id
stringlengths
3
8
content
stringlengths
100
981k
83891
import http.client import json import logging import os import ssl import threading import urllib.parse from base64 import b64encode from datetime import datetime from http.client import HTTPConnection, HTTPResponse from typing import Optional, Dict from pyctuator.auth import Auth, BasicAuth # pylint: disable=too-many-instance-attributes class BootAdminRegistrationHandler: def __init__( self, registration_url: str, registration_auth: Optional[Auth], application_name: str, pyctuator_base_url: str, start_time: datetime, service_url: str, registration_interval_sec: float, application_metadata: Optional[dict] = None, ssl_context: Optional[ssl.SSLContext] = None, ) -> None: self.registration_url = registration_url self.registration_auth = registration_auth self.application_name = application_name self.pyctuator_base_url = pyctuator_base_url self.start_time = start_time self.service_url = service_url if service_url.endswith("/") else service_url + "/" self.registration_interval_sec = registration_interval_sec self.instance_id = None self.application_metadata = application_metadata if application_metadata else {} self.ssl_context = ssl_context self.should_continue_registration_schedule: bool = False self.disable_certificate_validation_for_https_registration: bool = \ os.getenv("PYCTUATOR_REGISTRATION_NO_CERT") is not None def _schedule_next_registration(self, registration_interval_sec: float) -> None: timer = threading.Timer( registration_interval_sec, self._register_with_admin_server, [] ) timer.setDaemon(True) timer.start() def _register_with_admin_server(self) -> None: # When waking up, make sure registration is still needed if not self.should_continue_registration_schedule: return registration_data = { "name": self.application_name, "managementUrl": self.pyctuator_base_url, "healthUrl": f"{self.pyctuator_base_url}/health", "serviceUrl": self.service_url, "metadata": { "startup": self.start_time.isoformat(), **self.application_metadata } } logging.debug("Trying to post registration data to %s: %s", self.registration_url, registration_data) conn: Optional[HTTPConnection] = None try: headers = {"Content-type": "application/json"} self.authenticate(headers) response = self._http_request(self.registration_url, "POST", headers, json.dumps(registration_data)) if response.status < 200 or response.status >= 300: logging.warning("Failed registering with boot-admin, got %s - %s", response.status, response.read()) else: self.instance_id = json.loads(response.read().decode('utf-8'))["id"] except Exception as e: # pylint: disable=broad-except logging.warning("Failed registering with boot-admin, %s (%s)", e, type(e)) finally: if conn: conn.close() # Schedule the next registration unless asked to abort if self.should_continue_registration_schedule: self._schedule_next_registration(self.registration_interval_sec) def deregister_from_admin_server(self) -> None: if self.instance_id is None: return headers = {} self.authenticate(headers) deregistration_url = f"{self.registration_url}/{self.instance_id}" logging.info("Deregistering from %s", deregistration_url) conn: Optional[HTTPConnection] = None try: response = self._http_request(deregistration_url, "DELETE", headers) if response.status < 200 or response.status >= 300: logging.warning("Failed deregistering from boot-admin, got %s - %s", response.status, response.read()) except Exception as e: # pylint: disable=broad-except logging.warning("Failed deregistering from boot-admin, %s (%s)", e, type(e)) finally: if conn: conn.close() def authenticate(self, headers: Dict) -> None: if isinstance(self.registration_auth, BasicAuth): password = self.registration_auth.password if self.registration_auth.password else "" authorization_string = self.registration_auth.username + ":" + password encoded_authorization: str = b64encode(bytes(authorization_string, "utf-8")).decode("ascii") headers["Authorization"] = f"Basic {encoded_authorization}" def start(self, initial_delay_sec: float = None) -> None: logging.info("Starting recurring registration of %s with %s", self.pyctuator_base_url, self.registration_url) self.should_continue_registration_schedule = True self._schedule_next_registration(initial_delay_sec or self.registration_interval_sec) def stop(self) -> None: logging.info("Stopping recurring registration") self.should_continue_registration_schedule = False def _http_request(self, url: str, method: str, headers: Dict[str, str], body: Optional[str] = None) -> HTTPResponse: url_parts = urllib.parse.urlsplit(url) if url_parts.scheme == "http": conn = http.client.HTTPConnection(url_parts.hostname, url_parts.port) elif url_parts.scheme == "https": context = self.ssl_context if not context and self.disable_certificate_validation_for_https_registration: context = ssl.SSLContext() context.verify_mode = ssl.CERT_NONE conn = http.client.HTTPSConnection(url_parts.hostname, url_parts.port, context=context) else: raise ValueError(f"Unknown scheme in {url}") conn.request( method, url_parts.path, body=body, headers=headers, ) return conn.getresponse()
83908
del_items(0x80124F0C) SetType(0x80124F0C, "void GameOnlyTestRoutine__Fv()") del_items(0x80124F14) SetType(0x80124F14, "int vecleny__Fii(int a, int b)") del_items(0x80124F38) SetType(0x80124F38, "int veclenx__Fii(int a, int b)") del_items(0x80124F64) SetType(0x80124F64, "void GetDamageAmt__FiPiT1(int i, int *mind, int *maxd)") del_items(0x8012555C) SetType(0x8012555C, "int CheckBlock__Fiiii(int fx, int fy, int tx, int ty)") del_items(0x80125644) SetType(0x80125644, "int FindClosest__Fiii(int sx, int sy, int rad)") del_items(0x801257E0) SetType(0x801257E0, "int GetSpellLevel__Fii(int id, int sn)") del_items(0x80125854) SetType(0x80125854, "int GetDirection8__Fiiii(int x1, int y1, int x2, int y2)") del_items(0x80125A70) SetType(0x80125A70, "void DeleteMissile__Fii(int mi, int i)") del_items(0x80125AC8) SetType(0x80125AC8, "void GetMissileVel__Fiiiiii(int i, int sx, int sy, int dx, int dy, int v)") del_items(0x80125C7C) SetType(0x80125C7C, "void PutMissile__Fi(int i)") del_items(0x80125D80) SetType(0x80125D80, "void GetMissilePos__Fi(int i)") del_items(0x80125EA8) SetType(0x80125EA8, "void MoveMissilePos__Fi(int i)") del_items(0x80126010) SetType(0x80126010, "unsigned char MonsterTrapHit__FiiiiiUc(int m, int mindam, int maxdam, int dist, int t, int shift)") del_items(0x80126384) SetType(0x80126384, "unsigned char MonsterMHit__FiiiiiiUc(int pnum, int m, int mindam, int maxdam, int dist, int t, int shift)") del_items(0x80126AE4) SetType(0x80126AE4, "unsigned char PlayerMHit__FiiiiiiUcUc(int pnum, int m, int dist, int mind, int maxd, int mtype, int shift, int earflag)") del_items(0x80127550) SetType(0x80127550, "unsigned char Plr2PlrMHit__FiiiiiiUc(int pnum, int p, int mindam, int maxdam, int dist, int mtype, int shift)") del_items(0x80127D2C) SetType(0x80127D2C, "void CheckMissileCol__FiiiUciiUc(int i, int mindam, int maxdam, unsigned char shift, int mx, int my, int nodel)") del_items(0x8012846C) SetType(0x8012846C, "unsigned char GetTableValue__FUci(unsigned char code, int dir)") del_items(0x80128500) SetType(0x80128500, "void SetMissAnim__Fii(int mi, int animtype)") del_items(0x801285D0) SetType(0x801285D0, "void SetMissDir__Fii(int mi, int dir)") del_items(0x80128614) SetType(0x80128614, "void AddLArrow__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x801287F4) SetType(0x801287F4, "void AddArrow__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x801289B0) SetType(0x801289B0, "void GetVileMissPos__Fiii(int mi, int dx, int dy)") del_items(0x80128AD4) SetType(0x80128AD4, "void AddRndTeleport__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x80128E44) SetType(0x80128E44, "void AddFirebolt__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int micaster, int id, int dam)") del_items(0x801290B0) SetType(0x801290B0, "void AddMagmaball__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x801291C4) SetType(0x801291C4, "void AddTeleport__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x801293BC) SetType(0x801293BC, "void AddLightball__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x80129510) SetType(0x80129510, "void AddFirewall__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x801296F8) SetType(0x801296F8, "void AddFireball__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x80129954) SetType(0x80129954, "void AddLightctrl__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x80129A3C) SetType(0x80129A3C, "void AddLightning__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x80129C04) SetType(0x80129C04, "void AddMisexp__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x80129E10) SetType(0x80129E10, "unsigned char CheckIfTrig__Fii(int x, int y)") del_items(0x80129EF4) SetType(0x80129EF4, "void AddTown__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012A318) SetType(0x8012A318, "void AddFlash__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012A528) SetType(0x8012A528, "void AddFlash2__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012A708) SetType(0x8012A708, "void AddManashield__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012A7D0) SetType(0x8012A7D0, "void AddFiremove__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012A92C) SetType(0x8012A92C, "void AddGuardian__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012AD98) SetType(0x8012AD98, "void AddChain__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012ADF4) SetType(0x8012ADF4, "void AddRhino__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012AFB0) SetType(0x8012AFB0, "void AddFlare__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012B2A8) SetType(0x8012B2A8, "void AddAcid__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012B3AC) SetType(0x8012B3AC, "void