id
stringlengths
3
8
content
stringlengths
100
981k
50399
from mmcv.runner import checkpoint from mmdet.apis.inference import init_detector,LoadImage, inference_detector import easymd config = 'config.py' #checkpoints = './checkpoints/pseg_r101_r50_latest.pth' checkpoints = "path/to/pth" img = '000000322864.jpg' results = { 'img': './datasets/coco/val2017/'+img } model = init_detector(config,checkpoint=checkpoints) results = inference_detector(model,'./datasets/coco/val2017/'+img)
50448
import argparse from pathlib import Path import tarfile from zipfile import ZipFile from scanf import scanf if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('tarball_output') parser.add_argument('tex_files',nargs='*') args = parser.parse_args() files = [] for tex_file in args.tex_files: tex_file_path = Path(tex_file) if tex_file_path.exists(): files.append(str(tex_file_path)) pdf_path = tex_file_path.with_suffix('.pdf') if pdf_path.exists() and str(pdf_path) not in files: files.append(str(pdf_path)) # parse dep_file generated with \RequirePackage{snapshot} dep_file = tex_file_path.with_suffix('.dep') if dep_file.exists(): with open(str(dep_file),'r') as f: for line in f: if '*{file}' not in line: continue match = scanf('*{file} {%s}{0000/00/00 v0.0}', line, collapseWhitespace=True) if match is None: alt = scanf('*{file} {%s} {0000/00/00 v0.0}', line, collapseWhitespace=True) if alt is None: alt2 = scanf('*{file} {%s}{Graphic v0.0}', line, collapseWhitespace=True) if alt2 is None: alt3 = scanf('*{file} {%s} {Graphic v0.0}', line, collapseWhitespace=True) if alt3 is None: continue else: match = alt3 else: match = alt2 else: match = alt filename, = match path = Path(filename) if path.suffix in ['.png','.pdf','.tex','.bbl','.cls'] and path.exists(): if str(path) not in files: files.append(str(path)) print("FILES IN TARBALL:\n") for myfile in files: print(myfile) # make tarball from files output_path = Path(args.tarball_output) if output_path.suffix == '.gz': with tarfile.open(args.tarball_output, 'w:gz', dereference=True) as tar: for this_file in files: tar.add(this_file) elif output_path.suffix == '.zip': with ZipFile(args.tarball_output, 'w') as myzip: for this_file in files: myzip.write(this_file) else: Exception('unrecognized output suffix')
50458
import numpy as np from arbol import aprint from dexp.processing.utils.scatter_gather_i2v import scatter_gather_i2v from dexp.utils.backends import Backend from dexp.utils.testing.testing import execute_both_backends from dexp.utils.timeit import timeit @execute_both_backends def test_scatter_gather_i2v(ndim=3, length_xy=128, splits=4): xp = Backend.get_xp_module() rng = np.random.default_rng() image1 = rng.uniform(0, 1, size=(length_xy,) * ndim) image2 = rng.uniform(0, 1, size=(length_xy,) * ndim) def f(x, y): return xp.stack([x.min(), x.max()]), xp.stack([y.max(), y.mean(), y.min()]) with timeit("scatter_gather(f)"): chunks = (length_xy // splits,) * ndim result1, result2 = scatter_gather_i2v(f, (image1, image2), tiles=chunks, margins=8) assert result1.ndim == ndim + 1 assert result2.ndim == ndim + 1 assert result1.shape[:-1] == result2.shape[:-1] assert result1.shape[-1] == 2 assert result2.shape[-1] == 3 result1 -= (0, 1) # expected stats from uniform distribution result1 = Backend.to_numpy(result1) error = np.linalg.norm(result1.ravel(), ord=1) / result1.size aprint(f"Error = {error}") assert error < 0.001 result2 -= (1, 0.5, 0) # expected stats from uniform distribution result2 = Backend.to_numpy(result2) error = np.linalg.norm(result2.ravel(), ord=1) / result2.size aprint(f"Error = {error}") assert error < 0.001
50540
import os from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D from keras.models import Model from keras import backend as K def model(): input_img = Input(shape=(6, 20, 20)) x = Conv2D(filters = 32, kernel_size = (3, 3), strides = (1,1), padding = 'same', activation='relu')(input_img) x = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(16, (3, 3), activation='relu', padding='same')(x) x = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(8, (3, 3), activation='relu', padding='same')(x) encoded = MaxPooling2D((2, 2), padding='same')(x) # at this point the representation is (4, 4, 8) i.e. 128-dimensional x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded) x = UpSampling2D((2, 2))(x) x = Conv2D(16, (3, 3), activation='relu', padding='same')(x) x = UpSampling2D((2, 2))(x) x = Conv2D(32, (3, 3), activation='relu')(x) x = UpSampling2D((2, 2))(x) decoded = Conv2D(6, (3, 3), activation='sigmoid', padding='same')(x) autoencoder = Model(input_img, decoded) autoencoder.compile(optimizer='Adam', loss='mean_squared_error') return autoencoder, encoded, decoded
50568
import time from celery import chain from celery_app import app @app.task def add(x, y): return x + y ''' ref. http://docs.celeryq.org/en/latest/userguide/tasks.html#avoid-launching-synchronous-subtasks ''' def chain_demo(x, y): # add_demo -> mul_demo -> insert_db_demo chain(add_demo.s(x, y), mul_demo.s(10), insert_db_demo.s())() @app.task def add_demo(x, y): time.sleep(3) return x + y @app.task def mul_demo(x, y): time.sleep(3) return x * y @app.task(ignore_result=True) def insert_db_demo(result): print('insert db , result {}'.format(result))
50580
import numpy as np X = 2 * np.random.randn(100, 5) y = 2.5382 * np.cos(X[:, 3]) + X[:, 0] ** 2 - 0.5 from pysr import PySRRegressor model = PySRRegressor( niterations=40, binary_operators=["+", "*"], unary_operators=[ "cos", "exp", "sin", "inv(x) = 1/x", # Custom operator (julia syntax) ], model_selection="best", loss="loss(x, y) = (x - y)^2", # Custom loss function (julia syntax) ) model.fit(X, y) print(model)
50591
import unittest import os import warnings from ml4ir.base.data import ranklib_helper import pandas as pd warnings.filterwarnings("ignore") INPUT_FILE = "ml4ir/applications/ranking/tests/data/ranklib/train/sample.txt" OUTPUT_FILE = "ml4ir/applications/ranking/tests/data/ranklib/train/sample_ml4ir.csv" QUERY_ID_NAME = 'qid' RELEVANCE_NAME = 'relevance' KEEP_ADDITIONAL_INFO = 1 GL_2_CLICKS = 1 NON_ZERO_FEATURES_ONLY = 0 class TestRanklibConversion(unittest.TestCase): def setUp(self): pass def test_conversion(self): """Convert ranklib dataset to a csv""" ranklib_helper.ranklib_to_csv(INPUT_FILE, OUTPUT_FILE, KEEP_ADDITIONAL_INFO, GL_2_CLICKS, NON_ZERO_FEATURES_ONLY, QUERY_ID_NAME, RELEVANCE_NAME) df = pd.read_csv(OUTPUT_FILE) assert QUERY_ID_NAME in df.columns and RELEVANCE_NAME in df.columns assert df[QUERY_ID_NAME].nunique() == 49 if KEEP_ADDITIONAL_INFO == 1: assert len(df.columns) >= 138 else: assert len(df.columns) == 138 if GL_2_CLICKS == 1: assert sorted(list(df[RELEVANCE_NAME].unique())) == [0, 1] def tearDown(self): # Delete output file os.remove(OUTPUT_FILE) if __name__ == "__main__": unittest.main()
50626
from django.apps import AppConfig class OpenbookAuthConfig(AppConfig): name = 'openbook_auth'
50627
from typing import Dict from lightbus.exceptions import ( UnknownApi, InvalidApiRegistryEntry, EventNotFound, MisconfiguredApiOptions, InvalidApiEventConfiguration, ) __all__ = ["Api", "Event"] class ApiRegistry: def __init__(self): self._apis: Dict[str, Api] = dict() def add(self, api: "Api"): if isinstance(api, type): raise InvalidApiRegistryEntry( "An attempt was made to add a type to the API registry. This " "is probably because you are trying to add the API class, rather " "than an instance of the API class.\n" "\n" "Use bus.client.register_api(MyApi()), rather than bus.client.register_api(MyApi)" ) self._apis[api.meta.name] = api def get(self, name) -> "Api": try: return self._apis[name] except KeyError: raise UnknownApi( "An API named '{}' was requested from the registry but the " "registry does not recognise it. Maybe the incorrect API name " "was specified, or maybe the API has not been registered.".format(name) ) def remove(self, name) -> None: try: del self._apis[name] except KeyError: raise UnknownApi( "An attempt was made to remove an API named '{}' from the registry, but the API " "could not be found. Maybe the incorrect API name " "was specified, or maybe the API has not been registered.".format(name) ) def public(self): return [api for api in self._apis.values() if not api.meta.internal] def internal(self): return [api for api in self._apis.values() if api.meta.internal] def all(self): return list(self._apis.values()) def names(self): return list(self._apis.keys()) class ApiOptions: name: str internal: bool = False version: int = 1 def __init__(self, options): for k, v in options.items(): if not k.startswith("_"): setattr(self, k, v) class ApiMetaclass(type): """ API Metaclass Validates options in the API's Meta class and populates the API class' `meta` attribute. """ def __init__(cls, name, bases=None, dict_=None): is_api_base_class = name == "Api" and not bases if is_api_base_class: super(ApiMetaclass, cls).__init__(name, bases, dict_) else: options = dict_.get("Meta", None) if options is None: raise MisconfiguredApiOptions( f"API class {name} does not contain a class named 'Meta'. Each API definition " f"must contain a child class named 'Meta' which can contain configurations options. " f"For example, the 'name' option is required and specifies " f"the name used to access the API on the bus." ) cls.sanity_check_options(name, options) cls.meta = ApiOptions(cls.Meta.__dict__.copy()) super(ApiMetaclass, cls).__init__(name, bases, dict_) if cls.meta.name == "default" or cls.meta.name.startswith("default."): raise MisconfiguredApiOptions( f"API class {name} is named 'default', or starts with 'default.'. " f"This is a reserved name and is not allowed, please change it to something else." ) def sanity_check_options(cls, name, options): if not getattr(options, "name", None): raise MisconfiguredApiOptions( "API class {} does not specify a name option with its " "'Meta' options." "".format(name) ) class Api(metaclass=ApiMetaclass): class Meta: name = None def get_event(self, name) -> "Event": event = getattr(self, name, None) if isinstance(event, Event): return event else: raise EventNotFound("Event named {}.{} could not be found".format(self, name)) def __str__(self): return self.meta.name class Event: def __init__(self, parameters=tuple()): # Ensure you update the __copy__() method if adding other instance variables below if isinstance(parameters, str): raise InvalidApiEventConfiguration( f"You appear to have passed a string value of {repr(parameters)} " f"for your API's event's parameters. This should be a list or a tuple, " f"not a string. You probably missed a comma when defining your " f"tuple of parameter names." ) self.parameters = parameters
50629
import logging from aioscrapy.utils.reqser import request_to_dict, request_from_dict from .serializ import PickleCompat logger = logging.getLogger(__name__) _to_str = lambda x: x if isinstance(x, str) else str(x) class Base(object): """Per-spider base queue class""" def __init__(self, server, spider, key, serializer=None): """Initialize per-spider redis queue. Parameters ---------- server : StrictRedis Redis client instance. spider : Spider Scrapy spider instance. key: str Redis key where to put and get messages. serializer : object Serializer object with ``loads`` and ``dumps`` methods. """ if serializer is None: # Backward compatibility. # TODO: deprecate pickle. serializer = PickleCompat if not hasattr(serializer, 'loads'): raise TypeError("serializer does not implement 'loads' function: %r" % serializer) if not hasattr(serializer, 'dumps'): raise TypeError("serializer '%s' does not implement 'dumps' function: %r" % serializer) self.server = server self.spider = spider self.key = key % {'spider': spider.name} self.serializer = serializer def _encode_request(self, request): """Encode a request object""" obj = request_to_dict(request, self.spider) return self.serializer.dumps(obj) def _decode_request(self, encoded_request): """Decode an request previously encoded""" obj = self.serializer.loads(encoded_request) return request_from_dict(obj, self.spider) def __len__(self): """Return the length of the queue""" raise Exception('please use len()') async def len(self): raise NotImplementedError async def push(self, request): """Push a request""" raise NotImplementedError async def pop(self, timeout=0): """Pop a request""" raise NotImplementedError async def clear(self): """Clear queue/stack""" await self.server.delete(self.key) class FifoQueue(Base): """Per-spider FIFO queue""" async def len(self): return await self.server.llen(self.key) async def push(self, request): """Push a request""" await self.server.lpush(self.key, self._encode_request(request)) async def pop(self, timeout=0): """Pop a request""" if timeout > 0: data = await self.server.brpop(self.key, timeout) if isinstance(data, tuple): data = data[1] else: data = await self.server.rpop(self.key) if data: return self._decode_request(data) class PriorityQueue(Base): """Per-spider priority queue abstraction using redis' sorted set""" async def len(self): return await self.server.zcard(self.key) async def push(self, request): """Push a request""" data = self._encode_request(request) score = request.priority # We don't use zadd method as the order of arguments change depending on # whether the class is Redis or StrictRedis, and the option of using # kwargs only accepts strings, not bytes. await self.server.zadd(self.key, {data: score}) async def pop(self, timeout=0): """ Pop a request timeout not support in this queue class """ # use atomic range/remove using multi/exec async with self.server.pipeline(transaction=True) as pipe: results, count = await ( pipe.zrange(self.key, 0, 0) .zremrangebyrank(self.key, 0, 0) .execute() ) if results: return self._decode_request(results[0]) class LifoQueue(Base): """Per-spider LIFO queue.""" async def len(self): return await self.server.llen(self.key) async def push(self, request): """Push a request""" await self.server.lpush(self.key, self._encode_request(request)) async def pop(self, timeout=0): """Pop a request""" if timeout > 0: data = await self.server.blpop(self.key, timeout) if isinstance(data, tuple): data = data[1] else: data = await self.server.lpop(self.key) if data: return self._decode_request(data) # TODO: Deprecate the use of these names. SpiderQueue = FifoQueue SpiderStack = LifoQueue SpiderPriorityQueue = PriorityQueue
50657
import unittest from argo_client.interaction import ArgoException from pathlib import Path import unittest import io import os import time import cryptol import cryptol.cryptoltypes from cryptol.single_connection import * from cryptol.bitvector import BV from BitVector import * #type: ignore # Tests of the core server functionality and less # focused on intricate Cryptol specifics per se. class BasicServerTests(unittest.TestCase): @classmethod def setUpClass(self): self.c = cryptol.connect(verify=False) def test_extend_search_path(self): # Test that extending the search path acts as expected w.r.t. loads c = self.c c.extend_search_path(str(Path('tests','cryptol','test-files', 'test-subdir'))) c.load_module('Bar').result() ans1 = c.eval("theAnswer").result() ans2 = c.eval("id theAnswer").result() self.assertEqual(ans1, ans2) def test_logging(self): c = self.c c.extend_search_path(str(Path('tests','cryptol','test-files', 'test-subdir'))) c.load_module('Bar').result() log_buffer = io.StringIO() c.logging(on=True, dest=log_buffer) _ = c.eval("theAnswer").result() contents = log_buffer.getvalue() self.assertEqual(len(contents.strip().splitlines()), 2, msg=f'log contents: {str(contents.strip().splitlines())}') _ = c.eval("theAnswer").result() def test_check_timeout(self): c = self.c c.load_file(str(Path('tests','cryptol','test-files', 'examples','AES.cry'))).result() t1 = time.time() with self.assertRaises(ArgoException): c.check("\\(bv : [256]) -> ~ (~ (~ (~bv))) == bv", num_tests="all", timeout=1.0).result() t2 = time.time() self.assertLess(t2 - t1, 2.0) t1 = time.time() with self.assertRaises(ArgoException): c.check("\\(bv : [256]) -> ~ (~ (~ (~bv))) == bv", num_tests="all", timeout=5.0).result() t2 = time.time() self.assertLess(t2 - t1, 7) t1 = time.time() c.check("\\(bv : [256]) -> ~ (~ (~ (~bv))) == bv", num_tests=10, timeout=5.0).result() t2 = time.time() self.assertLess(t2 - t1, 5) def test_interrupt(self): # Check if this test is using a local server, if not we assume it's a remote HTTP server if os.getenv('CRYPTOL_SERVER') is not None: c = self.c c.load_file(str(Path('tests','cryptol','test-files', 'examples','AES.cry'))) t1 = time.time() c.check("\\(bv : [256]) -> ~ (~ (~ (~bv))) == bv", num_tests="all", timeout=30.0) # ^ .result() intentionally omitted so we don't wait on it's result and we can interrupt # it on the next line. We add a timeout just in case to the test fails time.sleep(.5) c.interrupt() self.assertTrue(c.safe("aesEncrypt").result()) t2 = time.time() self.assertLess(t2 - t1, 15.0) # ensure th interrupt ended things and not the timeout elif os.getenv('CRYPTOL_SERVER_URL') is not None: c = self.c other_c = cryptol.connect(verify=False) # Since this is the HTTP server, due to client implementation details # the requests don't return until they get a response, so we fork # to interrupt the server newpid = os.fork() if newpid == 0: time.sleep(5) other_c.interrupt() os._exit(0) c.load_file(str(Path('tests','cryptol','test-files', 'examples','AES.cry'))) t1 = time.time() c.check("\\(bv : [256]) -> ~ (~ (~ (~bv))) == bv", num_tests="all", timeout=60.0) self.assertTrue(c.safe("aesEncrypt").result()) t2 = time.time() self.assertLess(t2 - t1, 20.0) # ensure th interrupt ended things and not the timeout else: # Otherwise fail... since this shouldn't be possible self.assertFalse("Impossible") def test_prove_timeout(self): c = self.c c.load_file(str(Path('tests','cryptol','test-files', 'examples','AES.cry'))) pt = BV(size=128, value=0x3243f6a8885a308d313198a2e0370734) key = BV(size=128, value=<KEY>) ct = c.call("aesEncrypt", (pt, key)).result() expected_ct = BV(size=128, value=0x3925841d02dc09fbdc118597196a0b32) self.assertEqual(ct, expected_ct) decrypted_ct = c.call("aesDecrypt", (ct, key)).result() self.assertEqual(pt, decrypted_ct) pt = BV(size=128, value=0x00112233445566778899aabbccddeeff) key = BV(size=128, value=0x000102030405060708090a0b0c0d0e0f) ct = c.call("aesEncrypt", (pt, key)).result() expected_ct = BV(size=128, value=0x69c4e0d86a7b0430d8cdb78070b4c55a) self.assertEqual(ct, expected_ct) decrypted_ct = c.call("aesDecrypt", (ct, key)).result() self.assertEqual(pt, decrypted_ct) self.assertTrue(c.safe("aesEncrypt").result()) self.assertTrue(c.safe("aesDecrypt").result()) self.assertTrue(c.check("AESCorrect").result().success) t1 = time.time() with self.assertRaises(ArgoException): c.prove("AESCorrect", timeout=1.0).result() t2 = time.time() # check the timeout worked self.assertGreaterEqual(t2 - t1, 1.0) self.assertLess(t2 - t1, 5.0) # make sure things are still working self.assertTrue(c.safe("aesEncrypt").result()) # set the timeout at the connection level c.timeout = 1.0 t1 = time.time() with self.assertRaises(ArgoException): c.prove("AESCorrect").result() t2 = time.time() # check the timeout worked self.assertGreaterEqual(t2 - t1, 1.0) self.assertLess(t2 - t1, 5.0) # make sure things are still working c.timeout = None self.assertTrue(c.safe("aesEncrypt").result()) c.timeout = 1.0 t1 = time.time() with self.assertRaises(ArgoException): # override timeout with longer time c.prove("AESCorrect", timeout=5.0).result() t2 = time.time() self.assertGreaterEqual(t2 - t1, 5.0) self.assertLess(t2 - t1, 10.0) # make sure things are still working c.timeout = None self.assertTrue(c.safe("aesEncrypt").result()) class BasicLoggingServerTests(unittest.TestCase): # Connection to cryptol log_buffer = None @classmethod def setUpClass(self): self.log_buffer = io.StringIO() connect(verify=False, log_dest = self.log_buffer) def test_logging(self): extend_search_path(str(Path('tests','cryptol','test-files', 'test-subdir'))) load_module('Bar') _ = cry_eval("theAnswer") content_lines = self.log_buffer.getvalue().strip().splitlines() self.assertEqual(len(content_lines), 6, msg=f'log contents: {str(content_lines)}') if __name__ == "__main__": unittest.main()
50674
from __future__ import annotations import typing from ctc import spec from ctc.protocols import balancer_utils from .. import analytics_spec async def async_compute_buybacks( blocks: list[int], verbose: bool = False ) -> analytics_spec.MetricGroup: return { 'name': 'Buybacks', 'metrics': { 'buybacks_usd': (await async_compute_tribe_buybacks_usd(blocks)), }, } async def async_compute_tribe_buybacks_usd( blocks: list[int], swaps: typing.Optional[spec.DataFrame] = None ) -> analytics_spec.MetricData: from ctc.toolbox import pd_utils # load swaps if swaps is None: swaps = await balancer_utils.async_get_pool_swaps( pool_address='0xc1382fe6e17bcdbc3d35f73f5317fbf261ebeecd' ) swaps = typing.cast( spec.DataFrame, swaps.droplevel('transaction_index').droplevel('log_index'), ) # filter tribe buys fei = '0x956f47f50a910163d8bf957cf5846d573e7f87ca' tribe_buys: typing.Any = swaps[swaps['arg__tokenOut'] == fei] # type: ignore tribe_buys = tribe_buys['arg__amountOut'].map(float) / 1e18 cummulative_tribe_buys = tribe_buys.cumsum() # cummulative_tribe_buys = evm.interpolate_block_series( # start_block=min(blocks), # pre_fill_value=0, # series=cummulative_tribe_buys, # end_block=max(blocks), # ) cummulative_tribe_buys = pd_utils.interpolate_series( series=cummulative_tribe_buys, start_index=min(blocks), end_index=max(blocks), pre_fill_value=0, ) # filter tribe sells tribe_sells_df = swaps[swaps['arg__tokenIn'] == fei] # type: ignore if len(tribe_sells_df) > 0: tribe_sells = tribe_sells_df['arg__amountIn'].map(float) / 1e18 cummulative_tribe_sells = tribe_sells.cumsum() # cummulative_tribe_sells = evm.interpolate_block_series( # start_block=min(blocks), # pre_fill_value=0, # series=cummulative_tribe_sells, # end_block=max(blocks), # ) cummulative_tribe_sells = pd_utils.interpolate_series( series=cummulative_tribe_sells, start_index=min(blocks), end_index=max(blocks), pre_fill_value=0, ) net_tribe_buys = cummulative_tribe_buys - cummulative_tribe_sells else: net_tribe_buys = cummulative_tribe_buys return { 'name': 'Buybacks USD', 'values': [net_tribe_buys[block] for block in blocks], 'units': 'FEI', }
50689
class NamedValue: # defining __slots__ in a mixin doesn't play nicely with builtin types # so a low overhead approach would have to use collections.namedtuple # style templated code generation def __new__(cls, *args, **kwds): name, *args = args self = super().__new__(cls, *args, **kwds) self._name = name return self def __init__(self, *args, **kwds): name, *args = args super().__init__(*args, **kwds) @property def __name__(self): return self._name def __repr__(self): # repr() is updated to include the name and type info return "{}({!r}, {})".format(type(self).__name__, self.__name__, super().__repr__()) def __str__(self): # str() is unchanged, even if it relies on the repr() fallback base = super() base_str = base.__str__ if base_str.__objclass__ is object: return base.__repr__() return base_str() # Example usage >>> class NamedFloat(NamedValue, float): ... pass ... >>> import math >>> tau = NamedFloat('tau', 2*math.pi) >>> tau NamedFloat(tau, 6.283185307179586) >>> print(tau) 6.283185307179586 >>> class NamedList(NamedValue, list): ... pass ... >>> data = NamedList('data', []) >>> data NamedList('data', []) >>> print(data) []
50716
import collections from supriya.enums import CalculationRate from supriya.synthdefs import UGen class PulseDivider(UGen): """ :: >>> pulse_divider = supriya.ugens.PulseDivider.ar( ... div=2, ... start=0, ... trigger=0, ... ) >>> pulse_divider PulseDivider.ar() """ ### CLASS VARIABLES ### _ordered_input_names = collections.OrderedDict( 'trigger', 'div', 'start', ) _valid_calculation_rates = None ### INITIALIZER ### def __init__( self, calculation_rate=None, div=2, start=0, trigger=0, ): UGen.__init__( self, calculation_rate=calculation_rate, div=div, start=start, trigger=trigger, ) ### PUBLIC METHODS ### @classmethod def ar( cls, div=2, start=0, trigger=0, ): """ Constructs an audio-rate PulseDivider. :: >>> pulse_divider = supriya.ugens.PulseDivider.ar( ... div=2, ... start=0, ... trigger=0, ... ) >>> pulse_divider PulseDivider.ar() Returns ugen graph. """ import supriya.synthdefs calculation_rate = supriya.CalculationRate.AUDIO ugen = cls._new_expanded( calculation_rate=calculation_rate, div=div, start=start, trigger=trigger, ) return ugen @classmethod def kr( cls, div=2, start=0, trigger=0, ): """ Constructs a control-rate PulseDivider. :: >>> pulse_divider = supriya.ugens.PulseDivider.kr( ... div=2, ... start=0, ... trigger=0, ... ) >>> pulse_divider PulseDivider.kr() Returns ugen graph. """ import supriya.synthdefs calculation_rate = supriya.CalculationRate.CONTROL ugen = cls._new_expanded( calculation_rate=calculation_rate, div=div, start=start, trigger=trigger, ) return ugen ### PUBLIC PROPERTIES ### @property def div(self): """ Gets `div` input of PulseDivider. :: >>> pulse_divider = supriya.ugens.PulseDivider.ar( ... div=2, ... start=0, ... trigger=0, ... ) >>> pulse_divider.div 2.0 Returns ugen input. """ index = self._ordered_input_names.index('div') return self._inputs[index] @property def start(self): """ Gets `start` input of PulseDivider. :: >>> pulse_divider = supriya.ugens.PulseDivider.ar( ... div=2, ... start=0, ... trigger=0, ... ) >>> pulse_divider.start 0.0 Returns ugen input. """ index = self._ordered_input_names.index('start') return self._inputs[index] @property def trigger(self): """ Gets `trigger` input of PulseDivider. :: >>> pulse_divider = supriya.ugens.PulseDivider.ar( ... div=2, ... start=0, ... trigger=0, ... ) >>> pulse_divider.trigger 0.0 Returns ugen input. """ index = self._ordered_input_names.index('trigger') return self._inputs[index]
50760
import time,os,math,inspect,re,sys,random,argparse from env import SenseEnv from torch.autograd import Variable import numpy as np from itertools import count from collections import namedtuple from tensorboardX import SummaryWriter import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.autograd as autograd from torch.autograd import Variable writer = SummaryWriter() SavedAction = namedtuple('SavedAction', ['action', 'value']) class Policy(nn.Module): def __init__(self,observation_space_n,action_space_n): super(Policy, self).__init__() self.affine1 = nn.Linear(observation_space_n, 256) self.action1 = nn.Linear(256, 128) self.value1 = nn.Linear(256, 128) self.action_head = nn.Linear(128, action_space_n) self.value_head = nn.Linear(128, 1) self.saved_actions = [] self.rewards = [] self.init_weights() def init_weights(self): self.affine1.weight.data.uniform_(-0.1, 0.1) self.action1.weight.data.uniform_(-0.1, 0.1) self.value1.weight.data.uniform_(-0.1, 0.1) def forward(self, x): x = F.relu(self.affine1(x)) xa = F.relu(self.action1(x)) xv = F.relu(self.value1(x)) action_scores = self.action_head(xa) state_values = self.value_head(xv) return F.softmax(action_scores), state_values class CNN(nn.Module): def __init__(self,classification_n): super(CNN, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(1, 16, kernel_size=5, padding=2), nn.BatchNorm2d(16), nn.ReLU(), nn.MaxPool2d(2)) self.layer2 = nn.Sequential( nn.Conv2d(16, 32, kernel_size=5, padding=2), nn.BatchNorm2d(32), nn.ReLU(), nn.MaxPool2d(2)) #self.fc = nn.Linear(7*7*32, 2) self.fc = nn.Linear(80000, classification_n) def forward(self, x): x = x.unsqueeze(1).float() out = self.layer1(x) out = self.layer2(out) #print("size before",out.size()) out = out.view(out.size(0), -1) #print("size after",out.size()) out = self.fc(out) return out parser = argparse.ArgumentParser(description='SenseNet actor-critic example') parser.add_argument('--gamma', type=float, default=0.99, metavar='G', help='discount factor (default: 0.99)') parser.add_argument('--epsilon', type=float, default=0.6, metavar='G', help='epsilon value for random action (default: 0.6)') parser.add_argument('--seed', type=int, default=42, metavar='N', help='random seed (default: 42)') parser.add_argument('--batch_size', type=int, default=42, metavar='N', help='batch size (default: 42)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='interval between training status logs (default: 10)') parser.add_argument('--render', action='store_true', help='render the environment') parser.add_argument('--debug', action='store_true', help='turn on debug mode') parser.add_argument('--gpu', action='store_true', help='use GPU') parser.add_argument('--log', type=str, help='log experiment to tensorboard') parser.add_argument('--model_path', type=str, help='path to store/retrieve model at') parser.add_argument('--mode', type=str, default="train", help='train/test/all model') args = parser.parse_args() def select_action(state,n_actions,epsilon=0.6): if np.random.rand() < epsilon: return np.random.choice(n_actions) else: state = torch.from_numpy(state).float().unsqueeze(0) probs, state_value = model(Variable(state)) action = probs.multinomial() model.saved_actions.append(SavedAction(action, state_value)) return action.data[0][0] def finish_episode(): R = 0 saved_actions = model.saved_actions value_loss = 0 rewards = [] for r in model.rewards[::-1]: R = r + args.gamma * R rewards.insert(0, R) rewards = torch.Tensor(rewards) rewards = (rewards - rewards.mean()) / (rewards.std() + np.finfo(np.float32).eps) for (action, value), r in zip(saved_actions, rewards): reward = r - value.data[0,0] action.reinforce(reward) value_loss += F.smooth_l1_loss(value, Variable(torch.Tensor([r]))) optimizer.zero_grad() final_nodes = [value_loss] + list(map(lambda p: p.action, saved_actions)) gradients = [torch.ones(1)] + [None] * len(saved_actions) autograd.backward(final_nodes, gradients) optimizer.step() del model.rewards[:] del model.saved_actions[:] #train env = SenseEnv(vars(args)) print("action space: ",env.action_space()) model = Policy(env.observation_space(),env.action_space_n()) cnn = CNN(env.classification_n()) if args.gpu and torch.cuda.is_available(): model.cuda() cnn.cuda() if args.model_path: if os.path.exists(args.model_path+"/model.pkl"): print("loading pretrained models") model.load_state_dict(torch.load(args.model_path+"/model.pkl")) cnn.load_state_dict(torch.load(args.model_path+"/cnn.pkl")) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) classifier_criterion = nn.CrossEntropyLoss() classifier_optimizer = torch.optim.Adam(cnn.parameters(), lr=0.001) running_reward = 0 batch = [] labels = [] total_steps = 0 if args.mode == "train" or args.mode == "all": for i_episode in count(1000): observation = env.reset() print("episode: ", i_episode) for t in range(1000): action = select_action(observation,env.action_space_n(),args.epsilon) observation, reward, done, info = env.step(action) model.rewards.append(reward) if env.is_touching(): print("touching!") #print("batch size", len(batch)) if len(batch) > args.batch_size: #TODO GPU support #batch = torch.from_numpy(np.asarray(batch)) batch = torch.LongTensor(torch.from_numpy(np.asarray(batch))) labels = torch.from_numpy(np.asarray(labels)) #labels = torch.LongTensor(torch.from_numpy(np.asarray(labels))) if args.gpu and torch.cuda.is_available(): batch = batch.cuda() labels = labels.cuda() batch = Variable(batch) labels = Variable(labels) classifier_optimizer.zero_grad() outputs = cnn(batch) loss = classifier_criterion(outputs, labels) loss.backward() classifier_optimizer.step() print ('Loss: %.4f' %(loss.data[0])) if args.log: writer.add_scalar(args.log + "/loss",loss.data[0],total_steps) batch = [] labels = [] else: batch.append(observation.reshape(200,200)) labels.append(env.class_label) if done: break running_reward = running_reward * 0.99 + t * 0.01 print("running reward ", running_reward) total_steps +=1 finish_episode() if i_episode % args.log_interval == 0: if args.log: writer.add_scalar(args.log+"/reward",running_reward,total_steps) print('Episode {}\tLast length: {:5d}\tAverage length: {:.2f}'.format(i_episode, t, running_reward)) if running_reward > 5000: #env.spec.reward_threshold: print("Solved! Running reward is now {} and the last episode runs to {} time steps!".format(running_reward, t)) break if args.model_path: torch.save(model.state_dict(), os.path.join(args.model_path, 'policy.pkl' )) torch.save(model.state_dict(), os.path.join(args.model_path, 'cnn.pkl' )) elif args.mode == "test" or args.mode == "all": #test test_labels = [] predicted_labels = [] steps_to_guess = [] correct = 0 total = 0 max_steps = 500 for i_episode in range(100): guesses = [] print("testing on a new object") observation = env.reset() for t in range(max_steps): action = select_action(observation,env.action_space_n(),args.epsilon) observation, reward, done, info = env.step(action) model.rewards.append(reward) #if confidence over 90%, then use it if (t >= max_steps-1 and len(guesses) == 0) or env.is_touching: x = [observation.reshape(200,200)] x = torch.LongTensor(torch.from_numpy(np.asarray(x))) x = Variable(x) output = cnn(x) prob, predicted = torch.max(output.data, 1) correct += int(predicted[0][0] == env.class_label) total += 1 print("predicted ", predicted[0][0], " with prob ", prob[0][0], " correct answer is: ",env.class_label) print('Accuracy of the network: %d %%' % (100 * correct / total )) else: for i_episode in range(100): observation = env.reset() for t in range(1000): env.render() action = np.random.choice(env.action_space_n()) observation,reward,done,info = env.step(action) print(observation)
50793
import unittest from lib_db import DBClient class TestDBClient(unittest.TestCase): client: DBClient def setUp(self) -> None: self.client = DBClient() def test_integrity(self): all_peer_ids = set(self.client.get_all_peer_ids()) online_peer_ids = set(self.client.get_online_peer_ids()) self.assertTrue(online_peer_ids.issubset(all_peer_ids)) offline_peer_ids = set(self.client.get_offline_peer_ids()) self.assertTrue(offline_peer_ids.issubset(all_peer_ids)) all_entering_peer_ids = set(self.client.get_all_entering_peer_ids()) self.assertTrue(all_entering_peer_ids.issubset(all_peer_ids)) self.assertTrue(all_entering_peer_ids.isdisjoint(online_peer_ids)) self.assertTrue(all_entering_peer_ids.isdisjoint(offline_peer_ids)) all_leaving_peer_ids = set(self.client.get_all_leaving_peer_ids()) self.assertTrue(all_leaving_peer_ids.issubset(all_peer_ids)) self.assertTrue(all_leaving_peer_ids.isdisjoint(online_peer_ids)) self.assertTrue(all_leaving_peer_ids.isdisjoint(offline_peer_ids)) # The following needn't be necessarily true but unlikely that it isn't self.assertTrue(len(all_entering_peer_ids.intersection(all_leaving_peer_ids)) > 0) only_entering_peer_ids = set(self.client.get_only_entering_peer_ids()) self.assertTrue(only_entering_peer_ids.issubset(all_peer_ids)) self.assertTrue(only_entering_peer_ids.isdisjoint(online_peer_ids)) self.assertTrue(only_entering_peer_ids.isdisjoint(offline_peer_ids)) self.assertTrue(only_entering_peer_ids.isdisjoint(all_leaving_peer_ids)) self.assertTrue(only_entering_peer_ids.issubset(all_entering_peer_ids)) only_leaving_peer_ids = set(self.client.get_only_leaving_peer_ids()) self.assertTrue(only_leaving_peer_ids.issubset(all_peer_ids)) self.assertTrue(only_leaving_peer_ids.isdisjoint(online_peer_ids)) self.assertTrue(only_leaving_peer_ids.isdisjoint(offline_peer_ids)) self.assertTrue(only_leaving_peer_ids.isdisjoint(all_entering_peer_ids)) self.assertTrue(only_leaving_peer_ids.issubset(all_leaving_peer_ids)) ephemeral_peer_ids = set(self.client.get_ephemeral_peer_ids()) self.assertTrue(ephemeral_peer_ids.issubset(all_entering_peer_ids)) self.assertTrue(ephemeral_peer_ids.issubset(all_leaving_peer_ids)) dangling_peer_ids = set(self.client.get_dangling_peer_ids()) self.assertTrue(dangling_peer_ids.issubset(all_peer_ids)) self.assertTrue(dangling_peer_ids.isdisjoint(online_peer_ids)) self.assertTrue(dangling_peer_ids.isdisjoint(offline_peer_ids)) self.assertTrue(dangling_peer_ids.issubset(all_entering_peer_ids)) self.assertTrue(dangling_peer_ids.issubset(all_leaving_peer_ids)) oneoff_peer_ids = set(self.client.get_oneoff_peer_ids()) self.assertTrue(oneoff_peer_ids.issubset(all_peer_ids)) self.assertTrue(oneoff_peer_ids.isdisjoint(online_peer_ids)) self.assertTrue(oneoff_peer_ids.isdisjoint(offline_peer_ids)) self.assertTrue(oneoff_peer_ids.isdisjoint(dangling_peer_ids)) self.assertTrue(oneoff_peer_ids.issubset(all_entering_peer_ids)) self.assertTrue(oneoff_peer_ids.issubset(all_leaving_peer_ids)) calculated_all_peer_ids = oneoff_peer_ids | online_peer_ids | offline_peer_ids | only_entering_peer_ids | only_leaving_peer_ids | dangling_peer_ids self.assertEqual(len(all_peer_ids), len(calculated_all_peer_ids)) self.assertEqual(all_peer_ids, calculated_all_peer_ids) def test_get_all_peer_ids_for_all_agent_versions(self): all_agent_versions = self.client.get_all_agent_versions() all_peer_ids_by_all_agent_versions = set(self.client.get_peer_ids_for_agent_versions(all_agent_versions)) online_peer_ids = set(self.client.get_online_peer_ids()) all_entering_peer_ids = set(self.client.get_all_entering_peer_ids()) dangling_peer_ids = set(self.client.get_dangling_peer_ids()) self.assertTrue(online_peer_ids.issubset(all_peer_ids_by_all_agent_versions)) self.assertTrue(all_entering_peer_ids.issubset(all_peer_ids_by_all_agent_versions)) self.assertTrue(dangling_peer_ids.issubset(all_peer_ids_by_all_agent_versions)) # Now there can be nodes that started their session before # the beginning of the time interval, were then "crawlable" (we # could extract the agent version) and then left. left_peer_ids = all_peer_ids_by_all_agent_versions - online_peer_ids - all_entering_peer_ids - dangling_peer_ids only_leaving_peer_ids = set(self.client.get_only_leaving_peer_ids()) self.assertTrue(left_peer_ids.issubset(only_leaving_peer_ids)) # TODO: there is a minor bug in the time calculation of session start/ends. When that's fixed: # self.assertEqual(left_peer_ids, only_leaving_peer_ids) def test_agent_version_queries(self): agent_version_distribution = self.client.get_agent_versions_distribution() agent_version = agent_version_distribution[0][0] agent_version_count = agent_version_distribution[0][1] peer_ids_by_agent_version = self.client.get_peer_ids_for_agent_versions([agent_version]) self.assertEqual(agent_version_count, len(peer_ids_by_agent_version)) agent_versions_for_peer_ids = self.client.get_agent_versions_for_peer_ids(peer_ids_by_agent_version) self.assertEqual(agent_versions_for_peer_ids[0][1], agent_version_count) # we only queried for peers with one agent def test_geo_integrity(self): import pandas as pd all_peer_ids = set(self.client.get_all_peer_ids()) no_public_ip_peer_ids = set(self.client.get_no_public_ip_peer_ids()) self.assertTrue(no_public_ip_peer_ids.issubset(all_peer_ids)) countries = self.client.get_countries() countries_peer_ids = set(pd.DataFrame(countries, columns=["peer_id", "country"])["peer_id"].unique()) self.assertTrue(countries_peer_ids.issubset(all_peer_ids)) self.assertTrue(countries_peer_ids.isdisjoint(no_public_ip_peer_ids)) countries_with_relays = self.client.get_countries_with_relays() countries_with_relays_peer_ids = set( pd.DataFrame(countries_with_relays, columns=["peer_id", "country"])["peer_id"].unique()) self.assertTrue(countries_with_relays_peer_ids.issubset(all_peer_ids)) self.assertTrue(countries_with_relays_peer_ids.isdisjoint(no_public_ip_peer_ids)) self.assertTrue(countries_peer_ids.issubset(countries_with_relays_peer_ids)) unresolved_peer_ids = set(self.client.get_unresolved_peer_ids()) self.assertTrue(unresolved_peer_ids.issubset(all_peer_ids)) self.assertTrue(unresolved_peer_ids.isdisjoint(no_public_ip_peer_ids)) self.assertTrue(unresolved_peer_ids.isdisjoint(countries_peer_ids)) self.assertTrue(unresolved_peer_ids.isdisjoint(countries_with_relays_peer_ids)) calculated_all = no_public_ip_peer_ids | countries_peer_ids | countries_with_relays_peer_ids | unresolved_peer_ids self.assertEqual(all_peer_ids, calculated_all) def test_flatten(self): flattened = DBClient._DBClient__flatten([(1,), (2,)]) self.assertListEqual(flattened, [1, 2]) if __name__ == '__main__': unittest.main()
50807
