id
stringlengths
3
8
content
stringlengths
100
981k
478217
from bitmovin.utils import Serializable class AutoRestartConfiguration(Serializable): def __init__(self, segments_written_timeout: float = None, bytes_written_timeout: float = None, frames_written_timeout: float = None, hls_manifests_update_timeout: float = None, dash_manifests_update_timeout: float = None, schedule_expression: str = None): super().__init__() self.segmentsWrittenTimeout = segments_written_timeout self.bytesWrittenTimeout = bytes_written_timeout self.framesWrittenTimeout = frames_written_timeout self.hlsManifestsUpdateTimeout = hls_manifests_update_timeout self.dashManifestsUpdateTimeout = dash_manifests_update_timeout self.scheduleExpression = schedule_expression
478239
import argparse import sys from .__init__ import __version__ from .svafotate_main import add_annotation from .pickle_source import add_pickle_source from .custom_annotations import add_custom_annotation def main(args=None): if args is None: args = sys.argv[1:] parser = argparse.ArgumentParser( prog="svafotate", formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="""SVAFotate: Structural Variant Allele Frequency annotator ==================================================""" ) parser.add_argument( "-v", "--version", help="Installed version", action="version", version="%(prog)s " + str(__version__), ) sub = parser.add_subparsers(title="[sub-commands]", dest="command") sub.required = True add_annotation(sub) add_pickle_source(sub) add_custom_annotation(sub) args = parser.parse_args(args) args.func(parser, args) if __name__ == "__main__": sys.exit(main() or 0)
478250
class Solution: def removeInvalidParentheses(self, s): r = [] self.remove(s, r, 0, 0, "()") return r def remove(self, s, r, li, lj, c): cnt = 0 for i, e in enumerate(s[li:], start=li): cnt += (1, -1, 0)[c.find(e)] if cnt < 0: for j, f in enumerate(s[lj : i + 1], start=lj): if f == c[1] and (j == lj or s[j - 1] != c[1]): self.remove(s[:j] + s[j + 1 :], r, i, j, c) return if c[0] == "(": self.remove(s[::-1], r, 0, 0, ")(") else: r.append(s[::-1])
478261
import autolens as al import pytest @pytest.fixture(name="dataset_dict") def make_dataset_dict(): return { "name": "name", "positions": [[1, 2]], "positions_noise_map": [1], "fluxes": [2], "fluxes_noise_map": [3], } @pytest.fixture(name="dataset") def make_dataset(): return al.PointDataset( "name", positions=al.Grid2DIrregular([(1, 2)]), positions_noise_map=al.ValuesIrregular([1]), fluxes=al.ValuesIrregular([2]), fluxes_noise_map=al.ValuesIrregular([3]), ) class TestDataset: def test_to_dict(self, dataset_dict, dataset): assert dataset.dict == dataset_dict def test_from_dict(self, dataset_dict, dataset): dataset_ = al.PointDataset.from_dict(dataset_dict) assert (dataset_.positions == dataset.positions).all() assert (dataset_.positions_noise_map == dataset.positions_noise_map).all() assert (dataset_.fluxes == dataset.fluxes).all() assert (dataset_.fluxes_noise_map == dataset.fluxes_noise_map).all() class TestDict: def test_dicts(self, dataset, dataset_dict): point_dict = al.PointDict([dataset]) assert point_dict.dicts == [dataset_dict] def test_from_dicts(self, dataset, dataset_dict): point_dict = al.PointDict.from_dicts([dataset_dict]) assert len(point_dict) == 1 assert dataset.name in point_dict
478266
from amitools.vamos.atypes import Library, LibFlags, NodeType, ExecLibrary from amitools.vamos.loader import SegList from amitools.vamos.machine.regs import * from amitools.vamos.machine.opcodes import op_jmp class LibFuncs(object): LVO_Open = 1 LVO_Close = 2 LVO_Expunge = 3 def __init__(self, machine, alloc): self.machine = machine self.mem = machine.get_mem() self.alloc = alloc def find_library(self, lib_name, exec_lib=None): """find lib by name and return base addr or 0""" if exec_lib is None: exec_addr = self.mem.r32(4) exec_lib = ExecLibrary(self.mem, exec_addr) node = exec_lib.lib_list.find_name(lib_name) if node: return node.get_addr() else: return 0 def add_library(self, lib_base, exec_lib=None): lib = Library(self.mem, lib_base) lib.node.type = NodeType.NT_LIBRARY self.sum_library(lib_base) if exec_lib is None: exec_addr = self.mem.r32(4) exec_lib = ExecLibrary(self.mem, exec_addr) exec_lib.lib_list.enqueue(lib.node) def sum_library(self, lib_base): lib = Library(self.mem, lib_base) lib.flags.clr_bits(LibFlags.LIBF_CHANGED | LibFlags.LIBF_SUMUSED) return lib.update_sum() def rem_library(self, lib_base, seg_loader, run_sp=None): seglist = self._run_expunge(lib_base, run_sp) if seglist != 0: seg_loader.unload_seglist(seglist) return seglist def open_library(self, lib_base, run_sp=None): return self._run_open(lib_base, run_sp) def close_library(self, lib_base, seg_loader, run_sp=None): seglist = self._run_close(lib_base, run_sp) if seglist != 0: seg_loader.unload_seglist(seglist) return seglist def set_function(self, lib_base, lvo, new_func_addr): """return old func addr or None if patch failed""" lib = Library(self.mem, lib_base) neg_size = lib.neg_size if lvo < 0: lvo = -lvo # check lvo range if lvo >= neg_size: return None # check that jmp is at lvo addr = lib_base - lvo jmp = self.mem.r16(addr) if jmp != op_jmp: return None # set new function old_func = self.mem.r32(addr + 2) self.mem.w32(addr + 2, new_func_addr) # sum lib self.sum_library(lib_base) return old_func def _run_open(self, lib_base, run_sp=None): """call lib open and returns lib_base""" return self._run_lvo(lib_base, self.LVO_Open, "LibOpen", run_sp) def _run_close(self, lib_base, run_sp=None): """call lib close and return seg_list or 0""" return self._run_lvo(lib_base, self.LVO_Close, "LibClose", run_sp) def _run_expunge(self, lib_base, run_sp=None): """call lib expunge and return seg_list or 0""" return self._run_lvo(lib_base, self.LVO_Expunge, "LibExpunge", run_sp) def _run_lvo(self, lib_base, lvo, name, run_sp=None): # call expunge func on lib func_addr = lib_base - lvo * 6 set_regs = {REG_A6: lib_base} get_regs = [REG_D0] # run machine and share current sp if none is given rs = self.machine.run( func_addr, sp=run_sp, set_regs=set_regs, get_regs=get_regs, name=name ) return rs.regs[REG_D0]
478275
import smtplib import datetime from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText def send_notification(config, notification): if "email_notification" not in config: return if config["email_notification"]["ssl"]: smtp = smtplib.SMTP_SSL(config["email_notification"]["host"]) else: smtp = smtplib.SMTP(config["email_notification"]["host"]) if config["email_notification"]["tls"]: smtp.starttls() smtp.login(config["email_notification"]["username"], config["email_notification"]["password"]) message = MIMEMultipart() message["From"] = config["email_notification"]["from"] message["To"] = config["email_notification"]["to"] message["Subject"] = f"Doomsday Machine Notification {str(datetime.datetime.now())}" message.attach(MIMEText(notification, "plain")) smtp.sendmail(config["email_notification"]["from"], config["email_notification"]["to"], message.as_string())
478279
import sys, time import socket from PyQt5 import QtGui from PyQt5 import QtCore from PyQt5.QtWidgets import QApplication, QDialog from PyQt5.QtCore import QCoreApplication from threading import Thread from socketserver import ThreadingMixIn from demoServer import * conn=None class Window(QDialog): def __init__(self): super().__init__() self.ui = Ui_Dialog() self.ui.setupUi(self) self.textEditMessages=self.ui.textEditMessages self.ui.pushButtonSend.clicked.connect(self.dispMessage) self.show() def dispMessage(self): text=self.ui.lineEditMessage.text() global conn conn.send(text.encode("utf-8")) self.ui.textEditMessages.append("Server: "+self.ui.lineEditMessage.text()) self.ui.lineEditMessage.setText("") class ServerThread(Thread): def __init__(self,window): Thread.__init__(self) self.window=window def run(self): TCP_IP = '0.0.0.0' TCP_PORT = 80 BUFFER_SIZE = 1024 tcpServer = socket.socket(socket.AF_INET, socket.SOCK_STREAM) tcpServer.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) tcpServer.bind((TCP_IP, TCP_PORT)) threads = [] tcpServer.listen(4) while True: global conn (conn, (ip,port)) = tcpServer.accept() newthread = ClientThread(ip,port,window) newthread.start() threads.append(newthread) for t in threads: t.join() class ClientThread(Thread): def __init__(self,ip,port,window): Thread.__init__(self) self.window=window self.ip = ip self.port = port def run(self): while True : global conn data = conn.recv(1024) window.textEditMessages.append("Client: "+data.decode("utf-8")) if __name__=="__main__": app = QApplication(sys.argv) window = Window() serverThread=ServerThread(window) serverThread.start() window.exec() sys.exit(app.exec_())
478293
import pytest from pydantic import ValidationError from botx.models.buttons import Button, ButtonOptions class CustomButton(Button): """Button without custom behaviour.""" def test_label_will_be_set_to_command_if_none(): assert CustomButton(command="/cmd").label == "/cmd" def test_label_can_be_set_if_passed_explicitly(): assert CustomButton(command="/cmd", label="temp").label == "temp" def test_empty_label(): assert CustomButton(command="/cmd", label="").label == "" def test_create_button_options_with_invalid_hsize(): with pytest.raises(ValidationError) as exc_info: ButtonOptions(h_size=0) assert "should be positive integer" in str(exc_info)
478319
from datetime import datetime LEVELS = ['trace', 'debug', 'info', 'warn', 'severe'] class Logger(): __slots__ = ['logger', 'level'] # def __init__(self, logger='', level='debug'): def __init__(self, logger='', level='debug'): self.level = LEVELS.index(level) self.logger = logger def severe(self, text, logger='', report=None): return self.log(text, logger, level='severe') def warn(self, text, logger='', report=None): return self.log(text, logger, level='warn') def debug(self, text, logger='', report=None): return self.log(text, logger, level='debug') def trace(self, text, logger='', report=None): return self.log(text, logger, level='trace') def info(self, text, logger='', report=None): return self.log(text, logger) def log(self, text, logger='', level='info', report=None): if level not in LEVELS: raise BaseException(f'Illegal level: "{level}"! Expected one of: {LEVELS}') if LEVELS.index(level) < self.level: return 'ignored' logg = f'{self.logger}.{logger}' if (self.logger and logger) else (self.logger or logger) if not logg: raise BaseException('Logger required!') print(f"[{datetime.utcnow()}][{level.upper()}][{logg}] {text}", flush=True) return 'ok'
478342
from django import template from landing.models import AboutUs, Data, Visualization register = template.Library() @register.assignment_tag def get_aboutus_tag(): return AboutUs.objects.first() @register.assignment_tag def get_datalist_tag(): return Data.objects.all().order_by('-added') @register.assignment_tag def get_Visualization_tag(): return Visualization.objects.all().order_by('-added') @register.assignment_tag def get_recentVisualization_tag(): limit = 5 return Visualization.objects.order_by('-added')[:limit] @register.assignment_tag def get_recentDataset_tag(): limit = 5 return Data.objects.order_by('-added')[:limit]
478346
import numpy as np def segment_list_equal(s1: np.ndarray, s2: np.ndarray) -> bool: if len(s1) != len(s2): return False set1 = {frozenset(tuple(c) for c in s) for s in s1} set2 = {frozenset(tuple(c) for c in s) for s in s2} return set1 == set2
478354
import pytest from elliptic.Kernel.DSL import DSLBuildError, DSLMeta class TestDSL: def test_root(self, dsl, mocker): mocker.patch('elliptic.Kernel.TreeBuilder.TreeBuild.build') assert not dsl.building assert not dsl.built with dsl.root() as root: assert dsl.building assert not dsl.built assert not dsl.building assert dsl.built def test_root_raises_MCIBuildError(self, dsl, mocker): mocker.patch('elliptic.Kernel.TreeBuilder.TreeBuild.build') with dsl.root() as root: with pytest.raises(DSLBuildError): with dsl.root() as root2: pass def test_get_built_module(self, dsl, mocker): tree_build = mocker.patch('elliptic.Kernel.TreeBuilder.TreeBuild.build') tree_build.return_value = mocker.sentinel.built_module with dsl.root() as root: pass assert dsl.get_built_module() is mocker.sentinel.built_module def test_get_built_module_raises_MCIBuildError(self, dsl, mocker): mocker.patch('elliptic.Kernel.TreeBuilder.TreeBuild.build') with pytest.raises(DSLBuildError): dsl.get_built_module() def test_build(self, dsl, mocker): tree_build = mocker.patch('elliptic.Kernel.TreeBuilder.TreeBuild.build') with dsl.root() as root: pass tree_build.assert_called_once() class TestDSLMeta: def test_dsl_meta_raises_TypeError(self): with pytest.raises(TypeError): DSLMeta()
478373
import random import slacker from slackbot import settings from slackbot.bot import listen_to, respond_to from slackbot.dispatcher import Message from ..botmessage import botsend, botwebapi from .plusplus_model import Plusplus PLUS_MESSAGE = ( "leveled up!", "レベルが上がりました!", "やったね", "(☝՞ਊ ՞)☝ウェーイ", ) MINUS_MESSAGE = ( "leveled down.", "レベルが下がりました", "ドンマイ!", "(´・ω・`)", ) def _get_user_name(user_id: str) -> str: """ 指定された Slack の user_id に対応する username を返す Slacker で users.list API を呼び出す - https://github.com/os/slacker - https://api.slack.com/methods/users.info """ webapi = slacker.Slacker(settings.API_TOKEN) response = webapi.users.info(user_id) if response.body["ok"]: return response.body["user"]["name"] else: return "" def _update_count(message: Message, target: str, plusplus: str) -> None: """ 指定ユーザーのカウンターを更新する """ target = target.lower() # 1文字の対象は無視する if len(target) < 2: return plus, created = Plusplus.get_or_create(name=target, defaults={"counter": 0}) if plusplus == "++": plus.counter += 1 msg = random.choice(PLUS_MESSAGE) else: plus.counter -= 1 msg = random.choice(MINUS_MESSAGE) plus.save() botsend(message, f"{target} {msg} (通算: {plus.counter})") @listen_to(r"^(.*):?\s*(\+\+|--)") def multi_plusplus(message: Message, targets: str, plusplus: str) -> None: """ 指定された複数の名前に対して ++ する takanory terada++ takanory terada ++ takanory terada: ++ 日本語++ takanory @terada++ コメント """ for target in targets.split(): # user_id(<@XXXXXX>)をユーザー名に変換する if target.startswith("<@"): user_id = target[2:-1] # user_idを取り出す target = _get_user_name(user_id) # 先頭に @ があったら削除する if target.startswith("@"): target = target[1:] _update_count(message, target, plusplus) @respond_to(r"^plusplus\s+(del|delete)\s+(\S+)") def plusplus_delete(message: Message, subcommand: str, name: str) -> None: """ 指定された名前を削除する カウントが10未満のもののみ削除する """ try: plus = Plusplus.get(name=name) except Plusplus.DoesNotExist: message.send(f"`{name}` という名前は登録されていません") return if abs(plus.counter) > 10: botsend(message, f"`{name}` のカウントが多いので削除を取り消しました(count: {plus.counter})") return plus.delete_instance() message.send(f"`{name}` を削除しました") @respond_to(r"^plusplus\s+rename\s+(\S+)\s+(\S+)") def plusplus_rename(message: Message, old: str, new: str) -> None: """ 指定された old から new に名前を変更する """ try: oldplus = Plusplus.get(name=old) except Plusplus.DoesNotExist: botsend(message, f"`{old}` という名前は登録されていません") return newplus, created = Plusplus.get_or_create(name=new, counter=oldplus.counter) if not created: # すでに存在している message.send(f"`{new}` という名前はすでに登録されています") return # 入れ替える oldplus.delete_instance() botsend(message, f"`{old}` から `{new}` に名前を変更しました(count: {oldplus.counter})") @respond_to(r"^plusplus\s+merge\s+(\S+)\s+(\S+)") def plusplus_merge(message: Message, old: str, new: str) -> None: """ 指定された old と new を一つにまとめる """ try: oldplus = Plusplus.get(name=old) except Plusplus.DoesNotExist: botsend(message, f"`{old}` という名前は登録されていません") return try: newplus = Plusplus.get(name=new) except Plusplus.DoesNotExist: botsend(message, f"`{new}` という名前は登録されていません") return oldcount = oldplus.counter newcount = newplus.counter # 値を統合する newplus.counter += oldplus.counter newplus.save() oldplus.delete_instance() botsend( message, ( f"`{old}` を `{new}` に統合しました" f"(count: {oldcount} + {newcount} = {newplus.counter})" ), ) @respond_to(r"^plusplus\s+search\s+(\S+)") def plusplus_search(message: Message, keyword: str) -> None: """ 指定されたキーワードを含む名前とカウントの一覧を返す """ pattern = f"%{keyword}%" pluses = Plusplus.select().where(Plusplus.name ** pattern) if len(pluses) == 0: botsend(message, f"`{keyword}` を含む名前はありません") else: pretext = f"`{keyword}` を含む名前とカウントの一覧です\n" text = "" for plus in pluses: text += f"- {plus.name}(count: {plus.counter})\n" attachments = [ { "pretext": pretext, "text": text, "mrkdwn_in": ["pretext", "text"], } ] botwebapi(message, attachments) @respond_to(r"^plusplus\s+help+") def plusplus_help(message: Message) -> None: """ ヘルプメッセージを返す """ botsend( message, """- `名前1 名前2++`: 指定された名前に +1 カウントする - `名前1 名前2--`: 指定された名前に -1 カウントする - `$plusplus search (キーワード)`: 名前にキーワードを含む一覧を返す - `$plusplus delete (名前)`: カウントを削除する(カウント10未満のみ) - `$plusplus rename (変更前) (変更後)`: カウントする名前を変更する - `$plusplus merge (統合元) (統合先)`: 2つの名前のカウントを統合先の名前にまとめる """, )
478395
from django.test import TestCase from .test_template_tags import render_template class BaseTest(TestCase): """Test the IconRenderer.""" def test_icons(self): self.assertEqual( render_template('{% icon "" %}'), "<i></i>", ) self.assertEqual( render_template('{% icon "user" %}'), '<i class="user"></i>', ) self.assertEqual( render_template('{% icon "fas fa-user fa-2x" %}'), '<i class="fas fa-user fa-2x"></i>', ) def test_extra_classes(self): self.assertEqual( render_template('{% icon "extra-triangle" %}'), '<i class="fas fa-triangle fa-fw extra"></i>', ) self.assertEqual( render_template('{% icon "extra-triangle" extra_classes="and more" %}'), '<i class="fas fa-triangle fa-fw extra and more"></i>', ) self.assertEqual( render_template('{% icon "extra-triangle" "and" extra_classes="more" %}'), '<i class="fas fa-triangle fa-fw extra and more"></i>', )
478451
import math import pandas as pd from causallearn.utils.ScoreUtils import * def local_score_BIC(Data, i, PAi, parameters=None): ''' Calculate the *negative* local score with BIC for the linear Gaussian continue data case Parameters ---------- Data: ndarray, (sample, features) i: current index PAi: parent indexes parameters: lambda_value, the penalty discount of bic Returns ------- score: local BIC score ''' if parameters is None: lambda_value = 1 else: lambda_value = parameters['lambda_value'] Data = np.mat(Data) T = Data.shape[0] X = Data[:, i] if len(PAi) != 0: PA = Data[:, PAi] D = PA.shape[1] # derive the parameters by maximum likelihood H = PA * pdinv(PA.T * PA) * PA.T E = X - H * X sigma2 = np.sum(np.power(E, 2)) / T # BIC score = T * np.log(sigma2) + lambda_value * D * np.log(T) else: sigma2 = np.sum(np.power(X, 2)) / T # BIC score = T * np.log(sigma2) return score def local_score_BDeu(Data, i, PAi, parameters=None): ''' Calculate the *negative* local score with BDeu for the discrete case Parameters ---------- Data: (sample, features) i: current index PAi: parent indexes parameters: sample_prior: sample prior structure_prior: structure prior r_i_map: number of states of the finite random variable X_{i} Returns ------- score: local BDeu score ''' if parameters is None: sample_prior = 1 # default sample_prior = 1 structure_prior = 1 # default structure_prior = 1 r_i_map = {i: len(np.unique(np.asarray(Data[:, i]))) for i in range(Data.shape[1])} else: sample_prior = parameters['sample_prior'] structure_prior = parameters['structure_prior'] r_i_map = parameters['r_i_map'] # calculate q_{i} q_i = 1 for pa in PAi: q_i *= r_i_map[pa] if len(PAi) != 0: # calculate N_{ij} names = ['x{}'.format(i) for i in range(Data.shape[1])] Data_pd = pd.DataFrame(Data, columns=names) parant_names = ['x{}'.format(i) for i in PAi] Data_pd_group_Nij = Data_pd.groupby(parant_names) Nij_map = {key: len(Data_pd_group_Nij.indices.get(key)) for key in Data_pd_group_Nij.indices.keys()} Nij_map_keys_list = list(Nij_map.keys()) # calculate N_{ijk} Nijk_map = {ij: Data_pd_group_Nij.get_group(ij).groupby('x{}'.format(i)).apply(len).reset_index() for ij in Nij_map.keys()} for v in Nijk_map.values(): v.columns = ['x{}'.format(i), 'times'] else: # calculate N_{ij} names = ['x{}'.format(i) for i in range(Data.shape[1])] Nij_map = {'': len(Data[:, i])} Nij_map_keys_list = [''] Data_pd = pd.DataFrame(Data, columns=names) # calculate N_{ijk} Nijk_map = {ij: Data_pd.groupby('x{}'.format(i)).apply(len).reset_index() for ij in Nij_map_keys_list} for v in Nijk_map.values(): v.columns = ['x{}'.format(i), 'times'] BDeu_score = 0 # first term vm = Data.shape[0] - 1 BDeu_score += len(PAi) * np.log(structure_prior / vm) + (vm - len(PAi)) * np.log(1 - (structure_prior / vm)) # second term for pa in range(len(Nij_map_keys_list)): Nij = Nij_map.get(Nij_map_keys_list[pa]) first_term = math.lgamma(sample_prior / q_i) - math.lgamma(Nij + sample_prior / q_i) second_term = 0 Nijk_list = Nijk_map.get(Nij_map_keys_list[pa])['times'].to_numpy() for Nijk in Nijk_list: second_term += math.lgamma(Nijk + sample_prior / (r_i_map[i] * q_i)) - math.lgamma( sample_prior / (r_i_map[i] * q_i)) BDeu_score += first_term + second_term return -BDeu_score def local_score_cv_general(Data, Xi, PAi, parameters): ''' Calculate the local score using negative k-fold cross-validated log likelihood as the score based on a regression model in RKHS Parameters ---------- Data: (sample, features) i: current index PAi: parent indexes parameters: kfold: k-fold cross validation lambda: regularization parameter Returns ------- score: local score ''' Data = np.mat(Data) PAi = list(PAi) T = Data.shape[0] X = Data[:, Xi] var_lambda = parameters['lambda'] # regularization parameter k = parameters['kfold'] # k-fold cross validation n0 = math.floor(T / k) gamma = 0.01 Thresh = 1E-5 if (len(PAi)): PA = Data[:, PAi] # set the kernel for X GX = np.sum(np.multiply(X, X), axis=1) Q = np.tile(GX, (1, T)) R = np.tile(GX.T, (T, 1)) dists = Q + R - 2 * X * X.T dists = dists - np.tril(dists) dists = np.reshape(dists, (T ** 2, 1)) width = np.sqrt(0.5 * np.median(dists[np.where(dists > 0)], axis=1)[0, 0]) # median value width = width * 2 theta = 1 / (width ** 2) Kx, _ = kernel(X, X, (theta, 1)) # Gaussian kernel H0 = np.mat(np.eye(T)) - np.mat(np.ones((T, T))) / (T) # for centering of the data in feature space Kx = H0 * Kx * H0 # kernel matrix for X # eig_Kx, eix = eigdec((Kx + Kx.T)/2, np.min([400, math.floor(T/2)]), evals_only=False) # /2 # IIx = np.where(eig_Kx > np.max(eig_Kx) * Thresh)[0] # eig_Kx = eig_Kx[IIx] # eix = eix[:, IIx] # mx = len(IIx) # set the kernel for PA Kpa = np.mat(np.ones((T, T))) for m in range(PA.shape[1]): G = np.sum((np.multiply(PA[:, m], PA[:, m])), axis=1) Q = np.tile(G, (1, T)) R = np.tile(G.T, (T, 1)) dists = Q + R - 2 * PA[:, m] * PA[:, m].T dists = dists - np.tril(dists) dists = np.reshape(dists, (T ** 2, 1)) width = np.sqrt(0.5 * np.median(dists[np.where(dists > 0)], axis=1)[0, 0]) # median value width = width * 2 theta = 1 / (width ** 2) Kpa = np.multiply(Kpa, kernel(PA[:, m], PA[:, m], (theta, 1))[0]) H0 = np.mat(np.eye(T)) - np.mat(np.ones((T, T))) / (T) # for centering of the data in feature space Kpa = H0 * Kpa * H0 # kernel matrix for PA CV = 0 for kk in range(k): if (kk == 0): Kx_te = Kx[0:n0, 0:n0] Kx_tr = Kx[n0: T, n0: T] Kx_tr_te = Kx[n0: T, 0: n0] Kpa_te = Kpa[0:n0, 0: n0] Kpa_tr = Kpa[n0: T, n0: T] Kpa_tr_te = Kpa[n0: T, 0: n0] nv = n0 # sample size of validated data if (kk == k - 1): Kx_te = Kx[kk * n0:T, kk * n0: T] Kx_tr = Kx[0:kk * n0, 0: kk * n0] Kx_tr_te = Kx[0:kk * n0, kk * n0: T] Kpa_te = Kpa[kk * n0:T, kk * n0: T] Kpa_tr = Kpa[0: kk * n0, 0: kk * n0] Kpa_tr_te = Kpa[0:kk * n0, kk * n0: T] nv = T - kk * n0 if (kk < k - 1 and kk > 0): Kx_te = Kx[kk * n0: (kk + 1) * n0, kk * n0: (kk + 1) * n0] Kx_tr = Kx[np.ix_(np.concatenate([np.arange(0, kk * n0), np.arange((kk + 1) * n0, T)]), np.concatenate([np.arange(0, kk * n0), np.arange((kk + 1) * n0, T)]))] Kx_tr_te = Kx[np.ix_(np.concatenate([np.arange(0, kk * n0), np.arange((kk + 1) * n0, T)]), np.arange(kk * n0, (kk + 1) * n0))] Kpa_te = Kpa[kk * n0: (kk + 1) * n0, kk * n0: (kk + 1) * n0] Kpa_tr = Kpa[np.ix_(np.concatenate([np.arange(0, kk * n0), np.arange((kk + 1) * n0, T)]), np.concatenate([np.arange(0, kk * n0), np.arange((kk + 1) * n0, T)]))] Kpa_tr_te = Kpa[np.ix_(np.concatenate([np.arange(0, kk * n0), np.arange((kk + 1) * n0, T)]), np.arange(kk * n0, (kk + 1) * n0))] nv = n0 n1 = T - nv tmp1 = pdinv(Kpa_tr + n1 * var_lambda * np.mat(np.eye(n1))) tmp2 = tmp1 * Kx_tr * tmp1 tmp3 = tmp1 * pdinv(np.mat(np.eye(n1)) + n1 * var_lambda ** 2 / gamma * tmp2) * tmp1 A = (Kx_te + Kpa_tr_te.T * tmp2 * Kpa_tr_te - 2 * Kx_tr_te.T * tmp1 * Kpa_tr_te - n1 * var_lambda ** 2 / gamma * Kx_tr_te.T * tmp3 * Kx_tr_te - n1 * var_lambda ** 2 / gamma * Kpa_tr_te.T * tmp1 * Kx_tr * tmp3 * Kx_tr * tmp1 * Kpa_tr_te + 2 * n1 * var_lambda ** 2 / gamma * Kx_tr_te.T * tmp3 * Kx_tr * tmp1 * Kpa_tr_te) / gamma B = n1 * var_lambda ** 2 / gamma * tmp2 + np.mat(np.eye(n1)) L = np.linalg.cholesky(B) C = np.sum(np.log(np.diag(L))) # CV = CV + (nv*nv*log(2*pi) + nv*C + nv*mx*log(gamma) + trace(A))/2; CV = CV + (nv * nv * np.log(2 * np.pi) + nv * C + np.trace(A)) / 2 CV = CV / k else: # set the kernel for X GX = np.sum(np.multiply(X, X), axis=1) Q = np.tile(GX, (1, T)) R = np.tile(GX.T, (T, 1)) dists = Q + R - 2 * X * X.T dists = dists - np.tril(dists) dists = np.reshape(dists, (T ** 2, 1)) width = np.sqrt(0.5 * np.median(dists[np.where(dists > 0)], axis=1)[0, 0]) # median value width = width * 2 theta = 1 / (width ** 2) Kx, _ = kernel(X, X, (theta, 1)) # Gaussian kernel H0 = np.mat(np.eye(T)) - np.mat(np.ones((T, T))) / (T) # for centering of the data in feature space Kx = H0 * Kx * H0 # kernel matrix for X # eig_Kx, eix = eigdec((Kx + Kx.T) / 2, np.min([400, math.floor(T / 2)]), evals_only=False) # /2 # IIx = np.where(eig_Kx > np.max(eig_Kx) * Thresh)[0] # mx = len(IIx) CV = 0 for kk in range(k): if (kk == 0): Kx_te = Kx[kk * n0: (kk + 1) * n0, kk * n0: (kk + 1) * n0] Kx_tr = Kx[(kk + 1) * n0:T, (kk + 1) * n0: T] Kx_tr_te = Kx[(kk + 1) * n0:T, kk * n0: (kk + 1) * n0] nv = n0 if (kk == k - 1): Kx_te = Kx[kk * n0: T, kk * n0: T] Kx_tr = Kx[0: kk * n0, 0: kk * n0] Kx_tr_te = Kx[0:kk * n0, kk * n0: T] nv = T - kk * n0 if (kk < k - 1 and kk > 0): Kx_te = Kx[kk * n0: (kk + 1) * n0, kk * n0: (kk + 1) * n0] Kx_tr = Kx[np.ix_(np.concatenate([np.arange(0, kk * n0), np.arange((kk + 1) * n0, T)]), np.concatenate([np.arange(0, kk * n0), np.arange((kk + 1) * n0, T)]))] Kx_tr_te = Kx[np.ix_(np.concatenate([np.arange(0, kk * n0), np.arange((kk + 1) * n0, T)]), np.arange(kk * n0, (kk + 1) * n0))] nv = n0 n1 = T - nv A = (Kx_te - 1 / (gamma * n1) * Kx_tr_te.T * pdinv( np.mat(np.eye(n1)) + 1 / (gamma * n1) * Kx_tr) * Kx_tr_te) / gamma B = 1 / (gamma * n1) * Kx_tr + np.mat(np.eye(n1)) L = np.linalg.cholesky(B) C = np.sum(np.log(np.diag(L))) # CV = CV + (nv*nv*log(2*pi) + nv*C + nv*mx*log(gamma) + trace(A))/2; CV = CV + (nv * nv * np.log(2 * np.pi) + nv * C + np.trace(A)) / 2 CV = CV / k score = CV # negative cross-validated likelihood return score def local_score_cv_multi(Data, Xi, PAi, parameters): ''' Calculate the local score using negative k-fold cross-validated log likelihood as the score based on a regression model in RKHS for variables with multi-variate dimensions Parameters ---------- Data: (sample, features) i: current index PAi: parent indexes parameters: kfold: k-fold cross validation lambda: regularization parameter dlabel: for variables with multi-dimensions, indicate which dimensions belong to the i-th variable. Returns ------- score: local score ''' T = Data.shape[0] X = Data[:, parameters['dlabel'][Xi]] var_lambda = parameters['lambda'] # regularization parameter k = parameters['kfold'] # k-fold cross validation n0 = math.floor(T / k) gamma = 0.01 Thresh = 1E-5 if (len(PAi)): # set the kernel for X GX = np.sum(np.multiply(X, X), axis=1) Q = np.tile(GX, (1, T)) R = np.tile(GX.T, (T, 1)) dists = Q + R - 2 * X * X.T dists = dists - np.tril(dists) dists = np.reshape(dists, (T ** 2, 1)) width = np.sqrt(0.5 * np.median(dists[np.where(dists > 0)], axis=1)[0, 0]) # median value width = width * 3 ### theta = 1 / (width ** 2 * X.shape[1]) # Kx, _ = kernel(X, X, (theta, 1)) # Gaussian kernel H0 = np.mat(np.eye(T)) - np.mat(np.ones((T, T))) / (T) # for centering of the data in feature space Kx = H0 * Kx * H0 # kernel matrix for X # set the kernel for PA Kpa = np.mat(np.ones((T, T))) for m in range(len(PAi)): PA = Data[:, parameters['dlabel'][PAi[m]]] G = np.sum((np.multiply(PA, PA)), axis=1) Q = np.tile(G, (1, T)) R = np.tile(G.T, (T, 1)) dists = Q + R - 2 * PA * PA.T dists = dists - np.tril(dists) dists = np.reshape(dists, (T ** 2, 1)) width = np.sqrt(0.5 * np.median(dists[np.where(dists > 0)], axis=1)[0, 0]) # median value width = width * 3 ### theta = 1 / (width ** 2 * PA.shape[1]) Kpa = np.multiply(Kpa, kernel(PA, PA, (theta, 1))[0]) H0 = np.mat(np.eye(T)) - np.mat(np.ones((T, T))) / (T) # for centering of the data in feature space Kpa = H0 * Kpa * H0 # kernel matrix for PA CV = 0 for kk in range(k): if (kk == 0): Kx_te = Kx[0:n0, 0:n0] Kx_tr = Kx[n0: T, n0: T] Kx_tr_te = Kx[n0: T, 0: n0] Kpa_te = Kpa[0:n0, 0: n0] Kpa_tr = Kpa[n0: T, n0: T] Kpa_tr_te = Kpa[n0: T, 0: n0] nv = n0 # sample size of validated data if (kk == k - 1): Kx_te = Kx[kk * n0:T, kk * n0: T] Kx_tr = Kx[0:kk * n0, 0: kk * n0] Kx_tr_te = Kx[0:kk * n0, kk * n0: T] Kpa_te = Kpa[kk * n0:T, kk * n0: T] Kpa_tr = Kpa[0: kk * n0, 0: kk * n0] Kpa_tr_te = Kpa[0:kk * n0, kk * n0: T] nv = T - kk * n0 if (kk < k - 1 and kk > 0): Kx_te = Kx[kk * n0: (kk + 1) * n0, kk * n0: (kk + 1) * n0] Kx_tr = Kx[np.ix_(np.concatenate([np.arange(0, kk * n0), np.arange((kk + 1) * n0, T)]), np.concatenate([np.arange(0, kk * n0), np.arange((kk + 1) * n0, T)]))] Kx_tr_te = Kx[np.ix_(np.concatenate([np.arange(0, kk * n0), np.arange((kk + 1) * n0, T)]), np.arange(kk * n0, (kk + 1) * n0))] Kpa_te = Kpa[kk * n0: (kk + 1) * n0, kk * n0: (kk + 1) * n0] Kpa_tr = Kpa[np.ix_(np.concatenate([np.arange(0, kk * n0), np.arange((kk + 1) * n0, T)]), np.concatenate([np.arange(0, kk * n0), np.arange((kk + 1) * n0, T)]))] Kpa_tr_te = Kpa[np.ix_(np.concatenate([np.arange(0, kk * n0), np.arange((kk + 1) * n0, T)]), np.arange(kk * n0, (kk + 1) * n0))] nv = n0 n1 = T - nv tmp1 = pdinv(Kpa_tr + n1 * var_lambda * np.mat(np.eye(n1))) tmp2 = tmp1 * Kx_tr * tmp1 tmp3 = tmp1 * pdinv(np.mat(np.eye(n1)) + n1 * var_lambda ** 2 / gamma * tmp2) * tmp1 A = (Kx_te + Kpa_tr_te.T * tmp2 * Kpa_tr_te - 2 * Kx_tr_te.T * tmp1 * Kpa_tr_te - n1 * var_lambda ** 2 / gamma * Kx_tr_te.T * tmp3 * Kx_tr_te - n1 * var_lambda ** 2 / gamma * Kpa_tr_te.T * tmp1 * Kx_tr * tmp3 * Kx_tr * tmp1 * Kpa_tr_te + 2 * n1 * var_lambda ** 2 / gamma * Kx_tr_te.T * tmp3 * Kx_tr * tmp1 * Kpa_tr_te) / gamma B = n1 * var_lambda ** 2 / gamma * tmp2 + np.mat(np.eye(n1)) L = np.linalg.cholesky(B) C = np.sum(np.log(np.diag(L))) # CV = CV + (nv*nv*log(2*pi) + nv*C + nv*mx*log(gamma) + trace(A))/2; CV = CV + (nv * nv * np.log(2 * np.pi) + nv * C + np.trace(A)) / 2 CV = CV / k else: # set the kernel for X GX = np.sum(np.multiply(X, X), axis=1) Q = np.tile(GX, (1, T)) R = np.tile(GX.T, (T, 1)) dists = Q + R - 2 * X * X.T dists = dists - np.tril(dists) dists = np.reshape(dists, (T ** 2, 1)) width = np.sqrt(0.5 * np.median(dists[np.where(dists > 0)], axis=1)[0, 0]) # median value width = width * 3 ### theta = 1 / (width ** 2 * X.shape[1]) # Kx, _ = kernel(X, X, (theta, 1)) # Gaussian kernel H0 = np.mat(np.eye(T)) - np.mat(np.ones((T, T))) / (T) # for centering of the data in feature space Kx = H0 * Kx * H0 # kernel matrix for X CV = 0 for kk in range(k): if (kk == 0): Kx_te = Kx[kk * n0: (kk + 1) * n0, kk * n0: (kk + 1) * n0] Kx_tr = Kx[(kk + 1) * n0:T, (kk + 1) * n0: T] Kx_tr_te = Kx[(kk + 1) * n0:T, kk * n0: (kk + 1) * n0] nv = n0 if (kk == k - 1): Kx_te = Kx[kk * n0: T, kk * n0: T] Kx_tr = Kx[0: kk * n0, 0: kk * n0] Kx_tr_te = Kx[0:kk * n0, kk * n0: T] nv = T - kk * n0 if (kk < k - 1 and kk > 0): Kx_te = Kx[kk * n0: (kk + 1) * n0, kk * n0: (kk + 1) * n0] Kx_tr = Kx[np.ix_(np.concatenate([np.arange(0, kk * n0), np.arange((kk + 1) * n0, T)]), np.concatenate([np.arange(0, kk * n0), np.arange((kk + 1) * n0, T)]))] Kx_tr_te = Kx[np.ix_(np.concatenate([np.arange(0, kk * n0), np.arange((kk + 1) * n0, T)]), np.arange(kk * n0, (kk + 1) * n0))] nv = n0 n1 = T - nv A = (Kx_te - 1 / (gamma * n1) * Kx_tr_te.T * pdinv( np.mat(np.eye(n1)) + 1 / (gamma * n1) * Kx_tr) * Kx_tr_te) / gamma B = 1 / (gamma * n1) * Kx_tr + np.mat(np.eye(n1)) L = np.linalg.cholesky(B) C = np.sum(np.log(np.diag(L))) # CV = CV + (nv*nv*log(2*pi) + nv*C + nv*mx*log(gamma) + trace(A))/2; CV = CV + (nv * nv * np.log(2 * np.pi) + nv * C + np.trace(A)) / 2 CV = CV / k score = CV # negative cross-validated likelihood return score def local_score_marginal_general(Data, Xi, PAi, parameters): ''' Calculate the local score by negative marginal likelihood based on a regression model in RKHS Parameters ---------- Data: (sample, features) i: current index PAi: parent indexes parameters: None Returns ------- score: local score ''' T = Data.shape[0] X = Data[:, Xi] dX = X.shape[1] # set the kernel for X GX = np.sum(np.multiply(X, X), axis=1) Q = np.tile(GX, (1, T)) R = np.tile(GX.T, (T, 1)) dists = Q + R - 2 * X * X.T dists = dists - np.tril(dists) dists = np.reshape(dists, (T ** 2, 1)) width = np.sqrt(0.5 * np.median(dists[np.where(dists > 0)], axis=1)[0, 0]) width = width * 2.5 # kernel width theta = 1 / (width ** 2) H = np.mat(np.eye(T)) - np.mat(np.ones((T, T))) / T Kx, _ = kernel(X, X, (theta, 1)) Kx = H * Kx * H Thresh = 1E-5 eig_Kx, eix = eigdec((Kx + Kx.T) / 2, np.min([400, math.floor(T / 4)]), evals_only=False) # /2 IIx = np.where(eig_Kx > np.max(eig_Kx) * Thresh)[0] eig_Kx = eig_Kx[IIx] eix = eix[:, IIx] if (len(PAi)): PA = Data[:, PAi] widthPA = np.mat(np.empty((PA.shape[1], 1))) # set the kernel for PA for m in range(PA.shape[1]): G = np.sum((np.multiply(PA[:, m], PA[:, m])), axis=1) Q = np.tile(G, (1, T)) R = np.tile(G.T, (T, 1)) dists = Q + R - 2 * PA[:, m] * PA[:, m].T dists = dists - np.tril(dists) dists = np.reshape(dists, (T ** 2, 1)) widthPA[m] = np.sqrt(0.5 * np.median(dists[np.where(dists > 0)], axis=1)[0, 0]) widthPA = widthPA * 2.5 # kernel width covfunc = np.asarray(['covSum', ['covSEard', 'covNoise']]) logtheta0 = np.vstack([np.log(widthPA), 0, np.log(np.sqrt(0.1))]) logtheta, fvals, iter = minimize(logtheta0, 'gpr_multi_new', -300, covfunc, PA, 2 * np.sqrt(T) * eix * np.diag(np.sqrt(eig_Kx)) / np.sqrt(eig_Kx[0])) nlml, dnlml = gpr_multi_new(logtheta, covfunc, PA, 2 * np.sqrt(T) * eix * np.diag(np.sqrt(eig_Kx)) / np.sqrt(eig_Kx[0]), nargout=2) else: covfunc = np.asarray(['covSum', ['covSEard', 'covNoise']]) PA = np.mat(np.zeros((T, 1))) logtheta0 = np.mat([100, 0, np.log(np.sqrt(0.1))]).T logtheta, fvals, iter = minimize(logtheta0, 'gpr_multi_new', -300, covfunc, PA, 2 * np.sqrt(T) * eix * np.diag(np.sqrt(eig_Kx)) / np.sqrt(eig_Kx[0])) nlml, dnlml = gpr_multi_new(logtheta, covfunc, PA, 2 * np.sqrt(T) * eix * np.diag(np.sqrt(eig_Kx)) / np.sqrt(eig_Kx[0]), nargout=2) score = nlml # negative log-likelihood return score def local_score_marginal_multi(Data, Xi, PAi, parameters): ''' Calculate the local score by negative marginal likelihood based on a regression model in RKHS for variables with multi-variate dimensions Parameters ---------- Data: (sample, features) i: current index PAi: parent indexes parameters: dlabel: for variables with multi-dimensions, indicate which dimensions belong to the i-th variable. Returns ------- score: local score ''' T = Data.shape[0] X = Data[:, parameters['dlabel'][Xi]] dX = X.shape[1] # set the kernel for X GX = np.sum(np.multiply(X, X), axis=1) Q = np.tile(GX, (1, T)) R = np.tile(GX.T, (T, 1)) dists = Q + R - 2 * X * X.T dists = dists - np.tril(dists) dists = np.reshape(dists, (T ** 2, 1)) widthX = np.sqrt(0.5 * np.median(dists[np.where(dists > 0)], axis=1)[0, 0]) widthX = widthX * 2.5 # kernel width theta = 1 / (widthX ** 2) H = np.mat(np.eye(T)) - np.mat(np.ones((T, T))) / T Kx, _ = kernel(X, X, (theta, 1)) Kx = H * Kx * H Thresh = 1E-5 eig_Kx, eix = eigdec((Kx + Kx.T) / 2, np.min([400, math.floor(T / 4)]), evals_only=False) # /2 IIx = np.where(eig_Kx > np.max(eig_Kx) * Thresh)[0] eig_Kx = eig_Kx[IIx] eix = eix[:, IIx] if (len(PAi)): widthPA_all = np.mat(np.empty((1, 0))) # set the kernel for PA PA_all = np.mat(np.empty((Data.shape[0], 0))) for m in range(len(PAi)): PA = Data[:, parameters['dlabel'][PAi[m]]] PA_all = np.hstack([PA_all, PA]) G = np.sum((np.multiply(PA, PA)), axis=1) Q = np.tile(G, (1, T)) R = np.tile(G.T, (T, 1)) dists = Q + R - 2 * PA * PA.T dists = dists - np.tril(dists) dists = np.reshape(dists, (T ** 2, 1)) widthPA = np.sqrt(0.5 * np.median(dists[np.where(dists > 0)], axis=1)[0, 0]) widthPA_all = np.hstack( [widthPA_all, widthPA * np.mat(np.ones((1, np.size(parameters['dlabel'][PAi[m]]))))]) widthPA_all = widthPA_all * 2.5 # kernel width covfunc = np.asarray(['covSum', ['covSEard', 'covNoise']]) logtheta0 = np.vstack([np.log(widthPA_all.T), 0, np.log(np.sqrt(0.1))]) logtheta, fvals, iter = minimize(logtheta0, 'gpr_multi_new', -300, covfunc, PA_all, 2 * np.sqrt(T) * eix * np.diag(np.sqrt(eig_Kx)) / np.sqrt(eig_Kx[0])) nlml, dnlml = gpr_multi_new(logtheta, covfunc, PA_all, 2 * np.sqrt(T) * eix * np.diag(np.sqrt(eig_Kx)) / np.sqrt(eig_Kx[0]), nargout=2) else: covfunc = np.asarray(['covSum', ['covSEard', 'covNoise']]) PA = np.mat(np.zeros((T, 1))) logtheta0 = np.mat([100, 0, np.log(np.sqrt(0.1))]).T logtheta, fvals, iter = minimize(logtheta0, 'gpr_multi_new', -300, covfunc, PA, 2 * np.sqrt(T) * eix * np.diag(np.sqrt(eig_Kx)) / np.sqrt(eig_Kx[0])) nlml, dnlml = gpr_multi_new(logtheta, covfunc, PA, 2 * np.sqrt(T) * eix * np.diag(np.sqrt(eig_Kx)) / np.sqrt(eig_Kx[0]), nargout=2) score = nlml # negative log-likelihood return score