AddAcidpud__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012B484) SetType(0x8012B484, "void AddStone__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012B77C) SetType(0x8012B77C, "void AddGolem__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012B934) SetType(0x8012B934, "void AddBoom__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012B9C8) SetType(0x8012B9C8, "void AddHeal__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012BBF0) SetType(0x8012BBF0, "void AddHealOther__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012BC58) SetType(0x8012BC58, "void AddElement__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012BE84) SetType(0x8012BE84, "void AddIdentify__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012BF34) SetType(0x8012BF34, "void AddFirewallC__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012C1E4) SetType(0x8012C1E4, "void AddInfra__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012C2E0) SetType(0x8012C2E0, "void AddWave__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012C364) SetType(0x8012C364, "void AddNova__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012C57C) SetType(0x8012C57C, "void AddRepair__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012C62C) SetType(0x8012C62C, "void AddRecharge__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012C6DC) SetType(0x8012C6DC, "void AddDisarm__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012C744) SetType(0x8012C744, "void AddApoca__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012C980) SetType(0x8012C980, "void AddFlame__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int seqno)") del_items(0x8012CB9C) SetType(0x8012CB9C, "void AddFlamec__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012CC8C) SetType(0x8012CC8C, "void AddCbolt__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int micaster, int id, int dam)") del_items(0x8012CE80) SetType(0x8012CE80, "void AddHbolt__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int micaster, int id, int dam)") del_items(0x8012D040) SetType(0x8012D040, "void AddResurrect__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012D0B4) SetType(0x8012D0B4, "void AddResurrectBeam__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012D13C) SetType(0x8012D13C, "void AddTelekinesis__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012D1A4) SetType(0x8012D1A4, "void AddBoneSpirit__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012D3A0) SetType(0x8012D3A0, "void AddRportal__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012D440) SetType(0x8012D440, "void AddDiabApoca__Fiiiiiicii(int mi, int sx, int sy, int dx, int dy, int midir, int mienemy, int id, int dam)") del_items(0x8012D57C) SetType(0x8012D57C, "int AddMissile__Fiiiiiiciii(int sx, int sy, int v1, int v2, int midir, int mitype, int micaster, int id, int v3, int spllvl)") del_items(0x8012D8C8) SetType(0x8012D8C8, "int Sentfire__Fiii(int i, int sx, int sy)") del_items(0x8012DAAC) SetType(0x8012DAAC, "void MI_Dummy__Fi(int i)") del_items(0x8012DAB4) SetType(0x8012DAB4, "void MI_Golem__Fi(int i)") del_items(0x8012DD10) SetType(0x8012DD10, "void MI_SetManashield__Fi(int i)") del_items(0x8012DD4C) SetType(0x8012DD4C, "void MI_LArrow__Fi(int i)") del_items(0x8012E508) SetType(0x8012E508, "void MI_Arrow__Fi(int i)") del_items(0x8012E724) SetType(0x8012E724, "void MI_Firebolt__Fi(int i)") del_items(0x8012EDF0) SetType(0x8012EDF0, "void MI_Lightball__Fi(int i)") del_items(0x8012F078) SetType(0x8012F078, "void MI_Acidpud__Fi(int i)") del_items(0x8012F188) SetType(0x8012F188, "void MI_Firewall__Fi(int i)") del_items(0x8012F44C) SetType(0x8012F44C, "void MI_Fireball__Fi(int i)") del_items(0x8012FE10) SetType(0x8012FE10, "void MI_Lightctrl__Fi(int i)") del_items(0x8013037C) SetType(0x8013037C, "void MI_Lightning__Fi(int i)") del_items(0x801304F8) SetType(0x801304F8, "void MI_Town__Fi(int i)") del_items(0x80130740) SetType(0x80130740, "void MI_Flash__Fi(int i)") del_items(0x80130B78) SetType(0x80130B78, "void MI_Flash2__Fi(int i)") del_items(0x80130DC0) SetType(0x80130DC0, "void MI_Manashield__Fi(int i)") del_items(0x801313C8) SetType(0x801313C8, "void MI_Firemove__Fi(int i)") del_items(0x80131804) SetType(0x80131804, "void MI_Guardian__Fi(int i)") del_items(0x80131BD0) SetType(0x80131BD0, "void MI_Chain__Fi(int i)") del_items(0x80131ECC) SetType(0x80131ECC, "void MI_Misexp__Fi(int i)") del_items(0x801321CC) SetType(0x801321CC, "void MI_Acidsplat__Fi(int i)") del_items(0x80132368) SetType(0x80132368, "void MI_Teleport__Fi(int i)") del_items(0x80132730) SetType(0x80132730, "void MI_Stone__Fi(int i)") del_items(0x801328DC) SetType(0x801328DC, "void MI_Boom__Fi(int i)") del_items(0x801329D4) SetType(0x801329D4, "void MI_Rhino__Fi(int i)") del_items(0x80132D80) SetType(0x80132D80, "void MI_FirewallC__Fi(int i)") del_items(0x801330E8) SetType(0x801330E8, "void MI_Infra__Fi(int i)") del_items(0x801331A0) SetType(0x801331A0, "void MI_Apoca__Fi(int i)") del_items(0x80133434) SetType(0x80133434, "void MI_Wave__Fi(int i)") del_items(0x80133930) SetType(0x80133930, "void MI_Nova__Fi(int i)") del_items(0x80133BF0) SetType(0x80133BF0, "void MI_Flame__Fi(int i)") del_items(0x80133DE8) SetType(0x80133DE8, "void MI_Flamec__Fi(int i)") del_items(0x80134070) SetType(0x80134070, "void MI_Cbolt__Fi(int i)") del_items(0x80134374) SetType(0x80134374, "void MI_Hbolt__Fi(int i)") del_items(0x80134680) SetType(0x80134680, "void MI_Element__Fi(int i)") del_items(0x80134D38) SetType(0x80134D38, "void MI_Bonespirit__Fi(int i)") del_items(0x80135140) SetType(0x80135140, "void MI_ResurrectBeam__Fi(int i)") del_items(0x801351B0) SetType(0x801351B0, "void MI_Rportal__Fi(int i)") del_items(0x801353D4) SetType(0x801353D4, "void ProcessMissiles__Fv()") del_items(0x801357C8) SetType(0x801357C8, "void ClearMissileSpot__Fi(int mi)") del_items(0x80135880) SetType(0x80135880, "void MoveToScrollTarget__7CBlocks(struct CBlocks *this)") del_items(0x80135894) SetType(0x80135894, "void MonstPartJump__Fi(int m)") del_items(0x80135A28) SetType(0x80135A28, "void DeleteMonster__Fi(int i)") del_items(0x80135A60) SetType(0x80135A60, "int M_GetDir__Fi(int i)") del_items(0x80135ABC) SetType(0x80135ABC, "void M_StartDelay__Fii(int i, int len)") del_items(0x80135B04) SetType(0x80135B04, "void M_StartRAttack__Fiii(int i, int missile_type, int dam)") del_items(0x80135C1C) SetType(0x80135C1C, "void M_StartRSpAttack__Fiii(int i, int missile_type, int dam)") del_items(0x80135D40) SetType(0x80135D40, "void M_StartSpAttack__Fi(int i)") del_items(0x80135E28) SetType(0x80135E28, "void M_StartEat__Fi(int i)") del_items(0x80135EF8) SetType(0x80135EF8, "void M_GetKnockback__Fi(int i)") del_items(0x801360D0) SetType(0x801360D0, "void M_StartHit__Fiii(int i, int pnum, int dam)") del_items(0x801363C8) SetType(0x801363C8, "void M_DiabloDeath__FiUc(int i, unsigned char sendmsg)") del_items(0x801366EC) SetType(0x801366EC, "void M2MStartHit__Fiii(int mid, int i, int dam)") del_items(0x80136998) SetType(0x80136998, "void MonstStartKill__FiiUc(int i, int pnum, unsigned char sendmsg)") del_items(0x80136C6C) SetType(0x80136C6C, "void M2MStartKill__Fii(int i, int mid)") del_items(0x80137034) SetType(0x80137034, "void M_StartKill__Fii(int i, int pnum)") del_items(0x80137124) SetType(0x80137124, "void M_StartFadein__FiiUc(int i, int md, unsigned char backwards)") del_items(0x80137278) SetType(0x80137278, "void M_StartFadeout__FiiUc(int i, int md, unsigned char backwards)") del_items(0x801373C0) SetType(0x801373C0, "void M_StartHeal__Fi(int i)") del_items(0x80137440) SetType(0x80137440, "void M_ChangeLightOffset__Fi(int monst)") del_items(0x801374E0) SetType(0x801374E0, "int M_DoStand__Fi(int i)") del_items(0x80137548) SetType(0x80137548, "int M_DoWalk__Fi(int i)") del_items(0x801377CC) SetType(0x801377CC, "int M_DoWalk2__Fi(int i)") del_items(0x801379B8) SetType(0x801379B8, "int M_DoWalk3__Fi(int i)") del_items(0x80137C7C) SetType(0x80137C7C, "void M_TryM2MHit__Fiiiii(int i, int mid, int hper, int mind, int maxd)") del_items(0x80137E44) SetType(0x80137E44, "void M_TryH2HHit__Fiiiii(int i, int pnum, int Hit, int MinDam, int MaxDam)") del_items(0x80138458) SetType(0x80138458, "int M_DoAttack__Fi(int i)") del_items(0x801385FC) SetType(0x801385FC, "int M_DoRAttack__Fi(int i)") del_items(0x80138774) SetType(0x80138774, "int M_DoRSpAttack__Fi(int i)") del_items(0x80138964) SetType(0x80138964, "int M_DoSAttack__Fi(int i)") del_items(0x80138A38) SetType(0x80138A38, "int M_DoFadein__Fi(int i)") del_items(0x80138B08) SetType(0x80138B08, "int M_DoFadeout__Fi(int i)") del_items(0x80138C1C) SetType(0x80138C1C, "int M_DoHeal__Fi(int i)") del_items(0x80138CC8) SetType(0x80138CC8, "int M_DoTalk__Fi(int i)") del_items(0x80139134) SetType(0x80139134, "void M_Teleport__Fi(int i)") del_items(0x80139368) SetType(0x80139368, "int M_DoGotHit__Fi(int i)") del_items(0x801393C8) SetType(0x801393C8, "void DoEnding__Fv()") del_items(0x80139474) SetType(0x80139474, "void PrepDoEnding__Fv()") del_items(0x80139598) SetType(0x80139598, "int M_DoDeath__Fi(int i)") del_items(0x80139768) SetType(0x80139768, "int M_DoSpStand__Fi(int i)") del_items(0x8013980C) SetType(0x8013980C, "int M_DoDelay__Fi(int i)") del_items(0x801398FC) SetType(0x801398FC, "int M_DoStone__Fi(int i)") del_items(0x80139980) SetType(0x80139980, "void M_WalkDir__Fii(int i, int md)") del_items(0x80139BA8) SetType(0x80139BA8, "void GroupUnity__Fi(int i)") del_items(0x80139F94) SetType(0x80139F94, "unsigned char M_CallWalk__Fii(int i, int md)") del_items(0x8013A180) SetType(0x8013A180, "unsigned char M_PathWalk__Fi(int i, char plr2monst[9], unsigned char (*Check)())") del_items(0x8013A244) SetType(0x8013A244, "unsigned char M_CallWalk2__Fii(int i, int