import json from flask import Flask, request import requests # Token that has to be generated from webhook page portal ACCESS_TOKEN = "random <PASSWORD>" # Token that has to be added for verification with developer portal VERIFICATION_TOKEN = "abc" # Identifier payloads for initial button C19INDIA = "C19INDIA" app = Flask(__name__) # This get endpoint is for verification with messenger app @app.route('/webhook', methods=['GET']) def webhook(): verify_token = request.args.get("hub.verify_token") if verify_token == VERIFICATION_TOKEN: return request.args.get("hub.challenge") return 'Unable to authorise.' @app.route("/webhook", methods=['POST']) def webhook_handle(): data = request.get_json() if data["object"] == "page": # To verify that the request is being originated from a page for entry in data["entry"]: for event in entry["messaging"]: if event.get("message"): # somebody typed a message process_message(event) # user clicked/tapped "postback" button in earlier message elif event.get("postback"): process_postback(event) return 'ok' def process_message(event): # the facebook ID of the person sending you the message sender_id = event["sender"]["id"] # could receive text or attachment but not both if "text" in event["message"]: send_initial_menu(sender_id) def send_initial_menu(sender_id): message_data = json.dumps({ "recipient": { "id": sender_id }, "message": { "attachment": { "type": "template", "payload": { "template_type": "generic", "elements": [{ "title": "Covid India Stats", "subtitle": "Get the covid19 stats of Indian states", "buttons": [{ "type": "web_url", "url": "https://www.worldometers.info/coronavirus/country/india/", "title": "Open Worldometer India" }, { "type": "postback", "title": "Get Stats By Indian States", "payload": C19INDIA, }], }] } } } }) call_send_api(message_data) def send_state_list(sender_id): message_data = json.dumps({ "recipient": { "id": sender_id }, "message": { "attachment": { "type": "template", "payload": { "template_type": "generic", "elements": [{ "title": "Select State", "buttons": create_state_list(1) }, { "title": "Select State", "buttons": create_state_list(2) }, { "title": "Select State", "buttons": create_state_list(3) }, { "title": "Select State", "buttons": create_state_list(4) }, { "title": "Select State", "buttons": create_state_list(5) }, { "title": "Select State", "buttons": create_state_list(6) }, { "title": "Select State", "buttons": create_state_list(7) }, { "title": "Select State", "buttons": create_state_list(8) }, { "title": "Select State", "buttons": create_state_list(9) }, { "title": "Select State", "buttons": create_state_list(10) }] } } } }) call_send_api(message_data) def create_state_list(index): state_list = ["Maharashtra", "Kerala", "Karnataka", "Andhra Pradesh", "Tamil Nadu", "Delhi", "Uttar Pradesh", "West Bengal", "Odisha", "Rajasthan", "Chhattisgarh", "Telangana", "Haryana", "Gujarat", "Bihar", "Madhya Pradesh", "Assam", "Punjab", "Jharkhand", "Uttarakhand", "Himachal Pradesh", "Goa", "Tripura", "Manipur", "<NAME>", "Meghalaya", "Nagaland", "Sikkim", "Mizoram"] payload_list = [] start_index = 0 + 3 * (index - 1) end_index = 29 if (start_index + 3) > 29 else (start_index + 3) for i in range(start_index, end_index): postback = {} postback["type"] = "postback" postback["title"] = state_list[i] postback["payload"] = state_list[i] payload_list.append(postback) return payload_list def get_stats_send(sender_id, state): response = json.loads(requests.get( "https://api.covid19india.org/data.json").text) list_state = response['statewise'] for i in list_state: if i['state'] == state: x = i break message_data = json.dumps({ "recipient": { "id": sender_id }, "message": { "text": "ACTIVE CASES: {}\nCONFIRMED CASES: {}\nDEATHS: {}\nRECOVERED: {}".format(x['active'], x['confirmed'], x['deaths'], x['recovered']) } }) call_send_api(message_data) def process_postback(event): sender_id = event["sender"]["id"] payload = event["postback"]["payload"] if payload == C19INDIA: send_state_list(sender_id) else: get_stats_send(sender_id, payload) def call_send_api(message_data): params = { "access_token": ACCESS_TOKEN } headers = { "Content-Type": "application/json" } r = requests.post("https://graph.facebook.com/v5.0/me/messages", params=params, headers=headers, data=message_data) if __name__ == "__main__": app.run()
50809
import os from pathlib import Path from django.apps import apps as django_apps from django.conf import settings from django.core.management.base import BaseCommand, CommandParser, DjangoHelpFormatter from django.db.models import Model from rich.align import Align from rich.bar import Bar from rich.console import Console from rich.padding import Padding from rich.style import Style from rich.table import Table from ._field_attr_utils import ( get_field_column, get_field_db_type, get_field_name, get_field_name_on_reverse_model, get_field_type, get_field_type_on_reverse_model, get_field_verbose_name, get_related_model, get_related_name, ) from ._info_classes import FieldOther, FieldRelation, FieldReverseRelation, Method, ModelInfo from ._method_attr_utils import get_method_docstring, get_method_file, get_method_line_number, get_method_signature from ._model_attr_utils import ( get_model_base_manager, get_model_database_table, get_model_default_manager, get_model_docstring, get_model_file, get_model_is_abstract, get_model_is_managed, get_model_is_proxy, get_model_line_number, get_model_name, get_model_verbose_name, ) console = Console(record=True) DEFAULT_DJANGO_METHODS = ( "_check_column_name_clashes", "_check_constraints", "_check_default_pk", "_check_field_name_clashes", "_check_fields", "_check_id_field", "_check_index_together", "_check_indexes", "_check_local_fields", "_check_long_column_names", "_check_m2m_through_same_relationship", "_check_managers", "_check_model", "_check_model_name_db_lookup_clashes", "_check_ordering", "_check_property_name_related_field_accessor_clashes", "_check_single_primary_key", "_check_swappable", "_check_unique_together", "_do_insert", "_do_update", "_get_expr_references", "_get_FIELD_display", "_get_next_or_previous_by_FIELD", "_get_next_or_previous_in_order", "_get_pk_val", "_get_unique_checks", "_meta", "_perform_date_checks", "_perform_unique_checks", "_prepare_related_fields_for_save", "_save_parents", "_save_table", "_set_pk_val", "check", "clean", "clean_fields", "date_error_message", "delete", "from_db", "full_clean", "get_absolute_url", "get_deferred_fields", "prepare_database_save", "refresh_from_db", "save", "save_base", "serializable_value", "unique_error_message", "validate_unique", ) class Command(BaseCommand): """ A management command which lists models within your project, and optionally, details about model fields and methods Verbosity outputs: 0 Model names only - Convenient when you just need a list of all your project's models in one place 1 Model names, field names, and non-dunder/common method names 2 * Model names, field names & details, and non-dunder/common method names & details 3 Model names, field names & details, and all method names & full details * Verbosity of 2 is default """ help = "List out the fields and methods for each model" def create_parser(self, prog_name, subcommand, **kwargs): """ Create and return the ``ArgumentParser`` which will be used to parse the arguments to this command. Reimplemented to allow new default verbosity of 2 """ parser = CommandParser( prog="%s %s" % (os.path.basename(prog_name), subcommand), description=self.help or None, formatter_class=DjangoHelpFormatter, missing_args_message=getattr(self, "missing_args_message", None), called_from_command_line=getattr(self, "_called_from_command_line", None), **kwargs, ) parser.add_argument("--version", action="version", version=self.get_version()) parser.add_argument( "--settings", help=( "The Python path to a settings module, e.g. " '"myproject.settings.main". If this isn\'t provided, the ' "DJANGO_SETTINGS_MODULE environment variable will be used." ), ) parser.add_argument( "--pythonpath", help='A directory to add to the Python path, e.g. "/home/djangoprojects/myproject".', ) parser.add_argument("--traceback", action="store_true", help="Raise on CommandError exceptions") parser.add_argument( "--no-color", action="store_true", help="Don't colorize the command output.", ) parser.add_argument( "--force-color", action="store_true", help="Force colorization of the command output.", ) if self.requires_system_checks: parser.add_argument( "--skip-checks", action="store_true", help="Skip system checks.", ) self.add_arguments(parser) return parser def add_arguments(self, parser): super().add_arguments(parser) parser.add_argument( "-v", "--verbosity", default=2, type=int, choices=[0, 1, 2, 3], help="Verbosity level: " "0 Model names only - Convenient when you just need a list of all your project's models in one place, " "1 Model names + field names +non-dunder/common method names, " "2 (default) Model names + field names & details + non-dunder/common method names & details, " "3 Model names + field names & details + all method names & details.", ) parser.add_argument( "-e", "--export", nargs="?", type=str, default=None, help="Filename to export. The filename must have a file extension of `.txt`, `.html`, or `htm`", ) parser.add_argument( "-f", "--filter", nargs="+", type=str, default=None, help="Provide one or more apps or models, to which the results will be limited. " "Input should be in the form `appname` or `appname.Modelname`.", ) def model_info(self, options): section_style = Style(color="green", bold=True, underline=True) subsection_style = Style(color="green", bold=True) def get_options() -> tuple: VERBOSITY = options.get("verbosity", None) if VERBOSITY is None: VERBOSITY = ( getattr(settings, "MODEL_INFO_VERBOSITY", 2) if type(getattr(settings, "MODEL_INFO_VERBOSITY", 2)) is int else 2 ) FILTER = options.get("filter", None) if FILTER is None: FILTER = ( getattr(settings, "MODEL_INFO_FILTER", None) if type(getattr(settings, "MODEL_INFO_FILTER", None)) is list else None ) FILENAME = ( options.get("export") if options.get("export", None) is not None and type(options.get("export", None)) is str else None ) return VERBOSITY, FILTER, FILENAME VERBOSITY, FILTER, FILENAME = get_options() def build_model_objects(model) -> ModelInfo: """ Given a model, returns a ModelInfo object """ new_model = ModelInfo() new_model.model_name.value = get_model_name(model) new_model.verbose_name.value = get_model_verbose_name(model) new_model.docstring.value = get_model_docstring(model) new_model.is_abstract.value = get_model_is_abstract(model) new_model.is_proxy.value = get_model_is_proxy(model) new_model.is_managed.value = get_model_is_managed(model) new_model.database_table.value = get_model_database_table(model) new_model.base_manager.value = get_model_base_manager(model) new_model.default_manager.value = get_model_default_manager(model) new_model.file.value = get_model_file(model) new_model.line_number.value = get_model_line_number(model) return new_model def build_field_objects(field_list: list) -> tuple: """ Given a list of model fields, returns a tuple of FieldRelation, FieldReverseRelation, and FieldOther object lists """ fields_relation = [] fields_reverse_relation = [] fields_other = [] for field in field_list: # Identify the kind of field this is, and build associated object if hasattr(field, "related_model") and field.related_model is not None: if "reverse_related" in field.__class__.__module__.__str__(): # Build a FieldReverseRelation object new_field = FieldReverseRelation() new_field.name = get_related_name(field) new_field.field_type = get_field_type(field) new_field.field_db_type = get_field_db_type(field) new_field.related_model = get_related_model(field) new_field.field_name_on_related_model = get_field_name_on_reverse_model(field) new_field.field_type_on_related_model = get_field_type_on_reverse_model(field) fields_reverse_relation.append(new_field) else: # Build a FieldRelation object new_field = FieldRelation() new_field.name = get_field_name(field) new_field.field_type = get_field_type(field) new_field.field_column = get_field_column(field) new_field.field_db_type = get_field_db_type(field) new_field.related_model = get_related_model(field) new_field.related_name = get_related_name(field) fields_relation.append(new_field) else: # Build a FieldOther object new_field = FieldOther() new_field.name = get_field_name(field) new_field.field_type = get_field_type(field) new_field.field_column = get_field_column(field) new_field.field_db_type = get_field_db_type(field) new_field.field_verbose_name = get_field_verbose_name(field) fields_other.append(new_field) return ( fields_relation, fields_reverse_relation, fields_other, ) def build_method_objects(method_list: list, model: Model) -> tuple: """ Given a list of model methods, returns a tuple of MethodCommonDjango, MethodDunder, MethodOther, MethodOtherPrivate object lists """ method_dunder = [] method_common_django = [] method_other_private = [] method_other = [] for method in method_list: # Build the object, and assign to the correct list new_method = Method() new_method.name = method if VERBOSITY > 1: new_method.method_signature = get_method_signature(method, model, VERBOSITY) if VERBOSITY > 2: new_method.method_docstring = get_method_docstring(method, model) new_method.method_file = get_method_file(method, model) new_method.method_line_number = get_method_line_number(method, model) if method.startswith("__") and method.endswith("__"): # Dunder methods method_dunder.append(new_method) elif method in DEFAULT_DJANGO_METHODS: # Common Django methods method_common_django.append(new_method) elif method.startswith("_"): # Other Private methods method_other_private.append(new_method) else: # Other methods method_other.append(new_method) return ( method_dunder, method_common_django, method_other_private, method_other, ) def _fill_table(info_table: Table, info_object_list: list or None, info_type: type, column_count: int): """ Given a rich table, a list of """ if isinstance(info_object_list, list) and all(isinstance(row, info_type) for row in info_object_list): sorted_field_object_list = sorted(info_object_list, key=lambda x: x.name) for row in sorted_field_object_list: if VERBOSITY >= 2: info_table.add_row(*row.render_row(column_count=column_count)) else: info_table.add_row(*row.render_simple_row()) else: info_table.add_row("none") return info_table def _print_table(table): console.print(Padding(table, (1, 0, 0, 8))) def render_model_table(info_object_list: list or None, info_type: type): """Provided a list of FieldRelation objects, prints the resulting sorted table to console""" model_table = Table(title="Model Details") row_count = 2 if VERBOSITY > 1: row_count = 5 if VERBOSITY > 2: row_count = 11 model_table.add_column("Key", justify="left", style="blue", no_wrap=True) model_table.add_column("Value", justify="left", style="magenta") if isinstance(info_object_list, ModelInfo): for row in info_object_list.render_rows(row_count): new_row = tuple(row) model_table.add_row(new_row[0], new_row[1]) else: model_table.add_row("none") _print_table(model_table) def render_field_relations_table(info_object_list: list or None, info_type: type): """Provided a list of FieldRelation objects, prints the resulting sorted table to console""" field_table = Table(title="Relations") column_count = 1 field_table.add_column("Field Name", justify="left", style="yellow", no_wrap=True) if VERBOSITY >= 2: column_count = 6 field_table.add_column("Field Type", justify="left", style="magenta") field_table.add_column("Database Column", justify="left", style="magenta") field_table.add_column("Database Type", justify="left", style="magenta") field_table.add_column("Related Model", justify="right", style="dark_red") field_table.add_column("Related Name", justify="right", style="dark_red") field_table = _fill_table(field_table, info_object_list, info_type, column_count) _print_table(field_table) def render_field_reverse_relations_table(info_object_list: list or None, info_type: type): """Provided a list of FieldReverseRelation objects, prints the resulting sorted table to console""" field_table = Table(title="Reverse Relations") column_count = 1 field_table.add_column("Related Name", justify="left", style="yellow", no_wrap=True) if VERBOSITY >= 2: column_count = 7 field_table.add_column("Field Type", justify="left", style="magenta") field_table.add_column("Database Type", justify="left", style="magenta") field_table.add_column("Related Model", justify="right", style="dark_red") field_table.add_column("Field Name on Related Model", justify="left", style="dark_red") field_table.add_column("Field Type on Related Model", justify="left", style="dark_red") field_table = _fill_table(field_table, info_object_list, info_type, column_count) _print_table(field_table) def render_field_others_table(info_object_list: list or None, info_type: type): """Provided a list of FieldOther objects, prints the resulting sorted table to console""" field_table = Table(title="Other Fields") column_count = 1 field_table.add_column("Field Name", justify="left", style="yellow", no_wrap=True) if VERBOSITY >= 2: column_count = 6 field_table.add_column("Field Type", justify="left", style="magenta") field_table.add_column("Database Column", justify="left", style="magenta") field_table.add_column("Database Type", justify="left", style="magenta") field_table.add_column("Verbose Name", justify="left", style="white") field_table = _fill_table(field_table, info_object_list, info_type, column_count) _print_table(field_table) def render_method_table(info_object_list: list or None, info_type: str): """Provided a list of Method objects, prints the resulting sorted table to console""" method_table = Table(title=info_type) column_count = 1 method_table.add_column("Method Name", justify="left", style="cyan", no_wrap=True) if VERBOSITY > 1: column_count = 2 method_table.add_column("Signature", justify="left", style="magenta") if VERBOSITY > 2: column_count = 5 method_table.add_column("Docstring", justify="left", style="magenta") method_table.add_column("File", justify="left", style="magenta") method_table.add_column("Line Number", justify="left", style="magenta") method_table = _fill_table(method_table, info_object_list, Method, column_count) _print_table(method_table) def get_model_list(): if FILTER is not None: model_list = [] for filter_item in FILTER: if filter_item.count(".") == 0: # Get the models and add to the list # model_list.append(django_apps.get_app_config(filter_item).get_models()) try: app_models = [x for x in django_apps.get_app_config(filter_item).get_models()] except LookupError as e: print(f"Error while looking up `{filter_item}`: {e}") else: model_list.extend(app_models) elif filter_item.count(".") == 1: # Add to the model list try: filter_model = django_apps.get_model(filter_item) except LookupError as e: print(f"Error while looking up `{filter_item}`: {e}") else: model_list.append(filter_model) else: model_list = sorted( django_apps.get_models(), key=lambda x: (x._meta.app_label, x._meta.object_name), reverse=False ) return model_list model_list = get_model_list() for model in model_list: if VERBOSITY > 0: console.print(Padding("", (1, 0, 0, 0))) console.print(Padding("", (0, 0, 0, 0), style=section_style)) console.print(Padding("", (0, 0, 0, 0))) console.print(f"{model._meta.label}", style=section_style) if VERBOSITY > 0: def process_model(): build_model_objects(model) model_info = build_model_objects(model) render_model_table(model_info, list) process_model() def process_fields(): console.print(Padding("Fields:", (1, 0, 0, 4), style=subsection_style)) field_list = model._meta.get_fields(include_hidden=True) fields_relation, fields_reverse_relation, fields_other = build_field_objects(field_list) render_field_relations_table(fields_relation, FieldRelation) render_field_reverse_relations_table(fields_reverse_relation, FieldReverseRelation) render_field_others_table(fields_other, FieldOther) process_fields() def get_clean_method_list(): """ Remove any potential method names that start with an uppercase character, are blank, or not callable """ return [ method_name for method_name in dir(model) if method_name is not None and not method_name == "" and not method_name[0].isupper() and hasattr(model, method_name) and callable(getattr(model, method_name)) ] method_list = get_clean_method_list() def process_methods(): if VERBOSITY == 3: console.print(Padding("Methods (all):", (1, 0, 0, 4), style=subsection_style)) else: console.print(Padding("Methods (non-private/internal):", (1, 0, 0, 4), style=subsection_style)) method_dunder, method_common_django, method_other_private, method_other = build_method_objects( method_list, model ) if VERBOSITY > 1: render_method_table(method_dunder, "Dunder Methods") render_method_table(method_common_django, "Common Django Methods") render_method_table(method_other_private, "Other Private methods") render_method_table(method_other, "Other Methods") process_methods() self.stdout.write("\n") console.print(f"\nTotal Models Listed: {len(model_list)}\n", style=section_style) console.print(Align(Bar(size=0.1, begin=0.0, end=0.0, width=100), align="center"), style="red") def process_export(): """If a FILENAME was provided in options, try to save the appropriate type of file""" if FILENAME is not None: extension = Path(FILENAME).suffixes if len(extension) > 0: if any(x in extension[-1] for x in ["htm", "html"]): console.save_html(path=FILENAME) # Using print() to avoid exporting following line print(f"Saved as {FILENAME}") elif "txt" in extension[-1]: console.save_text(path=FILENAME) # Using print() to avoid exporting following line print(f"Saved as {FILENAME}") process_export() def handle(self, *args, **options): self.model_info(options)
50865
from torch.autograd import Variable import torch.nn.functional as F import scripts.utils as utils import torch.nn as nn import numpy as np import torch class CrossEntropy2d(nn.Module): def __init__(self, size_average=True, ignore_label=255): super(CrossEntropy2d, self).__init__() self.size_average = size_average self.ignore_label = ignore_label def forward(self, predict, target, weight=None): """ Args: predict:(n, c, h, w) target:(n, h, w) weight (Tensor, optional): a manual rescaling weight given to each class. If given, has to be a Tensor of size "nclasses" """ assert not target.requires_grad assert predict.dim() == 4 assert target.dim() == 3 assert predict.size(0) == target.size(0), "{0} vs {1} ".format(predict.size(0), target.size(0)) assert predict.size(2) == target.size(1), "{0} vs {1} ".format(predict.size(2), target.size(1)) assert predict.size(3) == target.size(2), "{0} vs {1} ".format(predict.size(3), target.size(3)) n, c, h, w = predict.size() target_mask = (target >= 0) * (target != self.ignore_label) target = target[target_mask] predict = predict.transpose(1, 2).transpose(2, 3).contiguous() predict = predict[target_mask.view(n, h, w, 1).repeat(1, 1, 1, c)].view(-1, c) loss = F.cross_entropy(predict, target, weight=weight, size_average=self.size_average) return loss def cross_entropy2d(input, target, weight=None, size_average=True): # 1. input: (n, c, h, w), target: (n, h, w) n, c, h, w = input.size() # 2. log_p: (n, c, h, w) log_p = F.log_softmax(input, dim=1) # 3. log_p: (n*h*w, c) - contiguous() required if transpose() is used before view(). log_p = log_p.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c) log_p = log_p[target.view(n * h * w, 1).repeat(1, c) >= 0] log_p = log_p.view(-1, c) # 4. target: (n*h*w,) mask = target >= 0 target = target[mask] loss = F.nll_loss(log_p, target, ignore_index=250, weight=weight, size_average=False) if size_average: loss /= mask.data.sum() # loss /= mask.sum().data[0] return loss def bootstrapped_cross_entropy2d(input, target, K, weight=None, size_average=False): """A categorical cross entropy loss for 4D tensors. We assume the following layout: (batch, classes, height, width) Args: input: The outputs. target: The predictions. K: The number of pixels to select in the bootstrapping process. The total number of pixels is determined as 512 * multiplier. Returns: The pixel-bootstrapped cross entropy loss. """ batch_size = input.size()[0] def _bootstrap_xentropy_single(input, target, K, weight=None, size_average=False): n, c, h, w = input.size() # 1. The log softmax. log_p: (n, c, h, w) log_p = F.log_softmax(input, dim=1) # 2. log_p: (n*h*w, c) - contiguous() required if transpose() is used before view(). log_p = log_p.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c) log_p = log_p[target.view(n * h * w, 1).repeat(1, c) >= 0] log_p = log_p.view(-1, c) # 3. target: (n*h*w,) mask = target >= 0 target = target[mask] loss = F.nll_loss(log_p, target, weight=weight, ignore_index=250, reduce=False, size_average=size_average) # For each element in the batch, collect the top K worst predictions topk_loss, _ = loss.topk(K) reduced_topk_loss = topk_loss.sum() / K return reduced_topk_loss loss = 0.0 # Bootstrap from each image not entire batch for i in range(batch_size): loss += _bootstrap_xentropy_single(input=torch.unsqueeze(input[i], 0), target=torch.unsqueeze(target[i], 0), K=K, weight=weight, size_average=size_average) return loss / float(batch_size) class FocalLoss2D(nn.Module): """ Focal Loss, which is proposed in: "Focal Loss for Dense Object Detection (https://arxiv.org/abs/1708.02002v2)" """ def __init__(self, num_classes=19, ignore_label=250, alpha=0.25, gamma=2, size_average=True): """ Loss(x, class) = - \alpha (1-softmax(x)[class])^gamma \log(softmax(x)[class]) :param num_classes: (int) num of the classes :param ignore_label: (int) ignore label :param alpha: (1D Tensor or Variable) the scalar factor :param gamma: (float) gamma > 0; reduces the relative loss for well-classified examples (probabilities > .5), putting more focus on hard, mis-classified examples :param size_average: (bool): By default, the losses are averaged over observations for each mini-batch. If the size_average is set to False, the losses are instead summed for each mini-batch. """ super(FocalLoss2D, self).__init__() self.alpha = alpha self.gamma = gamma self.num_classes = num_classes self.ignore_label = ignore_label self.size_average = size_average self.one_hot = Variable(torch.eye(self.num_classes)) def forward(self, cls_preds, cls_targets): """ :param cls_preds: (n, c, h, w) :param cls_targets: (n, h, w) :return: """ assert not cls_targets.requires_grad assert cls_targets.dim() == 3 assert cls_preds.size(0) == cls_targets.size(0), "{0} vs {1} ".format(cls_preds.size(0), cls_targets.size(0)) assert cls_preds.size(2) == cls_targets.size(1), "{0} vs {1} ".format(cls_preds.size(2), cls_targets.size(1)) assert cls_preds.size(3) == cls_targets.size(2), "{0} vs {1} ".format(cls_preds.size(3), cls_targets.size(3)) if cls_preds.is_cuda: self.one_hot = self.one_hot.cuda() n, c, h, w = cls_preds.size() # +++++++++++++++++++++++++++++++++++++++++++++++++++ # # 1. target reshape and one-hot encode # +++++++++++++++++++++++++++++++++++++++++++++++++++ # # 1.1. target: (n*h*w,) cls_targets = cls_targets.view(n * h * w, 1) target_mask = (cls_targets >= 0) * (cls_targets != self.ignore_label) cls_targets = cls_targets[target_mask] cls_targets = self.one_hot.index_select(dim=0, index=cls_targets) # +++++++++++++++++++++++++++++++++++++++++++++++++++ # # 2. compute focal loss for multi-classification # +++++++++++++++++++++++++++++++++++++++++++++++++++ # # 2.1. The softmax. prob: (n, c, h, w) prob = F.softmax(cls_preds, dim=1) # 2.2. prob: (n*h*w, c) - contiguous() required if transpose() is used before view(). prob = prob.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c) prob = prob[target_mask.repeat(1, c)] prob = prob.view(-1, c) # (n*h*w, c) probs = torch.clamp((prob * cls_targets).sum(1).view(-1, 1), min=1e-8, max=1.0) batch_loss = -self.alpha * (torch.pow((1 - probs), self.gamma)) * probs.log() if self.size_average: loss = batch_loss.mean() else: loss = batch_loss.sum() return loss class SemanticEncodingLoss(nn.Module): def __init__(self, num_classes=19, ignore_label=250, alpha=0.25): super(SemanticEncodingLoss, self).__init__() self.alpha = alpha self.num_classes = num_classes self.ignore_label = ignore_label def unique_encode(self, cls_targets): batch_size, _, _ = cls_targets.size() target_mask = (cls_targets >= 0) * (cls_targets != self.ignore_label) cls_targets = [cls_targets[idx].masked_select(target_mask[idx]) for idx in np.arange(batch_size)] # unique_cls = [np.unique(label.numpy(), return_counts=True) for label in cls_targets] unique_cls = [np.unique(label.numpy()) for label in cls_targets] encode = np.zeros((batch_size, self.num_classes), dtype=np.uint8) for idx in np.arange(batch_size): np.put(encode[idx], unique_cls[idx], 1) return torch.from_numpy(encode).float() def forward(self, predicts, enc_cls_target, size_average=True): se_loss = F.binary_cross_entropy_with_logits(predicts, enc_cls_target, weight=None, size_average=size_average) return self.alpha * se_loss # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # Lovasz-Softmax # <NAME> 2018 ESAT-PSI KU Leuven # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # def lovasz_grad(gt_sorted): """ Computes gradient of the Lovasz extension w.r.t sorted errors See Alg. 1 in paper """ p = len(gt_sorted) gts = gt_sorted.sum() intersection = gts - gt_sorted.float().cumsum(0) union = gts + (1 - gt_sorted).float().cumsum(0) jaccard = 1. - intersection / union if p > 1: # cover 1-pixel case jaccard[1:p] = jaccard[1:p] - jaccard[0:-1] return jaccard def iou_binary(preds, labels, EMPTY=1., ignore=None, per_image=True): """ IoU for foreground class binary: 1 foreground, 0 background """ if not per_image: preds, labels = (preds,), (labels,) ious = [] for pred, label in zip(preds, labels): intersection = ((label == 1) & (pred == 1)).sum() union = ((label == 1) | ((pred == 1) & (label != ignore))).sum() if not union: iou = EMPTY else: iou = float(intersection) / union ious.append(iou) iou = utils.mean(ious) # mean accross images if per_image return 100 * iou def iou(preds, labels, C, EMPTY=1., ignore=None, per_image=False): """ Array of IoU for each (non ignored) class """ if not per_image: preds, labels = (preds,), (labels,) ious = [] for pred, label in zip(preds, labels): iou = [] for i in range(C): if i != ignore: # The ignored label is sometimes among predicted classes (ENet - CityScapes) intersection = ((label == i) & (pred == i)).sum() union = ((label == i) | ((pred == i) & (label != ignore))).sum() if not union: iou.append(EMPTY) else: iou.append(float(intersection) / union) ious.append(iou) ious = map(utils.mean, zip(*ious)) # mean accross images if per_image return 100 * np.array(ious) def lovasz_softmax(probas, labels, only_present=False, per_image=False, ignore=None): """ Multi-class Lovasz-Softmax loss probas: [B, C, H, W] Variable, class probabilities at each prediction (between 0 and 1) labels: [B, H, W] Tensor, ground truth labels (between 0 and C - 1) only_present: average only on classes present in ground truth per_image: compute the loss per image instead of per batch ignore: void class labels """ if per_image: loss = utils.mean(lovasz_softmax_flat(*flatten_probas(prob, lab, ignore), only_present=only_present) for prob, lab in zip(probas, labels)) else: loss = lovasz_softmax_flat(*flatten_probas(probas, labels, ignore), only_present=only_present) return loss def lovasz_softmax_flat(probas, labels, only_present=False): """ Multi-class Lovasz-Softmax loss probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1) labels: [P] Tensor, ground truth labels (between 0 and C - 1) only_present: average only on classes present in ground truth """ C = probas.size(1) losses = [] for c in range(C): fg = (labels == c).float() # foreground for class c if only_present and fg.sum() == 0: continue errors = (fg - probas[:, c]).abs() errors_sorted, perm = torch.sort(errors, 0, descending=True) perm = perm.data fg_sorted = fg[perm] losses.append(torch.dot(errors_sorted, lovasz_grad(fg_sorted))) return utils.mean(losses) def flatten_probas(scores, labels, ignore=None): """ Flattens predictions in the batch """ B, C, H, W = scores.size() scores = scores.permute(0, 2, 3, 1).contiguous().view(-1, C) # B * H * W, C = P, C labels = labels.view(-1) if ignore is None: return scores, labels valid = (labels != ignore) vscores = scores[valid.nonzero().squeeze()] vlabels = labels[valid] return vscores, vlabels if __name__ == "__main__": from torch.autograd import Variable while True: dummy_in = Variable(torch.randn(2, 3, 32, 32), requires_grad=True) dummy_gt = Variable(torch.LongTensor(2, 32, 32).random_(0, 3)) dummy_in = F.softmax(dummy_in, dim=1) loss = lovasz_softmax(dummy_in, dummy_gt, ignore=255) print(loss.data[0])
50915
import lightnion as lnn import nacl.public import base64 def hand(guard, encode=True): identity = base64.b64decode(guard['router']['identity'] + '====') onion_key = base64.b64decode(guard['ntor-onion-key'] + '====') ephemeral_key, payload = lnn.crypto.ntor.hand(identity, onion_key) if encode: payload = str(base64.b64encode(payload), 'utf8') return payload, (onion_key, ephemeral_key, identity) def shake(payload, material): payload = base64.b64decode(payload) onion_key, ephemeral_key, identity = material material = lnn.crypto.ntor.shake(ephemeral_key, payload, identity, onion_key, length=92) return lnn.crypto.ntor.kdf(material)
50921
from __future__ import absolute_import import torch from torch import nn from torch.autograd import Variable from torch.nn import functional as F from scipy.stats import norm import numpy as np class VirtualCE(nn.Module): def __init__(self, beta=0.1): super(VirtualCE, self).__init__() self.beta = beta def forward(self, inputs, targets): # norm first n = inputs.shape[0] inputs = F.normalize(inputs, p=2) allPids = targets.cpu().numpy().tolist() # All Centers centerHash = { pid: F.normalize(inputs[targets == pid, :].mean(dim=0, keepdim=True), p=2).detach() for pid in set(allPids) } allCenters = torch.autograd.Variable(torch.cat(list(centerHash.values()))).cuda() centerPID = torch.from_numpy(np.asarray(list(centerHash.keys()))) # sampler vs center samplerCenter = torch.autograd.Variable(torch.cat([allCenters[centerPID == pid, :] for pid in allPids])).cuda() # inputs--(128*1024), allCenters--(32*1024) vce = torch.diag(torch.exp(samplerCenter.mm(inputs.t()) / self.beta)) # 1*128 centerScore = torch.exp(allCenters.mm(inputs.t()) / self.beta).sum(dim=0) # 32(center number)*128->1*128 return -torch.log(vce.div(centerScore)).mean() class VirtualKCE(nn.Module): def __init__(self, beta=0.1): super(VirtualKCE, self).__init__() self.beta = beta def forward(self, inputs, targets): # norm first n = inputs.shape[0] inputs = F.normalize(inputs, p=2) allPids = targets.cpu().numpy().tolist() # All Centers centerHash = { pid: F.normalize(inputs[targets == pid, :].mean(dim=0, keepdim=True), p=2).detach() for pid in set(allPids) } allCenters = torch.autograd.Variable(torch.cat(list(centerHash.values()))).cuda() centerPID = torch.from_numpy(np.asarray(list(centerHash.keys()))) samplerCenter = torch.autograd.Variable(torch.cat([allCenters[centerPID == pid, :] for pid in allPids])).cuda() # inputs--(128*1024), allCenters--(32*1024) vce = torch.diag(torch.exp(samplerCenter.mm(inputs.t()) / self.beta)) # 1*128 centerScore = torch.exp(allCenters.mm(inputs.t()) / self.beta).sum(dim=0) # 32*128->1*128 kNegScore = torch.diag(inputs.mm(inputs.t())) return -torch.log(vce.div(kNegScore + centerScore)).mean()
50941
import torch import torch.nn as nn import torch.nn.functional as F from datas.benchmark import Benchmark from datas.div2k import DIV2K from models.ecbsr import ECBSR from torch.utils.data import DataLoader import math import argparse, yaml import utils import os from tqdm import tqdm import logging import sys import time parser = argparse.ArgumentParser(description='ECBSR') ## yaml configuration files parser.add_argument('--config', type=str, default=None, help = 'pre-config file for training') ## paramters for ecbsr parser.add_argument('--scale', type=int, default=2, help = 'scale for sr network') parser.add_argument('--colors', type=int, default=1, help = '1(Y channls of YCbCr)') parser.add_argument('--m_ecbsr', type=int, default=4, help = 'number of ecb') parser.add_argument('--c_ecbsr', type=int, default=8, help = 'channels of ecb') parser.add_argument('--idt_ecbsr', type=int, default=0, help = 'incorporate identity mapping in ecb or not') parser.add_argument('--act_type', type=str, default='prelu', help = 'prelu, relu, splus, rrelu') parser.add_argument('--pretrain', type=str, default=None, help = 'path of pretrained model') ## parameters for model training parser.add_argument('--patch_size', type=int, default=64, help = 'patch size of HR image') parser.add_argument('--batch_size', type=int, default=32, help = 'batch size of training data') parser.add_argument('--data_repeat', type=int, default=1, help = 'times of repetition for training data') parser.add_argument('--data_augment', type=int, default=1, help = 'data augmentation for training') parser.add_argument('--epochs', type=int, default=600, help = 'number of epochs') parser.add_argument('--test_every', type=int, default=1, help = 'test the model every N epochs') parser.add_argument('--log_every', type=int, default=1, help = 'print log of loss, every N steps') parser.add_argument('--log_path', type=str, default="./experiments/") parser.add_argument('--lr', type=float, default=5e-4, help = 'learning rate of optimizer') parser.add_argument('--store_in_ram', type=int, default=0, help = 'store the whole training data in RAM or not') ## hardware specification parser.add_argument('--gpu_id', type=int, default=0, help = 'gpu id for training') parser.add_argument('--threads', type=int, default=1, help = 'number of threads for training') ## dataset specification parser.add_argument('--div2k_hr_path', type=str, default='/Users/xindongzhang/Documents/SRData/DIV2K/DIV2K_train_HR', help = '') parser.add_argument('--div2k_lr_path', type=str, default='/Users/xindongzhang/Documents/SRData/DIV2K/DIV2K_train_LR_bicubic', help = '') parser.add_argument('--set5_hr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/Set5/HR', help = '') parser.add_argument('--set5_lr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/Set5/LR_bicubic', help = '') parser.add_argument('--set14_hr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/Set14/HR', help = '') parser.add_argument('--set14_lr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/Set14/LR_bicubic', help = '') parser.add_argument('--b100_hr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/B100/HR', help = '') parser.add_argument('--b100_lr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/B100/LR_bicubic', help = '') parser.add_argument('--u100_hr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/Urban100/HR', help = '') parser.add_argument('--u100_lr_path', type=str, default='/Users/xindongzhang/Documents/SRData/benchmark/Urban100/LR_bicubic', help = '') if __name__ == '__main__': args = parser.parse_args() if args.config: opt = vars(args) yaml_args = yaml.load(open(args.config), Loader=yaml.FullLoader) opt.update(yaml_args) if args.colors == 3: raise ValueError("ECBSR is trained and tested with colors=1.") device = None if args.gpu_id >= 0 and torch.cuda.is_available(): print("use cuda & cudnn for acceleration!") print("the gpu id is: {}".format(args.gpu_id)) device = torch.device('cuda:{}'.format(args.gpu_id)) torch.backends.cudnn.benchmark = True else: print("use cpu for training!") device = torch.device('cpu') torch.set_num_threads(args.threads) div2k = DIV2K( args.div2k_hr_path, args.div2k_lr_path, train=True, augment=args.data_augment, scale=args.scale, colors=args.colors, patch_size=args.patch_size, repeat=args.data_repeat, store_in_ram=args.store_in_ram ) set5 = Benchmark(args.set5_hr_path, args.set5_lr_path, scale=args.scale, colors=args.colors, store_in_ram=args.store_in_ram) set14 = Benchmark(args.set14_hr_path, args.set14_lr_path, scale=args.scale, colors=args.colors, store_in_ram=args.store_in_ram) b100 = Benchmark(args.b100_hr_path, args.b100_lr_path, scale=args.scale, colors=args.colors, store_in_ram=args.store_in_ram) u100 = Benchmark(args.u100_hr_path, args.u100_lr_path, scale=args.scale, colors=args.colors, store_in_ram=args.store_in_ram) train_dataloader = DataLoader(dataset=div2k, num_workers=args.threads, batch_size=args.batch_size, shuffle=True, pin_memory=True, drop_last=True) valid_dataloaders = [] valid_dataloaders += [{'name': 'set5', 'dataloader': DataLoader(dataset=set5, batch_size=1, shuffle=False)}] valid_dataloaders += [{'name': 'set14', 'dataloader': DataLoader(dataset=set14, batch_size=1, shuffle=False)}] valid_dataloaders += [{'name': 'b100', 'dataloader': DataLoader(dataset=b100, batch_size=1, shuffle=False)}] valid_dataloaders += [{'name': 'u100', 'dataloader': DataLoader(dataset=u100, batch_size=1, shuffle=False)}] ## definitions of model, loss, and optimizer model = ECBSR(module_nums=args.m_ecbsr, channel_nums=args.c_ecbsr, with_idt=args.idt_ecbsr, act_type=args.act_type, scale=args.scale, colors=args.colors).to(device) loss_func = nn.L1Loss() optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) if args.pretrain is not None: print("load pretrained model: {}!".format(args.pretrain)) model.load_state_dict(torch.load(args.pretrain)) else: print("train the model from scratch!") ## auto-generate the output logname timestamp = utils.cur_timestamp_str() experiment_name = "ecbsr-x{}-m{}c{}-{}-{}".format(args.scale, args.m_ecbsr, args.c_ecbsr, args.act_type, timestamp) experiment_path = os.path.join(args.log_path, experiment_name) if not os.path.exists(experiment_path): os.makedirs(experiment_path) experiment_model_path = os.path.join(experiment_path, 'models') if not os.path.exists(experiment_model_path): os.makedirs(experiment_model_path) log_name = os.path.join(experiment_path, "log.txt") sys.stdout = utils.ExperimentLogger(log_name, sys.stdout) stat_dict = utils.get_stat_dict() ## save training paramters exp_params = vars(args) exp_params_name = os.path.join(experiment_path, 'config.yml') with open(exp_params_name, 'w') as exp_params_file: yaml.dump(exp_params, exp_params_file, default_flow_style=False) timer_start = time.time() for epoch in range(args.epochs): epoch_loss = 0.0 stat_dict['epochs'] = epoch model = model.train() print("##===========Epoch: {}=============##".format(epoch)) for iter, batch in enumerate(train_dataloader): optimizer.zero_grad() lr, hr = batch lr, hr = lr.to(device), hr.to(device) sr = model(lr) loss = loss_func(sr, hr) loss.backward() optimizer.step() epoch_loss += float(loss) if (iter + 1) % args.log_every == 0: cur_steps = (iter+1)*args.batch_size total_steps = len(train_dataloader.dataset) fill_width = math.ceil(math.log10(total_steps)) cur_steps = str(cur_steps).zfill(fill_width) epoch_width = math.ceil(math.log10(args.epochs)) cur_epoch = str(epoch).zfill(epoch_width) avg_loss = epoch_loss / (iter + 1) stat_dict['losses'].append(avg_loss) timer_end = time.time() duration = timer_end - timer_start timer_start = timer_end print("Epoch:{}, {}/{}, loss: {:.4f}, time: {:.3f}".format(cur_epoch, cur_steps, total_steps, avg_loss, duration)) if (epoch + 1) % args.test_every == 0: torch.set_grad_enabled(False) test_log = "" model = model.eval() for valid_dataloader in valid_dataloaders: avg_psnr = 0.0 avg_ssim = 0.0 name = valid_dataloader['name'] loader = valid_dataloader['dataloader'] for lr, hr in tqdm(loader, ncols=80): lr, hr = lr.to(device), hr.to(device) sr = model(lr) # crop hr = hr[:, :, args.scale:-args.scale, args.scale:-args.scale] sr = sr[:, :, args.scale:-args.scale, args.scale:-args.scale] # quantize hr = hr.clamp(0, 255) sr = sr.clamp(0, 255) # calculate psnr psnr = utils.calc_psnr(sr, hr) ssim = utils.calc_ssim(sr, hr) avg_psnr += psnr avg_ssim += ssim avg_psnr = round(avg_psnr/len(loader), 2) avg_ssim = round(avg_ssim/len(loader), 4) stat_dict[name]['psnrs'].append(avg_psnr) stat_dict[name]['ssims'].append(avg_ssim) if stat_dict[name]['best_psnr']['value'] < avg_psnr: stat_dict[name]['best_psnr']['value'] = avg_psnr stat_dict[name]['best_psnr']['epoch'] = epoch if stat_dict[name]['best_ssim']['value'] < avg_ssim: stat_dict[name]['best_ssim']['value'] = avg_ssim stat_dict[name]['best_ssim']['epoch'] = epoch test_log += "[{}-X{}], PSNR/SSIM: {:.2f}/{:.4f} (Best: {:.2f}/{:.4f}, Epoch: {}/{})\n".format( name, args.scale, float(avg_psnr), float(avg_ssim), stat_dict[name]['best_psnr']['value'], stat_dict[name]['best_ssim']['value'], stat_dict[name]['best_psnr']['epoch'], stat_dict[name]['best_ssim']['epoch']) # print log & flush out print(test_log) sys.stdout.flush() # save model saved_model_path = os.path.join(experiment_model_path, 'model_x{}_{}.pt'.format(args.scale, epoch)) torch.save(model.state_dict(), saved_model_path) torch.set_grad_enabled(True) # save stat dict ## save training paramters stat_dict_name = os.path.join(experiment_path, 'stat_dict.yml') with open(stat_dict_name, 'w') as stat_dict_file: yaml.dump(stat_dict, stat_dict_file, default_flow_style=False)