478469
from .ignore import ignore # noqa from .copy import copy # noqa from .compile_scss import compile_scss # noqa from .render_html import render_html_factory # noqa
478537
import typing as t from abc import ABCMeta, abstractmethod if t.TYPE_CHECKING: from typing_extensions import Protocol class SessionLike(Protocol): @t.overload def get(self, key): # type: (str) -> t.Any pass @t.overload def get(self, key, default): # pylint: disable=function-redefined # type: (str, t.Any) -> t.Any pass def get(self, key, default=None): # pylint: disable=function-redefined # type: (str, t.Any) -> t.Any pass def __setitem__(self, key, value): # type: (str, t.Any) -> None pass def __contains__(self, key): # type: (object) -> bool pass class Request(object): __metaclass__ = ABCMeta @property def session(self): # type: () -> SessionLike raise NotImplementedError @abstractmethod def is_secure(self): # type: () -> bool raise NotImplementedError @abstractmethod def get_param(self, key): # type: (str) -> object raise NotImplementedError
478538
import sys import logging from logging import FileHandler,StreamHandler import os import gzip import subprocess import argparse from grsnp import worker_optimizer as worker_opt import pdb from celery import group import celeryconfiguration_optimizer from time import sleep import atexit # connection information for the ucsc ftp server logger = logging.getLogger() def create_bkg_gf_overlap_db(gf_dir,background_dir,data_dir): """ Used to precalculate the overlapStatistics for the GFs against each of the default backgrounds. """ gf_bg_stats,list_completed_gfs = {},[] all_gfs = [] backgrounds,gfs=[],[] db_path = os.path.join(data_dir,gf_dir,"bkg_overlaps.gr") full_gf_dir = os.path.join(data_dir,gf_dir) full_background_dir = os.path.join(data_dir,background_dir) print db_path # Read in all completed GF in the partially completed bkg_overlaps file if os.path.exists(db_path): list_completed_gfs = [x.split("\t")[0] for x in open(db_path).read().split("\n")] print [x for x in list_completed_gfs if "wgEncodeHaibTfbsEcc1Tcf12V0422111PkRep2" in x] # gather all directories (groups) in the database dirs = [name for name in os.listdir(full_gf_dir) if os.path.isdir(os.path.join(full_gf_dir, name))] # Gather backgrounds paths backgrounds = [os.path.join(background_dir, f) for f in os.listdir(full_background_dir) if f.endswith(('.gz', '.bb',".txt",".bed"))] cur_prog,prog_max = 1,_count_gfs(full_gf_dir) # Process each category of GFs for d in dirs: # Gather gfs paths gfs = [] for base, d, files in os.walk(os.path.join(full_gf_dir,d)): partial_base = base.replace(data_dir,"") # get the relative path of the database gfs += [os.path.join(partial_base, f) for f in files if f.endswith(('.gz', '.bb'))] all_gfs += [x for x in gfs if x not in list_completed_gfs] prog_gf = 1 # Run overlap analysis using Celery logger.info("Running overlapStatistics for all GFs in {}".format(gf_dir)) results = group(worker_opt.calculate_bkg_gf_overlap.s(gf_path=g,list_bkg_paths=backgrounds).set(queue='optimizer.group') for g in all_gfs)() while not results.ready(): sys.stdout.write("{} of {} completed...\r".format(results.completed_count(),len(all_gfs))) sys.stdout.flush() sleep(5.0) results = results.join() write_results(results,db_path) def write_results(results,outputpath): ''' Results are written out to a temporary file which replaces the existing file if after successfully being written. NOTES: Results data structure is as follows: [{gf1_path: [{background1_overlapstatistics},{background2_overlapstatistics} ...]}, {gf2_path: [{background1_overlapstatistics},{background2_overlapstatistics} ...]} ... ] ''' with open(outputpath,'a') as writer: for res in results: if isinstance(res,str): logger.error(res) continue gf = res.keys()[0] stats = res[gf] stat_line = [x["queryfile"]+":"+str(x["intersectregions"])+":"+str(x["queryregions"]) for x in stats] stat_line = ",".join(stat_line) + "\n" writer.write(gf+"\t"+stat_line) def _count_gfs(grsnp_db): x = 0 for root, dirs, files in os.walk(grsnp_db): for f in files: if f.endswith(".bed.gz"): x = x+1 return x def shutdown_workers(): # kill all existing optimizer workers print "Stopping local workers..." script = "ps auxww | grep -E '*grsnp_optimizerLOCAL*' | awk '{print $2}' | xargs kill -9" out = subprocess.Popen(script,shell=True) out.wait() print "Removing leftover optimizer jobs from Celery queue 'optimizer.group'..." script = "celery amqp queue.purge optimizer.group --broker " + celeryconfiguration_optimizer.CELERY_RESULT_BACKEND out = subprocess.Popen(script,shell=True) out.wait() def main(): parser = argparse.ArgumentParser(prog="python -m grsnp.optimizer", description="""Pre calculates the overlapStatistics for each of the backgrounds in <db_path>/custom_data/backgrounds/<organism> and genomic features in <db_path>/grsnp_db/<organism>. Example: python -m grsnp.optimizer -d /home/username/grs_db/ -g mm9""", epilog="""Creates a file <db_path>/grsnp_db/<organism>/bkg_overlap.gr, automatically used by the server to speed up the analyses""") parser.add_argument('--data_dir','-d', nargs="?", help="Set the directory containing the database. Required. Use absolute path. Example: /home/username/db_2.00_6.26.2014/.", required=True) parser.add_argument('--organism','-g', nargs="?", help="The UCSC code for the organism to use. Default: hg19 (human). Data for the organism must exist in the database directory. Use dbcreator to make the database, if needed.", required=True, default="hg19") parser.add_argument("--num_workers", "-w", type=int, help="The number of local celery workers to start. Default: 1", default=1) args = vars(parser.parse_args()) hdlr = logging.FileHandler(os.path.join(args["data_dir"],'genomerunner_optimizer.log')) hdlr_std = StreamHandler() formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s') hdlr.setFormatter(formatter) hdlr_std.setFormatter(formatter) logger.addHandler(hdlr) logger.addHandler(hdlr_std) logger.setLevel(logging.INFO) atexit.register(shutdown_workers) # shutdown workers on termination logger.info('Running optimization') # start redis server script = ["redis-server", "--port", str(celeryconfiguration_optimizer.redis_port)] fh = open("redis.log","w") out = subprocess.Popen(script,stdout=fh,stderr=fh) for i in range(args["num_workers"]): fh = open("worker{}.log".format(i),"w") script = ["celery","worker", "--app", "grsnp.worker_optimizer","--loglevel", "INFO", '-Q','optimizer.group', "-n", "grsnp_optimizerLOCAL{}.%h".format(i),'--data_dir',args['data_dir']] out = subprocess.Popen(script,stdout=fh,stderr=fh) print "Redis backend URL: ", celeryconfiguration_optimizer.CELERY_RESULT_BACKEND # find all the folders with GF data including those filtered by score grdb_dirs = [os.path.join(args["data_dir"],name) for name in os.listdir(args["data_dir"]) if os.path.isdir(os.path.join(args["data_dir"], name)) and "grsnp_db" in name] for gr_dir in grdb_dirs: background_dir = os.path.join("custom_data","backgrounds",args["organism"]) gfs_dir = os.path.join(os.path.split(gr_dir)[1],args["organism"]) if not os.path.exists(os.path.join(args['data_dir'], gfs_dir)): continue if not os.path.exists(os.path.join(args['data_dir'],background_dir)): print "ERROR: No backgrounds found in default background directory {}. Please add backgrounds.".format(background_dir) sys.exit() logger.info("Pre calculating statistics for GR database in") create_bkg_gf_overlap_db(gf_dir=gfs_dir,background_dir=background_dir,data_dir=args['data_dir']) logger.info("Finished creating optimization files.") if __name__ == "__main__": main()
478558
from django.db import models SOURCE = "source" def SINK(arg): print(arg) assert arg == SOURCE def SINK_F(arg): print(arg) assert arg != SOURCE # ============================================================================== # Inheritance # # If base class defines a field, there can be # 1. flow when field is assigned on subclass construction to lookup of base class # 2. no flow from field assignment on subclass A to lookup of sibling subclass B # 3. no flow from field assignment on base class to lookup of subclass # ============================================================================== # ------------------------------------------------------------------------------ # Inheritance with vanilla Django # ------------------------------------------------------------------------------ class Book(models.Model): title = models.CharField(max_length=256) class PhysicalBook(Book): physical_location = models.CharField(max_length=256) same_name_different_value = models.CharField(max_length=256) class EBook(Book): download_link = models.CharField(max_length=256) same_name_different_value = models.CharField(max_length=256) def save_base_book(): return Book.objects.create( title=SOURCE, ) def fetch_book(id): book = Book.objects.get(id=id) try: # This sink should have 2 sources, from `save_base_book` and # `save_physical_book` SINK(book.title) # $ flow="SOURCE, l:-10 -> book.title" flow="SOURCE, l:+21 -> book.title" # The sink assertion will fail for the EBook, which we handle. The title attribute # of a Book could be tainted, so we want this to be a sink in general. except AssertionError: if book.title == "safe ebook": pass else: raise assert not isinstance(book, PhysicalBook) assert not isinstance(book, EBook) try: SINK_F(book.physical_location) raise Exception("This field is not available with vanilla Django") except AttributeError: pass def save_physical_book(): return PhysicalBook.objects.create( title=SOURCE, physical_location=SOURCE, same_name_different_value=SOURCE, ) def fetch_physical_book(id): book = PhysicalBook.objects.get(id=id) # This sink should have only 1 sources, from `save_physical_book` SINK(book.title) # $ flow="SOURCE, l:-10 -> book.title" SINK(book.physical_location) # $ flow="SOURCE, l:-10 -> book.physical_location" SINK(book.same_name_different_value) # $ flow="SOURCE, l:-10 -> book.same_name_different_value" def save_ebook(): return EBook.objects.create( title="safe ebook", download_link="safe", same_name_different_value="safe", ) def fetch_ebook(id): book = EBook.objects.get(id=id) SINK_F(book.title) SINK_F(book.download_link) SINK_F(book.same_name_different_value) # ------------------------------------------------------------------------------ # Inheritance with `django-polymorphic`, which automatically turns lookups on the # base class into the right subclass # # see https://django-polymorphic.readthedocs.io/en/stable/quickstart.html # ------------------------------------------------------------------------------ from polymorphic.models import PolymorphicModel class PolyBook(PolymorphicModel): title = models.CharField(max_length=256) class PolyPhysicalBook(PolyBook): physical_location = models.CharField(max_length=256) same_name_different_value = models.CharField(max_length=256) class PolyEBook(PolyBook): download_link = models.CharField(max_length=256) same_name_different_value = models.CharField(max_length=256) def poly_save_base_book(): return PolyBook.objects.create( title=SOURCE ) def poly_fetch_book(id, test_for_subclass=True): book = PolyBook.objects.get(id=id) try: # This sink should have 2 sources, from `poly_save_base_book` and # `poly_save_physical_book` SINK(book.title) # $ flow="SOURCE, l:-10 -> book.title" flow="SOURCE, l:+24 -> book.title" # The sink assertion will fail for the PolyEBook, which we handle. The title # attribute of a PolyBook could be tainted, so we want this to be a sink in general. except AssertionError: if book.title == "safe ebook": pass else: raise if test_for_subclass: assert isinstance(book, PolyPhysicalBook) or isinstance(book, PolyEBook) if isinstance(book, PolyPhysicalBook): SINK(book.title) # $ flow="SOURCE, l:+11 -> book.title" SPURIOUS: flow="SOURCE, l:-23 -> book.title" SINK(book.physical_location) # $ flow="SOURCE, l:+11 -> book.physical_location" SINK(book.same_name_different_value) # $ flow="SOURCE, l:+11 -> book.same_name_different_value" elif isinstance(book, PolyEBook): SINK_F(book.title) # $ SPURIOUS: flow="SOURCE, l:-27 -> book.title" flow="SOURCE, l:+7 -> book.title" SINK_F(book.download_link) SINK_F(book.same_name_different_value) # $ SPURIOUS: flow="SOURCE, l:+7 -> book.same_name_different_value" def poly_save_physical_book(): return PolyPhysicalBook.objects.create( title=SOURCE, physical_location=SOURCE, same_name_different_value=SOURCE, ) def poly_fetch_physical_book(id): book = PolyPhysicalBook.objects.get(id=id) SINK(book.title) # $ flow="SOURCE, l:-9 -> book.title" SINK(book.physical_location) # $ flow="SOURCE, l:-9 -> book.physical_location" SINK(book.same_name_different_value) # $ flow="SOURCE, l:-9 -> book.same_name_different_value" def poly_save_ebook(): return PolyEBook.objects.create( title="safe ebook", download_link="safe", same_name_different_value="safe", ) def poly_fetch_ebook(id): book = PolyEBook.objects.get(id=id) SINK_F(book.title) SINK_F(book.download_link) SINK_F(book.same_name_different_value)
478563
from setuptools import setup def parse_requirements(filename): lines = (line.strip() for line in open(filename)) return [line for line in lines if line and not line.startswith('#')] setup(name='VideoGPT', version='1.0', description='PyTorch package for VideoGPT', url='http://github.com/wilson1yan/VideoGPT', author='<NAME>', author_email='<EMAIL>', license='BSD', packages=['videogpt'], install_requires=parse_requirements('requirements.txt'), zip_safe=True)
478564
from django.urls import path from .models import site urlpatterns = [ path('admin/', site.urls), ]
478580
from setuptools import setup, find_packages import numpy as np from get_version import get_version with open("README.md", "r") as fh: long_description = fh.read() setup( name="Scribe", __version__ = get_version(__file__), install_requires=['cvxopt>=1.2.3', 'pandas>=0.23.0', 'numpy>=1.14', 'scipy>=1.0', 'scikit-learn>=0.19.1', 'pyccm>=0.4', 'statsmodels>=0.9.0', 'scanpy>=1.3.3', 'anndata>=0.6.18', 'loompy>=2.0.12', 'matplotlib>=2.2', 'seaborn>=0.9.0', 'networkx>=2.3', 'setuptools'], packages=find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", ], include_dirs=[np.get_include()], author="<NAME>, <NAME>, <NAME>, <NAME>", author_email="<EMAIL>", description='Detect causality from single cell measurements', long_description=long_description, long_description_content_type="text/markdown", license='BSD', url="https://github.com/aristoteleo/Scribe-py", download_url=f"https://github.com/aristoteleo/Scribe-py", keywords=["RNAseq", "singlecell", "network", "causality", "velocity"] )
478699
import brownie MAX_UINT256 = 2 ** 256 - 1 WEEK = 7 * 86400 def test_kick(chain, accounts, gauge_v4_1, mirrored_voting_escrow, voting_escrow, token, mock_lp_token): alice, bob = accounts[:2] chain.sleep(2 * WEEK + 5) mirrored_voting_escrow.set_mirror_whitelist(accounts[0], True, {"from": accounts[0]}) mirrored_voting_escrow.mirror_lock(alice, 250, 0, 5 * 10 ** 19, chain.time() + 4 * WEEK, {"from": accounts[0]}) token.mint(alice, 5 * 10 ** 19) token.approve(voting_escrow, MAX_UINT256, {"from": alice}) voting_escrow.create_lock(5 * 10 ** 19, chain.time() + 4 * WEEK, {"from": alice}) mock_lp_token.approve(gauge_v4_1.address, MAX_UINT256, {"from": alice}) gauge_v4_1.deposit(10 ** 21, {"from": alice}) assert gauge_v4_1.working_balances(alice) == 10 ** 21 chain.sleep(WEEK) with brownie.reverts("dev: kick not allowed"): gauge_v4_1.kick(alice, {"from": bob}) chain.sleep(4 * WEEK) gauge_v4_1.kick(alice, {"from": bob}) assert gauge_v4_1.working_balances(alice) == 4 * 10 ** 20 with brownie.reverts("dev: kick not needed"): gauge_v4_1.kick(alice, {"from": bob})
478709
from datar.base.verbs import complete_cases, proportions import pytest from pandas import DataFrame from datar.base import * from datar.tibble import tibble from .conftest import assert_iterable_equal def test_rowcolnames(): df = DataFrame(dict(x=[1,2,3])) assert colnames(df) == ['x'] assert rownames(df) == [0, 1, 2] df = DataFrame([1,2,3], index=['a', 'b', 'c']) assert colnames(df) == [0] assert rownames(df) == ['a', 'b', 'c'] df = colnames(df, ['y']) assert_iterable_equal(df.columns, ['y']) df = colnames(df, ['y'], _nested=False) assert_iterable_equal(df.columns, ['y']) assert_iterable_equal(colnames(df, _nested=False), ['y']) df = rownames(df, ['a', 'b', 'c']) assert_iterable_equal(df.index, ['a', 'b', 'c']) df = tibble(a=tibble(x=1, y=1), b=tibble(u=2, v=3), z=2) df = df >> colnames(['c', 'd', 'w'], _nested=True) assert_iterable_equal(df.columns, ['c$x', 'c$y', 'd$u', 'd$v', 'w']) def test_diag(): out = dim(3 >> diag()) assert out == (3,3) out = dim(10 >> diag(3, 4)) assert out == (3,4) x = c(1j,2j) >> diag() assert x.iloc[0,0] == 0+1j assert x.iloc[0,1] == 0+0j assert x.iloc[1,0] == 0+0j assert x.iloc[1,1] == 0+2j x = TRUE >> diag(3) assert sum(x.values.flatten()) == 3 x = c(2,1) >> diag(4) assert_iterable_equal(x >> diag(), [2,1,2,1]) with pytest.raises(ValueError): x >> diag(3, 3) x = 1 >> diag(4) assert_iterable_equal(x >> diag(3) >> diag(), [3,3,3,3]) def test_ncol(): df = tibble(x=tibble(a=1, b=2)) assert ncol(df) == 1 assert ncol(df, _nested=False) == 2 def test_t(): df = tibble(x=1, y=2) out = t(df) assert out.shape == (2, 1) assert_iterable_equal(out.index, ['x', 'y']) def test_names(): assert_iterable_equal(names(tibble(x=1)), ['x']) assert_iterable_equal(names({'x': 1}), ['x']) assert names({'x':1}, ['y']) == {'y': 1} def test_setdiff(): assert_iterable_equal(setdiff(1,2), [1]) assert_iterable_equal(setdiff([1,2], [2]), [1]) def test_intersect(): assert_iterable_equal(intersect(1,2), []) assert_iterable_equal(intersect([1,2], [2]), [2]) def test_union(): assert_iterable_equal(union(1,2), [1,2]) assert_iterable_equal(union([1,2], [2]), [1,2]) def test_setequal(): assert setequal([1,2], [2,1]) assert setequal(1, 1) def test_duplicated(): assert_iterable_equal( duplicated([1,1,-1,-1,2,2], incomparables=[-1]), [False, True, False, False, False, True] ) assert_iterable_equal( duplicated([1,1,2,2], from_last=True), [True, False, True, False] ) df = tibble(x=[1,1,2,2]) assert_iterable_equal(duplicated(df), [False, True, False, True]) def test_max_col(): df = tibble( a = [1,7,4], b = [8,5,3], c = [6,2,9], d = [8,7,9] ) assert_iterable_equal( max_col(df[["a", "b", "c"]], "random"), [1,0,2] ) out = max_col(df, "random") assert out[0] in [1,3] assert out[1] in [0,3] assert out[2] in [2,3] assert_iterable_equal( max_col(df, "first"), [1,0,2] ) assert_iterable_equal( max_col(df, "last"), [3,3,3] ) def test_complete_cases(): df = tibble( a = [NA, 1, 2], b = [4, NA, 6], c = [7, 8, 9], ) out = complete_cases(df) assert_iterable_equal(out, [False, False, True]) def test_append(): out = append([1], 2) assert_iterable_equal(out, [1,2]) out = append([1,2,3], 4, base0_=True, after=None) assert_iterable_equal(out, [4, 1,2,3]) def test_proportions(): out = proportions([1,2,3,4]) assert_iterable_equal(out, [.1,.2,.3,.4]) df = tibble(a=[1,2], b=[3,4]) proportions(df).equals(tibble(a=[.1,.2], b=[.3,.4])) proportions(df, 1).equals(tibble(a=[1./4, 2./6], b=[3./4, 4./6])) proportions(df, 2).equals(tibble(a=[1./3, 2./3], b=[3./7, 4./7])) proportions(df, 3).equals(tibble(a=[1,1], b=[1,1]))
478740
from polyphony import testbench from polyphony import pipelined def pipe07(xs, ys): for i in pipelined(range(len(xs))): v = xs[i] if v < 0: z = (v - 8) >> 4 else: z = (v + 8) >> 4 ys[i] = z for i in pipelined(range(len(ys))): v = ys[i] #print(i, v) if v < 0: z = (v - 8) << 4 else: z = (v + 8) << 4 xs[i] = z @testbench def test(): data = [0, 16, 32, -16, -64] out = [0] * 5 pipe07(data, out) assert 0 == out[0] assert 1 == out[1] assert 2 == out[2] assert -2 == out[3] assert -5 == out[4] assert 128 == data[0] assert 144 == data[1] assert 160 == data[2] assert -160 == data[3] assert -208 == data[4] test()
478742
class Solution: def print2largest(self,A,N): A.sort(reverse=True) for i in range(1,N): if A[i]!=A[i-1]: return A[i] return -1 t=int(input()) for i in range(t): n=int(input()) a=list(map(int,input().split())) ob=Solution() print(ob.print2largest(a,n))
478746
from fuel.streams import AbstractDataStream from fuel.iterator import DataIterator import numpy as np import theano class IMAGENET(AbstractDataStream): """ A fuel DataStream for imagenet data from fuel: A data stream is an iterable stream of examples/minibatches. It shares similarities with Python file handles return by the ``open`` method. Data streams can be closed using the :meth:`close` method and reset using :meth:`reset` (similar to ``f.seek(0)``). """ def __init__(self, partition_label='train', datadir='/home/jascha/data/imagenet/JPEG/', seed=12345, fraction=0.9, width=256, **kwargs): # ignore axis labels if not given kwargs.setdefault('axis_labels', '') # call __init__ of the AbstractDataStream super(self.__class__, self).__init__(**kwargs) # get a list of the images import glob print "getting imagenet images" image_files = glob.glob(datadir + "*.JPEG") print "filenames loaded" self.sources = ('features',) self.width = width # shuffle indices, subselect a fraction np.random.seed(seed=seed) np.random.shuffle(image_files) num_train = int(np.round(fraction * np.float32(len(image_files)))) train_files = image_files[:num_train] test_files = image_files[num_train:] if 'train' in partition_label: self.X = train_files elif 'test' in partition_label: self.X = test_files self.num_examples = len(self.X) self.current_index = 0 def get_data(self, data_state, request=None): """Get a new sample of data""" if request is None: request = [self.current_index] self.current_index += 1 return self.load_images(request) def apply_default_transformers(self, data_stream): return data_stream def open(self): return None def close(self): """Close the hdf5 file""" pass def reset(self): """Reset the current data index""" self.current_index = 0 def get_epoch_iterator(self, **kwargs): return super(self.__class__, self).get_epoch_iterator(**kwargs) # return None # TODO: implement iterator def next_epoch(self, *args, **kwargs): self.current_index = 0 return super(self.__class__, self).next_epoch(**kwargs) # return None def load_images(self, inds): print ".", output = np.zeros((len(inds), 3, self.width, self.width), dtype=theano.config.floatX) for ii, idx in enumerate(inds): output[ii] = self.load_image(idx) return [output] def load_image(self, idx): filename = self.X[idx] import Image import ImageOps # print "loading ", self.X[idx] image = Image.open(self.X[idx]) width, height = image.size if width > height: delta2 = int((width - height)/2) image = ImageOps.expand(image, border=(0, delta2, 0, delta2)) else: delta2 = int((height - width)/2) image = ImageOps.expand(image, border=(delta2, 0, delta2, 0)) image = image.resize((self.width, self.width), resample=Image.BICUBIC) try: imagenp = np.array(image.getdata()).reshape((self.width,self.width,3)) imagenp = imagenp.transpose((2,0,1)) # move color channels to beginning except: # print "reshape failure (black and white?)" imagenp = self.load_image(np.random.randint(len(self.X))) return imagenp.astype(theano.config.floatX)
478748
from pyramid.config import Configurator def main(global_config, **settings): config = Configurator(settings=settings) config.include('ramses') return config.make_wsgi_app()
478764
from django.apps import AppConfig class PolymorphicTestsConfig(AppConfig): name = 'ralph.lib.polymorphic.tests' label = 'polymorphic_tests'
478787
from modules.OverTheShellbag import converter as cv class TypeList: # key "sig" will convert list type -> ConverTypeForPython() # List : ['00', '10', '1f', '20', '2e', '2f', '31', '32', '35', '71', '74', '78', 'b1'] # '31': 1801, '35': 420, '1f': 39, '00': 13, # '2f': 8, '2e': 7, '74': 6, '71': 4, # 'b1': 4, '78': 3, '10': 3, '32': 2, '20': 1 SHELL_ITEM_TYPES = [ {"type" : "users_property_view_shell_item", "sig" : b"\x00"}, {"type" : "root_folder_shell_item", "sig" : b"\x1F"}, {"type" : "volume_shell_item", "sig" : (0x20, 0x2F)}, {"type" : "file_entry_shell_item", "sig" : [(0x30, 0x3F), b"\xB1"]}, {"type" : "network_location_shell_item", "sig" : (0x40, 0x4F)}, {"type" : "control_panel_shell_item", "sig" : b"\x71"}, {"type" : "control_panel_category_shell_item", "sig" : b"\x01"}, ] FILE_EXTENSION_BLOCK_TYPES = [ {"type" : "WinXP", "sig" : b"\x03"}, {"type" : "WinVista", "sig" : b"\x07"}, {"type" : "Win7", "sig" : b"\x08"}, {"type" : "Win81", "sig" : b"\x09"} ] def GetListOnly(): class_resource = TypeList.__dict__ type_list = [] for key in class_resource: if key.find("TYPES") != -1: type_list.append(class_resource[key]) return type_list def TupleInterpreter(_type_data_sig_tuple): (start, end) = _type_data_sig_tuple sig_list = [] for sig_data in range(start, end + 1): hexString_sig = cv.AddPaddingHex(hex(sig_data)) bytes_sig = bytes.fromhex(hexString_sig) sig_list.append(bytes_sig) return sig_list def ConvertTypeForPython(): type_list = GetListOnly() for _type_data in type_list: for type_data in _type_data: if type(type_data["sig"]) is bytes: type_data["sig"] = [type_data["sig"]] elif type(type_data["sig"]) is list: type_data_sig_tuple = type_data["sig"][0] added_sig_list = type_data["sig"][1:] sig_list = TupleInterpreter(type_data_sig_tuple) for added_sig in added_sig_list: sig_list.append(added_sig) type_data["sig"] = sig_list else: type_data["sig"] = TupleInterpreter(type_data["sig"]) ConvertTypeForPython()
478796
import torch from skimage.morphology import disk @torch.no_grad() def binary_dilation(im: torch.Tensor, kernel: torch.Tensor): assert len(im.shape) == 4 assert len(kernel.shape) == 2 kernel = kernel.unsqueeze(0).unsqueeze(0) padding = kernel.shape[-1]//2 assert kernel.shape[-1] % 2 != 0 if torch.cuda.is_available(): im, kernel = im.half(), kernel.half() else: im, kernel = im.float(), kernel.float() im = torch.nn.functional.conv2d( im, kernel, groups=im.shape[1], padding=padding) im = im.clamp(0, 1).bool() return im def test_dilation(): from skimage.morphology import binary_dilation as skimage_binary_dilation from kornia.morphology import dilation as kornia_dilation import numpy as np import time im = np.random.randint(0, 1, size=(512, 512)).astype(np.bool) sizes = [3, 9, 21, 91] for s in sizes: kernel_np = disk(s).astype(np.bool) kernel_torch = torch.from_numpy(kernel_np) im_torch = torch.from_numpy(im)[None, None] s = time.time() result_skimage = skimage_binary_dilation(im, kernel_np) print("Skimage", time.time() - s) s = time.time() result_kornia = kornia_dilation(im_torch.float(), kernel_torch.float()).bool().cpu().numpy().squeeze() print("Kornia", time.time() - s) s = time.time() result_ours = binary_dilation(im_torch, kernel_torch).cpu().numpy().squeeze() print("Ours", time.time() - s) np.testing.assert_almost_equal(result_skimage, result_kornia) np.testing.assert_almost_equal(result_skimage, result_ours) if __name__ == "__main__": test_dilation()
478798
from django.conf import settings from django.contrib.auth import get_user_model from django.db import models from django.utils import timezone from django.utils.module_loading import import_string from django.utils.translation import ugettext_lazy as _ from django.core.exceptions import ValidationError from resources.models import Reservation, Resource from respa_exchange.ews.objs import ItemID from respa_exchange.ews.session import SoapFault User = get_user_model() class ExchangeConfiguration(models.Model): """ Encapsulates a configuration for a particular Exchange installation. """ name = models.CharField( verbose_name=_('name'), unique=True, max_length=70, help_text=_('a descriptive name for this Exchange configuration') ) url = models.URLField( verbose_name=_('EWS URL'), help_text=_('the URL to the Exchange Web Service (e.g. https://contoso.com/EWS/Exchange.asmx)') ) username = models.CharField( verbose_name=_('username'), max_length=64, help_text=_('the service user to authenticate as, in domain\\username format') ) password = models.CharField( verbose_name=_('password'), max_length=256, help_text=_('the user\'s password (stored as plain-text)'), ) enabled = models.BooleanField( verbose_name=_('enabled'), default=True, db_index=True, help_text=_('whether synchronization is enabled at all against this Exchange instance') ) def __str__(self): return self.name class Meta: verbose_name = _("Exchange configuration") verbose_name_plural = _("Exchange configurations") def get_ews_session(self): """ Get a configured EWS session. :rtype: respa_exchange.ews.session.ExchangeSession """ if hasattr(self, '_ews_session'): return self._ews_session session_class = import_string( getattr(settings, "RESPA_EXCHANGE_EWS_SESSION_CLASS", "respa_exchange.ews.session.ExchangeSession") ) self._ews_session = session_class( url=self.url, username=self.username, password=self.password, ) return self._ews_session class ExchangeResource(models.Model): """ Links a Respa resource to an Exchange calendar. """ exchange = models.ForeignKey( verbose_name=_('Exchange configuration'), to=ExchangeConfiguration, on_delete=models.PROTECT, related_name='resources', ) resource = models.OneToOneField( verbose_name=_('resource'), to=Resource, on_delete=models.PROTECT, related_name='exchange_resource', ) sync_to_respa = models.BooleanField( verbose_name=_('sync Exchange to Respa'), help_text=_('if disabled, events will not be synced from the Exchange calendar to Respa'), default=True, db_index=True ) sync_from_respa = models.BooleanField( verbose_name=_('sync Respa to Exchange'), help_text=_( 'if disabled, new events will not be synced from Respa to the Exchange calendar; pre-existing events continue to be updated'), default=True, db_index=True ) principal_email = models.EmailField( verbose_name=_('principal email'), unique=True, help_text=_('the email address for this resource in Exchange') ) class Meta: verbose_name = _("Exchange resource") verbose_name_plural = _("Exchange resources") def __str__(self): return "%s (%s)" % (self.principal_email, self.resource) def clean(self): from .downloader import sync_from_exchange super().clean() if self.sync_from_respa or self.sync_to_respa: try: sync_from_exchange(self, future_days=1, no_op=True) except SoapFault as fault: raise ValidationError('Exchange error: %s' % str(fault)) @property def reservations(self): """ Get a queryset of ExchangeReservations for this resource :rtype: django.db.models.QuerySet[ExchangeReservation] """ return ExchangeReservation.objects.filter(reservation__resource=self.resource) class ExchangeReservation(models.Model): """ Links a Respa reservation with its Exchange item information. """ reservation = models.OneToOneField( Reservation, on_delete=models.DO_NOTHING, # The signal will (hopefully) deal with this editable=False, related_name='exchange_reservation', ) item_id_hash = models.CharField( # The MD5 hash of the item ID; results in shorter (=faster) DB indexes max_length=32, db_index=True, editable=False ) organizer = models.ForeignKey('ExchangeUser', editable=False, null=True, related_name='reservations', on_delete=models.PROTECT) exchange = models.ForeignKey( # Cached Exchange configuration to=ExchangeConfiguration, on_delete=models.PROTECT, editable=False, related_name='reservations', ) managed_in_exchange = models.BooleanField( # Whether or not this reservation came from Exchange db_index=True, editable=False, default=False ) principal_email = models.EmailField(editable=False) # Cached resource principal email _item_id = models.CharField(max_length=200, blank=True, editable=False, db_column='item_id') _change_key = models.CharField(max_length=100, blank=True, editable=False, db_column='change_key') created_at = models.DateTimeField( verbose_name=_('time of creation'), default=timezone.now, editable=False ) modified_at = models.DateTimeField( verbose_name=_('time of modification'), default=timezone.now, editable=False ) class Meta: verbose_name = _("Exchange reservation") verbose_name_plural = _("Exchange reservations") def __str__(self): return "ExchangeReservation %s for %s (%s)" % (self.pk, self.reservation, self.principal_email) def save(self, *args, **kwargs): if not self.exchange_id: self.exchange = ExchangeResource.objects.get(resource=self.reservation.resource).exchange self.clean() return super(ExchangeReservation, self).save(*args, **kwargs) @property def item_id(self): """ Retrieve the ExchangeReservation's related appointment's item ID object :rtype: respa_exchange.objs.ItemID """ return ItemID(id=self._item_id, change_key=self._change_key) def find_organizer_user(self): if not self.organizer_email: return None try: user = User.objects.get(email=self.organizer_email) except User.DoesNotExist: return None return user @item_id.setter def item_id(self, value): assert isinstance(value, ItemID) if self._item_id and self._item_id != value.id: raise ValueError("Can't mutate a reservation's item ID!") self._item_id = value.id self._change_key = value.change_key self.item_id_hash = value.hash class ExchangeUser(models.Model): exchange = models.ForeignKey( verbose_name=_('Exchange configuration'), to=ExchangeConfiguration, on_delete=models.PROTECT, related_name='users', ) email_address = models.CharField(max_length=200, db_index=True) name = models.CharField(max_length=100) given_name = models.CharField(max_length=100, null=True, blank=True) surname = models.CharField(max_length=100, null=True, blank=True) user = models.OneToOneField(User, null=True, db_index=True, related_name='exchange_user', on_delete=models.SET_NULL) updated_at = models.DateTimeField(auto_now=True, null=True) def __str__(self): return self.name class Meta: unique_together = (('exchange', 'email_address'),) class ExchangeUserX500Address(models.Model): exchange = models.ForeignKey(ExchangeConfiguration, on_delete=models.CASCADE, related_name='x500_addresses') user = models.ForeignKey(ExchangeUser, on_delete=models.CASCADE, related_name='x500_addresses') address = models.CharField(max_length=200, null=True, blank=True, db_index=True) def __str__(self): return self.address class Meta: unique_together = (('exchange', 'address'),)
478800