md)") del_items(0x8013A358) SetType(0x8013A358, "unsigned char M_DumbWalk__Fii(int i, int md)") del_items(0x8013A3AC) SetType(0x8013A3AC, "unsigned char M_RoundWalk__FiiRi(int i, int md, int *dir)") del_items(0x8013A54C) SetType(0x8013A54C, "void MAI_Zombie__Fi(int i)") del_items(0x8013A744) SetType(0x8013A744, "void MAI_SkelSd__Fi(int i)") del_items(0x8013A8DC) SetType(0x8013A8DC, "void MAI_Snake__Fi(int i)") del_items(0x8013ACC0) SetType(0x8013ACC0, "void MAI_Bat__Fi(int i)") del_items(0x8013B078) SetType(0x8013B078, "void MAI_SkelBow__Fi(int i)") del_items(0x8013B25C) SetType(0x8013B25C, "void MAI_Fat__Fi(int i)") del_items(0x8013B40C) SetType(0x8013B40C, "void MAI_Sneak__Fi(int i)") del_items(0x8013B7F8) SetType(0x8013B7F8, "void MAI_Fireman__Fi(int i)") del_items(0x8013BAF0) SetType(0x8013BAF0, "void MAI_Fallen__Fi(int i)") del_items(0x8013BE0C) SetType(0x8013BE0C, "void MAI_Cleaver__Fi(int i)") del_items(0x8013BEF4) SetType(0x8013BEF4, "void MAI_Round__FiUc(int i, unsigned char special)") del_items(0x8013C360) SetType(0x8013C360, "void MAI_GoatMc__Fi(int i)") del_items(0x8013C380) SetType(0x8013C380, "void MAI_Ranged__FiiUc(int i, int missile_type, unsigned char special)") del_items(0x8013C5A0) SetType(0x8013C5A0, "void MAI_GoatBow__Fi(int i)") del_items(0x8013C5C4) SetType(0x8013C5C4, "void MAI_Succ__Fi(int i)") del_items(0x8013C5E8) SetType(0x8013C5E8, "void MAI_AcidUniq__Fi(int i)") del_items(0x8013C60C) SetType(0x8013C60C, "void MAI_Scav__Fi(int i)") del_items(0x8013CA24) SetType(0x8013CA24, "void MAI_Garg__Fi(int i)") del_items(0x8013CC04) SetType(0x8013CC04, "void MAI_RoundRanged__FiiUciUc(int i, int missile_type, unsigned char checkdoors, int dam, int lessmissiles)") del_items(0x8013D118) SetType(0x8013D118, "void MAI_Magma__Fi(int i)") del_items(0x8013D144) SetType(0x8013D144, "void MAI_Storm__Fi(int i)") del_items(0x8013D170) SetType(0x8013D170, "void MAI_Acid__Fi(int i)") del_items(0x8013D1A0) SetType(0x8013D1A0, "void MAI_Diablo__Fi(int i)") del_items(0x8013D1CC) SetType(0x8013D1CC, "void MAI_RR2__Fiii(int i, int mistype, int dam)") del_items(0x8013D6CC) SetType(0x8013D6CC, "void MAI_Mega__Fi(int i)") del_items(0x8013D6F0) SetType(0x8013D6F0, "void MAI_SkelKing__Fi(int i)") del_items(0x8013DC2C) SetType(0x8013DC2C, "void MAI_Rhino__Fi(int i)") del_items(0x8013E0D4) SetType(0x8013E0D4, "void MAI_Counselor__Fi(int i, unsigned char counsmiss[4], int _mx, int _my)") del_items(0x8013E5A0) SetType(0x8013E5A0, "void MAI_Garbud__Fi(int i)") del_items(0x8013E750) SetType(0x8013E750, "void MAI_Zhar__Fi(int i)") del_items(0x8013E948) SetType(0x8013E948, "void MAI_SnotSpil__Fi(int i)") del_items(0x8013EB7C) SetType(0x8013EB7C, "void MAI_Lazurus__Fi(int i)") del_items(0x8013EDF4) SetType(0x8013EDF4, "void MAI_Lazhelp__Fi(int i)") del_items(0x8013EF14) SetType(0x8013EF14, "void MAI_Lachdanan__Fi(int i)") del_items(0x8013F0A4) SetType(0x8013F0A4, "void MAI_Warlord__Fi(int i)") del_items(0x8013F1F0) SetType(0x8013F1F0, "void DeleteMonsterList__Fv()") del_items(0x8013F30C) SetType(0x8013F30C, "void ProcessMonsters__Fv()") del_items(0x8013F894) SetType(0x8013F894, "unsigned char DirOK__Fii(int i, int mdir)") del_items(0x8013FC7C) SetType(0x8013FC7C, "unsigned char PosOkMissile__Fii(int x, int y)") del_items(0x8013FCE4) SetType(0x8013FCE4, "unsigned char CheckNoSolid__Fii(int x, int y)") del_items(0x8013FD28) SetType(0x8013FD28, "unsigned char LineClearF__FPFii_Uciiii(unsigned char (*Clear)(), int x1, int y1, int x2, int y2)") del_items(0x8013FFB0) SetType(0x8013FFB0, "unsigned char LineClear__Fiiii(int x1, int y1, int x2, int y2)") del_items(0x8013FFF0) SetType(0x8013FFF0, "unsigned char LineClearF1__FPFiii_Uciiiii(unsigned char (*Clear)(), int monst, int x1, int y1, int x2, int y2)") del_items(0x80140284) SetType(0x80140284, "void M_FallenFear__Fii(int x, int y)") del_items(0x80140454) SetType(0x80140454, "void PrintMonstHistory__Fi(int mt)") del_items(0x8014067C) SetType(0x8014067C, "void PrintUniqueHistory__Fv()") del_items(0x801407A0) SetType(0x801407A0, "void MissToMonst__Fiii(int i, int x, int y)") del_items(0x80140C04) SetType(0x80140C04, "unsigned char PosOkMonst2__Fiii(int i, int x, int y)") del_items(0x80140E20) SetType(0x80140E20, "unsigned char PosOkMonst3__Fiii(int i, int x, int y)") del_items(0x80141114) SetType(0x80141114, "int M_SpawnSkel__Fiii(int x, int y, int dir)") del_items(0x8014126C) SetType(0x8014126C, "void TalktoMonster__Fi(int i)") del_items(0x8014138C) SetType(0x8014138C, "void SpawnGolum__Fiiii(int i, int x, int y, int mi)") del_items(0x801415E4) SetType(0x801415E4, "unsigned char CanTalkToMonst__Fi(int m)") del_items(0x8014161C) SetType(0x8014161C, "unsigned char CheckMonsterHit__FiRUc(int m, unsigned char *ret)") del_items(0x801416E8) SetType(0x801416E8, "void MAI_Golum__Fi(int i)") del_items(0x80141A5C) SetType(0x80141A5C, "unsigned char MAI_Path__Fi(int i)") del_items(0x80141BC0) SetType(0x80141BC0, "void M_StartAttack__Fi(int i)") del_items(0x80141CA8) SetType(0x80141CA8, "void M_StartWalk__Fiiiiii(int i, int xvel, int yvel, int xadd, int yadd, int EndDir)") del_items(0x80141E08) SetType(0x80141E08, "void FreeInvGFX__Fv()") del_items(0x80141E10) SetType(0x80141E10, "void InvDrawSlot__Fiii(int X, int Y, int Frame)") del_items(0x80141E94) SetType(0x80141E94, "void InvDrawSlotBack__FiiiiUc(int X, int Y, int W, int H, int Flag)") del_items(0x801420E8) SetType(0x801420E8, "void InvDrawItem__FiiiUci(int ItemX, int ItemY, int ItemNo, unsigned char StatFlag, int TransFlag)") del_items(0x801421B8) SetType(0x801421B8, "void InvDrawSlots__Fv()") del_items(0x80142490) SetType(0x80142490, "void PrintStat__FiiPcUc(int Y, int Txt0, char *Txt1, unsigned char Col)") del_items(0x8014255C) SetType(0x8014255C, "void DrawInvStats__Fv()") del_items(0x801430E8) SetType(0x801430E8, "void DrawInvBack__Fv()") del_items(0x80143170) SetType(0x80143170, "void DrawInvCursor__Fv()") del_items(0x8014364C) SetType(0x8014364C, "void DrawInvMsg__Fv()") del_items(0x80143814) SetType(0x80143814, "void DrawInvUnique__Fv()") del_items(0x80143938) SetType(0x80143938, "void DrawInv__Fv()") del_items(0x80143978) SetType(0x80143978, "void DrawInvTSK__FP4TASK(struct TASK *T)") del_items(0x80143CA8) SetType(0x80143CA8, "void DoThatDrawInv__Fv()") del_items(0x80144470) SetType(0x80144470, "unsigned char AutoPlace__FiiiiUc(int pnum, int ii, int sx, int sy, int saveflag)") del_items(0x80144790) SetType(0x80144790, "unsigned char SpecialAutoPlace__FiiiiUc(int pnum, int ii, int sx, int sy, int saveflag)") del_items(0x80144B2C) SetType(0x80144B2C, "unsigned char GoldAutoPlace__Fi(int pnum)") del_items(0x80144FFC) SetType(0x80144FFC, "unsigned char WeaponAutoPlace__Fi(int pnum)") del_items(0x80145288) SetType(0x80145288, "int SwapItem__FP10ItemStructT0(struct ItemStruct *a, struct ItemStruct *b)") del_items(0x80145384) SetType(0x80145384, "void CheckInvPaste__Fiii(int pnum, int mx, int my)") del_items(0x80147070) SetType(0x80147070, "void CheckInvCut__Fiii(int pnum, int mx, int my)") del_items(0x80147B20) SetType(0x80147B20, "void RemoveInvItem__Fii(int pnum, int iv)") del_items(0x80147DC8) SetType(0x80147DC8, "void RemoveSpdBarItem__Fii(int pnum, int iv)") del_items(0x80147EC8) SetType(0x80147EC8, "void CheckInvScrn__Fv()") del_items(0x80147F40) SetType(0x80147F40, "void CheckItemStats__Fi(int pnum)") del_items(0x80147FC4) SetType(0x80147FC4, "void CheckBookLevel__Fi(int pnum)") del_items(0x801480F8) SetType(0x801480F8, "void CheckQuestItem__Fi(int pnum)") del_items(0x80148520) SetType(0x80148520, "void InvGetItem__Fii(int pnum, int ii)") del_items(0x8014881C) SetType(0x8014881C, "void AutoGetItem__Fii(int pnum, int ii)") del_items(0x8014928C) SetType(0x8014928C, "int FindGetItem__FiUsi(int idx, unsigned short ci, int iseed)") del_items(0x80149340) SetType(0x80149340, "void SyncGetItem__FiiiUsi(int x, int y, int idx, unsigned short ci, int iseed)") del_items(0x801494CC) SetType(0x801494CC, "unsigned char TryInvPut__Fv()") del_items(0x80149694) SetType(0x80149694, "int InvPutItem__Fiii(int pnum, int x, int y)") del_items(0x80149B3C) SetType(0x80149B3C, "int SyncPutItem__FiiiiUsiUciiiiiUl(int pnum, int x, int y, int idx, int icreateinfo, int iseed, int Id, int dur, int mdur, int ch, int mch, int ivalue, unsigned long ibuff)") del_items(0x8014A098) SetType(0x8014A098, "char CheckInvHLight__Fv()") del_items(0x8014A3E0) SetType(0x8014A3E0, "void RemoveScroll__Fi(int pnum)") del_items(0x8014A5C4) SetType(0x8014A5C4, "unsigned char UseScroll__Fv()") del_items(0x8014A82C) SetType(0x8014A82C, "void UseStaffCharge__FP12PlayerStruct(struct PlayerStruct *ptrplr)") del_items(0x8014A894) SetType(0x8014A894, "unsigned char UseStaff__Fv()") del_items(0x8014A954) SetType(0x8014A954, "void StartGoldDrop__Fv()") del_items(0x8014AA50) SetType(0x8014AA50, "unsigned char UseInvItem__Fii(int pnum, int cii)") del_items(0x8014AF74) SetType(0x8014AF74, "void DoTelekinesis__Fv()") del_items(0x8014B09C) SetType(0x8014B09C, "long CalculateGold__Fi(int pnum)") del_items(0x8014B1D4) SetType(0x8014B1D4, "unsigned char DropItemBeforeTrig__Fv()") del_items(0x8014B22C) SetType(0x8014B22C, "void ControlInv__Fv()") del_items(0x8014B50C) SetType(0x8014B50C, "void InvGetItemWH__Fi(int Pos)") del_items(0x8014B600) SetType(0x8014B600, "void InvAlignObject__Fv()") del_items(0x8014B7B4) SetType(0x8014B7B4, "void InvSetItemCurs__Fv()") del_items(0x8014B948) SetType(0x8014B948, "void InvMoveCursLeft__Fv()") del_items(0x8014BB34) SetType(0x8014BB34, "void InvMoveCursRight__Fv()") del_items(0x8014BE5C) SetType(0x8014BE5C, "void InvMoveCursUp__Fv()") del_items(0x8014C054) SetType(0x8014C054, "void InvMoveCursDown__Fv()") del_items(0x8014C37C) SetType(0x8014C37C, "void DumpMonsters__7CBlocks(struct CBlocks *this)") del_items(0x8014C3A4) SetType(0x8014C3A4, "void