50970
if __name__ == '__main__' and __package__ is None: import sys from os import path sys.path.append( path.dirname( path.dirname( path.abspath(__file__) ) )) import os import torch from utils.model_serialization import strip_prefix_if_present from utils import zipreader import argparse from tqdm import tqdm import pickle import cv2 import numpy as np parser = argparse.ArgumentParser(description="PyTorch Keypoints Training") parser.add_argument( "--src", default="~/datasets", help="source model", type=str, ) parser.add_argument( "--dst", default="~/local/datasets/h36m/undistortedimages", help="dst model", type=str, ) parser.add_argument( "--anno", default="~/datasets/h36m/annot/h36m_validation.pkl", type=str, ) args = parser.parse_args() src = os.path.expanduser(args.src) dst = os.path.expanduser(args.dst) with open(os.path.expanduser(args.anno), 'rb') as f: data = pickle.load(f) for db_rec in tqdm(data): path = db_rec['image'] image_dir = 'images.zip@' image_file = os.path.join(src, db_rec['source'], image_dir, 'images', db_rec['image']) output_path = os.path.join(dst, path) if os.path.exists(output_path): continue output_dir = os.path.dirname(output_path) os.makedirs(output_dir, exist_ok=True) data_numpy = zipreader.imread( image_file, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) camera = db_rec['camera'] K = np.array([ [float(camera['fx']), 0, float(camera['cx'])], [0, float(camera['fy']), float(camera['cy'])], [0, 0, 1.], ]) distCoeffs = np.array([float(i) for i in [camera['k'][0], camera['k'][1], camera['p'][0], camera['p'][1], camera['k'][2]]]) data_numpy = cv2.undistort(data_numpy, K, distCoeffs) #cv2.imwrite(output_path, data_numpy, [int(cv2.IMWRITE_JPEG_QUALITY), 100]) #cv2.imwrite(output_path, data_numpy) cv2.imwrite(output_path, data_numpy, [int(cv2.IMWRITE_JPEG_QUALITY), 90])
50984
import logging import tflite import numpy as np from tflite2onnx import mapping from tflite2onnx.op.common import Operator from tflite2onnx.op.binary import PowerWrapper logger = logging.getLogger('tflite2onnx') class Rsqrt(Operator): # use square root as input operator and propagate output to power TypeMapping = { tflite.BuiltinOperator.RSQRT: 'Sqrt', } def __init__(self, TFactory, index): super().__init__(TFactory, index) self.setInited() @property def type(self): if self.status.uninitialized: return 'Sqrt' else: op = self.tflite opcode = self.model.OperatorCodes(op.OpcodeIndex()).BuiltinCode() assert(opcode in self.TypeMapping) return self.TypeMapping[opcode] def parse(self): logger.debug("Parsing %s...", self.type) op = self.tflite opcode = self.model.OperatorCodes(op.OpcodeIndex()).BuiltinCode() assert(opcode in self.TypeMapping) assert(op.InputsLength() == 1) assert(op.OutputsLength() == 1) self.parseInput(0) self.parseOutput(0) # invert square root result self.appendInvert() self.setParsed() def propagatableTensors(self): return self.inputs + self.outputs def transform(self): pass def appendInvert(self): invert = PowerWrapper(self.TFactory, -1) invert_name = 'TFLITE2ONNX_Invert_%s' % self.outputs[0].name invert_t = self.TFactory.getWithRef(self.outputs[0], invert_name, True) invert_t.setParsed() invert_t.addProducer(self) invert_t.addConsumer(invert) pow_t = 'TFLITE2ONNX_PowData_%s' % self.outputs[0].name pow_t = self.TFactory.getWithRef(self.outputs[0], pow_t, True) pow_dtype = mapping.DTYPE_ONNX2NAME[pow_t.dtype] pow_t.data = np.full(shape=pow_t.shape, fill_value=-1, dtype=pow_dtype) pow_t.setParsed() pow_t.addConsumer(invert) invert.inputs.append(invert_t) invert.inputs.append(pow_t) invert.outputs.append(self.outputs[0]) self.replaceOutput(self.outputs[0], invert_t) invert.setParsed() self.post.append(invert)
51024
from savu.plugins.plugin_tools import PluginTools class PyfaiAzimuthalIntegratorTools(PluginTools): """1D azimuthal integrator by pyFAI """
51031
from abc import abstractmethod class BaseCriterion: def __init__(self, **kwargs): pass def __call__(self, ground_truth, predictions): return self.compute_criterion(ground_truth, predictions) @abstractmethod def compute_criterion(self, ground_truth, predictions): raise NotImplementedError
51065
import wx from gui.textutil import CopyFont, default_font #from gui.toolbox import prnt from wx import EXPAND,ALL,TOP,VERTICAL,ALIGN_CENTER_HORIZONTAL,ALIGN_CENTER_VERTICAL,LI_HORIZONTAL ALIGN_CENTER = ALIGN_CENTER_HORIZONTAL|ALIGN_CENTER_VERTICAL TOPLESS = ALL & ~TOP bgcolors = [ wx.Color(238, 238, 238), wx.Color(255, 255, 255), ] hovbgcolor = wx.Color(220, 220, 220) #def printlist(list): # prnt(list) class VisualListEditorList(wx.VListBox): text_alignment = ALIGN_CENTER min_width = 150 def __init__(self, parent, list2sort, prettynames = None, listcallback = None, ischecked = None # if given, a function of one argument that determines if an argument is checked ): wx.VListBox.__init__(self, parent) self.Font = default_font() self.item_height = self.Font.Height + 12 self.oldlist = None self.prettynames = prettynames or {} self.listcallback = listcallback self.SetList(list2sort) self.setup_checkboxes(ischecked) self.BackgroundColour = wx.WHITE self._hovered = -1 Bind = self.Bind Bind(wx.EVT_MOTION, self.OnMotion) Bind(wx.EVT_LEFT_DOWN, self.OnLeftDown) Bind(wx.EVT_LEFT_UP, self.OnLeftUp) Bind(wx.EVT_PAINT,self.OnPaint) def CalcMinWidth(self): return self.min_width def SetList(self, seq): self.thelist = seq[:] self.SetItemCount(len(self.thelist)) height = self.OnMeasureItem(0) * self.ItemCount self.SetMinSize(wx.Size(self.CalcMinWidth(), height)) self.RefreshAll() def OnPaint(self,event): event.Skip() srect= wx.Rect(*self.Rect) srect.Inflate(1,1) pcdc = wx.ClientDC(self.Parent) pcdc.Brush = wx.TRANSPARENT_BRUSH pcdc.Pen = wx.Pen(wx.Colour(213,213,213)) pcdc.DrawRectangleRect(srect) def GetHovered(self): return self._hovered def GetItem(self, n): return self.thelist[n] def SetHovered(self,i): slist = self.thelist if i >= len(slist): return n = self._hovered self._hovered = i if n != -1: self.RefreshLine(n) if i != -1: self.RefreshLine(i) Hovered = property(GetHovered,SetHovered) def OnMeasureItem(self,n): return self.item_height def OnDrawBackground(self,dc,rect,n): dc.Brush = wx.Brush(hovbgcolor if self.Hovered == n else bgcolors[n % len(bgcolors)]) dc.Pen = wx.TRANSPARENT_PEN dc.DrawRectangleRect(rect) def OnDrawItem(self,dc,rect,n): elem = self.thelist[n] self._draw_checkbox(dc, rect, n) if hasattr(self.prettynames, '__call__'): name = self.prettynames(elem) else: name = self.prettynames.get(self.thelist[n], _('(Unnamed Panel)')) dc.Font = self.Font dc.DrawLabel(name, rect, self.text_alignment) def OnMotion(self,event): rect = self.ClientRect wap = wx.FindWindowAtPointer() mp = event.Position hit = self.HitTest(mp) dragging = event.Dragging() selection = self.Selection thelist = self.thelist checked = self.checked if hit != -1: cursor = wx.CURSOR_ARROW if self._over_checkbox(mp, hit) else wx.CURSOR_HAND self.SetCursor(wx.StockCursor(cursor)) if not dragging: if not rect.Contains(mp) or not wap == self: while self.HasCapture(): self.ReleaseMouse() self.Hovered = -1 return elif not self.HasCapture(): self.CaptureMouse() if dragging and -1 not in (selection, hit) and hit != selection: self.Selection = hit item = thelist[selection] if checked is not None: item_checked = checked[selection] thelist.pop(selection) thelist.insert(hit, item) if checked is not None: checked.pop(selection) checked.insert(hit, item_checked) self.Refresh() self.Hovered = hit def OnLeftDown(self,event): mp = event.Position self.oldlist = list(self.thelist) hit = self.HitTest(mp) if hit != -1 and self._over_checkbox(mp, hit): self.checked[hit] = not self.checked[hit] self.listcallback(self.thelist, self.checked) self.Refresh() else: self.Selection = hit def OnLeftUp(self,event): if self.oldlist and self.oldlist != self.thelist and self.listcallback: if self.checked is not None: self.listcallback(self.thelist, self.checked) else: self.listcallback(self.thelist) self.Selection = -1 self.oldlist = None # # checkbox support # def setup_checkboxes(self, ischecked): if ischecked is not None: self.checked = [ischecked(e) for e in self.thelist] else: self.checked = None self.checkbox_border = 5 self.checkbox_size = 16 self.checkbox_rect = wx.Rect(self.checkbox_border, (self.item_height - self.checkbox_size) / 2, self.checkbox_size, self.checkbox_size) def _draw_checkbox(self, dc, rect, n): if self.checked is None: return flag = wx.CONTROL_CHECKED if self.checked[n] else 0 # draw a checkbox cbrect = wx.Rect(*self.checkbox_rect) cbrect.Offset((rect.x, rect.y)) wx.RendererNative.Get().DrawCheckBox(self, dc, cbrect, flag) rect.x = rect.x + self.checkbox_size + self.checkbox_border * 2 def _over_checkbox(self, mp, hit): if self.checked is None: return False hitmp = mp - (0, hit * self.item_height) return self.checkbox_rect.Contains(hitmp) class VisualListEditorListWithLinks(VisualListEditorList): ''' A "visual list editor" which draws clickable links on the right. Subclasses override LinksForRow(n), returning ("Link Text", link_func) where link_func is a callable taking one argument, the row's item. Subclasses should also call PaintLinks(dc, rect, n) in their EVT_PAINT handlers. ''' link_padding = 5 def LinksForRow(self, n): '''Overridden by subclasses''' return [] def PaintLinks(self, dc, rect, n): '''Should be called by subclassess' EVT_PAINT handler.''' dc.Font = self.Font dc.TextForeground = wx.BLUE for (link_text, func), rect in self.LinkRectsForRow(n): rect.y += n * self.item_height dc.DrawLabel(link_text, rect, wx.ALIGN_CENTER_VERTICAL) def __init__(self, *a, **k): VisualListEditorList.__init__(self, *a, **k) self.Bind(wx.EVT_LEFT_DOWN, self.__leftdown) def __leftdown(self, e): mp = e.Position hit = self.HitTest(mp) link = self._link_hittest(mp, hit) if link: link_text, link_func = link return link_func(self.thelist[hit]) e.Skip() def _link_hittest(self, mp, hit): if hit == -1: return mp = mp - (0, hit * self.item_height) for link, rect in self.LinkRectsForRow(hit): if rect.Contains(mp): return link def LinkRectsForRow(self, hit): links = self.LinksForRow(hit) dc = wx.ClientDC(self) dc.Font = self.Font # calculate link rects from the right. p = self.ClientRect.TopRight rects = [] for link_text, func in reversed(links): w, h = dc.GetTextExtent(link_text) w += self.link_padding r = wx.Rect(p.x - w, p.y, w, self.item_height) rects.append(((link_text, func), r)) p.x -= w rects.reverse() # restore left to right order. return rects class VisualListEditor(wx.Dialog): dialog_style = wx.DEFAULT_DIALOG_STYLE | wx.FRAME_FLOAT_ON_PARENT def __init__(self, parent, list2sort, prettynames=None, listcallback=None, title=_("Arrange Panels"), listclass = VisualListEditorList, ischecked = None): wx.Dialog.__init__(self, parent, -1, title, style = self.dialog_style) Bind = self.Bind Bind(wx.EVT_CLOSE, self.Done) # construct panel = wx.Panel(self) text = wx.StaticText(panel, -1, _('Drag and drop to reorder'), style = ALIGN_CENTER) text.Font = CopyFont(text.Font, weight=wx.BOLD) self.vle = vle = listclass(panel, list2sort, prettynames, listcallback, ischecked=ischecked) Bind(wx.EVT_KEY_DOWN, self.OnKeyDown) self.vle.Bind(wx.EVT_KEY_DOWN, self.OnKeyDown) hline = wx.StaticLine(panel,style = LI_HORIZONTAL) done = wx.Button(panel,-1, _('Done')) done.Bind(wx.EVT_BUTTON,self.Done) # layout main_sizer = self.Sizer = wx.BoxSizer(VERTICAL) main_sizer.Add(panel, 1, EXPAND) s = panel.Sizer = wx.BoxSizer(VERTICAL) border_size = 6 s.AddMany([(text, 0, EXPAND|ALL, border_size), (vle, 1, EXPAND|TOPLESS, border_size), (hline, 0, EXPAND|TOPLESS, border_size), (done, 0, EXPAND|TOPLESS, border_size)]) self.Fit() def SetList(self, seq): return self.vle.SetList(seq) def Done(self, event): self.Hide() self.Destroy() def OnKeyDown(self, e): if e.KeyCode == wx.WXK_ESCAPE: self.Close() else: e.Skip()
51068
factors = [1, 2, 4] pads = [32, 64, 128, 256, 512] gen_scope = "gen" dis_scope = "dis" outputs_prefix = "output_" lr_key = "lr" hr_key = "hr" lr_input_name = "lr_input" hr_input_name = "hr_input" pretrain_key = "pretrain" train_key = "train" epoch_key = "per_epoch"
51117
def is_string(thing): try: return isinstance(thing, basestring) except NameError: return isinstance(thing, str)
51142
from __future__ import print_function from __future__ import division import os import sys import time import datetime import os.path as osp import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.backends.cudnn as cudnn from torch.optim import lr_scheduler from args import argument_parser, image_dataset_kwargs, optimizer_kwargs from torchreid.data_manager import ImageDataManager from torchreid import models from torchreid.losses import CrossEntropyLoss, DeepSupervision from torchreid.utils.iotools import save_checkpoint, check_isfile from torchreid.utils.avgmeter import AverageMeter from torchreid.utils.loggers import Logger, RankLogger from torchreid.utils.torchtools import count_num_param, open_all_layers, open_specified_layers from torchreid.utils.reidtools import visualize_ranked_results from torchreid.eval_metrics import evaluate from torchreid.optimizers import init_optimizer from torchreid.regularizers import get_regularizer from torchreid.losses.wrapped_cross_entropy_loss import WrappedCrossEntropyLoss from torchreid.models.tricks.dropout import DropoutOptimizer import logging logging.basicConfig(level=os.environ.get('LOGLEVEL', 'CRITICAL')) # global variables parser = argument_parser() args = parser.parse_args() dropout_optimizer = DropoutOptimizer(args) os.environ['TORCH_HOME'] = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '.torch')) def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k. Args: output (torch.Tensor): prediction matrix with shape (batch_size, num_classes). target (torch.LongTensor): ground truth labels with shape (batch_size). topk (tuple, optional): accuracy at top-k will be computed. For example, topk=(1, 5) means accuracy at top-1 and top-5 will be computed. Returns: list: accuracy at top-k. Examples:: >>> from torchreid import metrics >>> metrics.accuracy(output, target) """ maxk = max(topk) batch_size = target.size(0) if isinstance(output, (tuple, list)): output = output[0] _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) acc = correct_k.mul_(100.0 / batch_size) res.append(acc) return res def get_criterions(num_classes: int, use_gpu: bool, args) -> ('criterion', 'fix_criterion', 'switch_criterion'): from torchreid.losses.wrapped_triplet_loss import WrappedTripletLoss from torchreid.regularizers.param_controller import HtriParamController htri_param_controller = HtriParamController() if 'htri' in args.criterion: fix_criterion = WrappedTripletLoss(num_classes, use_gpu, args, htri_param_controller) switch_criterion = WrappedTripletLoss(num_classes, use_gpu, args, htri_param_controller) else: fix_criterion = WrappedCrossEntropyLoss(num_classes=num_classes, use_gpu=use_gpu, label_smooth=args.label_smooth) switch_criterion = WrappedCrossEntropyLoss(num_classes=num_classes, use_gpu=use_gpu, label_smooth=args.label_smooth) if args.criterion == 'xent': criterion = WrappedCrossEntropyLoss(num_classes=num_classes, use_gpu=use_gpu, label_smooth=args.label_smooth) elif args.criterion == 'spectral': from torchreid.losses.spectral_loss import SpectralLoss criterion = SpectralLoss(num_classes=num_classes, use_gpu=use_gpu, label_smooth=args.label_smooth, penalty_position=args.penalty_position) elif args.criterion == 'batch_spectral': from torchreid.losses.batch_spectral_loss import BatchSpectralLoss criterion = BatchSpectralLoss(num_classes=num_classes, use_gpu=use_gpu, label_smooth=args.label_smooth) elif args.criterion == 'lowrank': from torchreid.losses.lowrank_loss import LowRankLoss criterion = LowRankLoss(num_classes=num_classes, use_gpu=use_gpu, label_smooth=args.label_smooth) elif args.criterion == 'singular': from torchreid.losses.singular_loss import SingularLoss criterion = SingularLoss(num_classes=num_classes, use_gpu=use_gpu, label_smooth=args.label_smooth, penalty_position=args.penalty_position) elif args.criterion == 'htri': criterion = WrappedTripletLoss(num_classes=num_classes, use_gpu=use_gpu, args=args, param_controller=htri_param_controller) elif args.criterion == 'singular_htri': from torchreid.losses.singular_triplet_loss import SingularTripletLoss criterion = SingularTripletLoss(num_classes, use_gpu, args, htri_param_controller) elif args.criterion == 'incidence': from torchreid.losses.incidence_loss import IncidenceLoss criterion = IncidenceLoss() elif args.criterion == 'incidence_xent': from torchreid.losses.incidence_xent_loss import IncidenceXentLoss criterion = IncidenceXentLoss(num_classes, use_gpu, args.label_smooth) else: raise RuntimeError('Unknown criterion {!r}'.format(criterion)) if args.fix_custom_loss: fix_criterion = criterion if args.switch_loss < 0: criterion, switch_criterion = switch_criterion, criterion return criterion, fix_criterion, switch_criterion, htri_param_controller def main(): global args, dropout_optimizer torch.manual_seed(args.seed) if not args.use_avai_gpus: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False log_name = 'log_test.txt' if args.evaluate else 'log_train.txt' sys.stderr = sys.stdout = Logger(osp.join(args.save_dir, log_name)) print("==========\nArgs:{}\n==========".format(args)) if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU, however, GPU is highly recommended") print("Initializing image data manager") dm = ImageDataManager(use_gpu, **image_dataset_kwargs(args)) trainloader, testloader_dict = dm.return_dataloaders() print("Initializing model: {}".format(args.arch)) model = models.init_model(name=args.arch, num_classes=dm.num_train_pids, loss={'xent'}, use_gpu=use_gpu, dropout_optimizer=dropout_optimizer) print(model) print("Model size: {:.3f} M".format(count_num_param(model))) # criterion = WrappedCrossEntropyLoss(num_classes=dm.num_train_pids, use_gpu=use_gpu, label_smooth=args.label_smooth) criterion, fix_criterion, switch_criterion, htri_param_controller = get_criterions(dm.num_train_pids, use_gpu, args) regularizer, reg_param_controller = get_regularizer(args.regularizer) optimizer = init_optimizer(model.parameters(), **optimizer_kwargs(args)) scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma) if args.load_weights and check_isfile(args.load_weights): # load pretrained weights but ignore layers that don't match in size try: checkpoint = torch.load(args.load_weights) except Exception as e: print(e) checkpoint = torch.load(args.load_weights, map_location={'cuda:0': 'cpu'}) # dropout_optimizer.set_p(checkpoint.get('dropout_p', 0)) # print(list(checkpoint.keys()), checkpoint['dropout_p']) pretrain_dict = checkpoint['state_dict'] model_dict = model.state_dict() pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()} model_dict.update(pretrain_dict) model.load_state_dict(model_dict) print("Loaded pretrained weights from '{}'".format(args.load_weights)) if args.resume and check_isfile(args.resume): checkpoint = torch.load(args.resume) state = model.state_dict() state.update(checkpoint['state_dict']) model.load_state_dict(state) # args.start_epoch = checkpoint['epoch'] + 1 print("Loaded checkpoint from '{}'".format(args.resume)) print("- start_epoch: {}\n- rank1: {}".format(args.start_epoch, checkpoint['rank1'])) if use_gpu: model = nn.DataParallel(model, device_ids=list(range(len(args.gpu_devices.split(','))))).cuda() extract_train_info(model, trainloader) def extract_train_info(model, trainloader): model.eval() os.environ['fake'] = '1' accs = [AverageMeter() for _ in range(3)] with torch.no_grad(): for imgs, pids, _, paths in trainloader: xent_features = model(imgs.cuda())[1] for i, xent_feature in enumerate(xent_features): accs[i].update( accuracy(xent_feature, pids.cuda())[0].item(), pids.size(0), ) with open(args.load_weights + '.acc', 'w') as f: print(*(acc.avg for acc in accs), file=f) if __name__ == '__main__': main()
51147
import sys from typing import NoReturn, Optional, Type from traceback_with_variables.print import print_exc, Format def global_print_exc(fmt: Optional[Format] = None) -> NoReturn: sys.excepthook = lambda e_cls, e, tb: print_exc(e=e, fmt=fmt) def global_print_exc_in_ipython(fmt: Optional[Format] = None) -> NoReturn: try: import IPython except ModuleNotFoundError: raise ValueError("IPython not found") IPython.core.interactiveshell.InteractiveShell.showtraceback = \ lambda self, *args, **kwargs: print_exc(num_skipped_frames=1, fmt=fmt) def is_ipython_global(name: str, type_: Type, filename: str, is_global: bool) -> bool: return is_global and ( name in ['In', 'Out', 'get_ipython', 'exit', 'quit'] or name.startswith('_') )
51175
from torch import nn import torch.nn.functional as F from model.basic import DownSampling, SSnbt, APN class LEDNet(nn.Module): def __init__(self, nclass, drop=0.1): super(LEDNet, self).__init__() self.encoder = nn.Sequential( DownSampling(3, 29), SSnbt(32, 1, 0.1 * drop), SSnbt(32, 1, 0.1 * drop), SSnbt(32, 1, 0.1 * drop), DownSampling(32, 32), SSnbt(64, 1, 0.1 * drop), SSnbt(64, 1, 0.1 * drop), DownSampling(64, 64), SSnbt(128, 1, drop), SSnbt(128, 2, drop), SSnbt(128, 5, drop), SSnbt(128, 9, drop), SSnbt(128, 2, drop), SSnbt(128, 5, drop), SSnbt(128, 9, drop), SSnbt(128, 17, drop) ) self.decoder = APN(128, nclass) def forward(self, x): _, _, h, w = x.shape x = self.encoder(x) x = self.decoder(x) return F.interpolate(x, size=(h, w), mode='bilinear', align_corners=True) if __name__ == '__main__': net = LEDNet(21) import torch a = torch.randn(2, 3, 554, 253) out = net(a) print(out.shape)
51181
from vulnscan_parser.models.vsfinding import VSFinding class TestsslFinding(VSFinding): def __init__(self): super().__init__() self.ignored_dict_props.extend(['vulnerability', 'ports']) self.ignored_dict_props.remove('finding') self.vulnerability = None self._cwe = [] self._cve = [] self.finding = '' @property def cwe(self): if not self._cwe: return self.vulnerability.cwe return self._cwe @cwe.setter def cwe(self, value): if value != self.vulnerability.cwe: self._cwe = value @property def cve(self): if not self._cve: return self.vulnerability.cve return self._cve @cve.setter def cve(self, value): if value != self.vulnerability.cve: self._cve = value @property def name(self): return self.vulnerability.name def to_serializable_dict(self): result = self.vulnerability.to_serializable_dict() result.update(self.host.to_serializable_dict()) result.update(super().to_serializable_dict()) # remove unnecessary attrs result.pop('hostnames') return result
51187
from fest import utils class SomeClass: pass def test_future(): fut = utils.Future(iter('abcdefg')) ret = fut.filter(lambda x: x < 'e').execute() exp = list('abcd') assert ret == exp def test_digest(): ret = {'fizz': 'buzz'} assert utils.digest(ret) == 'f45195aef08daea1be5dbb1c7feb5763c5bc7b37' def test_logger(): obj = SomeClass() ret = utils.logger(obj) exp = 'tests.utils_test.SomeClass' assert ret.name == exp
51197
import time from umqtt.robust import MQTTClient def sub_cb(topic, msg): print((topic, msg)) c = MQTTClient("umqtt_client", "localhost") # Print diagnostic messages when retries/reconnects happens c.DEBUG = True c.set_callback(sub_cb) # Connect to server, requesting not to clean session for this # client. If there was no existing session (False return value # from connect() method), we perform the initial setup of client # session - subscribe to needed topics. Afterwards, these # subscriptions will be stored server-side, and will be persistent, # (as we use clean_session=False). # # There can be a problem when a session for a given client exists, # but doesn't have subscriptions a particular application expects. # In this case, a session needs to be cleaned first. See # example_reset_session.py for an obvious way how to do that. # # In an actual application, it's up to its developer how to # manage these issues. One extreme is to have external "provisioning" # phase, where initial session setup, and any further management of # a session, is done by external tools. This allows to save resources # on a small embedded device. Another extreme is to have an application # to perform auto-setup (e.g., clean session, then re-create session # on each restart). This example shows mid-line between these 2 # approaches, where initial setup of session is done by application, # but if anything goes wrong, there's an external tool to clean session. if not c.connect(clean_session=False): print("New session being set up") c.subscribe(b"foo_topic") while 1: c.wait_msg() c.disconnect()
51206
from moai.monads.human.pose.openpose import ( Split as OpenposeSplit, JointMap as OpenposeJointMap ) __all__ = [ 'OpenposeSplit', 'OpenposeJointMap', ]
51224
import sys import asyncio import zmq import zmq.asyncio from zmq.auth import Authenticator from zmq.auth.thread import _inherit_docstrings, ThreadAuthenticator, \ AuthenticationThread # Copying code from zqm classes since no way to inject these dependencies class MultiZapAuthenticator(Authenticator): """ `Authenticator` supports only one ZAP socket in a single process, this lets you have multiple ZAP sockets """ count = 0 def __init__(self, context=None, encoding='utf-8', log=None): MultiZapAuthenticator.count += 1 super().__init__(context=context, encoding=encoding, log=log) def start(self): """Create and bind the ZAP socket""" self.zap_socket = self.context.socket(zmq.REP) self.zap_socket.linger = 1 zapLoc = 'inproc://zeromq.zap.{}'.format(MultiZapAuthenticator.count) self.zap_socket.bind(zapLoc) self.log.debug('Starting ZAP at {}'.format(zapLoc)) def stop(self): """Close the ZAP socket""" if self.zap_socket: self.log.debug( 'Stopping ZAP at {}'.format(self.zap_socket.LAST_ENDPOINT)) super().stop() @_inherit_docstrings class ThreadMultiZapAuthenticator(ThreadAuthenticator): def start(self): """Start the authentication thread""" # create a socket to communicate with auth thread. self.pipe = self.context.socket(zmq.PAIR) self.pipe.linger = 1 self.pipe.bind(self.pipe_endpoint) authenticator = MultiZapAuthenticator(self.context, encoding=self.encoding, log=self.log) self.thread = AuthenticationThread(self.context, self.pipe_endpoint, encoding=self.encoding, log=self.log, authenticator=authenticator) self.thread.start() # Event.wait:Changed in version 2.7: Previously, the method always returned None. if sys.version_info < (2, 7): self.thread.started.wait(timeout=10) else: if not self.thread.started.wait(timeout=10): raise RuntimeError("Authenticator thread failed to start") class AsyncioAuthenticator(MultiZapAuthenticator): """ZAP authentication for use in the asyncio IO loop""" def __init__(self, context=None, loop=None): super().__init__(context) self.loop = loop or asyncio.get_event_loop() self.__poller = None self.__task = None # TODO: Remove this commented method later # @asyncio.coroutine # def __handle_zap(self): # while True: # events = yield from self.__poller.poll() # if self.zap_socket in dict(events): # msg = yield from self.zap_socket.recv_multipart() # self.handle_zap_message(msg) async def __handle_zap(self): while True: events = await self.__poller.poll() if self.zap_socket in dict(events): msg = await self.zap_socket.recv_multipart() self.handle_zap_message(msg) def start(self): """Start ZAP authentication""" super().start() self.__poller = zmq.asyncio.Poller() self.__poller.register(self.zap_socket, zmq.POLLIN) self.__task = asyncio.ensure_future(self.__handle_zap()) def stop(self): """Stop ZAP authentication""" if self.__task: self.__task.cancel() if self.__poller: self.__poller.unregister(self.zap_socket) self.__poller = None super().stop()
51227
import numpy as np import unittest import pytest from pysph.base.particle_array import ParticleArray import pysph.tools.mesh_tools as G from pysph.base.utils import get_particle_array # Data of a unit length cube def cube_data(): points = np.array([[0., 0., 0.], [0., 1., 0.], [1., 1., 0.], [1., 0., 0.], [0., 0., 1.], [0., 1., 1.], [1., 0., 1.], [1., 1., 1.]]) x_cube, y_cube, z_cube = points.T cells = np.array([[0, 1, 2], [0, 2, 3], [0, 4, 5], [0, 5, 1], [0, 3, 6], [0, 6, 4], [4, 6, 7], [4, 7, 5], [3, 2, 7], [3, 7, 6], [1, 5, 7], [1, 7, 2]]) normals = np.array([[0., 0., -1.], [0., 0., -1.], [-1., 0., 0.], [-1., 0., 0.], [0., -1., 0.], [0., -1., 0.], [0., 0., 1.], [0., 0., 1.], [1., 0., 0.], [1., 0., 0.], [0., 1., 0.], [0., 1., 0.]]) vectors = np.zeros((len(cells), 3, 3)) for i, cell in enumerate(cells): idx1, idx2, idx3 = cell vector = np.array([[x_cube[idx1], y_cube[idx1], z_cube[idx1]], [x_cube[idx2], y_cube[idx2], z_cube[idx2]], [x_cube[idx3], y_cube[idx3], z_cube[idx3]]]) vectors[i] = vector return x_cube, y_cube, z_cube, cells, normals, vectors class TestGeometry(unittest.TestCase): def test_in_triangle(self): assert(G._in_triangle(0.5, 0.5, 0.0, 0.0, 1.5, 0.0, 0.0, 1.5) is True) assert(G._in_triangle(1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0) is False) def test_interp_2d(self): # Check interpolation between two points on line y=x dx = 0.1 r = G._interp_2d(np.array([0., 0.]), np.array([1., 1.]), dx) # Check if all points satisfy y=x np.testing.assert_array_almost_equal( r[:, 0] - r[:, 1], np.zeros(r.shape[0])) # Check if distance between consecutive points is lesser than dx np.testing.assert_array_less(np.linalg.norm(r[1:] - r[0:-1], axis=1), np.ones(r.shape[0] - 1) * dx) def test_fill_triangle(self): triangle = np.array([[0., 0., 0.], [1., 0., 0.], [0., 1., 0.]]) dx_triangle = 0.1 x, y, z = G._fill_triangle(triangle, dx_triangle) EPS = np.finfo(float).eps np.testing.assert_array_less(-x, np.zeros(x.shape[0]) + EPS) np.testing.assert_array_less(-y, np.zeros(x.shape[0]) + EPS) np.testing.assert_array_less(-(x + y), np.ones(x.shape[0]) + EPS) np.testing.assert_almost_equal(z, np.zeros(x.shape[0])) def test_fill_triangle_throws_zero_area_triangle_exception(self): self.assertRaises(G.ZeroAreaTriangleException, G._fill_triangle, np.zeros((3, 3)), 0.5) def test_fill_triangle_throws_polygon_mesh_error(self): self.assertRaises(G.PolygonMeshError, G._fill_triangle, np.zeros((4, 3)), 0.5) def test_get_points_from_mgrid(self): """Find neighbouring particles around a unit cube""" h = 0.1 x_cube, y_cube, z_cube, cells, normals, vectors = cube_data() x, y, z, x_list, y_list, z_list, vectors = \ G._get_surface_mesh(x_cube, y_cube, z_cube, cells, h, uniform=True) pa_mesh = ParticleArray(name='mesh', x=x, y=y, z=z, h=h) offset = h x_grid, y_grid, z_grid = np.meshgrid( np.arange(x.min() - offset, x.max() + offset, h), np.arange(y.min() - offset, y.max() + offset, h), np.arange(z.min() - offset, z.max() + offset, h)) pa_grid = ParticleArray(name='grid', x=x_grid, y=y_grid, z=z_grid, h=h) x_grid, y_grid, z_grid = G.get_points_from_mgrid( pa_grid, pa_mesh, x_list, y_list, z_list, 1, h, vectors, normals ) for i in range(x.shape[0]): assert((x[i] ** 2 + y[i] ** 2 + z[i] ** 2) <= 4) def _cube_assert(self, x, y, z, h): """Check if x,y,z lie within surface of thickness `h` of a unit cube""" def surface1(x, y, z): return min(abs(x), abs(1 - x)) < h and \ y > -h and y < 1 + h and z > -h and z < 1 + h def on_surface(x, y, z): return surface1(x, y, z) or \ surface1(y, x, z) or surface1(z, x, y) for i in range(x.shape[0]): assert on_surface(x[i], y[i], z[i]) def test_get_surface_mesh(self): """Check if mesh is generated correctly for unit cube""" x_cube, y_cube, z_cube, cells, normals, vectors = cube_data() x, y, z = G._get_surface_mesh(x_cube, y_cube, z_cube, cells, 0.1) h = np.finfo(float).eps self._cube_assert(x, y, z, h) def test_get_surface_points(self): """Check if surface is generated correctly for unit cube""" h = 0.1 x_cube, y_cube, z_cube, cells, normals, vectors = cube_data() x, y, z = G.surface_points(x_cube, y_cube, z_cube, cells, h) self._cube_assert(x, y, z, h) def test_get_surface_points_uniform(self): """Check if uniform surface is generated correctly for unit cube""" h = 0.1 x_cube, y_cube, z_cube, cells, normals, vectors = cube_data() x, y, z = G.surf_points_uniform(x_cube, y_cube, z_cube, cells, normals, 1.0, 1.0) self._cube_assert(x, y, z, h) def test_prism(self): tri_normal = np.array([0, -1, 0]) tri_points = np.array([[0, 0, 0], [1, 0, 0], [0, 0, 1]]) h = 1/1.5 prism_normals, prism_points, prism_face_centres = \ G.prism(tri_normal, tri_points, h) assert np.array([-1, 0, 0]) in prism_normals assert np.array([0, 1, 0]) in prism_points assert np.array([0.5, 0.5, 0]) in prism_face_centres if __name__ == "__main__": unittest.main()
51268
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import torch import numpy as np from torch.cuda.amp import autocast, GradScaler from src.opts import opt from src.dataset import Dataset from src.losses import CtdetLoss from src.utils.logger import Logger from src.utils.average_meter import AverageMeter, TimeMeter from src.model import get_model, load_model, save_model def train(model, train_loader, criterion, optimizer, logger, opt, epoch, scaler, time_stats): model.train() avg_loss_stats = {l: AverageMeter() for l in ['loss', 'hm_loss', 'wh_loss', 'off_loss']} for iter_id, batch in enumerate(train_loader): # to cuda for k in batch: batch[k] = batch[k].to(device=opt.device, non_blocking=True) # amp with autocast(): output = model(batch['input']) loss_stats = criterion(output, batch) loss = loss_stats['loss'].mean() optimizer.zero_grad() scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() # else: # # no amp # output = model(batch['input']) # loss_stats = criterion(output, batch) # loss = loss_stats['loss'].mean() # optimizer.zero_grad() # loss.backward() # optimizer.step() info = f'train : [{epoch}][{iter_id}/{len(train_loader)}] |' for l in avg_loss_stats: avg_loss_stats[l].update( loss_stats[l].mean().item(), batch['input'].size(0)) info += f'|{l} {avg_loss_stats[l].avg:.4f} ' time_stats.update(epoch, iter_id) info += f'|left_time: {time_stats.left_time:.1f} hour' # log if iter_id % 100 == 0: logger.write(info) def val(model, val_loader, criterion, logger, opt, epoch): with torch.no_grad(): model.eval() torch.cuda.empty_cache() avg_loss_stats = {l: AverageMeter() for l in ['loss', 'hm_loss', 'wh_loss', 'off_loss']} for iter_id, batch in enumerate(val_loader): for k in batch: batch[k] = batch[k].to(device=opt.device, non_blocking=True) output = model(batch['input']) loss_stats = criterion(output, batch) info = f'val : [{epoch}][{iter_id}/{len(val_loader)}] |' for l in avg_loss_stats: avg_loss_stats[l].update( loss_stats[l].mean().item(), batch['input'].size(0)) info += f'|{l} {avg_loss_stats[l].avg:.4f} ' # log if iter_id % 100 == 0: logger.write(info) def main(): torch.manual_seed(317) torch.backends.cudnn.benckmark = True train_logger = Logger(opt, "train") val_logger = Logger(opt, "val") start_epoch = 0 print('Creating model...') model = get_model(opt.arch, opt.heads).to(opt.device) optimizer = torch.optim.Adam(model.parameters(), opt.lr) criterion = CtdetLoss(opt) print('Loading model...') if opt.load_model != '': model, optimizer, start_epoch = load_model( model, opt.load_model, optimizer, opt.lr, opt.lr_step) model = torch.nn.DataParallel(model) # amp scaler = GradScaler() print('Setting up data...') train_dataset = Dataset(opt, 'train') val_dataset = Dataset(opt, 'val') train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=16, pin_memory=True, drop_last=True ) val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=1, shuffle=False, num_workers=1, pin_memory=True ) # cal left time time_stats = TimeMeter(opt.num_epochs, len(train_loader)) for epoch in range(start_epoch + 1, opt.num_epochs + 1): print('train...') train(model, train_loader, criterion, optimizer, train_logger, opt, epoch, scaler, time_stats) if epoch % opt.val_intervals == 0: print('val...') val(model, val_loader, criterion, val_logger, opt, epoch) save_model(os.path.join(opt.save_dir, f'model_{epoch}.pth'), epoch, model, optimizer) # update learning rate if epoch in opt.lr_step: lr = opt.lr * (0.1 ** (opt.lr_step.index(epoch) + 1)) print('Drop LR to', lr) for param_group in optimizer.param_groups: param_group['lr'] = lr # without optimizer save_model(os.path.join(opt.save_dir, 'model_final.pth'), epoch, model) if __name__ == '__main__': main()
51357
