nbytes, 3) self.assertEqual(mem.readonly, False) self.assertEqual(len(mem), 3) m = memoryview(mem) self.assertEqual(m.format, 'B') self.assertEqual(m.itemsize, 1) self.assertEqual(m.ndim, 1) self.assertEqual(m.readonly, False) self.assertEqual(m.shape, (3,)) self.assertEqual(m.strides, (1,)) self.assertEqual(m.tobytes(), b"\1\2\3") self.assertEqual(m.tolist(), [1,2,3]) mem[:] = 1 self.assertEqual(obj, array.array('B', [1]*3)) mem[1:] = array.array('B', [7]*2) self.assertEqual(obj, array.array('B', [1,7,7])) mem[1:2] = array.array('B', [8]*1) self.assertEqual(obj, array.array('B', [1,8,7])) mem.release() self.assertEqual(mem.address, 0) self.assertEqual(mem.nbytes, 0) self.assertEqual(mem.readonly, False) def testToReadonly(self): memory = MPI.memory obj = bytearray(b"abc") mem1 = memory.frombuffer(obj) mem2 = mem1.toreadonly() self.assertEqual(mem1.readonly, False) self.assertEqual(mem2.readonly, True) self.assertEqual(mem1.address, mem2.address) self.assertEqual(mem1.obj, mem2.obj) self.assertEqual(type(mem1.obj), type(mem2.obj)) self.assertEqual(mem1.nbytes, mem2.nbytes) def testSequence(self): n = 16 try: mem = MPI.Alloc_mem(n, MPI.INFO_NULL) except NotImplementedError: self.skipTest('mpi-alloc_mem') try: self.assertTrue(type(mem) is MPI.memory) self.assertTrue(mem.address != 0) self.assertEqual(mem.nbytes, n) self.assertEqual(mem.readonly, False) self.assertEqual(len(mem), n) def delitem(): del mem[n] def getitem1(): return mem[n] def getitem2(): return mem[::2] def getitem3(): return mem[None] def setitem1(): mem[n] = 0 def setitem2(): mem[::2] = 0 def setitem3(): mem[None] = 0 self.assertRaises(Exception, delitem) self.assertRaises(IndexError, getitem1) self.assertRaises(IndexError, getitem2) self.assertRaises(TypeError, getitem3) self.assertRaises(IndexError, setitem1) self.assertRaises(IndexError, setitem2) self.assertRaises(TypeError, setitem3) for i in range(n): mem[i] = i for i in range(n): self.assertEqual(mem[i], i) mem[:] = 0 for i in range(-n, 0): mem[i] = abs(i) for i in range(-n, 0): self.assertEqual(mem[i], abs(i)) mem[:] = 0 for i in range(n): self.assertEqual(mem[i], 0) mem[:] = 255 for i in range(n): self.assertEqual(mem[i], 255) mem[:n//2] = 1 mem[n//2:] = 0 for i in range(n//2): self.assertEqual(mem[i], 1) for i in range(n//2, n): self.assertEqual(mem[i], 0) mem[:] = 0 mem[1:5] = b"abcd" mem[10:13] = b"xyz" self.assertEqual(mem[0], 0) for i, c in enumerate("abcd"): self.assertEqual(mem[1+i], ord(c)) for i in range(5, 10): self.assertEqual(mem[i], 0) for i, c in enumerate("xyz"): self.assertEqual(mem[10+i], ord(c)) for i in range(13, n): self.assertEqual(mem[i], 0) self.assertEqual(mem[1:5].tobytes(), b"abcd") self.assertEqual(mem[10:13].tobytes(), b"xyz") finally: MPI.Free_mem(mem) self.assertEqual(mem.address, 0) self.assertEqual(mem.nbytes, 0) self.assertEqual(mem.readonly, False) try: MPI.memory except AttributeError: unittest.disable(TestMemory, 'mpi4py-memory') if __name__ == '__main__': unittest.main()