Flush__4CPad(struct CPad *this)") del_items(0x8014C3C8) SetType(0x8014C3C8, "void SetRGB__6DialogUcUcUc(struct Dialog *this, unsigned char R, unsigned char G, unsigned char B)") del_items(0x8014C3E8) SetType(0x8014C3E8, "void SetBack__6Dialogi(struct Dialog *this, int Type)") del_items(0x8014C3F0) SetType(0x8014C3F0, "void SetBorder__6Dialogi(struct Dialog *this, int Type)") del_items(0x8014C3F8) SetType(0x8014C3F8, "int SetOTpos__6Dialogi(struct Dialog *this, int OT)") del_items(0x8014C404) SetType(0x8014C404, "void ___6Dialog(struct Dialog *this, int __in_chrg)") del_items(0x8014C42C) SetType(0x8014C42C, "struct Dialog *__6Dialog(struct Dialog *this)") del_items(0x8014C488) SetType(0x8014C488, "void StartAutomap__Fv()") del_items(0x8014C4A0) SetType(0x8014C4A0, "void AutomapUp__Fv()") del_items(0x8014C4B8) SetType(0x8014C4B8, "void AutomapDown__Fv()") del_items(0x8014C4D0) SetType(0x8014C4D0, "void AutomapLeft__Fv()") del_items(0x8014C4E8) SetType(0x8014C4E8, "void AutomapRight__Fv()") del_items(0x8014C500) SetType(0x8014C500, "struct LINE_F2 *AMGetLine__FUcUcUc(unsigned char R, unsigned char G, unsigned char B)") del_items(0x8014C5AC) SetType(0x8014C5AC, "void AmDrawLine__Fiiii(int x0, int y0, int x1, int y1)") del_items(0x8014C614) SetType(0x8014C614, "void AmDrawPlayer__Fiiii(int x0, int y0, int x1, int y1)") del_items(0x8014C67C) SetType(0x8014C67C, "void DrawAutomapPlr__Fv()") del_items(0x8014CA00) SetType(0x8014CA00, "void DrawAutoMapVertWall__Fiii(int X, int Y, int Length)") del_items(0x8014CAD4) SetType(0x8014CAD4, "void DrawAutoMapHorzWall__Fiii(int X, int Y, int Length)") del_items(0x8014CBA8) SetType(0x8014CBA8, "void DrawAutoMapVertDoor__Fii(int X, int Y)") del_items(0x8014CD7C) SetType(0x8014CD7C, "void DrawAutoMapHorzDoor__Fii(int X, int Y)") del_items(0x8014CF54) SetType(0x8014CF54, "void DrawAutoMapVertGrate__Fii(int X, int Y)") del_items(0x8014D008) SetType(0x8014D008, "void DrawAutoMapHorzGrate__Fii(int X, int Y)") del_items(0x8014D0BC) SetType(0x8014D0BC, "void DrawAutoMapSquare__Fii(int X, int Y)") del_items(0x8014D204) SetType(0x8014D204, "void DrawAutoMapStairs__Fii(int X, int Y)") del_items(0x8014D404) SetType(0x8014D404, "void DrawAutomap__Fv()") del_items(0x8014D820) SetType(0x8014D820, "void PRIM_GetPrim__FPP7LINE_F2(struct LINE_F2 **Prim)")
83910
from shadowlands.sl_dapp import SLDapp, SLFrame import pyperclip, os import schedule from shadowlands.tui.debug import debug import pdb class NetworkConnection(SLDapp): def initialize(self): self.add_sl_frame( NetworkStrategies(self, 10, 26, title="Network Options")) self.connection_strategy = None def attempt_connection(self): fn = self._interface.node.__getattribute__(self.conn_fn) self._interface.node.thread_shutdown = True self._interface.node.heartbeat_thread.join() self._interface.node.thread_shutdown = False try: if len(self.args) > 0: return fn(self.args) else: return fn() except StaleBlockchain: self._scene.add_effect( MessageDialog(self._screen, "Stale blockchain on selected Node")) return self._interface.node.start_heartbeat_thread() class NetworkStrategies(SLFrame): def initialize(self): options = [ ('Local node', 'connect_w3_local'), ('Custom infura', 'connect_w3_custom_infura'), ('Custom http', 'connect_w3_custom_http'), ('Custom websocket', 'connect_w3_custom_websocket'), ('Custom ipc', 'connect_w3_custom_ipc'), ] self.listbox_value = self.add_listbox( 5, options, on_select=self._select #default_value=self.dapp.config.connection_strategy ) self.add_button(self.close, "Cancel") def _select(self): connect_fn = self.listbox_value() self.dapp.connection_strategy = connect_fn if connect_fn == 'connect_w3_custom_http': self.dapp.add_sl_frame(CustomHttpUri(self.dapp, 5, 30, title="Custom Http URI")) elif connect_fn == 'connect_w3_custom_ipc': self.dapp.add_sl_frame(CustomIpc(self.dapp, 5, 30, title="Custom IPC path")) elif connect_fn == 'connect_w3_custom_websocket': self.dapp.add_sl_frame(CustomWebsocket(self.dapp, 5, 30, title="Custom Websocket URI")) elif connect_fn == 'connect_w3_custom_infura': self.dapp.add_sl_frame(CustomInfura(self.dapp, 12, 45, title="Custom Infura Credentials")) self.close() class CustomInfura(SLFrame): def initialize(self): self.add_divider() self.add_label(" WEB3_INFURA_PROJECT_ID") self.id_value = self.add_textbox( '', default_value=os.environ.get('WEB3_INFURA_PROJECT_ID') ) self.add_label(" WEB3_INFURA_API_SECRET") self.secret_value = self.add_textbox( '', default_value=os.environ.get('WEB3_INFURA_API_SECRET') ) self.add_button_row( [ ("Connect", self._connect, 0), ("Cancel", self.close, 3) ] ) def _connect(self): id_value = self.id_value() secret_value = self.secret_value() self.dapp.config.connection_args = (self.id_value(), self.secret_value()) self.dapp.config.connection_strategy = self.dapp.connection_strategy #debug(); pdb.set_trace() schedule.once().do(self.dapp.node.poll) self.close() class CustomHttpUri(SLFrame): def initialize(self): self.add_label("Ex: http://192.168.1.150:8545") self.text_value = self.add_textbox() self.add_button(self.close,"Cancel") class CustomIpc(SLFrame): def initialize(self): self.add_label("Ex: http://192.168.1.150:8545") self.text_value = self.add_textbox() self.add_button(self.close,"Cancel") class CustomWebsocket(SLFrame): def initialize(self): self.add_label("Ex: http://192.168.1.150:8545") self.text_value = self.add_textbox() self.add_button(self.close,"Cancel")
83936
from math import sqrt, pow, sin, pi, cos from jmetal.core.problem import FloatProblem from jmetal.core.solution import FloatSolution """ .. module:: ZDT :platform: Unix, Windows :synopsis: ZDT problem family of multi-objective problems. .. moduleauthor:: <NAME> <<EMAIL>> """ class ZDT1(FloatProblem): """ Problem ZDT1. .. note:: Bi-objective unconstrained problem. The default number of variables is 30. .. note:: Continuous problem having a convex Pareto front """ def __init__(self, number_of_variables: int=30): """ :param number_of_variables: Number of decision variables of the problem. """ super(ZDT1, self).__init__() self.number_of_variables = number_of_variables self.number_of_objectives = 2 self.number_of_constraints = 0 self.obj_directions = [self.MINIMIZE, self.MINIMIZE] self.obj_labels = ['x', 'y'] self.lower_bound = self.number_of_variables * [0.0] self.upper_bound = self.number_of_variables * [1.0] def evaluate(self, solution: FloatSolution) -> FloatSolution: g = self.eval_g(solution) h = self.eval_h(solution.variables[0], g) solution.objectives[0] = solution.variables[0] solution.objectives[1] = h * g return solution def eval_g(self, solution: FloatSolution): g = sum(solution.variables) - solution.variables[0] constant = 9.0 / (solution.number_of_variables - 1) return constant * g + 1.0 def eval_h(self, f: float, g: float) -> float: return 1.0 - sqrt(f / g) def get_name(self): return 'ZDT1' class ZDT1Modified(ZDT1): """ Problem ZDT1Modified. .. note:: Version including a loop for increasing the computing time of the evaluation functions. """ def __init__(self, number_of_variables = 30): super(ZDT1Modified, self).__init__(number_of_variables) def evaluate(self, solution:FloatSolution) -> FloatSolution: s: float = 0.0 for i in range(1000): for j in range(10000): s += i * 0.235 / 1.234 + 1.23525 * j return super().evaluate(solution) class ZDT2(ZDT1): """ Problem ZDT2. .. note:: Bi-objective unconstrained problem. The default number of variables is 30. .. note:: Continuous problem having a non-convex Pareto front """ def eval_h(self, f: float, g: float) -> float: return 1.0 - pow(f / g, 2.0) def get_name(self): return 'ZDT2' class ZDT3(ZDT1): """ Problem ZDT3. .. note:: Bi-objective unconstrained problem. The default number of variables is 30. .. note:: Continuous problem having a partitioned Pareto front """ def eval_h(self, f: float, g: float) -> float: return 1.0 - sqrt(f / g) - (f / g) * sin(10.0 * f * pi) def get_name(self): return 'ZDT3' class ZDT4(ZDT1): """ Problem ZDT4. .. note:: Bi-objective unconstrained problem. The default number of variables is 10. .. note:: Continuous multi-modal problem having a convex Pareto front """ def __init__(self, number_of_variables: int=10): """ :param number_of_variables: Number of decision variables of the problem. """ super(ZDT4, self).__init__(number_of_variables=number_of_variables) self.lower_bound = self.number_of_variables * [-5.0] self.upper_bound = self.number_of_variables * [5.0] self.lower_bound[0] = 0.0 self.upper_bound[0] = 1.0 def eval_g(self, solution: FloatSolution): g = 0.0 for i in range(1, solution.number_of_variables): g += pow(solution.variables[i], 2.0) - 10.0 * cos(4.0 * pi * solution.variables[i]) g += 1.0 + 10.0 * (solution.number_of_variables - 1) return g def eval_h(self, f: float, g: float) -> float: return 1.0 - sqrt(f / g) def get_name(self): return 'ZDT4' class ZDT6(ZDT1): """ Problem ZDT6. .. note:: Bi-objective unconstrained problem. The default number of variables is 10. .. note:: Continuous problem having a non-convex Pareto front """ def __init__(self, number_of_variables: int=10): """ :param number_of_variables: Number of decision variables of the problem. """ super(ZDT6, self).__init__(number_of_variables=number_of_variables) def eval_g(self, solution: FloatSolution): g = sum(solution.variables) - solution.variables[0] g = g / (solution.number_of_variables - 1) g = pow(g, 0.25) g = 9.0 * g g = 1.0 + g return g def eval_h(self, f: float, g: float) -> float: return 1.0 - pow(f / g, 2.0) def get_name(self): return 'ZDT6'
83983
from invoke import task from tasks.changelog_check import changelog_check from tasks.lint import lint from tasks.test import test from tasks.typecheck import typecheck @task(post=[changelog_check, lint, typecheck, test]) def verify(_ctx): """Run all verification steps."""