import os import itertools import re from typing import List, Optional, Tuple, Dict, Callable, Any, NamedTuple from string import Template from typing import List from tokenizers import Tokenizer, Encoding dirname = os.path.dirname(__file__) css_filename = os.path.join(dirname, "visualizer-styles.css") with open(css_filename) as f: css = f.read() class Annotation: start: int end: int label: int def __init__(self, start: int, end: int, label: str): self.start = start self.end = end self.label = label AnnotationList = List[Annotation] PartialIntList = List[Optional[int]] class CharStateKey(NamedTuple): token_ix: Optional[int] anno_ix: Optional[int] class CharState: char_ix: Optional[int] def __init__(self, char_ix): self.char_ix = char_ix self.anno_ix: Optional[int] = None self.tokens: List[int] = [] @property def token_ix(self): return self.tokens[0] if len(self.tokens) > 0 else None @property def is_multitoken(self): """ BPE tokenizers can output more than one token for a char """ return len(self.tokens) > 1 def partition_key(self) -> CharStateKey: return CharStateKey( token_ix=self.token_ix, anno_ix=self.anno_ix, ) class Aligned: pass class EncodingVisualizer: """ Build an EncodingVisualizer Args: tokenizer (:class:`~tokenizers.Tokenizer`): A tokenizer instance default_to_notebook (:obj:`bool`): Whether to render html output in a notebook by default annotation_converter (:obj:`Callable`, `optional`): An optional (lambda) function that takes an annotation in any format and returns an Annotation object """ unk_token_regex = re.compile("(.{1}\b)?(unk|oov)(\b.{1})?", flags=re.IGNORECASE) def __init__( self, tokenizer: Tokenizer, default_to_notebook: bool = True, annotation_converter: Optional[Callable[[Any], Annotation]] = None, ): if default_to_notebook: try: from IPython.core.display import display, HTML except ImportError as e: raise Exception( """We couldn't import IPython utils for html display. Are you running in a notebook? You can also pass `default_to_notebook=False` to get back raw HTML """ ) self.tokenizer = tokenizer self.default_to_notebook = default_to_notebook self.annotation_coverter = annotation_converter pass def __call__( self, text: str, annotations: AnnotationList = [], default_to_notebook: Optional[bool] = None, ) -> Optional[str]: """ Build a visualization of the given text Args: text (:obj:`str`): The text to tokenize annotations (:obj:`List[Annotation]`, `optional`): An optional list of annotations of the text. The can either be an annotation class or anything else if you instantiated the visualizer with a converter function default_to_notebook (:obj:`bool`, `optional`, defaults to `False`): If True, will render the html in a notebook. Otherwise returns an html string. Returns: The HTML string if default_to_notebook is False, otherwise (default) returns None and renders the HTML in the notebook """ final_default_to_notebook = self.default_to_notebook if default_to_notebook is not None: final_default_to_notebook = default_to_notebook if final_default_to_notebook: try: from IPython.core.display import display, HTML except ImportError as e: raise Exception( """We couldn't import IPython utils for html display. Are you running in a notebook?""" ) if self.annotation_coverter is not None: annotations = list(map(self.annotation_coverter, annotations)) encoding = self.tokenizer.encode(text) html = EncodingVisualizer.__make_html(text, encoding, annotations) if final_default_to_notebook: display(HTML(html)) else: return html @staticmethod def calculate_label_colors(annotations: AnnotationList) -> Dict[str, str]: """ Generates a color palette for all the labels in a given set of annotations Args: annotations (:obj:`Annotation`): A list of annotations Returns: :obj:`dict`: A dictionary mapping labels to colors in HSL format """ if len(annotations) == 0: return {} labels = set(map(lambda x: x.label, annotations)) num_labels = len(labels) h_step = int(255 / num_labels) if h_step < 20: h_step = 20 s = 32 l = 64 h = 10 colors = {} for label in sorted( labels ): # sort so we always get the same colors for a given set of labels colors[label] = f"hsl({h},{s}%,{l}%" h += h_step return colors @staticmethod def consecutive_chars_to_html( consecutive_chars_list: List[CharState], text: str, encoding: Encoding, ): """ Converts a list of "consecutive chars" into a single HTML element. Chars are consecutive if they fall under the same word, token and annotation. The CharState class is a named tuple with a "partition_key" method that makes it easy to compare if two chars are consecutive. Args: consecutive_chars_list (:obj:`List[CharState]`): A list of CharStates that have been grouped together text (:obj:`str`): The original text being processed encoding (:class:`~tokenizers.Encoding`): The encoding returned from the tokenizer Returns: :obj:`str`: The HTML span for a set of consecutive chars """ first = consecutive_chars_list[0] if first.char_ix is None: # its a special token stoken = encoding.tokens[first.token_ix] # special tokens are represented as empty spans. We use the data attribute and css # magic to display it return f'<span class="special-token" data-stoken={stoken}></span>' # We're not in a special token so this group has a start and end. last = consecutive_chars_list[-1] start = first.char_ix end = last.char_ix + 1 span_text = text[start:end] css_classes = [] # What css classes will we apply on the resulting span data_items = {} # What data attributes will we apply on the result span if first.token_ix is not None: # We can either be in a token or not (e.g. in white space) css_classes.append("token") if first.is_multitoken: css_classes.append("multi-token") if first.token_ix % 2: # We use this to color alternating tokens. # A token might be split by an annotation that ends in the middle of it, so this # lets us visually indicate a consecutive token despite its possible splitting in # the html markup css_classes.append("odd-token") else: # Like above, but a different color so we can see the tokens alternate css_classes.append("even-token") if ( EncodingVisualizer.unk_token_regex.search(encoding.tokens[first.token_ix]) is not None ): # This is a special token that is in the text. probably UNK css_classes.append("special-token") # TODO is this the right name for the data attribute ? data_items["stok"] = encoding.tokens[first.token_ix] else: # In this case we are looking at a group/single char that is not tokenized. # e.g. white space css_classes.append("non-token") css = f'''class="{' '.join(css_classes)}"''' data = "" for key, val in data_items.items(): data += f' data-{key}="{val}"' return f"<span {css} {data} >{span_text}</span>" @staticmethod def __make_html(text: str, encoding: Encoding, annotations: AnnotationList) -> str: char_states = EncodingVisualizer.__make_char_states(text, encoding, annotations) current_consecutive_chars = [char_states[0]] prev_anno_ix = char_states[0].anno_ix spans = [] label_colors_dict = EncodingVisualizer.calculate_label_colors(annotations) cur_anno_ix = char_states[0].anno_ix if cur_anno_ix is not None: # If we started in an annotation make a span for it anno = annotations[cur_anno_ix] label = anno.label color = label_colors_dict[label] spans.append(f'<span class="annotation" style="color:{color}" data-label="{label}">') for cs in char_states[1:]: cur_anno_ix = cs.anno_ix if cur_anno_ix != prev_anno_ix: # If we've transitioned in or out of an annotation spans.append( # Create a span from the current consecutive characters EncodingVisualizer.consecutive_chars_to_html( current_consecutive_chars, text=text, encoding=encoding, ) ) current_consecutive_chars = [cs] if prev_anno_ix is not None: # if we transitioned out of an annotation close it's span spans.append("</span>") if cur_anno_ix is not None: # If we entered a new annotation make a span for it anno = annotations[cur_anno_ix] label = anno.label color = label_colors_dict[label] spans.append( f'<span class="annotation" style="color:{color}" data-label="{label}">' ) prev_anno_ix = cur_anno_ix if cs.partition_key() == current_consecutive_chars[0].partition_key(): # If the current charchter is in the same "group" as the previous one current_consecutive_chars.append(cs) else: # Otherwise we make a span for the previous group spans.append( EncodingVisualizer.consecutive_chars_to_html( current_consecutive_chars, text=text, encoding=encoding, ) ) # An reset the consecutive_char_list to form a new group current_consecutive_chars = [cs] # All that's left is to fill out the final span # TODO I think there is an edge case here where an annotation's span might not close spans.append( EncodingVisualizer.consecutive_chars_to_html( current_consecutive_chars, text=text, encoding=encoding, ) ) res = HTMLBody(spans) # Send the list of spans to the body of our html return res @staticmethod def __make_anno_map(text: str, annotations: AnnotationList) -> PartialIntList: """ Args: text (:obj:`str`): The raw text we want to align to annotations (:obj:`AnnotationList`): A (possibly empty) list of annotations Returns: A list of length len(text) whose entry at index i is None if there is no annotation on charachter i or k, the index of the annotation that covers index i where k is with respect to the list of annotations """ annotation_map = [None] * len(text) for anno_ix, a in enumerate(annotations): for i in range(a.start, a.end): annotation_map[i] = anno_ix return annotation_map @staticmethod def __make_char_states( text: str, encoding: Encoding, annotations: AnnotationList ) -> List[CharState]: """ For each character in the original text, we emit a tuple representing it's "state": * which token_ix it corresponds to * which word_ix it corresponds to * which annotation_ix it corresponds to Args: text (:obj:`str`): The raw text we want to align to annotations (:obj:`List[Annotation]`): A (possibly empty) list of annotations encoding: (:class:`~tokenizers.Encoding`): The encoding returned from the tokenizer Returns: :obj:`List[CharState]`: A list of CharStates, indicating for each char in the text what it's state is """ annotation_map = EncodingVisualizer.__make_anno_map(text, annotations) # Todo make this a dataclass or named tuple char_states: List[CharState] = [CharState(char_ix) for char_ix in range(len(text))] for token_ix, token in enumerate(encoding.tokens): offsets = encoding.token_to_chars(token_ix) if offsets is not None: start, end = offsets for i in range(start, end): char_states[i].tokens.append(token_ix) for char_ix, anno_ix in enumerate(annotation_map): char_states[char_ix].anno_ix = anno_ix return char_states def HTMLBody(children: List[str], css_styles=css) -> str: """ Generates the full html with css from a list of html spans Args: children (:obj:`List[str]`): A list of strings, assumed to be html elements css_styles (:obj:`str`, `optional`): Optional alternative implementation of the css Returns: :obj:`str`: An HTML string with style markup """ children_text = "".join(children) return f""" <html> <head> <style> {css_styles} </style> </head> <body> <div class="tokenized-text" dir=auto> {children_text} </div> </body> </html> """
51372
import os import re import pyblish.api from avalon import aftereffects class CollectExtensionVersion(pyblish.api.ContextPlugin): """ Pulls and compares version of installed extension. It is recommended to use same extension as in provided Openpype code. Please use Anastasiy’s Extension Manager or ZXPInstaller to update extension in case of an error. You can locate extension.zxp in your installed Openpype code in `repos/avalon-core/avalon/aftereffects` """ # This technically should be a validator, but other collectors might be # impacted with usage of obsolete extension, so collector that runs first # was chosen order = pyblish.api.CollectorOrder - 0.5 label = "Collect extension version" hosts = ["aftereffects"] optional = True active = True def process(self, context): installed_version = aftereffects.stub().get_extension_version() if not installed_version: raise ValueError("Unknown version, probably old extension") manifest_url = os.path.join(os.path.dirname(aftereffects.__file__), "extension", "CSXS", "manifest.xml") if not os.path.exists(manifest_url): self.log.debug("Unable to locate extension manifest, not checking") return expected_version = None with open(manifest_url) as fp: content = fp.read() found = re.findall(r'(ExtensionBundleVersion=")([0-9\.]+)(")', content) if found: expected_version = found[0][1] if expected_version != installed_version: msg = ( "Expected version '{}' found '{}'\n Please update" " your installed extension, it might not work properly." ).format(expected_version, installed_version) raise ValueError(msg)
51391
import requests url = 'http://127.0.0.1:9000/api/comments' resp = requests.post( url, data={ "name": "wnn", "email": "<EMAIL>", "comments": "comment", "page_id":"2" } ) print(resp.text)
51427
from django import template from django_extras.utils import humanize register = template.Library() @register.filter(is_safe=True) def describe_seconds(value): """ Convert a seconds value into a human readable (ie week, day, hour) value. :param value: integer value of the number of seconds. :return: a string with the humanized value. """ return humanize.describe_seconds(value)
51516
from django.urls import path from . import views urlpatterns = [ path( "model-attrs/<int:content_type_id>/", views.model_attrs, name="django_signals_model_attrs", ), ]
51550
from glacier import glacier def f1(name: str, verbose: bool = False) -> None: pass def f2(name: str, verbose: bool = False) -> None: pass def f3(name: str, verbose: bool = False) -> None: pass if __name__ == '__main__': glacier({ 'run': f1, 'build': f2, 'test': f3, })
51565
import pickle import torch import numpy as np from transformers import RobertaModel, RobertaTokenizerFast from retriever_train.dataset_config import DATASET_CONFIG, BASE_CONFIG from retriever_train.data_utils import Instance from retriever_train.utils import init_parent_model class PrefixSuffixWrapper(object): def __init__(self, model_path, config_only=False): self.model_path = model_path self.args = torch.load("{}/training_args.bin".format(self.model_path)) if "prefix_truncate_dir" not in self.args: # hack for backward compatability self.args.prefix_truncate_dir = "left" self.args.device = torch.cuda.current_device() if self.args.data_dir in DATASET_CONFIG: self.config = DATASET_CONFIG[self.args.data_dir] else: self.config = BASE_CONFIG print(self.config) if not config_only: self.model, self.tokenizer = init_parent_model(checkpoint_dir=model_path, args=self.args, model_class=RobertaModel, tokenizer_class=RobertaTokenizerFast) def preprocess_sentences(self, contexts, vectors_type="prefix"): args = self.args tokenizer = self.tokenizer instances = [] all_context_ids = [] for context in contexts: context = " ".join(context.split()) context_ids = tokenizer(context)["input_ids"] if vectors_type == "suffix": placeholder_prefix_ids = tokenizer("left context <mask> right context")["input_ids"] all_context_ids.append([placeholder_prefix_ids, context_ids]) else: all_context_ids.append([context_ids, context_ids]) instance = Instance( self.args, self.config, all_context_ids ) instance.preprocess(tokenizer) return instance def encode_batch(self, contexts, vectors_type="prefix"): args = self.args instance = self.preprocess_sentences(contexts, vectors_type) input_tensors = { "prefices": torch.tensor(instance.prefices).unsqueeze(0), "prefix_masks": torch.tensor(instance.prefix_masks).unsqueeze(0), "suffices": torch.tensor(instance.suffices).unsqueeze(0), "suffix_masks": torch.tensor(instance.suffix_masks).unsqueeze(0) } return self.model.get_vectors(input_tensors, vectors_type=vectors_type)
51590
import time import base64 import hashlib import hmac from requests.auth import AuthBase class CoinbaseProAuth(AuthBase): """Request authorization. Provided by Coinbase Pro: https://docs.pro.coinbase.com/?python#signing-a-message """ def __init__(self, api_key, secret_key, passphrase): self.api_key = api_key self.secret_key = secret_key self.passphrase = passphrase def __call__(self, request): timestamp = str(time.time()) message = timestamp + request.method + request.path_url + (request.body or "") message = message.encode("ascii") hmac_key = base64.b64decode(self.secret_key) signature = hmac.new(hmac_key, message, hashlib.sha256) signature_b64 = base64.b64encode(signature.digest()) request.headers.update( { "CB-ACCESS-SIGN": signature_b64, "CB-ACCESS-TIMESTAMP": timestamp, "CB-ACCESS-KEY": self.api_key, "CB-ACCESS-PASSPHRASE": self.passphrase, "Content-Type": "application/json", } ) return request
51599
from django.contrib import admin from . import models class SightingAdmin(admin.ModelAdmin): list_display = ('superhero', 'power', 'location', 'sighted_on') date_hierarchy = 'sighted_on' search_fields = ['superhero'] ordering = ['superhero'] admin.site.register(models.Origin) admin.site.register(models.Location) admin.site.register(models.Sighting, SightingAdmin)
51601
expected_output = { "tag": { "VRF1": { "hostname_db": { "hostname": { "7777.77ff.eeee": {"hostname": "R7", "level": 2}, "2222.22ff.4444": {"hostname": "R2", "local_router": True}, } } }, "test": { "hostname_db": { "hostname": { "9999.99ff.3333": {"hostname": "R9", "level": 2}, "8888.88ff.1111": {"hostname": "R8", "level": 2}, "7777.77ff.eeee": {"hostname": "R7", "level": 2}, "5555.55ff.aaaa": {"hostname": "R5", "level": 2}, "3333.33ff.6666": {"hostname": "R3", "level": 2}, "1111.11ff.2222": {"hostname": "R1", "level": 1}, "2222.22ff.4444": {"hostname": "R2", "local_router": True}, } } }, } }
51656
def howdoyoudo(): global helvar if helvar <= 2: i01.mouth.speak("I'm fine thank you") helvar += 1 elif helvar == 3: i01.mouth.speak("you have already said that at least twice") i01.moveArm("left",43,88,22,10) i01.moveArm("right",20,90,30,10) i01.moveHand("left",0,0,0,0,0,119) i01.moveHand("right",0,0,0,0,0,119) sleep(2) relax() helvar += 1 elif helvar == 4: i01.mouth.speak("what is your problem stop saying how do you do all the time") i01.moveArm("left",30,83,22,10) i01.moveArm("right",40,85,30,10) i01.moveHand("left",130,180,180,180,180,119) i01.moveHand("right",130,180,180,180,180,119) sleep(2) relax() helvar += 1 elif helvar == 5: i01.mouth.speak("i will ignore you if you say how do you do one more time") unhappy() sleep(4) relax() helvar += 1
51702
import aoareader as reader import torch import time import argparse import os from preprocess import get_stories, vectorize_stories parser = argparse.ArgumentParser(description="test.py") parser.add_argument('-testdata', default='data/test.txt.pt', help='Path to the test.txt.pt, test.txt.pt will be used if exists.') parser.add_argument('-dict', default="data/dict.pt", help='Path to the dictionary file, default value: data/dict.pt') parser.add_argument('-out', default='data/result.txt', help='output file name.') parser.add_argument('-model', required=True, help='path to the saved model.') testopt = parser.parse_args() print(testopt) def load_testdata(testfile, vocab_dict, with_answer=True): if os.path.exists(testfile + '.pt'): return torch.load(testfile + '.pt') else: testd = {} with open(testfile, 'r') as tf: tlines = tf.readlines() test_stories = get_stories(tlines, with_answer=with_answer) testd['documents'], testd['querys'], testd['answers'], testd['candidates'] = vectorize_stories(test_stories, vocab_dict) torch.save(testd, testfile + '.pt') return testd def evalulate(model, data, vocab_dict): def acc(answers, pred_answers): num_correct = (answers == pred_answers).sum().squeeze().data[0] return num_correct model.eval() answers = [] total_correct = 0 total = 0 for i in range(len(data)): (batch_docs, batch_docs_len, doc_mask), (batch_querys, batch_querys_len, query_mask), batch_answers , candidates = data[i] pred_answers, _ = model(batch_docs, batch_docs_len, doc_mask, batch_querys, batch_querys_len, query_mask, candidates=candidates, answers=batch_answers) answers.extend(pred_answers.data) num_correct = acc(batch_answers, pred_answers) total_in_minibatch = batch_answers.size(0) total_correct += num_correct total += total_in_minibatch del pred_answers print("Evaluating on test set:\nAccurary {:.2%}".format(total_correct / total)) return vocab_dict.convert2word(answers) def main(): print("Loading dict", testopt.dict) vocab_dict = torch.load(testopt.dict) print("Loading test data") test_data = torch.load(testopt.testdata) print("Loading model from ", testopt.model) ckp = torch.load(testopt.model) opt = ckp['opt'] model_state = ckp['model'] if opt.gpu: torch.cuda.set_device(opt.gpu) test_dataset = reader.Dataset(test_data, opt.batch_size, True, volatile=True) print(' * vocabulary size = %d' % (vocab_dict.size())) print(' * number of test samples. %d' % len(test_data['candidates'])) print(' * maximum batch size. %d' % opt.batch_size) print('Building model...') model = reader.AoAReader(vocab_dict, dropout_rate=opt.dropout, embed_dim=opt.embed_size, hidden_dim=opt.gru_size) # no way on CPU model.cuda() # load state model.load_state_dict(model_state) print('Evaluate on test data') answers = evalulate(model, test_dataset, vocab_dict) with open(testopt.out, 'w') as out: print('\n'.join(answers), file=out) if __name__ == '__main__': main()
51719
STRING_51_CHARS = "SFOTYFUZTMDSOULXMKVFDOBQWNBAVGANMVLXQQZZQZQHBLJRZNY" STRING_301_CHARS = ( "ZFOMVKXETILJKBZPVKOYAUPNYWWWUICNEVXVPWNAMGCNHDBRMATGPMUHUZHUJKFWWLXBQXVDNCGJHAPKEK" "DZCXKBXEHWCWBYDIGNYXTOFWWNLPBTVIGTNQKIQDHUAHZPWQDKKCHERBYKLAUOOKJXJJLGOPSCRVEHCOAD" "BFYKJTXHMPPYWQVXCVGNNSXLNIHVKTVMEOIRXQDPLHIDZBAHUEDWXKXILEBOLILOYGZLNGCNXKWMFJWYYI" "PIDUKJVGKTUERTPRMMMVZNAAOMZJFXFSEENCAMBOUJMYXTPHJEOPKDB" ) STRING_3001_CHARS = ( "<KEY>" "<KEY>BPRALVWQEYTFBK<KEY>RALDRZHKPGTWZAXOUFQJKOGTMYSFEDBEQQXIGKZMXNKDCEN" "LSVHNGWVCIDMNSIZTBWBBVUMLPHRUCIZLZBFEGNFXZNJEZBUTNHNCYWWYSJSJDNOPPGHUPZLPJWDKEATZO" "UGKZEGFTFBGZDNRITDFBDJLYDGETUHBDGFEELBJBDMSRBVFPXMRJXWULONCZRZZBNFOPARFNXPQONKEIKG" "QDPJWCMGYSEIBAOLJNWPJVUSMJGCSQBLGZCWXJOYJHIZMNFMTLUQFGEBOONOZMGBWORFEUGYIUJAKLVAJZ" "FTNOPOZNMUJPWRMGPKNQSBMZQRJXLRQJPYYUXLFUPICAFTXDTQIUOQRCSLWPHHUZAOPVTBRCXWUIXMFGYT" "RBKPWJJXNQPLIAZAOKIMDWCDZABPLNOXYOZZBTHSDIPXXBKXKOSYYCITFSMNVIOCNGEMRKRBPCLBOCXBZQ" "VVWKNJBPWQNJOJWAGAIBOBFRVDWLXVBLMBSXYLOAWMPLKJOVHABNNIFTKTKBIIBOSHYQZRUFPPPRDQPMUV" "WMSWBLRUHKEMUFHIMZRUNNITKWYIWRXYPGFPXMNOABRWXGQFCWOYMMBYRQQLOIBFENIZBUIWLMDTIXCPXW" "NNHBSRPSMCQIMYRCFCPLQQGVOHYZOUGFEXDTOETUKQAXOCNGYBYPYWDQHYOKPCCORGRNHXZAA<KEY>" "CM<KEY>" "<KEY>" "OLHPFFSWTZGYPAZJXRRPATWXKRDFQJRAEOBFNIWVZDKLNYXUFBOAWSDSKFYYRTADBBYHEWNZSTDXAAOQCD" "WARSJZONQXRACMNBXZSEWZYBWADNDVRXBNJPJZQUNDYLBASCLCPFJWAMJUQAHBUZYDTIQPBPNJVVOHISZP" "VGBDNXFIHYCABTSVNVILZUPPZXMPPZVBRTRHDGHTXXLBIYTMRDOUBYBVHVVKQAXAKISFJNUTRZKOCACJAX" "ZXRRKMFOKYBHFUDBIXFAQSNUTYFNVQNGYWPJZGTLQUMOWXKKTUZGOUXAOVLQMMNKKECQCCOBNPPPXZYWZU" "WHLHZQDIETDDPXWTILXGAYJKPHBXPLRFDPDSHFUPOIWRQDWQQNARPHPVKJPXZGGXOUVBYZSLUPVIJKWKNF" "WMFKWYSYJJCCSCALMVPYIPHDKRXOWTUAYJFTAANCTVYDNSSIHGCWGKLDHFFBFSIFBMGHHFHZQSWOWZXOUW" "PKNICGXPFMFIESHPDDMGSSWGBIAQVBANHLGDBYENRLSUARJXLQWPMOUSUKIIVXICBJPSWOEZPEUAJSLITV" "XEQWSRENUJRJHPLBPFMBRPKGQNSYFWVLFLSQGGETKDUGYOLNFSMRVAZLQOAEKCUGNFEXRUDYSKBOQPYJAH" "QHEIMSAAMTTYVJTHZDGQEITLERRYYQCTEQPTYQPHLMBDPCZZNNJYLGAGNXONCTIBSXEHXPYWBCTEEZLIYI" "FMPYONXRVLSGZOEDZIMVDDPRXBKCKEPHOVLRBSPKMLZPXNRZVSSSYAOMGSVJODUZAJDYLGUZAFJMCOVGQX" "ZUWQJENTEWQRFZYQTVEAHFQUWBUCFWHGRTMNQQFSPKKYYUBJVXKFQCCMBNGWNTRFGFKBFWTTPNDTGGWTAK" "EOTXUPGFXOVWTOERFQSEZWVUYMGHVBQZIKIBJCNMKTZANNNOVMYTFLQYVNKTVZHFUJTPWNQWRYKGMYRYDC" "WNTCUCYJCWXMMOJXUJSDWJKTTYOBFJFLBUCECGTVWKELCBDIKDUDOBLZLHYJQTVHXSUAFHDFDMETLHHEEJ" "XJYWEOTXAUOZARSSQTBBXULKBBSTQHMJAAOUDIQCCETFWAINYIJCGXCILMDCAUYDMNZBDKIPVRCKCYKOIG" "JHBLUHPOLDBWREFAZVEFFSOQQHMCXQYCQGMBHYKHJDBZXRAXLVZNYQXZEQYRSZHKKGCSOOEGNPFZDNGIMJ" "QCXAEWWDYIGTQMJKBTMGSJAJCKIODCAEXVEGYCUBEEGCMARPJIKNAROJHYHKKTKGKKRVVSVYADCJXGSXAR" "KGOUSUSZGJGFIKJDKJUIRQVSAHSTBCVOWZJDCCBWNNCBIYTCNOUPEYACCEWZNGETBTDJWQIEWRYIQXOZKP" "ULDPCINLDFFPNORJHOZBSSYPPYNZTLXBRFZGBECKTTNVIHYNKGBXTTIXIKRBGVAPNWBPFNCGWQMZHBAHBX" "MFEPSWVBUDLYDIVLZFHXTQJWUNWQHSWSCYFXQQSVORFQGUQIHUAJYFLBNBKJPOEIPYATRMNMGUTTVBOUHE" "ZKXVAUEXCJYSCZEMGWTPXMQJEUWYHTFJQTBOQBEPQIPDYLBPIKKGPVYPOVLPPHYNGNWFTNQCDAATJVKRHC" "OZGEBPFZZDPPZOWQCDFQZJAMXLVREYJQQFTQJKHMLRFJCVPVCTSVFVAGDVNXIGINSGHKGTWCKXNRZCZFVX" "FPKZHPOMJTQOIVDIYKEVIIBAUHEDGOUNPCPMVLTZQLICXKKIYRJASBNDUZAONDDLQNVRXGWNQAOWSJSFWU" "YWTTLOVXIJYERRZQCJMRZHCXEEAKYCLEICUWOJUXWHAPHQJDTBVRPVWTMCJRAUYCOTFXLLIQLOBASBMPED" "KLDZDWDYAPXCKLZMEFIAOFYGFLBMURWVBFJDDEFXNIQOORYRMNROGVCOESSHSNIBNFRHPSWVAUQQVDMAHX" "STDOVZMZEFRRFCKOLDOOFVOBCPRRLGYFJNXVPPUZONOSALUUI" )
51753
import numpy as np from numba import jit from numba.core import types from numba.tests.support import TestCase, tag import unittest # Array overlaps involving a displacement def array_overlap1(src, dest, k=1): assert src.shape == dest.shape dest[k:] = src[:-k] def array_overlap2(src, dest, k=1): assert src.shape == dest.shape dest[:-k] = src[k:] def array_overlap3(src, dest, k=1): assert src.shape == dest.shape dest[:,:-k] = src[:,k:] def array_overlap4(src, dest, k=1): assert src.shape == dest.shape dest[:,k:] = src[:,:-k] def array_overlap5(src, dest, k=1): assert src.shape == dest.shape dest[...,:-k] = src[...,k:] def array_overlap6(src, dest, k=1): assert src.shape == dest.shape dest[...,k:] = src[...,:-k] # Array overlaps involving an in-place reversal def array_overlap11(src, dest): assert src.shape == dest.shape dest[::-1] = src def array_overlap12(src, dest): assert src.shape == dest.shape dest[:] = src[::-1] def array_overlap13(src, dest): assert src.shape == dest.shape dest[:,::-1] = src def array_overlap14(src, dest): assert src.shape == dest.shape dest[:] = src[:,::-1] def array_overlap15(src, dest): assert src.shape == dest.shape dest[...,::-1] = src def array_overlap16(src, dest): assert src.shape == dest.shape dest[:] = src[...,::-1] class TestArrayOverlap(TestCase): def check_overlap(self, pyfunc, min_ndim, have_k_argument=False): N = 4 def vary_layouts(orig): yield orig.copy(order='C') yield orig.copy(order='F') a = orig[::-1].copy()[::-1] assert not a.flags.c_contiguous and not a.flags.f_contiguous yield a def check(pyfunc, cfunc, pydest, cdest, kwargs): pyfunc(pydest, pydest, **kwargs) cfunc(cdest, cdest, **kwargs) self.assertPreciseEqual(pydest, cdest) cfunc = jit(nopython=True)(pyfunc) # Check for up to 3d arrays for ndim in range(min_ndim, 4): shape = (N,) * ndim orig = np.arange(0, N**ndim).reshape(shape) # Note we cannot copy a 'A' layout array exactly (bitwise), # so instead we call vary_layouts() twice for pydest, cdest in zip(vary_layouts(orig), vary_layouts(orig)): if have_k_argument: for k in range(1, N): check(pyfunc, cfunc, pydest, cdest, dict(k=k)) else: check(pyfunc, cfunc, pydest, cdest, {}) def check_overlap_with_k(self, pyfunc, min_ndim): self.check_overlap(pyfunc, min_ndim=min_ndim, have_k_argument=True) def test_overlap1(self): self.check_overlap_with_k(array_overlap1, min_ndim=1) def test_overlap2(self): self.check_overlap_with_k(array_overlap2, min_ndim=1) def test_overlap3(self): self.check_overlap_with_k(array_overlap3, min_ndim=2) def test_overlap4(self): self.check_overlap_with_k(array_overlap4, min_ndim=2) def test_overlap5(self): self.check_overlap_with_k(array_overlap5, min_ndim=1) def test_overlap6(self): self.check_overlap_with_k(array_overlap6, min_ndim=1) def test_overlap11(self): self.check_overlap(array_overlap11, min_ndim=1) def test_overlap12(self): self.check_overlap(array_overlap12, min_ndim=1) def test_overlap13(self): self.check_overlap(array_overlap13, min_ndim=2) def test_overlap14(self): self.check_overlap(array_overlap14, min_ndim=2) def test_overlap15(self): self.check_overlap(array_overlap15, min_ndim=1) def test_overlap16(self): self.check_overlap(array_overlap16, min_ndim=1) if __name__ == '__main__': unittest.main()
51796
import datetime as dt from stpmex.utils import strftime, strptime def test_strftime(): assert strftime(dt.date(2020, 4, 20)) == '20200420' def test_strptime(): assert strptime('20200420') == dt.date(2020, 4, 20)
51814
import random import numpy as np from pybullet_planning import multiply, interval_generator from pybullet_planning import Pose, Point, Euler def get_random_direction_generator(**kwargs): lower = [-np.pi, -np.pi] upper = [+np.pi, +np.pi] for [roll, pitch] in interval_generator(lower, upper, **kwargs): pose = Pose(euler=Euler(roll=roll, pitch=pitch)) yield pose def get_enumeration_pose_generator(pose_list, shuffle=False): if shuffle: random.shuffle(pose_list) for p in pose_list: yield p
51861
from bytewax import Dataflow, run flow = Dataflow() flow.map(lambda x: x * x) flow.capture() if __name__ == "__main__": for epoch, y in sorted(run(flow, enumerate(range(10)))): print(y)
51867
import angr ###################################### # recv ###################################### class recv(angr.SimProcedure): #pylint:disable=arguments-differ,unused-argument def run(self, fd, dst, length, flags): simfd = self.state.posix.get_fd(fd) if simfd is None: return -1 return simfd.read(dst, length)
51909
import unittest class TestLogoMain(unittest.TestCase): def test_imports(self): try: from dreamcoder.domains.logo.main import ( animateSolutions, dreamFromGrammar, list_options, outputDreams, enumerateDreams, visualizePrimitives, Flatten, LogoFeatureCNN, main ) except Exception: self.fail('Unable to import logo module') if __name__ == '__main__': unittest.main()
51915
import shutil import subprocess # nosec # have to use subprocess import warnings from collections import Counter from copy import deepcopy from os import listdir, makedirs from os.path import abspath, basename, dirname, exists, isfile, join from subprocess import PIPE # nosec # have to use subprocess from tempfile import mkdtemp import f90nml import numpy as np import pandas as pd from dateutil.relativedelta import relativedelta from openscm_units import unit_registry from scmdata import run_append from .config import _wine_installed, config from .errors import InvalidTemporalResError, NoReaderWriterError from .io import MAGICCData, read_cfg_file from .io.utils import _get_openscm_var_from_filepath from .scenarios import zero_emissions from .utils import get_date_time_string IS_WINDOWS = config["is_windows"] class WineNotInstalledError(Exception): """Exception raised if wine is not installed but is required""" def _copy_files(source, target, recursive=False): """ Copy all the files in source directory to target. If ``recursive``, include subdirectories, otherwise ignores subdirectories. """ if recursive: shutil.copytree(source, target) return source_files = listdir(source) if not exists(target): makedirs(target) for filename in source_files: full_filename = join(source, filename) if isfile(full_filename): shutil.copy(full_filename, target) def _clean_value(v): if isinstance(v, str): return v.strip() elif isinstance(v, list): if isinstance(v[0], str): return [i.replace("\0", "").strip().replace("\n", "") for i in v] return v class MAGICCBase(object): """ Provides access to the MAGICC binary and configuration. To enable multiple MAGICC 'setups' to be configured independently, the MAGICC directory containing the input files, configuration and binary is copied to a new folder. The configuration in this MAGICC copy can then be edited without impacting other instances or your original MAGICC distribution. A ``MAGICC`` instance first has to be setup by calling ``create_copy``. If many model runs are being performed this step only has to be performed once. The ``run`` method can then be called many times without re-copying the files each time. Between each call to ``run``, the configuration files can be updated to perform runs with different configurations. Parameters ---------- root_dir : str If ``root_dir`` is supplied, an existing MAGICC 'setup' is used. """ version = None _scen_file_name = "SCENARIO.SCEN7" def __init__(self, root_dir=None, strict=True): """ Initialise Parameters ---------- root_dir : str Root directory of the MAGICC package. If ``None``, a temporary copy of MAGICC is made based on the result of ` `self.get_exectuable()``. strict: bool If True, enforce the configuration checks, otherwise a warning is raised if any invalid configuration is found and the run is continued. Setting ``strict=False`` is only recommended for experienced users of MAGICC. """ self.root_dir = root_dir self.config = None self.executable = self.get_executable() self.strict = strict if root_dir is not None: self.is_temp = False else: # Create a temp directory self.is_temp = True def __enter__(self): if self.is_temp and self.run_dir is None: self.create_copy() return self def __exit__(self, *args, **kwargs): self.remove_temp_copy() def create_copy(self): """ Initialises a temporary directory structure and copy of MAGICC configuration files and binary. The root folder and ``bin`` folders are copied (not recursively). The ``run`` folder is copied recursively. """ if self.executable is None or not isfile(self.executable): raise FileNotFoundError( "Could not find MAGICC{} executable: {}".format( self.version, self.executable ) ) if self.is_temp: if self.root_dir is not None: raise AssertionError( "A temp copy for this instance has already been created" ) self.root_dir = mkdtemp(prefix="pymagicc-") if exists(self.run_dir): raise Exception("A copy of MAGICC has already been created.") if not exists(self.root_dir): makedirs(self.root_dir) exec_dir = basename(self.original_dir) # Copy a subset of folders from the MAGICC `original_dir` # Also copy anything which is in the root of the MAGICC distribution # Assumes that the MAGICC binary is in a folder one level below the root # of the MAGICC distribution. i.e. /run/magicc.exe or /bin/magicc dirs_to_copy = [".", "bin"] dirs_to_copy_recursive = ["run"] # Check that the executable is in a valid sub directory if exec_dir not in dirs_to_copy + dirs_to_copy_recursive: raise AssertionError("binary must be in bin/ or run/ directory") for d in dirs_to_copy + dirs_to_copy_recursive: source_dir = abspath(join(self.original_dir, "..", d)) if exists(source_dir): _copy_files( source_dir, join(self.root_dir, d), recursive=d in dirs_to_copy_recursive, ) # Create an empty out dir # MAGICC assumes that the 'out' directory already exists makedirs(join(self.root_dir, "out")) # Create basic configuration files so magicc can run self.set_years() self.set_config() @property def binary_name(self): """ Name of the MAGICC binary file Returns ------- str Name of the binary file """ return basename(self.executable) @property def original_dir(self): """ Directory of the MAGICC package. This is the directory which contains the ``run`` and ``out`` folders. Returns ------- str Path of the MAGICC package """ return dirname(self.executable) @property def run_dir(self): """ Run directory of the MAGICC package. This path always ends in ``run``. Returns ------- str Path of the run directory """ if self.root_dir is None: return None return join(self.root_dir, "run") @property def out_dir(self): """ Output directory of the MAGICC package. This path always ends in ``out``. Returns ------- str Path of the output directory """ if self.root_dir is None: return None return join(self.root_dir, "out") @property def default_config(self): """ Default configuration for a run Returns ------- :obj:`f90nml.Namelist` Namelist object containing the default configuration """ base = f90nml.read(join(self.run_dir, "MAGCFG_DEFAULTALL.CFG")) user = f90nml.read(join(self.run_dir, "MAGCFG_USER.CFG")) self._default_config = deepcopy(base) def _deep_update(b, o): for k, v in o.items(): if isinstance(v, dict): _deep_update(b[k], v) else: b.update(o) _deep_update(self._default_config, user) return self._default_config def run(self, scenario=None, only=None, debug=False, **kwargs): """ Run MAGICC and parse the output. As a reminder, putting ``out_parameters=1`` will cause MAGICC to write out its parameters into ``out/PARAMETERS.OUT`` and they will then be read into ``output.metadata["parameters"]`` where ``output`` is the returned object. Any logged output from running magicc will be in``output.metadata["stderr"]``. For MAGICC7 and above, The level of logging can be controlled with the ``debug`` argument. Any subannual files output by MAGICC will be ignored by this function. These files can be read in manually using :class:`pymagicc.io.MAGICCData` directly. Parameters ---------- scenario : :obj:`pymagicc.io.MAGICCData` Scenario to run. If None MAGICC will simply run with whatever config has already been set. only : list of str If not None, only extract variables in this list. debug: {True, False, "verbose"} If true, MAGICC will run in debug mode with the maximum amount of logging. If "verbose", MAGICC will be run in verbose mode. kwargs Other config values to pass to MAGICC for the run Returns ------- :obj:`pymagicc.io.MAGICCData` MAGICCData object containing that data in its ``df`` attribute and metadata and parameters (depending on the value of ``include_parameters``) in its ``metadata`` attribute. Raises ------ ValueError If no output is found which matches the list specified in ``only``. subprocess.CalledProcessError If MAGICC fails to run. Check the 'stderr' key of the result's `metadata` attribute to inspect the results output from MAGICC. ValueError The user attempts to use ``debug`` with MAGICC6 """ if not exists(self.root_dir): raise FileNotFoundError(self.root_dir) if self.executable is None: raise ValueError( "MAGICC executable not found, try setting an environment variable `MAGICC_EXECUTABLE_{}=/path/to/binary`".format( self.version ) ) if scenario is not None: kwargs = self.set_emission_scenario_setup(scenario, kwargs) yr_config = {} if "startyear" in kwargs: yr_config["startyear"] = kwargs.pop("startyear") if "endyear" in kwargs: yr_config["endyear"] = kwargs.pop("endyear") if yr_config: self.set_years(**yr_config) # should be able to do some other nice metadata stuff re how magicc was run # etc. here kwargs.setdefault("rundate", get_date_time_string()) self.update_config(**kwargs) self.check_config() exec_dir = basename(self.original_dir) command = [join(self.root_dir, exec_dir, self.binary_name)] if self.version >= 7: if debug == "verbose": command.append("--verbose") elif debug: command.append("--debug") elif debug: raise ValueError("MAGICC6 has no debug capability") if not IS_WINDOWS and self.binary_name.endswith(".exe"): # pragma: no cover if not _wine_installed: raise WineNotInstalledError( "Wine is not installed but is required to run `.exe` binaries" ) command.insert(0, "wine") try: res = subprocess.run( # nosec # on Windows shell=True is required command, check=True, # thank you https://stackoverflow.com/a/53209196 for Python 3.6 hack stdout=PIPE, stderr=PIPE, cwd=self.run_dir, shell=IS_WINDOWS, ) except subprocess.CalledProcessError as exc: print("stderr:\n{}".format(exc.stderr.decode())) raise exc outfiles = self._get_output_filenames() read_cols = {"climate_model": ["MAGICC{}".format(self.version)]} if scenario is not None: read_cols["model"] = scenario["model"].unique().tolist() read_cols["scenario"] = scenario["scenario"].unique().tolist() else: read_cols.setdefault("model", ["unspecified"]) read_cols.setdefault("scenario", ["unspecified"]) mdata = [] for filepath in outfiles: if filepath.startswith("DAT_VOLCANIC_RF.") or "SUBANN" in filepath: warnings.warn( "Not reading file: {}. Monthly data are not read in automatically by `run`. " "Use `MAGICCData` instead.".format(filepath) ) continue try: openscm_var = _get_openscm_var_from_filepath(filepath) if only is None or openscm_var in only: tempdata = MAGICCData( join(self.out_dir, filepath), columns=deepcopy(read_cols) ) mdata.append(tempdata) except (NoReaderWriterError, InvalidTemporalResError): # TODO: something like warnings.warn("Could not read {}".format(filepath)) continue if not mdata and only is not None: raise ValueError("No output found for only={}".format(only)) if not mdata: if self.strict: raise ValueError("No output found. Check configuration") else: # No data was loaded return an empty MAGICCData object mdata = MAGICCData( data={}, columns={ "model": [], "unit": [], "variable": [], "region": [], "scenario": [], }, ) else: mdata = run_append(mdata) try: run_paras = self.read_parameters() self.config = run_paras mdata.metadata["parameters"] = run_paras except FileNotFoundError: pass mdata.metadata["stderr"] = res.stderr.decode("ascii") levels_to_warn = ["WARNING", "ERROR", "FATAL"] for level in levels_to_warn: if "<{}>".format(level) in mdata.metadata["stderr"]: warnings.warn( "magicc logged a {} message. Check the 'stderr' key of the " "result's `metadata` attribute.".format(level) ) return mdata def _get_output_filenames(self): outfiles = [f for f in listdir(self.out_dir) if f != "PARAMETERS.OUT"] bin_out = [ f.split(".")