class A: def __init__(self, x): self.x = x def __add__(self, y): return self.x + y def __len__(self): return 10 def __iter__(self): return iter(range(10)) def __str__(self): return "bla" a = A(3) assert a + 1 == 4 assert len(a) == 10 i = 0 for j in a: assert i == j i = i + 1 assert str(a) == "bla" print("ok")
478819
import fault import aetherling.helpers.fault_helpers as fault_helpers from aetherling.space_time import * from aetherling.space_time.reshape_st import DefineReshape_ST import magma as m import json @cache_definition def Module_0() -> DefineCircuitKind: class _Module_0(Circuit): name = "top" IO = ['I', In(ST_SSeq(4, ST_SSeq(1, ST_Int(8, True))).magma_repr()),'O', Out(ST_SSeq(4, ST_SSeq(4, ST_Int(8, True))).magma_repr())] + ClockInterface(has_ce=False,has_reset=False) + valid_ports st_in_t = [ST_SSeq(4, ST_SSeq(1, ST_Int(8, True)))] st_out_t = ST_SSeq(4, ST_SSeq(4, ST_Int(8, True))) binary_op = False @classmethod def definition(cls): n1 = DefineFIFO(ST_SSeq(4, ST_SSeq(1, ST_Int(8, True))), 1, has_valid=True)() wire(cls.I, n1.I) wire(cls.valid_up, n1.valid_up) n6 = DefineMap_S(4, DefineMap_S(1, DefineAbs_Atom(True),True),True)() wire(n1.O, n6.I) wire(n1.valid_down, n6.valid_up) n9 = DefineMap_S(4, DefineUp_S(4, ST_Int(8, True), has_valid=True),True)() wire(n6.O, n9.I) wire(n6.valid_down, n9.valid_up) n10 = DefineFIFO(ST_SSeq(4, ST_SSeq(4, ST_Int(8, True))), 1, has_valid=True)() wire(n9.O, n10.I) wire(n9.valid_down, n10.valid_up) n11 = DefineFIFO(ST_SSeq(4, ST_SSeq(4, ST_Int(8, True))), 1, has_valid=True)() wire(n10.O, n11.I) wire(n10.valid_down, n11.valid_up) n12 = DefineFIFO(ST_SSeq(4, ST_SSeq(4, ST_Int(8, True))), 1, has_valid=True)() wire(n11.O, n12.I) wire(n11.valid_down, n12.valid_up) wire(n12.O, cls.O) wire(n12.valid_down, cls.valid_down) return _Module_0 Main = Module_0 fault_helpers.compile(Main(), "v./home/durst/dev/embeddedHaskellAetherling//test/no_bench/magma_examples/nested_map_to_nested_up/nested_map_to_nested_up_16 % 1thr.py")
478832
import numpy as np def make_epsilon_greedy_policy(Q, epsilon, nA): """ Creates an epsilon-greedy policy based on a given Q-function and epsilon. Args: Q: A dictionary that maps from state -> action-values. Each value is a numpy array of length nA (see below) epsilon: The probability to select a random action . float between 0 and 1. nA: Number of actions in the environment. Returns: A function that takes the state as an argument and returns the probabilities for each action in the form of a numpy array of length nA. """ def policy_fn(state): # 1 / epsilon for non-greedy actions probs = (epsilon / nA) * np.ones(nA) greedy_action = Q[state].argmax() # (1 / epsilon + (1 - epsilon)) for greedy action probs[greedy_action] += 1.0 - epsilon return probs return policy_fn def make_greedy_policy(Q, nA): """ Creates a greedy policy based on Q values. Args: Q: A dictionary that maps from state -> action values nA: Number of actions in the environment. Returns: A function that takes an observation as input and returns a vector of action probabilities. """ def policy_fn(observation): probs = np.zeros(nA) greedy_action = Q[observation].argmax() probs[greedy_action] = 1.0 return probs return policy_fn
478855
from http import HTTPStatus from typing import Dict, Tuple from flask import jsonify, request, abort from sqlalchemy.exc import IntegrityError from sqlalchemy.orm import joinedload from db.access.files import FilesDAO from db.schema import Matches, Files from .blueprint import api from .constants import ValidationErrors from .helpers import parse_positive_int, Fields, parse_fields, parse_boolean from ..model import Transform, database # Optional file fields FILE_FIELDS = Fields(Files.exif, Files.signature, Files.meta, Files.scenes) @api.route("/files/<int:file_id>/matches", methods=["GET"]) def list_file_matches(file_id): limit = parse_positive_int(request.args, "limit", 20) offset = parse_positive_int(request.args, "offset", 0) include_fields = parse_fields(request.args, "include", FILE_FIELDS) remote = parse_boolean(request.args, "remote") false_positive = parse_boolean(request.args, "false_positive") file = database.session.query(Files).get(file_id) # Handle file not found if file is None: abort(HTTPStatus.NOT_FOUND.value, f"File id not found: {file_id}") query = FilesDAO.file_matches(file_id, database.session, false_positive=false_positive).options( joinedload(Matches.match_video_file), joinedload(Matches.query_video_file) ) if not remote: query = query.filter(Matches.match_video_file.has(Files.contributor == None)) # noqa: E711 query = query.filter(Matches.query_video_file.has(Files.contributor == None)) # noqa: E711 # Preload file fields query = FILE_FIELDS.preload(query, include_fields, Matches.match_video_file) query = FILE_FIELDS.preload(query, include_fields, Matches.query_video_file) # Get requested slice total = query.count() items = query.offset(offset).limit(limit).all() include_flags = {field.key: True for field in include_fields} mother_file = Transform.file(file, **include_flags) mother_file["matches_count"] = FilesDAO.file_matches(file_id, database.session).count() return jsonify( { "items": [Transform.file_match(item, file_id, **include_flags) for item in items], "mother_file": mother_file, "total": total, "offset": offset, } ) def validate_update_match_dto(data: Dict) -> Tuple[str, Dict[str, str]]: """Validate update-match DTO. Returns: error message and a dict of invalid fields -> error codes. """ expected_fields = {"false_positive"} actual_fields = set(data.keys()) if not actual_fields <= expected_fields: return f"Payload can include only the following fields: {expected_fields}", {} if "false_positive" in data: false_positive = data["false_positive"] if false_positive is None: return "false_positive cannot be null", {"false_positive": ValidationErrors.INVALID_VALUE.value} if not isinstance(false_positive, bool): return "false_positive cannot be boolean", {"false_positive": ValidationErrors.INVALID_VALUE.value} return None, {} @api.route("/matches/<int:match_id>", methods=["PATCH"]) def update_match(match_id): # Fetch match from database match = database.session.query(Matches).filter(Matches.id == match_id).one_or_none() # Handle match not found if match is None: abort(HTTPStatus.NOT_FOUND.value, f"Match id not found: {match_id}") # Get payload request_payload = request.get_json() if request_payload is None: abort(HTTPStatus.BAD_REQUEST.value, "Expected valid 'application/json' payload.") # Validate payload error, fields = validate_update_match_dto(request_payload) if error is not None: return ( jsonify({"error": error, "code": HTTPStatus.BAD_REQUEST.value, "fields": fields}), HTTPStatus.BAD_REQUEST.value, ) match.false_positive = request_payload.get("false_positive", match.false_positive) try: database.session.commit() except IntegrityError: abort(HTTPStatus.BAD_REQUEST.value, "Data integrity violation.") return jsonify(Transform.match(match)) @api.route("/files/<int:file_id>/matches/<int:match_id>", methods=["PATCH"]) def update_file_match(file_id, match_id): include_fields = parse_fields(request.args, "include", FILE_FIELDS) file = database.session.query(Files).filter(Files.id == file_id).one_or_none() # Handle file not found if file is None: abort(HTTPStatus.NOT_FOUND.value, f"File id not found: {file_id}") # Fetch match from database match = database.session.query(Matches).filter(Matches.id == match_id).one_or_none() # Handle match not found if match is None: abort(HTTPStatus.NOT_FOUND.value, f"Match id not found: {match_id}") # Get payload request_payload = request.get_json() if request_payload is None: abort(HTTPStatus.BAD_REQUEST.value, "Expected valid 'application/json' payload.") # Validate payload error, fields = validate_update_match_dto(request_payload) if error is not None: return ( jsonify({"error": error, "code": HTTPStatus.BAD_REQUEST.value, "fields": fields}), HTTPStatus.BAD_REQUEST.value, ) match.false_positive = request_payload.get("false_positive", match.false_positive) try: database.session.commit() except IntegrityError: abort(HTTPStatus.BAD_REQUEST.value, "Data integrity violation.") include_flags = {field.key: True for field in include_fields} return jsonify(Transform.file_match(match, file_id, **include_flags))
478881
from django.db import models class Ambiguous(models.Model): name = models.CharField(max_length=20)
478992
import re import random import sys import traceback import ast import operator import time import json from simpleeval import SimpleEval, DEFAULT_OPERATORS, DEFAULT_FUNCTIONS, DEFAULT_NAMES from . import euphutils from . import logger log = logger.Logger() # functions and operators that can be used in ${math} syntax EVAL_FUNCTIONS = DEFAULT_FUNCTIONS.copy() EVAL_FUNCTIONS.update({'bool': bool, 'repr': repr, 'to_json': lambda x: json.dumps(x), 'from_json': lambda x: json.loads(x), 'len': len, 'mention': euphutils.mention, 'unwhitespace': lambda x: re.sub(r'\s', '_', x), 'time': time.time, 'eval': None}) EVAL_OPERATORS = DEFAULT_OPERATORS.copy() EVAL_OPERATORS.update({ast.Not: operator.not_, ast.In: lambda a, b: a in b, ast.NotIn: lambda a, b: a not in b, ast.Is: operator.is_, ast.IsNot: operator.is_not}) # init pseudo-regex; i.e. if a bot has this as the regex string, its response # will be triggered on the bot's initialization INIT_TRIGGER = '(+init)' class Parser: def __init__(self, parse_string, dbginfo=None): temp = '' self.array = [] self.parse_string = parse_string self.dbginfo = dbginfo or 'N/A' self.variables = {} regex_mode = True i = 0 while i < len(parse_string) and re.match(r'\s', parse_string[i]): i += 1 while i < len(parse_string): if regex_mode: arrow_match = re.match(r'\s*->\s*', parse_string[i:]) if arrow_match: i += len(arrow_match.group(0)) regex_mode = False if i >= len(parse_string): self.array.append([temp, [0, '']]) else: self.array.append([temp]) temp = '' else: temp += parse_string[i] i += 1 else: temp = self.parse_response_string(parse_string[i:]) self.array[-1].append(temp[0]) i += len(temp[1]) temp = '' whitespace_match = re.match('\s*', parse_string[i:]) if whitespace_match: i += len(whitespace_match.group(0)) regex_mode = True def load_array(self, array): self.array = array def get_init_messages(self): for raw_regex_string, response_data in self.array: if raw_regex_string.lower() == INIT_TRIGGER: messages = self.parse_entry(response_data) # just in case someone is relying on groups[0] existing self.variables['groups'] = [''] yield from messages def get_messages(self, content, sender): for raw_regex_string, response_data in self.array: if raw_regex_string.lower() == INIT_TRIGGER: continue regex_string = '' i = 0 while i < len(raw_regex_string): if raw_regex_string[i:].startswith('${'): i += 2 # parse the variable name as if it was part of a response parsed = self.parse_response_string(raw_regex_string[i:], 3) i += len(parsed[1]) variable = next(self.parse_entry(parsed[0]), '') regex_string += re.escape(variable) else: regex_string += raw_regex_string[i] i += 1 try: regex = re.compile(regex_string, re.IGNORECASE) except re.error as e: log.write('Bad regular expression {!r} ({!s}), ignoring. ({!s})'.format(regex_string, e, self.dbginfo)) continue match = regex.search(content) if match: messages = self.parse_entry(response_data) self.variables['groups'] = list(match.groups()) self.variables['groups'].insert(0, match.group(0)) groups = tuple(reversed(match.groups(''))) groups = tuple(zip(map('\\{0}'.format, range(len(groups), 0, -1)), groups)) for message in messages: for backreference, group in groups: message = message.replace(backreference, group) yield message def get_regexes(self): return list(map(lambda entry: entry[0], self.array)) def parse_entry(self, parsed_data): if parsed_data[0] == 0: # concatenation if len(parsed_data) == 1: return element = parsed_data[1] remainder = parsed_data[2:] remainder.insert(0, 0) if type(element) is str: result = None for result in self.parse_entry(remainder): yield element + result if result is None: yield element else: element_result = None for element_result in self.parse_entry(element): remainder_result = None for remainder_result in self.parse_entry(remainder): yield element_result + remainder_result if remainder_result is None: yield element_result if element_result is None: for remainder_result in self.parse_entry(remainder): yield remainder_result elif parsed_data[0] == 1: # random choice [a,b,c] element = parsed_data[random.randint(1, len(parsed_data) - 1)] if type(element) is not str: for result in self.parse_entry(element): yield result else: yield element elif parsed_data[0] == 2: # multiple response {a,b,c} for element in parsed_data[1:]: if type(element) is str: yield element else: for result in self.parse_entry(element): yield result elif parsed_data[0] == 3: # dynamic variable ${variable} variable_name = parsed_data[1] if type(variable_name) is not str: variable_name = next(self.parse_entry(variable_name), '') evaluator = SimpleEval(names=self.variables.copy(), functions=EVAL_FUNCTIONS, operators=EVAL_OPERATORS) evaluator.names['variables'] = evaluator.names evaluator.functions['eval'] = evaluator.eval try: yield str(evaluator.eval(variable_name)) except GeneratorExit: pass except Exception: yield '[Error: {0}]'.format(''.join(traceback.format_exception_only(sys.exc_info()[0], sys.exc_info()[1])).strip()) def parse_response_string(self, data, datatype=0): parsed = [datatype] # possible expression types: # 0 = concatenation # 1 = random choice [a,b,c] # 2 = multiple response {a,b,c} # 3 = dynamic variable ${variable} start = {'[': 1, '{': 2, '${': 3} end = {0: ';', 1: ']', 2: '}', 3: '}'} startchars = tuple(start.keys()) endchar = end[datatype] i = 0 separate = True separatable = {0: False, 1: True, 2: True, 3: False}[datatype] allow_nesting = {0: True, 1: True, 2: True, 3: False}[datatype] while i < len(data): if separate and re.match(r'\s', data[i]): i += 1 continue elif data[i] == endchar: if separate: parsed.append('') return (parsed, data[:i + 1]) elif allow_nesting and data[i:].startswith(startchars): startchar = next(char for char in startchars if data[i:].startswith(char)) expression_type = start[startchar] i += len(startchar) subparsed = self.parse_response_string(data[i:], expression_type) i += len(subparsed[1]) if separate or parsed[0] == 0: parsed.append(subparsed[0]) separate = False else: if type(parsed[-1]) is list and parsed[-1][0] == 0: parsed[-1].append(subparsed[0]) else: parsed[-1] = [0, parsed[-1], subparsed[0]] continue elif separatable and data[i] == ',': if separate: parsed.append('') separate = True i += 1 continue elif data[i] == '\\': i += 1 if re.match(r'\d', data[i]): # This backslash is for a backreference. Insert the backslash literally. if type(parsed[-1]) is str and not separate: parsed[-1] += '\\' elif parsed[0] != 0 and not separate: if type(parsed[-1]) is list and parsed[-1][0] == 0: if type(parsed[-1][-1]) is str: parsed[-1][-1] += '\\' else: parsed[-1].append('\\') else: parsed[-1] = [0, parsed[-1], '\\'] else: parsed.append('\\') separate = False # Insert the character after the backslash literally. if type(parsed[-1]) is str and not separate: parsed[-1] += data[i] elif parsed[0] != 0 and not separate: if type(parsed[-1]) is list and parsed[-1][0] == 0: if type(parsed[-1][-1]) is str: parsed[-1][-1] += data[i] else: parsed[-1].append(data[i]) else: parsed[-1] = [0, parsed[-1], data[i]] else: parsed.append(data[i]) separate = False i += 1 continue else: if type(parsed[-1]) is str and not separate: parsed[-1] += data[i] elif parsed[0] != 0 and not separate: if type(parsed[-1]) is list and parsed[-1][0] == 0: if type(parsed[-1][-1]) is str: parsed[-1][-1] += data[i] else: parsed[-1].append(data[i]) else: parsed[-1] = [0, parsed[-1], data[i]] else: parsed.append(data[i]) separate = False i += 1 if separate: parsed.append('') return (parsed, data)
479038
import threading import boto3 class Boto3Profile(object): """Store parameters for creating a boto3 profile""" session_cache = dict() lock = threading.Lock() def __init__(self, profile_name, region_name): self.profile_name = profile_name self.region_name = region_name def update(self, other): """Update profile with value from another one""" assert isinstance(other, Boto3Profile) if other.profile_name: self.profile_name = other.profile_name if other.region_name: self.region_name = other.region_name def get_boto3_session(self): session_key = self.region_name, self.profile_name # cache the session object as the majority of stacks # are staying in one region with self.lock: if session_key not in self.session_cache: self.session_cache[session_key] = boto3.Session( profile_name=self.profile_name, region_name=self.region_name, ) return self.session_cache[session_key] def __repr__(self): return '{}({}/{})'.format(self.__class__.__name__, self.profile_name, self.region_name)
479070
from .nodes import * class Type: def __str__(self): return '%s(size=%d)' % (self.__class__.__name__, self.size) def __repr__(self): return self.__str__() @property def raw(self): return self class IntType(Type): def __init__(self): self.size = 1 self.suffix = '' class PartialIntType(IntType): def __init__(self, suffix, size_bytes): super().__init__() self.suffix = suffix self.s_bytes = size_bytes def __str__(self): return super().__str__() + '[%s]' % self.suffix class Pointer(Type): def __init__(self, type): self.size = 1 self.type = type def __str__(self): return 'Pointer(%s)' % self.type class DecoratedType(Type): def __init__(self, type, static, const): self.size = type.size self.type = type self.static = static self.const = const @property def raw(self): return self.type def __str__(self): s = self.type.__str__() s += '[static=%s,const=%s]' % (self.static, self.const) return s class ArrayType(Type): def __init__(self, type, size): self.type = type self.arr_size = size self.size = type.size * size def __str__(self): return '%d*[%s]' % (self.arr_size, self.type) class FunctionType(Type): def __init__(self, ret_type, param_types, is_varargs): self.size = 0 self.type = ret_type self.param_types = param_types self.is_varargs = is_varargs def __str__(self): param_types = list(map(str, self.param_types)) if self.is_varargs: param_types.append('...') return '%s(%s)' % (self.type.__str__(), ', '.join(param_types)) class VoidType(Type): def __init__(self): self.size = 0 class StructType(Type): def __init__(self, members): self.members = members self.name_to_offset = {} self.name_to_type = {} self.name_to_index = {} self.index_to_name = {} offset = 0 idx = 0 for member in members: type, name = member assert name not in self.name_to_type self.name_to_offset[name] = offset self.name_to_type[name] = type self.index_to_name[idx] = name self.name_to_index[name] = idx offset += type.size idx += 1 self.size = offset def __str__(self): s = super().__str__() s += ' {\n' for type, name in self.members: s += ' %s: %s\n' % (name, type) s += '}' return s class Types: def __init__(self): self.types = { 'int': IntType(), 'char': PartialIntType('B', 1), 'short': PartialIntType('W', 2), 'void': VoidType() } self.structs = {} def add_type(self, name, type_): assert name not in self.types assert isinstance(type_, Type) self.types[name] = type_ def from_spec(self, type_spec): type = self.major(type_spec.type) is_static = type_spec.store == Keyword.STATIC is_const = type_spec.qual == Keyword.CONST if not is_static and not is_const: return type return DecoratedType(type, is_static, is_const) def major(self, type): if isinstance(type, IdentifierExpr): return self.types[type.val] elif isinstance(type, StructTypeRef): return self.structs[type.name.val] elif isinstance(type, StructSpec): return self.define_struct(type) else: assert False, "Unknown type %s" % type.__class__.__name__ def define_struct(self, spec): struct_name = spec.name.val if spec.name is not None else None assert struct_name is None or struct_name not in self.structs assert len(spec.decl) members = [] for member in spec.decl: major = self.major(member.spec) assert len(member.decl), "Members must have a name" for decl in member.decl: is_array = isinstance(decl.name_spec, ArrayDeclSpec) array_size = None if is_array: assert isinstance(decl.name_spec.dim, IntLiteral) array_size = decl.name_spec.dim.val type = self.effective(major, decl.pointer_depth, is_array, False, array_size) name = self.get_name_for(decl.name_spec) members.append((type, name)) struct = StructType(members) if struct_name is not None: self.structs[struct_name] = struct return struct def get_name_for(self, spec): if isinstance(spec, ArrayDeclSpec): return spec.name.val elif isinstance(spec, FuncDeclSpec): return spec.name.val else: return spec.val def effective(self, type, ptr, is_array, is_function, array_size=None, func_params=None, is_varargs=False): for _ in range(ptr): type = Pointer(type) if is_array: if array_size is None: type = Pointer(type) # TODO index offset else: type = ArrayType(type, array_size) if is_function: type = FunctionType(type, tuple(func_params), is_varargs) return type
479082
import logging import random from datetime import timedelta from django.contrib.auth import get_user_model from django.contrib.postgres.fields import JSONField from django.core.exceptions import ImproperlyConfigured from django.db import models, transaction from django.utils import timezone from django.utils.module_loading import import_string from django.utils.translation import ugettext_lazy as _ from resources.models import Resource User = get_user_model() logger = logging.getLogger(__name__) DRIVERS = ( ('sipass', 'Siemens SiPass', 'kulkunen.drivers.sipass.SiPassDriver'), ) driver_classes = {} class AccessControlUserQuerySet(models.QuerySet): def active(self): m = self.model return self.filter(state=m.INSTALLED) class AccessControlUser(models.Model): INSTALLED = 'installed' REMOVED = 'removed' STATE_CHOICES = ( (INSTALLED, _('installed')), (REMOVED, _('removed')), ) system = models.ForeignKey('AccessControlSystem', related_name='users', on_delete=models.CASCADE) user = models.ForeignKey( User, related_name='access_control_users', on_delete=models.SET_NULL, null=True, blank=True ) state = models.CharField( max_length=20, choices=STATE_CHOICES, default=INSTALLED, editable=False, help_text=_('State of the user') ) first_name = models.CharField(max_length=100, null=True, blank=True) last_name = models.CharField(max_length=100, null=True, blank=True) created_at = models.DateTimeField(auto_now_add=True) removed_at = models.DateTimeField(null=True, blank=True) identifier = models.CharField( max_length=100, null=True, blank=True, verbose_name=_('identifier'), help_text=_('Identifier of user in the access control system (if any)') ) driver_data = JSONField(null=True, blank=True) objects = AccessControlUserQuerySet.as_manager() class Meta: index_together = (('system', 'state'),) def __str__(self) -> str: name = ' '.join([x for x in (self.first_name, self.last_name) if x]) user_uuid = str(self.user.uuid) if self.user.uuid else _("[No identifier]") if name: return _("{uuid}: {name}").format(uuid=user_uuid, name=name) else: return _("{uuid}").format(uuid=user_uuid) class AccessControlGrantQuerySet(models.QuerySet): def active(self): m = self.model return self.filter(state__in=(m.REQUESTED, m.INSTALLING, m.INSTALLED, m.REMOVING)) class AccessControlGrant(models.Model): REQUESTED = 'requested' INSTALLING = 'installing' INSTALLED = 'installed' CANCELLED = 'cancelled' REMOVING = 'removing' REMOVED = 'removed' STATE_CHOICES = ( (REQUESTED, _('requested')), (INSTALLED, _('installed')), (CANCELLED, _('cancelled')), (REMOVING, _('removing')), (REMOVED, _('removed')), ) user = models.ForeignKey( AccessControlUser, related_name='grants', null=True, blank=True, on_delete=models.SET_NULL ) resource = models.ForeignKey('AccessControlResource', related_name='grants', on_delete=models.CASCADE) # If a Respa reservation is deleted, it will be marked as None here. # AccessControlReservation with reservation == None should be deleted. reservation = models.ForeignKey( 'resources.Reservation', on_delete=models.SET_NULL, null=True, related_name='access_control_grants' ) starts_at = models.DateTimeField(null=True, blank=True) ends_at = models.DateTimeField(null=True, blank=True) # These are set if the grants are to be installed and removed at a later time. install_at = models.DateTimeField(null=True, blank=True) remove_at = models.DateTimeField(null=True, blank=True) created_at = models.DateTimeField(auto_now_add=True) removed_at = models.DateTimeField(auto_now_add=True) access_code = models.CharField(verbose_name=_('access code'), max_length=32, null=True, blank=True) state = models.CharField( max_length=20, choices=STATE_CHOICES, default=REQUESTED, editable=False, help_text=_('State of the grant') ) identifier = models.CharField( max_length=100, null=True, blank=True, verbose_name=_('identifier'), help_text=_('Identifier of grant in the access control system (if any)') ) installation_failures = models.PositiveIntegerField( default=0, editable=False, help_text=_('How many times the system has tried to install this grant and failed') ) removal_failures = models.PositiveIntegerField( default=0, editable=False, help_text=_('How many times the system has tried to remove this grant (and failed)') ) driver_data = JSONField(null=True, blank=True) objects = AccessControlGrantQuerySet.as_manager() class Meta: index_together = (('resource', 'state'),) def __str__(self) -> str: return _("{user} {reservation} ({state})").format( user=self.user, reservation=self.reservation, state=self.state ) def cancel(self): """Cancels a grant. The method checks if the grant was installed into the access control system already and asks for its revocation is it was. Otherwise the grant is just marked as removed. """ logger.info('[%s] Canceling' % self) if self.state not in (self.REQUESTED, self.INSTALLED): logger.warn('[%s] Cancel called in invalid state') return if self.state == self.REQUESTED: self.state = self.REMOVED else: self.state = self.CANCELLED self.save(update_fields=['state']) if self.state == self.CANCELLED: self.resource.system.prepare_remove_grant(self) def install(self): """Installs the grant to the remote access control system. """ logger.info('[%s] Installing' % self) assert self.state == self.REQUESTED # Sanity check to make sure we don't try to install grants # for past reservations. if self.ends_at < timezone.now(): logger.error('[%s] Attempted to install grant for a past reservation') self.cancel() return with transaction.atomic(): # Set the state while locking the resource to protect against race # conditions. db_self = AccessControlGrant.objects.select_related('resource').select_for_update().get(id=self.id) if db_self.state != self.REQUESTED: logger.error('[%s] Race condition with grant' % self) return self.state = self.INSTALLING # After the state is set to 'installing', we have exclusive access. self.save(update_fields=['state']) try: self.resource.system.install_grant(self) except Exception as e: logger.exception('[%s] Failed to grant access' % self) # If we fail, we retry after a while self.installation_failures += 1 self.state = self.REQUESTED min_delay = min(1 << self.installation_failures, 30 * 60) retry_delay = random.randint(min_delay, 2 * min_delay) self.install_at = timezone.now() + timedelta(seconds=retry_delay) self.save(update_fields=['state', 'installation_failures', 'install_at']) logger.info('[%s] Retrying after %d seconds' % (self, retry_delay)) def remove(self): """Removes the grant from the remote access control system. """ logger.info('[%s] Removing' % self) assert self.state in (self.INSTALLED, self.CANCELLED) old_state = self.state with transaction.atomic(): db_self = AccessControlGrant.objects.select_related('resource').select_for_update().get(id=self.id) if db_self.state != old_state: logger.error('[%s] Race condition with grant' % self) return self.state = self.REMOVING self.save(update_fields=['state']) try: self.resource.system.remove_grant(self) except Exception as e: logger.exception('[%s] Failed to revoke access' % self) # If we fail, we retry after a while self.removal_failures += 1 self.state = old_state min_delay = min(1 << self.removal_failures, 30 * 60) retry_delay = random.randint(min_delay, 2 * min_delay) self.remove_at = timezone.now() + timedelta(seconds=retry_delay) self.save(update_fields=['state', 'removal_failures', 'remove_at']) logger.info('[%s] Retrying after %d seconds' % (self, retry_delay)) def notify_access_code(self): reservation = self.reservation reservation.access_code = self.access_code reservation.save(update_fields=['access_code']) logger.info('Notifying access code creation') reservation.send_access_code_created_mail() class AccessControlResource(models.Model): system = models.ForeignKey( 'AccessControlSystem', related_name='resources', on_delete=models.CASCADE, verbose_name=_('system') ) # If a Respa resource is deleted, it will be marked as None here. # AccessControlResources with resource == None should be deleted. resource = models.ForeignKey( 'resources.Resource', related_name='access_control_resources', on_delete=models.SET_NULL, verbose_name=_('resource'), null=True ) identifier = models.CharField( max_length=100, null=True, blank=True, verbose_name=_('identifier'), help_text=_('Identifier of resource in the access control system (if any)') ) driver_config = JSONField(null=True, blank=True, help_text=_('Driver-specific configuration')) driver_data = JSONField(null=True, editable=False, help_text=_('Internal driver data')) class Meta: unique_together = (('system', 'resource'),) def __str__(self) -> str: return "%s: %s" % (self.system, self.resource) def save(self, *args, **kwargs): self.system.save_resource(self) super().save(*args, **kwargs) def pad_start_and_end_times(self, start, end): system = self.system leeway = system.reservation_leeway or 0 start -= timedelta(minutes=leeway) end += timedelta(minutes=leeway) return start, end def _grant_has_changed(self, old_grant, new_grant): if old_grant.user: user = old_grant.user.user if new_grant.reservation.user != user: return True if old_grant.starts_at != new_grant.starts_at: return True if old_grant.ends_at != new_grant.ends_at: return True return False def grant_access(self, reservation): assert reservation.resource == self.resource grant = AccessControlGrant( resource=self, reservation=reservation, state=AccessControlGrant.REQUESTED ) grant.starts_at, grant.ends_at = self.pad_start_and_end_times(reservation.begin, reservation.end) with transaction.atomic(): existing_grants = reservation.access_control_grants\ .filter(resource=self).active().select_related('resource').select_for_update() old_grant = None assert len(existing_grants) <= 1 if existing_grants: old_grant = existing_grants[0] if not self._grant_has_changed(old_grant, grant): return old_grant else: old_grant.cancel() grant.save() self.system.prepare_install_grant(grant) return grant def revoke_access(self, reservation): assert reservation.resource == self.resource with transaction.atomic(): existing_grants = reservation.access_control_grants\ .filter(resource=self).active().select_related('resource').select_for_update() assert len(existing_grants) <= 1 if not existing_grants: return grant = existing_grants[0] grant.cancel() def driver_identifier(self): return self.system.get_resource_identifier(self) def active_grant_count(self): return self.grants.active().count() class AccessControlSystem(models.Model): name = models.CharField(max_length=100, unique=True) driver = models.CharField(max_length=30, choices=[(x[0], x[1]) for x in DRIVERS]) reservation_leeway = models.PositiveIntegerField( null=True, blank=True, verbose_name=_('reservation leeway'), help_text=_('How many minutes before and after the reservation the access will be allowed') ) driver_config = JSONField(null=True, blank=True, help_text=_('Driver-specific configuration')) driver_data = JSONField(null=True, editable=False, help_text=_('Internal driver data')) # Cached driver instance _driver = None def clean(self): driver = self._get_driver() driver.validate_system_config(self.driver_config) def __str__(self) -> str: return "{name} ({driver})".format(name=self.name, driver=self.driver) def _get_driver(self): if self._driver is not None: return self._driver driver_class = driver_classes.get(self.driver) if driver_class is None: for name, verbose_name, driver_path in DRIVERS: if name == self.driver: break else: raise ImproperlyConfigured("Driver %s not found" % self.driver) driver_class = import_string(driver_path) driver_classes[self.driver] = driver_class self._driver = driver_class(self) return self._driver def prepare_install_grant(self, grant: AccessControlGrant): self._get_driver().prepare_install_grant(grant) def prepare_remove_grant(self, grant: AccessControlGrant): self._get_driver().prepare_remove_grant(grant) def install_grant(self, grant: AccessControlGrant): self._get_driver().install_grant(grant) def remove_grant(self, grant: AccessControlGrant): self._get_driver().remove_grant(grant) def get_system_config_schema(self): return self._get_driver().get_system_config_schema() def get_resource_config_schema(self): return self._get_driver().get_resource_config_schema() def get_resource_identifier(self, resource: AccessControlResource): return self._get_driver().get_resource_identifier(resource) def save_respa_resource(self, resource: AccessControlResource, respa_resource: Resource): """Notify driver about saving a Respa resource Allows for driver-specific customization of the Respa resource or the corresponding access control resource. Called when the Respa resource object is saved. NOTE: The driver must not call `respa_resource.save()`. Saving the resource is handled automatically later. """ self._get_driver().save_respa_resource(resource, respa_resource) def save_resource(self, resource: AccessControlResource): """Notify driver about saving an access control resource Allows for driver-specific customization of the access control resource or the corresponding Respa resource. Called when the access control resource is saved. """ self._get_driver().save_resource(resource)
479105