84069
import matplotlib matplotlib.use('Agg') import argparse import tkinter as tk import torch from isegm.utils import exp from isegm.inference import utils from interactive_demo.app import InteractiveDemoApp def main(): args, cfg = parse_args() torch.backends.cudnn.deterministic = True checkpoint_path = utils.find_checkpoint(cfg.INTERACTIVE_MODELS_PATH, args.checkpoint) model = utils.load_is_model(checkpoint_path, args.device, cpu_dist_maps=True) root = tk.Tk() root.minsize(960, 480) app = InteractiveDemoApp(root, args, model) root.deiconify() app.mainloop() def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', type=str, required=True, help='The path to the checkpoint. ' 'This can be a relative path (relative to cfg.INTERACTIVE_MODELS_PATH) ' 'or an absolute path. The file extension can be omitted.') parser.add_argument('--gpu', type=int, default=0, help='Id of GPU to use.') parser.add_argument('--cpu', action='store_true', default=False, help='Use only CPU for inference.') parser.add_argument('--limit-longest-size', type=int, default=800, help='If the largest side of an image exceeds this value, ' 'it is resized so that its largest side is equal to this value.') parser.add_argument('--cfg', type=str, default="config.yml", help='The path to the config file.') args = parser.parse_args() if args.cpu: args.device =torch.device('cpu') else: args.device = torch.device(f'cuda:{args.gpu}') cfg = exp.load_config_file(args.cfg, return_edict=True) return args, cfg if __name__ == '__main__': main()
84085
from indexd import get_app import os os.environ["INDEXD_SETTINGS"] = "/var/www/indexd/" application = get_app()
84106
from typing import Tuple import torch from torch import nn class MixUp(nn.Module): r""" Implementation of mixup: BEYOND EMPIRICAL RISK MINIMIZATION (https://arxiv.org/abs/1710.09412) Official implementation: https://github.com/facebookresearch/mixup-cifar10 Note: Can sit inside a model as a method or be used in the training loop without initialization """ def __init__(self, alpha: float) -> None: super().__init__() self.alpha = alpha # Cache self.lambda_scale = -1. self.y = torch.empty() self.y_perm = torch.empty() @property def lambda_scale(self) -> float: return self.lambda_scale @property def y(self) -> torch.Tensor: return self.y @property def y_perm(self) -> torch.Tensor: return self.y_perm def reset_cache(self) -> None: self.lambda_scale = -1. self.y = torch.empty() self.y_perm = torch.empty() def forward(self, x: torch.Tensor, y: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, float]: r""" x (b, ...): a minibatch of input data from dataset y (b, ...): a minibatch of labels from dataset """ out, self.y, self.y_perm, self.lambda_scale = self.mix(x, y, self.alpha, self.training) return out def get_loss(self, criterion: nn.Module, y_logit: torch.Tensor) -> torch.Tensor: r""" Don't forget to call this function after forward propagations. Will reset the cache after getting the loss. """ loss = self.loss(criterion, y_logit, self.y, self.y_perm, self.lambda_scale) self.reset_cache() return loss @staticmethod def mix(x: torch.Tensor, y: torch.Tensor, alpha: float, is_training: bool = True) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, float]: r""" x (b, ...): torch.Tensor - A minibatch of input data from dataset y (b, ...): torch.Tensor - A minibatch of labels from dataset alpha: float is_training: bool - Default: True """ if not is_training: return (x, y) b: int = x.shape[0] perm_indices: torch.Tensor = torch.randperm(b, device=x.device) lambda_scale: float = torch.distributions.beta(alpha, alpha) if alpha > 0. else 1. x = lambda_scale*x + (1. - lambda_scale)*x.index_select(dim=0, index=perm_indices) y_perm = y.index_select(dim=0, index=perm_indices) return (x, y, y_perm, lambda_scale) @staticmethod def loss( criterion: nn.Module, y_logit: torch.Tensor, y: torch.Tensor, y_perm: torch.Tensor, lambda_scale: float ) -> torch.Tensor: return lambda_scale*criterion(y_logit, y) + (1. - lambda_scale)*criterion(y_logit, y_perm)
84132
from profil3r.app.search import search_get from bs4 import BeautifulSoup import time class Hackernews: def __init__(self, config, permutations_list): # 1000 ms self.delay = config['plateform']['hackernews']['rate_limit'] / 1000 # https://news.ycombinator.com/user?id={username} self.format = config['plateform']['hackernews']['format'] self.permutations_list = permutations_list # Forum self.type = config['plateform']['hackernews']['type'] # Generate all potential hackernews usernames def possible_usernames(self): possible_usernames = [] for permutation in self.permutations_list: possible_usernames.append(self.format.format( permutation = permutation, )) return possible_usernames def search(self): hackernews_usernames = { "type": self.type, "accounts": [] } possible_usernames_list = self.possible_usernames() for username in possible_usernames_list: r = search_get(username) if not r: continue # If the account exists if r.text.find("No such user.") != 0: # Account object account = {} # Get the username account["value"] = username # Parse HTML response content with beautiful soup soup = BeautifulSoup(r.text, 'html.parser') # Scrape the user informations try: user_creation_date = str(soup.find_all("table")[2].find_all("td")[3].get_text()) if soup.find_all("table") else None user_karma = str(soup.find_all("table")[2].find_all("td")[5].get_text()) if soup.find_all("table") else None account["creation_date"] = {"name": "Creation Date", "value": user_creation_date} account["karma"] = {"name": "Karma", "value": user_karma} except: pass # Append the account to the accounts table hackernews_usernames["accounts"].append(account) time.sleep(self.delay) return hackernews_usernames
84156
import FWCore.ParameterSet.Config as cms process = cms.Process("PROD1") process.source = cms.Source("IntSource") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(3) ) process.out = cms.OutputModule("PoolOutputModule", fileName = cms.untracked.string('testEdmProvDump.root'), outputCommands = cms.untracked.vstring( 'keep *', 'drop *_intProducerA_*_*' ) ) process.a1 = cms.EDAnalyzer("TestFindProduct", inputTags = cms.untracked.VInputTag( cms.InputTag("source") ), expectedSum = cms.untracked.int32(12), inputTagsNotFound = cms.untracked.VInputTag( cms.InputTag("source", processName=cms.InputTag.skipCurrentProcess()), cms.InputTag("intProducer", processName=cms.InputTag.skipCurrentProcess()), cms.InputTag("intProducerU", processName=cms.InputTag.skipCurrentProcess()) ) ) process.a2 = cms.EDAnalyzer("TestFindProduct", inputTags = cms.untracked.VInputTag( cms.InputTag("intProducerA") ), expectedSum = cms.untracked.int32(300) ) process.a3 = cms.EDAnalyzer("TestFindProduct", inputTags = cms.untracked.VInputTag( cms.InputTag("aliasForInt") ), expectedSum = cms.untracked.int32(300) ) process.intProducer = cms.EDProducer("IntProducer", ivalue = cms.int32(1)) process.intProducerU = cms.EDProducer("IntProducer", ivalue = cms.int32(10)) process.intProducerA = cms.EDProducer("IntProducer", ivalue = cms.int32(100)) process.aliasForInt = cms.EDAlias( intProducerA = cms.VPSet( cms.PSet(type = cms.string('edmtestIntProduct') ) ) ) process.intVectorProducer = cms.EDProducer("IntVectorProducer", count = cms.int32(9), ivalue = cms.int32(11) ) process.t = cms.Task(process.intProducerU, process.intProducerA, process.intVectorProducer) process.p = cms.Path(process.intProducer * process.a1 * process.a2 * process.a3, process.t) process.e = cms.EndPath(process.out)
84180
import warnings warnings.warn("pandas.types.common is deprecated and will be " "removed in a future version, import " "from pandas.api.types", DeprecationWarning, stacklevel=3) from pandas.core.dtypes.common import * # noqa
84182
from carla_utils import carla DestroyActor = carla.command.DestroyActor import weakref from typing import Dict from ..system import debug from ..basic import flatten_list from .sensor_callback import RawCallback, DefaultCallback from .sensor_create import create_sensor, create_sensor_command def createSensorListMaster(core, vehicle, sensors_param_list): client, world = core.client, core.world blueprint_library = world.get_blueprint_library() batch = [create_sensor_command(core, vehicle, blueprint_library, config) for config in sensors_param_list] sensor_ids = [] for response in client.apply_batch_sync(batch): if response.error: raise RuntimeError('spawn sensor failed: ' + response.error) else: sensor_ids.append(response.actor_id) sensors = world.get_actors(sensor_ids) sensors_master = CarlaSensorListMaster(core, vehicle) for sensor, config in zip(sensors, sensors_param_list): transform, callback = config['transform'], config.get('callback', None) sensors_master.append(sensor, transform, callback) return sensors_master def createSensorListMasters(core, vehicles, sensors_param_lists): client, world = core.client, core.world blueprint_library = world.get_blueprint_library() sensors_master_dict = {vehicle.id: CarlaSensorListMaster(core, vehicle) for vehicle in vehicles} batch = [] for vehicle, sensors_param_list in zip(vehicles, sensors_param_lists): batch.extend([create_sensor_command(core, vehicle, blueprint_library, config) for config in sensors_param_list]) sensor_ids = [] for response in client.apply_batch_sync(batch): if response.error: raise RuntimeError('spawn sensor failed: ' + response.error) else: sensor_ids.append(response.actor_id) sensors = world.get_actors(sensor_ids) sensors_param_list = flatten_list(sensors_param_lists) for sensor, config in zip(sensors, sensors_param_list): transform, callback = config['transform'], config.get('callback', None) sensors_master_dict[sensor.parent.id].append(sensor, transform, callback) return list(sensors_master_dict.values()) class CarlaSensorListMaster(object): def __init__(self, core, vehicle): self.world, self.vehicle = core.world, vehicle self.sensor_list = [] self.sensor_dict: Dict[tuple, CarlaSensorMaster] = dict() '''camera''' self._cameras = [] self.current_camera_index = 0 def append(self, sensor, transform, callback): sensor_master = CarlaSensorMaster(sensor, transform, callback) self.sensor_list.append(sensor_master) self.sensor_dict[(sensor.type_id, sensor.attributes['role_name'])] = sensor_master if sensor_master.type_id == 'sensor.camera.rgb' \ or sensor_master.type_id == 'sensor.camera.semantic_segmentation': self._cameras.append(sensor_master) # ## disable currently # def reset(self): # [sensor_master.reset() for sensor_master in self.sensor_dict.values()] def get_camera(self): sensor_master = None try: sensor_master = self._cameras[self.current_camera_index] except IndexError: pass return sensor_master def toggle_camera(self): self.current_camera_index = (self.current_camera_index + 1) % len(self._cameras) def destroy(self): for sensor_master in self.sensor_dict.values(): sensor_master.destroy() def destroy_commands(self): """ Note: do not destroy vehicle in this class. """ return [sensor_master.destroy_command() for sensor_master in self.sensor_dict.values()] def __del__(self): self.destroy() def __iter__(self): for sensor_master in self.sensor_dict.values(): yield sensor_master def get(self, key): return self.