[0] for f in outfiles if f.startswith("DAT_") and f.endswith(".BINOUT") ] extras = [] for f in outfiles: var_name, ext = f.split(".") if ext != "BINOUT" and var_name not in bin_out: extras.append(f) return [f + ".BINOUT" for f in bin_out] + extras def _check_failed(self, msg): if self.strict: raise ValueError(msg) else: warnings.warn(msg) def check_config(self): """Check that our MAGICC ``.CFG`` files are set to safely work with PYMAGICC For further detail about why this is required, please see :ref:`MAGICC flags`. Raises ------ ValueError If we are not certain that the config written by PYMAGICC will overwrite all other config i.e. that there will be no unexpected behaviour. A ValueError will also be raised if the user tries to use more than one scenario file. """ cfg_error_msg = ( "PYMAGICC is not the only tuning model that will be used by " "`MAGCFG_USER.CFG`: your run is likely to fail/do odd things" ) emisscen_error_msg = ( "You have more than one `FILE_EMISSCEN_X` flag set. Using more than " "one emissions scenario is hard to debug and unnecessary with " "Pymagicc's Dataframe scenario input. Please combine all your " "scenarios into one Dataframe with Pymagicc and Pandas, then feed " "this single Dataframe into Pymagicc's run API." ) nml_to_check = "nml_allcfgs" usr_cfg = read_cfg_file(join(self.run_dir, "MAGCFG_USER.CFG")) for k in usr_cfg[nml_to_check]: if k.startswith("file_tuningmodel"): first_tuningmodel = k in ["file_tuningmodel", "file_tuningmodel_1"] if first_tuningmodel: if usr_cfg[nml_to_check][k] != "PYMAGICC": self._check_failed(cfg_error_msg) elif usr_cfg[nml_to_check][k] not in ["USER", ""]: self._check_failed(cfg_error_msg) elif k.startswith("file_emisscen_"): if usr_cfg[nml_to_check][k] not in ["NONE", ""]: self._check_failed(emisscen_error_msg) self._check_config() def write(self, mdata, name): """Write an input file to disk Parameters ---------- mdata : :obj:`pymagicc.io.MAGICCData` A MAGICCData instance with the data to write name : str The name of the file to write. The file will be written to the MAGICC instance's run directory i.e. ``self.run_dir`` """ mdata.write(join(self.run_dir, name), self.version) def read_parameters(self): """ Read a parameters.out file Returns ------- dict A dictionary containing all the configuration used by MAGICC """ param_fname = join(self.out_dir, "PARAMETERS.OUT") if not exists(param_fname): raise FileNotFoundError("No PARAMETERS.OUT found") with open(param_fname) as nml_file: parameters = dict(f90nml.read(nml_file)) for group in ["nml_years", "nml_allcfgs", "nml_outputcfgs"]: parameters[group] = dict(parameters[group]) for k, v in parameters[group].items(): parameters[group][k] = _clean_value(v) parameters[group.replace("nml_", "")] = parameters.pop(group) self.config = parameters return parameters def remove_temp_copy(self): """ Removes a temporary copy of the MAGICC version shipped with Pymagicc. """ if self.is_temp and self.root_dir is not None: shutil.rmtree(self.root_dir) self.root_dir = None def set_config( self, filename="MAGTUNE_PYMAGICC.CFG", top_level_key="<KEY>", conflict="warn", **kwargs, ): """ Create a configuration file for MAGICC. Writes a fortran namelist in run_dir. Parameters ---------- filename : str Name of configuration file to write top_level_key : str Name of namelist to be written in the configuration file conflict : {'warn', 'ignore'} If 'warn', when a flag needs to be replaced by a different name (because, for example, the flag name changed between MAGICC versions), a warning is raised. If 'ignore', no warning is raised when a replacement is required. kwargs Other parameters to pass to the configuration file. No validation on the parameters is performed. Returns ------- dict The contents of the namelist which was written to file Warning ------- If a key is renamed, a warning is raised Raises ------ ValueError An invalid value for ``conflict`` is supplied """ kwargs = self._check_and_format_config(kwargs) fname = join(self.run_dir, filename) conf = {top_level_key: kwargs} conf = self._fix_legacy_keys(conf, conflict=conflict) f90nml.write(conf, fname, force=True) return conf def update_config( self, filename="MAGTUNE_PYMAGICC.CFG", top_level_key="<KEY>", conflict="warn", **kwargs, ): """Updates a configuration file for MAGICC Updates the contents of a fortran namelist in the run directory, creating a new namelist if none exists. Parameters ---------- filename : str Name of configuration file to write top_level_key : str Name of namelist to be written in the configuration file conflict : {'warn', 'ignore'} If 'warn', when a flag needs to be replaced by a different name (because, for example, the flag name changed between MAGICC versions), a warning is raised. If 'ignore', no warning is raised when a replacement is required. kwargs Other parameters to pass to the configuration file. No validation on the parameters is performed. Returns ------- dict The contents of the namelist which was written to file Warning ------- If a key is renamed, a warning is raised Raises ------ ValueError An invalid value for ``conflict`` is supplied """ kwargs = self._check_and_format_config(kwargs) fname = join(self.run_dir, filename) if exists(fname): conf = f90nml.read(fname) else: conf = {top_level_key: {}} conf[top_level_key].update(kwargs) conf = self._fix_legacy_keys(conf, conflict=conflict) f90nml.write(conf, fname, force=True) return conf def _fix_legacy_keys(self, conf, conflict="warn"): """ Go through config and fix any keys which are misnamed. For example, fix any keys which have been renamed between MAGICC versions to match the new names. Parameters ---------- conf :obj:`f90nml.Namelist` Configuration to check conflict : {'warn', 'ignore'} If 'warn', when a conflict is found, a warning is raised. If 'ignore', no warning is raised when a conflict is found. Returns ------- :obj:`f90nml.Namelist` Configuration with updated keys Warning ------- If a key is renamed, a warning is raised Raises ------ ValueError An invalid value for ``conflict`` is supplied """ valid_conflicts = ["warn", "ignore"] if conflict not in valid_conflicts: raise ValueError("`conflict` must be one of: {}".format(valid_conflicts)) cfg_key = "<KEY>" if cfg_key not in conf: return conf new_conf = deepcopy(conf) for wrong_key, right_key in self._config_renamings.items(): if wrong_key in new_conf[cfg_key]: new_conf[cfg_key][right_key] = new_conf[cfg_key].pop(wrong_key) if conflict == "warn": warnings.warn( "Altering config flag {} to {}".format(wrong_key, right_key) ) return new_conf def set_zero_config(self): """Set config such that radiative forcing and temperature output will be zero This method is intended as a convenience only, it does not handle everything in an obvious way. Adjusting the parameter settings still requires great care and may behave unepexctedly. """ # zero_emissions is imported from scenarios module # TODO: setup MAGICC6 so it puts extra variables in right place and hence # warning about ignoring some data disappears zero_emissions.write(join(self.run_dir, self._scen_file_name), self.version) time = zero_emissions.filter(variable="Emissions|CH4", region="World")[ "time" ].values no_timesteps = len(time) # value doesn't actually matter as calculations are done from difference but # chose sensible value nonetheless co2_conc_pi = 722 co2_conc = co2_conc_pi * np.ones(no_timesteps) co2_conc_df = pd.DataFrame( { "time": time, "scenario": "idealised", "model": "unspecified", "climate_model": "unspecified", "variable": "Atmospheric Concentrations|CO2", "unit": "ppm", "todo": "SET", "region": "World", "value": co2_conc, } ) co2_conc_writer = MAGICCData(co2_conc_df) co2_conc_filename = "HIST_CONSTANT_CO2_CONC.IN" co2_conc_writer.metadata = { "header": "Constant pre-industrial CO2 concentrations" } co2_conc_writer.write(join(self.run_dir, co2_conc_filename), self.version) ch4_conc_pi = 722 ch4_conc = ch4_conc_pi * np.ones(no_timesteps) ch4_conc_df = pd.DataFrame( { "time": time, "scenario": "idealised", "model": "unspecified", "climate_model": "unspecified", "variable": "Atmospheric Concentrations|CH4", "unit": "ppb", "todo": "SET", "region": "World", "value": ch4_conc, } ) ch4_conc_writer = MAGICCData(ch4_conc_df) ch4_conc_filename = "HIST_CONSTANT_CH4_CONC.IN" ch4_conc_writer.metadata = { "header": "Constant pre-industrial CH4 concentrations" } ch4_conc_writer.write(join(self.run_dir, ch4_conc_filename), self.version) fgas_conc_pi = 0 fgas_conc = fgas_conc_pi * np.ones(no_timesteps) varname = "FGAS_CONC" fgas_conc_df = pd.DataFrame( { "time": time, "scenario": "idealised", "model": "unspecified", "climate_model": "unspecified", "variable": varname, "unit": "ppt", "todo": "SET", "region": "World", "value": fgas_conc, } ) fgas_conc_writer = MAGICCData(fgas_conc_df) fgas_conc_filename = "HIST_ZERO_{}.IN".format(varname) fgas_conc_writer.metadata = {"header": "Zero concentrations"} fgas_conc_writer.write(join(self.run_dir, fgas_conc_filename), self.version) def_config = self.default_config tmp_nml = f90nml.Namelist({"nml_allcfgs": {"fgas_files_conc": 1}}) fgas_files_conc_flag = list( self._fix_legacy_keys(tmp_nml, conflict="ignore")["nml_allcfgs"].keys() )[0] fgas_conc_files = [fgas_conc_filename] * len( def_config["nml_allcfgs"][fgas_files_conc_flag] ) self.set_config( conflict="ignore", file_emisscen=self._scen_file_name, rf_initialization_method="ZEROSTARTSHIFT", rf_total_constantafteryr=10000, file_co2i_emis="", file_co2b_emis="", file_co2_conc=co2_conc_filename, co2_switchfromconc2emis_year=10000, file_ch4i_emis="", file_ch4b_emis="", file_ch4n_emis="", file_ch4_conc=ch4_conc_filename, ch4_switchfromconc2emis_year=10000, file_n2oi_emis="", file_n2ob_emis="", file_n2on_emis="", file_n2o_conc="", n2o_switchfromconc2emis_year=1750, file_noxi_emis="", file_noxb_emis="", file_noxi_ot="", file_noxb_ot="", file_noxt_rf="", file_soxnb_ot="", file_soxi_ot="", file_soxt_rf="", file_soxi_emis="", file_soxb_emis="", file_soxn_emis="", file_oci_emis="", file_ocb_emis="", file_oci_ot="", file_ocb_ot="", file_oci_rf="", file_ocb_rf="", file_bci_emis="", file_bcb_emis="", file_bci_ot="", file_bcb_ot="", file_bci_rf="", file_bcb_rf="", bcoc_switchfromrf2emis_year=1750, file_nh3i_emis="", file_nh3b_emis="", file_nmvoci_emis="", file_nmvocb_emis="", file_coi_emis="", file_cob_emis="", file_mineraldust_rf="", file_landuse_rf="", file_bcsnow_rf="", # rf_fgassum_scale=0, # this appears to do nothing, hence the next two lines fgas_switchfromconc2emis_year=10000, rf_mhalosum_scale=0, stratoz_o3scale=0, rf_volcanic_scale=0, rf_solar_scale=0, mhalo_switchfromconc2emis_year=1750, fgas_files_conc=fgas_conc_files, ) def _check_and_format_config(self, config_dict): self._check_for_duplicate_keys(config_dict) config_dict = self._convert_out_config_flags_to_integers(config_dict) return config_dict @staticmethod def _check_for_duplicate_keys(config_dict): keys_lower = [v.lower() for v in config_dict.keys()] counts = Counter(keys_lower) if any([v > 1 for v in counts.values()]): duplicate_keys = [ [ck for ck in config_dict.keys() if ck.lower() == k.lower()] for k, v in counts.items() if v > 1 ] error_msg = ( "The following configuration keys clash because configs are " "case insensitive: {}".format( ", ".join([str(v) for v in duplicate_keys]) ) ) raise ValueError(error_msg) @staticmethod def _convert_out_config_flags_to_integers(config_dict): valid_out_flags = [ "out_emissions", "out_gwpemissions", "out_sum_gwpemissions", "out_concentrations", "out_carboncycle", "out_forcing", "out_forcing_subannual", "out_temperature", "out_temperature_subannual", "out_sealevel", "out_parameters", "out_misc", "out_lifetimes", "out_timeseriesmix", "out_rcpdata", "out_summaryidx", "out_tempoceanlayers", "out_oceanarea", "out_heatuptake", "out_warnings", "out_precipinput", "out_aogcmtuning", "out_ccycletuning", "out_observationaltuning", "out_keydata_1", "out_keydata_2", "out_inverseemis", "out_surfaceforcing", "out_permafrost", "out_allowanydynamicvars", ] for key in valid_out_flags: if key in config_dict: # MAGICC expects 1 and 0 instead of True/False config_dict[key] = 1 if config_dict[key] else 0 return config_dict def set_years(self, startyear=1765, endyear=2100): """ Set the start and end dates of the simulations. Parameters ---------- startyear : int Start year of the simulation endyear : int End year of the simulation Returns ------- dict The contents of the namelist """ # TODO: test altering stepsperyear, I think 1, 2 and 24 should all work return self.set_config( "MAGCFG_NMLYEARS.CFG", "nml_years", endyear=endyear, startyear=startyear, stepsperyear=12, ) def set_output_variables(self, write_ascii=True, write_binary=False, **kwargs): """Set the output configuration, minimising output as much as possible There are a number of configuration parameters which control which variables are written to file and in which format. Limiting the variables that are written to file can greatly speed up the running of MAGICC. By default, calling this function without specifying any variables will disable all output by setting all of MAGICC's ``out_xx`` flags to ``0``. This convenience function should not be confused with ``set_config`` or ``update_config`` which allow the user to set/update the configuration flags directly, without the more convenient syntax and default behaviour provided by this function. Parameters ---------- write_ascii : bool If true, MAGICC is configured to write output files as human readable ascii files. write_binary : bool If true, MAGICC is configured to write binary output files. These files are much faster to process and write, but are not human readable. **kwargs: List of variables to write out. A list of possible options are as follows. This may not be a complete list. 'emissions', 'gwpemissions', 'sum_gwpemissions', 'concentrations', 'carboncycle', 'forcing', 'surfaceforcing', 'permafrost', 'temperature', 'sealevel', 'parameters', 'misc', 'lifetimes', 'timeseriesmix', 'rcpdata', 'summaryidx', 'inverseemis', 'tempoceanlayers', 'oceanarea', 'heatuptake', 'warnings', 'precipinput', 'aogcmtuning', 'ccycletuning', 'observationaltuning', 'keydata_1', 'keydata_2' """ if not (write_ascii or write_binary): raise AssertionError("write_binary and/or write_ascii must be configured") if write_binary and write_ascii: ascii_binary = "BOTH" elif write_ascii: ascii_binary = "ASCII" else: ascii_binary = "BINARY" # defaults outconfig = { "out_emissions": 0, "out_gwpemissions": 0, "out_sum_gwpemissions": 0, "out_concentrations": 0, "out_carboncycle": 0, "out_forcing": 0, "out_surfaceforcing": 0, "out_permafrost": 0, "out_temperature": 0, "out_sealevel": 0, "out_parameters": 0, "out_misc": 0, "out_timeseriesmix": 0, "out_rcpdata": 0, "out_summaryidx": 0, "out_inverseemis": 0, "out_tempoceanlayers": 0, "out_heatuptake": 0, "out_ascii_binary": ascii_binary, "out_warnings": 0, "out_precipinput": 0, "out_aogcmtuning": 0, "out_ccycletuning": 0, "out_observationaltuning": 0, "out_keydata_1": 0, "out_keydata_2": 0, } if self.version == 7: outconfig["out_oceanarea"] = 0 outconfig["out_lifetimes"] = 0 for kw in kwargs: val = 1 if kwargs[kw] else 0 # convert values to 0/1 instead of booleans outconfig["out_" + kw.lower()] = val self.update_config(**outconfig) def get_executable(self): """ Get path to MAGICC executable being used Returns ------- str Path to MAGICC executable being used """ return config["executable_{}".format(self.version)] def diagnose_tcr_ecs_tcre(self, **kwargs): """ Diagnose TCR, ECS and TCRE The transient climate response (TCR), is the global-mean temperature response per unit cumulative |CO2| emissions at the time at which atmospheric |CO2| concentrations double in an experiment where atmospheric |CO2| concentrations are increased at 1% per year from pre-industrial levels (1pctCO2 experiment). The equilibrium climate sensitivity (ECS), is the equilibrium global-mean temperature response to an instantaneous doubling of atmospheric |CO2| concentrations (abrupt-2xCO2 experiment). The transient climate response to emissions (TCRE), is the global-mean temperature response per unit cumulative |CO2| emissions at the time at which atmospheric |CO2| concentrations double in the 1pctCO2 experiment. Please note that sometimes the run length won't be long enough to allow MAGICC's oceans to fully equilibrate and hence the ECS value might not be what you expect (it should match the value of ``core_climatesensitivity``). Parameters ---------- **kwargs parameter values to use in the diagnosis e.g. ``core_climatesensitivity=4`` Returns ------- dict Dictionary with keys: "ecs" - the diagnosed ECS; "tcr" - the diagnosed TCR; "tcre" - the diagnosed TCRE; "timeseries" - the relevant model input and output timeseries used in the experiment i.e. atmospheric |CO2| concentrations, inverse |CO2| emissions, total radiative forcing and global-mean surface temperature """ ecs_res = self.diagnose_ecs(**kwargs) tcr_tcre_res = self.diagnose_tcr_tcre(**kwargs) out = {**ecs_res, **tcr_tcre_res} out["timeseries"] = run_append( [ecs_res["timeseries"], tcr_tcre_res["timeseries"]] ) return out def diagnose_ecs(self, **kwargs): """ Diagnose ECS The equilibrium climate sensitivity (ECS), is the equilibrium global-mean temperature response to an instantaneous doubling of atmospheric |CO2| concentrations (abrupt-2xCO2 experiment). Please note that sometimes the run length won't be long enough to allow MAGICC's oceans to fully equilibrate and hence the ECS value might not be what you expect (it should match the value of ``core_climatesensitivity``). Parameters ---------- **kwargs parameter values to use in the diagnosis e.g. ``core_climatesensitivity=4`` Returns ------- dict Dictionary with keys: "ecs" - the diagnosed ECS; "timeseries" - the relevant model input and output timeseries used in the experiment i.e. atmospheric |CO2| concentrations, inverse |CO2| emissions, total radiative forcing and global-mean surface temperature """ self._diagnose_ecs_config_setup(**kwargs) timeseries = self.run( scenario=None, only=[ "Atmospheric Concentrations|CO2", "Radiative Forcing", "Surface Temperature", ], ) timeseries["scenario"] = "abrupt-2xCO2" ecs = self.get_ecs_from_diagnosis_results(timeseries) return {"ecs": ecs, "timeseries": timeseries} def diagnose_tcr_tcre(self, **kwargs): """ Diagnose TCR and TCRE The transient climate response (TCR), is the global-mean temperature response per unit cumulative |CO2| emissions at the time at which atmospheric |CO2| concentrations double in an experiment where atmospheric |CO2| concentrations are increased at 1% per year from pre-industrial levels (1pctCO2 experiment). The transient climate response to emissions (TCRE), is the global-mean temperature response per unit cumulative |CO2| emissions at the time at which atmospheric |CO2| concentrations double in the 1pctCO2 experiment. Parameters ---------- **kwargs parameter values to use in the diagnosis e.g. ``core_climatesensitivity=4`` Returns ------- dict Dictionary with keys: "tcr" - the diagnosed TCR; "tcre" - the diagnosed TCRE; "timeseries" - the relevant model input and output timeseries used in the experiment i.e. atmospheric |CO2| concentrations, inverse |CO2| emissions, total radiative forcing and global-mean surface temperature """ self._diagnose_tcr_tcre_config_setup(**kwargs) timeseries = self.run( scenario=None, only=[ "Atmospheric Concentrations|CO2", "INVERSEEMIS", "Radiative Forcing", "Surface Temperature", ], ) # drop all the irrelevant inverse emissions timeseries = timeseries.filter( variable="Inverse Emissions*", level=1, keep=False ) # drop the final year as concs stay constant from some reason, # MAGICC bug... timeseries = timeseries.filter(time=timeseries["time"].max(), keep=False) timeseries["scenario"] = "1pctCO2" tcr, tcre = self.get_tcr_tcre_from_diagnosis_results(timeseries) return {"tcr": tcr, "tcre": tcre, "timeseries": timeseries} def _diagnose_ecs_config_setup(self, **kwargs): self.set_years( startyear=1750, endyear=4200 ) # 4200 seems to be the max I can push too without an error self.update_config( FILE_CO2_CONC="ABRUPT2XCO2_CO2_CONC.IN", CO2_SWITCHFROMCONC2EMIS_YEAR=30000, RF_TOTAL_RUNMODUS="CO2", RF_TOTAL_CONSTANTAFTERYR=2000, **kwargs, ) def _diagnose_tcr_tcre_config_setup(self, **kwargs): self.set_years(startyear=1750, endyear=2020) self.update_config( FILE_CO2_CONC="1PCTCO2_CO2_CONC.IN", CO2_SWITCHFROMCONC2EMIS_YEAR=30000, RF_TOTAL_RUNMODUS="CO2", RF_TOTAL_CONSTANTAFTERYR=3000, OUT_INVERSEEMIS=1, **kwargs, ) def get_ecs_from_diagnosis_results(self, results_ecs_run): """ Diagnose ECS from the results of the abrupt-2xCO2 experiment Parameters ---------- results_ecs_run : :obj:`ScmRun` Results of the abrupt-2xCO2 experiment, must contain atmospheric |CO2| concentrations, total radiative forcing and surface temperature. Returns ------- ecs : :obj:`pint.quantity.Quantity` ECS diagnosed from ``results_ecs_run`` """ global_co2_concs = results_ecs_run.filter( variable="Atmospheric Concentrations|CO2", region="World" ) ecs_time, ecs_start_time = self._get_ecs_ecs_start_yr_from_CO2_concs( global_co2_concs ) global_total_rf = results_ecs_run.filter( variable="Radiative Forcing", region="World" ) self._check_ecs_total_RF(global_total_rf, jump_time=ecs_start_time) global_temp = results_ecs_run.filter( variable="Surface Temperature", region="World" ) self._check_ecs_temp(global_temp) ecs = float(global_temp.filter(time=ecs_time).values.squeeze()) unit = global_temp.get_unique_meta("unit", no_duplicates=True) ecs = ecs * unit_registry(unit) return ecs def get_tcr_tcre_from_diagnosis_results(self, results_tcr_tcre_run): """ Diagnose TCR and TCRE from the results of the 1pctCO2 experiment Parameters ---------- results_tcr_tcre_run : :obj:`ScmRun` Results of the 1pctCO2 experiment, must contain atmospheric |CO2| concentrations, inverse |CO2| emissions, total radiative forcing and surface temperature. Returns ------- tcr, tcre : :obj:`pint.quantity.Quantity`, :obj:`pint.quantity.Quantity` TCR and TCRE diagnosed from ``results_tcr_tcre_run`` """ global_co2_concs = results_tcr_tcre_run.filter( variable="Atmospheric Concentrations|CO2", region="World" ) (tcr_time, tcr_start_time,) = self._get_tcr_tcr_start_yr_from_CO2_concs( global_co2_concs ) if tcr_time.year != tcr_start_time.year + 70: # pragma: no cover # emergency raise AssertionError("Has the definition of TCR and TCRE changed?") global_inverse_co2_emms = results_tcr_tcre_run.filter( variable="Inverse Emissions|CO2|MAGICC Fossil and Industrial", region="World", ) global_total_rf = results_tcr_tcre_run.filter( variable="Radiative Forcing", region="World" ) self._check_tcr_tcre_total_RF(global_total_rf, tcr_time=tcr_time) global_temp = results_tcr_tcre_run.filter( variable="Surface Temperature", region="World" ) self._check_tcr_tcre_temp(global_temp) tcr = float(global_temp.filter(time=tcr_time).values.squeeze()) tcr_unit = global_temp.get_unique_meta("unit", no_duplicates=True) tcr = tcr * unit_registry(tcr_unit) tcre_cumulative_emms = float( global_inverse_co2_emms.filter( year=range(tcr_start_time.year, tcr_time.year) ).values.sum() ) emms_unit = global_inverse_co2_emms.get_unique_meta("unit", no_duplicates=True) years = global_inverse_co2_emms["year"].values.squeeze() if not np.all((years[1:] - years[:-1]) == 1): # pragma: no cover raise AssertionError( "TCR/TCRE diagnosis assumed to be on annual timestep. Please " "raise an issue at " "https://github.com/openscm/pymagicc/issues to discuss " "your use case" ) # can now safely assume that our simple sum has done the right thing tcre_cumulative_emms_unit = unit_registry(emms_unit) * unit_registry("yr") tcre_cumulative_emms = tcre_cumulative_emms * tcre_cumulative_emms_unit tcre = tcr / tcre_cumulative_emms return tcr, tcre def _get_ecs_ecs_start_yr_from_CO2_concs(self, df_co2_concs): co2_concs = df_co2_concs.timeseries() co2_conc_0 = co2_concs.iloc[0, 0] t_start = co2_concs.columns.min() t_end = co2_concs.columns.max() ecs_start_time = co2_concs.iloc[ :, co2_concs.values.squeeze() > co2_conc_0 ].columns[0] spin_up_co2_concs = ( _filter_time_range(df_co2_concs, lambda x: t_start <= x < ecs_start_time) .timeseries() .values.squeeze() ) if not (spin_up_co2_concs == co2_conc_0).all(): raise ValueError( "The ECS CO2 concs look wrong, they are not constant before they start rising" ) co2_conc_final = 2 * co2_conc_0 eqm_co2_concs = ( _filter_time_range(df_co2_concs, lambda x: ecs_start_time <= x <= t_end) .timeseries() .values.squeeze() ) if not np.isclose(eqm_co2_concs, co2_conc_final).all(): raise ValueError( "The ECS CO2 concs look wrong, they are not constant after doubling" ) ecs_time = df_co2_concs["time"].iloc[-1] return ecs_time, ecs_start_time def _get_tcr_tcr_start_yr_from_CO2_concs(self, df_co2_concs): co2_concs = df_co2_concs.timeseries() co2_conc_0 = co2_concs.iloc[0, 0] t_start = co2_concs.columns.min() t_end = co2_concs.columns.max() tcr_start_time = co2_concs.iloc[ :, co2_concs.values.squeeze() > co2_conc_0 ].columns[0] - relativedelta(years=1) tcr_time = tcr_start_time + relativedelta(years=70) spin_up_co2_concs = ( _filter_time_range(df_co2_concs, lambda x: t_start <= x <= tcr_start_time) .timeseries() .values.squeeze() ) if not (spin_up_co2_concs == co2_conc_0).all(): raise ValueError( "The TCR/TCRE CO2 concs look wrong, they are not constant before they start rising" ) actual_rise_co2_concs = ( _filter_time_range(df_co2_concs, lambda x: tcr_start_time <= x <= t_end) .timeseries() .values.squeeze() ) # this will blow up if we switch to diagnose tcr/ecs with a monthly run... expected_rise_co2_concs = co2_conc_0 * 1.01 ** np.arange( len(actual_rise_co2_concs) ) rise_co2_concs_correct = np.isclose( actual_rise_co2_concs, expected_rise_co2_concs ).all() if not rise_co2_concs_correct: raise ValueError("The TCR/TCRE CO2 concs look wrong during the rise period") return tcr_time, tcr_start_time def _check_ecs_total_RF(self, df_total_rf, jump_time): total_rf = df_total_rf.timeseries() total_rf_max = total_rf.values.squeeze().max() t_start = total_rf.columns.min() t_end = total_rf.columns.max() spin_up_rf = ( _filter_time_range(df_total_rf, lambda x: t_start <= x < jump_time) .timeseries() .values.squeeze() ) if not (spin_up_rf == 0).all(): raise ValueError( "The ECS total radiative forcing looks wrong, it is not all zero before concentrations start rising" ) eqm_rf = ( _filter_time_range(df_total_rf, lambda x: jump_time <= x <= t_end) .timeseries() .values.squeeze() ) if not (eqm_rf == total_rf_max).all(): raise ValueError( "The ECS total radiative forcing looks wrong, it is not constant after concentrations double" ) def _check_tcr_tcre_total_RF(self, df_total_rf, tcr_time): total_rf = df_total_rf.timeseries() t_start = total_rf.columns.min() tcr_start_time = tcr_time - relativedelta(years=70) spin_up_rf = ( _filter_time_range(df_total_rf, lambda x: t_start <= x <= tcr_start_time) .timeseries() .values.squeeze() ) if not (spin_up_rf == 0).all(): raise ValueError( "The TCR/TCRE total radiative forcing looks wrong, it is not all zero before concentrations start rising" ) rf_vls = total_rf.values.squeeze() rf_minus_previous_yr = rf_vls[1:] - rf_vls[:-1] if not np.all(rf_minus_previous_yr >= 0): raise ValueError( "The TCR/TCRE total radiative forcing looks wrong, it is not rising after concentrations start rising" ) def _check_ecs_temp(self, df_temp): self._check_tcr_ecs_tcre_temp( df_temp, "The ECS surface temperature looks wrong, it decreases" ) def _check_tcr_tcre_temp(self, df_temp): self._check_tcr_ecs_tcre_temp( df_temp, "The TCR/TCRE surface temperature looks wrong, it decreases" ) def _check_tcr_ecs_tcre_temp(self, df_temp, message): tmp_vls = df_temp.timeseries().values.squeeze() tmp_minus_previous_yr = tmp_vls[1:] - tmp_vls[:-1] if not np.all(tmp_minus_previous_yr >= 0): raise ValueError(message) def set_emission_scenario_setup(self, scenario, config_dict): """Set the emissions flags correctly. Parameters ---------- scenario : :obj:`pymagicc.io.MAGICCData` Scenario to run. config_dict : dict Dictionary with current input configurations which is to be validated and updated where necessary. Returns ------- dict Updated configuration """ self.write(scenario, self._scen_file_name) emis_flag = list( self._fix_legacy_keys( f90nml.Namelist({"nml_allcfgs": {"file_emisscen": "junk"}}), conflict="ignore", )["nml_allcfgs"].keys() )[0] config_dict[emis_flag] = self._scen_file_name return config_dict def _check_config(self): """ Check config above and beyond those checked by ``self.check_config`` """ pass class MAGICC6(MAGICCBase): version = 6 _scen_file_name = "SCENARIO.SCEN" _config_renamings = { "file_emisscen": "file_emissionscenario", "fgas_files_conc": "file_fgas_conc", "mhalo_switchfromconc2emis_year": "mhalo_switch_conc2emis_yr", } @property def default_config(self): """ Default configuration to use in a run """ base = f90nml.read(join(self.run_dir, "MAGCFG_DEFAULTALL_69.CFG")) user = f90nml.read(join(self.run_dir, "MAGCFG_USER.CFG")) self._default_config = deepcopy(base) self._default_config.update(user) return self._default_config def _check_tcr_ecs_tcre_total_RF(self, df_total_rf, tcr_time, ecs_time): super()._check_tcr_ecs_tcre_total_RF(df_total_rf, tcr_time, ecs_time) # can be more careful with checks MAGICC6 only has logarithmic CO2 forcing # i.e. linear rise in forcing total_rf = df_total_rf.timeseries() total_rf_max = total_rf.values.squeeze().max() tcre_start_time = tcr_time - relativedelta(years=70) actual_rise_rf = ( _filter_time_range(df_total_rf, lambda x: tcre_start_time <= x <= tcr_time) .timeseries() .values.squeeze() ) # this will blow up if we switch to diagnose tcr/ecs with a monthly run... expected_rise_rf = total_rf_max / 70.0 * np.arange(71) rise_rf_correct = np.isclose(actual_rise_rf, expected_rise_rf).all() if not rise_rf_correct: raise ValueError( "The TCR/ECS/TCRE total radiative forcing looks wrong during the rise period" ) def _check_config(self): cfg = self.update_config() if "file_emissionscenario" in cfg["nml_allcfgs"]: if cfg["nml_allcfgs"]["file_emissionscenario"].endswith("SCEN7"): self._check_failed("MAGICC6 cannot run SCEN7 files") class MAGICC7(MAGICCBase): version = 7 _config_renamings = { "file_emissionscenario": "file_emisscen", "file_fgas_conc": "fgas_files_conc", "mhalo_switch_conc2emis_yr": "mhalo_switchfromconc2emis_year", } def create_copy(self): """ Initialises a temporary directory structure and copy of MAGICC configuration files and binary. This will also overwrite the value of all ``file_tuningmodel_x`` flags to ensure that Pymagicc's configurations will be read. If ``self.strict``, this will also overwrite the value of all ``file_emisscen_x`` flags to ensure that only Pymagicc's scenario input is used. This overwrite behaviour can be removed once the MAGICC7 binary is publicly released as we can then create a Pymagicc specific MAGCFG_USER.CFG rather than relying on whatever is in the user's current copy. """ super(MAGICC7, self).create_copy() self.update_config( "MAGCFG_USER.CFG", **{ "file_tuningmodel_1": "PYMAGICC", "file_tuningmodel_2": "USER", "file_tuningmodel_3": "USER", "file_tuningmodel_4": "USER", "file_tuningmodel_5": "USER", "file_tuningmodel_6": "USER", "file_tuningmodel_7": "USER", "file_tuningmodel_8": "USER", "file_tuningmodel_9": "USER", "file_tuningmodel_10": "USER", }, ) if self.strict: self.update_config( "MAGCFG_USER.CFG", **{ "file_emisscen_2": "NONE", "file_emisscen_3": "NONE", "file_emisscen_4": "NONE", "file_emisscen_5": "NONE", "file_emisscen_6": "NONE", "file_emisscen_7": "NONE", "file_emisscen_8": "NONE", }, ) def _diagnose_tcr_ecs_tcre_config_setup(self, **kwargs): super()._diagnose_tcr_ecs_tcre_config_setup(**kwargs) # also need to lock CH4 and N2O in case OLBL forcing mode is being used self.update_config( FILE_CH4_CONC="TCRECS_CH4_CONC.IN", CH4_SWITCHFROMCONC2EMIS_YEAR=30000, FILE_N2O_CONC="TCRECS_N2O_CONC.IN", N2O_SWITCHFROMCONC2EMIS_YEAR=30000, ) def _check_config(self): pass def _filter_time_range(scmdf, filter_func): # TODO: move into openscm tdf = scmdf.timeseries() tdf = tdf.iloc[:, tdf.columns.map(filter_func)] return MAGICCData(tdf)
51918
from lib.plugins import Driver import os from paramiko import SSHClient, RSAKey, AutoAddPolicy from io import StringIO class Ssh(Driver): DEFAULT_KEY_PATH = "~/.ssh/id_rsa" def __init__(self, host, username='root', password = None, key = None, port = 22, path = "/proc"): Driver.__init__(self) self._host = host self._username = username self._password = password self._port = port self._path = path self._client = None self._ftp = None if not password or key: self._key = RSAKey.from_private_key_file(os.path.expanduser(key or Ssh.DEFAULT_KEY_PATH)) else: self._key = None def readProc(self, path): sftp = self._connectFtp() o = StringIO() for line in sftp.open(os.path.join(self._path, path)): o.write(line) return o.getvalue() def sh(self, cmd): client = self._connect() stdin, stdout, stderr = client.exec_command(cmd) return { "stdout": stdout.read().decode('utf-8'), "stderr": stderr.read().decode('utf-8'), "status": stdout.channel.recv_exit_status() } def _connect(self): if not self._client: client = SSHClient() client.set_missing_host_key_policy(AutoAddPolicy()) client.connect(hostname = self._host, username=self._username, password=self._password, pkey=self._key, port=self._port, look_for_keys=False) self._client = client return self._client def _connectFtp(self): if not self._ftp: client = self._connect() self._ftp = client.open_sftp() return self._ftp def getHost(self): return self._host def create(args): return Ssh(**args)
51941
from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Dense, LSTM, Embedding from tensorflow.keras.optimizers import RMSprop from datagen import * # Defining the layers to be used in the model transfer_values_input = Input(shape=(2048,), name='transfer_values_input') decoder_transfer_map = Dense(256, activation='tanh') decoder_input = Input(shape=(None, ), name='decoder_input') decoder_embedding = Embedding(input_dim=5000, output_dim=128, name='decoder_embedding') decoderlstm = LSTM(256, return_sequences=True) decoder_dense = Dense(5000, activation='softmax', name='decoder_output') # Function to get the output of the decoder, given output of encoder def connect_decoder(transfer_values): state = decoder_transfer_map(transfer_values) initial_state = [state, state] # Start the decoder-network with its input-layer. net = decoder_input net = decoder_embedding(net) net = decoderlstm(net, initial_state=initial_state) decoder_output1 = decoder_dense(net) return decoder_output1 decoder_output = connect_decoder(transfer_values=transfer_values_input) # Defining, compiling, training, saving the model decoder_model = Model(inputs=[transfer_values_input, decoder_input], outputs=[decoder_output]) decoder_model.compile(optimizer=RMSprop(lr=1e-3), loss='sparse_categorical_crossentropy') decoder_model.fit(generator, steps_per_epoch=1700, epochs=25) # Enter the path of output directory where model_weights can be saved output_dir = './' decoder_model.save_weights(output_dir)
51956
import snap Graph = snap.GenFull(snap.PNEANet, 10) Src = 1 Dst = 2 EI = Graph.GetEI(Src,Dst) EId = EI.GetId() print(EId, Graph.GetEI(Src,Dst).GetId()) print(Graph.GetEI(Src,Dst).GetSrcNId(), Graph.GetEI(Src,Dst).GetDstNId()) print(Graph.GetEI(EId).GetSrcNId(), Graph.GetEI(EId).GetDstNId()) if EId != Graph.GetEI(Src,Dst).GetId(): print("*** error1") if Graph.GetEI(Src,Dst).GetSrcNId() != Graph.GetEI(EId).GetSrcNId(): print("*** error2") if Graph.GetEI(Src,Dst).GetDstNId() != Graph.GetEI(EId).GetDstNId(): print("*** error3")
51971
from typer.testing import CliRunner from indic_transliteration.sanscript_cli import app runner = CliRunner() test_input = "rAmAyaNa" expected_output = "rāmāyaṇa" def test_argument_input(): result = runner.invoke(app, ["--from", "hk", "--to", "iast", test_input]) assert result.exit_code == 0 assert expected_output in result.stdout def test_stdin_input(): result = runner.invoke( app, ["--from", "hk", "--to", "iast", "--input-file", "-"], input=test_input ) assert result.exit_code == 0 assert expected_output in result.stdout def test_file_input(tmp_path): test_input_file = tmp_path / "test_input_file.txt" test_input_file.write_text(test_input) result = runner.invoke( app, ["--from", "hk", "--to", "iast", "--input-file", test_input_file] ) assert result.exit_code == 0 assert expected_output in result.stdout def test_file_output(tmp_path): test_output_file = tmp_path / "test_file_output.txt" result = runner.invoke( app, [ "--from", "hk", "--to", "iast", "--output-file", test_output_file, test_input, ], ) assert result.exit_code == 0 assert f"Output written to: {test_output_file}" in result.stdout assert test_output_file.read_text() == expected_output
51976
from mission.constants.missions import Gate, Path from conf.vehicle import is_mainsub HYDROPHONES_PINGER_DEPTH = 3.0 NONSURFACE_MIN_DEPTH = 0.6 # gate = Gate( # depth=1.0, # initial_approach_target_percent_of_screen=.45, # gate_width_threshold=0.4, # pre_spin_charge_dist=16 if is_mainsub else 12, # spin_charge_dist=16 if is_mainsub else 12, # post_spin_charge_dist=16 if is_mainsub else 12 # ) path = Path( depth=1.0, search_forward=6 if is_mainsub else 2, search_stride = 10 if is_mainsub else 8, search_right_first=True, search_speed=0.1, post_dist=2.5, failure_back_up_dist=0.5 if is_mainsub else 0.1, failure_back_up_speed=0.2 if is_mainsub else 0.1, ) #dice = Dice( # depth=3.3, # max_depth=4, # search_forward=3, # search_stride=8, # search_speed=0.1, # min_dot_radius=0.03, # ram_dist=1.0, # ram_speed=0.1, # rammed_back_up_timeout=20, # lost_sight_back_up_timeout=5, # search_default_zero_timeout=60, #) # #highway = Highway( # high_depth=1.0, # low_depth=1.2, # dist=6 if is_mainsub else 2, # speed=0.4 if is_mainsub else 0.2, #) # #track = Track( # depth=1.6, # slow_down_dist=5, # max_speed=0.3 if is_mainsub else 0.2, # min_speed=0.1, # vision_frame_period=0.5, #) # #roulette = Roulette( # depth_search=1.0, # depth_realign=2.5, # depth_drop=3.0, # heading_offset=30, #) # #cash_in = CashIn( # approach_funnel_depth=0.5, # drop_approach_dist=0.2, # # (right, left) # drop_dvl_forward_correct_dist=(0.1, -0.13), # drop_heading_correct=(0, -7), # pick_up_both_depth=1.0, # pick_up_search_depth_1=2.0, # pick_up_search_depth_2=2.25, # pick_up_search_depth_3=2.5, # pick_up_start_follow_depth=3.2, # attempt_surface_depth=-1, # attempt_funnel_depth=0, #)
51995
from astra import models import redis db = redis.StrictRedis(host='127.0.0.1', decode_responses=True) class SiteColorModel(models.Model): color = models.CharField() def get_db(self): return db
51998
from abc import ABCMeta, abstractmethod import json import logging import copy import boto3 import botocore from botocore.exceptions import ClientError from endgame.shared.response_message import ResponseMessage from endgame.shared.list_resources_response import ListResourcesResponse from endgame.shared.response_message import ResponseGetRbp logger = logging.getLogger(__name__) class ResourceType(object): __meta_class__ = ABCMeta def __init__( self, name: str, resource_type: str, service: str, region: str, client: boto3.Session.client, current_account_id: str, override_action: str = None, include_resource_block: bool = True, override_resource_block: str = None, override_account_id_instead_of_principal: bool = False ): self.name = name self.resource_type = resource_type self.client = client self.current_account_id = current_account_id self.service = service self.region = region self.include_resource_block = include_resource_block # Override for IAM self.override_action = override_action # Override for IAM self.override_resource_block = override_resource_block # Override for EFS self.override_account_id_instead_of_principal = override_account_id_instead_of_principal # Override for logs, sns, sqs, and lambda self.policy_document = self._get_rbp().policy_document # Store an original copy of the policy so we can compare it later. self.original_policy = copy.deepcopy(json.loads(json.dumps(self.policy_document.original_policy))) def __str__(self): return '%s' % (json.dumps(json.loads(self.policy_document.__str__()))) @abstractmethod def _get_rbp(self) -> ResponseGetRbp: raise NotImplementedError("Must override _get_rbp") @property @abstractmethod def arn(self) -> str: raise NotImplementedError("Must override arn") @abstractmethod def set_rbp(self, evil_policy: dict) -> ResponseMessage: raise NotImplementedError("Must override set_rbp") def add_myself(self, evil_principal: str, dry_run: bool = False) -> ResponseMessage: """Add your rogue principal to the AWS resource""" logger.debug(f"Adding {evil_principal} to {self.arn}") evil_policy = self.policy_document.policy_plus_evil_principal( victim_account_id=self.current_account_id, evil_principal=evil_principal, resource_arn=self.arn ) if not dry_run: set_rbp_response = self.set_rbp(evil_policy=evil_policy) operation = "ADD_MYSELF" message = set_rbp_response.message success = set_rbp_response.success else: # new_policy = evil_policy operation = "DRY_RUN_ADD_MYSELF" message = "DRY_RUN_ADD_MYSELF" try: tmp = self._get_rbp() success = tmp.success except botocore.exceptions.ClientError as error: message = str(error) success = False response_message = ResponseMessage(message=message, operation=operation, success=success, evil_principal=evil_principal, victim_resource_arn=self.arn, original_policy=self.original_policy, updated_policy=evil_policy, resource_type=self.resource_type, resource_name=self.name, service=self.service) return response_message def undo(self, evil_principal: str, dry_run: bool = False) -> ResponseMessage: """Remove all traces""" logger.debug(f"Removing {evil_principal} from {self.arn}") policy_stripped = self.policy_document.policy_minus_evil_principal( victim_account_id=self.current_account_id, evil_principal=evil_principal, resource_arn=self.arn ) if not dry_run: operation = "UNDO" set_rbp_response = self.set_rbp(evil_policy=policy_stripped) message = set_rbp_response.message success = set_rbp_response.success else: operation = "DRY_RUN_UNDO" message = "DRY_RUN_UNDO" success = True response_message = ResponseMessage(message=message, operation=operation, success=success, evil_principal=evil_principal, victim_resource_arn=self.arn, original_policy=self.original_policy, updated_policy=policy_stripped, resource_type=self.resource_type, resource_name=self.name, service=self.service) return response_message class ResourceTypes(object): __meta_class__ = ABCMeta def __init__(self, client: boto3.Session.client, current_account_id: str, region: str): self.client = client self.current_account_id = current_account_id self.region = region def __str__(self): return '%s' % (json.dumps(self.resources.arn)) @property @abstractmethod def resources(self) -> [ListResourcesResponse]: raise NotImplementedError("Must override property 'resources'")