import logging import re import warnings import numpy as np import pandas as pd idl2np_dtype = {1: np.byte, 2: np.int16, 3: np.int32, 4: np.float32, 5: np.float64} idl2struct = {4: 'f', 5:'d'} archtype2struct={'sparc': None, 'bigend': '>', 'litend': '<', 'alpha': None, 'ppc': None, 'x86': None, 'x86_64': None} class ReadBin52(object): """ Class to read a bin 52 and organize the output Attributes ---------- bin52data : ndarray The raw, n-dimensional KRC data casesize : int The number of bytes in each KRC case date : bytes The date the read file was created ddd : ndarray Raw temperature data ddd_pd : dataframe A pandas dataframe of surface temperature data filename : str The name of the KRC file that was input header : list The KRC header unpack to a list of ints headerlength : int The length, in bytes, of the KRC header ncases : int The number of different cases the model was run for ndim : int TBD ndx : int The number of indices for a single KRC run nhours : int The number of hour bins per 24 Mars hours nlats : int The number of valid, non-zero latitude bins nseasons : int The number of seasons the model was run for nvariables : int The number of variables contained within the KRC lookup table structdtype : str Describing endianess and data type temperature_data : dataframe A multi-indexed dataframe of surface temperatures transferedlayers : int The number of KRC transfered layers version : list The krc verison used to create the file in the form [major, minor, release] words_per_krc : int The number of bytes per krc entry """ def __init__(self, filename, headerlen=512): """ Parameters ---------- filename : str The file to read headerlength : int The length, in bytes, of the text header. Default: 512 """ # Get or setup the logging object self.logger = logging.getLogger(__name__) self.filename = filename self.readbin5(headerlen) print(self.ncases) assert(self.ncases == self.bin52data.shape[0]) def definekrc(self, what='KRC', endianness='<'): """ Defines a custom binary data structure for the KRC files. """ if what == 'KRC': numfd = 96 # Size of floats of T-dependent materials numid = 40 # size of " " integers numld = 20 # size of " " logicals maxn1 = 30 # dimension of layers maxn2 = 384 * 4 # dimensions of times of day maxn3 = 16 # dimensions of iterations days maxn4 = self.nlats * 2 - 1 # dimensions of latitudes maxn5 = 161 # dimensions of seasons maxn6 = 6 # dimensions of saved years maxnh = self.nhours # dimensions of saved times of day maxbot = 6 # dimensions of time divisions numtit = 20 # number of 4-byte words in TITLE numday = 5 # number of 4-byte words in DAY e = endianness self.logger.debug(self.structdtype) #Define the structure of the KRC file if self.structdtype == '<f': self._krcstructure= np.dtype([('fd','{}{}f'.format(e, numfd)), ('id','{}{}i'.format(e, numid)), ('ld','{}{}i'.format(e, numld)), ('title','{}{}a'.format(e, 4 * numtit)), ('daytime','{}{}a'.format(e, 4 * numday)), ('alat','{}{}f4'.format(e, maxn4)), ('elev','{}{}f4'.format(e,maxn4))]) elif self.structdtype == '<d': self._krcstructure = np.dtype([('fd','{}{}d'.format(e, numfd)), ('alat','{}{}d'.format(e, maxn4)), ('elev','{}{}d'.format(e,maxn4) ), ('id','{}{}i'.format(e, numid)), ('ld','{}{}i'.format(e, numld)), ('title','{}{}a'.format(e, 4 * numtit) ), ('daytime','{}{}a'.format(e, 4 * numday))]) def readbin5(self, headerlen): """ Reads the type 52 file containing KRC output. Tested with KRC version 2.2.2. Note that the output format can change Parameters ---------- filename (str) Full PATH to the file """ def _parse_header(): header = re.findall(b'\d+', fullheader.split(b'<<')[0]) header = list(map(int, header)) self.ndim = header[0] self.nhours = header[1] self.nvariables = header[2] self.nlats = header[3] self.nseasons = header[4] - 1 self.headerlength = header[8] self.ncases = header[0 + self.ndim] self.header = header print(self.header) # Compute how large each case is self.casesize = self.nhours if self.ndim > 1: for k in range(1, self.ndim - 1): self.casesize *= header[k + 1] def _parse_front(): # Read the front matter front = np.fromfile(bin5, dtype=self.structdtype, count=4).astype(np.int) self.words_per_krc = front[0] self.ndx = front[2] def _read_data(): bin5.seek(self.headerlength) self.bin52data = np.fromfile(bin5, dtype=self.structdtype) self.logger.debug(len(self.bin52data)) indices = arraysize[1: -1] self.bin52data = self.bin52data.reshape(indices[: : -1]) def _read_metadata(): if self.structdtype == '<f': j = self.headerlength + 16 # Skip header plus 1 16bit entry elif self.structdtype == '<d': j = self.headerlength + 32 # Skip header plus 1 32bit entry bin5.seek(j) self.definekrc('KRC') structarr = np.fromfile(bin5, dtype=self._krcstructure, count=1) if self.structdtype == '<f': self.structarr = {'fd': structarr[0][0], 'id': structarr[0][1], 'ld': structarr[0][2], 'title': structarr[0][3], 'date': structarr[0][4], 'alat': structarr[0][5], 'elevation': structarr[0][6] } elif self.structdtype == '<d': self.structarr = {'fd': structarr[0][0], 'alat': structarr[0][1], 'elevation': structarr[0][2], 'id': structarr[0][3], 'ld': structarr[0][4], 'title': structarr[0][5], 'date':structarr[0][6]} def _get_version(): ver = re.findall(b'\d+', head) ver = list(map(int, ver)) self.version = ver[: 3] with open(self.filename, 'rb') as bin5: #To handle endianness and architectures archbytes = 8 c_end = 5 fullheader = bin5.read(headerlen) _parse_header() print(self.header) arraysize = self.header[0: self.ndim + 2] arraydtypecode = arraysize[arraysize[0] + 1] try: arraydtype = idl2np_dtype[arraydtypecode] self.logger.debug("Dtype: ", arraydtype) except KeyError: self.logger.error("Unable to determine input datatype.") assert(len(self.header) == self.ndim + 4) if self.headerlength > 512: warnings.Warn('Expected header to be 512 bytes, is {} bytes'.format(self.headerlength)) return #Get the endianness of the input file and the data type (32 or 64 bit) archstart = self.headerlength - (archbytes + c_end) archend = self.headerlength - c_end encodingarch = fullheader[archstart: archend].rstrip() encodingarch = encodingarch.decode() self._endianness = archtype2struct[encodingarch] self.structdtype = self._endianness + idl2struct[arraydtypecode] #Get the date and head debug idx2 = fullheader.find(b'>>') idx1 = idx2 - 21 self.date = fullheader[idx1: idx1 + 20] head = fullheader[idx2 + 2: self.headerlength - (archbytes + c_end) - 3 - idx2] head = head.rstrip() # Parse the header _get_version() _parse_front() _read_data() _read_metadata() def readcase(self, case=0): """ Read a single dimension (case) from a bin52 file. Parameters ----------- case : int The case to be extracted """ def latitems2dataframe(): """ Converts Latitude items to a dataframe """ columns = ['# Days to Compute Soln.', 'RMS Temp. Change on Last Day', 'Predicted Final Atmospheric Temp.', 'Predicted frost amount, [kg/m^2]', 'Frost albedo (at the last time step)', 'Mean upward heat flow into soil surface on last day, [W/m^2]'] # Grab the correct slice from the data cube and reshape latitems = layeritems[: ,: ,: ,: ,0: 3].reshape(self.ncases, self.nseasons, self.nlats, len(columns)) # Multi-index generation idxcount = self.nseasons * self.nlats * self.ncases idxpercase = self.nseasons * self.nlats caseidx = np.empty(idxcount) for c in range(self.ncases): start = c * idxpercase caseidx[start:start+idxpercase] = np.repeat(c, idxpercase) nseasvect = np.arange(self.nseasons) seasonidx = np.repeat(np.arange(self.nseasons), self.nlats) latidx = np.tile(self.latitudes.values.ravel(), self.nseasons) # Pack the dataframe self.latitude = pd.DataFrame(latitems.reshape(self.nseasons * self.nlats, -1), index=[caseidx, seasonidx, latidx], columns=columns) self.latitude.index.names = ['Case','Season' ,'Latitude'] def layer2dataframe(): """ Converts layeritems into """ columns = ['Tmin', 'Tmax'] ddd = layeritems[: ,: ,: ,: ,3: 3 + self.transferedlayers].reshape(self.ncases, self.nseasons, self.nlats, len(columns), self.transferedlayers) idxcount = self.nseasons * self.nlats * self.transferedlayers * self.ncases caseidx = np.empty(idxcount) idxpercase = self.nseasons * self.nlats * self.transferedlayers for c in range(self.ncases): start = c * idxpercase caseidx[start:start + idxpercase] = np.repeat(c, idxpercase) seasonidx = np.repeat(np.arange(self.nseasons), idxcount / self.nseasons / self.ncases) nlatidx = np.repeat(self.latitudes.values.ravel(), idxcount / self.transferedlayers / self.ncases) tranlayeridx = np.tile(np.repeat(np.arange(self.transferedlayers), self.nlats), self.nseasons) self.layers = pd.DataFrame(ddd.reshape(idxcount, -1), columns=columns, index=[caseidx, seasonidx, nlatidx, tranlayeridx]) self.layers.index.names = ['Case', 'Season', 'Latitude', 'Layer'] def latelv2dataframes(): """ Convert the latitude and elevation arrays to dataframes """ #All latitudes #Hugh made some change to the krcc format, but I cannot find documentation... if self.structdtype == '<f': alllats = krcc[:,prelatwords:].reshape(2, nlat_include_null, self.ncases) elif self.structdtype == '<d': alllats = krcc[:,96:170].reshape(2, nlat_include_null, self.ncases) #Latitudes and elevations for each case latelv = alllats[: ,0: nlat] if latelv.shape[-1] == 1: latelv = latelv[:,:,0] self.latitudes = pd.DataFrame(latelv[0], columns=['Latitude']) self.elevations = pd.DataFrame(latelv[1], columns=['Elevation']) def season2dataframe(): columns = ['Current Julian date (offset from J2000.0)', 'Seasonal longitude of Sun (in degrees)', 'Current surface pressure at 0 elevation (in Pascals)', 'Mean visible opacity of dust, solar wavelengths', 'Global average columnar mass of frost [kg /m^2]'] # Build a dataframe of the seasonal information seasitems = header[:, 4 + self.words_per_krc: k ].reshape(self.ncases, len(columns), self.nseasons) caseidx = np.repeat(np.arange(self.ncases), self.nseasons) seasonidx = np.repeat(np.arange(self.nseasons), self.ncases) flt_seasitems = seasitems.reshape(len(columns), self.ncases * self.nseasons) self.seasons = pd.DataFrame(flt_seasitems.T, index=[caseidx,seasonidx], columns=columns) self.seasons.index.names = ['Case', 'Season'] def hourly2dataframe(): """ Converts the hourly 'ttt' vector to a labelled Pandas dataframe. """ columns = ['Final Hourly Surface Temp.', 'Final Hourly Planetary Temp.', 'Final Hourly Atmospheric Temp.', 'Hourly net downward solar flux [W/m^2]', 'Hourly net downward thermal flux [W/m^2]'] ttt = self.bin52data[: ,self.ndx: ,: ,0: len(columns),: ].reshape(self.ncases, self.nseasons, self.nlats, len(columns), self.nhours) reshapettt = np.swapaxes(ttt.reshape(self.ncases * self.nseasons * self.nlats, len(columns), self.nhours),1,2) shp = reshapettt.shape reshapettt = reshapettt.reshape((shp[0] * shp[1], shp[2])).T #Indices caseidx = np.repeat(np.arange(self.ncases), self.nseasons * self.nlats * self.nhours) seasonidx = np.tile(np.repeat(np.arange(self.nseasons), self.nlats * self.nhours), self.ncases) latidx = np.tile(np.repeat(self.latitudes.values.ravel(), self.nhours), self.nseasons) houridx = np.tile(np.tile(np.tile(np.arange(self.nhours), self.nlats), self.nseasons), self.ncases) #DataFrame self.temperatures = pd.DataFrame(reshapettt.T, index=[caseidx, seasonidx, latidx, houridx], columns=columns) self.temperatures.index.names = ['Case', 'Season', 'Latitude', 'Hour'] self.nlayers = nlayers = self.structarr['id'][0] nlat = len(self.structarr['alat']) self.transferedlayers = nlayers - 1 if self.nhours - 3 < self.transferedlayers: self.transferedlayers = self.nhours - 3 wordsperlat = self.nhours * self.nvariables wordsperseason = wordsperlat * self.nlats # Each case has a header that must be extracted: header = self.bin52data[:,0:self.ndx,: ,: ,: ].reshape(self.ncases, wordsperseason * self.ndx) k = 4 + self.words_per_krc + 5 * self.nseasons krcc = header[:, 4: 4 + self.words_per_krc] nlat_include_null = len(self.structarr['alat']) prelatwords = self.words_per_krc - 2 * nlat_include_null wordspercase = wordsperseason * self.nseasons # Extract the latitude and elevation metadata latelv2dataframes() #Extract the hourly temperature data hourly2dataframe() # Extract the seasons season2dataframe() # Extract by layer data from the data cube layeritems = self.bin52data[: , self.ndx: , : , 5: 7, : ] latitems2dataframe() layer2dataframe() class ReadTds(object): def __init__(self, filename, headerlength=512): """ Parameters ---------- filename : str The file to read headerlength : int The length, in bytes, of the text header. Default: 512 """ # Get or setup the logging object self.logger = logging.getLogger(__name__) self.filename = filename self.readbin5(headerlen) print(self.ncases) assert(self.ncases == self.bin52data.shape[0])
479119
whitelist = ["МОРОКА", "МОРС", "МОРОЗ", "ПЛАХА", "ПЛАТЬЕ", "ПЛОМБА"] def analyze(s, pref): if s in whitelist: return False, [f"{pref:<6} {s} - LOSING"] results = [] for word in whitelist: if word.startswith(s): result = analyze(s + word[len(s)], f"{pref:<6} --{word:<6}-->") if not result[0]: return True, result[1] results += result[1] return False, results for line in analyze("", "")[1]: print(line)
479146
from ..factory import Type class passportElementsWithErrors(Type): elements = None # type: "vector<PassportElement>" errors = None # type: "vector<passportElementError>"
479167
class Cheat: def __init__(self, name: str): self.name = name self.is_running = False def set_is_running(self, is_running: bool): self.is_running = is_running
479174
from gb_utils.greenberry_lex import GreenBerryLex from symbols import * from debug_cp import * import inspect MATH_OPS = ["+", "-", "*", "/"] BOOLS = [S.TRUE, S.FALSE] BOOL_OPS = [S.GREATER, S.LESS] EOS = [S.NL, S.EOF] def greenberry_lex_test(x, expected): KWDs = [ getattr(S, i) for i in [ b[0] for b in [ a for a in inspect.getmembers(S, lambda a: not inspect.isroutine(a)) if not (a[0].startswith("__") and a[0].endswith("__")) ] ] ] words = GreenBerryLex.lex(x, KWDs, add_eof=1) print("\033[1mWords:\033[0m") is_correct = True j = 0 for i in words: print(i) if not i == expected[j]: print("\x1b[31m This token is unexpected.\x1b[39m") is_correct = False j += 1 return is_correct def greenberry_lex_tester(to_lex, *args): l_args = list(args) l_args.append("{***end-of-file***}") result = greenberry_lex_test(to_lex, l_args) if result: print("\x1b[32m Test passed \x1b[39m") else: print("\x1b[31m Test failed \x1b[39m") return result def greenberry_multi_tests(*args): result = True for i in args: cur = greenberry_lex_tester(i["test"], *i["expected"]) if not cur: result = False if result: print("\x1b[32m All tests passed. \x1b[39m") else: print("\x1b[31m A test failed. \x1b[39m") greenberry_multi_tests({ "test": "print \"hi\"", "expected": ["print", "\"hi\""] }, { "test": "print string hi", "expected": ["print", "string", "hi"] }, { "test": "5 * 3 + (3 / 1)", "expected": ["5", "*", "3", "+", "(", "3", "/", "1", ")"] }, { "test": "for 3 times: print greenBerry", "expected": ["for", "3", "times", ":", "print", "greenBerry"] }, { "test": "var y = @ x", "expected": ["var", "y", "=", "@", "x"] })
479192
from .frame import Frame from .parser import Parser from .settings import * class Traverser: def __init__(self, frames, mapping): self.frames = frames self.mapping = mapping # Finds node within XP, for which negation may produce a reasonable goal with the returned operator # Returns: (frame, operator, effect) triplet if an operator, frame, and effect are found which remedies the anomaly. If none are found, returns (None, None, None) def traverse(self): # Want search in a BFS manner queue = [] # queue for BFS # Find anomaly center center = None for f in list(self.frames.values()): if f.iscenter: center = f covered = [] # do not re-search nodes queue.append(center) while len(queue) > 0: node = queue.pop(0) covered.append(node) for role in list(node.roles.values()): for rn in set(role.facetvalue + role.facetrelation): if rn not in covered and rn not in queue: queue.append(rn) if node.name in list(self.mapping.keys()): for [operator, effect] in self.mapping[node.name]: if self.evaluate(node, effect): return (node, operator, effect) return (None, None, None) # Evaluates the result of applying effect to node within frames. # Returns: True for good (remedies anomaly), False for bad def evaluate(self, node, effect): if effect == OPERATOR_EFFECT_NEGATION: negated = [node] # Find nodes which depend on negated nodes, negate them. # Stop when either the center node is negated, or no more nodes can be negated. # Assumption: All edges indicate dependencies. This is invalid and will need to be updated. expanded = True while expanded: expaned = False for frame in list(self.frames.values()): if not frame in negated: for role in list(frame.roles.values()): for rn in set(role.facetvalue + role.facetrelation): if rn in negated and not frame in negated: if frame.iscenter: return True negated.append(frame) expanded = True return False if __name__ == "__main__": # get text f = open("../output.txt", "r") text = f.read() f.close() # parse text p = Parser() frames = p.makeframegraph(text) # create mapping noem = {} # Node Operator Effect Mapping # Keys are node/frame names, values are lists of [operatorname, effect] pairs noem['CRIMINAL-VOLITIONAL-AGENT.4697'] = [['apprehend', OPERATOR_EFFECT_NEGATION]] # Traverse t = Traverser(frames, noem) (frame, operator, effect) = t.traverse() print("Frame: " + frame.name) print("Operator: " + operator) print("Effect: " + str(effect))
479194
import logging import re from plane import replace from plane.pattern import EMAIL, TELEPHONE from tqdm import tqdm from dbpunctuator.utils import ( CURRENCY, CURRENCY_TOKEN, EMAIL_TOKEN, NUMBER, NUMBER_TOKEN, TELEPHONE_TOKEN, URL, URL_TOKEN, ) tqdm.pandas() logger = logging.getLogger(__name__) def dataframe_data_cleaning( df, target_col, kept_punctuations, removed_punctuations, *special_cleaning_funcs ): """ Clean up data in dataframe by removing all special characters except kept ones. """ if special_cleaning_funcs: for func in special_cleaning_funcs: df[target_col] = df[target_col].progress_apply(lambda x: func(x)) # replace email with <Special> and replace url with <URL> logger.info("replace email with <EMAIL>") df[target_col] = df[target_col].progress_apply( lambda x: replace(x, EMAIL, EMAIL_TOKEN) ) logger.info("replace url with <URL>") df[target_col] = df[target_col].progress_apply(lambda x: replace(x, URL, URL_TOKEN)) logger.info("replace currency with <CURRENCY>") df[target_col] = df[target_col].progress_apply( lambda x: replace(x, CURRENCY, CURRENCY_TOKEN) ) logger.info("replace telephone with <TEL>") df[target_col] = df[target_col].progress_apply( lambda x: replace(x, TELEPHONE, TELEPHONE_TOKEN) ) logger.info("replace number with <NUM>") df[target_col] = df[target_col].progress_apply( lambda x: replace(x, NUMBER, NUMBER_TOKEN) ) translator = str.maketrans({key: None for key in removed_punctuations}) space_translator = str.maketrans( {key: " {0} ".format(chr(key)) for key in kept_punctuations} ) df[target_col] = df[target_col].progress_apply( lambda x: x.translate(translator).translate(space_translator).strip() ) df.dropna(subset=[target_col]) return df def text_lines_cleaning( input_lines, kept_punctuations, removed_punctuations, *special_cleaning_funcs ): logger.info("clean up text file line by line.") logger.info("replace email with <EMAIL>") logger.info("replace url with <URL>") logger.info("replace currency with <CURRENCY>") logger.info("replace telephone with <TEL>") logger.info("replace number with <NUM>") pbar = tqdm(input_lines) for line in pbar: if special_cleaning_funcs: for func in special_cleaning_funcs: try: line = func(line) except Exception as err: logger.warning(f"error {str(err)} with func {func} for line {line}") line = replace(line, EMAIL, EMAIL_TOKEN) line = replace(line, URL, URL_TOKEN) line = replace(line, CURRENCY, CURRENCY_TOKEN) line = replace(line, TELEPHONE, TELEPHONE_TOKEN) line = replace(line, NUMBER, NUMBER_TOKEN) translator = str.maketrans({key: None for key in removed_punctuations}) space_translator = str.maketrans( {key: " {0} ".format(chr(key)) for key in kept_punctuations} ) yield line.translate(translator).translate(space_translator).strip() pbar.close() def cleaning_validator(text, kept_punctuations, removed_punctuations): regex = re.compile( "[{}]".format("|".join(map(re.escape, [chr(p) for p in removed_punctuations]))) ) checking_result = regex.search(text) assert ( checking_result is None or text[checking_result.span()[0] : checking_result.span()[1]] in kept_punctuations ), f"data cleaning for `{text}`` doesn't pass the validation with {checking_result}" return True
479214
import logging import os import platform import numpy as np import pybullet as p import yaml import igibson from igibson.action_primitives.action_primitive_set_base import ActionPrimitiveError from igibson.action_primitives.starter_semantic_action_primitives import StarterSemanticActionPrimitives from igibson.objects.articulated_object import URDFObject from igibson.robots.behavior_robot import BehaviorRobot from igibson.scenes.igibson_indoor_scene import InteractiveIndoorScene from igibson.simulator import Simulator from igibson.utils.assets_utils import get_ig_avg_category_specs, get_ig_model_path from igibson.utils.utils import parse_config def execute_controller(ctrl_gen, robot, s): for action in ctrl_gen: robot.apply_action(action) s.step() def go_to_sink_and_toggle(s, robot, controller: StarterSemanticActionPrimitives): """Go to the sink object in the scene and toggle it on.""" for i in range(20): try: sink = s.scene.objects_by_category["sink"][1] print("Trying to NAVIGATE_TO sink.") execute_controller(controller._navigate_to_obj(sink), robot, s) print("NAVIGATE_TO sink succeeded!") print("Trying to TOGGLE_ON the sink.") execute_controller(controller.toggle_on(sink), robot, s) print("TOGGLE_ON the sink succeeded!") except ActionPrimitiveError: print("Attempt {} to navigate and toggle on the sink failed. Retry until 20.".format(i + 1)) continue return def grasp_tray(s, robot, controller: StarterSemanticActionPrimitives): """Grasp the tray that's on the floor of the room.""" for i in range(20): try: print("Trying to GRASP tray.") tray = s.scene.objects_by_category["tray"][0] execute_controller(controller.grasp(tray), robot, s) print("GRASP the tray succeeded!") except ActionPrimitiveError: print("Attempt {} to grasp the tray failed. Retry until 20.".format(i + 1)) continue return def put_on_table(s, robot, controller: StarterSemanticActionPrimitives): """Place the currently-held object on top of the coffee table.""" for i in range(20): try: print("Trying to PLACE_ON_TOP the held object on coffee table.") table = s.scene.objects_by_category["coffee_table"][0] execute_controller(controller.place_on_top(table), robot, s) print("PLACE_ON_TOP succeeded!") except ActionPrimitiveError: print("Attempt {} to place the held object failed. Retry until 20.".format(i + 1)) continue return def open_and_close_fridge(s, robot, controller: StarterSemanticActionPrimitives): """Demonstrate opening and closing the fridge.""" for i in range(20): try: fridge = s.scene.objects_by_category["fridge"][0] print("Trying to OPEN the fridge.") execute_controller(controller.open(fridge), robot, s) print("OPEN the fridge succeeded!") print("Trying to CLOSE the fridge.") execute_controller(controller.close(fridge), robot, s) print("CLOSE the fridge succeeded!") except ActionPrimitiveError: print("Attempt {} to open and close the fridge failed. Retry until 20.".format(i + 1)) continue return def open_and_close_door(s, robot, controller: StarterSemanticActionPrimitives): """Demonstrate opening and closing the bathroom door.""" for i in range(20): try: door = (set(s.scene.objects_by_category["door"]) & set(s.scene.objects_by_room["bathroom_0"])).pop() print("Trying to OPEN the door.") execute_controller(controller.open(door), robot, s) print("Trying to CLOSE the door.") execute_controller(controller.close(door), robot, s) print("CLOSE the door succeeded!") except ActionPrimitiveError: print("Attempt {} to open and close the door failed. Retry until 20.".format(i + 1)) continue return def open_and_close_cabinet(s, robot, controller: StarterSemanticActionPrimitives): """Demonstrate opening and closing a drawer unit.""" for i in range(20): try: cabinet = s.scene.objects_by_category["bottom_cabinet"][2] print("Trying to OPEN the cabinet.") execute_controller(controller.open(cabinet), robot, s) print("Trying to CLOSE the cabinet.") execute_controller(controller.close(cabinet), robot, s) print("CLOSE the cabinet succeeded!") except ActionPrimitiveError: print("Attempt {} to open and close the cabinet failed. Retry until 20.".format(i + 1)) continue return def main(selection="user", headless=False, short_exec=False): """ Launches a simulator scene and showcases a variety of semantic action primitives such as navigation, grasping, placing, opening and closing. """ print("*" * 80 + "\nDescription:" + main.__doc__ + "*" * 80) # Create the simulator. s = Simulator( mode="headless" if headless else "gui_non_interactive" if platform.system() != "Darwin" else "gui_interactive", image_width=512, image_height=512, device_idx=0, use_pb_gui=(not headless and platform.system() != "Darwin"), ) scene = InteractiveIndoorScene( "Rs_int", load_object_categories=["walls", "floors", "bottom_cabinet", "door", "sink", "coffee_table", "fridge"] ) s.import_scene(scene) # Create a custom tray object for the grasping test. model_path = get_ig_model_path("tray", "tray_000") model_filename = os.path.join(model_path, "tray_000.urdf") avg_category_spec = get_ig_avg_category_specs() tray = URDFObject( filename=model_filename, category="tray", name="tray", avg_obj_dims=avg_category_spec.get("tray"), fit_avg_dim_volume=True, model_path=model_path, ) s.import_object(tray) tray.set_position_orientation([0, 1, 0.3], p.getQuaternionFromEuler([0, np.pi / 2, 0])) # Load the robot and place it in the scene. config = parse_config(os.path.join(igibson.configs_path, "behavior_robot_mp_behavior_task.yaml")) config["robot"]["show_visual_head"] = True robot = BehaviorRobot(**config["robot"]) s.import_robot(robot) robot.set_position_orientation([0, 0, 1], [0, 0, 0, 1]) robot.apply_action( np.zeros( robot.action_dim, ) ) # Run some steps to let physics settle. for _ in range(300): s.step() # Create an Action Primitive Set and use it to convert high-level actions to low-level actions and execute. controller = StarterSemanticActionPrimitives(None, scene, robot) try: # The pick-and-place demo is always run. grasp_tray(s, robot, controller) put_on_table(s, robot, controller) # The other demos are only run in the long execution mode. if not short_exec: go_to_sink_and_toggle(s, robot, controller) open_and_close_fridge(s, robot, controller) open_and_close_door(s, robot, controller) open_and_close_cabinet(s, robot, controller) # If we're not running in headless mode, let the simulator run idle after we are done to allow user to inspect. if not headless: while True: action = np.zeros(robot.action_dim) robot.apply_action(action) s.step() finally: s.disconnect() if __name__ == "__main__": logging.basicConfig(level=logging.INFO) main()
479242
import rdkit from rdkit.Chem import rdMolTransforms from rdkit.Chem import TorsionFingerprints import numpy as np import networkx as nx import random atomTypes = ['H', 'C', 'B', 'N', 'O', 'F', 'Si', 'P', 'S', 'Cl', 'Br', 'I'] formalCharge = [-1, -2, 1, 2, 0] degree = [0, 1, 2, 3, 4, 5, 6] num_Hs = [0, 1, 2, 3, 4] local_chiral_tags = [0, 1, 2, 3] hybridization = [ rdkit.Chem.rdchem.HybridizationType.S, rdkit.Chem.rdchem.HybridizationType.SP, rdkit.Chem.rdchem.HybridizationType.SP2, rdkit.Chem.rdchem.HybridizationType.SP3, rdkit.Chem.rdchem.HybridizationType.SP3D, rdkit.Chem.rdchem.HybridizationType.SP3D2, rdkit.Chem.rdchem.HybridizationType.UNSPECIFIED, ] bondTypes = ['SINGLE', 'DOUBLE', 'TRIPLE', 'AROMATIC'] def one_hot_embedding(value, options): embedding = [0]*(len(options) + 1) index = options.index(value) if value in options else -1 embedding[index] = 1 return embedding def adjacency_to_undirected_edge_index(adj): adj = np.triu(np.array(adj, dtype = int)) #keeping just upper triangular entries from sym matrix array_adj = np.array(np.nonzero(adj), dtype = int) #indices of non-zero values in adj matrix edge_index = np.zeros((2, 2*array_adj.shape[1]), dtype = int) #placeholder for undirected edge list edge_index[:, ::2] = array_adj edge_index[:, 1::2] = np.flipud(array_adj) return edge_index def get_all_paths(G, N = 3): # adapted from: https://stackoverflow.com/questions/28095646/finding-all-paths-walks-of-given-length-in-a-networkx-graph def findPaths(G,u,n): if n==0: return [[u]] paths = [[u]+path for neighbor in G.neighbors(u) for path in findPaths(G,neighbor,n-1) if u not in path] return paths allpaths = [] for node in G: allpaths.extend(findPaths(G,node,N)) return allpaths def getNodeFeatures(list_rdkit_atoms, owningMol): F_v = (len(atomTypes)+1) +\ (len(degree)+1) + \ (len(formalCharge)+1) +\ (len(num_Hs)+1)+\ (len(hybridization)+1) +\ 2 + 4 + 5 # 52 global_tags = dict(rdkit.Chem.FindMolChiralCenters(owningMol, force=True, includeUnassigned=True, useLegacyImplementation=False)) node_features = np.zeros((len(list_rdkit_atoms), F_v)) for node_index, node in enumerate(list_rdkit_atoms): features = one_hot_embedding(node.GetSymbol(), atomTypes) # atom symbol, dim=12 + 1 features += one_hot_embedding(node.GetTotalDegree(), degree) # total number of bonds, H included, dim=7 + 1 features += one_hot_embedding(node.GetFormalCharge(), formalCharge) # formal charge, dim=5+1 features += one_hot_embedding(node.GetTotalNumHs(), num_Hs) # total number of bonded hydrogens, dim=5 + 1 features += one_hot_embedding(node.GetHybridization(), hybridization) # hybridization state, dim=7 + 1 features += [int(node.GetIsAromatic())] # whether atom is part of aromatic system, dim = 1 features += [node.GetMass() * 0.01] # atomic mass / 100, dim=1 ### chiral tags go last ### #global chiral tag idx = node.GetIdx() global_chiral_tag = 0 if idx in global_tags: if global_tags[idx] == 'R': global_chiral_tag = 1 elif global_tags[idx] == 'S': global_chiral_tag = 2 else: global_chiral_tag = -1 features += one_hot_embedding(global_chiral_tag, [0,1,2]) # chiral tag of atom, dim=3+1 (global chiral features) #local chiral tag features += one_hot_embedding(node.GetChiralTag(), local_chiral_tags) # chiral tag of atom, dim=4+1 (local chiral features) node_features[node_index,:] = features return np.array(node_features, dtype = np.float32) def getEdgeFeatures(list_rdkit_bonds): F_e = (len(bondTypes)+1) + 2 + (6+1) # 14 edge_features = np.zeros((len(list_rdkit_bonds)*2, F_e)) for edge_index, edge in enumerate(list_rdkit_bonds): features = one_hot_embedding(str(edge.GetBondType()), bondTypes) # dim=4+1 features += [int(edge.GetIsConjugated())] # dim=1 features += [int(edge.IsInRing())] # dim=1 features += one_hot_embedding(edge.GetStereo(), list(range(6))) #dim=6+1 # Encode both directed edges to get undirected edge edge_features[2*edge_index: 2*edge_index+2, :] = features return np.array(edge_features, dtype = np.float32) def getInternalCoordinatesFromAllPaths(mol, adj, repeats = False): if isinstance(mol, rdkit.Chem.rdchem.Conformer): conformer = mol if isinstance(mol, rdkit.Chem.rdchem.Mol): conformer = mol.GetConformer() graph = nx.from_numpy_matrix(adj, parallel_edges=False, create_using=None) distance_paths, angle_paths, dihedral_paths = get_all_paths(graph, N = 1), get_all_paths(graph, N = 2), get_all_paths(graph, N = 3) if len(dihedral_paths) == 0: raise Exception('No Dihedral Angle Detected') bond_distance_indices = np.array(distance_paths, dtype = int) bond_angle_indices = np.array(angle_paths, dtype = int) dihedral_angle_indices = np.array(dihedral_paths, dtype = int) if not repeats: # only taking (0,1) vs. (1,0); (1,2,3) vs (3,2,1); (1,3,6,7) vs (7,6,3,1) bond_distance_indices = bond_distance_indices[bond_distance_indices[:, 0] < bond_distance_indices[:, 1]] bond_angle_indices = bond_angle_indices[bond_angle_indices[:, 0] < bond_angle_indices[:, 2]] dihedral_angle_indices = dihedral_angle_indices[dihedral_angle_indices[:, 1] < dihedral_angle_indices[:, 2]] bond_distances = np.array([rdMolTransforms.GetBondLength(conformer, int(index[0]), int(index[1])) for index in bond_distance_indices], dtype = np.float32) bond_angles = np.array([rdMolTransforms.GetAngleRad(conformer, int(index[0]), int(index[1]), int(index[2])) for index in bond_angle_indices], dtype = np.float32) dihedral_angles = np.array([rdMolTransforms.GetDihedralRad(conformer, int(index[0]), int(index[1]), int(index[2]), int(index[3])) for index in dihedral_angle_indices], dtype = np.float32) return bond_distances, bond_distance_indices, bond_angles, bond_angle_indices, dihedral_angles, dihedral_angle_indices def embedConformerWithAllPaths(rdkit_mol3D, repeats = False): if isinstance(rdkit_mol3D, rdkit.Chem.rdchem.Conformer): mol = rdkit_mol3D.GetOwningMol() conformer = rdkit_mol3D elif isinstance(rdkit_mol3D, rdkit.Chem.rdchem.Mol): mol = rdkit_mol3D conformer = mol.GetConformer() # Edge Index adj = rdkit.Chem.GetAdjacencyMatrix(mol) edge_index = adjacency_to_undirected_edge_index(adj) # Edge Features bonds = [] for b in range(int(edge_index.shape[1]/2)): bond_index = edge_index[:,::2][:,b] bond = mol.GetBondBetweenAtoms(int(bond_index[0]), int(bond_index[1])) bonds.append(bond) edge_features = getEdgeFeatures(bonds) # Node Features atoms = rdkit.Chem.rdchem.Mol.GetAtoms(mol) atom_symbols = [atom.GetSymbol() for atom in atoms] node_features = getNodeFeatures(atoms, mol) bond_distances, bond_distance_indices, bond_angles, bond_angle_indices, dihedral_angles, dihedral_angle_indices = getInternalCoordinatesFromAllPaths(conformer, adj, repeats = repeats) return atom_symbols, edge_index, edge_features, node_features, bond_distances, bond_distance_indices, bond_angles, bond_angle_indices, dihedral_angles, dihedral_angle_indices
479251
class TwoSum: def __init__(self): self.nums = {} def add(self, number): self.nums[number] = self.nums.get(number, 0) + 1 def find(self, value): for num in self.nums: if value - num in self.nums and (num != value - num or self.nums[num] > 1): return True return False
479254
from __future__ import absolute_import import pytest from aws_xray_sdk.core import xray_recorder from aws_xray_sdk.core.context import Context from aws_xray_sdk.ext.flask_sqlalchemy.query import XRayFlaskSqlAlchemy from flask import Flask from ...util import find_subsegment_by_annotation app = Flask(__name__) app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///:memory:" db = XRayFlaskSqlAlchemy(app) class User(db.Model): __tablename__ = "users" id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(255), nullable=False, unique=True) fullname = db.Column(db.String(255), nullable=False) password = db.Column(db.String(255), nullable=False) @pytest.fixture( params=[ False, True, ], ) def session(request): """Test Fixture to Create DataBase Tables and start a trace segment""" xray_recorder.configure(service='test', sampling=False, context=Context(), stream_sql=request.param) xray_recorder.clear_trace_entities() xray_recorder.begin_segment('SQLAlchemyTest') db.create_all() yield xray_recorder.end_segment() xray_recorder.clear_trace_entities() def test_all(capsys, session): """ Test calling all() on get all records. Verify that we capture trace of query and return the SQL as metdata""" # with capsys.disabled(): User.query.all() subsegment = find_subsegment_by_annotation(xray_recorder.current_segment(), 'sqlalchemy', 'sqlalchemy.orm.query.all') assert subsegment['annotations']['sqlalchemy'] == 'sqlalchemy.orm.query.all' assert subsegment['sql']['url'] assert bool(subsegment['sql'].get('sanitized_query', None)) is xray_recorder.stream_sql def test_add(capsys, session): """ Test calling add() on insert a row. Verify we that we capture trace for the add""" # with capsys.disabled(): john = User(name='John', fullname="<NAME>", password="password") db.session.add(john) subsegment = find_subsegment_by_annotation(xray_recorder.current_segment(), 'sqlalchemy', 'sqlalchemy.orm.session.add') assert subsegment['annotations']['sqlalchemy'] == 'sqlalchemy.orm.session.add' assert subsegment['sql']['url']
479283
from typing import Dict, Tuple, Union from pyswip import Functor, Atom, Variable from problog.logic import ( Term, Constant, list2term, term2list, Var, is_list, Clause, And, Or, ) from problog.parser import PrologParser from problog.program import ExtendedPrologFactory PySwipObject = Union[Functor, Atom, Variable, int, float, list, bytes] ProblogObject = Union[Term, Constant, Var, Clause, And, Or] def pyswip_to_term( pyswip_obj: PySwipObject, with_variables=False ) -> Union[ProblogObject, Tuple[ProblogObject, Dict[Var, Variable]]]: variables = dict() if type(pyswip_obj) is Functor: args = [] for a in pyswip_obj.args: args2, variables2 = pyswip_to_term(a, True) args.append(args2) variables.update(variables2) # args = [pyswip_to_term(a) for a in pyswip_obj.args] operator = pyswip_obj.name.get_value() if operator == ":-": new_term = Clause(*args) elif operator == ",": new_term = And.from_list(args) elif operator == ";": new_term = Or.from_list(args) else: new_term = Term(operator, *args) elif type(pyswip_obj) is Atom: new_term = Term(pyswip_obj.get_value()) elif type(pyswip_obj) is int or type(pyswip_obj) is float: new_term = Constant(pyswip_obj) elif type(pyswip_obj) is list: lst = [] for o in pyswip_obj: e, vars2 = pyswip_to_term(o, True) lst.append(e) variables.update(vars2) new_term = list2term(lst) elif type(pyswip_obj) is Variable: new_term = Var( pyswip_obj.chars if pyswip_obj.chars else f"Var{pyswip_obj.handle}" ) variables = {new_term: pyswip_obj} elif type(pyswip_obj) is bytes: new_term = Constant(pyswip_obj.decode("utf-8")) else: raise Exception( "Unhandled type {} from object {}".format(type(pyswip_obj), pyswip_obj) ) if with_variables: return new_term, variables else: return new_term def term_to_pyswip(term: ProblogObject) -> PySwipObject: if type(term) is Term: if is_list(term): return [term_to_pyswip(x) for x in term2list(term, False)] args = [term_to_pyswip(arg) for arg in term.args] if not args: return Atom(term.functor) functor = Functor(term.functor, arity=term.arity) return functor(*args) elif type(term) is Constant: return term.functor elif type(term) is Var: return Variable(name=term.name) else: raise Exception( "Unhandled type {} from object {} -> Robin has to fix it".format( type(term), term ) ) _parser = PrologParser(ExtendedPrologFactory()) def parse(to_parse: Union[str, PySwipObject]) -> ProblogObject: if type(to_parse) is str: return _parser.parseString(str(to_parse) + ".")[0] return pyswip_to_term(to_parse)