__getitem__(key) def __getitem__(self, key): if key in self.sensor_dict: return self.sensor_dict[key] else: raise RuntimeError('[{}] No sensor called '.format(self.__class__.__name__) + str(key)) debug(info='No sensor called '+ str(key), info_type='error') return None def __setitem__(self, key, value): if key in self.sensor_dict: self.sensor_dict[key] = value return True else: debug(info='No sensor called '+ str(key), info_type='error') return None class CarlaSensorMaster(object): def __init__(self, sensor, transform, callback): self.sensor = sensor self.transform = transform self.raw_data, self.data = None, None self.type_id = sensor.type_id self.attributes = sensor.attributes self.frame_id = sensor.type_id.replace('.', '_') + '/' + sensor.attributes['role_name'] weak_self = weakref.ref(self) if callback != None: self.callback = lambda data: callback(weak_self, data) else: '''default callback''' func_name = sensor.type_id.replace('.', '_') # print('[CarlaSensorMaster] ', func_name) func = getattr(DefaultCallback, func_name) self.callback = lambda data: func(weak_self, data) if hasattr(sensor, 'listen'): self.sensor.listen(self.callback) return # ## disable currently # def reset(self): # if self.sensor.is_listening: self.sensor.stop() # self.raw_data, self.data = None, None # self.sensor.listen(self.callback) def get_transform(self): ''' transform relative to parent actor ''' return self.transform def get_world_transform(self): return self.sensor.get_transform() def get_raw_data(self): return self.raw_data def get_data(self): return self.data def destroy(self): if self.sensor.is_listening: self.sensor.stop() self.sensor.destroy() def destroy_command(self): if self.sensor.is_listening: self.sensor.stop() return DestroyActor(self.sensor)
84201
from typing import List, Tuple import numpy as np from pyrep.objects.shape import Shape from pyrep.objects.dummy import Dummy from pyrep.objects.proximity_sensor import ProximitySensor from rlbench.backend.task import Task from rlbench.backend.conditions import DetectedCondition, NothingGrasped from rlbench.backend.spawn_boundary import SpawnBoundary NUM_SHELVES_IN_SAFE = 3 class PutMoneyInSafe(Task): def init_task(self) -> None: self.index_dic = {0: 'bottom', 1: 'middle', 2: 'top'} self.money = Shape('dollar_stack') self.money_boundary = Shape('dollar_stack_boundary') self.register_graspable_objects([self.money]) self.success_conditions = [NothingGrasped(self.robot.gripper)] self.w1_rel_pos = [-2.7287 * 10 ** (-4), -2.3246 * 10 ** (-6), +4.5627 * 10 ** (-2)] self.w1_rel_ori = [-3.1416, 7.2824 * 10 ** (-1), -2.1265 * 10 ** (-2)] def init_episode(self, index: int) -> List[str]: self.target_shelf = index w4 = Dummy('waypoint4') target_dummy_name = 'dummy_shelf' + str(self.target_shelf) target_pos_dummy = Dummy(target_dummy_name) target_pos = target_pos_dummy.get_position() w4.set_position(target_pos, reset_dynamics=False) self.success_detector = ProximitySensor( ('success_detector' + str(self.target_shelf)) ) while len(self.success_conditions) > 1: self.success_conditions.pop() self.success_conditions.append( DetectedCondition(self.money, self.success_detector) ) self.register_success_conditions(self.success_conditions) b = SpawnBoundary([self.money_boundary]) b.sample(self.money, min_rotation=(0.00, 0.00, 0.00), max_rotation=(0.00, 0.00, +0.5 * np.pi)) return ['put the money away in the safe on the %s shelf' % self.index_dic[index], 'leave the money on the %s shelf on the safe' % self.index_dic[index], 'place the stack of bank notes on the %s shelf of the safe' % self.index_dic[index]] def variation_count(self) -> int: return NUM_SHELVES_IN_SAFE def base_rotation_bounds(self) -> Tuple[List[float], List[float]]: return [0.0, 0.0, 0.0], [0.0, 0.0, +0.5 * np.pi]
84219
from aerosandbox.common import ExplicitAnalysis import aerosandbox.numpy as np import subprocess from pathlib import Path from aerosandbox.geometry import Airplane from aerosandbox.performance import OperatingPoint from typing import Union, List, Dict import tempfile import warnings class AVL(ExplicitAnalysis): """ An interface to AVL, a 3D vortex lattice aerodynamics code developed by <NAME> at MIT. Requires AVL to be on your computer; AVL is available here: https://web.mit.edu/drela/Public/web/avl/ It is recommended (but not required) that you add AVL to your system PATH environment variable such that it can be called with the command `avl`. If this is not the case, you need to specify the path to your AVL executable using the `avl_command` argument of the constructor. Usage example: >>>avl = asb.AVL( >>> airplane=my_airplane, >>> op_point=asb.OperatingPoint( >>> velocity=100, # m/s >>> alpha=5, # deg >>> beta=4, # deg >>> p=0.01, # rad/sec >>> q=0.02, # rad/sec >>> r=0.03, # rad/sec >>> ) >>>) >>>outputs = avl.run() """ def __init__(self, airplane: Airplane, op_point: OperatingPoint = OperatingPoint(), avl_command: str = "avl", verbose: bool = False, working_directory: str = None, ): """ Interface to AVL. Args: airplane: The airplane object you wish to analyze. op_point: The operating point you wish to analyze at. avl_command: The command-line argument to call AVL. * If AVL is on your system PATH, then you can just leave this as "avl". * If AVL is not on your system PATH, thjen you should provide a filepath to the AVL executable. Note that AVL is not on your PATH by default. To tell if AVL is on your system PATH, open up a terminal and type "avl". * If the AVL menu appears, it's on your PATH. * If you get something like "'avl' is not recognized as an internal or external command..." or "Command 'avl' not found, did you mean...", then it is not on your PATH and you'll need to specify the location of your AVL executable as a string. To add AVL to your path, modify your system's environment variables. (Google how to do this for your OS.) verbose: working_directory: """ self.airplane = airplane self.op_point = op_point self.avl_command = avl_command self.verbose = verbose self.working_directory = working_directory def run(self) -> Dict: return self._run_avl() def _default_keystroke_file_contents(self) -> List[str]: run_file_contents = [] # Disable graphics run_file_contents += [ "plop", "g", "", ] # Enter oper mode run_file_contents += [ "oper", ] # Set parameters run_file_contents += [ "m" f"mn {self.op_point.mach()}", f"v {self.op_point.velocity}", f"d {self.op_point.atmosphere.density()}", "g 9.81", "" ] # Set analysis state p_bar = self.op_point.p * self.airplane.b_ref / (2 * self.op_point.velocity) q_bar = self.op_point.q * self.airplane.c_ref / (2 * self.op_point.velocity) r_bar = self.op_point.r * self.airplane.b_ref / (2 * self.op_point.velocity) run_file_contents += [ f"a a {self.op_point.alpha}", f"b b {self.op_point.beta}", f"r r {p_bar}", f"p p {q_bar}", f"y y {r_bar}" ] return run_file_contents def _run_avl(self, run_command: str = None, ) -> Dict[str, np.ndarray]: """ Private function to run AVL. Args: run_command: A string with any AVL keystroke inputs that you'd like. By default, you start off within the OPER menu. All of the inputs indicated in the constructor have been set already, but you can override them here ( for this run only) if you want. Returns: A dictionary containing all of your results. """ with tempfile.TemporaryDirectory() as directory: directory = Path(directory) ### Alternatively, work in another directory: if self.working_directory is not None: directory = Path(self.working_directory) # For debugging # Designate an intermediate file for file I/O output_filename = "output.txt" with open(directory / output_filename, "w+") as f: pass # Handle the airplane file airplane_file = "airplane.avl" self.airplane.write_avl(directory / airplane_file) # Handle the run file keystroke_file_contents = self._default_keystroke_file_contents() if run_command is not None: keystroke_file_contents += [run_command] keystroke_file_contents += [ "x", "st", f"{output_filename}", "o", "", "", "quit" ] keystroke_file = "keystroke_file.txt" with open(directory / keystroke_file, "w+") as f: f.write( "\n".join(keystroke_file_contents) ) command = f'{self.avl_command} {airplane_file} < {keystroke_file}' ### Execute subprocess.call( command, shell=True, cwd=directory, stdout=None if self.verbose else subprocess.DEVNULL ) ##### Parse the output file # Read the file with open(directory / output_filename, "r") as f: output_data = f.read() # Trim off the first few lines that contain name, # of panels, etc. output_data = "\n".join(output_data.split("\n")[8:]) ### Iterate through the string to find all the numeric values, based on where "=" appears. values = [] index = output_data.find("=") while index != -1: output_data = output_data[index + 1:] number = output_data[:12].split("\n")[0] number = float(number) values.append(number) index = output_data.find("=") ### Record the keys associated with those values: keys = [ "Sref", "Cref", "Bref", "Xref", "Yref", "Zref", "alpha", "pb/2V", "p'b/2V", "beta", "qc/2V", "mach", "rb/2V", "r'b/2V", "CX", # Note: these refer to "CXtot", etc. in AVL, but the "tot" is redundant. "Cl", "Cl'", "CY", "Cm", "CZ", "Cn", "Cn'", "CL", "CD", "CDvis", "CDind", "CLff", "CDff", "Cyff", "e", "CLa", "CLb", "CYa", "CYb", "Cla", "Clb", "Cma", "Cmb", "Cna", "Cnb", "CLp", "CLq", "CLr", "CYp", "CYq", "CYr", "Clp", "Clq", "Clr", "Cmp", "Cmq", "Cmr", "Cnp", "Cnq", "Cnr", "Xnp", "Clb Cnr / Clr Cnb" ] if len(values) != 57 and len(values) != 56: # Sometimes the spiral mode term is inexplicably not displayed by AVL raise RuntimeError( "AVL could not run for some reason!\n" "Investigate by turning on the `verbose` flag and looking at the output.\n" "(Common culprit: angular rates too high.)" ) res = { k: v for k, v in zip( keys, values ) } ##### Add a few more outputs for ease of use res["p"] = res["pb/2V"] * (2 * self.op_point.velocity / self.airplane.b_ref) res["q"] = res["qc/2V"] * (2 * self.op_point.velocity / self.airplane.c_ref) res["r"] = res["rb/2V"] * (2 * self.op_point.velocity / self.airplane.b_ref) return res if __name__ == '__main__': ### Import Vanilla Airplane import aerosandbox as asb from pathlib import Path geometry_folder = Path(asb.__file__).parent.parent / "tutorial" / "04 - Geometry" / "example_geometry" import sys sys.path.insert(0, str(geometry_folder)) from vanilla import airplane as vanilla ### Do the AVL run avl = AVL( airplane=vanilla, op_point=OperatingPoint( atmosphere=asb.Atmosphere(altitude=0), velocity=1, alpha=0.433476, beta=0, p=0, q=0, r=0, ), ) res = avl.run() for k, v in res.items(): print(f"{str(k).rjust(10)} : {v}")
84239