52024
import numpy as np from scipy.spatial.distance import pdist, squareform import scipy.cluster.hierarchy as hy import matplotlib.pyplot as plt # Creating a cluster of clusters function def clusters(number=20, cnumber=5, csize=10): # Note that the way the clusters are positioned is Gaussian randomness. rnum = np.random.rand(cnumber, 2) rn = rnum[:, 0] * number rn = rn.astype(int) rn[np.where(rn < 5)] = 5 rn[np.where(rn > number / 2.)] = round(number / 2., 0) ra = rnum[:, 1] * 2.9 ra[np.where(ra < 1.5)] = 1.5 cls = np.random.randn(number, 3) * csize # Random multipliers for central point of cluster rxyz = np.random.randn(cnumber - 1, 3) for i in xrange(cnumber - 1): tmp = np.random.randn(rn[i + 1], 3) x = tmp[:, 0] + (rxyz[i, 0] * csize) y = tmp[:, 1] + (rxyz[i, 1] * csize) z = tmp[:, 2] + (rxyz[i, 2] * csize) tmp = np.column_stack([x, y, z]) cls = np.vstack([cls, tmp]) return cls # Generate a cluster of clusters and distance matrix. cls = clusters() D = pdist(cls[:, 0:2]) D = squareform(D) # Compute and plot first dendrogram. fig = plt.figure(figsize=(8, 8)) ax1 = fig.add_axes([0.09, 0.1, 0.2, 0.6]) Y1 = hy.linkage(D, method='complete') cutoff = 0.3 * np.max(Y1[:, 2]) Z1 = hy.dendrogram(Y1, orientation='right', color_threshold=cutoff) ax1.xaxis.set_visible(False) ax1.yaxis.set_visible(False) # Compute and plot second dendrogram. ax2 = fig.add_axes([0.3, 0.71, 0.6, 0.2]) Y2 = hy.linkage(D, method='average') cutoff = 0.3 * np.max(Y2[:, 2]) Z2 = hy.dendrogram(Y2, color_threshold=cutoff) ax2.xaxis.set_visible(False) ax2.yaxis.set_visible(False) # Plot distance matrix. ax3 = fig.add_axes([0.3, 0.1, 0.6, 0.6]) idx1 = Z1['leaves'] idx2 = Z2['leaves'] D = D[idx1, :] D = D[:, idx2] ax3.matshow(D, aspect='auto', origin='lower', cmap=plt.cm.YlGnBu) ax3.xaxis.set_visible(False) ax3.yaxis.set_visible(False) # Plot colorbar. fig.savefig('scipy_352_ex1.pdf', bbox='tight')
52030
from tkinter import * # the game data for the initial game state def init(): data.playerX = 250 data.playerY = 550 data.circleX = 250 data.circleY = 0 data.gameOver = False # events updating the game data def keyPressed(event): if event.keysym == "Right" and data.playerX < 550: data.playerX += 5 elif event.keysym == "Left" and data.playerX > 0: data.playerX -= 5 def moveCircle(): if not data.gameOver: data.circleY += 10 # the game data updating the game state def timerFired(): moveCircle() if checkCollision(data.playerX, data.playerY, data.circleX, data.circleY, 10, 50): data.gameOver = True if data.circleY > 600: data.gameOver = True def checkCollision(x1, y1, x2, y2, r1, r2): distance = ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 0.5 return distance <= r1 + r2 # the game state updating what is drawn def redrawAll(canvas): canvas.create_oval(data.playerX - 10, data.playerY - 10, data.playerX + 10, data.playerY + 10, fill="red") canvas.create_oval(data.circleX - 50, data.circleY - 50, data.circleX + 50, data.circleY + 50, \ fill="yellow") if data.gameOver: canvas.create_text(300, 250, text="Game Over", font=" Arial 20") # Challenge 2.1 - Make it so that at the top of the screen it says "Score: __" # where the __ is a number that increases every time timerFired() happens. # Challenge 2.2 - Make it so that every third time timerFired() happens a new # circle is added to the top of the screen with random x position, color, # and size. # Suggested way to do this: # 1. Make a data.timer variable that starts at 0 and increases by 1 every # timerFired() and a data.circles variable that starts as []. # 2. When data.timer gets to 3, reset it to 0 and call a new function # createNewCircle(). # 3. Write createNewCircle() to append a tuple to data.circles of the # format: # (xCoordinate, yCoordinate, radiusSize, colorString) # 4. In redrawAll(), loop over the data.circles list and draw each circle. # 5. In timerFired(), every second, move each circle's yPosition down by # 10 pixels. # BONUS Challenge 2.3 - Make the game better with your own ideas! # The coding world is now yours for the exploring :) # ***** DO NOT MODIFY BELOW HERE ***** # # animation setup code class Struct(object): pass data = Struct() def run(width=600, height=600): def redrawAllWrapper(canvas): canvas.delete(ALL) redrawAll(canvas) canvas.update() def keyPressedWrapper(event, canvas): keyPressed(event) redrawAllWrapper(canvas) def timerFiredWrapper(canvas): timerFired() redrawAllWrapper(canvas) # pause, then call timerFired again canvas.after(data.timerDelay, timerFiredWrapper, canvas) # Set up data and call init data.width = width data.height = height data.timerDelay = 200 # milliseconds init() # create the root and the canvas root = Tk() canvas = Canvas(root, width=data.width, height=data.height) canvas.pack() # set up events root.bind("<Key>", lambda event: keyPressedWrapper(event, canvas)) timerFiredWrapper(canvas) # and launch the app root.mainloop() # blocks until window is closed print("bye!") run()
52049
from perfrunner.helpers.local import restart_memcached, run_ycsb from perfrunner.settings import PhaseSettings, TargetSettings def ycsb_data_load(workload_settings: PhaseSettings, target: TargetSettings, timer: int, instance: int): soe_params = None if workload_settings.recorded_load_cache_size: restart_memcached() soe_params = { 'insertstart': (instance + 1) * workload_settings.inserts_per_workerinstance, 'recorded_load_cache_size': workload_settings.recorded_load_cache_size, } phase_params = None if workload_settings.phase: phase_params = { 'insertstart': instance * workload_settings.inserts_per_workerinstance + workload_settings.insertstart, 'inserts_per_workerinstance': workload_settings.inserts_per_workerinstance, } host = target.node if target.cloud: host = target.cloud['cluster_svc'] run_ycsb(host=host, bucket=target.bucket, password=<PASSWORD>, action='load', ycsb_client=workload_settings.ycsb_client, workload=workload_settings.workload_path, items=workload_settings.items, workers=workload_settings.workers, target=int(workload_settings.target), soe_params=soe_params, instance=instance, epoll=workload_settings.epoll, boost=workload_settings.boost, persist_to=workload_settings.persist_to, replicate_to=workload_settings.replicate_to, fieldlength=workload_settings.field_length, fieldcount=workload_settings.field_count, durability=workload_settings.durability, kv_endpoints=workload_settings.kv_endpoints, enable_mutation_token=workload_settings.enable_mutation_token, transactionsenabled=workload_settings.transactionsenabled, documentsintransaction=workload_settings.documentsintransaction, transactionreadproportion=workload_settings.transactionreadproportion, transactionupdateproportion=workload_settings.transactionupdateproportion, transactioninsertproportion=workload_settings.transactioninsertproportion, requestdistribution=workload_settings.requestdistribution, num_atrs=workload_settings.num_atrs, ycsb_jvm_args=workload_settings.ycsb_jvm_args, collections_map=workload_settings.collections, timeseries=workload_settings.timeseries, phase_params=phase_params, cloud=target.cloud) def ycsb_workload(workload_settings: PhaseSettings, target: TargetSettings, timer: int, instance: int): soe_params = None if workload_settings.recorded_load_cache_size: soe_params = { 'insertstart': (instance + 1) * workload_settings.inserts_per_workerinstance, 'recorded_load_cache_size': workload_settings.recorded_load_cache_size, } if workload_settings.ycsb_split_workload: split_instance = workload_settings.workload_instances // 2 if instance < split_instance: workload_settings.workload_path = workload_settings.workload_path.split(",")[0] elif instance >= split_instance: workload_settings.workload_path = workload_settings.workload_path.split(",")[1] insert_test_params = None if workload_settings.insert_test_flag: insert_test_params = { 'insertstart': int(instance * workload_settings.inserts_per_workerinstance + workload_settings.items), 'recordcount': int((instance+1) * workload_settings.inserts_per_workerinstance + workload_settings.items), } host = target.node if target.cloud: host = target.cloud['cluster_svc'] run_ycsb(host=host, bucket=target.bucket, password=<PASSWORD>, action='run', ycsb_client=workload_settings.ycsb_client, workload=workload_settings.workload_path, items=workload_settings.items, workers=workload_settings.workers, target=int(workload_settings.target), soe_params=soe_params, ops=int(workload_settings.ops), instance=instance, epoll=workload_settings.epoll, boost=workload_settings.boost, persist_to=workload_settings.persist_to, replicate_to=workload_settings.replicate_to, execution_time=workload_settings.time, ssl_keystore_file=workload_settings.ssl_keystore_file, ssl_keystore_password=workload_settings.ssl_keystore_password, ssl_mode=workload_settings.ssl_mode, certificate_file=workload_settings.certificate_file, timeseries=workload_settings.timeseries, cbcollect=workload_settings.cbcollect, fieldlength=workload_settings.field_length, fieldcount=workload_settings.field_count, durability=workload_settings.durability, kv_endpoints=workload_settings.kv_endpoints, enable_mutation_token=workload_settings.enable_mutation_token, retry_strategy=workload_settings.retry_strategy, retry_lower=workload_settings.retry_lower, retry_upper=workload_settings.retry_upper, retry_factor=workload_settings.retry_factor, transactionsenabled=workload_settings.transactionsenabled, documentsintransaction=workload_settings.documentsintransaction, transactionreadproportion=workload_settings.transactionreadproportion, transactionupdateproportion=workload_settings.transactionupdateproportion, transactioninsertproportion=workload_settings.transactioninsertproportion, requestdistribution=workload_settings.requestdistribution, num_atrs=workload_settings.num_atrs, ycsb_jvm_args=workload_settings.ycsb_jvm_args, collections_map=workload_settings.collections, out_of_order=workload_settings.ycsb_out_of_order, insert_test_params=insert_test_params, cloud=target.cloud)
52058
import pytest import os import toml from tempfile import gettempdir import neo.libs.login from neo.libs import login class TestLogin: def test_check_env(self, fs): home = os.path.expanduser("~") fs.create_file(os.path.join(home, ".neo", "config.toml")) assert login.check_env() def fake_load_env_file(self): pass def fake_check_env(self): return True def dummy_config_toml(self): config = "" config += "[auth]\n" config += "os_username = 'john'\n" config += "os_password = '<PASSWORD>'\n" config += "\n" config += "[region.wjv]\n" config += "os_auth_url = 'https://foo.id:443/v1'\n" config += "os_project_id = 'g7ia30trlk'\n" config += "os_user_domain_name = 'foo.id'\n" config += "status = 'ACTIVE'\n" config += "[region.jkt]\n" config += "os_auth_url = 'https://bar.id:443/v1'\n" config += "os_project_id = 'iqn1a69tolj'\n" config += "os_user_domain_name = 'bar.id'\n" config += "status = 'IDLE'\n" config += "\n" return toml.loads(config) def test_get_env_values(self, monkeypatch): monkeypatch.setattr(neo.libs.login, "load_env_file", self.dummy_config_toml) monkeypatch.setattr(neo.libs.login, "check_env", self.fake_check_env) assert login.get_env_values() def fake_get_env_values(self): env = [ { "username": "john", "password": "<PASSWORD>", "region": "zone-1", "auth_url": "https://foo.id:443/v1", "project_id": "g7ia30trlk", "user_domain_name": "foo.id", "status": "ACTIVE", }, { "username": "john", "password": "<PASSWORD>", "region": "zone-2", "auth_url": "https://bar.id:443/v1", "project_id": "iqn1a69tolj", "user_domain_name": "bar.id", "status": "IDLE", }, ] return env def test_is_current_env(self, monkeypatch): monkeypatch.setattr(neo.libs.login, "get_env_values", self.fake_get_env_values) assert login.is_current_env("https://foo.id:443/v1", "foo.id", "john") def test_is_current_env_false(self, monkeypatch): monkeypatch.setattr(neo.libs.login, "get_env_values", self.fake_get_env_values) assert login.is_current_env("https://bar.id:443/v1", "bar.id", "merry") is None def fake_check_session(self): return True def test_do_logout(self, monkeypatch, fs): monkeypatch.setattr(neo.libs.login, "check_session", self.fake_check_session) home = os.path.expanduser("~") tmp_dir = os.path.join(gettempdir(), ".neo") fs.create_file(tmp_dir + "/session.pkl") fs.create_file(os.path.join(home, ".neo", "config.toml")) assert os.path.exists(tmp_dir + "/session.pkl") assert os.path.exists(os.path.join(home, ".neo", "config.toml")) login.do_logout() assert os.path.exists(tmp_dir + "/session.pkl") is False assert os.path.exists(os.path.join(home, ".neo", "config.toml")) is False def test_check_session(self, fs): tmp_dir = os.path.join(gettempdir(), ".neo") fs.create_file(tmp_dir + "/session.pkl") assert login.check_session()
52106
import tensorflow as tf import csv import time from datetime import timedelta import sys import numpy as np from tensorflow.python.training import training_util from tensorflow.contrib import slim from tensorflow.python.ops import variables as tf_variables from ..configuration import * from .. import trainer, evaluator, metrics from ..task_spec import get_task_spec from .text_classification_dataset import TextClassificationDataset def _load_embeddings(vocabulary_size, embeddings_size, filename_prefix='embeddings', from_dir=DIR_DATA_WORD2VEC): embeddings = [] embeddings_file = '{}_{}_{}'.format(filename_prefix, vocabulary_size, embeddings_size) with open(os.path.join(from_dir, embeddings_file), 'r') as file: reader = csv.reader(file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) for row in reader: embeddings.append([float(r) for r in row]) return embeddings class TextClassificationTrainer(trainer.Trainer): """ Helper class to run the training and create the model for the training. See trainer.Trainer for more details. """ def __init__(self, dataset, text_classification_model, log_dir=DIR_TC_LOGDIR, use_end_sequence=False, task_spec=None, max_steps=None): self.text_classification_model = text_classification_model self.use_end_sequence = use_end_sequence config = tf.ConfigProto() config.gpu_options.allow_growth = True super(TextClassificationTrainer, self).__init__(log_dir=log_dir, dataset=dataset, task_spec=task_spec, max_steps=max_steps, monitored_training_session_config=config) def model(self, input_text_begin, input_text_end, gene, variation, expected_labels, batch_size, vocabulary_size=VOCABULARY_SIZE, embeddings_size=EMBEDDINGS_SIZE, output_classes=9): # embeddings embeddings = _load_embeddings(vocabulary_size, embeddings_size) # global step self.global_step = training_util.get_or_create_global_step() # model with slim.arg_scope(self.text_classification_model.model_arg_scope()): outputs = self.text_classification_model.model(input_text_begin, input_text_end, gene, variation, output_classes, embeddings=embeddings, batch_size=batch_size) # loss targets = self.text_classification_model.targets(expected_labels, output_classes) self.loss = self.text_classification_model.loss(targets, outputs) tf.summary.scalar('loss', self.loss) # learning rate self.optimizer, self.learning_rate = \ self.text_classification_model.optimize(self.loss, self.global_step) if self.learning_rate is not None: tf.summary.scalar('learning_rate', self.learning_rate) # metrics self.metrics = metrics.single_label(outputs['prediction'], targets) # saver to save the model self.saver = tf.train.Saver() # check a nan value in the loss self.loss = tf.check_numerics(self.loss, 'loss is nan') return None def create_graph(self, dataset_tensor, batch_size): input_text_begin, input_text_end, gene, variation, expected_labels = dataset_tensor if not self.use_end_sequence: input_text_end = None return self.model(input_text_begin, input_text_end, gene, variation, expected_labels, batch_size) def step(self, session, graph_data): lr, _, loss, step, metrics = \ session.run([self.learning_rate, self.optimizer, self.loss, self.global_step, self.metrics]) if self.is_chief and time.time() > self.print_timestamp + 5 * 60: self.print_timestamp = time.time() elapsed_time = str(timedelta(seconds=time.time() - self.init_time)) m = 'step: {} loss: {:0.4f} learning_rate = {:0.6f} elapsed seconds: {} ' \ 'precision: {} recall: {} accuracy: {}' logging.info(m.format(step, loss, lr, elapsed_time, metrics['precision'], metrics['recall'], metrics['accuracy'])) def after_create_session(self, session, coord): self.init_time = time.time() self.print_timestamp = time.time() class TextClassificationTest(evaluator.Evaluator): """Evaluator for distributed training""" def __init__(self, dataset, text_classification_model, output_path, log_dir=DIR_TC_LOGDIR, use_end_sequence=False,max_steps=None): self.use_end_sequence = use_end_sequence config = tf.ConfigProto() config.gpu_options.allow_growth = True super(TextClassificationTest, self).__init__(checkpoints_dir=log_dir, dataset=dataset, output_path=output_path, max_steps=max_steps, singular_monitored_session_config=config) self.text_classification_model = text_classification_model self.eval_writer = tf.summary.FileWriter(log_dir) def model(self, input_text_begin, input_text_end, gene, variation, expected_labels, batch_size, vocabulary_size=VOCABULARY_SIZE, embeddings_size=EMBEDDINGS_SIZE, output_classes=9): # embeddings embeddings = _load_embeddings(vocabulary_size, embeddings_size) # model with slim.arg_scope(self.text_classification_model.model_arg_scope()): outputs = self.text_classification_model.model(input_text_begin, input_text_end, gene, variation, output_classes, embeddings=embeddings, batch_size=batch_size, training=False) # loss targets = self.text_classification_model.targets(expected_labels, output_classes) loss = self.text_classification_model.loss(targets, outputs) self.accumulated_loss = tf.Variable(0.0, dtype=tf.float32, name='accumulated_loss', trainable=False) self.accumulated_loss = tf.assign_add(self.accumulated_loss, loss) step = tf.Variable(0, dtype=tf.int32, name='eval_step', trainable=False) step_increase = tf.assign_add(step, 1) self.loss = self.accumulated_loss / tf.cast(step_increase, dtype=tf.float32) tf.summary.scalar('loss', self.loss) # metrics self.metrics = metrics.single_label(outputs['prediction'], targets, moving_average=False) return None def create_graph(self, dataset_tensor, batch_size): input_text_begin, input_text_end, gene, variation, expected_labels = dataset_tensor if not self.use_end_sequence: input_text_end = None graph_data = self.model(input_text_begin, input_text_end, gene, variation, expected_labels, batch_size) return graph_data def step(self, session, graph_data, summary_op): summary, self.loss_result, self.metrics_results = \ session.run([summary_op, self.loss, self.metrics]) return summary def end(self, session): super(TextClassificationTest, self).end(session) chk_step = int(self.lastest_checkpoint.split('-')[-1]) m = 'step: {} loss: {:0.4f} precision: {} recall: {} accuracy: {}' logging.info(m.format(chk_step, self.loss_result, self.metrics_results['precision'], self.metrics_results['recall'], self.metrics_results['accuracy'])) def after_create_session(self, session, coord): # checkpoints_file = os.path.join(self.checkpoints_dir, 'checkpoint') # alt_checkpoints_dir = '{}_tp'.format(self.checkpoints_dir) # import glob # files = glob.glob('{}/model.ckpt-*.data-*'.format(alt_checkpoints_dir)) # chk_step = 0 # for f in files: # num = f.split('model.ckpt-')[1].split('.')[0] # num = int(num) # if chk_step == 0 or num < chk_step: # chk_step = num # if chk_step != 0: # ckpt_files = glob.glob('{}/model.ckpt-{}.data-*'.format(alt_checkpoints_dir, chk_step)) # ckpt_files = [x.split('/')[-1] for x in ckpt_files] # for f in ckpt_files + ['model.ckpt-{}.index', 'model.ckpt-{}.meta']: # f = f.format(chk_step) # os.rename(os.path.join(alt_checkpoints_dir, f), os.path.join(self.checkpoints_dir, f)) # with open(checkpoints_file, 'wb') as f: # f.write('model_checkpoint_path: "./model.ckpt-{}"\n'.format(chk_step)) # f.write('all_model_checkpoint_paths: "./model.ckpt-{}"\n'.format(chk_step)) super(TextClassificationTest, self).after_create_session(session, coord) # with open(checkpoints_file, 'wb') as f: # f.write('model_checkpoint_path: "./model.ckpt-"\n') # f.write('all_model_checkpoint_paths: "./model.ckpt-"\n') class TextClassificationEval(evaluator.Evaluator): """Evaluator for text classification""" def __init__(self, dataset, text_classification_model, output_path, log_dir=DIR_TC_LOGDIR, use_end_sequence=False): self.use_end_sequence = use_end_sequence config = tf.ConfigProto() config.gpu_options.allow_growth = True super(TextClassificationEval, self).__init__(checkpoints_dir=log_dir, output_path=output_path, infinite_loop=False, singular_monitored_session_config=config) self.dataset = dataset self.text_classification_model = text_classification_model def model(self, input_text_begin, input_text_end, gene, variation, batch_size, vocabulary_size=VOCABULARY_SIZE, embeddings_size=EMBEDDINGS_SIZE, output_classes=9): # embeddings embeddings = _load_embeddings(vocabulary_size, embeddings_size) # global step self.global_step = training_util.get_or_create_global_step() self.global_step = tf.assign_add(self.global_step, 1) # model with tf.control_dependencies([self.global_step]): with slim.arg_scope(self.text_classification_model.model_arg_scope()): self.outputs = self.text_classification_model.model(input_text_begin, input_text_end, gene, variation, output_classes, embeddings=embeddings, batch_size=batch_size, training=False) # restore only the trainable variables self.saver = tf.train.Saver(var_list=tf_variables.trainable_variables()) return self.outputs def create_graph(self, dataset_tensor, batch_size): input_text_begin, input_text_end, gene, variation = dataset_tensor if not self.use_end_sequence: input_text_end = None return self.model(input_text_begin, input_text_end, gene, variation, batch_size) def after_create_session(self, session, coord): super(TextClassificationEval, self).after_create_session(session, coord) print('ID,class1,class2,class3,class4,class5,class6,class7,class8,class9') def step(self, session, graph_data, summary_op): step, predictions = session.run([self.global_step, self.outputs['prediction']]) predictions = predictions[0] predictions = [p + 0.01 for p in predictions] # penalize less the mistakes sum = np.sum(predictions) predictions = [p / sum for p in predictions] print('{},{}'.format(step, ','.join(['{:.3f}'.format(x) for x in predictions]))) return None import logging def main(model, name, sentence_split=False, end_sequence=USE_END_SEQUENCE, batch_size=TC_BATCH_SIZE): """ Main method to execute the text_classification models :param ModelSimple model: object model based on ModelSimple :param str name: name of the model :param bool sentence_split: whether to split the dataset in sentneces or not, only used for hatt model :param bool end_sequence: whether to use or not the end of the sequences in the models :param int batch_size: batch size of the models """ logging.getLogger().setLevel(logging.INFO) log_dir = '{}_{}'.format(DIR_TC_LOGDIR, name) if len(sys.argv) > 1 and sys.argv[1] == 'test': # execute the test with the train dataset dataset = TextClassificationDataset(type='train', sentence_split=sentence_split) tester = TextClassificationTest(dataset=dataset, text_classification_model=model, log_dir=log_dir, output_path=os.path.join(log_dir, 'test_trainset'), use_end_sequence=end_sequence) tester.run() elif len(sys.argv) > 1 and sys.argv[1] == 'validate': dataset = TextClassificationDataset(type='val', sentence_split=sentence_split) tester = TextClassificationTest(dataset=dataset, text_classification_model=model, log_dir=log_dir, output_path=os.path.join(log_dir, 'validate'), use_end_sequence=end_sequence) tester.run() elif len(sys.argv) > 1 and sys.argv[1] == 'eval': # evaluate the data of the test dataset. We submit this output to kaggle dataset = TextClassificationDataset(type='test', sentence_split=sentence_split) evaluator = TextClassificationEval(dataset=dataset, text_classification_model=model, log_dir=log_dir, output_path=os.path.join(log_dir, 'test'), use_end_sequence=end_sequence) evaluator.run() elif len(sys.argv) > 1 and sys.argv[1] == 'eval_stage2': # evaluate the data of the test dataset. We submit this output to kaggle dataset = TextClassificationDataset(type='stage2_test', sentence_split=sentence_split) evaluator = TextClassificationEval(dataset=dataset, text_classification_model=model, log_dir=log_dir, output_path=os.path.join(log_dir, 'test_stage2'), use_end_sequence=end_sequence) evaluator.run() else: # training task_spec = get_task_spec(with_evaluator=USE_LAST_WORKER_FOR_VALIDATION) if task_spec.join_if_ps(): # join if it is a parameters server and do nothing else return with(tf.gfile.Open(os.path.join(DIR_DATA_TEXT_CLASSIFICATION, 'train_set'))) as f: max_steps = int(TC_EPOCHS * len(f.readlines()) / batch_size) if task_spec.is_evaluator(): dataset = TextClassificationDataset(type='val', sentence_split=sentence_split) # evaluator running in the last worker tester = TextClassificationTest(dataset=dataset, text_classification_model=model, log_dir=log_dir, output_path=os.path.join(log_dir, 'val'), use_end_sequence=end_sequence, max_steps=max_steps) tester.run() else: dataset = TextClassificationDataset(type='train', sentence_split=sentence_split) trainer = TextClassificationTrainer(dataset=dataset, text_classification_model=model, log_dir=log_dir, use_end_sequence=end_sequence, task_spec=task_spec, max_steps=max_steps) trainer.run(epochs=TC_EPOCHS, batch_size=batch_size)
52108
import click from retrieval.elastic_retriever import ElasticRetriever import os @click.command() @click.option('--sections-parquet', type=str, help='', default='') @click.option('--documents-parquet', type=str, help='', default='') @click.option('--tables-parquet', type=str, help='', default='') @click.option('--figures-parquet', type=str, help='', default='') @click.option('--equations-parquet', type=str, help='', default='') @click.option('--entities-parquet', type=str, help='', default='') @click.option('--aws-host', type=str, help='', default='') @click.option('--host', type=str, help='', default='localhost') def run(sections_parquet, documents_parquet, tables_parquet, figures_parquet, equations_parquet, entities_parquet, aws_host, host): if aws_host != '': auth = AWS4Auth(os.environ.get('AWS_ACCESS_KEY_ID'), os.environ.get('AWS_SECRET_ACCESS_KEY'), os.environ.get('AWS_DEFAULT_REGION'), 'es', session_token=os.environ.get('AWS_SESSION_TOKEN')) ret = ElasticRetriever(hosts=[{'host':aws_host, 'port':443}], awsauth=auth) else: ret = ElasticRetriever(hosts=[host]) print('Connected to retriever, building indices') ret.build_index(documents_parquet, entities_parquet, sections_parquet, tables_parquet, figures_parquet, equations_parquet) print('Done building index') if __name__ == '__main__': run()
52113
import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import numpy as np import tqdm from data import dataset as dset import torchvision.models as tmodels import tqdm from models import models import os import itertools import glob from utils import utils import torch.backends.cudnn as cudnn cudnn.benchmark = True import argparse parser = argparse.ArgumentParser() parser.add_argument('--dataset', default='mitstates', help='mitstates|zappos') parser.add_argument('--data_dir', default='data/mit-states/', help='data root dir') parser.add_argument('--cv_dir', default='cv/tmp/', help='dir to save checkpoints to') parser.add_argument('--load', default=None, help='path to checkpoint to load from') # model parameters parser.add_argument('--model', default='visprodNN', help='visprodNN|redwine|labelembed+|attributeop') parser.add_argument('--emb_dim', type=int, default=300, help='dimension of common embedding space') parser.add_argument('--nlayers', type=int, default=2, help='number of layers for labelembed+') parser.add_argument('--glove_init', action='store_true', default=False, help='initialize inputs with word vectors') parser.add_argument('--clf_init', action='store_true', default=False, help='initialize inputs with SVM weights') parser.add_argument('--static_inp', action='store_true', default=False, help='do not optimize input representations') # regularizers parser.add_argument('--lambda_aux', type=float, default=0.0) parser.add_argument('--lambda_inv', type=float, default=0.0) parser.add_argument('--lambda_comm', type=float, default=0.0) parser.add_argument('--lambda_ant', type=float, default=0.0) # optimization parser.add_argument('--batch_size', type=int, default=512) parser.add_argument('--lr', type=float, default=1e-4) parser.add_argument('--wd', type=float, default=5e-5) parser.add_argument('--save_every', type=int, default=100) parser.add_argument('--eval_val_every', type=int, default=20) parser.add_argument('--max_epochs', type=int, default=1000) args = parser.parse_args() def test(epoch): model.eval() accuracies = [] for idx, data in tqdm.tqdm(enumerate(testloader), total=len(testloader)): data = [d.cuda() for d in data] _, predictions = model(data) attr_truth, obj_truth = data[1], data[2] results = evaluator.score_model(predictions, obj_truth) match_stats = evaluator.evaluate_predictions(results, attr_truth, obj_truth) accuracies.append(match_stats) accuracies = zip(*accuracies) accuracies = map(torch.mean, map(torch.cat, accuracies)) attr_acc, obj_acc, closed_acc, open_acc, objoracle_acc = accuracies print ('(test) E: %d | A: %.3f | O: %.3f | Cl: %.3f | Op: %.4f | OrO: %.4f'%(epoch, attr_acc, obj_acc, closed_acc, open_acc, objoracle_acc)) #----------------------------------------------------------------# testset = dset.CompositionDatasetActivations(root=args.data_dir, phase='test', split='compositional-split') testloader = torch.utils.data.DataLoader(testset, batch_size=args.batch_size, shuffle=False, num_workers=2) if args.model == 'visprodNN': model = models.VisualProductNN(testset, args) elif args.model == 'redwine': model = models.RedWine(testset, args) elif args.model =='labelembed+': model = models.LabelEmbedPlus(testset, args) elif args.model =='attributeop': model = models.AttributeOperator(testset, args) model.cuda() evaluator = models.Evaluator(testset, model) checkpoint = torch.load(args.load) model.load_state_dict(checkpoint['net']) start_epoch = checkpoint['epoch'] print ('loaded model from', os.path.basename(args.load)) with torch.no_grad(): test(0)
52215
import numpy.testing as test import numpy as np from unittest import TestCase from PyFVCOM.ocean import * class OceanToolsTest(TestCase): def setUp(self): """ Make a set of data for the various ocean tools functions """ self.lat = 30 self.z = np.array(9712.02) self.t = np.array(40) self.s = np.array(40) self.p = np.array(10000) self.pr = np.array(0) self.c = np.array(1.888091) self.td = np.array(20) # for dens_jackett self.sd = np.array(20) # for dens_jackett self.pd = np.array(1000) # for dens_jackett self.cond = np.array(53000) # for cond2salt self.h = np.array((10, 20, 30, 100)) # depths for stokes self.U = 0.25 # U for stokes and dissipation self.omega = 1 / 44714.1647021416 # omega for stokes self.z0 = np.array((0.0025)) # z0 for stokes self.rho = 1025 self.temp = np.arange(-20, 50, 10) self.dew = np.linspace(0, 20, len(self.temp)) # Use some of the Fofonoff and Millard (1983) checks. def test_sw_svan(self): """ Specific volume anomaly """ test_svan = 9.8130210e-6 res_svan = sw_svan(self.t, self.s, self.p) test.assert_almost_equal(res_svan, test_svan, decimal=1) def test_res_z(self): """ Pressure to depth """ test_z = 9712.02 res_z = pressure2depth(self.p, self.lat) # Hmmm, not very accurate! test.assert_almost_equal(res_z, test_z, decimal=-1) # The return to depth is a bit inaccurate, not sure why. def test_depth2pressure(self): """ Depth to pressure """ test_p = 9712.653 res_pres = depth2pressure(self.z, self.lat) # Hmmm, horribly inaccurate! test.assert_almost_equal(res_pres, test_p, decimal=-4) def test_cp_sw(self): """ Specific heat of seawater """ test_cp = 3849.5 res_cp = cp_sw(self.t, self.s, self.p) test.assert_almost_equal(res_cp, test_cp, decimal=1) def test_dT_adiab_sw(self): """ Adiabatic temperature gradient """ test_atg = 0.0003255976 res_atg = dT_adiab_sw(self.t, self.s, self.p) test.assert_almost_equal(res_atg, test_atg, decimal=6) def test_theta_sw(self): """ Potential temperature for sea water """ test_theta = 36.89073 res_theta = theta_sw(self.t, self.s, self.p, self.pr) test.assert_almost_equal(res_theta, test_theta, decimal=2) def test_sw_sal78(self): """ Salinity from conductivity, temperature and pressure (sw_sal78) """ test_salinity = 40 res_sal78 = sw_sal78(self.c, self.t, self.p) test.assert_almost_equal(res_sal78, test_salinity, decimal=5) def test_dens_jackett(self): """ Density from temperature, salinity and pressure """ test_dens = 1017.728868019642 res_dens = dens_jackett(self.td, self.sd, self.pd) test.assert_equal(res_dens, test_dens) def test_cond2salt(self): """ Conductivity to salinity """ test_salt = 34.935173507811783 res_salt = cond2salt(self.cond) test.assert_equal(res_salt, test_salt) # def test_stokes(self): # """ Stokes number """ # test_stokes, test_u_star, test_delta = np.nan, np.nan, np.nan # res_stokes, res_u_star, res_delta = stokes(self.h, self.U, self.omega, self.z0, U_star=True, delta=True) # test.assert_equal(res_stokes, test_stokes) # test.assert_equal(res_u_star, test_u_star) # test.assert_equal(res_delta, test_delta) def test_dissipation(self): """ Tidal dissipation for a given tidal harmonic """ test_dissipation = 0.0400390625 res_dissipation = dissipation(self.rho, self.U) test.assert_equal(res_dissipation, test_dissipation) def test_rhum(self): """ Relative humidity from dew temperature and air temperature """ test_rhum = np.array((487.36529085, 270.83391406, 160.16590946, 100.0, 65.47545095, 44.70251971, 31.67003471)) res_rhum = rhum(self.dew, self.temp) test.assert_almost_equal(res_rhum, test_rhum)
52237
from __future__ import print_function from src import cli from os import environ as ENV PROFILE=False if PROFILE: print("PROFILING") import cProfile cProfile.run("cli.main()", "restats") import pstats p = pstats.Stats('restats') p.strip_dirs().sort_stats('cumulative').print_stats(50) else: cli.main()
52244
import math import numpy as np class Strategy: """Options strategy class. Takes in a number of `StrategyLeg`'s (option contracts), and filters that determine entry and exit conditions. """ def __init__(self, schema): self.schema = schema self.legs = [] self.conditions = [] self.exit_thresholds = (math.inf, math.inf) def add_leg(self, leg): """Adds leg to the strategy""" assert self.schema == leg.schema leg.name = "leg_{}".format(len(self.legs) + 1) self.legs.append(leg) return self def add_legs(self, legs): """Adds legs to the strategy""" for leg in legs: self.add_leg(leg) return self def remove_leg(self, leg_number): """Removes leg from the strategy""" self.legs.pop(leg_number) return self def clear_legs(self): """Removes *all* legs from the strategy""" self.legs = [] return self def add_exit_thresholds(self, profit_pct=math.inf, loss_pct=math.inf): """Adds maximum profit/loss thresholds. Both **must** be >= 0.0 Args: profit_pct (float, optional): Max profit level. Defaults to math.inf loss_pct (float, optional): Max loss level. Defaults to math.inf """ assert profit_pct >= 0 assert loss_pct >= 0 self.exit_thresholds = (profit_pct, loss_pct) def filter_thresholds(self, entry_cost, current_cost): """Returns a `pd.Series` of booleans indicating where profit (loss) levels exceed the given thresholds. Args: entry_cost (pd.Series): Total _entry_ cost of inventory row. current_cost (pd.Series): Present cost of inventory row. Returns: pd.Series: Indicator series with `True` for every row that exceeds the specified profit/loss thresholds. """ profit_pct, loss_pct = self.exit_thresholds excess_return = (current_cost / entry_cost + 1) * -np.sign(entry_cost) return (excess_return >= profit_pct) | (excess_return <= -loss_pct) def __repr__(self): return "Strategy(legs={}, exit_thresholds={})".format(self.legs, self.exit_thresholds)
52262
import os EXAMPLE_SVG_PATH = os.path.join(os.path.dirname(__file__), 'example.svg') IDS_IN_EXAMPLE_SVG = {'red', 'yellow', 'blue', 'green'} IDS_IN_EXAMPLE2_SVG = {'punainen', 'keltainen', 'sininen', 'vihrea'} with open(EXAMPLE_SVG_PATH, 'rb') as infp: EXAMPLE_SVG_DATA = infp.read() EXAMPLE2_SVG_DATA = ( EXAMPLE_SVG_DATA .replace(b'"red"', b'"punainen"') .replace(b'"green"', b'"vihrea"') .replace(b'"blue"', b'"sininen"') .replace(b'"yellow"', b'"keltainen"') )
52305
import bleach import bleach_whitelist from django.conf import settings from rest_framework.pagination import PageNumberPagination def sanitize(string): # bleach doesn't handle None so let's not pass it if string and getattr(settings, "RESPONSE_SANITIZE_USER_INPUT", True): return bleach.clean( string, tags=bleach_whitelist.markdown_tags, attributes=bleach_whitelist.markdown_attrs, styles=bleach_whitelist.all_styles, ) return string class LargeResultsSetPagination(PageNumberPagination): page_size = 500 max_page_size = 1000 page_size_query_param = "page_size"
52306
from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import sys import tempfile from observations.r.lost_letter import lost_letter def test_lost_letter(): """Test module lost_letter.py by downloading lost_letter.csv and testing shape of extracted data has 140 rows and 8 columns """ test_path = tempfile.mkdtemp() x_train, metadata = lost_letter(test_path) try: assert x_train.shape == (140, 8) except: shutil.rmtree(test_path) raise()
52316
import os from aztk.models.plugins.plugin_configuration import PluginConfiguration, PluginPort, PluginTargetRole from aztk.models.plugins.plugin_file import PluginFile dir_path = os.path.dirname(os.path.realpath(__file__)) class SparkUIProxyPlugin(PluginConfiguration): def __init__(self): super().__init__( name="spark_ui_proxy", ports=[PluginPort(internal=9999, public=True)], target_role=PluginTargetRole.Master, execute="spark_ui_proxy.sh", args=["localhost:8080", "9999"], files=[ PluginFile("spark_ui_proxy.sh", os.path.join(dir_path, "spark_ui_proxy.sh")), PluginFile("spark_ui_proxy.py", os.path.join(dir_path, "spark_ui_proxy.py")), ], )
52328