479293
from maps.fixedkeymap import FixedKeyMap from maps.frozenmap import FrozenMap from maps.nameddict import NamedDict from maps.namedfixedkeymap import NamedFixedKeyMapMeta from maps.namedfrozenmap import NamedFrozenMapMeta def namedfrozen(typename, fields, defaults={}): '''Creates a new class that inherits from :class:`maps.FrozenMap` that has the specified fields as keys. Fields are accessible via bracket-notation (i.e. ``__getitem__``) as well as dot-notation (i.e. ``__getattr__``). Instances of the returned class are immutable. :param str typename: Name of the new Map class :param iterable fields: Names of the fields :param mapping defaults: Maps default values to fields :raises ValueError: if the type name or field names or defaults provided are not properly formatted :return: The newly created class :rtype: class Usage:: >>> import maps >>> RGB = maps.namedfrozen('RGB', ['red', 'green', 'blue'], defaults={'green': 127, 'blue': 80}) >>> coral = RGB(255) >>> coral['red'] 255 >>> coral.green 127 ''' return NamedFrozenMapMeta(typename, fields, defaults) def namedfixedkey(typename, fields, defaults={}): '''Creates a new class that inherits from :class:`maps.FixedKeyMap` that has the speciefied fields as keys. Fields are accessible via bracket-notation (i.e. ``__getitem__``) as well as dot-notation (i.e. ``__getattr__``). Instances of the returned class have a fixed set of keys, but the values corresponding to those keys can be edited. :param str typename: Name of the new Map class :param iterable fields: Names of the fields :param mapping defaults: Maps default values to fields :raises ValueError: if the type name or field names or defaults provided are not properly formatted :return: The newly created class :rtype: class Usage:: >>> import maps >>> Person = maps.namedfixedkey('Person', ['name', 'gender', 'age'], defaults={'age': 40}) >>> bob = Person('bob', 'male') >>> bob['name'] 'bob' >>> bob.gender 'male' >>> bob.age += 1 >>> bob.age 41 ''' return NamedFixedKeyMapMeta(typename, fields, defaults)
479295
from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import str # pylint: disable=redefined-builtin import unittest import cleverbot class CleverbotTest(unittest.TestCase): def test_replay(self): cbc = cleverbot.Cleverbot("cleverbot-py-test") try: response = cbc.ask("Hi. How are you?") except cleverbot.CleverbotServiceError: # Technically, cleverbot errored. But we connected, which is all # that matters self.assertTrue(True) else: self.assertNotEquals(response, str())
479316
from mock import ANY from raptiformica.actions.mesh import ensure_ipv6_enabled from tests.testcase import TestCase class TestEnsureIPv6Enabled(TestCase): def setUp(self): self.log = self.set_up_patch('raptiformica.actions.mesh.log') self.run_command_print_ready = self.set_up_patch( 'raptiformica.actions.mesh.run_command_print_ready' ) self.run_command_print_ready = self.set_up_patch( 'raptiformica.actions.mesh.run_command_print_ready' ) self.log_failure_factory = self.set_up_patch( 'raptiformica.actions.mesh.log_failure_factory' ) def test_ensure_ipv6_enabled_logs_info_message(self): ensure_ipv6_enabled() self.log.info.assert_called_once_with(ANY) def test_ensure_ipv6_enabled_configures_ipv6_not_disabled_at_kernel_level(self): ensure_ipv6_enabled() self.run_command_print_ready.assert_called_once_with( "/usr/bin/env sysctl net.ipv6.conf.all.disable_ipv6=0", failure_callback=self.log_failure_factory.return_value, shell=True, buffered=False ) def test_ensure_ipv6_enabled_uses_log_failure_factory(self): ensure_ipv6_enabled() self.log_failure_factory.assert_called_once_with(ANY)
479343
from datasets.MOT.dataset import MultipleObjectTrackingDataset_MemoryMapped, \ MultipleObjectTrackingDatasetSequence_MemoryMapped, MultipleObjectTrackingDatasetFrame_MemoryMapped from miscellanies.viewer.qt5_viewer import Qt5Viewer from datasets.base.common.viewer.qt5_viewer import draw_object from PyQt5.QtGui import QPixmap, QColor from miscellanies.simple_prefetcher import SimplePrefetcher import random __all__ = ['MOTDatasetQt5Viewer'] class _DatasetSequenceImageLoader: def __init__(self, sequence: MultipleObjectTrackingDatasetSequence_MemoryMapped): self.sequence = sequence def __len__(self): return len(self.sequence) def __getitem__(self, index: int): frame = self.sequence.get_frame(index) pixmap = QPixmap() assert pixmap.load(frame.get_image_path()) return pixmap, frame class MOTDatasetQt5Viewer: def __init__(self, dataset: MultipleObjectTrackingDataset_MemoryMapped): self.dataset = dataset self.viewer = Qt5Viewer() self.canvas = self.viewer.get_subplot().create_canvas() if dataset.has_category_id_name_map(): self.category_id_color_map = {} for category_id in self.dataset.get_category_id_name_map().keys(): color = [random.randint(0, 255) for _ in range(3)] self.category_id_color_map[category_id] = QColor(color[0], color[1], color[2], int(0.5 * 255)) else: self.category_id_color_map = None sequence_names = [] for sequence in self.dataset: sequence_names.append(sequence.get_name()) self.viewer.get_content_region().new_list(sequence_names, self._sequence_selected_callback) self.timer = self.viewer.new_timer() self.timer.set_callback(self._timer_timeout_callback) def _sequence_selected_callback(self, index: int): if index < 0: return self.sequence = SimplePrefetcher(_DatasetSequenceImageLoader(self.dataset[index])) self._stop_timer() self._start_timer() def _start_timer(self): self.sequence_iter = iter(self.sequence) self.timer.start() def _timer_timeout_callback(self): try: image, frame = next(self.sequence_iter) except StopIteration: self._stop_timer() return frame: MultipleObjectTrackingDatasetFrame_MemoryMapped = frame canvas = self.canvas canvas.set_background(image) with canvas.get_painter() as painter: for object_ in frame: draw_object(painter, object_, object_, object_, object_, self.category_id_color_map, self.dataset, self.dataset) canvas.update() def _stop_timer(self): self.timer.stop() def run(self): return self.viewer.run_event_loop()
479394
from .base import ObjectBase from .list import ObjectList from .order_line import OrderLine class Shipment(ObjectBase): @property def resource(self): return self._get_property("resource") @property def id(self): return self._get_property("id") @property def order_id(self): return self._get_property("orderId") @property def created_at(self): return self._get_property("createdAt") @property def tracking(self): return self._get_property("tracking") @property def tracking_url(self): return self.tracking["url"] if self.has_tracking_url() else None @property def lines(self): """Return the order lines of this shipment.""" lines = self._get_property("lines") or [] result = { "_embedded": { "lines": lines, }, "count": len(lines), } return ObjectList(result, OrderLine, self.client) @property def order(self): """Return the order of this shipment.""" return self.client.orders.get(self.order_id) # additional methods def has_tracking(self): return self.tracking is not None def has_tracking_url(self): return self.has_tracking() and self.tracking["url"] is not None
479408
from shovel import task import subprocess @task def rst(): """Convert markdown readme to reStructuredText""" subprocess.call(['pandoc', '--from=markdown', '--to=rst', '--output=README', 'README.md'])
479417
from .base import Render class RenderOutput(Render): def __init__(self, string_to_format): self.string_to_format = string_to_format def render(self, **kwargs): print(self._format(f"{self.string_to_format}%s" % "{reset}", **kwargs))
479437
from squid import * import time rgb = Squid(18, 23, 24) rgb.set_color(RED) time.sleep(2) rgb.set_color(GREEN) time.sleep(2) rgb.set_color(BLUE) time.sleep(2) rgb.set_color(WHITE) time.sleep(2) rgb.set_color(WHITE, 300) time.sleep(2)
479446
import os import time from transformers.pipelines import pipeline import pytest from answer import create_app # initialize testing environment hg_comp = pipeline('question-answering', model="distilbert-base-uncased-distilled-squad", tokenizer="distilbert-base-uncased-distilled-squad") @pytest.fixture def client(): app = create_app(hg_comp) app.config["TESTING"] = True with app.test_client() as client: yield client # Health check route test def test_health(client): r = client.get("/") assert 200 == r.status_code # Answer question route test def test_answer(client): payload = { "question": "who did <NAME> play in waterloo rd?", "context": "She attended the British drama school East 15 in 2005, and left after winning a high-profile role in the BBC drama Waterloo Road, playing the bully Leigh-Ann Galloway.[6] Since that role, Matthews has continued to act in BBC's Doctors, playing <NAME>; in ITV's The Bill playing drug addict <NAME>; and she was back in the BBC soap Doctors in 2009, playing Tansy Flack." } r = client.post("/answer", json=payload) assert 200 == r.status_code
479529
import numpy as np SKY_BETA160_C05_D1 = np.array( [[0.39344519, 0.39292569, 0.39240611, 0.39188644, 0.3913667 , 0.39084688, 0.39032699, 0.38980703, 0.389287 , 0.38876691, 0.38824676, 0.38772654, 0.38720627, 0.38668595, 0.38616558, 0.38564515, 0.38512468, 0.38460417, 0.38408362, 0.38356304, 0.38304241, 0.38252176, 0.38200108, 0.38148037, 0.38095963, 0.38043888, 0.37991811, 0.37939732, 0.37887652, 0.37835571, 0.37783489, 0.37731407, 0.37679325, 0.37627242, 0.3757516 , 0.37523079, 0.37470998, 0.37418919, 0.37366841, 0.37314765, 0.37262691, 0.37210619, 0.37158549, 0.37106483, 0.37054419, 0.37002359, 0.36950302, 0.36898249, 0.368462 , 0.36794156, 0.36742116, 0.36690081, 0.36638051, 0.36586027, 0.36534008, 0.36481996, 0.36429989, 0.3637799 , 0.36325996, 0.3627401 , 0.36222032, 0.3617006 , 0.36118097, 0.36066142, 0.36014195, 0.35962256, 0.35910327, 0.35858406, 0.35806495, 0.35754594, 0.35702703, 0.35650821, 0.35598951, 0.3554709 , 0.35495241, 0.35443403, 0.35391576, 0.35339762, 0.35287959, 0.35236168, 0.3518439 , 0.35132624, 0.35080872, 0.35029133, 0.34977407, 0.34925695, 0.34873997, 0.34822313, 0.34770644, 0.34718989, 0.3466735 , 0.34615726, 0.34564117, 0.34512524, 0.34460947, 0.34409386, 0.34357842, 0.34306315, 0.34254804, 0.34203311], [0.39344519, 0.39292569, 0.39240611, 0.39188644, 0.3913667 , 0.39084688, 0.39032699, 0.38980703, 0.389287 , 0.38876691, 0.38824676, 0.38772654, 0.38720627, 0.38668595, 0.38616558, 0.38564515, 0.38512468, 0.38460417, 0.38408362, 0.38356304, 0.38304241, 0.38252176, 0.38200108, 0.38148037, 0.38095963, 0.38043888, 0.37991811, 0.37939732, 0.37887652, 0.37835571, 0.37783489, 0.37731407, 0.37679325, 0.37627242, 0.3757516 , 0.37523079, 0.37470998, 0.37418919, 0.37366841, 0.37314765, 0.37262691, 0.37210619, 0.37158549, 0.37106483, 0.37054419, 0.37002359, 0.36950302, 0.36898249, 0.368462 , 0.36794156, 0.36742116, 0.36690081, 0.36638051, 0.36586027, 0.36534008, 0.36481996, 0.36429989, 0.3637799 , 0.36325996, 0.3627401 , 0.36222032, 0.3617006 , 0.36118097, 0.36066142, 0.36014195, 0.35962256, 0.35910327, 0.35858406, 0.35806495, 0.35754594, 0.35702703, 0.35650821, 0.35598951, 0.3554709 , 0.35495241, 0.35443403, 0.35391576, 0.35339762, 0.35287959, 0.35236168, 0.3518439 , 0.35132624, 0.35080872, 0.35029133, 0.34977407, 0.34925695, 0.34873997, 0.34822313, 0.34770644, 0.34718989, 0.3466735 , 0.34615726, 0.34564117, 0.34512524, 0.34460947, 0.34409386, 0.34357842, 0.34306315, 0.34254804, 0.34203311]]) SKY_BETA20_C05_D1 = np.array( [[0.49191249, 0.47907243, 0.46639084, 0.4539596 , 0.44186595, 0.43019095, 0.41900828, 0.40838328, 0.39837241, 0.38902304, 0.38037348, 0.37245339, 0.36528422, 0.35888002, 0.35324812, 0.34839005, 0.34430235, 0.34097738, 0.3384041 , 0.33656874, 0.33545546, 0.3350468 , 0.3353242 , 0.33626834, 0.33785938, 0.34007726, 0.34290179, 0.34631281, 0.35029021, 0.35460871, 0.35899677, 0.36385087, 0.36914875, 0.374868 , 0.38098599, 0.3874798 , 0.39432619, 0.40150151, 0.4089817 , 0.41674221, 0.42475803, 0.43300368, 0.44145321, 0.45008021, 0.45885791, 0.46775917, 0.4767566 , 0.4858226 , 0.4949295 , 0.50404957, 0.51315521, 0.52221897, 0.53121369, 0.54011256, 0.5488892 , 0.55751777, 0.56597297, 0.57423011, 0.58226515, 0.59005469, 0.59757597, 0.60480687, 0.61172586, 0.61831194, 0.62454461, 0.63040379, 0.63586971, 0.64092289, 0.645544 , 0.64971378, 0.65341298, 0.65662231, 0.65932232, 0.66149343, 0.66311588, 0.66420495, 0.66492791, 0.66502809, 0.66448647, 0.66328438, 0.6614038 , 0.65882772, 0.65554061, 0.65152894, 0.64678181, 0.64129165, 0.63505501, 0.62807333, 0.62035387, 0.61191049, 0.60276447, 0.59294524, 0.58249086, 0.57144843, 0.55987415, 0.54783307, 0.53539856, 0.52265139, 0.5096785 , 0.49657147], [0.49191249, 0.47907243, 0.46639084, 0.4539596 , 0.44186595, 0.43019095, 0.41900828, 0.40838328, 0.39837241, 0.38902304, 0.38037348, 0.37245339, 0.36528422, 0.35888002, 0.35324812, 0.34839005, 0.34430235, 0.34097738, 0.3384041 , 0.33656874, 0.33545546, 0.3350468 , 0.3353242 , 0.33626834, 0.33785938, 0.34007726, 0.34290179, 0.34631281, 0.35029021, 0.35460871, 0.35899677, 0.36385087, 0.36914875, 0.374868 , 0.38098599, 0.3874798 , 0.39432619, 0.40150151, 0.4089817 , 0.41674221, 0.42475803, 0.43300368, 0.44145321, 0.45008021, 0.45885791, 0.46775917, 0.4767566 , 0.4858226 , 0.4949295 , 0.50404957, 0.51315521, 0.52221897, 0.53121369, 0.54011256, 0.5488892 , 0.55751777, 0.56597297, 0.57423011, 0.58226515, 0.59005469, 0.59757597, 0.60480687, 0.61172586, 0.61831194, 0.62454461, 0.63040379, 0.63586971, 0.64092289, 0.645544 , 0.64971378, 0.65341298, 0.65662231, 0.65932232, 0.66149343, 0.66311588, 0.66420495, 0.66492791, 0.66502809, 0.66448647, 0.66328438, 0.6614038 , 0.65882772, 0.65554061, 0.65152894, 0.64678181, 0.64129165, 0.63505501, 0.62807333, 0.62035387, 0.61191049, 0.60276447, 0.59294524, 0.58249086, 0.57144843, 0.55987415, 0.54783307, 0.53539856, 0.52265139, 0.5096785 , 0.49657147]]) SKY_BETA20_C0_D1 = np.array( [[0.02721499, 0.0283665 , 0.02958612, 0.03087902, 0.03225084, 0.03370777, 0.03525655, 0.03690459, 0.03866 , 0.04053169, 0.04252945, 0.04466404, 0.04694732, 0.04939235, 0.05201353, 0.05482677, 0.05784964, 0.06110152, 0.06460389, 0.06838047, 0.07245748, 0.07686393, 0.08163185, 0.08679662, 0.09239721, 0.0984765 , 0.10508156, 0.11226383, 0.12007933, 0.12858868, 0.13785703, 0.14795376, 0.15895183, 0.17092689, 0.18395573, 0.19811434, 0.21347513, 0.23010344, 0.24805335, 0.26736258, 0.28804702, 0.31009493, 0.3334614 , 0.35806381, 0.38377894, 0.41044252, 0.4378518 , 0.46577152, 0.49394289, 0.52209507, 0.54995789, 0.57727461, 0.60381305, 0.62937442, 0.65379876, 0.67696726, 0.6988015 , 0.71926031, 0.73833509, 0.75604423, 0.77242734, 0.78753973, 0.80144751, 0.81422338, 0.82594327, 0.83668366, 0.84651965, 0.85552351, 0.86376381, 0.87130483, 0.87820626, 0.88452317, 0.89030601, 0.89560085, 0.90044957, 0.90489014, 0.90895687, 0.91268077, 0.91608977, 0.91920901, 0.92206108, 0.92466627, 0.92704278, 0.9292069 , 0.93117321, 0.93295473, 0.93456304, 0.93600842, 0.9373 , 0.93844578, 0.93945279, 0.94032712, 0.941074 , 0.94169784, 0.94220232, 0.94259038, 0.94286425, 0.94302554, 0.94307515, 0.94301338], [0.02721499, 0.0283665 , 0.02958612, 0.03087902, 0.03225084, 0.03370777, 0.03525655, 0.03690459, 0.03866 , 0.04053169, 0.04252945, 0.04466404, 0.04694732, 0.04939235, 0.05201353, 0.05482677, 0.05784964, 0.06110152, 0.06460389, 0.06838047, 0.07245748, 0.07686393, 0.08163185, 0.08679662, 0.09239721, 0.0984765 , 0.10508156, 0.11226383, 0.12007933, 0.12858868, 0.13785703, 0.14795376, 0.15895183, 0.17092689, 0.18395573, 0.19811434, 0.21347513, 0.23010344, 0.24805335, 0.26736258, 0.28804702, 0.31009493, 0.3334614 , 0.35806381, 0.38377894, 0.41044252, 0.4378518 , 0.46577152, 0.49394289, 0.52209507, 0.54995789, 0.57727461, 0.60381305, 0.62937442, 0.65379876, 0.67696726, 0.6988015 , 0.71926031, 0.73833509, 0.75604423, 0.77242734, 0.78753973, 0.80144751, 0.81422338, 0.82594327, 0.83668366, 0.84651965, 0.85552351, 0.86376381, 0.87130483, 0.87820626, 0.88452317, 0.89030601, 0.89560085, 0.90044957, 0.90489014, 0.90895687, 0.91268077, 0.91608977, 0.91920901, 0.92206108, 0.92466627, 0.92704278, 0.9292069 , 0.93117321, 0.93295473, 0.93456304, 0.93600842, 0.9373 , 0.93844578, 0.93945279, 0.94032712, 0.941074 , 0.94169784, 0.94220232, 0.94259038, 0.94286425, 0.94302554, 0.94307515, 0.94301338]]) SKY_BETA160_C0_D1 = np.array( [[0.00384724, 0.00384054, 0.00383385, 0.00382718, 0.00382052, 0.00381388, 0.00380726, 0.00380064, 0.00379405, 0.00378746, 0.0037809 , 0.00377434, 0.0037678 , 0.00376128, 0.00375477, 0.00374828, 0.0037418 , 0.00373533, 0.00372888, 0.00372244, 0.00371602, 0.00370961, 0.00370321, 0.00369683, 0.00369047, 0.00368412, 0.00367778, 0.00367145, 0.00366514, 0.00365885, 0.00365256, 0.0036463 , 0.00364004, 0.0036338 , 0.00362757, 0.00362136, 0.00361516, 0.00360898, 0.0036028 , 0.00359665, 0.0035905 , 0.00358437, 0.00357825, 0.00357215, 0.00356606, 0.00355998, 0.00355391, 0.00354786, 0.00354183, 0.0035358 , 0.00352979, 0.00352379, 0.00351781, 0.00351183, 0.00350588, 0.00349993, 0.003494 , 0.00348808, 0.00348217, 0.00347628, 0.0034704 , 0.00346453, 0.00345867, 0.00345283, 0.003447 , 0.00344118, 0.00343538, 0.00342958, 0.0034238 , 0.00341804, 0.00341228, 0.00340654, 0.00340081, 0.0033951 , 0.00338939, 0.0033837 , 0.00337802, 0.00337235, 0.0033667 , 0.00336105, 0.00335542, 0.0033498 , 0.0033442 , 0.0033386 , 0.00333302, 0.00332745, 0.00332189, 0.00331634, 0.00331081, 0.00330529, 0.00329978, 0.00329428, 0.00328879, 0.00328332, 0.00327785, 0.0032724 , 0.00326696, 0.00326153, 0.00325612, 0.00325071], [0.00384724, 0.00384054, 0.00383385, 0.00382718, 0.00382052, 0.00381388, 0.00380726, 0.00380064, 0.00379405, 0.00378746, 0.0037809 , 0.00377434, 0.0037678 , 0.00376128, 0.00375477, 0.00374828, 0.0037418 , 0.00373533, 0.00372888, 0.00372244, 0.00371602, 0.00370961, 0.00370321, 0.00369683, 0.00369047, 0.00368412, 0.00367778, 0.00367145, 0.00366514, 0.00365885, 0.00365256, 0.0036463 , 0.00364004, 0.0036338 , 0.00362757, 0.00362136, 0.00361516, 0.00360898, 0.0036028 , 0.00359665, 0.0035905 , 0.00358437, 0.00357825, 0.00357215, 0.00356606, 0.00355998, 0.00355391, 0.00354786, 0.00354183, 0.0035358 , 0.00352979, 0.00352379, 0.00351781, 0.00351183, 0.00350588, 0.00349993, 0.003494 , 0.00348808, 0.00348217, 0.00347628, 0.0034704 , 0.00346453, 0.00345867, 0.00345283, 0.003447 , 0.00344118, 0.00343538, 0.00342958, 0.0034238 , 0.00341804, 0.00341228, 0.00340654, 0.00340081, 0.0033951 , 0.00338939, 0.0033837 , 0.00337802, 0.00337235, 0.0033667 , 0.00336105, 0.00335542, 0.0033498 , 0.0033442 , 0.0033386 , 0.00333302, 0.00332745, 0.00332189, 0.00331634, 0.00331081, 0.00330529, 0.00329978, 0.00329428, 0.00328879, 0.00328332, 0.00327785, 0.0032724 , 0.00326696, 0.00326153, 0.00325612, 0.00325071]]) SKY_BETA160_C1_D1 = np.array( [[0.3114026 , 0.31120886, 0.31101505, 0.31082117, 0.31062722, 0.3104332 , 0.3102391 , 0.31004494, 0.30985071, 0.30965641, 0.30946205, 0.30926761, 0.30907311, 0.30887854, 0.3086839 , 0.3084892 , 0.30829443, 0.30809959, 0.30790469, 0.30770973, 0.3075147 , 0.3073196 , 0.30712444, 0.30692922, 0.30673394, 0.30653859, 0.30634318, 0.30614771, 0.30595217, 0.30575658, 0.30556092, 0.30536521, 0.30516943, 0.30497359, 0.3047777 , 0.30458174, 0.30438573, 0.30418966, 0.30399353, 0.30379734, 0.30360109, 0.30340479, 0.30320844, 0.30301202, 0.30281555, 0.30261903, 0.30242244, 0.30222581, 0.30202912, 0.30183238, 0.30163558, 0.30143873, 0.30124183, 0.30104487, 0.30084786, 0.3006508 , 0.30045369, 0.30025653, 0.30005932, 0.29986206, 0.29966474, 0.29946738, 0.29926997, 0.29907251, 0.298875 , 0.29867745, 0.29847984, 0.29828219, 0.29808449, 0.29788675, 0.29768895, 0.29749112, 0.29729323, 0.29709531, 0.29689733, 0.29669932, 0.29650126, 0.29630315, 0.296105 , 0.29590681, 0.29570858, 0.2955103 , 0.29531198, 0.29511362, 0.29491522, 0.29471678, 0.2945183 , 0.29431978, 0.29412122, 0.29392262, 0.29372398, 0.2935253 , 0.29332658, 0.29312783, 0.29292903, 0.29273021, 0.29253134, 0.29233244, 0.2921335 , 0.29193452], [0.3114026 , 0.31120886, 0.31101505, 0.31082117, 0.31062722, 0.3104332 , 0.3102391 , 0.31004494, 0.30985071, 0.30965641, 0.30946205, 0.30926761, 0.30907311, 0.30887854, 0.3086839 , 0.3084892 , 0.30829443, 0.30809959, 0.30790469, 0.30770973, 0.3075147 , 0.3073196 , 0.30712444, 0.30692922, 0.30673394, 0.30653859, 0.30634318, 0.30614771, 0.30595217, 0.30575658, 0.30556092, 0.30536521, 0.30516943, 0.30497359, 0.3047777 , 0.30458174, 0.30438573, 0.30418966, 0.30399353, 0.30379734, 0.30360109, 0.30340479, 0.30320844, 0.30301202, 0.30281555, 0.30261903, 0.30242244, 0.30222581, 0.30202912, 0.30183238, 0.30163558, 0.30143873, 0.30124183, 0.30104487, 0.30084786, 0.3006508 , 0.30045369, 0.30025653, 0.30005932, 0.29986206, 0.29966474, 0.29946738, 0.29926997, 0.29907251, 0.298875 , 0.29867745, 0.29847984, 0.29828219, 0.29808449, 0.29788675, 0.29768895, 0.29749112, 0.29729323, 0.29709531, 0.29689733, 0.29669932, 0.29650126, 0.29630315, 0.296105 , 0.29590681, 0.29570858, 0.2955103 , 0.29531198, 0.29511362, 0.29491522, 0.29471678, 0.2945183 , 0.29431978, 0.29412122, 0.29392262, 0.29372398, 0.2935253 , 0.29332658, 0.29312783, 0.29292903, 0.29273021, 0.29253134, 0.29233244, 0.2921335 , 0.29193452]]) SKY_BETA20_C1_D1 = np.array( [[0.48359335, 0.48106107, 0.47853666, 0.47603262, 0.47356126, 0.4711346 , 0.46876431, 0.46646169, 0.46423755, 0.46210222, 0.46006544, 0.45813638, 0.45632354, 0.45463477, 0.45307722, 0.45165731, 0.45038074, 0.44925246, 0.44827667, 0.44745684, 0.44679565, 0.44629509, 0.4459564 , 0.44578011, 0.44576606, 0.44591339, 0.44622062, 0.44668562, 0.44730565, 0.4480774 , 0.44899698, 0.45006001, 0.45126157, 0.4525963 , 0.45405837, 0.45564154, 0.45733918, 0.45914431, 0.4610496 , 0.46304743, 0.46512988, 0.4672888 , 0.46951581, 0.47180231, 0.47413957, 0.47651868, 0.47893064, 0.48136632, 0.48381656, 0.48627214, 0.48872384, 0.49116241, 0.49357868, 0.49596352, 0.49830788, 0.50060282, 0.50283954, 0.50500939, 0.50708952, 0.50899944, 0.51081437, 0.51252644, 0.51412804, 0.51561185, 0.51697089, 0.51819852, 0.51928846, 0.52023486, 0.52103225, 0.52167564, 0.5221605 , 0.52248279, 0.522639 , 0.52262617, 0.52244188, 0.52208434, 0.52155235, 0.52084535, 0.51996342, 0.51890734, 0.51767854, 0.51627917, 0.51471209, 0.51298085, 0.51108975, 0.50904377, 0.50684862, 0.50451069, 0.50203706, 0.49943547, 0.49671429, 0.49388246, 0.49094953, 0.48792553, 0.48482096, 0.48164675, 0.47841417, 0.47513479, 0.47182042, 0.468483 ], [0.48359335, 0.48106107, 0.47853666, 0.47603262, 0.47356126, 0.4711346 , 0.46876431, 0.46646169, 0.46423755, 0.46210222, 0.46006544, 0.45813638, 0.45632354, 0.45463477, 0.45307722, 0.45165731, 0.45038074, 0.44925246, 0.44827667, 0.44745684, 0.44679565, 0.44629509, 0.4459564 , 0.44578011, 0.44576606, 0.44591339, 0.44622062, 0.44668562, 0.44730565, 0.4480774 , 0.44899698, 0.45006001, 0.45126157, 0.4525963 , 0.45405837, 0.45564154, 0.45733918, 0.45914431, 0.4610496 , 0.46304743, 0.46512988, 0.4672888 , 0.46951581, 0.47180231, 0.47413957, 0.47651868, 0.47893064, 0.48136632, 0.48381656, 0.48627214, 0.48872384, 0.49116241, 0.49357868, 0.49596352, 0.49830788, 0.50060282, 0.50283954, 0.50500939, 0.50708952, 0.50899944, 0.51081437, 0.51252644, 0.51412804, 0.51561185, 0.51697089, 0.51819852, 0.51928846, 0.52023486, 0.52103225, 0.52167564, 0.5221605 , 0.52248279, 0.522639 , 0.52262617, 0.52244188, 0.52208434, 0.52155235, 0.52084535, 0.51996342, 0.51890734, 0.51767854, 0.51627917, 0.51471209, 0.51298085, 0.51108975, 0.50904377, 0.50684862, 0.50451069, 0.50203706, 0.49943547, 0.49671429, 0.49388246, 0.49094953, 0.48792553, 0.48482096, 0.48164675, 0.47841417, 0.47513479, 0.47182042, 0.468483 ]]) SKY_BETA20_C1_D0 = np.array( [[0.09025658, 0.09055715, 0.09085192, 0.09114066, 0.09142313, 0.09169909, 0.09196829, 0.09223048, 0.09248542, 0.09273283, 0.09297247, 0.09320406, 0.09342733, 0.09364202, 0.09384785, 0.09404453, 0.0942318 , 0.09440935, 0.09457692, 0.09473421, 0.09488092, 0.09501677, 0.09514146, 0.0952547 , 0.09535618, 0.09544562, 0.09552272, 0.09558717, 0.09563868, 0.09567695, 0.09570169, 0.09571261, 0.09570941, 0.0956918 , 0.09565949, 0.09561221, 0.09554967, 0.09547159, 0.09537771, 0.09526775, 0.09514146, 0.09499859, 0.09483889, 0.09466211, 0.09446802, 0.09425641, 0.09402706, 0.09377976, 0.09351431, 0.09323055, 0.09292828, 0.09260736, 0.09226763, 0.09190897, 0.09153124, 0.09113435, 0.0907182 , 0.09028272, 0.08982784, 0.08935352, 0.08885973, 0.08834646, 0.08781372, 0.08726153, 0.08668994, 0.086099 , 0.0854888 , 0.08485944, 0.08421102, 0.0835437 , 0.08285763, 0.08215298, 0.08142994, 0.08068875, 0.07992961, 0.0791528 , 0.07835859, 0.07754725, 0.07671911, 0.07587448, 0.07501371, 0.07413717, 0.07324522, 0.07233826, 0.07141669, 0.07048094, 0.06953143, 0.06856862, 0.06759297, 0.06660493, 0.065605 , 0.06459365, 0.06357138, 0.06253868, 0.06149607, 0.06044405, 0.05938314, 0.05831385, 0.05723669, 0.05615218], [0.09025658, 0.09055715, 0.09085192, 0.09114066, 0.09142313, 0.09169909, 0.09196829, 0.09223048, 0.09248542, 0.09273283, 0.09297247, 0.09320406, 0.09342733, 0.09364202, 0.09384785, 0.09404453, 0.0942318 , 0.09440935, 0.09457692, 0.09473421, 0.09488092, 0.09501677, 0.09514146, 0.0952547 , 0.09535618, 0.09544562, 0.09552272, 0.09558717, 0.09563868, 0.09567695, 0.09570169, 0.09571261, 0.09570941, 0.0956918 , 0.09565949, 0.09561221, 0.09554967, 0.09547159, 0.09537771, 0.09526775, 0.09514146, 0.09499859, 0.09483889, 0.09466211, 0.09446802, 0.09425641, 0.09402706, 0.09377976, 0.09351431, 0.09323055, 0.09292828, 0.09260736, 0.09226763, 0.09190897, 0.09153124, 0.09113435, 0.0907182 , 0.09028272, 0.08982784, 0.08935352, 0.08885973, 0.08834646, 0.08781372, 0.08726153, 0.08668994, 0.086099 , 0.0854888 , 0.08485944, 0.08421102, 0.0835437 , 0.08285763, 0.08215298, 0.08142994, 0.08068875, 0.07992961, 0.0791528 , 0.07835859, 0.07754725, 0.07671911, 0.07587448, 0.07501371, 0.07413717, 0.07324522, 0.07233826, 0.07141669, 0.07048094, 0.06953143, 0.06856862, 0.06759297, 0.06660493, 0.065605 , 0.06459365, 0.06357138, 0.06253868, 0.06149607, 0.06044405, 0.05938314, 0.05831385, 0.05723669, 0.05615218]]) SKY_BETA160_C1_D0 = np.array( [[0.0005987 , 0.00179573, 0.00299166, 0.00418578, 0.00537735, 0.00656566, 0.00774999, 0.00892963, 0.0101039 , 0.01127208, 0.01243352, 0.01358753, 0.01473347, 0.0158707 , 0.01699857, 0.01811649, 0.01922386, 0.02032009, 0.02140464, 0.02247695, 0.0235365 , 0.02458279, 0.02561534, 0.02663368, 0.02763738, 0.02862601, 0.02959919, 0.03055652, 0.03149767, 0.0324223 , 0.0333301 , 0.03422078, 0.0350941 , 0.0359498 , 0.03678767, 0.0376075 , 0.03840914, 0.03919242, 0.03995722, 0.04070342, 0.04143094, 0.0421397 , 0.04282965, 0.04350077, 0.04415304, 0.04478647, 0.04540109, 0.04599692, 0.04657403, 0.0471325 , 0.0476724 , 0.04819385, 0.04869696, 0.04918185, 0.04964868, 0.05009759, 0.05052876, 0.05094236, 0.05133857, 0.0517176 , 0.05207964, 0.05242492, 0.05275366, 0.05306608, 0.05336243, 0.05364293, 0.05390785, 0.05415743, 0.05439194, 0.05461162, 0.05481675, 0.0550076 , 0.05518443, 0.05534752, 0.05549714, 0.05563356, 0.05575708, 0.05586795, 0.05596646, 0.05605289, 0.05612752, 0.05619061, 0.05624245, 0.05628331, 0.05631347, 0.05633319, 0.05634274, 0.05634239, 0.05633241, 0.05631306, 0.05628459, 0.05624726, 0.05620133, 0.05614705, 0.05608466, 0.05601441, 0.05593653, 0.05585127, 0.05575886, 0.05565952], [0.0005987 , 0.00179573, 0.00299166, 0.00418578, 0.00537735, 0.00656566, 0.00774999, 0.00892963, 0.0101039 , 0.01127208, 0.01243352, 0.01358753, 0.01473347, 0.0158707 , 0.01699857, 0.01811649, 0.01922386, 0.02032009, 0.02140464, 0.02247695, 0.0235365 , 0.02458279, 0.02561534, 0.02663368, 0.02763738, 0.02862601, 0.02959919, 0.03055652, 0.03149767, 0.0324223 , 0.0333301 , 0.03422078, 0.0350941 , 0.0359498 , 0.03678767, 0.0376075 , 0.03840914, 0.03919242, 0.03995722, 0.04070342, 0.04143094, 0.0421397 , 0.04282965, 0.04350077, 0.04415304, 0.04478647, 0.04540109, 0.04599692, 0.04657403, 0.0471325 , 0.0476724 , 0.04819385, 0.04869696, 0.04918185, 0.04964868, 0.05009759, 0.05052876, 0.05094236, 0.05133857, 0.0517176 , 0.05207964, 0.05242492, 0.05275366, 0.05306608, 0.05336243, 0.05364293, 0.05390785, 0.05415743, 0.05439194, 0.05461162, 0.05481675, 0.0550076 , 0.05518443, 0.05534752, 0.05549714, 0.05563356, 0.05575708, 0.05586795, 0.05596646, 0.05605289, 0.05612752, 0.05619061, 0.05624245, 0.05628331, 0.05631347, 0.05633319, 0.05634274, 0.05634239, 0.05633241, 0.05631306, 0.05628459, 0.05624726, 0.05620133, 0.05614705, 0.05608466, 0.05601441, 0.05593653, 0.05585127, 0.05575886, 0.05565952]]) SKY_BETA160_C05_D0 = np.array( [[0.0019083 , 0.00572098, 0.00952188, 0.01330324, 0.0170574 , 0.02077689, 0.02445443, 0.028083 , 0.03165587, 0.03516663, 0.03860922, 0.04197798, 0.04526763, 0.04847333, 0.05159066, 0.05461567, 0.05754483, 0.06037508, 0.0631038 , 0.06572882, 0.06824839, 0.0706612 , 0.07296634, 0.07516327, 0.07725184, 0.07923225, 0.08110501, 0.08287096, 0.08453121, 0.08608712, 0.08754031, 0.08889258, 0.09014596, 0.09130261, 0.09236487, 0.09333518, 0.09421611, 0.0950103 , 0.09572047, 0.0963494 , 0.0968999 , 0.0973748 , 0.09777697, 0.09810924, 0.09837448, 0.09857549, 0.09871507, 0.09879598, 0.09882094, 0.09879261, 0.09871361, 0.09858648, 0.09841371, 0.09819775, 0.09794093, 0.09764555, 0.09731382, 0.09694789, 0.09654982, 0.09612162, 0.09566521, 0.09518243, 0.09467507, 0.09414484, 0.09359337, 0.09302222, 0.09243291, 0.09182686, 0.09120544, 0.09056996, 0.08992166, 0.08926174, 0.08859131, 0.08791146, 0.08722319, 0.08652749, 0.08582525, 0.08511736, 0.08440462, 0.08368783, 0.08296772, 0.08224497, 0.08152024, 0.08079415, 0.08006728, 0.07934017, 0.07861333, 0.07788726, 0.07716238, 0.07643914, 0.07571792, 0.0749991 , 0.07428301, 0.07356998, 0.0728603 , 0.07215426, 0.07145211, 0.07075408, 0.0700604 , 0.06937127], [0.0019083 , 0.00572098, 0.00952188, 0.01330324, 0.0170574 , 0.02077689, 0.02445443, 0.028083 , 0.03165587, 0.03516663, 0.03860922, 0.04197798, 0.04526763, 0.04847333, 0.05159066, 0.05461567, 0.05754483, 0.06037508, 0.0631038 , 0.06572882, 0.06824839, 0.0706612 , 0.07296634, 0.07516327, 0.07725184, 0.07923225, 0.08110501, 0.08287096, 0.08453121, 0.08608712, 0.08754031, 0.08889258, 0.09014596, 0.09130261, 0.09236487, 0.09333518, 0.09421611, 0.0950103 , 0.09572047, 0.0963494 , 0.0968999 , 0.0973748 , 0.09777697, 0.09810924, 0.09837448, 0.09857549, 0.09871507, 0.09879598, 0.09882094, 0.09879261, 0.09871361, 0.09858648, 0.09841371, 0.09819775, 0.09794093, 0.09764555, 0.09731382, 0.09694789, 0.09654982, 0.09612162, 0.09566521, 0.09518243, 0.09467507, 0.09414484, 0.09359337, 0.09302222, 0.09243291, 0.09182686, 0.09120544, 0.09056996, 0.08992166, 0.08926174, 0.08859131, 0.08791146, 0.08722319, 0.08652749, 0.08582525, 0.08511736, 0.08440462, 0.08368783, 0.08296772, 0.08224497, 0.08152024, 0.08079415, 0.08006728, 0.07934017, 0.07861333, 0.07788726, 0.07716238, 0.07643914, 0.07571792, 0.0749991 , 0.07428301, 0.07356998, 0.0728603 , 0.07215426, 0.07145211, 0.07075408, 0.0700604 , 0.06937127]]) SKY_BETA20_C05_D0 = np.array( [[0.09228642, 0.09322975, 0.09418129, 0.09514089, 0.09610841, 0.09708366, 0.09806647, 0.09905662, 0.10005388, 0.10105801, 0.10206874, 0.10308576, 0.10410876, 0.1051374 , 0.1061713 , 0.10721007, 0.10825326, 0.10930043, 0.11035108, 0.11140467, 0.11246065, 0.11351841, 0.11457731, 0.11563666, 0.11669575, 0.1177538 , 0.11880999, 0.11986347, 0.12091331, 0.12195855, 0.12299818, 0.12403112, 0.12505623, 0.12607232, 0.12707815, 0.1280724 , 0.1290537 , 0.13002059, 0.13097158, 0.13190509, 0.13281946, 0.133713 , 0.13458391, 0.13543033, 0.13625035, 0.13704196, 0.13780311, 0.13853166, 0.1392254 , 0.13988208, 0.14049937, 0.14107488, 0.14160618, 0.14209076, 0.14241963, 0.14264508, 0.14281147, 0.14291603, 0.14295597, 0.14292848, 0.14283078, 0.14266007, 0.1424136 , 0.14208863, 0.14168249, 0.1411926 , 0.14061643, 0.13995158, 0.13919576, 0.13834685, 0.13740287, 0.13636205, 0.1352228 , 0.1339838 , 0.13264396, 0.1312025 , 0.1296589 , 0.12801301, 0.12626498, 0.12441538, 0.12246511, 0.12041551, 0.11826831, 0.1160257 , 0.11369029, 0.11126511, 0.10875367, 0.10615991, 0.10348821, 0.10074338, 0.09793063, 0.09505559, 0.09212424, 0.08914292, 0.08611827, 0.08305723, 0.07996696, 0.07685483, 0.07372836, 0.07059518], [0.09228642, 0.09322975, 0.09418129, 0.09514089, 0.09610841, 0.09708366, 0.09806647, 0.09905662, 0.10005388, 0.10105801, 0.10206874, 0.10308576, 0.10410876, 0.1051374 , 0.1061713 , 0.10721007, 0.10825326, 0.10930043, 0.11035108, 0.11140467, 0.11246065, 0.11351841, 0.11457731, 0.11563666, 0.11669575, 0.1177538 , 0.11880999, 0.11986347, 0.12091331, 0.12195855, 0.12299818, 0.12403112, 0.12505623, 0.12607232, 0.12707815, 0.1280724 , 0.1290537 , 0.13002059, 0.13097158, 0.13190509, 0.13281946, 0.133713 , 0.13458391, 0.13543033, 0.13625035, 0.13704196, 0.13780311, 0.13853166, 0.1392254 , 0.13988208, 0.14049937, 0.14107488, 0.14160618, 0.14209076, 0.14241963, 0.14264508, 0.14281147, 0.14291603, 0.14295597, 0.14292848, 0.14283078, 0.14266007, 0.1424136 , 0.14208863, 0.14168249, 0.1411926 , 0.14061643, 0.13995158, 0.13919576, 0.13834685, 0.13740287, 0.13636205, 0.1352228 , 0.1339838 , 0.13264396, 0.1312025 , 0.1296589 , 0.12801301, 0.12626498, 0.12441538, 0.12246511, 0.12041551, 0.11826831, 0.1160257 , 0.11369029, 0.11126511, 0.10875367, 0.10615991, 0.10348821, 0.10074338, 0.09793063, 0.09505559, 0.09212424, 0.08914292, 0.08611827, 0.08305723, 0.07996696, 0.07685483, 0.07372836, 0.07059518]])
479564
import json import os import requests import dotenv # This zone ID may change if/when our account changes # Run `list_cloudflare_zones` (below) to get a full list ZONE_ID = "198bb61a3679d0e1545e838a8f0c25b9" def list_cloudflare_zones(): url = "https://api.cloudflare.com/client/v4/zones" headers = { "Content-Type": "application/json", "X-Auth-Key": os.environ["CF_API_KEY"], "X-Auth-Email": os.environ["CF_API_EMAIL"], } result = json.loads(requests.get(url, headers=headers).text) zones = [{"name": x["name"], "id": x["id"]} for x in result["result"]] print(zones) def clear_cloudflare(): url = "https://api.cloudflare.com/client/v4/zones/%s" headers = { "Content-Type": "application/json", "X-Auth-Key": os.environ["CF_API_KEY"], "X-Auth-Email": os.environ["CF_API_EMAIL"], } data = {"purge_everything": True} result = json.loads( requests.delete( url % ZONE_ID + "/purge_cache", headers=headers, data=json.dumps(data) ).text ) if result["success"]: print("Cloudflare clearing succeeded") else: raise ValueError( "Cloudflare clearing failed: %s" % json.dumps(result, indent=2) ) if __name__ == "__main__": env_path = os.path.join( os.path.dirname(os.path.realpath(__file__)), "..", "environment" ) dotenv.read_dotenv(env_path, override=True) clear_cloudflare()
479578
import unittest from nlgeval.pycocoevalcap.meteor.meteor import Meteor class TestMeteor(unittest.TestCase): @classmethod def setUpClass(cls): cls.m = Meteor() def test_compute_score(self): s = self.m.compute_score({0: ["test"]}, {0: ["test"]}) self.assertEqual(s, (1.0, [1.0])) s = self.m.compute_score({0: ["テスト"]}, {0: ["テスト"]}) self.assertEqual(s, (1.0, [1.0]))