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from math import pi def circuit1(qc,qr,theta,L,repeat): #circuit 1 #theta is list of the parameters #theta length is 8L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit2(qc,qr,theta,L,repeat): #circuit 2 #theta is list of the parameters #theta length is 8L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.cx(qr[3],qr[2]) qc.cx(qr[2],qr[1]) qc.cx(qr[1],qr[0]) if repeat!=0: qc.barrier(qr) for l in range(L): qc.cx(qr[1],qr[0]) qc.cx(qr[2],qr[1]) qc.cx(qr[3],qr[2]) for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit3(qc,qr,theta,L,repeat): #circuit 3 #theta is list of the parameters #theta length is (11)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 qc.crz(theta[count],qr[2],qr[1]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crz(theta[count],qr[1],qr[0]) count=count+1 qc.crz(theta[count],qr[2],qr[1]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit4(qc,qr,theta,L,repeat): #circuit 4 #theta is list of the parameters #theta length is (11)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 qc.crx(theta[count],qr[2],qr[1]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crx(theta[count],qr[1],qr[0]) count=count+1 qc.crx(theta[count],qr[2],qr[1]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit5(qc,qr,theta,L,repeat): #circuit 5 #theta is list of the parameters #theta length is (28)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for j in range(4): for i in range(4): if i!=j: qc.crz(theta[count],qr[3-j],qr[3-i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for j in range(4): for i in range(4): if i!=j: qc.crz(theta[count],qr[j],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit6(qc,qr,theta,L,repeat): #circuit 6 #theta is list of the parameters #theta length is (28)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for j in range(4): for i in range(4): if i!=j: qc.crx(theta[count],qr[3-j],qr[3-i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for j in range(4): for i in range(4): if i!=j: qc.crx(theta[count],qr[j],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit7(qc,qr,theta,L,repeat): #circuit 7 #theta is list of the parameters #theta length is (19)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[2],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crz(theta[count],qr[2],qr[1]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit8(qc,qr,theta,L,repeat): #circuit 8 #theta is list of the parameters #theta length is (19)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[2],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crx(theta[count],qr[2],qr[1]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit9(qc,qr,theta,L,repeat): #circuit 9 #theta is list of the parameters #theta length is (4)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.h(qr[i]) qc.cz(qr[3],qr[2]) qc.cz(qr[2],qr[1]) qc.cz(qr[1],qr[0]) for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 qc.cz(qr[1],qr[0]) qc.cz(qr[2],qr[1]) qc.cz(qr[3],qr[2]) for i in range(4): qc.h(qr[i]) return qc def circuit10(qc,qr,theta,L,repeat): #circuit 10 #theta is list of the parameters #theta length is (4)L+4 #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 for l in range(L): qc.cz(qr[3],qr[2]) qc.cz(qr[2],qr[1]) qc.cz(qr[1],qr[0]) qc.cz(qr[3],qr[0]) for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.cz(qr[3],qr[0]) qc.cz(qr[1],qr[0]) qc.cz(qr[2],qr[1]) qc.cz(qr[3],qr[2]) for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 return qc def circuit11(qc,qr,theta,L,repeat): #circuit 11 #theta is list of the parameters #theta length is (12)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.cx(qr[1],qr[0]) qc.cx(qr[3],qr[2]) qc.ry(theta[count],qr[1]) count=count+1 qc.ry(theta[count],qr[2]) count=count+1 qc.rz(theta[count],qr[1]) count=count+1 qc.rz(theta[count],qr[2]) count=count+1 qc.cx(qr[2],qr[1]) if repeat!=0: qc.barrier(qr) for l in range(L): qc.cx(qr[2],qr[1]) qc.rz(theta[count],qr[2]) count=count+1 qc.rz(theta[count],qr[1]) count=count+1 qc.ry(theta[count],qr[2]) count=count+1 qc.ry(theta[count],qr[1]) count=count+1 qc.cx(qr[3],qr[2]) qc.cx(qr[1],qr[0]) for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 return qc def circuit12(qc,qr,theta,L,repeat): #circuit 12 #theta is list of the parameters #theta length is (12)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.cz(qr[1],qr[0]) qc.cz(qr[3],qr[2]) qc.ry(theta[count],qr[1]) count=count+1 qc.ry(theta[count],qr[2]) count=count+1 qc.rz(theta[count],qr[1]) count=count+1 qc.rz(theta[count],qr[2]) count=count+1 qc.cz(qr[2],qr[1]) if repeat!=0: qc.barrier(qr) for l in range(L): qc.cz(qr[2],qr[1]) qc.rz(theta[count],qr[2]) count=count+1 qc.rz(theta[count],qr[1]) count=count+1 qc.ry(theta[count],qr[2]) count=count+1 qc.ry(theta[count],qr[1]) count=count+1 qc.cz(qr[3],qr[2]) qc.cz(qr[1],qr[0]) for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 return qc def circuit13(qc,qr,theta,L,repeat): #circuit 13 #theta is list of the parameters #theta length is (16)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[3],qr[0]) count=count+1 qc.crz(theta[count],qr[2],qr[3]) count=count+1 qc.crz(theta[count],qr[1],qr[2]) count=count+1 qc.crz(theta[count],qr[0],qr[1]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 qc.crz(theta[count],qr[0],qr[3]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 qc.crz(theta[count],qr[2],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crz(theta[count],qr[2],qr[1]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 qc.crz(theta[count],qr[0],qr[3]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[0],qr[1]) count=count+1 qc.crz(theta[count],qr[1],qr[2]) count=count+1 qc.crz(theta[count],qr[2],qr[3]) count=count+1 qc.crz(theta[count],qr[3],qr[0]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 return qc def circuit14(qc,qr,theta,L,repeat): #circuit 14 #theta is list of the parameters #theta length is (16)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[3],qr[0]) count=count+1 qc.crx(theta[count],qr[2],qr[3]) count=count+1 qc.crx(theta[count],qr[1],qr[2]) count=count+1 qc.crx(theta[count],qr[0],qr[1]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 qc.crx(theta[count],qr[0],qr[3]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 qc.crx(theta[count],qr[2],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crx(theta[count],qr[2],qr[1]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 qc.crx(theta[count],qr[0],qr[3]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[0],qr[1]) count=count+1 qc.crx(theta[count],qr[1],qr[2]) count=count+1 qc.crx(theta[count],qr[2],qr[3]) count=count+1 qc.crx(theta[count],qr[3],qr[0]) count=count+1 for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 return qc def circuit15(qc,qr,theta,L,repeat): #circuit 15 #theta is list of the parameters #theta length is (8)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.cx(qr[3],qr[0]) qc.cx(qr[2],qr[3]) qc.cx(qr[1],qr[2]) qc.cx(qr[0],qr[1]) for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.cx(qr[3],qr[2]) qc.cx(qr[0],qr[3]) qc.cx(qr[1],qr[0]) qc.cx(qr[2],qr[1]) if repeat!=0: qc.barrier(qr) for l in range(L): qc.cx(qr[2],qr[1]) qc.cx(qr[1],qr[0]) qc.cx(qr[0],qr[3]) qc.cx(qr[3],qr[2]) for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 qc.cx(qr[0],qr[1]) qc.cx(qr[1],qr[2]) qc.cx(qr[2],qr[3]) qc.cx(qr[3],qr[0]) for i in range(4): qc.ry(theta[count],qr[i]) count=count+1 return qc def circuit16(qc,qr,theta,L,repeat): #circuit 16 #theta is list of the parameters #theta length is (11)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 qc.crz(theta[count],qr[2],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crz(theta[count],qr[2],qr[1]) count=count+1 qc.crz(theta[count],qr[3],qr[2]) count=count+1 qc.crz(theta[count],qr[1],qr[0]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit17(qc,qr,theta,L,repeat): #circuit 17 #theta is list of the parameters #theta length is (11)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 qc.crx(theta[count],qr[2],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crx(theta[count],qr[2],qr[1]) count=count+1 qc.crx(theta[count],qr[3],qr[2]) count=count+1 qc.crx(theta[count],qr[1],qr[0]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit18(qc,qr,theta,L,repeat): #circuit 18 #theta is list of the parameters #theta length is (12)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crz(theta[count],qr[3],qr[0]) count=count+1 qc.crz(theta[count],qr[2],qr[3]) count=count+1 qc.crz(theta[count],qr[1],qr[2]) count=count+1 qc.crz(theta[count],qr[0],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crz(theta[count],qr[0],qr[1]) count=count+1 qc.crz(theta[count],qr[1],qr[2]) count=count+1 qc.crz(theta[count],qr[2],qr[3]) count=count+1 qc.crz(theta[count],qr[3],qr[0]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc def circuit19(qc,qr,theta,L,repeat): #circuit 1 #theta is list of the parameters #theta length is (12)L #L is the number of repeatation # repeat will conjugate the first part and add next the the circuit for expressibility # 0:No, 1: Repeat count=0 for l in range(L): for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 qc.crx(theta[count],qr[3],qr[0]) count=count+1 qc.crx(theta[count],qr[2],qr[3]) count=count+1 qc.crx(theta[count],qr[1],qr[2]) count=count+1 qc.crx(theta[count],qr[0],qr[1]) count=count+1 if repeat!=0: qc.barrier(qr) for l in range(L): qc.crx(theta[count],qr[0],qr[1]) count=count+1 qc.crx(theta[count],qr[1],qr[2]) count=count+1 qc.crx(theta[count],qr[2],qr[3]) count=count+1 qc.crx(theta[count],qr[3],qr[0]) count=count+1 for i in range(4): qc.rz(theta[count],qr[i]) count=count+1 for i in range(4): qc.rx(theta[count],qr[i]) count=count+1 return qc
84309
import os import time import unittest import pytest from kafka.admin_client import AdminClient, NewTopic, NewPartitionsInfo from kafka.protocol.metadata import MetadataRequest from test.fixtures import ZookeeperFixture, KafkaFixture from test.testutil import KafkaIntegrationTestCase, env_kafka_version KAFKA_ADMIN_TIMEOUT_SECONDS = 5 class TestKafkaAdminClientIntegration(KafkaIntegrationTestCase): @classmethod def setUpClass(cls): if not os.environ.get('KAFKA_VERSION'): return cls.zk = ZookeeperFixture.instance() cls.server = KafkaFixture.instance(0, cls.zk) @classmethod def tearDownClass(cls): if not os.environ.get('KAFKA_VERSION'): return cls.server.close() cls.zk.close() @pytest.mark.skipif(env_kafka_version() < (0, 10, 1), reason='Unsupported Kafka Version') def test_create_delete_topics(self): admin = AdminClient(self.client_async) topic = NewTopic( name='topic', num_partitions=1, replication_factor=1, ) metadata_request = MetadataRequest[1]() response = admin.create_topics(topics=[topic], timeout=KAFKA_ADMIN_TIMEOUT_SECONDS) # Error code 7 means that RequestTimedOut but we can safely assume # that topic is created or will be created eventually. # see this https://cwiki.apache.org/confluence/display/KAFKA/ # KIP-4+-+Command+line+and+centralized+administrative+operations self.assertTrue( response[0].topic_errors[0][1] == 0 or response[0].topic_errors[0][1] == 7 ) time.sleep(1) # allows the topic to be created delete_response = admin.delete_topics(['topic'], timeout=1) self.assertTrue( response[0].topic_errors[0][1] == 0 or response[0].topic_errors[0][1] == 7 ) @pytest.mark.skipif(env_kafka_version() < (1, 0, 0), reason='Unsupported Kafka Version') def test_create_partitions(self): admin = AdminClient(self.client_async) topic = NewTopic( name='topic', num_partitions=1, replication_factor=1, ) metadata_request = MetadataRequest[1]() admin.create_topics(topics=[topic], timeout=KAFKA_ADMIN_TIMEOUT_SECONDS) time.sleep(1) # allows the topic to be created new_partitions_info = NewPartitionsInfo('topic', 2, [[0]]) response = admin.create_partitions([new_partitions_info], timeout=1, validate_only=False) self.assertTrue( response[0].topic_errors[0][1] == 0 or response[0].topic_errors[0][1] == 7 )