import torch import random import torch.nn as nn from abc import abstractmethod from abc import ABCMeta from torch import Tensor from typing import Any from typing import Dict from typing import List from typing import Tuple from typing import Optional from .losses import GANLoss from .losses import GANTarget from .discriminators import DiscriminatorBase from ..protocol import GaussianGeneratorMixin from ....data import CVLoader from ....types import tensor_dict_type from ....protocol import StepOutputs from ....protocol import TrainerState from ....protocol import MetricsOutputs from ....protocol import ModelWithCustomSteps from ....constants import LOSS_KEY from ....constants import INPUT_KEY from ....constants import LABEL_KEY from ....constants import PREDICTIONS_KEY from ....misc.toolkit import to_device from ....misc.toolkit import mode_context from ....misc.toolkit import toggle_optimizer class GANMixin(ModelWithCustomSteps, GaussianGeneratorMixin, metaclass=ABCMeta): def __init__( self, *, num_classes: Optional[int] = None, gan_mode: str = "vanilla", gan_loss_config: Optional[Dict[str, Any]] = None, ): super().__init__() self.num_classes = num_classes self.gan_mode = gan_mode self.gan_loss = GANLoss(gan_mode) if gan_loss_config is None: gan_loss_config = {} self.lambda_gp = gan_loss_config.get("lambda_gp", 10.0) @property @abstractmethod def g_parameters(self) -> List[nn.Parameter]: pass @property @abstractmethod def d_parameters(self) -> List[nn.Parameter]: pass @abstractmethod def _g_losses( self, batch: tensor_dict_type, forward_kwargs: Dict[str, Any], ) -> Tuple[tensor_dict_type, tensor_dict_type, Optional[Tensor]]: # g_losses, sampled, labels pass @abstractmethod def _d_losses( self, batch: tensor_dict_type, sampled: tensor_dict_type, labels: Optional[Tensor], ) -> tensor_dict_type: # d_losses pass # utilities @property def can_reconstruct(self) -> bool: return False def forward( self, batch_idx: int, batch: tensor_dict_type, state: Optional[TrainerState] = None, **kwargs: Any, ) -> tensor_dict_type: z = torch.randn(len(batch[INPUT_KEY]), self.latent_dim, device=self.device) return {PREDICTIONS_KEY: self.decode(z, labels=batch[LABEL_KEY], **kwargs)} def summary_forward(self, batch_idx: int, batch: tensor_dict_type) -> None: self._g_losses(batch, {}) class OneStageGANMixin(GANMixin, metaclass=ABCMeta): def train_step( self, batch_idx: int, batch: tensor_dict_type, trainer: Any, forward_kwargs: Dict[str, Any], loss_kwargs: Dict[str, Any], ) -> StepOutputs: opt_g = trainer.optimizers["g_parameters"] opt_d = trainer.optimizers["d_parameters"] # generator step toggle_optimizer(self, opt_g) with torch.cuda.amp.autocast(enabled=trainer.use_amp): g_losses, sampled, labels = self._g_losses(batch, forward_kwargs) g_loss = g_losses.pop(LOSS_KEY) trainer.grad_scaler.scale(g_loss).backward() if trainer.clip_norm > 0.0: trainer._clip_norm_step() trainer.grad_scaler.step(opt_g) trainer.grad_scaler.update() opt_g.zero_grad() # discriminator step toggle_optimizer(self, opt_d) with torch.no_grad(): sampled = {k: v.detach().clone() for k, v in sampled.items()} with torch.cuda.amp.autocast(enabled=trainer.use_amp): d_losses = self._d_losses(batch, sampled, labels) d_loss = d_losses.pop(LOSS_KEY) trainer.grad_scaler.scale(d_loss).backward() if trainer.clip_norm > 0.0: trainer._clip_norm_step() trainer.grad_scaler.step(opt_d) trainer.grad_scaler.update() opt_d.zero_grad() # finalize trainer._scheduler_step() forward_results = {PREDICTIONS_KEY: sampled} loss_dict = {"g": g_loss.item(), "d": d_loss.item()} loss_dict.update({k: v.item() for k, v in g_losses.items()}) loss_dict.update({k: v.item() for k, v in d_losses.items()}) return StepOutputs(forward_results, loss_dict) def evaluate_step( # type: ignore self, loader: CVLoader, portion: float, trainer: Any, ) -> MetricsOutputs: loss_items: Dict[str, List[float]] = {} for i, batch in enumerate(loader): if i / len(loader) >= portion: break batch = to_device(batch, self.device) g_losses, sampled, labels = self._g_losses(batch, {}) d_losses = self._d_losses(batch, sampled, labels) g_loss = g_losses.pop(LOSS_KEY) d_loss = d_losses.pop(LOSS_KEY) loss_dict = {"g": g_loss.item(), "d": d_loss.item()} loss_dict.update({k: v.item() for k, v in g_losses.items()}) loss_dict.update({k: v.item() for k, v in d_losses.items()}) for k, v in loss_dict.items(): loss_items.setdefault(k, []).append(v) # gather mean_loss_items = {k: sum(v) / len(v) for k, v in loss_items.items()} mean_loss_items[LOSS_KEY] = sum(mean_loss_items.values()) score = trainer._weighted_loss_score(mean_loss_items) return MetricsOutputs(score, mean_loss_items) class VanillaGANMixin(OneStageGANMixin, metaclass=ABCMeta): def __init__( self, in_channels: int, *, discriminator: str = "basic", discriminator_config: Optional[Dict[str, Any]] = None, num_classes: Optional[int] = None, gan_mode: str = "vanilla", gan_loss_config: Optional[Dict[str, Any]] = None, ): super().__init__( num_classes=num_classes, gan_mode=gan_mode, gan_loss_config=gan_loss_config, ) if discriminator_config is None: discriminator_config = {} discriminator_config["in_channels"] = in_channels discriminator_config["num_classes"] = num_classes self.discriminator = DiscriminatorBase.make( discriminator, config=discriminator_config, ) @property def d_parameters(self) -> List[nn.Parameter]: return list(self.discriminator.parameters()) def _g_losses( self, batch: tensor_dict_type, forward_kwargs: Dict[str, Any], ) -> Tuple[tensor_dict_type, tensor_dict_type, Optional[Tensor]]: labels = batch.get(LABEL_KEY) if labels is not None: labels = labels.view(-1) sampled = self.sample(len(batch[INPUT_KEY]), labels=labels, **forward_kwargs) pred_fake = self.discriminator(sampled) loss_g = self.gan_loss(pred_fake, GANTarget(True, labels)) return {LOSS_KEY: loss_g}, {"sampled": sampled}, labels def _d_losses( self, batch: tensor_dict_type, sampled: tensor_dict_type, labels: Optional[Tensor], ) -> tensor_dict_type: net = batch[INPUT_KEY] sampled_tensor = sampled["sampled"] pred_real = self.discriminator(net) loss_d_real = self.gan_loss(pred_real, GANTarget(True, labels)) pred_fake = self.discriminator(sampled_tensor) loss_d_fake = self.gan_loss(pred_fake, GANTarget(False, labels)) d_loss = 0.5 * (loss_d_fake + loss_d_real) losses = {"d_fake": loss_d_fake, "d_real": loss_d_real} if self.gan_mode == "wgangp": eps = random.random() merged = eps * net + (1.0 - eps) * sampled_tensor with mode_context(self.discriminator, to_train=None, use_grad=True): pred_merged = self.discriminator(merged.requires_grad_(True)).output # type: ignore loss_gp = self.gan_loss.loss(merged, pred_merged) d_loss = d_loss + self.lambda_gp * loss_gp losses["d_gp"] = loss_gp losses[LOSS_KEY] = d_loss return losses __all__ = [ "GANMixin", "OneStageGANMixin", "VanillaGANMixin", ]
52330
import os from dynaconf import Dynaconf # type: ignore current_directory = os.path.dirname(os.path.realpath(__file__)) settings = Dynaconf( envvar_prefix="PROMED", settings_files=[ f"{current_directory}/settings.toml", ], ) settings["DEBUG"] = True if settings.LOG_LEVEL == "DEBUG" else False s = settings
52358
import timeit import os def timeFunction(function, setup): print 'timing', function t = timeit.Timer(stmt=function, setup=setup) times = [] for i in range(0,3): os.system('sudo sh -c "sync; echo 3 > /proc/sys/vm/drop_caches"') times.append(str(t.timeit(number=1))) return min(times) ints1 = timeFunction('blazeopt.loadtxt("ints1", dtype="u4,u4,u4,u4,u4", delimiter=",")', 'import blazeopt') ints2 = timeFunction('blazeopt.loadtxt("ints2", dtype="u4,u4,u4,u4,u4", delimiter=",")', 'import blazeopt') ints3 = timeFunction('blazeopt.loadtxt("ints3", dtype="u4,u4,u4,u4,u4", delimiter=",")', 'import blazeopt') print ints1, ints2, ints3 floats1 = timeFunction('blazeopt.loadtxt("floats1", dtype="f8,f8,f8,f8,f8", delimiter=",")', 'import blazeopt') floats2 = timeFunction('blazeopt.loadtxt("floats2", dtype="f8,f8,f8,f8,f8", delimiter=",")', 'import blazeopt') floats3 = timeFunction('blazeopt.loadtxt("floats3", dtype="f8,f8,f8,f8,f8", delimiter=",")', 'import blazeopt') print floats1, floats2, floats3 ints1 = timeFunction('blazeopt.genfromtxt("ints1", dtype="u4,u4,u4,u4,u4", delimiter=",")', 'import blazeopt') ints2 = timeFunction('blazeopt.genfromtxt("ints2", dtype="u4,u4,u4,u4,u4", delimiter=",")', 'import blazeopt') ints3 = timeFunction('blazeopt.genfromtxt("ints3", dtype="u4,u4,u4,u4,u4", delimiter=",")', 'import blazeopt') print ints1, ints2, ints3 floats1 = timeFunction('blazeopt.genfromtxt("floats1", dtype="f8,f8,f8,f8,f8", delimiter=",")', 'import blazeopt') floats2 = timeFunction('blazeopt.genfromtxt("floats2", dtype="f8,f8,f8,f8,f8", delimiter=",")', 'import blazeopt') floats3 = timeFunction('blazeopt.genfromtxt("floats3", dtype="f8,f8,f8,f8,f8", delimiter=",")', 'import blazeopt') print floats1, floats2, floats3 missingValues1 = timeFunction('blazeopt.genfromtxt("missingvalues1", dtype="u4,u4,u4,u4,u4", delimiter=",", missing_values={0:["NA","NaN"], 1:["xx","inf"]}, filling_values="999")', 'import blazeopt') missingValues2 = timeFunction('blazeopt.genfromtxt("missingvalues2", dtype="u4,u4,u4,u4,u4", delimiter=",", missing_values={0:["NA","NaN"], 1:["xx","inf"]}, filling_values="999")', 'import blazeopt') missingValues3 = timeFunction('blazeopt.genfromtxt("missingvalues3", dtype="u4,u4,u4,u4,u4", delimiter=",", missing_values={0:["NA","NaN"], 1:["xx","inf"]}, filling_values="999")', 'import blazeopt') print missingValues1, missingValues2, missingValues3 fixedwidth1 = timeFunction('blazeopt.genfromtxt("fixedwidth1", dtype="u4,u4,u4,u4,u4", delimiter=[2,3,4,5,6])', 'import blazeopt') fixedwidth2 = timeFunction('blazeopt.genfromtxt("fixedwidth2", dtype="u4,u4,u4,u4,u4", delimiter=[2,3,4,5,6])', 'import blazeopt') fixedwidth3 = timeFunction('blazeopt.genfromtxt("fixedwidth3", dtype="u4,u4,u4,u4,u4", delimiter=[2,3,4,5,6])', 'import blazeopt') print fixedwidth1, fixedwidth2, fixedwidth3
52381
import os from shutil import SameFileError, copyfile from urllib.request import Request, urlopen import markdown from bs4 import BeautifulSoup as BS from blogger_cli.converter.extractor import ( extract_and_write_static, extract_main_and_meta_from_md, get_summary_limit, extract_topic, replace_ext, ) def convert_and_copy_to_blog(ctx, md_file): md_file_path = os.path.abspath(os.path.expanduser(md_file)) html_body, meta = convert(ctx, md_file_path) html_filename_meta = write_html_and_md(ctx, html_body, md_file_path, meta) return html_filename_meta def convert(ctx, md_file_path): with open(md_file_path, "r", encoding="utf8") as rf: md_data = rf.read() ctx.vlog(":: Extracting meta info") main_md, metadata = extract_main_and_meta_from_md(ctx, md_data) extensions = ["extra", "smarty"] html = markdown.markdown(main_md, extensions=extensions, output_format="html5") char_limit = get_summary_limit(ctx, file_type="md") metadata["_summary_"] = main_md[:char_limit] ctx.vlog(":: Extracted summary") return html, metadata def write_html_and_md(ctx, html_body, md_file_path, meta): md_filename = os.path.basename(md_file_path) destination_dir = ctx.conversion["destination_dir"] topic = extract_topic(ctx, meta) md_filename = os.path.join(topic, md_filename) html_filename = replace_ext(md_filename, ".html") html_file_path = os.path.join(destination_dir, html_filename) new_md_file_path = os.path.join(destination_dir, md_filename) new_blog_post_dir = os.path.dirname(html_file_path) ctx.vlog(":: New blog_posts_dir finalized", new_blog_post_dir) if not os.path.exists(new_blog_post_dir): os.mkdir(new_blog_post_dir) extract_static = ctx.conversion["extract_static"] if extract_static: html_body = extract_and_write_static( ctx, html_body, new_blog_post_dir, md_filename ) with open(html_file_path, "w", encoding="utf8") as wf: wf.write(html_body) ctx.log(":: Converted basic html to", html_file_path) # skip copying md file if converting to and from same folder. if md_file_path != new_md_file_path: try: copyfile(md_file_path, new_md_file_path) ctx.log(":: Copied md file to", new_md_file_path) except Exception as E: os.remove(new_md_file_path) copyfile(md_file_path, new_md_file_path) ctx.log(":: ERROR", E, "Overwriting md file", new_md_file_path) return (html_filename, meta)
52385
def consume_rec(xs, fn, n=0): if n <= 0: fn(xs) else: for x in xs: consume_rec(x, fn, n=n - 1)
52434
from __future__ import absolute_import from . import evaluation from . import normalization from . import extractors from . import generators from . import layers from . import model from . import utils from . import sequence # Also importable from root from .generators import Generator, MultiGenerator from .model import ModelWrapper from .sequence import SeqIntervalDl, StringSeqIntervalDl __version__ = '0.0.17'
52453
import matplotlib.widgets as mwidgets class Slider(mwidgets.Slider): """Slider widget to select a value from a floating point range. Parameters ---------- ax : :class:`~matplotlib.axes.Axes` instance The parent axes for the widget value_range : (float, float) (min, max) value allowed for value. label : str The slider label. value : float Initial value. If None, set to value in middle of value range. on_slide : function Callback function for slide event. Function should expect slider value. value_fmt : str Format string for formatting the slider text. slidermin, slidermax : float Used to contrain the value of this slider to the values of other sliders. dragging : bool If True, slider is responsive to mouse. pad : float Padding (in axes coordinates) between `label`/`value_fmt` and slider. Attributes ---------- value : float Current slider value. """ def __init__(self, ax, value_range, label='', value=None, on_slide=None, value_fmt='%1.2f', slidermin=None, slidermax=None, dragging=True, pad=0.02): mwidgets.AxesWidget.__init__(self, ax) self.valmin, self.valmax = value_range if value is None: value = 0.5 * (self.valmin + self.valmax) self.val = value self.valinit = value self.valfmt = value_fmt y0 = 0.5 x_low = [self.valmin, value] x_high = [value, self.valmax] self.line_low, = ax.plot(x_low, [y0, y0], color='0.5', lw=2) self.line_high, = ax.plot(x_high, [y0, y0], color='0.7', lw=2) self.val_handle, = ax.plot(value, y0, 'o', mec='0.4', mfc='0.6', markersize=8) ax.set_xlim(value_range) ax.set_navigate(False) ax.set_axis_off() self.connect_event('button_press_event', self._update) self.connect_event('button_release_event', self._update) if dragging: self.connect_event('motion_notify_event', self._update) self.label = ax.text(-pad, y0, label, transform=ax.transAxes, verticalalignment='center', horizontalalignment='right') self.show_value = False if value_fmt is None else True if self.show_value: self.valtext = ax.text(1 + pad, y0, value_fmt % value, transform=ax.transAxes, verticalalignment='center', horizontalalignment='left') self.slidermin = slidermin self.slidermax = slidermax self.drag_active = False self.cnt = 0 self.observers = {} if on_slide is not None: self.on_changed(on_slide) # Attributes for matplotlib.widgets.Slider compatibility self.closedmin = self.closedmax = True @property def value(self): return self.val @value.setter def value(self, value): self.val = value self.line_low.set_xdata([self.valmin, value]) self.line_high.set_xdata([value, self.valmax]) self.val_handle.set_xdata([value]) if self.show_value: self.valtext.set_text(self.valfmt % value) def set_val(self, value): """Set value of slider.""" # Override matplotlib.widgets.Slider to update graphics objects. self.value = value if self.drawon: self.ax.figure.canvas.draw() if not self.eventson: return for cid, func in self.observers.items(): func(value) if __name__ == '__main__': import numpy as np import matplotlib.pyplot as plt ax = plt.subplot2grid((10, 1), (0, 0), rowspan=8) ax_slider = plt.subplot2grid((10, 1), (9, 0)) a0 = 5 x = np.arange(0.0, 1.0, 0.001) y = np.sin(6 * np.pi * x) line, = ax.plot(x, a0 * y, lw=2, color='red') ax.axis([x.min(), x.max(), -10, 10]) def update(val): amp = samp.value line.set_ydata(amp * y) samp = Slider(ax_slider, (0.1, 10.0), on_slide=update, label='Amplitude:', value=a0) plt.show()
52473
import numpy as np import matplotlib.pyplot as plt plt.style.use('ggplot') m_f = np.load('objects/simulation_model_freq.npy')[:50] m_p = np.load('objects/simulation_model_power.npy')[:50] eeg_f = np.load('objects/real_eeg_freq.npy0.npy')[:50] eeg_p = np.load('objects/real_eeg_power_0.npy')[:50] plt.figure() plt.semilogy(eeg_f, eeg_p,linewidth=2.0,c = 'b') plt.xlabel('frequency [Hz]') plt.ylabel('Linear spectrum [V RMS]') plt.title('Power spectrum (scipy.signal.welch)') plt.show()
52546
class PID(object): def __init__(self, kp, ki, kd): self.kp = kp self.ki = ki self.kd = kd self.error_int = 0 self.error_prev = None def control(self, error): self.error_int += error if self.error_prev is None: self.error_prev = error error_deriv = error - self.error_prev self.error_prev = error return self.kp*error + self.ki*self.error_int + self.kd*error_deriv def reset(self): self.error_prev = None self.error_int = 0
52611
from django import forms from django.contrib.auth.forms import UserCreationForm from django.contrib.auth.models import User from django.forms import ModelForm from .models import Course, Submission, Assignment class SignUpForm(UserCreationForm): def clean_email(self): email = self.cleaned_data.get('email') username = self.cleaned_data.get('username') if email and User.objects.filter(email=email).exclude(username=username).exists(): raise forms.ValidationError(u'Email addresses must be unique.') return email class Meta: model = User fields = ('username', 'first_name', 'last_name', 'email' , '<PASSWORD>', '<PASSWORD>', ) class EnrollForm(forms.Form): secret_key = forms.CharField( widget=forms.TextInput(attrs={'placeholder': '<KEY>'}), label='Secret Key', required=False) class Meta: fields = ('secret_key') class ChangeEmailForm(forms.Form): email = forms.EmailField() def clean_email(self): email = self.cleaned_data.get('email') if email and User.objects.filter(email=email).exists(): raise forms.ValidationError(u'That email is already used.') return email class Meta: fields = ('email')
52624
from tempfile import mkstemp import cProfile import pstats from artemis.general.display import surround_with_header import os def what_are_we_waiting_for(command, sort_by ='time', max_len = 20, print_here = True): """ An easy way to show what is taking all the time when you run something. Taken from docs: https://docs.python.org/2/library/profile.html#module-cProfile :param command: A string python command :param sort_by: How to sort results. {'time', 'cumtime', 'calls', ...}. See https://docs.python.org/2/library/profile.html#pstats.Stats.sort_stats :param max_len: Maximum number of things to show in profile. :param print_here: Print the results here (instead of returning them). :return: A pstats.Stats object containing the profiling results. """ _, filepath = mkstemp() try: cProfile.run(command, filepath) finally: p = pstats.Stats(filepath) os.remove(filepath) p.strip_dirs() p.sort_stats(sort_by) if print_here: print(surround_with_header('Profile for "{}"'.format(command), width=100, char='=')) p.print_stats(max_len) print('='*100) return p
52650
import pytest from django.db import transaction from django.utils import timezone from ..models import Message, FOIRequest, Esic, PublicBody @pytest.fixture def public_body(esic): return PublicBody( name='example', esic=esic ) @pytest.fixture def esic(): return Esic( url='http://example.com' ) @pytest.fixture def foi_request(): return FOIRequest() @pytest.fixture def message(foi_request): return Message( foi_request=foi_request ) @pytest.fixture def foi_request_with_sent_user_message(foi_request, message_from_user): with transaction.atomic(): message_from_user.approve() message_from_user.foi_request = foi_request message_from_user.sent_at = timezone.now() save_message(message_from_user) foi_request.refresh_from_db() return foi_request @pytest.fixture def message_from_user(public_body): return Message( sender=None, receiver=public_body ) @pytest.fixture def message_from_government(public_body): return Message( sender=public_body, sent_at=timezone.now(), receiver=None ) def save_message(message): # FIXME: Ideally a simple message.save() would save everything, but I # couldn't find out how to do so in Django. Not yet. with transaction.atomic(): if message.sender: save_public_body(message.sender) message.sender_id = message.sender.id if message.receiver: save_public_body(message.receiver) message.receiver_id = message.receiver.id message.foi_request.save() message.foi_request_id = message.foi_request.id message.save() def save_public_body(public_body): with transaction.atomic(): if public_body.esic: public_body.esic.save() public_body.esic_id = public_body.esic.id public_body.save() return public_body
52667
import requests import zipfile import os import errno import nltk from nltk.tokenize import sent_tokenize ALICE_URL = 'https://ota.bodleian.ox.ac.uk/repository/xmlui/bitstream/handle/20.500.12024/1476/alice28-1476.txt' WIZARD_URL = 'https://ota.bodleian.ox.ac.uk/repository/xmlui/bitstream/handle/20.500.12024/1740/wizoz10-1740.txt' def download_text(url, localfolder='texts'): localfile = os.path.split(url)[-1] try: os.mkdir(f'{localfolder}') except OSError as e: if e.errno != errno.EEXIST: raise try: r = requests.get(url, allow_redirects=True) open(os.path.join(localfolder, localfile), 'wb').write(r.content) except Exception as e: print(f'Error downloading file: {str(e)}') def sentence_tokenize(source, quote_char='\\', sep_char=',', include_header=True, include_source=True, extensions=('txt'), **kwargs): nltk.download('punkt') # If source is a folder, goes through all files inside it # that match the desired extensions ('txt' by default) if os.path.isdir(source): filenames = [f for f in os.listdir(source) if os.path.isfile(os.path.join(source, f)) and os.path.splitext(f)[1][1:] in extensions] elif isinstance(source, str): filenames = [source] # If there is a configuration file, builds a dictionary with # the corresponding start and end lines of each text file config_file = os.path.join(source, 'lines.cfg') config = {} if os.path.exists(config_file): with open(config_file, 'r') as f: rows = f.readlines() for r in rows[1:]: fname, start, end = r.strip().split(',') config.update({fname: (int(start), int(end))}) new_fnames = [] # For each file of text for fname in filenames: # If there's a start and end line for that file, use it try: start, end = config[fname] except KeyError: start = None end = None # Opens the file, slices the configures lines (if any) # cleans line breaks and uses the sentence tokenizer with open(os.path.join(source, fname), 'r') as f: contents = (''.join(f.readlines()[slice(start, end, None)]) .replace('\n', ' ').replace('\r', '')) corpus = sent_tokenize(contents, **kwargs) # Builds a CSV file containing tokenized sentences base = os.path.splitext(fname)[0] new_fname = f'{base}.sent.csv' new_fname = os.path.join(source, new_fname) with open(new_fname, 'w') as f: # Header of the file if include_header: if include_source: f.write('sentence,source\n') else: f.write('sentence\n') # Writes one line for each sentence for sentence in corpus: if include_source: f.write(f'{quote_char}{sentence}{quote_char}{sep_char}{fname}\n') else: f.write(f'{quote_char}{sentence}{quote_char}\n') new_fnames.append(new_fname) # Returns list of the newly generated CSV files return sorted(new_fnames)
52682
import numpy as np import xarray as xr from numpy import asarray import scipy.sparse from itertools import product from .util import get_shape_of_data from .grid_stretching_transforms import scs_transform from .constants import R_EARTH_m def get_troposphere_mask(ds): """ Returns a mask array for picking out the tropospheric grid boxes. Args: ds: xarray Dataset Dataset containing certain met field variables (i.e. Met_TropLev, Met_BXHEIGHT). Returns: tropmask: numpy ndarray Tropospheric mask. False denotes grid boxes that are in the troposphere and True in the stratosphere (as per Python masking logic). """ # ================================================================== # Initialization # ================================================================== # Make sure ds is an xarray Dataset object if not isinstance(ds, xr.Dataset): raise TypeError("The ds argument must be an xarray Dataset!") # Make sure certain variables are found if "Met_BXHEIGHT" not in ds.data_vars.keys(): raise ValueError("Met_BXHEIGHT could not be found!") if "Met_TropLev" not in ds.data_vars.keys(): raise ValueError("Met_TropLev could not be found!") # Mask of tropospheric grid boxes in the Ref dataset shape = get_shape_of_data(np.squeeze(ds["Met_BXHEIGHT"])) # Determine if this is GCHP data is_gchp = "nf" in ds["Met_BXHEIGHT"].dims # ================================================================== # Create the mask arrays for the troposphere # # Convert the Met_TropLev DataArray objects to numpy ndarrays of # integer. Also subtract 1 to convert from Fortran to Python # array index notation. # ================================================================== multi_time_slices = (is_gchp and len(shape) == 5) or \ (not is_gchp and len(shape) == 4) if multi_time_slices: # -------------------------------------------------------------- # GCC: There are multiple time slices # -------------------------------------------------------------- # Create the tropmask array with dims # (time, lev, nf*lat*lon) for GCHP, or # (time, lev, lat*lon ) for GCC tropmask = np.ones((shape[0], shape[1], np.prod(np.array(shape[2:]))), bool) # Loop over each time for t in range(tropmask.shape[0]): # Pick the tropopause level and make a 1-D array values = ds["Met_TropLev"].isel(time=t).values lev = np.int_(np.squeeze(values) - 1) lev_1d = lev.flatten() # Create the tropospheric mask array for x in range(tropmask.shape[2]): tropmask[t, 0: lev_1d[x], x] = False else: # -------------------------------------------------------------- # There is only one time slice # -------------------------------------------------------------- # Create the tropmask array with dims (lev, lat*lon) tropmask = np.ones((shape[0], np.prod(np.array(shape[1:]))), bool) # Pick the tropopause level and make a 1-D array values = ds["Met_TropLev"].values lev = np.int_(np.squeeze(values) - 1) lev_1d = lev.flatten() # Create the tropospheric mask array for x in range(tropmask.shape[1]): tropmask[0: lev_1d[x], x] = False # Reshape into the same shape as Met_BxHeight return tropmask.reshape(shape) def get_input_res(data): """ Returns resolution of dataset passed to compare_single_level or compare_zonal_means Args: data: xarray Dataset Input GEOS-Chem dataset Returns: res: str or int Lat/lon res of the form 'latresxlonres' or cubed-sphere resolution gridtype: str 'll' for lat/lon or 'cs' for cubed-sphere """ vdims = data.dims if "lat" in vdims and "lon" in vdims: lat = data["lat"].values lon = data["lon"].values if lat.size / 6 == lon.size: return lon.size, "cs" else: lat.sort() lon.sort() # use increment of second and third coordinates # to avoid polar mischief lat_res = np.abs(lat[2] - lat[1]) lon_res = np.abs(lon[2] - lon[1]) return str(lat_res) + "x" + str(lon_res), "ll" else: #print("grid is cs: ", vdims) # GCHP data using MAPL v1.0.0+ has dims time, lev, nf, Ydim, and Xdim if isinstance(data.dims, tuple): return len(data["Xdim"].values), "cs" else: return data.dims["Xdim"], "cs" def call_make_grid(res, gridtype, in_extent=[-180, 180, -90, 90], out_extent=[-180, 180, -90, 90], sg_params=[1, 170, -90]): """ Create a mask with NaN values removed from an input array Args: res: str or int Resolution of grid (format 'latxlon' or csres) gridtype: str 'll' for lat/lon or 'cs' for cubed-sphere Keyword Args (optional): in_extent: list[float, float, float, float] Describes minimum and maximum latitude and longitude of input data in the format [minlon, maxlon, minlat, maxlat] Default value: [-180, 180, -90, 90] out_extent: list[float, float, float, float] Desired minimum and maximum latitude and longitude of output grid in the format [minlon, maxlon, minlat, maxlat] Default value: [-180, 180, -90, 90] sg_params: list[float, float, float] (stretch_factor, target_longitude, target_latitude) Desired stretched-grid parameters in the format [stretch_factor, target_longitude, target_latitude]. Will trigger stretched-grid creation if not default values. Default value: [1, 170, -90] (no stretching) Returns: [grid, grid_list]: list(dict, list(dict)) Returns the created grid. grid_list is a list of grids if gridtype is 'cs', else it is None """ # call appropriate make_grid function and return new grid if gridtype == "ll": return [make_grid_LL(res, in_extent, out_extent), None] elif sg_params == [1, 170, -90]: # standard CS return make_grid_CS(res) else: return make_grid_SG(res, *sg_params) def get_grid_extents(data, edges=True): """ Get min and max lat and lon from an input GEOS-Chem xarray dataset or grid dict Args: data: xarray Dataset or dict A GEOS-Chem dataset or a grid dict edges (optional): bool Whether grid extents should use cell edges instead of centers Default value: True Returns: minlon: float Minimum longitude of data grid maxlon: float Maximum longitude of data grid minlat: float Minimum latitude of data grid maxlat: float Maximum latitude of data grid """ if isinstance(data, dict): if "lon_b" in data and edges: return np.min( data["lon_b"]), np.max( data["lon_b"]), np.min( data["lat_b"]), np.max( data["lat_b"]) elif not edges: return np.min( data["lon"]), np.max( data["lon"]), np.min( data["lat"]), np.max( data["lat"]) else: return -180, 180, -90, 90 elif "lat" in data.dims and "lon" in data.dims: lat = data["lat"].values lon = data["lon"].values if lat.size / 6 == lon.size: # No extents for CS plots right now return -180, 180, -90, 90 else: lat = np.sort(lat) minlat = np.min(lat) if abs(abs(lat[1]) - abs(lat[0]) ) != abs(abs(lat[2]) - abs(lat[1])): #pole is cutoff minlat = minlat - 1 maxlat = np.max(lat) if abs(abs(lat[-1]) - abs(lat[-2]) ) != abs(abs(lat[-2]) - abs(lat[-3])): maxlat = maxlat + 1 # add longitude res to max longitude lon = np.sort(lon) minlon = np.min(lon) maxlon = np.max(lon) + abs(abs(lon[-1]) - abs(lon[-2])) return minlon, maxlon, minlat, maxlat else: # GCHP data using MAPL v1.0.0+ has dims time, lev, nf, Ydim, and Xdim return -180, 180, -90, 90 def get_vert_grid(dataset, AP=[], BP=[]): """ Determine vertical grid of input dataset Args: dataset: xarray Dataset A GEOS-Chem output dataset Keyword Args (optional): AP: list-like type Hybrid grid parameter A in hPa Default value: [] BP: list-like type Hybrid grid parameter B (unitless) Default value: [] Returns: p_edge: numpy array Edge pressure values for vertical grid p_mid: numpy array Midpoint pressure values for vertical grid nlev: int Number of levels in vertical grid """ if dataset.sizes["lev"] in (72, 73): return GEOS_72L_grid.p_edge(), GEOS_72L_grid.p_mid(), 72 elif dataset.sizes["lev"] in (47, 48): return GEOS_47L_grid.p_edge(), GEOS_47L_grid.p_mid(), 47 elif AP == [] or BP == []: if dataset.sizes["lev"] == 1: AP = [1, 1] BP = [1] new_grid = vert_grid(AP, BP) return new_grid.p_edge(), new_grid.p_mid(), np.size(AP) else: raise ValueError( "Only 72/73 or 47/48 level vertical grids are automatically determined" + "from input dataset by get_vert_grid(), please pass grid parameters AP and BP" + "as keyword arguments") else: new_grid = vert_grid(AP, BP) return new_grid.p_edge(), new_grid.p_mid(), np.size(AP) def get_pressure_indices(pedge, pres_range): """ Get indices where edge pressure values are within a given pressure range Args: pedge: numpy array A GEOS-Chem output dataset pres_range: list(float, float) Contains minimum and maximum pressure Returns: numpy array Indices where edge pressure values are within a given pressure range """ return np.where( (pedge <= np.max(pres_range)) & ( pedge >= np.min(pres_range)))[0] def pad_pressure_edges(pedge_ind, max_ind, pmid_len): """ Add outer indices to edge pressure index list Args: pedge_ind: list List of edge pressure indices max_ind: int Maximum index pmid_len: int Length of pmid which should not be exceeded by indices Returns: pedge_ind: list List of edge pressure indices, possibly with new minimum and maximum indices """ if max_ind > pmid_len: # don't overstep array bounds for full array max_ind = max_ind - 1 if min(pedge_ind) != 0: pedge_ind = np.append(min(pedge_ind) - 1, pedge_ind) if max(pedge_ind) != max_ind: pedge_ind = np.append(pedge_ind, max(pedge_ind) + 1) return pedge_ind def get_ind_of_pres(dataset, pres): """ Get index of pressure level that contains the requested pressure value. Args: dataset: xarray Dataset GEOS-Chem dataset pres: int or float Desired pressure value Returns: index: int Index of level in dataset that corresponds to requested pressure """ pedge, pmid, _ = get_vert_grid(dataset) converted_dataset = convert_lev_to_pres(dataset, pmid, pedge) return np.argmin(np.abs(converted_dataset['lev'] - pres).values) def convert_lev_to_pres(dataset, pmid, pedge, lev_type='pmid'): """ Convert lev dimension to pressure in a GEOS-Chem dataset Args: dataset: xarray Dataset GEOS-Chem dataset pmid: np.array Midpoint pressure values pedge: np.array Edge pressure values lev_type (optional): str Denote whether lev is 'pedge' or 'pmid' if grid is not 72/73 or 47/48 levels Default value: 'pmid' Returns: dataset: xarray Dataset Input dataset with "lev" dimension values replaced with pressure values """ if dataset.sizes["lev"] in (72, 47): dataset["lev"] = pmid elif dataset.sizes["lev"] in (73, 48): dataset["lev"] = pedge elif lev_type == 'pmid': print('Warning: Assuming levels correspond with midpoint pressures') dataset["lev"] = pmid else: dataset["lev"] = pedge dataset["lev"].attrs["unit"] = "hPa" dataset["lev"].attrs["long_name"] = "level pressure" return dataset class vert_grid: def __init__(self, AP=None, BP=None, p_sfc=1013.25): if (len(AP) != len(BP)) or (AP is None): # Throw error? print('Inconsistent vertical grid specification') self.AP = np.array(AP) self.BP = np.array(BP) self.p_sfc = p_sfc def p_edge(self): # Calculate pressure edges using eta coordinate return self.AP + self.BP * self.p_sfc def p_mid(self): p_edge = self.p_edge() return (p_edge[1:] + p_edge[:-1]) / 2.0 # Standard vertical grids _GEOS_72L_AP = np.array([0.000000e+00, 4.804826e-02, 6.593752e+00, 1.313480e+01, 1.961311e+01, 2.609201e+01, 3.257081e+01, 3.898201e+01, 4.533901e+01, 5.169611e+01, 5.805321e+01, 6.436264e+01, 7.062198e+01, 7.883422e+01, 8.909992e+01, 9.936521e+01, 1.091817e+02, 1.189586e+02, 1.286959e+02, 1.429100e+02, 1.562600e+02, 1.696090e+02, 1.816190e+02, 1.930970e+02, 2.032590e+02, 2.121500e+02, 2.187760e+02, 2.238980e+02, 2.243630e+02, 2.168650e+02, 2.011920e+02, 1.769300e+02, 1.503930e+02, 1.278370e+02, 1.086630e+02, 9.236572e+01, 7.851231e+01, 6.660341e+01, 5.638791e+01, 4.764391e+01, 4.017541e+01, 3.381001e+01, 2.836781e+01, 2.373041e+01, 1.979160e+01, 1.645710e+01, 1.364340e+01, 1.127690e+01, 9.292942e+00, 7.619842e+00, 6.216801e+00, 5.046801e+00, 4.076571e+00, 3.276431e+00, 2.620211e+00, 2.084970e+00, 1.650790e+00, 1.300510e+00, 1.019440e+00, 7.951341e-01, 6.167791e-01, 4.758061e-01, 3.650411e-01, 2.785261e-01, 2.113490e-01, 1.594950e-01, 1.197030e-01, 8.934502e-02, 6.600001e-02, 4.758501e-02, 3.270000e-02, 2.000000e-02, 1.000000e-02]) _GEOS_72L_BP = np.array([1.000000e+00, 9.849520e-01, 9.634060e-01, 9.418650e-01, 9.203870e-01, 8.989080e-01, 8.774290e-01, 8.560180e-01, 8.346609e-01, 8.133039e-01, 7.919469e-01, 7.706375e-01, 7.493782e-01, 7.211660e-01, 6.858999e-01, 6.506349e-01, 6.158184e-01, 5.810415e-01, 5.463042e-01, 4.945902e-01, 4.437402e-01, 3.928911e-01, 3.433811e-01, 2.944031e-01, 2.467411e-01, 2.003501e-01, 1.562241e-01, 1.136021e-01, 6.372006e-02, 2.801004e-02, 6.960025e-03, 8.175413e-09, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00]) GEOS_72L_grid = vert_grid(_GEOS_72L_AP, _GEOS_72L_BP) # Reduced grid _GEOS_47L_AP = np.zeros(48) _GEOS_47L_BP = np.zeros(48) # Fill in the values for the surface _GEOS_47L_AP[0] = _GEOS_72L_AP[0] _GEOS_47L_BP[0] = _GEOS_72L_BP[0] # Build the GEOS 72-layer to 47-layer mapping matrix at the same time _xmat_i = np.zeros((72)) _xmat_j = np.zeros((72)) _xmat_s = np.zeros((72)) # Index here is the 1-indexed layer number for _i_lev in range(1, 37): # Map from 1-indexing to 0-indexing _x_lev = _i_lev - 1 # Sparse matrix for regridding # Below layer 37, it's 1:1 _xct = _x_lev _xmat_i[_xct] = _x_lev _xmat_j[_xct] = _x_lev _xmat_s[_xct] = 1.0 # Copy over the pressure edge for the top of the grid cell _GEOS_47L_AP[_i_lev] = _GEOS_72L_AP[_i_lev] _GEOS_47L_BP[_i_lev] = _GEOS_72L_BP[_i_lev] # Now deal with the lumped layers _skip_size_vec = [2, 4] _number_lumped = [4, 7] # Initialize _i_lev = 36 _i_lev_72 = 36 for _lump_seg in range(2): _skip_size = _skip_size_vec[_lump_seg] # 1-indexed starting point in the 47-layer grid _first_lev_47 = _i_lev + 1 _first_lev_72 = _i_lev_72 + 1 # Loop over the coarse vertical levels (47-layer grid) for _i_lev_offset in range(_number_lumped[_lump_seg]): # i_lev is the index for the current level on the 47-level grid _i_lev = _first_lev_47 + _i_lev_offset # Map from 1-indexing to 0-indexing _x_lev = _i_lev - 1 # Get the 1-indexed location of the last layer in the 72-layer grid # which is below the start of the current lumping region _i_lev_72_base = _first_lev_72 + (_i_lev_offset * _skip_size) - 1 # Get the 1-indexed location of the uppermost level in the 72-layer # grid which is within the target layer on the 47-layer grid _i_lev_72 = _i_lev_72_base + _skip_size # Do the pressure edges first # These are the 0-indexed locations of the upper edge for the # target layers in 47- and 72-layer grids _GEOS_47L_AP[_i_lev] = _GEOS_72L_AP[_i_lev_72] _GEOS_47L_BP[_i_lev] = _GEOS_72L_BP[_i_lev_72] # Get the total pressure delta across the layer on the lumped grid # We are within the fixed pressure levels so don't need to account # for variations in surface pressure _dp_total = _GEOS_47L_AP[_i_lev - 1] - _GEOS_47L_AP[_i_lev] # Now figure out the mapping for _i_lev_offset_72 in range(_skip_size): # Source layer in the 72 layer grid (0-indexed) _x_lev_72 = _i_lev_72_base + _i_lev_offset_72 _xct = _x_lev_72 _xmat_i[_xct] = _x_lev_72 # Target in the 47 layer grid _xmat_j[_xct] = _x_lev # Proportion of 72-layer grid cell, by pressure, within expanded # layer _xmat_s[_xct] = (_GEOS_72L_AP[_x_lev_72] - _GEOS_72L_AP[_x_lev_72 + 1]) / _dp_total _start_pt = _i_lev # Do last entry separately (no layer to go with it) _xmat_72to47 = scipy.sparse.coo_matrix( (_xmat_s, (_xmat_i, _xmat_j)), shape=(72, 47)) GEOS_47L_grid = vert_grid(_GEOS_47L_AP, _GEOS_47L_BP) # CAM 26-layer grid _CAM_26L_AP = np.flip(np.array([219.4067, 489.5209, 988.2418, 1805.201, 2983.724, 4462.334, 6160.587, 7851.243, 7731.271, 7590.131, 7424.086, 7228.744, 6998.933, 6728.574, 6410.509, 6036.322, 5596.111, 5078.225, 4468.96, 3752.191, 2908.949, 2084.739, 1334.443, 708.499, 252.136, 0., 0.]), axis=0) * 0.01 _CAM_26L_BP = np.flip(np.array([0., 0., 0., 0., 0., 0., 0., 0., 0.01505309, 0.03276228, 0.05359622, 0.07810627, 0.1069411, 0.14086370, 0.180772, 0.227722, 0.2829562, 0.3479364, 0.4243822, 0.5143168, 0.6201202, 0.7235355, 0.8176768, 0.8962153, 0.9534761, 0.9851122, 1.]), axis=0) CAM_26L_grid = vert_grid(_CAM_26L_AP, _CAM_26L_BP) def make_grid_LL(llres, in_extent=[-180, 180, -90, 90], out_extent=[]): """ Creates a lat/lon grid description. Args: llres: str lat/lon resolution in 'latxlon' format (e.g. '4x5') Keyword Args (optional): in_extent: list[float, float, float, float] Describes minimum and maximum latitude and longitude of initial grid in the format [minlon, maxlon, minlat, maxlat] Default value: [-180, 180, -90, 90] out_extent: list[float, float, float, float] Describes minimum and maximum latitude and longitude of target grid in the format [minlon, maxlon, minlat, maxlat]. Needed when intending to use grid to trim extent of input data Default value: [] (assumes value of in_extent) Returns: llgrid: dict dict grid description of format {'lat' : lat midpoints, 'lon' : lon midpoints, 'lat_b' : lat edges, 'lon_b' : lon edges} """ # get initial bounds of grid [minlon, maxlon, minlat, maxlat] = in_extent [dlat, dlon] = list(map(float, llres.split('x'))) lon_b = np.linspace(minlon - dlon / 2, maxlon - dlon / 2, int((maxlon - minlon) / dlon) + 1) lat_b = np.linspace(minlat - dlat / 2, maxlat + dlat / 2, int((maxlat - minlat) / dlat) + 2) if minlat <= -90: lat_b = lat_b.clip(-90, None) if maxlat >= 90: lat_b = lat_b.clip(None, 90) lat = (lat_b[1:] + lat_b[:-1]) / 2 lon = (lon_b[1:] + lon_b[:-1]) / 2 # trim grid bounds when your desired extent is not the same as your # initial grid extent if out_extent == []: out_extent = in_extent if out_extent != in_extent: [minlon, maxlon, minlat, maxlat] = out_extent minlon_ind = np.nonzero(lon >= minlon) maxlon_ind = np.nonzero(lon <= maxlon) lon_inds = np.intersect1d(minlon_ind, maxlon_ind) lon = lon[lon_inds] # make sure to get edges of grid correctly lon_inds = np.append(lon_inds, np.max(lon_inds) + 1) lon_b = lon_b[lon_inds] minlat_ind = np.nonzero(lat >= minlat) maxlat_ind = np.nonzero(lat <= maxlat) lat_inds = np.intersect1d(minlat_ind, maxlat_ind) lat = lat[lat_inds] # make sure to get edges of grid correctly lat_inds = np.append(lat_inds, np.max(lat_inds) + 1) lat_b = lat_b[lat_inds] llgrid = {'lat': lat, 'lon': lon, 'lat_b': lat_b, 'lon_b': lon_b} return llgrid def make_grid_CS(csres): """ Creates a cubed-sphere grid description. Args: csres: int cubed-sphere resolution of target grid Returns: [csgrid, csgrid_list]: list[dict, list[dict]] csgrid is a dict of format {'lat' : lat midpoints, 'lon' : lon midpoints, 'lat_b' : lat edges, 'lon_b' : lon edges} where each value has an extra face dimension of length 6. csgrid_list is a list of dicts separated by face index """ csgrid = csgrid_GMAO(csres) csgrid_list = [None] * 6 for i in range(6): csgrid_list[i] = {'lat': csgrid['lat'][i], 'lon': csgrid['lon'][i], 'lat_b': csgrid['lat_b'][i], 'lon_b': csgrid['lon_b'][i]} return [csgrid, csgrid_list] def make_grid_SG(csres, stretch_factor, target_lon, target_lat): """ Creates a stretched-grid grid description. Args: csres: int cubed-sphere resolution of target grid stretch_factor: float stretch factor of target grid target_lon: float target stretching longitude of target grid target_lon: float target stretching latitude of target grid Returns: [csgrid, csgrid_list]: list[dict, list[dict]] csgrid is a dict of format {'lat' : lat midpoints, 'lon' : lon midpoints, 'lat_b' : lat edges, 'lon_b' : lon edges} where each value has an extra face dimension of length 6. csgrid_list is a list of dicts separated by face index """ csgrid = csgrid_GMAO(csres, offset=0) csgrid_list = [None] * 6 for i in range(6): lat = csgrid['lat'][i].flatten() lon = csgrid['lon'][i].flatten() lon, lat = scs_transform( lon, lat, stretch_factor, target_lon, target_lat) lat = lat.reshape((csres, csres)) lon = lon.reshape((csres, csres)) lat_b = csgrid['lat_b'][i].flatten() lon_b = csgrid['lon_b'][i].flatten() lon_b, lat_b = scs_transform( lon_b, lat_b, stretch_factor, target_lon, target_lat) lat_b = lat_b.reshape((csres + 1, csres + 1)) lon_b = lon_b.reshape((csres + 1, csres + 1)) csgrid_list[i] = {'lat': lat, 'lon': lon, 'lat_b': lat_b, 'lon_b': lon_b} for i in range(6): csgrid['lat'][i] = csgrid_list[i]['lat'] csgrid['lon'][i] = csgrid_list[i]['lon'] csgrid['lat_b'][i] = csgrid_list[i]['lat_b'] csgrid['lon_b'][i] = csgrid_list[i]['lon_b'] return [csgrid, csgrid_list] def calc_rectilinear_lon_edge(lon_stride, center_at_180): """ Compute longitude edge vector for a rectilinear grid. Parameters ---------- lon_stride: float Stride length in degrees. For example, for a standard GEOS-Chem Classic 4x5 grid, lon_stride would be 5. center_at_180: bool Whether or not the grid should have a cell