479613
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F import Model as M import hrnet class HRNET(M.Model): def initialize(self, num_pts): self.backbone = hrnet.ResNet() self.lastconv = M.ConvLayer(1, num_pts) def forward(self, x): x = self.backbone(x) x = self.lastconv(x) return x net = HRNET(17) net.eval() net.record() print(net.lastconv.record) dummy_inp = np.ones([1,3,256,256]) dummy_inp = np.float32(dummy_inp) dummy_inp = torch.from_numpy(dummy_inp) y = net(dummy_inp) # print(y.shape) import Layers as L vs = L.record_params # print(len(L.record_params)) # print(vs[0].keys()) import pickle data = pickle.load(open('hrnet_variables.pkl' , 'rb')) for vsrc, vtgt in zip(data, vs): print(vsrc.keys()) print(vtgt.keys()) print('------') for k in vsrc.keys(): if 'kernel' in k: v = torch.from_numpy(np.transpose(vsrc[k], [3,2,0,1])) vtgt['conv.weight'].data[:] = v else: v = torch.from_numpy(vsrc[k]) if 'bias' in k: vtgt['conv.bias'].data[:] = v if 'gamma' in k: vtgt['bn.weight'].data[:] = v if 'beta' in k: vtgt['bn.bias'].data[:] = v if 'moving_average' in k: vtgt['bn.running_mean'].data[:] = v if 'variance' in k: vtgt['bn.running_var'].data[:] = v y = net(dummy_inp) print(y) print(y.shape) M.Saver(net).save('./modeltorch/hrnet.pth')
479620
from namespace_class import * try: p = Private1() error = 1 except: error = 0 if (error): raise RuntimeError, "Private1 is private" try: p = Private2() error = 1 except: error = 0 if (error): raise RuntimeError, "Private2 is private" EulerT3D.toFrame(1, 1, 1) b = BooT_i() b = BooT_H() f = FooT_i() f.quack(1) f = FooT_d() f.moo(1) f = FooT_H() f.foo(Hi) f_type = str(type(f)) if f_type.find("'namespace_class.FooT_H'") == -1: raise RuntimeError("Incorrect type: " + f_type)
479623
import os import shutil import unittest import bilby from bilby.bilby_mcmc.sampler import Bilby_MCMC, BilbyMCMCSampler, _initialize_global_variables from bilby.bilby_mcmc.utils import ConvergenceInputs from bilby.core.sampler.base_sampler import SamplerError import numpy as np import pandas as pd class TestBilbyMCMCSampler(unittest.TestCase): def setUp(self): default_kwargs = Bilby_MCMC.default_kwargs default_kwargs["target_nsamples"] = 100 default_kwargs["L1steps"] = 1 self.convergence_inputs = ConvergenceInputs( **{key: default_kwargs[key] for key in ConvergenceInputs._fields} ) self.outdir = "bilby_mcmc_sampler_test" if os.path.isdir(self.outdir) is False: os.mkdir(self.outdir) def model(time, m, c): return time * m + c injection_parameters = dict(m=0.5, c=0.2) sampling_frequency = 10 time_duration = 10 time = np.arange(0, time_duration, 1 / sampling_frequency) N = len(time) sigma = np.random.normal(1, 0.01, N) data = model(time, **injection_parameters) + np.random.normal(0, sigma, N) likelihood = bilby.likelihood.GaussianLikelihood(time, data, model, sigma) # From hereon, the syntax is exactly equivalent to other bilby examples # We make a prior priors = dict() priors['m'] = bilby.core.prior.Uniform(0, 5, 'm') priors['c'] = bilby.core.prior.Uniform(-2, 2, 'c') priors = bilby.core.prior.PriorDict(priors) search_parameter_keys = ['m', 'c'] use_ratio = False _initialize_global_variables(likelihood, priors, search_parameter_keys, use_ratio) def tearDown(self): if os.path.isdir(self.outdir): shutil.rmtree(self.outdir) def test_None_proposal_cycle(self): with self.assertRaises(SamplerError): BilbyMCMCSampler( convergence_inputs=self.convergence_inputs, proposal_cycle=None, beta=1, Tindex=0, Eindex=0, use_ratio=False ) def test_default_proposal_cycle(self): sampler = BilbyMCMCSampler( convergence_inputs=self.convergence_inputs, proposal_cycle="default_noNFnoGMnoKD", beta=1, Tindex=0, Eindex=0, use_ratio=False ) nsteps = 0 while sampler.nsamples < 500: sampler.step() nsteps += 1 self.assertEqual(sampler.chain.position, nsteps) self.assertEqual(sampler.accepted + sampler.rejected, nsteps) self.assertTrue(isinstance(sampler.samples, pd.DataFrame)) if __name__ == "__main__": unittest.main()
479626
from pythonwarrior.abilities.base import AbilityBase class Pivot(AbilityBase): ROTATION_DIRECTIONS = ['forward', 'right', 'backward', 'left'] def description(self): return "Rotate 'left', 'right', or 'backward' (default)" def perform(self, direction='backward'): self.verify_direction(direction) self._unit.position.rotate(self.ROTATION_DIRECTIONS.index(direction)) self._unit.say("pivots %s" % direction)
479628
import os import argparse import molbart.util as util from molbart.models.pre_train import BARTModel, UnifiedModel from molbart.decoder import DecodeSampler # Default training hyperparameters DEFAULT_BATCH_SIZE = 128 DEFAULT_ACC_BATCHES = 1 DEFAULT_MASK_PROB = 0.10 DEFAULT_MASK_SCHEME = "span" DEFAULT_LR = 1.0 DEFAULT_WEIGHT_DECAY = 0.0 DEFAULT_EPOCHS = 10 DEFAULT_GRAD_CLIP = 1.0 DEFAULT_TRAIN_TOKENS = None DEFAULT_NUM_BUCKETS = 12 DEFAULT_LIMIT_VAL_BATCHES = 1.0 DEFAULT_SCHEDULE = "transformer" DEFAULT_WARM_UP_STEPS = 8000 DEFAULT_TASK = "mask_aug" DEFAULT_AUGMENT = True def build_model(args, sampler, vocab_size, total_steps, pad_token_idx): # These args don't affect the model directly but will be saved by lightning as hparams # Tensorboard doesn't like None so we need to convert to string augment = "None" if args.augment is None else args.augment train_tokens = "None" if args.train_tokens is None else args.train_tokens num_buckets = "None" if args.num_buckets is None else args.num_buckets extra_args = { "batch_size": args.batch_size, "acc_batches": args.acc_batches, "mask_prob": args.mask_prob, "epochs": args.epochs, "clip_grad": args.clip_grad, "train_tokens": train_tokens, "num_buckets": num_buckets, "limit_val_batches": args.limit_val_batches, "augment": augment, "task": args.task, "mask_scheme": args.mask_scheme, "model_type": args.model_type } if args.model_type == "bart": model = BARTModel( sampler, pad_token_idx, vocab_size, args.d_model, args.num_layers, args.num_heads, args.d_feedforward, args.lr, args.weight_decay, args.activation, total_steps, args.max_seq_len, schedule=args.schedule, warm_up_steps=args.warm_up_steps, dropout=util.DEFAULT_DROPOUT, **extra_args ) elif args.model_type == "unified": model = UnifiedModel( sampler, pad_token_idx, vocab_size, args.d_model, args.num_layers, args.num_heads, args.d_feedforward, args.lr, args.weight_decay, args.activation, total_steps, args.max_seq_len, schedule=args.schedule, warm_up_steps=args.warm_up_steps, dropout=util.DEFAULT_DROPOUT, **extra_args ) else: raise ValueError(f"Unknown model type {args.model_type}") return model def main(args): util.seed_everything(37) if args.dataset == "zinc" and args.train_tokens is not None: raise ValueError("train_tokens arg must be None when using zinc dataset.") if args.gpus > 1 and args.train_tokens is not None: raise ValueError("train_tokens arg must be None when training on multiple gpus.") print("Building tokeniser...") tokeniser = util.load_tokeniser(args.vocab_path, args.chem_token_start_idx) tokeniser.mask_prob = args.mask_prob tokeniser.mask_scheme = args.mask_scheme print("Finished tokeniser.") print("Reading dataset...") dataset = util.build_dataset(args) print("Finished dataset.") print("Building data module...") dm = util.build_molecule_datamodule(args, dataset, tokeniser) num_available_cpus = len(os.sched_getaffinity(0)) num_workers = num_available_cpus // args.gpus dm._num_workers = num_workers print(f"Using {str(num_workers)} workers for data module.") print("Finished data module.") vocab_size = len(tokeniser) train_steps = util.calc_train_steps(args, dm) print(f"Train steps: {train_steps}") sampler = DecodeSampler(tokeniser, args.max_seq_len) pad_token_idx = tokeniser.vocab[tokeniser.pad_token] print("Building model...") model = build_model(args, sampler, vocab_size, train_steps, pad_token_idx) print("Finished model.") print("Building trainer...") trainer = util.build_trainer(args) print("Finished trainer.") print("Fitting data module to model") trainer.fit(model, dm) print("Finished training.") print("Printing unknown tokens...") tokeniser.print_unknown_tokens() print("Complete.") if __name__ == "__main__": parser = argparse.ArgumentParser() # Program level args parser.add_argument("--dataset", type=str) parser.add_argument("--data_path", type=str) parser.add_argument("--model_type", type=str) parser.add_argument("--vocab_path", type=str, default=util.DEFAULT_VOCAB_PATH) parser.add_argument("--chem_token_start_idx", type=int, default=util.DEFAULT_CHEM_TOKEN_START) parser.add_argument("--log_dir", type=str, default=util.DEFAULT_LOG_DIR) parser.add_argument("--deepspeed_config_path", type=str, default=util.DEFAULT_DEEPSPEED_CONFIG_PATH) # Model and training args parser.add_argument("--batch_size", type=int, default=DEFAULT_BATCH_SIZE) parser.add_argument("--acc_batches", type=int, default=DEFAULT_ACC_BATCHES) parser.add_argument("--max_seq_len", type=int, default=util.DEFAULT_MAX_SEQ_LEN) parser.add_argument("--mask_prob", type=float, default=DEFAULT_MASK_PROB) parser.add_argument("--mask_scheme", type=str, default=DEFAULT_MASK_SCHEME) parser.add_argument("--d_model", type=int, default=util.DEFAULT_D_MODEL) parser.add_argument("--num_layers", type=int, default=util.DEFAULT_NUM_LAYERS) parser.add_argument("--num_heads", type=int, default=util.DEFAULT_NUM_HEADS) parser.add_argument("--d_feedforward", type=int, default=util.DEFAULT_D_FEEDFORWARD) parser.add_argument("--lr", type=float, default=DEFAULT_LR) parser.add_argument("--weight_decay", type=float, default=DEFAULT_WEIGHT_DECAY) parser.add_argument("--epochs", type=int, default=DEFAULT_EPOCHS) parser.add_argument("--activation", type=str, default=util.DEFAULT_ACTIVATION) parser.add_argument("--clip_grad", type=float, default=DEFAULT_GRAD_CLIP) parser.add_argument("--train_tokens", type=int, default=DEFAULT_TRAIN_TOKENS) parser.add_argument("--num_buckets", type=int, default=DEFAULT_NUM_BUCKETS) parser.add_argument("--limit_val_batches", type=float, default=DEFAULT_LIMIT_VAL_BATCHES) parser.add_argument("--gpus", type=int, default=util.DEFAULT_GPUS) parser.add_argument("--num_nodes", type=int, default=util.DEFAULT_NUM_NODES) parser.add_argument("--task", type=str, default=DEFAULT_TASK) parser.add_argument("--schedule", type=str, default=DEFAULT_SCHEDULE) parser.add_argument("--warm_up_steps", type=int, default=DEFAULT_WARM_UP_STEPS) parser.add_argument("--augment", dest="augment", action="store_true") parser.add_argument("--no_augment", dest="augment", action="store_false") parser.set_defaults(augment=DEFAULT_AUGMENT) args = parser.parse_args() main(args)
479649
import os import time import client.api import client.models from mamba import description, before, after, it from expects import * from expects.matchers import Matcher from common import Config, Service from common.helper import (make_dynamic_results_config, check_modules_exists, get_memory_dynamic_results_fields, memory_generator_model, wait_for_buffer_initialization_done) from common.matcher import (has_location, has_json_content_type, raise_api_exception, be_valid_memory_info, be_valid_memory_generator, be_valid_memory_generator_result, be_valid_dynamic_results) CONFIG = Config(os.path.join(os.path.dirname(__file__), os.environ.get('MAMBA_CONFIG', 'config.yaml'))) with description('Memory Generator Module', 'memory') as self: with before.all: service = Service(CONFIG.service()) self._process = service.start() self._api = client.api.MemoryGeneratorApi(service.client()) if not check_modules_exists(service.client(), 'memory'): self.skip() with after.all: try: for gen in self.api.list_memory_generators(): if gen.running: self.api.stop_memory_generator(gen.id) self.api.delete_memory_generator(gen.id) except AttributeError: pass try: self._process.terminate() self._process.wait() except AttributeError: pass with description('Information'): with description('/memory-info'): with context('PUT'): with it('not allowed (405)'): expect(lambda: self._api.api_client.call_api('/memory-info', 'PUT')).to( raise_api_exception(405, headers={'Allow': "GET"})) with context('GET'): with before.all: self._result = self._api.memory_info_with_http_info( _return_http_data_only=False) with it('success (200)'): expect(self._result[1]).to(equal(200)) with it('has Content-Type: application/json header'): expect(self._result[2]).to(has_json_content_type) with it('valid memory info'): expect(self._result[0]).to(be_valid_memory_info) with description('Memory Generators'): with description('/memory-generators'): with context('PUT'): with it('not allowed (405)'): expect(lambda: self._api.api_client.call_api('/memory-generators', 'PUT')).to( raise_api_exception(405, headers={'Allow': "GET, POST"})) with context('POST'): with shared_context('create generator'): with before.all: self._result = self._api.create_memory_generator_with_http_info( self._model, _return_http_data_only=False) with after.all: self._api.delete_memory_generator(self._result[0].id) with it('created (201)'): expect(self._result[1]).to(equal(201)) with it('has valid Location header'): expect(self._result[2]).to(has_location('/memory-generators/' + self._result[0].id)) with it('has Content-Type: application/json header'): expect(self._result[2]).to(has_json_content_type) with it('returned valid generator'): expect(self._result[0]).to(be_valid_memory_generator) with it('has same config'): if (not self._model.id): self._model.id = self._result[0].id self._model.init_percent_complete = self._result[0].init_percent_complete expect(self._result[0]).to(equal(self._model)) with description('with empty ID'): with before.all: self._model = memory_generator_model(self._api.api_client) with included_context('create generator'): with it('random ID assigned'): expect(self._result[0].id).not_to(be_empty) with description('with specified ID'): with before.all: self._model = memory_generator_model( self._api.api_client, id='some-specified-id') with included_context('create generator'): pass with context('GET'): with before.all: model = memory_generator_model(self._api.api_client) self._g8s = [self._api.create_memory_generator(model) for a in range(3)] self._result = self._api.list_memory_generators_with_http_info( _return_http_data_only=False) with after.all: for g7r in self._g8s: self._api.delete_memory_generator(g7r.id) with it('success (200)'): expect(self._result[1]).to(equal(200)) with it('has Content-Type: application/json header'): expect(self._result[2]).to(has_json_content_type) with it('return list'): expect(self._result[0]).not_to(be_empty) expect(len(self._result[0])).to(equal(len(self._g8s))) for gen in self._result[0]: expect(gen).to(be_valid_memory_generator) with description('/memory-generators/{id}'): with before.all: model = memory_generator_model(self._api.api_client) self._g7r = self._api.create_memory_generator(model) expect(self._g7r).to(be_valid_memory_generator) with after.all: self._api.delete_memory_generator(self._g7r.id) with context('GET'): with description('by existing ID'): with before.all: self._result = self._api.get_memory_generator_with_http_info( self._g7r.id, _return_http_data_only=False) with it('success (200)'): expect(self._result[1]).to(equal(200)) with it('has Content-Type: application/json header'): expect(self._result[2]).to(has_json_content_type) with it('generator object'): expect(self._result[0]).to(be_valid_memory_generator) with description('by non-existent ID'): with it('not found (404)'): expr = lambda: self._api.get_memory_generator('unknown') expect(expr).to(raise_api_exception(404)) with description('by invalid ID'): with it('bad request (400)'): expr = lambda: self._api.get_memory_generator('bad_id') expect(expr).to(raise_api_exception(400)) with context('DELETE'): with description('by existing ID'): with shared_context('delete generator'): with it('deleted (204)'): result = self._api.delete_memory_generator_with_http_info( self._g7r.id, _return_http_data_only=False) expect(result[1]).to(equal(204)) with it('not found (404)'): expr = lambda: self._api.get_memory_generator(self._g7r.id) expect(expr).to(raise_api_exception(404)) with description('not running generator'): with before.all: model = memory_generator_model( self._api.api_client, running = False) self._g7r = self._api.create_memory_generator(model) expect(self._g7r).to(be_valid_memory_generator) with it('not running'): result = self._api.get_memory_generator(self._g7r.id) expect(result.running).to(be_false) with included_context('delete generator'): pass with description('running generator'): with before.all: model = memory_generator_model( self._api.api_client, running = True) self._g7r = self._api.create_memory_generator(model) expect(self._g7r).to(be_valid_memory_generator) with it('running'): result = self._api.get_memory_generator(self._g7r.id) expect(result.running).to(be_true) with included_context('delete generator'): pass with description('by non-existent ID'): with it('not found (404)'): expr = lambda: self._api.delete_memory_generator('unknown') expect(expr).to(raise_api_exception(404)) with description('by invalid ID'): with it('bad request (400)'): expr = lambda: self._api.delete_memory_generator('bad_id') expect(expr).to(raise_api_exception(400)) with description('/memory-generators/{id}/start'): with before.all: model = memory_generator_model(self._api.api_client) self._g7r = self._api.create_memory_generator(model) expect(self._g7r).to(be_valid_memory_generator) expect(wait_for_buffer_initialization_done(self._api, self._g7r.id, 10)).to(be_true) with after.all: self._api.delete_memory_generator(self._g7r.id) with context('POST'): with description('by existing ID'): with before.all: self._result = self._api.start_memory_generator_with_http_info( self._g7r.id, _return_http_data_only=False) with shared_context('start generator'): with it('is not running'): expect(self._g7r.running).to(be_false) with it('started (201)'): expect(self._result[1]).to(equal(201)) with it('has valid Location header'): expect(self._result[2]).to(has_location('/memory-generator-results/' + self._result[0].id)) with it('has Content-Type: application/json header'): expect(self._result[2]).to(has_json_content_type) with it('returned valid result'): expect(self._result[0]).to(be_valid_memory_generator_result) expect(self._result[0].active).to(be_true) expect(self._result[0].generator_id).to(equal(self._g7r.id)) with it('is running'): g7r = self._api.get_memory_generator(self._g7r.id) expect(g7r).to(be_valid_memory_generator) expect(g7r.running).to(be_true) with included_context('start generator'): pass with description('already running generator'): with it('bad request (400)'): expr = lambda: self._api.start_memory_generator(self._g7r.id) expect(expr).to(raise_api_exception(400)) with description('with Dynamic Results'): with before.all: self._api.stop_memory_generator(self._g7r.id) dynamic = make_dynamic_results_config( get_memory_dynamic_results_fields()) self._result = self._api.start_memory_generator_with_http_info( self._g7r.id, dynamic_results=dynamic, _return_http_data_only=False) with included_context('start generator'): with it('has valid dynamic results'): expect(self._result[0].dynamic_results).to(be_valid_dynamic_results) with description('by non-existent ID'): with it('not found (404)'): expr = lambda: self._api.start_memory_generator('unknown') expect(expr).to(raise_api_exception(404)) with description('by invalid ID'): with it('bad request (400)'): expr = lambda: self._api.start_memory_generator('bad_id') expect(expr).to(raise_api_exception(400)) with description('/memory-generators/{id}/stop'): with before.all: model = memory_generator_model( self._api.api_client, running=True) self._g7r = self._api.create_memory_generator(model) expect(self._g7r).to(be_valid_memory_generator) expect(wait_for_buffer_initialization_done(self._api, self._g7r.id, 10)).to(be_true) with after.all: self._api.delete_memory_generator(self._g7r.id) with context('POST'): with description('by existing ID'): with it('is running'): expect(self._g7r.running).to(be_true) with it('stopped (204)'): result = self._api.stop_memory_generator_with_http_info( self._g7r.id, _return_http_data_only=False) expect(result[1]).to(equal(204)) with it('is not running'): g7r = self._api.get_memory_generator(self._g7r.id) expect(g7r).to(be_valid_memory_generator) expect(g7r.running).to(be_false) with description('already stopped generator'): with it('bad request (400)'): expr = lambda: self._api.stop_memory_generator(self._g7r.id) expect(expr).to(raise_api_exception(400)) with description('by non-existent ID'): with it('not found (404)'): expr = lambda: self._api.start_memory_generator('unknown') expect(expr).to(raise_api_exception(404)) with description('by invalid ID'): with it('bad request (400)'): expr = lambda: self._api.start_memory_generator('bad_id') expect(expr).to(raise_api_exception(400)) with description('Memory Generators bulk operations'): with description('/memory-generators/x/bulk-create'): with context('PUT'): with it('not allowed (405)'): expect(lambda: self._api.api_client.call_api('/memory-generators/x/bulk-create', 'PUT')).to( raise_api_exception(405, headers={'Allow': "POST"})) with description('POST'): with before.all: self._models = [ memory_generator_model(self._api.api_client), memory_generator_model(self._api.api_client) ] request = client.models.BulkCreateMemoryGeneratorsRequest(self._models) self._result = self._api.bulk_create_memory_generators_with_http_info( request, _return_http_data_only=False) with after.all: for g7r in self._result[0]: self._api.delete_memory_generator(g7r.id) with it('created (200)'): expect(self._result[1]).to(equal(200)) with it('has Content-Type: application/json header'): expect(self._result[2]).to(has_json_content_type) with it('returned valid generator list'): expect(self._result[0]).not_to(be_empty) expect(len(self._result[0])).to(equal(len(self._models))) for g7r in self._result[0]: expect(g7r).to(be_valid_memory_generator) with it('has same config'): for idx in range(len(self._models)): model = self._models[idx] model.init_percent_complete = self._result[0][idx].init_percent_complete if (not model.id): model.id = self._result[0][idx].id expect(self._result[0][idx]).to(equal(model)) with description('/memory-generators/x/bulk-delete'): with context('PUT'): with it('not allowed (405)'): expect(lambda: self._api.api_client.call_api('/memory-generators/x/bulk-delete', 'PUT')).to( raise_api_exception(405, headers={'Allow': "POST"})) with context('POST'): with before.all: self._ids = [] self._model = memory_generator_model( self._api.api_client, running=False) with shared_context('delete generators'): with before.all: self._g8s = [ self._api.create_memory_generator(self._model) for i in range(3)] with it('all exist'): for g7r in self._g8s: result = self._api.get_memory_generator(g7r.id) expect(result).to(be_valid_memory_generator) with it('no content (204)'): request = client.models.BulkDeleteCpuGeneratorsRequest( [g7r.id for g7r in self._g8s] + self._ids) result = self._api.bulk_delete_memory_generators_with_http_info( request, _return_http_data_only=False) expect(result[1]).to(equal(204)) with it('all deleted'): for g7r in self._g8s: result = lambda: self._api.get_memory_generator(g7r.id) expect(result).to(raise_api_exception(404)) with description('with existing IDs'): with included_context('delete generators'): pass with description('with non-existent ID'): with before.all: self._ids = ['unknown'] with included_context('delete generators'): pass with description('with invalid ID'): with before.all: self._ids = ['bad_id'] with included_context('delete generators'): pass with description('/memory-generators/x/bulk-start'): with context('PUT'): with it('not allowed (405)'): expect(lambda: self._api.api_client.call_api('/memory-generators/x/bulk-start', 'PUT')).to( raise_api_exception(405, headers={'Allow': "POST"})) with description('POST'): with before.all: model = memory_generator_model(self._api.api_client) self._g8s = [ self._api.create_memory_generator(model) for a in range(3)] for a in range(3): expect(wait_for_buffer_initialization_done(self._api, self._g8s[a].id, 10)).to(be_true) with after.all: request = client.models.BulkDeleteMemoryGeneratorsRequest( [g7r.id for g7r in self._g8s]) self._api.bulk_delete_memory_generators(request) with description('by existing IDs'): with before.all: request = client.models.BulkStartMemoryGeneratorsRequest( [g7r.id for g7r in self._g8s]) self._result = self._api.bulk_start_memory_generators_with_http_info( request, _return_http_data_only=False) with it('is not running'): for g7r in self._g8s: expect(g7r.running).to(be_false) with it('success (200)'): expect(self._result[1]).to(equal(200)) with it('has Content-Type: application/json header'): expect(self._result[2]).to(has_json_content_type) with it('returned valid results'): for result in self._result[0]: expect(result).to(be_valid_memory_generator_result) expect(result.active).to(be_true) with it('all started'): for g7r in self._g8s: result = self._api.get_memory_generator(g7r.id) expect(result).to(be_valid_memory_generator) expect(result.running).to(be_true) with description('already running generators'): with it('bad request (400)'): request = client.models.BulkStartMemoryGeneratorsRequest( [g7r.id for g7r in self._g8s]) expr = lambda: self._api.bulk_start_memory_generators(request) expect(expr).to(raise_api_exception(400)) with it('state was not changed'): for g7r in self._g8s: result = self._api.get_memory_generator(g7r.id) expect(result).to(be_valid_memory_generator) expect(result.running).to(be_true) with description('with non-existant ID'): with before.all: for num, g7r in enumerate(self._g8s, start=1): try: if (num % 2) == 0: g7r.running = False self._api.stop_memory_generator(g7r.id) else: g7r.running = True self._api.start_memory_generator(g7r.id) except Exception: pass self._results_count = len(self._api.list_memory_generator_results()) with it('not found (404)'): request = client.models.BulkStartMemoryGeneratorsRequest( [g7r.id for g7r in self._g8s] + ['unknown']) expr = lambda: self._api.bulk_start_memory_generators(request) expect(expr).to(raise_api_exception(404)) with it('state was not changed'): for g7r in self._g8s: result = self._api.get_memory_generator(g7r.id) expect(result).to(be_valid_memory_generator) expect(result.running).to(equal(g7r.running)) with it('new results was not created'): results = self._api.list_memory_generator_results() expect(len(results)).to(equal(self._results_count)) with description('with invalid ID'): with before.all: self._results_count = len(self._api.list_memory_generator_results()) with it('bad request (400)'): request = client.models.BulkStartMemoryGeneratorsRequest( [g7r.id for g7r in self._g8s] + ['bad_id']) expr = lambda: self._api.bulk_start_memory_generators(request) expect(expr).to(raise_api_exception(400)) with it('state was not changed'): for g7r in self._g8s: result = self._api.get_memory_generator(g7r.id) expect(result).to(be_valid_memory_generator) expect(result.running).to(equal(g7r.running)) with it('new results was not created'): results = self._api.list_memory_generator_results() expect(len(results)).to(equal(self._results_count)) with description('/memory-generators/x/bulk-stop'): with context('PUT'): with it('not allowed (405)'): expect(lambda: self._api.api_client.call_api('/memory-generators/x/bulk-stop', 'PUT')).to( raise_api_exception(405, headers={'Allow': "POST"})) with description('POST'): with before.all: self._ids = [] model = memory_generator_model(self._api.api_client) self._g8s = [ self._api.create_memory_generator(model) for a in range(3)] for a in range(3): expect(wait_for_buffer_initialization_done(self._api, self._g8s[a].id, 10)).to(be_true) with after.all: request = client.models.BulkDeleteMemoryGeneratorsRequest( [g7r.id for g7r in self._g8s]) self._api.bulk_delete_memory_generators(request) with shared_context('stop generators'): with before.all: for g7r in self._g8s: self._api.start_memory_generator(g7r.id) with it('all running'): for g7r in self._g8s: result = self._api.get_memory_generator(g7r.id) expect(result.running).to(be_true) with it('no content (204)'): request = client.models.BulkStopMemoryGeneratorsRequest( [g7r.id for g7r in self._g8s] + self._ids) result = self._api.bulk_stop_memory_generators_with_http_info( request, _return_http_data_only=False) expect(result[1]).to(equal(204)) with it('all stopped'): for g7r in self._g8s: result = self._api.get_memory_generator(g7r.id) expect(result).to(be_valid_memory_generator) expect(result.running).to(be_false) with description('with existing IDs'): with included_context('stop generators'): pass with description('already stopped generators'): with it('no content (204)'): request = client.models.BulkStopMemoryGeneratorsRequest( [g7r.id for g7r in self._g8s]) result = self._api.bulk_stop_memory_generators_with_http_info( request, _return_http_data_only=False) expect(result[1]).to(equal(204)) with description('with non-existent ID'): with before.all: self._ids = ['unknown'] with included_context('stop generators'): pass with description('with invalid ID'): with before.all: self._ids = ['bad_id'] with included_context('stop generators'): pass with description('Memory Generator Results'): with before.all: model = memory_generator_model(self._api.api_client) self._g7r = self._api.create_memory_generator(model) expect(self._g7r).to(be_valid_memory_generator) expect(wait_for_buffer_initialization_done(self._api, self._g7r.id, 10)).to(be_true) self._runs = 3; for i in range(self._runs): self._api.start_memory_generator(self._g7r.id) self._api.stop_memory_generator(self._g7r.id) with description('/memory-generator-results'): with context('PUT'): with it('not allowed (405)'): expect(lambda: self._api.api_client.call_api('/memory-generator-results', 'PUT')).to( raise_api_exception(405, headers={'Allow': "GET"})) with context('GET'): with before.all: self._result = self._api.list_memory_generator_results_with_http_info( _return_http_data_only=False) with it('success (200)'): expect(self._result[1]).to(equal(200)) with it('has Content-Type: application/json header'): expect(self._result[2]).to(has_json_content_type) with it('results list'): expect(self._result[0]).not_to(be_empty) expect(len(self._result[0])).to(be(self._runs)) for result in self._result[0]: expect(result).to(be_valid_memory_generator_result) with description('/memory-generator-results/{id}'): with before.all: rlist = self._api.list_memory_generator_results() expect(rlist).not_to(be_empty) self._result = rlist[0] with context('GET'): with description('by existing ID'): with before.all: self._get_result = self._api.get_memory_generator_result_with_http_info( self._result.id, _return_http_data_only=False) with it('success (200)'): expect(self._get_result[1]).to(equal(200)) with it('has Content-Type: application/json header'): expect(self._get_result[2]).to(has_json_content_type) with it('valid result'): expect(self._get_result[0]).to(be_valid_memory_generator_result) with description('by non-existent ID'): with it('not found (404)'): expr = lambda: self._api.get_memory_generator_result('unknown') expect(expr).to(raise_api_exception(404)) with description('by invalid ID'): with it('bad request (400)'): expr = lambda: self._api.get_memory_generator_result('bad_id') expect(expr).to(raise_api_exception(400)) with context('DELETE'): with description('by existing ID'): with description('active result'): with before.all: self._result = self._api.start_memory_generator(self._g7r.id) with after.all: self._api.stop_memory_generator(self._g7r.id) with it('exists'): expect(self._result).to(be_valid_memory_generator_result) with it('is active'): expect(self._result.active).to(be_true) with it('bad request (400)'): result = lambda: self._api.delete_memory_generator_result(self._result.id) expect(result).to(raise_api_exception(400)) with it('not deleted'): result = self._api.get_memory_generator_result(self._result.id) expect(result).to(be_valid_memory_generator_result) with description('inactive result'): with before.all: result = self._api.start_memory_generator(self._g7r.id) self._api.stop_memory_generator(self._g7r.id) self._result = self._api.get_memory_generator_result(result.id) with it('exists'): expect(self._result).to(be_valid_memory_generator_result) with it('is not active'): expect(self._result.active).to(be_false) with it('deleted (204)'): result = self._api.delete_memory_generator_result_with_http_info( self._result.id, _return_http_data_only=False) expect(result[1]).to(equal(204)) with it('not found (404)'): expr = lambda: self._api.get_memory_generator_result(self._result.id) expect(expr).to(raise_api_exception(404)) with description('by non-existent ID'): with it('not found (404)'): expr = lambda: self._api.delete_memory_generator_result('unknown') expect(expr).to(raise_api_exception(404)) with description('by invalid ID'): with it('bad request (400)'): expr = lambda: self._api.delete_memory_generator_result('bad_id') expect(expr).to(raise_api_exception(400)) with description('delete results with generator'): with it('results exists'): results = self._api.list_memory_generator_results() expect(results).not_to(be_empty) with it('generator deleted'): result = self._api.delete_memory_generator_with_http_info( self._g7r.id, _return_http_data_only=False) expect(result[1]).to(equal(204)) with it('results deleted'): results = self._api.list_memory_generator_results() expect(results).to(be_empty)
479650
import math import textwrap str1=''.join(input().strip().split()) rows=math.floor(math.sqrt(len(str1))) col=rows if rows*col<len(str1): col+=1 if rows*col<len(str1): rows+=1 l1=textwrap.wrap(str1,col) for i in range(0,col): for j in range(0,rows): if (i+1)+(j)*col>len(str1): continue print(l1[j][i],end='') print(' ',end='')
479684
from numpy import atleast_2d, ndarray, float32, float64, float128 class PythonDSP(object): """A FAUST DSP wrapper. This class is more low-level than the FAUST class. It can be viewed as an abstraction that sits directly on top of the FAUST DSP struct. """ def __init__(self, C, ffi, fs): """Initialise a PythonDSP object. To instantiate this object, you create a cffi.FFI object that contains all required declarations (check the FAUSTPy.FAUST code for an example). Then you compile the code via ffi.verfiy(), which creates an FFILibrary object. Both of these are then passed to this constructor along with the other parameters specified below. Parameters: ----------- C : cffi.FFILibrary The FFILibrary that represents the compiled code. ffi : cffi.FFI The CFFI instance that holds all the data type declarations. fs : int The sampling rate the FAUST DSP should be initialised with. """ self.__C = C self.__ffi = ffi self.__faust_float = ffi.getctype("FAUSTFLOAT") self.__dsp = ffi.gc(C.newmydsp(), C.deletemydsp) self.metadata = {} if fs <= 0: raise ValueError("The sampling rate must have a positive value.") if self.__faust_float == "float": self.__dtype = float32 elif self.__faust_float == "double": self.__dtype = float64 elif self.__faust_float == "long double": self.__dtype = float128 # calls both classInitmydsp() and instanceInitmydsp() C.initmydsp(self.__dsp, int(fs)) # allocate the input and output pointers so that they are not # allocated/deallocated at every call to compute() # TODO: can the number of inputs/outputs change at run time? self.__input_p = self.__ffi.new("FAUSTFLOAT*[]", self.num_in) self.__output_p = self.__ffi.new("FAUSTFLOAT*[]", self.num_out) dsp = property(fget=lambda x: x.__dsp, doc="The DSP struct that calls back to its parent object.") dtype = property(fget=lambda x: x.__dtype, doc="A dtype corresponding to the value of FAUSTFLOAT.") faustfloat = property(fget=lambda x: x.__faust_float, doc="The value of FAUSTFLOAT for this DSP.") fs = property(fget=lambda s: s.__C.getSampleRatemydsp(s.__dsp), doc="The sampling rate of the DSP.") num_in = property(fget=lambda s: s.__C.getNumInputsmydsp(s.__dsp), doc="The number of input channels.") num_out = property(fget=lambda s: s.__C.getNumOutputsmydsp(s.__dsp), doc="The number of output channels.") def compute(self, audio): """ Process an ndarray with the FAUST DSP. Parameters: ----------- The first argument depends on the type of DSP (synthesizer or effect): audio : numpy.ndarray If the DSP is an effect (i.e., it processes input data and produces output), the first argument is an audio signal to process. or count : int If the DSP is a synthesizer (i.e., it has zero inputs and produces output), the first argument is the number of output samples to produce Returns: -------- out : numpy.ndarray The output of the DSP. Notes: ------ This function uses the buffer protocol to avoid copying the input data. """ if self.num_in > 0: # returns a view, so very little overhead audio = atleast_2d(audio) # Verify that audio.dtype == self.dtype, because a) Python # SEGFAULTs when audio.dtype < self.dtype and b) the computation is # garbage when audio.dtype > self.dtype. if audio.dtype != self.__dtype: raise ValueError("audio.dtype must be {}".format(self.__dtype)) count = audio.shape[1] # number of samples num_in = self.num_in # number of input channels # set up the input pointers for i in range(num_in): self.__input_p[i] = self.__ffi.cast('FAUSTFLOAT *', audio[i].ctypes.data) else: # special case for synthesizers: the input argument is the number # of samples count = audio num_out = self.num_out # number of output channels # initialise the output array output = ndarray((num_out, count), dtype=self.__dtype) # set up the output pointers for i in range(num_out): self.__output_p[i] = self.__ffi.cast('FAUSTFLOAT *', output[i].ctypes.data) # call the DSP self.__C.computemydsp(self.__dsp, count, self.__input_p, self.__output_p) return output # TODO: Run some more serious tests to check whether compute2() is worth # keeping, because with the bundled DSP the run-time is about 83 us for # 2x64 samples versus about 90 us for compute(), so only about 7 us # difference. def compute2(self, audio): """ Process an ndarray with the FAUST DSP, like compute(), but without any safety checks. NOTE: compute2() can crash Python if "audio" is an incompatible NumPy array! This function is only useful if the DSP is an effect since the checks not made here do not apply to synthesizers. Parameters: ----------- audio : numpy.ndarray The audio signal to process. Returns: -------- out : numpy.ndarray The output of the DSP. Notes: ------ This function uses the buffer protocol to avoid copying the input data. """ count = audio.shape[1] # number of samples num_in = self.num_in # number of input channels num_out = self.num_out # number of output channels # initialise the output array output = ndarray((num_out, count), dtype=audio.dtype) # set up the output pointers for i in range(num_out): self.__output_p[i] = self.__ffi.cast('FAUSTFLOAT *', output[i].ctypes.data) # set up the input pointers for i in range(num_in): self.__input_p[i] = self.__ffi.cast('FAUSTFLOAT *', audio[i].ctypes.data) # call the DSP self.__C.computemydsp(self.__dsp, count, self.__input_p, self.__output_p) return output
479703
import re from discord import MessageType from utils.settings import settings from utils.globals import gc, get_color import utils async def calc_mutations(msg): try: # if the message is a file, extract the discord url from it json = str(msg.attachments[0]).split("'") for string in json: if string is not None and string != "": if "cdn.discordapp.com/attachments" in string: msg.content = string break except IndexError: pass # otherwise it must not have any attachments and its a regular message text = msg.content # check for in-line code blocks if text.count("```") > 1: while("```") in text: text = await convert_code_block(text) msg.content = text # TODO: if there are asterics or __'s in the code, then # this will not stop them from being formatted # check for in-line code marks if text.count("`") > 1: while("`") in text: text = await convert_code(text) msg.content = text # check to see if it has any custom-emojis # These will look like <:emojiname:39432432903201> # We will recursively trim this into just :emojiname: if msg.server.emojis is not None and len(msg.server.emojis) > 0: for emoji in msg.server.emojis: full_name = "<:" + emoji.name + ":" + emoji.id + ">" while full_name in text: text = await trim_emoji(full_name, emoji.name, text) msg.content = text # check for boldened font if text.count("**") > 1: while("**") in text: text = await convert_bold(text) msg.content = text # check for italic font if text.count("*") > 1: while("*") in text: text = await convert_italic(text) msg.content = text # check for underlined font if text.count("__") > 1: while("__") in text: text = await convert_underline(text) msg.content = text # check for urls if "http://" in text or "https://" in text or "www." in text \ or "ftp://" in text or ".com" in text: msg.content = await convert_url(text) # check if the message is a "user has pinned..." message if msg.type == MessageType.pins_add: msg.content = await convert_pin(msg) # else it must be a regular message, nothing else return msg async def convert_pin(msg): name = "" if msg.author.nick is not None and msg.author.nick != "": name = msg.author.nick else: name = msg.author.name return "📌 " + str(name) + " has pinned a message to this channel." async def trim_emoji(full_name, short_name, string): return string.replace(full_name, ":" + short_name + ":") async def convert_bold(string): sections = string.split("**") left = sections[0] target = sections[1] right = "".join(sections[2]) return gc.term.normal + gc.term.white + left + " " + gc.term.bold(target) + gc.term.normal + \ gc.term.white + " " + right async def convert_italic(string): sections = string.split("*") left = sections[0] target = sections[1] right = "".join(sections[2]) return gc.term.normal + gc.term.white + left + " " + gc.term.italic(target) + gc.term.normal + \ gc.term.white + " " + right async def convert_underline(string): sections = string.split("__") left = sections[0] target = sections[1] right = "".join(sections[2]) return gc.term.normal + gc.term.white + left + " " + gc.term.underline(target) + gc.term.normal + \ gc.term.white + " " + right async def convert_code(string): sections = string.split("`") left = sections[0] target = sections[1] right = "".join(sections[2]) return gc.term.normal + gc.term.white + left + " " + await get_color(settings["code_block_color"]) \ + target + gc.term.normal \ + gc.term.white + " " + right async def convert_code_block(string): sections = string.split("```") left = sections[0] target = sections[1] right = "".join(sections[2]) return gc.term.normal + gc.term.white + left + " " + gc.term.on_black(target) + gc.term.normal + \ gc.term.white + " " + right async def convert_url(string): formatted_line = [] entities = [] if " " in string: entities = string.split(" ") else: entities.append(string) for entity in entities: if "http://" in entity or "https://" in entity or "www." in entity \ or "ftp://" in entity or ".com" in entity: entity = await get_color(settings["url_color"]) + gc.term.italic + gc.term.underline + entity + gc.term.normal formatted_line.append(entity) return " ".join(formatted_line)
479718
from functools import update_wrapper from typing import Callable, Sequence, Tuple, Union import jax.numpy as np from jax import ops, random # define a type alias for Jax Pytrees Pytree = Union[tuple, list] Bijector_Info = Tuple[str, tuple] class ForwardFunction: """Return the output and log_det of the forward bijection on the inputs. ForwardFunction of a Bijector, originally returned by the InitFunction of the Bijector. Parameters ---------- params : a Jax pytree A pytree of bijector parameters. This usually looks like a nested tuple or list of parameters. inputs : np.ndarray The data to be transformed by the bijection. Returns ------- outputs : np.ndarray Result of the forward bijection applied to the inputs. log_det : np.ndarray The log determinant of the Jacobian evaluated at the inputs. """ def __init__(self, func: Callable): self._func = func def __call__( self, params: Pytree, inputs: np.ndarray, **kwargs ) -> Tuple[np.ndarray, np.ndarray]: return self._func(params, inputs, **kwargs) class InverseFunction: """Return the output and log_det of the inverse bijection on the inputs. InverseFunction of a Bijector, originally returned by the InitFunction of the Bijector. Parameters ---------- params : a Jax pytree A pytree of bijector parameters. This usually looks like a nested tuple or list of parameters. inputs : np.ndarray The data to be transformed by the bijection. Returns ------- outputs : np.ndarray Result of the inverse bijection applied to the inputs. log_det : np.ndarray The log determinant of the Jacobian evaluated at the inputs. """ def __init__(self, func: Callable): self._func = func def __call__( self, params: Pytree, inputs: np.ndarray, **kwargs ) -> Tuple[np.ndarray, np.ndarray]: return self._func(params, inputs, **kwargs) class InitFunction: """Initialize the corresponding Bijector. InitFunction returned by the initialization of a Bijector. Parameters ---------- rng : np.ndarray A Random Number Key from jax.random.PRNGKey. input_dim : int The input dimension of the bijection. Returns ------- params : a Jax pytree A pytree of bijector parameters. This usually looks like a nested tuple or list of parameters. forward_fun : ForwardFunction The forward function of the Bijector. inverse_fun : InverseFunction The inverse function of the Bijector. """ def __init__(self, func: Callable): self._func = func def __call__( self, rng: np.ndarray, input_dim: int, **kwargs ) -> Tuple[Pytree, ForwardFunction, InverseFunction]: return self._func(rng, input_dim, **kwargs) class Bijector: """Wrapper class for bijector functions""" def __init__(self, func: Callable): self._func = func update_wrapper(self, func) def __call__(self, *args, **kwargs) -> Tuple[InitFunction, Bijector_Info]: return self._func(*args, **kwargs) @Bijector def Chain( *inputs: Sequence[Tuple[InitFunction, Bijector_Info]] ) -> Tuple[InitFunction, Bijector_Info]: """Bijector that chains multiple InitFunctions into a single InitFunction. Parameters ---------- inputs : (Bijector1(), Bijector2(), ...) A container of Bijector calls to be chained together. Returns ------- InitFunction The InitFunction of the total chained Bijector. Bijector_Info Tuple('Chain', Tuple(Bijector_Info for each bijection in the chain)) This allows the chain to be recreated later. """ init_funs = tuple(i[0] for i in inputs) bijector_info = ("Chain", tuple(i[1] for i in inputs)) @InitFunction def init_fun(rng, input_dim, **kwargs): all_params, forward_funs, inverse_funs = [], [], [] for init_f in init_funs: rng, layer_rng = random.split(rng) param, forward_f, inverse_f = init_f(layer_rng, input_dim) all_params.append(param) forward_funs.append(forward_f) inverse_funs.append(inverse_f) def bijector_chain(params, bijectors, inputs, **kwargs): log_dets = np.zeros(inputs.shape[0]) for bijector, param in zip(bijectors, params): inputs, log_det = bijector(param, inputs, **kwargs) log_dets += log_det return inputs, log_dets @ForwardFunction def forward_fun(params, inputs, **kwargs): return bijector_chain(params, forward_funs, inputs, **kwargs) @InverseFunction def inverse_fun(params, inputs, **kwargs): return bijector_chain(params[::-1], inverse_funs[::-1], inputs, **kwargs) return all_params, forward_fun, inverse_fun return init_fun, bijector_info @Bijector def ColorTransform(ref_idx: int, mag_idx: int) -> Tuple[InitFunction, Bijector_Info]: """Bijector that calculates photometric colors from magnitudes. Using ColorTransform restricts and impacts the order of columns in the corresponding normalizing flow. See the notes below for an example. Parameters ---------- ref_idx : int The index corresponding to the column of the reference band, which serves as a proxy for overall luminosity. mag_idx : arraylike of int The indices of the magnitude columns from which colors will be calculated. Returns ------- InitFunction The InitFunction of the ColorTransform Bijector. Bijector_Info Tuple of the Bijector name and the input parameters. This allows it to be recreated later. Notes ----- ColorTransform requires careful management of column order in the bijector. This is best explained with an example: Assume we have data [redshift, u, g, ellipticity, r, i, z, y, mass] Then ColorTransform(ref_idx=4, mag_idx=[1, 2, 4, 5, 6, 7]) will output [redshift, ellipticity, mass, r, u-g, g-r, r-i, i-z, z-y] Notice how the non-magnitude columns are aggregated at the front of the array, maintaining their relative order from the original array. These values are then followed by the reference magnitude, and the new colors. Also notice that the magnitudes indices in mag_idx are assumed to be adjacent colors. E.g. mag_idx=[1, 2, 5, 4, 6, 7] would have produced the colors [u-g, g-i, i-r, r-z, z-y]. You can chain multiple ColorTransforms back-to-back to create colors in a non-adjacent manner. """ # validate parameters if ref_idx <= 0: raise ValueError("ref_idx must be a positive integer.") if not isinstance(ref_idx, int): raise ValueError("ref_idx must be an integer.") if ref_idx not in mag_idx: raise ValueError("ref_idx must be in mag_idx.") bijector_info = ("ColorTransform", (ref_idx, mag_idx)) # convert mag_idx to an array mag_idx = np.array(mag_idx) @InitFunction def init_fun(rng, input_dim, **kwargs): # array of all the indices all_idx = np.arange(input_dim) # indices for columns to stick at the front front_idx = np.setdiff1d(all_idx, mag_idx) # the index corresponding to the first magnitude mag0_idx = len(front_idx) # the new column order new_idx = np.concatenate((front_idx, mag_idx)) # the new column for the reference magnitude new_ref = np.where(new_idx == ref_idx)[0][0] # define a convenience function for the forward_fun below # if the first magnitude is the reference mag, do nothing if ref_idx == mag_idx[0]: def mag0(outputs): return outputs # if the first magnitude is not the reference mag, # then we need to calculate the first magnitude (mag[0]) else: def mag0(outputs): return ops.index_update( outputs, ops.index[:, mag0_idx], outputs[:, mag0_idx] + outputs[:, new_ref], indices_are_sorted=True, unique_indices=True, ) @ForwardFunction def forward_fun(params, inputs, **kwargs): # re-order columns and calculate colors outputs = np.hstack( ( inputs[:, front_idx], # other values inputs[:, ref_idx, None], # ref mag -np.diff(inputs[:, mag_idx]), # colors ) ) # determinant of Jacobian is zero log_det = np.zeros(inputs.shape[0]) return outputs, log_det @InverseFunction def inverse_fun(params, inputs, **kwargs): # convert all colors to be in terms of the first magnitude, mag[0] outputs = np.hstack( ( inputs[:, 0:mag0_idx], # other values unchanged inputs[:, mag0_idx, None], # reference mag unchanged np.cumsum( inputs[:, mag0_idx + 1 :], axis=-1 ), # all colors mag[i-1] - mag[i] --> mag[0] - mag[i] ) ) # calculate mag[0] outputs = mag0(outputs) # mag[i] = mag[0] - (mag[0] - mag[i]) outputs = ops.index_update( outputs, ops.index[:, mag0_idx + 1 :], outputs[:, mag0_idx, None] - outputs[:, mag0_idx + 1 :], indices_are_sorted=True, unique_indices=True, ) # return to original ordering outputs = outputs[:, np.argsort(new_idx)] # determinant of Jacobian is zero log_det = np.zeros(inputs.shape[0]) return outputs, log_det return (), forward_fun, inverse_fun return init_fun, bijector_info @Bijector def InvSoftplus( column_idx: int, sharpness: float = 1 ) -> Tuple[InitFunction, Bijector_Info]: """Bijector that applies inverse softplus to the specified column(s). Applying the inverse softplus ensures that samples from that column will always be non-negative. This is because samples are the output of the inverse bijection -- so samples will have a softplus applied to them. Parameters ---------- column_idx : int An index or iterable of indices corresponding to the column(s) you wish to be transformed. sharpness : float, default=1 The sharpness(es) of the softplus transformation. If more than one is provided, the list of sharpnesses must be of the same length as column_idx. Returns ------- InitFunction The InitFunction of the Softplus Bijector. Bijector_Info Tuple of the Bijector name and the input parameters. This allows it to be recreated later. """ idx = np.atleast_1d(column_idx) k = np.atleast_1d(sharpness) if len(idx) != len(k) and len(k) != 1: raise ValueError( "Please provide either a single sharpness or one for each column index." ) bijector_info = ("InvSoftplus", (column_idx, sharpness)) @InitFunction def init_fun(rng, input_dim, **kwargs): @ForwardFunction def forward_fun(params, inputs, **kwargs): outputs = ops.index_update( inputs, ops.index[:, idx], np.log(-1 + np.exp(k * inputs[:, idx])) / k, ) log_det = np.log(1 + np.exp(-k * outputs[ops.index[:, idx]])).sum(axis=1) return outputs, log_det @InverseFunction def inverse_fun(params, inputs, **kwargs): outputs = ops.index_update( inputs, ops.index[:, idx], np.log(1 + np.exp(k * inputs[:, idx])) / k, ) log_det = -np.log(1 + np.exp(-k * inputs[ops.index[:, idx]])).sum(axis=1) return outputs, log_det return (), forward_fun, inverse_fun return init_fun, bijector_info @Bijector def Reverse() -> Tuple[InitFunction, Bijector_Info]: """Bijector that reverses the order of inputs. Returns ------- InitFunction The InitFunction of the the Reverse Bijector. Bijector_Info Tuple of the Bijector name and the input parameters. This allows it to be recreated later. """ bijector_info = ("Reverse", ()) @InitFunction def init_fun(rng, input_dim, **kwargs): @ForwardFunction def forward_fun(params, inputs, **kwargs): outputs = inputs[:, ::-1] log_det = np.zeros(inputs.shape[0]) return outputs, log_det @InverseFunction def inverse_fun(params, inputs, **kwargs): outputs = inputs[:, ::-1] log_det = np.zeros(inputs.shape[0]) return outputs, log_det return (), forward_fun, inverse_fun return init_fun, bijector_info @Bijector def Roll(shift: int = 1) -> Tuple[InitFunction, Bijector_Info]: """Bijector that rolls inputs along their last column using np.roll. Parameters ---------- shift : int, default=1 The number of places to roll. Returns ------- InitFunction The InitFunction of the the Roll Bijector. Bijector_Info Tuple of the Bijector name and the input parameters. This allows it to be recreated later. """ if not isinstance(shift, int): raise ValueError("shift must be an integer.") bijector_info = ("Roll", (shift,)) @InitFunction def init_fun(rng, input_dim, **kwargs): @ForwardFunction def forward_fun(params, inputs, **kwargs): outputs = np.roll(inputs, shift=shift, axis=-1) log_det = np.zeros(inputs.shape[0]) return outputs, log_det @InverseFunction def inverse_fun(params, inputs, **kwargs): outputs = np.roll(inputs, shift=-shift, axis=-1) log_det = np.zeros(inputs.shape[0]) return outputs, log_det return (), forward_fun, inverse_fun return init_fun, bijector_info @Bijector def Scale(scale: float) -> Tuple[InitFunction, Bijector_Info]: """Bijector that multiplies inputs by a scalar. Parameters ---------- scale : float Factor by which to scale inputs. Returns ------- InitFunction The InitFunction of the the Scale Bijector. Bijector_Info Tuple of the Bijector name and the input parameters. This allows it to be recreated later. """ if isinstance(scale, np.ndarray): if scale.dtype != np.float32: raise ValueError("scale must be a float or array of floats.") elif not isinstance(scale, float): raise ValueError("scale must be a float or array of floats.") bijector_info = ("Scale", (scale,)) @InitFunction def init_fun(rng, input_dim, **kwargs): @ForwardFunction def forward_fun(params, inputs, **kwargs): outputs = scale * inputs log_det = np.log(scale ** inputs.shape[-1]) * np.ones(inputs.shape[0]) return outputs, log_det @InverseFunction def inverse_fun(params, inputs, **kwargs): outputs = 1 / scale * inputs log_det = -np.log(scale ** inputs.shape[-1]) * np.ones(inputs.shape[0]) return outputs, log_det return (), forward_fun, inverse_fun return init_fun, bijector_info @Bijector def ShiftBounds( min: float, max: float, B: float = 5 ) -> Tuple[InitFunction, Bijector_Info]: """Bijector shifts the bounds of inputs so the lie in the range (-B, B). Parameters ---------- min : float The minimum of the input range. min : float The maximum of the input range. B : float, default=5 The extent of the output bounds, which will be (-B, B). Returns ------- InitFunction The InitFunction of the ShiftBounds Bijector. Bijector_Info Tuple of the Bijector name and the input parameters. This allows it to be recreated later. """ min = np.atleast_1d(min) max = np.atleast_1d(max) if len(min) != len(max): raise ValueError( "Lengths of min and max do not match. " + "Please provide either a single min and max, " + "or a min and max for each dimension." ) if (min > max).any(): raise ValueError("All mins must be less than maxes.") bijector_info = ("ShiftBounds", (min, max, B)) mean = (max + min) / 2 half_range = (max - min) / 2 @InitFunction def init_fun(rng, input_dim, **kwargs): @ForwardFunction def forward_fun(params, inputs, **kwargs): outputs = B * (inputs - mean) / half_range log_det = np.log(np.prod(B / half_range)) * np.ones(inputs.shape[0]) return outputs, log_det @InverseFunction def inverse_fun(params, inputs, **kwargs): outputs = inputs * half_range / B + mean log_det = np.log(np.prod(half_range / B)) * np.ones(inputs.shape[0]) return outputs, log_det return (), forward_fun, inverse_fun return init_fun, bijector_info @Bijector def Shuffle() -> Tuple[InitFunction, Bijector_Info]: """Bijector that randomly permutes inputs. Returns ------- InitFunction The InitFunction of the Shuffle Bijector. Bijector_Info Tuple of the Bijector name and the input parameters. This allows it to be recreated later. """ bijector_info = ("Shuffle", ()) @InitFunction def init_fun(rng, input_dim, **kwargs): perm = random.permutation(rng, np.arange(input_dim)) inv_perm = np.argsort(perm) @ForwardFunction def forward_fun(params, inputs, **kwargs): outputs = inputs[:, perm] log_det = np.zeros(inputs.shape[0]) return outputs, log_det @InverseFunction def inverse_fun(params, inputs, **kwargs): outputs = inputs[:, inv_perm] log_det = np.zeros(inputs.shape[0]) return outputs, log_det return (), forward_fun, inverse_fun return init_fun, bijector_info @Bijector def StandardScaler( means: np.array, stds: np.array ) -> Tuple[InitFunction, Bijector_Info]: """Bijector that applies standard scaling to each input. Each input dimension i has an associated mean u_i and standard dev s_i. Each input is rescaled as (input[i] - u_i)/s_i, so that each input dimension has mean zero and unit variance. Parameters ---------- means : np.ndarray The mean of each column. stds : np.ndarray The standard deviation of each column. Returns ------- InitFunction The InitFunction of the StandardScaler Bijector. Bijector_Info Tuple of the Bijector name and the input parameters. This allows it to be recreated later. """ bijector_info = ("StandardScaler", (means, stds)) @InitFunction def init_fun(rng, input_dim, **kwargs): @ForwardFunction def forward_fun(params, inputs, **kwargs): outputs = (inputs - means) / stds log_det = np.log(1 / np.prod(stds)) * np.ones(inputs.shape[0]) return outputs, log_det @InverseFunction def inverse_fun(params, inputs, **kwargs): outputs = inputs * stds + means log_det = np.log(np.prod(stds)) * np.ones(inputs.shape[0]) return outputs, log_det return (), forward_fun, inverse_fun return init_fun, bijector_info @Bijector def UniformDequantizer(column_idx: int = None) -> Tuple[InitFunction, Bijector_Info]: """Bijector that dequantizes discrete variables with uniform noise. Dequantizers are necessary for modeling discrete values with a flow. Note that this isn't technically a bijector. Parameters ---------- column_idx : int An index or iterable of indices corresponding to the column(s) with discrete values. Returns ------- InitFunction The InitFunction of the UniformDequantizer Bijector. Bijector_Info Tuple of the Bijector name and the input parameters. This allows it to be recreated later. """ bijector_info = ("UniformDequantizer", (column_idx,)) if column_idx is None: idx = ops.index[:, :] else: idx = ops.index[:, column_idx] @InitFunction def init_fun(rng, input_dim, **kwargs): @ForwardFunction def forward_fun(params, inputs, **kwargs): u = random.uniform(random.PRNGKey(0), shape=inputs[idx].shape) outputs = ops.index_update( inputs.astype(float), idx, inputs[idx].astype(float) + u, indices_are_sorted=True, unique_indices=True, ) log_det = np.zeros(inputs.shape[0]) return outputs, log_det @InverseFunction def inverse_fun(params, inputs, **kwargs): outputs = ops.index_update( inputs, idx, np.floor(inputs[idx]), indices_are_sorted=True, unique_indices=True, ) log_det = np.zeros(inputs.shape[0]) return outputs, log_det return (), forward_fun, inverse_fun return init_fun, bijector_info
479726
from data_mapper.properties import Property from data_mapper.properties.compound_list import CompoundListProperty as L from data_mapper.shortcuts import V, P from data_mapper.tests.test_utils import PropertyTestCase class CompoundListPropertyTests(PropertyTestCase): def test__simple(self): self.prop_test(L(V(1), V(2)), [1, 2]) def test__empty(self): self.prop_test(L(), []) def test__props_it(self): self.prop_test(L(props_it=[V(1), V(2)]), [1, 2]) self.prop_test(L(props_it=[V(1), V([2, 3])]), [1, [2, 3]]) def test__star_props(self): self.prop_test(L(V(0)), [0]) self.prop_test(L(V(0), V(1)), [0, 1]) self.prop_test(L(V(0), V(1), V(2)), [0, 1, 2]) self.prop_test(L(V(0), V(1), V(2)), [0, 1, 2]) def test__star_props__some_not_resolved(self): self.prop_not_resolved(L(P(0))) self.prop_not_resolved(L(P(0), V(1))) self.prop_not_resolved(L(V(0), P(1))) self.prop_not_resolved(L(V(0), V(1), P(2))) self.prop_not_resolved(L(P(0), P(1), P(2))) def test__star_props__lists(self): self.prop_test(L([V(0), P(1)]), [0]) self.prop_test(L([P(0), V(1)]), [1]) self.prop_test(L([P(0), V(1)], [V(2)]), [1, 2]) self.prop_test(L([P(0), V(1)], [P(2), V(3)]), [1, 3]) def test__star_props__lists__some_entirely_not_resolved(self): self.prop_not_resolved(L([P(0)])) self.prop_not_resolved(L([P(0), P(1)])) self.prop_not_resolved(L([P(0), V(1)], [P(2)])) def test__get_value__set_in_parent(self): prop = L( Property('x'), get_value=lambda *_: 'foo', ) self.prop_test(prop, ['foo'], dict(x=5)) def test__get_value__set_in_grand_parent(self): prop = L( L(Property('x')), get_value=lambda *_: 'foo', ) self.prop_test(prop, [['foo']], dict(x=5))
479781
import pandas as pd def collectPitch(df): pitch_types = ['FT','FS','CH','FF','SL','CU','FC','SI','KC','EP','KN','FO'] pitch = df.sample(n=1) pitch_label_df = pitch[pitch_types] pitch_data = pitch.drop(pitch_types,axis=1).values.tolist() return pitch_data, pitch_label_df.style.highlight_max(axis=1)
479783
import logging from flask import request from flask_restplus import Resource from biolink.ontology.ontology_manager import get_ontology from biolink.datamodel.serializers import compact_association_set, association_results from ontobio.golr.golr_associations import search_associations, GolrFields from ontobio.ontol_factory import OntologyFactory from ontobio.config import get_config from ontobio.assoc_factory import AssociationSetFactory from biolink.api.restplus import api from biolink import USER_AGENT log = logging.getLogger(__name__) parser = api.parser() parser.add_argument('subject', action='append', help='Entity ids to be examined, e.g. NCBIGene:9342, NCBIGene:7227, NCBIGene:8131, NCBIGene:157570, NCBIGene:51164, NCBIGene:6689, NCBIGene:6387') parser.add_argument('background', action='append', help='Entity ids in background set, e.g. NCBIGene:84570, NCBIGene:3630; used in over-representation tests') parser.add_argument('object_category', help='E.g. phenotype, function') parser.add_argument('subject_category', default='gene', help='Default: gene. Other types may be used e.g. disease but statistics may not make sense') parser.add_argument('max_p_value', default='0.05', help='Exclude results with p-value greater than this') parser.add_argument('ontology', help='ontology id. Must be obo id. Examples: go, mp, hp, uberon (optional: will be inferred if left blank)') parser.add_argument('taxon', help='must be NCBITaxon CURIE. Example: NCBITaxon:9606') @api.doc(params={'object_category': 'CATEGORY of entity at link OBJECT (target), e.g. function, phenotype, disease'}) class OverRepresentation(Resource): @api.expect(parser) #<EMAIL>(association) def get(self): """ Summary statistics for objects associated """ args = parser.parse_args() M=GolrFields() ont = None ocat = args.get('object_category') ontid = args.get('ontology') if ontid is None: if ocat == 'function': ontid = 'go' if ocat == 'phenotype': # TODO: other phenotype ontologies ontid = 'hp' print("Loading: {}".format(ontid)) ont = get_ontology(ontid) taxid = args.get('taxon') max_p_value = float(args.max_p_value) subjects = args.get('subject') background = args.get('background') afactory = AssociationSetFactory() aset = afactory.create(ontology=ont, subject_category='gene', object_category=ocat, taxon=taxid) enr = aset.enrichment_test(subjects=subjects, background=background, threshold=max_p_value, labels=True) return {'results': enr }
479792
from setuptools import setup, find_packages setup( name = 'docformer', packages = find_packages(where="src"), package_dir = {"": "src", "docformer": "src/docformer"}, version = '0.1.0', license='MIT', description = 'DocFormer: End-to-End Transformer for Document Understanding', author = '<NAME>, <NAME>', author_email = '<EMAIL>, <EMAIL>', url = 'https://github.com/shabie/docformer', keywords = [ 'artificial intelligence', 'attention mechanism', 'document understanding', ], install_requires=[ 'einops>=0.3', 'torch>=1.6', 'torchvision', 'pytesseract', 'transformers', 'pytesseract>=0.3.8', ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.7', ], )
479793
import sys sys.path.append('../') import argparse import os import torch from elmoformanylangs import Embedder from pytorch_transformers import BertModel, BertTokenizer from tqdm import tqdm import numpy as np from data_util import io_helper """ Creates static vectors for vocabulary """ def get_elmo(model, sentence_list, indices_list): """ Get elmo embeddings :param model: elmo model :param sentence_list: List of sentences for which embeddings will be created :param indices_list: List of list of indices. For every sentence: A list of indices for which words embeddings will be created :return: List of list of word vectors. First list represents the sentences. Second list contains the word vectors in the same order as the indices were given in the indices_list. """ vector_list = [] # Give ELMo a list of sentences embedding = model.sents2elmo(sentence_list) for i in range(0, len(sentence_list)): # Extract the words matching the indices for this sentence indices = indices_list[i] for ind in indices: if ind == "": continue ind = int(ind) e = embedding[i][ind] vector_list += [e.tolist()] return vector_list def load_bert(): """ Loads BERT model :return: bert model """ pretrained_weights = 'bert-base-multilingual-cased' model = BertModel.from_pretrained(pretrained_weights) # Move BERT to cuda if available if torch.cuda.is_available(): model.to("cuda") return model def get_bert(model, tokenizer, sentence_list, index_list): """ Get BERT embeddings :param model: BERT model :param tokenizer: BERT tokenizer :param sentence_list: List of sentences for which embeddings will be created :param indices_list: List of list of indices. For every sentence: A list of indices for which words embeddings will be created :return: List of list of word vectors. First list represents the sentences. Second list contains the word vectors in the same order as the indices were given in the indices_list. """ vector_list = [] for i in range(0, len(sentence_list)): sentence = sentence_list[i] indices = index_list[i] sentence_str = " ".join(sentence) if torch.cuda.is_available(): input_ids_sentence = torch.tensor([tokenizer.encode(sentence_str, add_special_tokens=True)], device="cuda") else: input_ids_sentence = torch.tensor([tokenizer.encode(sentence_str, add_special_tokens=True)]) last_hidden_states = model(input_ids_sentence)[0] # Models outputs are now tuples # Find relevant vectors token_count_per_word = [] for j in range(0, len(sentence)): # Save number of tokens per word word = sentence[j] tokens = tokenizer.encode(word, add_special_tokens=False) token_count_per_word.append(len(tokens)) for j in range(0, len(indices)): if indices[j] == "": continue # Find tokens for this word index = int(indices[j]) offset = 1 for k in range(0, index): offset += token_count_per_word[k] last_token = offset + token_count_per_word[index] vector_list += [np.mean(last_hidden_states[0][offset:last_token].tolist(), axis=0)] # BERT uses word piece tokenization. Calculate the average over all tokens from this word return vector_list def load_elmo(lang): """ Loads elmo model :param lang: language of the model :return: elmo model """ emb = Embedder("../embeddings/elmo/" + lang) return emb def gen_embeds(vocab_dir, output_dir, lang): """ Generates all supported embeddings for given language :param vocab_dir: Directory of the vocabulary files :param output_dir: Directory of the embedding files :param lang: language """ print("Generate " + lang + " embeddings") # Read the input file to a list sentence_file = os.path.join(vocab_dir, lang + ".txt") with open(sentence_file) as f: lines = f.read().splitlines() f.close() # Delete embeddings clear_embeds(output_dir, "elmo", lang) clear_embeds(output_dir, "bert", lang) sentence_list = [] indices_list = [] for line in lines: parts = line.split("\t") tokens = parts[0].split(" ") indices = parts[1].split(" ") sentence_list.append(tokens) indices_list.append(indices) # Batch batch = 10 s = int(len(sentence_list) / batch) + 1 # Load BERT bert = load_bert() bert_tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased') for i in tqdm(range(0, s)): # Check if this is the last batch and correct the last index start = i * batch end = (i + 1) * batch if start >= len(sentence_list): break if end > len(sentence_list): end = len(sentence_list) # Sentences and indices for this batch sl = sentence_list[start:end] il = indices_list[start:end] # Extract and save embeddings store_embeds(output_dir, sl, il, get_elmo(load_elmo(lang), sl, il), lang, "elmo") store_embeds(output_dir, sl, il, get_bert(bert, bert_tokenizer, sl, il), lang, "bert") def clear_embeds(output_dir, embedding, lang): """ Deletes all embedding files for the given language and embedding :param output_dir: directory of the embeddings :param embedding: embedding :param lang: language """ outfile = os.path.join(output_dir, embedding, lang + ".vec") if os._exists(outfile): os.remove(outfile) def store_embeds(output_dir, sentence_list, indices_list, vector_list, lang, embedding): """ Store all embeddings in a file :param output_dir: Directory of the embedding files :param sentence_list: list of list of tokens :param indices_list: list of list of word indices. :param vector_list: list of word vectors for the tokens :param lang: language :param embedding: embedding type """ # Create the output file outfile = os.path.join(output_dir, embedding, lang + ".vec") io_helper.ensure_dir_for_file(outfile) with open(outfile, 'a') as fout: j = 0 for i in range(0, len(sentence_list)): # Write a separate line for every sentence index-pair sentence = sentence_list[i] sentence_str = " ".join(sentence) for index in indices_list[i]: if index == "": continue # Read vector and convert it to a string vector = vector_list[j] j += 1 vector_string = "" z = 0 for number in vector: if z != 0: vector_string += " " z += 1 vector_string += str(number) # Write vector for sentence-index pair to the file fout.write(sentence_str + "\t" + index + "\t" + vector_string + "\n") fout.close() if __name__ == '__main__': parser = argparse.ArgumentParser() # argument options parser.add_argument('--vocab', type=str, required=False, default="../intrinsic/sentences/", help='directory of the vocabulary') parser.add_argument('--output', type=str, required=False, default="../intrinsic/static_context_embeddings/", help='output directory of the embeddings') parser.add_argument('--embeddings', type=str, required=False, default=None) parser.add_argument('--langs', type=str, required=False, default=None) args = parser.parse_args() embeddings = None if args.embeddings is not None: embeddings = args.embeddings.split(",") langs = ["german", "finnish", "russian", "turkish", "spanish"] if args.langs is not None: langs = args.langs.split(",") for lang in langs: print("Language " + lang) gen_embeds(args.vocab, args.output, lang)