center at 180 degrees (i.e. on the date line). If true, the first grid cell is centered on the date line; if false, the first grid edge is on the date line. Returns ------- Longitudes of cell edges in degrees East. Notes ----- All values are forced to be between [-180,180]. For a grid with N cells in each band, N+1 edges will be returned, with the first and last value being duplicates. Examples -------- >>> from gcpy.grid.horiz import calc_rectilinear_lon_edge >>> calc_rectilinear_lon_edge(5.0,true) np.array([177.5,-177.5,-172.5,...,177.5]) See Also -------- [NONE] """ n_lon = np.round(360.0 / lon_stride) lon_edge = np.linspace(-180.0, 180.0, num=n_lon + 1) if center_at_180: lon_edge = lon_edge - (lon_stride / 2.0) lon_edge[lon_edge < -180.0] = lon_edge[lon_edge < -180] + 360.0 lon_edge[lon_edge > 180.0] = lon_edge[lon_edge > 180.0] - 360.0 return lon_edge def calc_rectilinear_lat_edge(lat_stride, half_polar_grid): """ Compute latitude edge vector for a rectilinear grid. Parameters ---------- lat_stride: float Stride length in degrees. For example, for a standard GEOS-Chem Classic 4x5 grid, lat_stride would be 4. half_polar_grid: bool Whether or not the grid should be "half-polar" (i.e. bands at poles are half the size). In either case the grid will start and end at -/+ 90, but when half_polar_grid is True, the first and last bands will have a width of 1/2 the normal lat_stride. Returns ------- Latitudes of cell edges in degrees North. Notes ----- All values are forced to be between [-90,90]. For a grid with N cells in each band, N+1 edges will be returned, with the first and last value being duplicates. Examples -------- >>> from gcpy.grid.horiz import calc_rectilinear_lat_edge >>> calc_rectilinear_lat_edge(4.0,true) np.array([-90,-88,-84,-80,...,84,88,90]) See Also -------- [NONE] """ if half_polar_grid: start_pt = 90.0 + (lat_stride / 2.0) else: start_pt = 90.0 lat_edge = np.linspace(-1.0 * start_pt, start_pt, num=1 + np.round(2.0 * start_pt / lat_stride)) # Force back onto +/- 90 lat_edge[lat_edge > 90.0] = 90.0 lat_edge[lat_edge < -90.0] = -90.0 return lat_edge def calc_rectilinear_grid_area(lon_edge, lat_edge): """ Compute grid cell areas (in m2) for a rectilinear grid. Parameters ---------- #TODO Returns ------- #TODO Notes ----- #TODO Examples -------- #TODO See Also -------- [NONE] """ # Convert from km to m _radius_earth_m = R_EARTH_m lon_edge = asarray(lon_edge, dtype=float) lat_edge = asarray(lat_edge, dtype=float) n_lon = (lon_edge.size) - 1 n_lat = (lat_edge.size) - 1 grid_area = np.zeros((n_lat, n_lon)) sfc_area_const = 2.0 * np.pi * _radius_earth_m * _radius_earth_m # Longitudes loop, so need to be careful lon_delta = calc_delta_lon(lon_edge) # Convert into weights relative to the total circle lon_delta = lon_delta / 360.0 # Precalculate this sin_lat_edge = np.sin(np.deg2rad(lat_edge)) for i_lat in range(0, n_lat): sin_diff = sin_lat_edge[i_lat + 1] - sin_lat_edge[i_lat] grid_area[i_lat, :] = sin_diff * sfc_area_const * lon_delta return grid_area def calc_delta_lon(lon_edge): """ Compute grid cell longitude widths from an edge vector. Parameters ---------- lon_edge: float Vector of longitude edges, in degrees East. Returns ------- Width of each cell, degrees East Notes ----- Accounts for looping over the domain. Examples -------- #TODO """ n_lon = (lon_edge.size) - 1 lon_edge = asarray(lon_edge) # Set up output array lon_delta = np.zeros((n_lon)) offset = 0.0 next_lon = lon_edge[0] for i_lon in range(0, n_lon): last_lon = next_lon next_lon = lon_edge[i_lon + 1] + offset while next_lon < last_lon: offset = offset + 360.0 next_lon = next_lon + 360.0 lon_delta[i_lon] = next_lon - last_lon return lon_delta def csgrid_GMAO(res, offset=-10): """ Return cubedsphere coordinates with GMAO face orientation Parameters ---------- res: cubed-sphere Resolution This function was originally written by <NAME> and included in package cubedsphere: https://github.com/JiaweiZhuang/cubedsphere """ CS = CSGrid(res, offset=offset) lon = CS.lon_center.transpose(2, 0, 1) lon_b = CS.lon_edge.transpose(2, 0, 1) lat = CS.lat_center.transpose(2, 0, 1) lat_b = CS.lat_edge.transpose(2, 0, 1) lon[lon < 0] += 360 lon_b[lon_b < 0] += 360 for a in [lon, lon_b, lat, lat_b]: for tile in [0, 1, 3, 4]: a[tile] = a[tile].T for tile in [3, 4]: a[tile] = np.flip(a[tile], 1) for tile in [3, 4, 2, 5]: a[tile] = np.flip(a[tile], 0) a[2], a[5] = a[5].copy(), a[2].copy() # swap north&south pole return {'lon': lon, 'lat': lat, 'lon_b': lon_b, 'lat_b': lat_b} _INV_SQRT_3 = 1.0 / np.sqrt(3.0) _ASIN_INV_SQRT_3 = np.arcsin(_INV_SQRT_3) class CSGrid(object): """Generator for cubed-sphere grid geometries. CSGrid computes the latitutde and longitudes of cell centers and edges on a cubed-sphere grid, providing a way to retrieve these geometries on-the-fly if your model output data does not include them. Attributes ---------- {lon,lat}_center: np.ndarray lat/lon coordinates for each cell center along the cubed-sphere mesh {lon,lat}_edge: np.ndarray lat/lon coordinates for the midpoint of the edges separating each element on the cubed-sphere mesh. xyz_{center,edge}: np.ndarray As above, except coordinates are projected into a 3D cartesian space with common origin to the original lat/lon coordinate system, assuming a unit sphere. This class was originally written by <NAME> and included in package cubedsphere: https://github.com/JiaweiZhuang/cubedsphere """ def __init__(self, c, offset=None): """ Parameters ---------- c: int Number edges along each cubed-sphere edge. ======= ==================== C Lat/Lon Resolution ------- -------------------- 24 4 deg x 5 deg 48,45 2 deg x 2.5 deg 96,90 1 deg x 1.25 deg 192,180 0.5 deg x 0.625 deg 384,360 0.25 deg x 0.3125 deg 720 0.12g deg x 0.15625 deg offset: float (optional) Degrees to offset the first faces' edge in the latitudinal direction. If not passed, then the western edge of the first face will align with the prime meridian. This function was originally written by <NAME> and included in package cubedsphere: https://github.com/JiaweiZhuang/cubedsphere """ self.c = c self.delta_y = 2. * _ASIN_INV_SQRT_3 / c self.nx = self.ny = c + 1 self.offset = offset self._initialize() def _initialize(self): c = self.c nx, ny = self.nx, self.ny lambda_rad = np.zeros((nx, ny)) lambda_rad[0, :] = 3. * np.pi / 4. # West edge lambda_rad[-1, :] = 5. * np.pi / 4. # East edge theta_rad = np.zeros((nx, ny)) theta_rad[0, :] = -_ASIN_INV_SQRT_3 + \ (self.delta_y * np.arange(c + 1)) # West edge theta_rad[-1, :] = theta_rad[0, :] # East edge # Cache the reflection points - our upper-left and lower-right corners lonMir1, lonMir2 = lambda_rad[0, 0], lambda_rad[-1, -1] latMir1, latMir2 = theta_rad[0, 0], theta_rad[-1, -1] xyzMir1 = latlon_to_cartesian(lonMir1, latMir1) xyzMir2 = latlon_to_cartesian(lonMir2, latMir2) xyzCross = np.cross(xyzMir1, xyzMir2) norm = np.sqrt(np.sum(xyzCross**2)) xyzCross /= norm for i in range(1, c): lonRef, latRef = lambda_rad[0, i], theta_rad[0, i] xyzRef = np.asarray(latlon_to_cartesian(lonRef, latRef, )) xyzDot = np.sum(xyzCross * xyzRef) xyzImg = xyzRef - (2. * xyzDot * xyzCross) xsImg, ysImg, zsImg = xyzImg lonImg, latImg = cartesian_to_latlon(xsImg, ysImg, zsImg) lambda_rad[i, 0] = lonImg lambda_rad[i, -1] = lonImg theta_rad[i, 0] = latImg theta_rad[i, -1] = -latImg pp = np.zeros([3, c + 1, c + 1]) # Set the four corners # print("CORNERS") for i, j in product([0, -1], [0, -1]): # print(i, j) pp[:, i, j] = latlon_to_cartesian( lambda_rad[i, j], theta_rad[i, j]) # Map the edges on the sphere back to the cube. #Note that all intersections are at x = -rsq3 # print("EDGES") for ij in range(1, c + 1): # print(ij) pp[:, 0, ij] = latlon_to_cartesian( lambda_rad[0, ij], theta_rad[0, ij]) pp[1, 0, ij] = -pp[1, 0, ij] * _INV_SQRT_3 / pp[0, 0, ij] pp[2, 0, ij] = -pp[2, 0, ij] * _INV_SQRT_3 / pp[0, 0, ij] pp[:, ij, 0] = latlon_to_cartesian( lambda_rad[ij, 0], theta_rad[ij, 0]) pp[1, ij, 0] = -pp[1, ij, 0] * _INV_SQRT_3 / pp[0, ij, 0] pp[2, ij, 0] = -pp[2, ij, 0] * _INV_SQRT_3 / pp[0, ij, 0] # # Map interiors pp[0, :, :] = -_INV_SQRT_3 # print("INTERIOR") for i in range(1, c + 1): for j in range(1, c + 1): # Copy y-z face of the cube along j=1 pp[1, i, j] = pp[1, i, 0] # Copy along i=1 pp[2, i, j] = pp[2, 0, j] _pp = pp.copy() llr, ttr = vec_cartesian_to_latlon(_pp[0], _pp[1], _pp[2]) lambda_rad, theta_rad = llr.copy(), ttr.copy() # Make grid symmetrical to i = im/2 + 1 for j in range(1, c + 1): for i in range(1, c + 1): # print("({}, {}) -> ({}, {})".format(i, 0, i, j)) lambda_rad[i, j] = lambda_rad[i, 0] for j in range(c + 1): for i in range(c // 2): isymm = c - i # print(isymm) avgPt = 0.5 * (lambda_rad[i, j] - lambda_rad[isymm, j]) # print(lambda_rad[i, j], lambda_rad[isymm, j], avgPt) lambda_rad[i, j] = avgPt + np.pi lambda_rad[isymm, j] = np.pi - avgPt avgPt = 0.5 * (theta_rad[i, j] + theta_rad[isymm, j]) theta_rad[i, j] = avgPt theta_rad[isymm, j] = avgPt # Make grid symmetrical to j = im/2 + 1 for j in range(c // 2): jsymm = c - j for i in range(1, c + 1): avgPt = 0.5 * (lambda_rad[i, j] + lambda_rad[i, jsymm]) lambda_rad[i, j] = avgPt lambda_rad[i, jsymm] = avgPt avgPt = 0.5 * (theta_rad[i, j] - theta_rad[i, jsymm]) theta_rad[i, j] = avgPt theta_rad[i, jsymm] = -avgPt # Final correction lambda_rad -= np.pi llr, ttr = lambda_rad.copy(), theta_rad.copy() ####################################################################### # MIRROR GRIDS ####################################################################### new_xgrid = np.zeros((c + 1, c + 1, 6)) new_ygrid = np.zeros((c + 1, c + 1, 6)) xgrid = llr.copy() ygrid = ttr.copy() new_xgrid[..., 0] = xgrid.copy() new_ygrid[..., 0] = ygrid.copy() # radius = 6370.0e3 radius = 1. for face in range(1, 6): for j in range(c + 1): for i in range(c + 1): x = xgrid[i, j] y = ygrid[i, j] z = radius if face == 1: # Rotate about z only new_xyz = rotate_sphere_3D(x, y, z, -np.pi / 2., 'z') elif face == 2: # Rotate about z, then x temp_xyz = rotate_sphere_3D(x, y, z, -np.pi / 2., 'z') x, y, z = temp_xyz[:] new_xyz = rotate_sphere_3D(x, y, z, np.pi / 2., 'x') elif face == 3: temp_xyz = rotate_sphere_3D(x, y, z, np.pi, 'z') x, y, z = temp_xyz[:] new_xyz = rotate_sphere_3D(x, y, z, np.pi / 2., 'x') if ((c % 2) != 0) and (j == c // 2 - 1): print(i, j, face) new_xyz = (np.pi, *new_xyz) elif face == 4: temp_xyz = rotate_sphere_3D(x, y, z, np.pi / 2., 'z') x, y, z = temp_xyz[:] new_xyz = rotate_sphere_3D(x, y, z, np.pi / 2., 'y') elif face == 5: temp_xyz = rotate_sphere_3D(x, y, z, np.pi / 2., 'y') x, y, z = temp_xyz[:] new_xyz = rotate_sphere_3D(x, y, z, 0., 'z') # print((x, y, z), "\n", new_xyz, "\n" + "--"*40) new_x, new_y, _ = new_xyz new_xgrid[i, j, face] = new_x new_ygrid[i, j, face] = new_y lon_edge, lat_edge = new_xgrid.copy(), new_ygrid.copy() ####################################################################### # CLEANUP GRID ####################################################################### for i, j, f in product(range(c + 1), range(c + 1), range(6)): new_lon = lon_edge[i, j, f] if new_lon < 0: new_lon += 2 * np.pi if np.abs(new_lon) < 1e-10: new_lon = 0. lon_edge[i, j, f] = new_lon if np.abs(lat_edge[i, j, f]) < 1e-10: lat_edge[i, j, f] = 0. lon_edge_deg = np.rad2deg(lon_edge) lat_edge_deg = np.rad2deg(lat_edge) ####################################################################### # COMPUTE CELL CENTROIDS ####################################################################### lon_ctr = np.zeros((c, c, 6)) lat_ctr = np.zeros((c, c, 6)) xyz_ctr = np.zeros((3, c, c, 6)) xyz_edge = np.zeros((3, c + 1, c + 1, 6)) for f in range(6): for i in range(c): last_x = (i == (c - 1)) for j in range(c): last_y = (j == (c - 1)) # Get the four corners lat_corner = [ lat_edge[i, j, f], lat_edge[i + 1, j, f], lat_edge[i + 1, j + 1, f], lat_edge[i, j + 1, f]] lon_corner = [ lon_edge[i, j, f], lon_edge[i + 1, j, f], lon_edge[i + 1, j + 1, f], lon_edge[i, j + 1, f]] # Convert from lat-lon back to cartesian xyz_corner = np.asarray( vec_latlon_to_cartesian( lon_corner, lat_corner)) # Store the edge information xyz_edge[:, i, j, f] = xyz_corner[:, 0] if last_x: xyz_edge[:, i + 1, j, f] = xyz_corner[:, 1] if last_x or last_y: xyz_edge[:, i + 1, j + 1, f] = xyz_corner[:, 2] if last_y: xyz_edge[:, i, j + 1, f] = xyz_corner[:, 3] e_mid = np.sum(xyz_corner, axis=1) e_abs = np.sqrt(np.sum(e_mid * e_mid)) if e_abs > 0: e_mid = e_mid / e_abs xyz_ctr[:, i, j, f] = e_mid _lon, _lat = cartesian_to_latlon(*e_mid) lon_ctr[i, j, f] = _lon lat_ctr[i, j, f] = _lat lon_ctr_deg = np.rad2deg(lon_ctr) lat_ctr_deg = np.rad2deg(lat_ctr) if self.offset is not None: lon_edge_deg += self.offset lon_ctr_deg += self.offset ####################################################################### # CACHE ####################################################################### self.lon_center = lon_ctr_deg self.lat_center = lat_ctr_deg self.lon_edge = lon_edge_deg self.lat_edge = lat_edge_deg self.xyz_center = xyz_ctr self.xyz_edge = xyz_edge def latlon_to_cartesian(lon, lat): """ Convert latitude/longitude coordinates along the unit sphere to cartesian coordinates defined by a vector pointing from the sphere's center to its surface. This function was originally written by <NAME> and included in package cubedsphere: https://github.com/JiaweiZhuang/cubedsphere """ x = np.cos(lat) * np.cos(lon) y = np.cos(lat) * np.sin(lon) z = np.sin(lat) return x, y, z vec_latlon_to_cartesian = np.vectorize(latlon_to_cartesian) def cartesian_to_latlon(x, y, z, ret_xyz=False): """ Convert a cartesian coordinate to latitude/longitude coordinates. Optionally return the original cartesian coordinate as a tuple. This function was originally written by <NAME> and included in package cubedsphere: https://github.com/JiaweiZhuang/cubedsphere """ xyz = np.array([x, y, z]) vector_length = np.sqrt(np.sum(xyz * xyz, axis=0)) xyz /= vector_length x, y, z = xyz if (np.abs(x) + np.abs(y)) < 1e-20: lon = 0. else: lon = np.arctan2(y, x) if lon < 0.: lon += 2 * np.pi lat = np.arcsin(z) # If not normalizing vector, take lat = np.arcsin(z/vector_length) if ret_xyz: return lon, lat, xyz else: return lon, lat vec_cartesian_to_latlon = np.vectorize(cartesian_to_latlon) def spherical_to_cartesian(theta, phi, r=1): """ Convert spherical coordinates in the form (theta, phi[, r]) to cartesian, with the origin at the center of the original spherical coordinate system. This function was originally written by <NAME> and included in package cubedsphere: https://github.com/JiaweiZhuang/cubedsphere """ x = r * np.cos(phi) * np.cos(theta) y = r * np.cos(phi) * np.sin(theta) z = r * np.sin(phi) return x, y, z vec_spherical_to_cartesian = np.vectorize(spherical_to_cartesian) def cartesian_to_spherical(x, y, z): """ Convert cartesian coordinates to spherical in the form (theta, phi[, r]) with the origin remaining at the center of the original spherical coordinate system. This function was originally written by <NAME> and included in package cubedsphere: https://github.com/JiaweiZhuang/cubedsphere """ r = np.sqrt(x**2 + y**2 + z**2) #theta = np.arccos(z / r) theta = np.arctan2(y, x) phi = np.arctan2(z, np.sqrt(x**2 + y**2)) # if np.abs(x) < 1e-16: # phi = np.pi # else: # phi = np.arctan(y / x) return theta, phi, r vec_cartesian_to_spherical = np.vectorize(cartesian_to_spherical) def rotate_sphere_3D(theta, phi, r, rot_ang, rot_axis='x'): """ Rotate a spherical coordinate in the form (theta, phi[, r]) about the indicating axis, 'rot_axis'. This method accomplishes the rotation by projecting to a cartesian coordinate system and performing a solid body rotation around the requested axis. This function was originally written by <NAME> and included in package cubedsphere: https://github.com/JiaweiZhuang/cubedsphere """ cos_ang = np.cos(rot_ang) sin_ang = np.sin(rot_ang) x, y, z = spherical_to_cartesian(theta, phi, r) if rot_axis == 'x': x_new = x y_new = cos_ang * y + sin_ang * z z_new = -sin_ang * y + cos_ang * z elif rot_axis == 'y': x_new = cos_ang * x - sin_ang * z y_new = y z_new = sin_ang * x + cos_ang * z elif rot_axis == 'z': x_new = cos_ang * x + sin_ang * y y_new = -sin_ang * x + cos_ang * y z_new = z theta_new, phi_new, r_new = cartesian_to_spherical(x_new, y_new, z_new) return theta_new, phi_new, r_new
52765
import pytest import sys sys.path.append(".") sys.path.append("../.") from boxdetect import config from boxdetect import pipelines def test_save_load_config(capsys): cfg = config.PipelinesConfig() cfg.morph_kernels_thickness = 10 cfg.save_yaml('test_cfg.yaml') cfg2 = config.PipelinesConfig('test_cfg.yaml') assert(cfg.__dict__ == cfg2.__dict__) cfg.new_var = 10 cfg.save_yaml('test_cfg.yaml') cfg2.load_yaml('test_cfg.yaml') captured = capsys.readouterr() assert("WARNING" in captured.out) def test_update_num_iterations(): cfg = config.PipelinesConfig() cfg.height_range = (5, 5) cfg.width_range = [(10, 10), (20, 20)] cfg.update_num_iterations() assert(cfg.num_iterations == 2) assert(len(cfg.height_range) == 2) assert(len(cfg.width_range) == 2) def test_autoconfig_simple(): box_sizes = [(42, 44), (41, 47), (41, 44), (41, 44), (125, 54), (92, 103)] file_path = "tests/data/autoconfig_simple/dummy_example.png" cfg = config.PipelinesConfig() cfg.autoconfigure(box_sizes) checkboxes = pipelines.get_checkboxes( file_path, cfg=cfg, px_threshold=0.01, plot=False, verbose=False) assert(len(checkboxes) == 12) cfg = config.PipelinesConfig() cfg.autoconfigure(box_sizes) rects, groups, _, _ = pipelines.get_boxes( file_path, cfg=cfg, plot=False) assert(len(rects) == 23) assert(len(groups) == 14) def test_autoconfig_from_vott_simple(): vott_dir = "tests/data/autoconfig_simple" file_path = "tests/data/autoconfig_simple/dummy_example.png" cfg = config.PipelinesConfig() cfg.autoconfigure_from_vott(vott_dir, class_tags=['box']) checkboxes = pipelines.get_checkboxes( file_path, cfg=cfg, px_threshold=0.01, plot=False, verbose=False) assert(len(checkboxes) == 12) cfg = config.PipelinesConfig() cfg.autoconfigure_from_vott(vott_dir, class_tags=['box']) rects, groups, _, _ = pipelines.get_boxes( file_path, cfg=cfg, plot=False) assert(len(rects) == 23) assert(len(groups) == 14)
52782
import torch import torch.nn as nn def channel_split(z, dim=1, odd=False): C = z.size(dim) z0, z1 = torch.split(z, C // 2, dim=dim) if odd: z0, z1 = z1, z0 return z0, z1 def channel_merge(z0, z1, dim=1, odd=False): if odd: z0, z1 = z1, z0 z = torch.cat([z0, z1], dim=dim) return z def get_checker_mask(H, W, odd=False, device=None): ix = torch.arange(W).to(device).long() iy = torch.arange(H).to(device).long() iy, ix = torch.meshgrid([iy, ix]) mod = 0 if odd else 1 mask = ((ix + iy) % 2 == mod).float() mask = mask.view(1, 1, H, W) return mask def checker_split(z, odd=False): assert z.dim() == 4 B, C, H, W = z.size() z = z.view(B, C, H // 2, 2, W // 2, 2) # (B, C, sH, 2, sW, 2) z = z.permute(0, 1, 3, 5, 2, 4).contiguous() # (B, C, 2, 2, sH, sW) z = z.view(B, C * 4, H // 2, W // 2) # (B, C * 4, sH, sW) za, zb, zc, zd = torch.split(z, C, dim=1) z0 = torch.cat([za, zd], dim=1) z1 = torch.cat([zb, zc], dim=1) if odd: z0, z1 = z1, z0 return z0, z1 def checker_merge(z0, z1, odd=False): assert z0.dim() == 4 and z1.dim() == 4 B, C2, sH, sW = z0.size() C = C2 // 2 if odd: z0, z1 = z1, z0 za, zd = torch.split(z0, C, dim=1) zb, zc = torch.split(z1, C, dim=1) z = torch.cat([za, zb, zc, zd], dim=1) z = z.view(B, C, 2, 2, sH, sW).permute(0, 1, 4, 2, 5, 3).contiguous() z = z.view(B, C, sH * 2, sW * 2) return z def squeeze1d(z, odd=False): assert z.dim() == 2 B, C = z.size() z = z.view(B, C // 2, 2) z0 = z[:, :, 0] z1 = z[:, :, 1] if odd: z0, z1 = z1, z0 return z0, z1 def unsqueeze1d(z0, z1, odd=False): assert z0.dim() == 2 and z1.dim() == 2 B, hC = z0.size() if odd: z0, z1 = z1, z0 z = torch.stack([z0, z1], dim=-1) z = z.view(B, -1).contiguous() return z def squeeze2d(z, odd=False): assert z.dim() == 4 B, C, H, W = z.size() z = z.view(B, C, H // 2, 2, W // 2, 2) # (B, C, sH, 2, sW, 2) z = z.permute(0, 1, 3, 5, 2, 4).contiguous() # (B, C, 2, 2, sH, sW) z = z.view(B, C * 4, H // 2, W // 2) # (B, C * 4, sH, sW) z0, z1 = torch.split(z, C * 2, dim=1) if odd: z0, z1 = z1, z0 return z0, z1 def unsqueeze2d(z0, z1, odd=False): assert z0.dim() == 4 and z1.dim() == 4 B, C2, sH, sW = z0.size() C = C2 // 2 if odd: z0, z1 = z1, z0 z = torch.cat([z0, z1], dim=1) z = z.view(B, C, 2, 2, sH, sW).permute(0, 1, 4, 2, 5, 3).contiguous() z = z.view(B, C, sH * 2, sW * 2) return z class Squeeze1d(nn.Module): """ split 1D vector into two half-size vectors by extracting entries alternatingly """ def __init__(self, odd=False): super(Squeeze1d, self).__init__() self.odd = odd def forward(self, z, log_df_dz): z0, z1 = squeeze1d(z, self.odd) z = torch.cat([z0, z1], dim=1) return z, log_df_dz def backward(self, z, log_df_dz): z0, z1 = torch.split(z, z.size(1) // 2, dim=1) z = unsqueeze1d(z0, z1, self.odd) return z, log_df_dz class Unsqueeze1d(nn.Module): """ merge 1D vectors given by Squeeze1d """ def __init__(self, odd=False): super(Unsqueeze1d, self).__init__() self.odd = odd def forward(self, z, log_df_dz): z0, z1 = torch.split(z, z.size(1) // 2, dim=1) z = unsqueeze1d(z0, z1, self.odd) return z, log_df_dz def backward(self, z, log_df_dz): z0, z1 = squeeze1d(z, self.odd) z = torch.cat([z0, z1], dim=1) return z, log_df_dz class Squeeze2d(nn.Module): """ split an 2D feature map into two maps by extracting pixels using checkerboard pattern """ def __init__(self, odd=False): super(Squeeze2d, self).__init__() self.odd = odd def forward(self, z, log_df_dz): z0, z1 = squeeze2d(z, self.odd) z = torch.cat([z0, z1], dim=1) return z, log_df_dz def backward(self, z, log_df_dz): z0, z1 = torch.split(z, z.size(1) // 2, dim=1) z = unsqueeze2d(z0, z1, self.odd) return z, log_df_dz class Unsqueeze2d(nn.Module): """ Merge two 2D feature maps given by Squeeze2d """ def __init__(self, odd=False): super(Unsqueeze2d, self).__init__() self.odd = odd def forward(self, z, log_df_dz): z0, z1 = torch.split(z, z.size(1) // 2, dim=1) z = unsqueeze2d(z0, z1, self.odd) return z, log_df_dz def backward(self, z, log_df_dz): z0, z1 = squeeze2d(z, self.odd) z = torch.cat([z0, z1], dim=1) return z, log_df_dz
52792
from __future__ import absolute_import import os.path import argparse import logging import json from six import iteritems import numpy as np from sklearn.model_selection import train_test_split from sklearn.externals import joblib from keras.models import load_model from tensorflow.python.client import device_lib from utils import load_data, Embeds, Logger, Params, embed_aggregate, similarity from features import catboost_features from preprocessing import clean_text, convert_text2seq, split_data, parse_seq from models import cnn, dense, rnn, TFIDF, CatBoost, save_predictions from train import train from metrics import get_metrics, print_metrics def get_kwargs(kwargs): parser = argparse.ArgumentParser(description='-f TRAIN_FILE -t TEST_FILE -o OUTPUT_FILE -e EMBEDS_FILE [-l LOGGER_FILE] [--swear-words SWEAR_FILE] [--wrong-words WRONG_WORDS_FILE] [--format-embeds FALSE]') parser.add_argument('-f', '--train', dest='train', action='store', help='/path/to/trian_file', type=str) parser.add_argument('-t', '--test', dest='test', action='store', help='/path/to/test_file', type=str) parser.add_argument('-o', '--output', dest='output', action='store', help='/path/to/output_file', type=str) parser.add_argument('-we', '--word_embeds', dest='word_embeds', action='store', help='/path/to/embeds_file', type=str) parser.add_argument('-ce', '--char_embeds', dest='char_embeds', action='store', help='/path/to/embeds_file', type=str) parser.add_argument('-c','--config', dest='config', action='store', help='/path/to/config.json', type=str) parser.add_argument('-l', '--logger', dest='logger', action='store', help='/path/to/log_file', type=str, default=None) parser.add_argument('--mode', dest='mode', action='store', help='preprocess / train / validate / all', type=str, default='all') parser.add_argument('--max-words', dest='max_words', action='store', type=int, default=300000) parser.add_argument('--use-only-exists-words', dest='use_only_exists_words', action='store_true') parser.add_argument('--swear-words', dest='swear_words', action='store', help='/path/to/swear_words_file', type=str, default=None) parser.add_argument('--wrong-words', dest='wrong_words', action='store', help='/path/to/wrong_words_file', type=str, default=None) parser.add_argument('--format-embeds', dest='format_embeds', action='store', help='file | json | pickle | binary', type=str, default='raw') parser.add_argument('--output-dir', dest='output_dir', action='store', help='/path/to/dir', type=str, default='.') parser.add_argument('--norm-prob', dest='norm_prob', action='store_true') parser.add_argument('--norm-prob-koef', dest='norm_prob_koef', action='store', type=float, default=1) parser.add_argument('--gpus', dest='gpus', action='store', help='count GPUs', type=int, default=0) for key, value in iteritems(parser.parse_args().__dict__): kwargs[key] = value def main(*kargs, **kwargs): get_kwargs(kwargs) train_fname = kwargs['train'] test_fname = kwargs['test'] result_fname = kwargs['output'] word_embeds_fname = kwargs['word_embeds'] char_embeds_fname = kwargs['char_embeds'] logger_fname = kwargs['logger'] mode = kwargs['mode'] max_words = kwargs['max_words'] use_only_exists_words = kwargs['use_only_exists_words'] swear_words_fname = kwargs['swear_words'] wrong_words_fname = kwargs['wrong_words'] embeds_format = kwargs['format_embeds'] config = kwargs['config'] output_dir = kwargs['output_dir'] norm_prob = kwargs['norm_prob'] norm_prob_koef = kwargs['norm_prob_koef'] gpus = kwargs['gpus'] seq_col_name_words = 'comment_seq_lw_use_exist{}_{}k'.format(int(use_only_exists_words), int(max_words/1000)) seq_col_name_ll3 = 'comment_seq_ll3_use_exist{}_{}k'.format(int(use_only_exists_words), int(max_words/1000)) model_file = { 'dense': os.path.join(output_dir, 'dense.h5'), 'cnn': os.path.join(output_dir, 'cnn.h5'), 'lstm': os.path.join(output_dir, 'lstm.h5'), 'lr': os.path.join(output_dir, '{}_logreg.bin'), 'catboost': os.path.join(output_dir, '{}_catboost.bin') } # ====Create logger==== logger = Logger(logging.getLogger(), logger_fname) # ====Detect GPUs==== logger.debug(device_lib.list_local_devices()) # ====Load data==== logger.info('Loading data...') train_df = load_data(train_fname) test_df = load_data(test_fname) target_labels = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] num_classes = len(target_labels) # ====Load additional data==== logger.info('Loading additional data...') swear_words = load_data(swear_words_fname, func=lambda x: set(x.T[0]), header=None) wrong_words_dict = load_data(wrong_words_fname, func=lambda x: {val[0] : val[1] for val in x}) # ====Load word vectors==== logger.info('Loading embeddings...') embeds_word = Embeds().load(word_embeds_fname, embeds_format) embeds_ll3 = Embeds().load(char_embeds_fname, embeds_format) # ====Clean texts==== if mode in ('preprocess', 'all'): logger.info('Cleaning text...') train_df['comment_text_clear'] = clean_text(train_df['comment_text'], wrong_words_dict, autocorrect=True) test_df['comment_text_clear'] = clean_text(test_df['comment_text'], wrong_words_dict, autocorrect=True) train_df.to_csv(os.path.join(output_dir, 'train_clear.csv'), index=False) test_df.to_csv(os.path.join(output_dir, 'test_clear.csv'), index=False) # ====Calculate maximum seq length==== logger.info('Calc text length...') train_df.fillna('__NA__', inplace=True) test_df.fillna('__NA__', inplace=True) train_df['text_len'] = train_df['comment_text_clear'].apply(lambda words: len(words.split())) test_df['text_len'] = test_df['comment_text_clear'].apply(lambda words: len(words.split())) max_seq_len = np.round(train_df['text_len'].mean() + 3*train_df['text_len'].std()).astype(int) max_char_seq_len = 2000 # empirical logger.debug('Max seq length = {}'.format(max_seq_len)) # ====Prepare data to NN==== logger.info('Converting texts to sequences...') if mode in ('preprocess', 'all'): train_df[seq_col_name_words], test_df[seq_col_name_words], word_index, train_df[seq_col_name_ll3], test_df[seq_col_name_ll3], ll3_index = convert_text2seq( train_df['comment_text_clear'].tolist(), test_df['comment_text_clear'].tolist(), max_words, max_seq_len, max_char_seq_len, embeds_word, lower=True, oov_token='__<PASSWORD>', uniq=False, use_only_exists_words=use_only_exists_words) logger.debug('Dictionary size use_exist{} = {}'.format(int(use_only_exists_words), len(word_index))) logger.debug('Char dict size use_exist{} = {}'.format(int(use_only_exists_words), len(ll3_index))) logger.info('Preparing embedding matrix...') words_not_found = embeds_word.set_matrix(max_words, word_index) embeds_ll3.matrix = np.random.normal(size=(len(ll3_index), embeds_word.shape[1])) embeds_ll3.word_index = ll3_index embeds_ll3.word_index_reverse = {val: key for key, val in ll3_index.items()} embeds_ll3.shape = np.shape(embeds_ll3.matrix) embeds_word.save(os.path.join(output_dir, 'wiki.embeds_lw.{}k'.format(int(max_words/1000)))) embeds_ll3.save(os.path.join(output_dir, 'wiki.embeds_ll3.{}k'.format(int(max_words/1000)))) # ====Get text vector==== pooling = { 'max': {'func': np.max}, 'avg': {'func': np.sum, 'normalize': True}, 'sum': {'func': np.sum, 'normalize': False} } for p in ['max', 'avg', 'sum']: train_df['comment_vec_{}'.format(p)] = train_df[seq_col_name_words].apply(lambda x: embed_aggregate(x, embeds_word, **pooling[p])) test_df['comment_vec_{}'.format(p)] = test_df[seq_col_name_words].apply(lambda x: embed_aggregate(x, embeds_word, **pooling[p])) train_df.to_csv(os.path.join(output_dir, 'train_clear1.csv'), index=False) test_df.to_csv(os.path.join(output_dir, 'test_clear1.csv'), index=False) else: for col in train_df.columns: if col.startswith('comment_seq'): train_df[col] = train_df[col].apply(lambda x: parse_seq(x, int)) test_df[col] = test_df[col].apply(lambda x: parse_seq(x, int)) elif col.startswith('comment_vec'): train_df[col] = train_df[col].apply(lambda x: parse_seq(x, float)) test_df[col] = test_df[col].apply(lambda x: parse_seq(x, float)) logger.debug('Embedding matrix shape = {}'.format(embeds_word.shape)) logger.debug('Number of null word embeddings = {}'.format(np.sum(np.sum(embeds_word.matrix, axis=1) == 0))) # ====END OF `PREPROCESS`==== if mode == 'preprocess': return True # ====Train/test split data==== x = np.array(train_df[seq_col_name_words].values.tolist()) y = np.array(train_df[target_labels].values.tolist()) x_train_nn, x_val_nn, y_train, y_val, train_idxs, val_idxs = split_data(x, y, test_size=0.2, shuffle=True, random_state=42) x_test_nn = np.array(test_df[seq_col_name_words].values.tolist()) x_char = np.array(train_df[seq_col_name_ll3].values.tolist()) x_char_train_nn = x_char[train_idxs] x_char_val_nn = x_char[val_idxs] x_char_test_nn = np.array(test_df[seq_col_name_ll3].values.tolist()) x_train_tfidf = train_df['comment_text_clear'].values[train_idxs] x_val_tfidf = train_df['comment_text_clear'].values[val_idxs] x_test_tfidf = test_df['comment_text_clear'].values catboost_cols = catboost_features(train_df, test_df) x_train_cb = train_df[catboost_cols].values[train_idxs].T x_val_cb = train_df[catboost_cols].values[val_idxs].T x_test_cb = test_df[catboost_cols].values.T # ====Train models==== nn_models = { 'cnn': cnn, 'dense': dense, 'rnn': rnn } params = Params(config) metrics = {} predictions = {} for param in params['models']: for model_label, model_params in param.items(): if model_params.get('common', {}).get('warm_start', False) and os.path.exists(model_params.get('common', {}).get('model_file', '')): logger.info('{} warm starting...'.format(model_label)) model = load_model(model_params.get('common', {}).get('model_file', None)) elif model_label in nn_models: model = nn_models[model_label]( embeds_word.matrix, embeds_ll3.matrix, num_classes, max_seq_len, max_char_seq_len, gpus=gpus, **model_params['init']) model_alias = model_params.get('common', {}).get('alias', None) if model_alias is None or not model_alias: model_alias = '{}_{}'.format(model_label, i) logger.info("training {} ...".format(model_label)) if model_label == 'dense': x_tr = [x_train_nn, x_char_train_nn] x_val = [x_val_nn, x_char_val_nn] x_test = [x_test_nn, x_char_test_nn] else: x_tr = x_train_nn x_val = x_val_nn x_test = x_test_nn hist = train(x_tr, y_train, model, logger=logger, **model_params['train']) predictions[model_alias] = model.predict(x_val) save_predictions(test_df, model.predict(x_test), target_labels, model_alias) elif model_label == 'tfidf': model = TFIDF(target_labels, **model_params['init']) model.fit(x_train_tfidf, y_train, **model_params['train']) predictions[model_alias] = model.predict(x_val_tfidf) save_predictions(test_df, model.predict(x_test_tfidf), target_labels, model_alias) elif model_label == 'catboost': model = CatBoost(target_labels, **model_params['init']) model.fit(x_train_cb, y_train, eval_set=(x_val_cb, y_val), use_best_model=True) predictions[model_alias] = model.predict_proba(x_val_cb) save_predictions(test_df, model.predict_proba(x_test_cb), target_labels, model_alias) metrics[model_alias] = get_metrics(y_val, predictions[model_alias], target_labels) logger.debug('{} params:\n{}'.format(model_alias, model_params)) logger.debug('{} metrics:\n{}'.format(model_alias, print_metrics(metrics[model_alias]))) model.save(os.path.join(output_dir, model_params['common']['model_file'])) logger.info('Saving metrics...') with open(os.path.join(output_dir, 'metrics.json'), 'w') as f: f.write(json.dumps(metrics)) # ====END OF `VALIDATE`==== if mode == 'validate': return True # Meta catboost logger.info('training catboost as metamodel...') x_meta = [predictions[model_alias] for model_alias in sorted(predictions.keys())] x_meta = np.array(x_train_meta).T x_train_meta, x_val_meta, y_train_meta, y_val_meta = train_test_split(x_meta, y_val, test_size=0.20, random_state=42) meta_model = CatBoost(target_labels, loss_function='Logloss', iterations=1000, depth=6, learning_rate=0.03, rsm=1 ) meta_model.fit(x_train_meta, y_train_meta, eval_set=(x_val_meta, y_val_meta), use_best_model=True) y_hat_meta = meta_model.predict_proba(x_val_meta) metrics_meta = get_metrics(y_val_meta, y_hat_meta, target_labels) #model.save(os.path.join(output_dir, 'meta.catboost') logger.debug('{} metrics:\n{}'.format('META', print_metrics(metrics_meta))) # ====Predict==== logger.info('Applying models...') test_cols = [] for model_alias in sorted(predictions.keys()): for label in target_labels: test_cols.append('{}_{}'.format(model_alias, label)) x_test = test_df[test_cols].values preds = meta_model.predict_proba(x_test) for i, label in enumerate(target_labels): test_df[label] = preds[:, i] # ====Normalize probabilities==== if norm_prob: for label in target_labels: test_df[label] = norm_prob_koef * test_df[label] # ====Save results==== logger.info('Saving results...') test_df[['id', 'toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']].to_csv(result_fname, index=False, header=True) test_df.to_csv('{}_tmp'.format(result_fname), index=False, header=True) if __name__=='__main__': main()
52793
from django.conf.urls import url from . import views app_name = "restapi" timestamp_regex = '\\d{4}[-]?\\d{1,2}[-]?\\d{1,2} \\d{1,2}:\\d{1,2}:\\d{1,2}' urlpatterns = [ url(r'^about/$', views.AboutView.as_view(), name='about'), url(r'^centralized-oracles/$', views.CentralizedOracleListView.as_view(), name='centralized-oracles'), url(r'^centralized-oracles/(0x)?(?P<oracle_address>[a-fA-F0-9]+)/$', views.CentralizedOracleFetchView.as_view(), name='centralized-oracles-by-address'), url(r'^events/$', views.EventListView.as_view(), name='events'), url(r'^events/(0x)?(?P<event_address>[a-fA-F0-9]+)/$', views.EventFetchView.as_view(), name='events-by-address'), url(r'^markets/$', views.MarketListView.as_view(), name='markets'), url(r'^markets/(0x)?(?P<market_address>[a-fA-F0-9]+)/$', views.MarketFetchView.as_view(), name='markets-by-name'), url(r'^markets/(0x)?(?P<market_address>[a-fA-F0-9]+)/shares/$', views.AllMarketSharesView.as_view(), name='all-shares'), url(r'^markets/(0x)?(?P<market_address>[a-fA-F0-9]+)/shares/(0x)?(?P<owner_address>[a-fA-F0-9]+)/$', views.MarketSharesView.as_view(), name='shares-by-owner'), url(r'^markets/(0x)?(?P<market_address>[a-fA-F0-9]+)/trades/$', views.MarketTradesView.as_view(), name='trades-by-market'), url(r'^markets/(0x)?(?P<market_address>[a-fA-F0-9]+)/trades/(0x)?(?P<owner_address>[a-fA-F0-9]+)/$', views.MarketParticipantTradesView.as_view(), name='trades-by-owner'), url(r'^account/(0x)?(?P<account_address>[a-fA-F0-9]+)/trades/$', views.AccountTradesView.as_view(), name='trades-by-account'), url(r'^account/(0x)?(?P<account_address>[a-fA-F0-9]+)/shares/$', views.AccountSharesView.as_view(), name='shares-by-account'), url(r'^factories/$', views.factories_view, name='factories'), url(r'^scoreboard/$', views.ScoreboardView.as_view(), name='scoreboard'), url(r'^scoreboard/(0x)?(?P<account_address>[a-fA-F0-9]+)$', views.ScoreboardUserView.as_view(), name='scoreboard'), ]
52808
from gekko import GEKKO import numpy as np import matplotlib.pyplot as plt # generate training data x = np.linspace(0.0,2*np.pi,20) y = np.sin(x) # option for fitting function select = True # True / False if select: # Size with cosine function nin = 1 # inputs n1 = 1 # hidden layer 1 (linear) n2 = 1 # hidden layer 2 (nonlinear) n3 = 1 # hidden layer 3 (linear) nout = 1 # outputs else: # Size with hyperbolic tangent function nin = 1 # inputs n1 = 2 # hidden layer 1 (linear) n2 = 2 # hidden layer 2 (nonlinear) n3 = 2 # hidden layer 3 (linear) nout = 1 # outputs # Initialize gekko train = GEKKO() test = GEKKO() model = [train,test] for m in model: # input(s) m.inpt = m.Param() # layer 1 m.w1 = m.Array(m.FV, (nin,n1)) m.l1 = [m.Intermediate(m.w1[0,i]*m.inpt) for i in range(n1)] # layer 2 m.w2a = m.Array(m.FV, (n1,n2)) m.w2b = m.Array(m.FV, (n1,n2)) if select: m.l2 = [m.Intermediate(sum([m.cos(m.w2a[j,i]+m.w2b[j,i]*m.l1[j]) \ for j in range(n1)])) for i in range(n2)] else: m.l2 = [m.Intermediate(sum([m.tanh(m.w2a[j,i]+m.w2b[j,i]*m.l1[j]) \ for j in range(n1)])) for i in range(n2)] # layer 3 m.w3 = m.Array(m.FV, (n2,n3)) m.l3 = [m.Intermediate(sum([m.w3[j,i]*m.l2[j] \ for j in range(n2)])) for i in range(n3)] # output(s) m.outpt = m.CV() m.Equation(m.outpt==sum([m.l3[i] for i in range(n3)])) # flatten matrices m.w1 = m.w1.flatten() m.w2a = m.w2a.flatten() m.w2b = m.w2b.flatten() m.w3 = m.w3.flatten() # Fit parameter weights m = train m.inpt.value=x m.outpt.value=y m.outpt.FSTATUS = 1 for i in range(len(m.w1)): m.w1[i].FSTATUS=1 m.w1[i].STATUS=1 m.w1[i].MEAS=1.0 for i in range(len(m.w2a)): m.w2a[i].STATUS=1 m.w2b[i].STATUS=1 m.w2a[i].FSTATUS=1 m.w2b[i].FSTATUS=1 m.w2a[i].MEAS=1.0 m.w2b[i].MEAS=0.5 for i in range(len(m.w3)): m.w3[i].FSTATUS=1 m.w3[i].STATUS=1 m.w3[i].MEAS=1.0 m.options.IMODE = 2 m.options.SOLVER = 3 m.options.EV_TYPE = 2 m.solve(disp=False) # Test sample points m = test for i in range(len(m.w1)): m.w1[i].MEAS=train.w1[i].NEWVAL m.w1[i].FSTATUS = 1 print('w1['+str(i)+']: '+str(m.w1[i].MEAS)) for i in range(len(m.w2a)): m.w2a[i].MEAS=train.w2a[i].NEWVAL m.w2b[i].MEAS=train.w2b[i].NEWVAL m.w2a[i].FSTATUS = 1 m.w2b[i].FSTATUS = 1 print('w2a['+str(i)+']: '+str(m.w2a[i].MEAS)) print('w2b['+str(i)+']: '+str(m.w2b[i].MEAS)) for i in range(len(m.w3)): m.w3[i].MEAS=train.w3[i].NEWVAL m.w3[i].FSTATUS = 1 print('w3['+str(i)+']: '+str(m.w3[i].MEAS)) m.inpt.value=np.linspace(-2*np.pi,4*np.pi,100) m.options.IMODE = 2 m.options.SOLVER = 3 m.solve(disp=False) plt.figure() plt.plot(x,y,'bo',label='data') plt.plot(test.inpt.value,test.outpt.value,'r-',label='predict') plt.legend(loc='best') plt.ylabel('y') plt.xlabel('x') plt.show()
52905
from setuptools import find_packages, setup import re # parse dyneusr/_version.py try: version_fn = 'dyneusr/_version.py' with open(version_fn) as version_fd: version = version_fd.read() version_re = r"^__version__ = ['\"]([^'\"]*)['\"]" version = re.findall(version_re, version, re.M)[0] except: raise RuntimeError("Unable to read version in {}.".format(version_fn)) # parse requirements.txt with open('requirements.txt') as f: install_requires = [_ for _ in f.read().split('\n') if len(_) and _[0].isalpha()] # parse README.md with open('README.md') as f: long_description = f.read() # run setup setup( name='dyneusr', version=version, description='Dynamical Neural Spatiotemporal Representations.', long_description=long_description, long_description_content_type="text/markdown", author='<NAME>', author_email='<EMAIL>', url='https://braindynamicslab.github.io/dyneusr', license='BSD-3', packages=find_packages(), include_package_data=True, install_requires=install_requires, python_requires='>=3.6', classifiers=[ "Intended Audience :: Science/Research", "Topic :: Scientific/Engineering :: Information Analysis", "Topic :: Scientific/Engineering :: Visualization", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", ], keywords='brain dynamics, topology data analysis, neuroimaging, brain networks, mapper, visualization', )