479868
from django.db import models # Create your models here. from kala.models import Kala from taghaza.models import Taghaza class Sefaresh(models.Model): taghaza = models.ForeignKey(Taghaza, on_delete=models.DO_NOTHING , verbose_name="شماره تقاضا") kala = models.ForeignKey(Kala, on_delete=models.DO_NOTHING, verbose_name="نام کالا") meghdar = models.IntegerField(verbose_name="مقدار") class Meta: verbose_name = "سفارش" verbose_name_plural = "سفارش ها" def __str__(self): return str(self.kala) + " به مقدار: " + str(self.meghdar) +" "+ self.kala.vahede_andazegiri
479889
from typing import KeysView, Generator SERVICES_FOR_GROUP = { "all": "tad_harvester tad_timelord_launcher tad_timelord tad_farmer tad_full_node tad_wallet".split(), "node": "tad_full_node".split(), "harvester": "tad_harvester".split(), "farmer": "tad_harvester tad_farmer tad_full_node tad_wallet".split(), "farmer-no-wallet": "tad_harvester tad_farmer tad_full_node".split(), "farmer-only": "tad_farmer".split(), "timelord": "tad_timelord_launcher tad_timelord tad_full_node".split(), "timelord-only": "tad_timelord".split(), "timelord-launcher-only": "tad_timelord_launcher".split(), "wallet": "tad_wallet tad_full_node".split(), "wallet-only": "tad_wallet".split(), "introducer": "tad_introducer".split(), "simulator": "tad_full_node_simulator".split(), } def all_groups() -> KeysView[str]: return SERVICES_FOR_GROUP.keys() def services_for_groups(groups) -> Generator[str, None, None]: for group in groups: for service in SERVICES_FOR_GROUP[group]: yield service def validate_service(service: str) -> bool: return any(service in _ for _ in SERVICES_FOR_GROUP.values())
479908
from flask import request, jsonify from app import db, jwt from app.auth import bp from app.models import Users, RevokedTokenModel from app.schemas import UsersDeserializingSchema from app.errors.handlers import bad_request, error_response from flask_jwt_extended import ( create_access_token, create_refresh_token, get_jwt_identity, jwt_required, get_jwt, ) from marshmallow import ValidationError user_schema = UsersDeserializingSchema() # Checks if the JWT is on the blacklisted token list @jwt.token_in_blocklist_loader def check_if_token_in_blacklist(jwt_header, jwt_data) -> bool: """ Helper function for checking if a token is present in the database revoked token table Parameters ---------- jwt_header : dictionary header data of the JWT jwt_data : dictionary payload data of the JWT Returns ------- bool Returns True if the token is revoked, False otherwise """ jti = jwt_data["jti"] return RevokedTokenModel.is_jti_blacklisted(jti) @bp.post("/register") def register() -> str: """ Endpoint for adding a new user to the database Returns ------- str A JSON object containing the success message """ try: result = user_schema.load(request.json) except ValidationError as e: return bad_request(e.messages) if Users.query.filter_by(username=result["username"]).first(): return bad_request("Username already in use") if Users.query.filter_by(email=result["email"]).first(): return bad_request("Email already in use") user = Users( username=result["username"], first_name=result["first_name"], last_name=result["last_name"], email=result["email"], birthday=result["birthday"], ) user.set_password(result["password"]) db.session.add(user) db.session.commit() return jsonify({"msg": "Successfully registered"}), 201 @bp.post("/login") def login() -> str: """ Endpoint for authorizing a user and retrieving a JWT Returns ------- str A JSON object containing both the access JWT and the refresh JWT """ try: result = user_schema.load(request.json) except ValidationError as e: return bad_request(e.messages) user = Users.query.filter_by(username=result["username"]).first() if user is None or not user.check_password(result["password"]): return error_response(401, message="Invalid username or password") tokens = { "access_token": create_access_token(identity=user.id, fresh=True), "refresh_token": create_refresh_token(identity=user.id), } return jsonify(tokens), 200 @bp.post("/refresh") @jwt_required(refresh=True) def refresh() -> str: """ Endpoint in order to retrieve a new access JWT using the refresh JWT. A non-fresh access token is returned because the password is not involved in this transaction Returns ------- str A JSON object containing the new access token """ user_id = get_jwt_identity() new_token = create_access_token(identity=user_id, fresh=False) payload = {"access_token": new_token} return jsonify(payload), 200 @bp.post("/fresh-login") def fresh_login() -> str: """ Endpoint for requesting a new fresh access token Returns ------- str A JSON object containing """ try: result = user_schema.load(request.json) except ValidationError as e: return bad_request(e.messages) user = Users.query.filter_by(username=result["username"]).first() if user is None or not user.check_password(result["password"]): return error_response(401, message="Invalid username or password") new_token = create_access_token(identity=user.id, fresh=True) payload = {"access_token": new_token} return jsonify(payload), 200 @bp.delete("/logout/token") @jwt_required() def logout_access_token() -> str: """ Endpoint for revoking the current user"s access token Returns ------- str A JSON object containing the sucess message """ jti = get_jwt()["jti"] revoked_token = RevokedTokenModel(jti=jti) revoked_token.add() return jsonify({"msg": "Successfully logged out"}), 200 @bp.delete("/logout/fresh") @jwt_required(refresh=True) def logout_refresh_token() -> str: """ Endpoint for revoking the current user"s refresh token Returns ------- str A JSON object containing a success message """ jti = get_jwt()["jti"] revoked_token = RevokedTokenModel(jti=jti) revoked_token.add() return jsonify({"msg": "Successfully logged out"}), 200
479920
from django.conf.urls import url, include from rest_framework.routers import DefaultRouter from .views import ArticleViewSet, AuthorViewSet router = DefaultRouter() router.register(r'articles', ArticleViewSet) router.register(r'authors', AuthorViewSet) urlpatterns = [ url('', include(router.urls)), ]
479926
from __future__ import with_statement import logging from logging.config import fileConfig from alembic import context from sqlalchemy import create_engine from falcon_web_demo.persistence import get_url config = context.config fileConfig(config.config_file_name) kwargs = {'as_dictionary': True} pref = 'loggingPreference' logging_preference = context.get_x_argument(**kwargs).get(pref) if logging_preference: logging.getLogger('alembic').setLevel(logging_preference) connectable = create_engine(get_url()) with connectable.connect() as connection: context.configure( connection=connection, target_metadata=None ) with context.begin_transaction(): context.run_migrations()
479934
import re import nltk from nltk.corpus import stopwords nltk.download('stopwords') stopwords_en = set(stopwords.words('english')) def normalize_text(string): """ Text normalization from https://github.com/yoonkim/CNN_sentence/blob/23e0e1f735570/process_data.py as specified in Yao's paper. """ string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string) string = re.sub(r"\'s", " \'s", string) string = re.sub(r"\'ve", " \'ve", string) string = re.sub(r"n\'t", " n\'t", string) string = re.sub(r"\'re", " \'re", string) string = re.sub(r"\'d", " \'d", string) string = re.sub(r"\'ll", " \'ll", string) string = re.sub(r",", " , ", string) string = re.sub(r"!", " ! ", string) string = re.sub(r"\(", " \( ", string) string = re.sub(r"\)", " \) ", string) string = re.sub(r"\?", " \? ", string) string = re.sub(r"\s{2,}", " ", string) return string.strip().lower() def tokenize(text): return [t for t in normalize_text(text).split() if t not in stopwords_en]
479961
from yowsup.structs import ProtocolTreeNode from yowsup.layers.protocol_iq.protocolentities import ResultIqProtocolEntity class SuccessRemoveParticipantsIqProtocolEntity(ResultIqProtocolEntity): ''' <iq type="result" from="{{group_jid}}" id="{{id}}"> <remove type="success" participant="{{jid}}"></remove> <remove type="success" participant="{{jid}}"></remove> </iq> ''' def __init__(self, _id, groupId, participantList): super(SuccessRemoveParticipantsIqProtocolEntity, self).__init__(_from = groupId, _id = _id) self.setProps(groupId, participantList) def setProps(self, groupId, participantList): self.groupId = groupId self.participantList = participantList self.action = 'remove' def getAction(self): return self.action def toProtocolTreeNode(self): node = super(SuccessRemoveParticipantsIqProtocolEntity, self).toProtocolTreeNode() participantNodes = [ ProtocolTreeNode("remove", { "type": "success", "participant": participant }) for participant in self.participantList ] node.addChildren(participantNodes) return node @staticmethod def fromProtocolTreeNode(node): entity = super(SuccessRemoveParticipantsIqProtocolEntity, SuccessRemoveParticipantsIqProtocolEntity).fromProtocolTreeNode(node) entity.__class__ = SuccessRemoveParticipantsIqProtocolEntity participantList = [] for participantNode in node.getAllChildren(): if participantNode["type"]=="success": participantList.append(participantNode["participant"]) entity.setProps(node.getAttributeValue("from"), participantList) return entity
479964
from __future__ import print_function import sys import platform import textwrap from subprocess import check_output from setuptools import setup, find_packages def check_install(): """ Try to detect the two most common installation errors: 1. Installing on macOS using a Homebrew version of Python 2. Installing on Linux using Python 2 when GDB is linked with Python 3 """ if platform.system() == 'Darwin' and sys.executable != '/usr/bin/python': print("*" * 79) print(textwrap.fill( "WARNING: You are not using the version of Python included with " "macOS. If you intend to use Voltron with the LLDB included " "with Xcode, or GDB installed with Homebrew, it will not work " "unless it is installed using the system's default Python. If " "you intend to use Voltron with a debugger installed by some " "other method, it may be safe to ignore this warning. See the " "following documentation for more detailed installation " "instructions: " "https://github.com/snare/voltron/wiki/Installation", 79)) print("*" * 79) elif platform.system() == 'Linux': try: output = check_output([ "gdb", "-batch", "-q", "--nx", "-ex", "pi print(sys.version_info.major)" ]).decode("utf-8") gdb_python = int(output) if gdb_python != sys.version_info.major: print("*" * 79) print(textwrap.fill( "WARNING: You are installing Voltron using Python {0}.x " "and GDB is linked with Python {1}.x. GDB will not be " "able to load Voltron. Please install using Python {1} " "if you intend to use Voltron with the copy of GDB that " "is installed. See the following documentation for more " "detailed installation instructions: " "https://github.com/snare/voltron/wiki/Installation" .format(sys.version_info.major, gdb_python), 79)) print("*" * 79) except: pass check_install() requirements = [ 'scruffington>=0.3.6', 'flask', 'flask_restful', 'blessed', 'pygments', 'requests', 'requests_unixsocket', 'six', 'pysigset', 'pygments', ] if sys.platform == 'win32': requirements.append('cursor') setup( name="voltron", version="0.1.7", author="snare", author_email="<EMAIL>", description="A debugger UI", license="MIT", keywords="voltron debugger ui gdb lldb vdb " "vivisect vtrace windbg cdb pykd", url="https://github.com/snare/voltron", packages=find_packages(exclude=['tests', 'examples']), install_requires=requirements, package_data={'voltron': ['config/*']}, entry_points={ 'console_scripts': ['voltron=voltron:main'], 'pygments.lexers': [ 'lldb_intel = voltron.lexers:LLDBIntelLexer', 'lldb_att = voltron.lexers:LLDBATTLexer', 'gdb_intel = voltron.lexers:GDBIntelLexer', 'gdb_att = voltron.lexers:GDBATTLexer', 'vdb_intel = voltron.lexers:VDBIntelLexer', 'vdb_att = voltron.lexers:VDBATTLexer', 'windbg_intel = voltron.lexers:WinDbgIntelLexer', 'windbg_att = voltron.lexers:WinDbgATTLexer', 'capstone_intel = voltron.lexers:CapstoneIntelLexer', ], 'pygments.styles': [ 'volarized = voltron.styles:VolarizedStyle', ] }, zip_safe=False )
480059
import supriya.synthdefs import supriya.ugens __all__ = [] def _build_link_audio_synthdef(channel_count): r""" SynthDef("system_link_audio_" ++ i, { arg out=0, in=16, vol=1, level=1, lag=0.05, doneAction=2; var env = EnvGate(doneAction:doneAction, curve:'sin') * Lag.kr(vol * level, lag); Out.ar(out, InFeedback.ar(in, i) * env); }, [\kr, \kr, \kr, \kr, \kr, \ir]).add; """ name = "system_link_audio_{}".format(channel_count) builder = supriya.synthdefs.SynthDefBuilder( name=name, out=0, in_=16, gate=1, fade_time=0.02, done_action=2 ) with builder: start_value = builder["fade_time"] <= 0 envelope = supriya.synthdefs.Envelope( amplitudes=[start_value, 1.0, 0.0], durations=[1.0, 1.0], curves=[supriya.EnvelopeShape.SINE, -supriya.EnvelopeShape.SINE], release_node=1.0, ) envelope = supriya.ugens.EnvGen.kr( done_action=builder["done_action"], envelope=envelope, gate=builder["gate"], time_scale=builder["fade_time"], ) source = supriya.ugens.InFeedback.ar( bus=builder["in_"], channel_count=channel_count ) supriya.ugens.Out.ar(bus=builder["out"], source=source * envelope) globals()[name] = builder.build() __all__.append(name) def _build_link_control_synthdef(channel_count): r""" SynthDef("system_link_control_" ++ i, { arg out=0, in=16, doneAction=2; var env = EnvGate(doneAction:doneAction, curve:'lin'); Out.kr(out, In.kr(in, i) * env); }, [\kr, \kr, \ir]).add; """ name = "system_link_control_{}".format(channel_count) builder = supriya.synthdefs.SynthDefBuilder( name=name, out=0, in_=16, gate=1, fade_time=0.02, done_action=2 ) with builder: start_value = builder["fade_time"] <= 0 envelope = supriya.synthdefs.Envelope( amplitudes=[start_value, 1.0, 0.0], durations=[1.0, 1.0], curves=supriya.EnvelopeShape.LINEAR, release_node=1.0, ) envelope = supriya.ugens.EnvGen.kr( done_action=builder["done_action"], envelope=envelope, gate=builder["gate"], time_scale=builder["fade_time"], ) input_ = supriya.ugens.In.kr(bus=builder["in_"], channel_count=channel_count) supriya.ugens.Out.kr(bus=builder["out"], source=input_ * envelope) globals()[name] = builder.build() __all__.append(name) for i in range(1, 17): _build_link_audio_synthdef(i) _build_link_control_synthdef(i)
480066
from Voicelab.pipeline.Node import Node import numpy as np import seaborn as sns import os import parselmouth from parselmouth.praat import call import matplotlib.pyplot as plt from Voicelab.toolkits.Voicelab.VoicelabNode import VoicelabNode #from Voicelab.VoicelabWizard.SpectrumPlotWindow import SpectrumPlotWindow ################################################################################################### # VISUALIZE VOICE NODE # WARIO pipeline node for visualizing a voice as a spectrogram. ################################################################################################### # ARGUMENTS # 'voice' : sound file generated by parselmouth praat ################################################################################################### # RETURNS ################################################################################################### class VisualizeSpectrumNode(VoicelabNode): def __init__(self, *args, **kwargs): """ Args: *args: **kwargs: """ super().__init__(*args, **kwargs) self.args = { "Max Frequency": 5500, # Max frequency, usually highest formant "Plot LPC Curve": True, } ############################################################################################### # process: WARIO hook called once for each voice file. ############################################################################################### def process(self): sound = self.args["voice"] max_freq = self.args["Max Frequency"] spectrum = sound.to_spectrum() spectrum_values = spectrum.values[0,:] + 1j * spectrum.values[1,:] power_spectral_density = 10 * np.log10(2 * abs(spectrum_values)**2 * spectrum.dx / 4e-10) frequencies = np.array([spectrum.get_frequency_from_bin_number(bin + 1) for bin in range(spectrum.get_number_of_bins())]) # Create subplots so we can overlay the plots fig, ax = plt.subplots() # First plot the spectrum as we do normally ax.plot(frequencies, power_spectral_density, color='black', linewidth=0.25) plt.xlim(xmin=-4e-10, xmax=5500) plt.ylim(ymin=0, ymax=np.nanmax(power_spectral_density)) ax.set_xlabel("Frequency bin (Hz)") ax.set_ylabel("Amplitude (dB) / Frequency(Hz)") # Plot LPC Curve if user specifies. if self.args["Plot LPC Curve"]: # Measure the formants try: formant_path_object = call(sound, "To FormantPath (burg)", 0.0025, 5, max_freq, 0.025, 50, 0.025, 5) formant_object = call(formant_path_object, "Extract Formant") # Create LPC object lpc = call(formant_object, 'To LPC', max_freq*2) # Extract Spectral Density (Amplitude) and Frequency Bins from LPC analysis lpc_spectrum = call(lpc, 'To Spectrum (slice)', 0, 20, 0, 50) lpc_spectrum_values = lpc_spectrum.values[0,:] + 1j * lpc_spectrum.values[1,:] lpc_power_spectral_density = 10 * np.log10(2 * abs(lpc_spectrum_values)**2 * lpc_spectrum.dx / 4e-10) lpc_frequencies = np.array([lpc_spectrum.get_frequency_from_bin_number(bin + 1) for bin in range(lpc_spectrum.get_number_of_bins())]) # plot the LPC curve ax.plot(lpc_frequencies, lpc_power_spectral_density, color='blue', linewidth=5) # plt.ylim(ymin=0, ymax=np.nanmax(lpc_power_spectral_density + 10)) ax.set_xlim(xmin=-4e-10, xmax=5500) ax.set_ylim(ymin=0, ymax=np.nanmax(lpc_power_spectral_density)) except: print(sound) print(self.args["file_path"]) fig = plt.figure() plt.close(fig) return {"spectrum": fig}
480088
import asyncio from typing import Any, Awaitable, Callable, Dict, List, Set, Type from loguru import logger from rich.console import Console from rich.logging import RichHandler from rich.status import Status from avilla.core.launch import LaunchComponent, resolve_requirements from avilla.core.service import Service, TInterface class LaunchMock: launch_components: Dict[str, LaunchComponent] services: List[Service] rich_console: Console sigexit: asyncio.Event def __init__(self, launch_components: Dict[str, LaunchComponent], services: List[Service]): self.launch_components = { **launch_components, **{i.launch_component.id: i.launch_component for i in services}, } self.services = services self.rich_console = Console() def new_launch_component( self, id: str, requirements: Set[str] = None, mainline: Callable[["LaunchMock"], Awaitable[Any]] = None, prepare: Callable[["LaunchMock"], Awaitable[Any]] = None, cleanup: Callable[["LaunchMock"], Awaitable[Any]] = None, ) -> LaunchComponent: component = LaunchComponent(id, requirements or set(), mainline, prepare, cleanup) # type: ignore self.launch_components[id] = component return component def remove_launch_component(self, id: str): if id not in self.launch_components: raise KeyError("id doesn't exist.") del self.launch_components[id] def add_service(self, service: Service): if service in self.services: raise ValueError("existed service") self.services.append(service) launch_component = service.launch_component self.launch_components[launch_component.id] = launch_component def remove_service(self, service: Service): if service not in self.services: raise ValueError("service doesn't exist.") self.services.remove(service) del self.launch_components[service.launch_component.id] def get_interface(self, interface_type: Type[TInterface]) -> TInterface: for service in self.services: if interface_type in service.supported_interface_types: return service.get_interface(interface_type) raise ValueError(f"interface type {interface_type} not supported.") async def launch(self): logger.configure( handlers=[ { "sink": RichHandler(console=self.rich_console, markup=True), "format": "<green>{time:YYYY-MM-DD HH:mm:ss.SSS}</green> | <level>{level: <8}</level> | " "<cyan>{name}</cyan>: <cyan>{function}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>", } ] ) for service in self.services: logger.info(f"using service: {service.__class__.__name__}") logger.info(f"launch components count: {len(self.launch_components)}") with Status("[orange bold]preparing components...", console=self.rich_console) as status: for component_layer in resolve_requirements(set(self.launch_components.values())): tasks = [ asyncio.create_task(component.prepare(self), name=component.id) # type: ignore for component in component_layer if component.prepare ] if tasks: for task in tasks: task.add_done_callback(lambda t: status.update(f"{t.get_name()} prepared.")) await asyncio.wait(tasks) status.update("all launch components prepared.") await asyncio.sleep(1) logger.info("[green bold]components prepared, switch to mainlines and block main thread.") loop = asyncio.get_running_loop() tasks = [ loop.create_task(component.mainline(self), name=component.id) # type: ignore for component in self.launch_components.values() if component.mainline ] for task in tasks: task.add_done_callback(lambda t: logger.info(f"mainline {t.get_name()} completed.")) logger.info(f"mainline count: {len(tasks)}") try: await asyncio.gather(*tasks) except asyncio.CancelledError: logger.info("[red bold]cancelled by user.") if not self.sigexit.is_set(): self.sigexit.set() finally: logger.info("[red bold]all mainlines exited, cleanup start.") for component_layer in reversed(resolve_requirements(set(self.launch_components.values()))): tasks = [ asyncio.create_task(component.cleanup(self), name=component.id) # type: ignore for component in component_layer if component.cleanup ] if tasks: for task in tasks: task.add_done_callback(lambda t: logger.info(f"{t.get_name()} cleanup finished.")) await asyncio.gather(*tasks) logger.info("[green bold]cleanup finished.") logger.warning("[red bold]exiting...") def launch_blocking(self): loop = asyncio.new_event_loop() self.sigexit = asyncio.Event(loop=loop) launch_task = loop.create_task(self.launch(), name="avilla-launch") try: loop.run_until_complete(launch_task) except KeyboardInterrupt: self.sigexit.set() launch_task.cancel() loop.run_until_complete(launch_task)
480090
from recordthresher.record_maker import PmhRecordMaker from recordthresher.util import parseland_parse class OstiRecordMaker(PmhRecordMaker): @staticmethod def _is_specialized_record_maker(pmh_record): return pmh_record and pmh_record.pmh_id and pmh_record.pmh_id.startswith('oai:osti.gov:') @classmethod def _representative_page(cls, pmh_record): item_id = pmh_record.pmh_id.split(':')[-1] for repo_page in pmh_record.pages: if repo_page.url and repo_page.url.endswith(f'osti.gov/biblio/{item_id}'): return repo_page return None @classmethod def _make_source_specific_record_changes(cls, record, pmh_record, repo_page): if (pl_parse := parseland_parse(cls._parseland_api_url(repo_page), retry_seconds=10)) is not None: record.set_authors(pl_parse['authors']) record.set_published_date(pl_parse['published_date']) record.genre = pl_parse['genre']
480096
from app import db class Rules(db.Model): __tablename__ = "rules" id = db.Column(db.Integer, primary_key=True) workload_name = db.Column(db.String(120), unique=True, nullable=False) key_name = db.Column(db.String(20)) score = db.Column(db.DECIMAL(20, 2)) infos = db.relationship('Information', backref='rules.id') def to_json(self): return { 'id': self.id, 'display_name': self.workload_name, 'key_name': self.key_name, 'score': self.score }
480194
import numpy as np import matplotlib.pyplot as plt import seaborn as sns def data_block_heatmaps(blocks): """ Plots a heat map of a bunch of data blocks """ num_blocks = len(blocks) if hasattr(blocks, 'keys'): block_names = list(blocks.keys()) else: # block_names = ['block {}'.format(i) for i in range(len(blocks))] block_names = list(range(len(blocks))) for k, bn in enumerate(block_names): plt.subplot(1, num_blocks, k + 1) sns.heatmap(blocks[bn], xticklabels=False, yticklabels=False, cmap='RdBu') plt.title('{}'.format(bn)) def jive_full_estimate_heatmaps(full_block_estimates, blocks): """ Plots the full JVIE estimates: X, J, I, E """ num_blocks = len(full_block_estimates) # plt.figure(figsize=[10, num_blocks * 10]) block_names = list(full_block_estimates.keys()) for k, bn in enumerate(block_names): # grab data X = blocks[bn] J = full_block_estimates[bn]['joint'] I = full_block_estimates[bn]['individual'] E = full_block_estimates[bn]['noise'] # observed data plt.subplot(4, num_blocks, k + 1) sns.heatmap(X, xticklabels=False, yticklabels=False, cmap='RdBu') plt.title('{} observed data'.format(bn)) # full joint estimate plt.subplot(4, num_blocks, k + num_blocks + 1) sns.heatmap(J, xticklabels=False, yticklabels=False, cmap='RdBu') plt.title('joint') # full individual estimate plt.subplot(4, num_blocks, k + 2 * num_blocks + 1) sns.heatmap(I, xticklabels=False, yticklabels=False, cmap='RdBu') plt.title('individual') # full noise estimate plt.subplot(4, num_blocks, k + 3 * num_blocks + 1) sns.heatmap(E, xticklabels=False, yticklabels=False, cmap='RdBu') plt.title('noise ')
480204
import datetime from optuna.study import StudySummary, StudyDirection from optuna.trial import FrozenTrial, TrialState from optuna.distributions import distribution_to_json, json_to_distribution def serialize_datetime(obj): if isinstance(obj, datetime.datetime): return {"__datetime__": True, "as_str": obj.strftime("%Y%m%dT%H:%M:%S.%f")} return obj def deserialize_datetime(obj): if "__datetime__" in obj: obj = datetime.datetime.strptime(obj["as_str"], "%Y%m%dT%H:%M:%S.%f") return obj def serialize_frozentrial(trial): data = trial.__dict__.copy() data["state"] = data["state"].name for attr in [ "trial_id", "number", "params", "user_attrs", "system_attrs", "distributions", "datetime_start", ]: data[attr] = data.pop(f"_{attr}") data["distributions"] = { k: distribution_to_json(v) for k, v in data["distributions"].items() } data["datetime_start"] = serialize_datetime(data["datetime_start"]) data["datetime_complete"] = serialize_datetime(data["datetime_complete"]) return data def deserialize_frozentrial(data): data["state"] = getattr(TrialState, data["state"]) data["distributions"] = { k: json_to_distribution(v) for k, v in data["distributions"].items() } if data["datetime_start"] is not None: data["datetime_start"] = deserialize_datetime(data["datetime_start"]) if data["datetime_complete"] is not None: data["datetime_complete"] = deserialize_datetime(data["datetime_complete"]) trail = FrozenTrial(**data) return trail def serialize_studysummary(summary): data = summary.__dict__.copy() data["study_id"] = data.pop("_study_id") data["best_trial"] = serialize_frozentrial(data["best_trial"]) data["datetime_start"] = serialize_datetime(data["datetime_start"]) data["direction"] = data["direction"]["name"] return data def deserialize_studysummary(data): data["direction"] = getattr(StudyDirection, data["direction"]) data["best_trial"] = deserialize_frozentrial(data["best_trial"]) data["datetime_start"] = deserialize_datetime(data["datetime_start"]) summary = StudySummary(**data) return summary def serialize_studydirection(direction): return direction.name def deserialize_studydirection(data): return getattr(StudyDirection, data)
480236
from Crypto.Util.number import long_to_bytes N = 56469405750402193641449232753975279624388972985036568323092258873756801156079913882719631252209538683205353844069168609565141017503581101845476197667784484712057287713526027533597905495298848547839093455328128973319016710733533781180094847568951833393705432945294907000234880317134952746221201465210828955449 P = 23**113 + 1 + 1158518719 Q = N // P enc = 11104433528952071860984483920122173351342473018268740572598132083816861855404615534742178674185812745207876206939230069251889172817480784782618716608299615251541018034321389516732611030641383571306414414804563863131355221859432899624060128497648444189432635603082478662202695641001726208833663163000227827283 phi = (P - 1) * (Q - 1) d = pow(0x10001, -1, phi) print(long_to_bytes(pow(enc, d, N)).decode())
480237
from io import BufferedIOBase from ps1_argonaut.BaseDataClasses import BaseDataClass from ps1_argonaut.configuration import Configuration class ScriptData(BaseDataClass): def __init__(self, data: bytes): self.data = data @property def size(self): return len(self.data) @classmethod def parse(cls, data_in: BufferedIOBase, conf: Configuration, *args, **kwargs): super().parse(data_in, conf) size = 4 * int.from_bytes(data_in.read(4), 'little') return cls(data_in.read(size))
480248
from .searcher import Searcher class SimulatedAnnealing(Searcher): def __init__(self, population, params, generation_size=32, stabilization_limit=10): self.population = population Searcher.__init__(self, self.population, generation_size, stabilization_limit) self.params = None self.set_params(params) def set_params(self, params): self.params = params def run_one(self): pass def get_params(self): pass
480249
import sys import time import pandas as pd from selenium import webdriver from selenium.common.exceptions import WebDriverException, NoSuchElementException from selenium.webdriver.common.keys import Keys def ciceksepeti_scraper(): def initialize(): def preference(scrape_input, question): while (scrape_input.lower() != "y") or (scrape_input.lower() != "n"): if scrape_input.lower() == "y": output = True break elif scrape_input.lower() == "n": output = False break else: print("Geçersiz yanıt.") scrape_input = input(question) return output def delay_check(delay): while type(delay) != int: try: delay = int(delay) except ValueError: print("Lütfen bir sayı değeri giriniz.") delay = input("Bekleme süresi: ") return delay print(""" --------------------------------------------------------- - Çiçeksepeti Scraper'a hoş geldiniz! - - Geliştirici: <NAME> - --------------------------------------------------------- """) global product_name, file, delay, review_texts, customer_province_texts, customer_name_texts, date_texts, scrape_province, scrape_customer_names, scrape_dates, path product_name = input("İncelemelerin çekileceği ürün adı: ") file = input("Oluşturulacak Excel dosyasının adı: ") file = file + ".xlsx" delay = delay_check(input("Bekleme süresi(sn): ")) review_texts = [] customer_province_texts = [] customer_name_texts = [] date_texts = [] scrape_province_question = "Müşterinin konumu çekilsin mi(y/n): " scrape_province_input = input(scrape_province_question) scrape_province = preference(scrape_province_input, scrape_province_question) scrape_customer_name_question = "Müşteri isimleri çekilsin mi(y/n): " scrape_customer_name_input = input(scrape_customer_name_question) scrape_customer_names = preference(scrape_customer_name_input, scrape_customer_name_question) scrape_date_question = "İnceleme tarihleri çekilsin mi(y/n): " scrape_date_input = input(scrape_date_question) scrape_dates = preference(scrape_date_input, scrape_date_question) path = "BURAYA CHROMEDRIVER KONUMUNU GİRİNİZ" def scrape(): try: print("Chromedriver'a erişiliyor...") driver = webdriver.Chrome(path) time.sleep(delay) print("Chromedriver'a erişildi.") except WebDriverException: print("Chromedriver kullanılamıyor.") sys.exit() try: print("Çiçeksepeti adresine gidiliyor...") driver.get("https://www.ciceksepeti.com") time.sleep(delay) driver.maximize_window() time.sleep(delay) print("Çiçeksepeti adresine gidildi.") except: print("Çiçeksepeti'ne erişilemiyor.") sys.exit() try: print("Ürün aranıyor...") search_bar = driver.find_element_by_class_name("product-search__input") search_bar.send_keys(product_name) search_bar.send_keys(Keys.ENTER) time.sleep(delay) product = driver.find_element_by_class_name("products__item-inner") product.click() time.sleep(delay) print("Ürün bulundu.") except NoSuchElementException: print("Ürün bulunamadı.") sys.exit() see_all_reviews = driver.find_element_by_class_name("comments__all-comments") see_all_reviews.click() review_count = driver.find_element_by_class_name("page-comments__product-evaluation__comment-count").text.replace("Yorum", "") review_count = int(review_count.strip("()")) if review_count % 20 == 0: length_of_page = review_count // 20 else: length_of_page = (review_count // 20) + 1 l = 1 while l <= length_of_page: print("İncelemeler çekiliyor...") print("Sayfa: " + str(l)) time.sleep(delay) reviews = driver.find_elements_by_class_name("page-comments__list__item") for review in reviews: review_text = review.find_element_by_class_name("page-comments__list__item__text").text if review_text == "": review_text = "BOŞ" review_texts.append(review_text) customer_name = review.find_element_by_class_name("page-comments__list__item__name").text customer_name_texts.append(customer_name) try: review = review.text.replace(review_text, "") except: pass review = review.replace(customer_name, "") review = review.replace(" | ", "").split() customer_province = review[0] date = review[1] customer_province_texts.append(customer_province) date_texts.append(date) try: driver.execute_script("window.scrollTo(0, 2160)") next_page = driver.find_element_by_class_name("cs-next") next_page.click() except: pass l += 1 driver.close() length_list = [review_texts, customer_province_texts, customer_name_texts, date_texts] limit = map(len, length_list) limit = min(list(limit)) limit -= 1 review_texts_fin = review_texts[:limit] df = pd.DataFrame({"Yorum": review_texts_fin}) if scrape_province: customer_province_texts_fin = customer_province_texts[:limit] df["Yorum Beğeni Sayısı"] = customer_province_texts_fin df["Yorum Beğeni Sayısı"] = df["Yorum Beğeni Sayısı"] if scrape_customer_names: customer_name_texts_fin = customer_name_texts[:limit] df["<NAME>"] = customer_name_texts_fin if scrape_dates: date_texts_fin = date_texts[:limit] df["Yorumun Yazıldığı Tarih"] = date_texts_fin df.to_excel(file, header = True, index = False) x = "Çektiğiniz veriler " + file + " adlı excel dosyasına kaydedildi." print(x) print(""" -------------------------------------------------------------------------- - Projeden memnun kaldıysanız Github üzerinden yıldızlamayı unutmayın. - - Github Hesabım: ardauzunoglu - -------------------------------------------------------------------------- """) initialize() scrape() if __name__ == "__main__": ciceksepeti_scraper()
480250
import string def encode(str): s = string.ascii_letters + " " dic = {} enc = "" for i in range(len(s)): dic[s[i]] = s[(i + 3) % len(s)] for ch in str: enc += dic[ch] return enc def decode(str): s = string.ascii_letters + " " dic = {} dec = "" for i in range(len(s)): dic[s[i]] = s[(i - 3) % len(s)] for ch in str: dec += dic[ch] return dec content = input('Enter input: ') enc = encode(content) with open('test.txt', 'w') as file: file.write(enc) with open('test.txt') as file: encoded = file.read() dec = decode(encoded) print(dec)