84330
import copy from joblib import Parallel import numpy as np import time import numbers from itertools import product from collections import defaultdict from sklearn import clone from sklearn.pipeline import Pipeline from sklearn.model_selection import check_cv, GridSearchCV, RandomizedSearchCV from sklearn.model_selection._validation import _fit_and_score, _insert_error_scores, _aggregate_score_dicts, _normalize_score_results, _translate_train_sizes, _incremental_fit_estimator from sklearn.utils.validation import indexable, check_random_state, _check_fit_params from sklearn.metrics import check_scoring from sklearn.metrics._scorer import _check_multimetric_scoring from sklearn.base import is_classifier from sklearn.utils.fixes import delayed def init_eval_set(src_eval_set_selection, src_fit_params, X, y): """ fit_paramsにeval_metricが入力されており、eval_setが入力されていないときの処理 Parameters ---------- src_eval_set_selection : {'all', 'test', 'train', 'original', 'original_transformed'}, optional eval_setに渡すデータの決め方 ('all': X, 'test': X[test], 'train': X[train], 'original': 入力そのまま, 'original_transformed': 入力そのまま&パイプラインの時は最終学習器以外の変換実行) src_fit_params : Dict 処理前の学習時パラメータ """ fit_params = copy.deepcopy(src_fit_params) eval_set_selection = src_eval_set_selection # fit_paramsにeval_metricが設定されているときのみ以下の処理を実施 if 'eval_metric' in src_fit_params and src_fit_params['eval_metric'] is not None: # fit_paramsにeval_setが存在しないとき、入力データをそのまま追加 if 'eval_set' not in src_fit_params: print('There is no "eval_set" in fit_params, so "eval_set" is set to (self.X, self.y)') fit_params['eval_set'] = [(X, y)] if src_eval_set_selection is None: # eval_set_selection未指定時、eval_setが入力されていなければeval_set_selection='test'とする eval_set_selection = 'test' if eval_set_selection not in ['all', 'train', 'test']: # eval_set_selectionの指定が間違っていたらエラーを出す raise ValueError('The `eval_set_selection` argument should be "all", "train", or "test" when `eval_set` is not in `fit_params`') # src_fit_paramsにeval_setが存在するとき、eval_set_selection未指定ならばeval_set_selection='original_transformed'とする else: if src_eval_set_selection is None: eval_set_selection = 'original_transformed' return fit_params, eval_set_selection def _transform_except_last_estimator(transformer, X_src, X_train): """パイプラインのとき、最終学習器以外のtransformを適用""" if transformer is not None: transformer.fit(X_train) X_dst = transformer.transform(X_src) return X_dst else: return X_src def _eval_set_selection(eval_set_selection, transformer, fit_params, train, test): """eval_setの中から学習データ or テストデータのみを抽出""" fit_params_modified = copy.deepcopy(fit_params) # eval_setが存在しない or Noneなら、そのままfit_paramsを返す eval_sets = [v for v in fit_params.keys() if 'eval_set' in v] if len(eval_sets) == 0 or fit_params[eval_sets[0]] is None: return fit_params_modified eval_set_name = eval_sets[0] # eval_setの列名(pipelineでは列名が変わるため) # 元のeval_setからX, yを取得 X_fit = fit_params[eval_set_name][0][0] y_fit = fit_params[eval_set_name][0][1] # eval_setに該当データを入力し直す if eval_set_selection == 'train': fit_params_modified[eval_set_name] = [(_transform_except_last_estimator(transformer, X_fit[train], X_fit[train])\ , y_fit[train])] elif eval_set_selection == 'test': fit_params_modified[eval_set_name] = [(_transform_except_last_estimator(transformer, X_fit[test], X_fit[train])\ , y_fit[test])] elif eval_set_selection == 'all': fit_params_modified[eval_set_name] = [(_transform_except_last_estimator(transformer, X_fit, X_fit[train])\ , y_fit)] else: fit_params_modified[eval_set_name] = [(_transform_except_last_estimator(transformer, X_fit, X_fit)\ , y_fit)] return fit_params_modified def _fit_and_score_eval_set(eval_set_selection, transformer, estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score=False, return_parameters=False, return_n_test_samples=False, return_times=False, return_estimator=False, split_progress=None, candidate_progress=None, error_score=np.nan, print_message=None): """Fit estimator and compute scores for a given dataset split.""" # eval_setの中から学習データ or テストデータのみを抽出 fit_params_modified = _eval_set_selection(eval_set_selection, transformer, fit_params, train, test) if print_message is not None: print(print_message) # 学習してスコア計算 result = _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params_modified, return_train_score=return_train_score, return_parameters=return_parameters, return_n_test_samples=return_n_test_samples, return_times=return_times, return_estimator=return_estimator, split_progress=split_progress, candidate_progress=candidate_progress, error_score=error_score) return result def _make_transformer(eval_set_selection, estimator): """estimatorがパイプラインのとき、最終学習器以外の変換器(前処理クラスのリスト)を作成""" if isinstance(estimator, Pipeline) and eval_set_selection != 'original': transformer = Pipeline([step for i, step in enumerate(estimator.steps) if i < len(estimator) - 1]) return transformer else: return None def cross_validate_eval_set(eval_set_selection, estimator, X, y=None, groups=None, scoring=None, cv=None, n_jobs=None, verbose=0, fit_params=None, pre_dispatch='2*n_jobs', return_train_score=False, return_estimator=False, error_score=np.nan): """ Evaluate a scores by cross-validation with `eval_set` argument in `fit_params` This method is suitable for calculating cross validation scores with `early_stopping_round` in XGBoost or LightGBM. Parameters ---------- eval_set_selection : {'all', 'train', 'test', 'original', 'original_transformed'} Select data passed to `eval_set` in `fit_params`. Available only if "estimator" is LightGBM or XGBoost. If "all", use all data in `X` and `y`. If "train", select train data from `X` and `y` using cv.split(). If "test", select test data from `X` and `y` using cv.split(). If "original", use raw `eval_set`. If "original_transformed", use `eval_set` transformed by fit_transform() of pipeline if `estimater` is pipeline. estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape (n_samples, n_features) The data to fit. Can be for example a list, or an array. y : array-like of shape (n_samples,) or (n_samples, n_outputs), \ default=None The target variable to try to predict in the case of supervised learning. groups : array-like of shape (n_samples,), default=None Group labels for the samples used while splitting the dataset into train/test set. Only used in conjunction with a "Group" :term:`cv` instance (e.g., :class:`GroupKFold`). scoring : str, callable, list, tuple, or dict, default=None Strategy to evaluate the performance of the cross-validated model on the test set. If `scoring` represents a single score, one can use: - a single string (see :ref:`scoring_parameter`); - a callable (see :ref:`scoring`) that returns a single value. If `scoring` represents multiple scores, one can use: - a list or tuple of unique strings; - a callable returning a dictionary where the keys are the metric names and the values are the metric scores; - a dictionary with metric names as keys and callables a values. See :ref:`multimetric_grid_search` for an example. cv : int, cross-validation generator or an iterable, default=None Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 5-fold cross validation, - int, to specify the number of folds in a `(Stratified)KFold`, - :term:`CV splitter`, - An iterable yielding (train, test) splits as arrays of indices. For int/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` is used. In all other cases, :class:`.Fold` is used. These splitters are instantiated with `shuffle=False` so the splits will be the same across calls. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. .. versionchanged:: 0.22 ``cv`` default value if None changed from 3-fold to 5-fold. n_jobs : int, default=None Number of jobs to run in parallel. Training the estimator and computing the score are parallelized over the cross-validation splits. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. verbose : int, default=0 The verbosity level. fit_params : dict, default=None Parameters to pass to the fit method of the estimator. pre_dispatch : int or str, default='2*n_jobs' Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A str, giving an expression as a function of n_jobs, as in '2*n_jobs' return_train_score : bool, default=False Whether to include train scores. Computing training scores is used to get insights on how different parameter settings impact the overfitting/underfitting trade-off. However computing the scores on the training set can be computationally expensive and is not strictly required to select the parameters that yield the best generalization performance. .. versionadded:: 0.19 .. versionchanged:: 0.21 Default value was changed from ``True`` to ``False`` return_estimator : bool, default=False Whether to return the estimators fitted on each split. .. versionadded:: 0.20 error_score : 'raise' or numeric, default=np.nan Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. .. versionadded:: 0.20 Returns ------- scores : dict of float arrays of shape (n_splits,) Array of scores of the estimator for each run of the cross validation. """ X, y, groups = indexable(X, y, groups) cv = check_cv(cv, y, classifier=is_classifier(estimator)) if callable(scoring): scorers = scoring elif scoring is None or isinstance(scoring, str): scorers = check_scoring(estimator, scoring) else: scorers = _check_multimetric_scoring(estimator, scoring) # 最終学習器以外の前処理変換器作成 transformer = _make_transformer(eval_set_selection, estimator) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch) results = parallel( delayed(_fit_and_score_eval_set)( eval_set_selection, transformer, clone(estimator), X, y, scorers, train, test, verbose, None, fit_params, return_train_score=return_train_score, return_times=True, return_estimator=return_estimator, error_score=error_score) for train, test in cv.split(X, y, groups)) # For callabe scoring, the return type is only know after calling. If the # return type is a dictionary, the error scores can now be inserted with # the correct key. if callable(scoring): _insert_error_scores(results, error_score) results = _aggregate_score_dicts(results) ret = {} ret['fit_time'] = results["fit_time"] ret['score_time'] = results["score_time"] if return_estimator: ret['estimator'] = results["estimator"] test_scores_dict = _normalize_score_results(results["test_scores"]) if return_train_score: train_scores_dict = _normalize_score_results(results["train_scores"]) for name in test_scores_dict: ret['test_%s' % name] = test_scores_dict[name] if return_train_score: key = 'train_%s' % name ret[key] = train_scores_dict[name] return ret def cross_val_score_eval_set(eval_set_selection, estimator, X, y=None, groups=None, scoring=None, cv=None, n_jobs=None, verbose=0, fit_params=None, pre_dispatch='2*n_jobs', error_score=np.nan): """ Evaluate a score by cross-validation with `eval_set` argument in `fit_params` This method is suitable for calculating cross validation score with `early_stopping_round` in XGBoost or LightGBM. Parameters ---------- eval_set_selection : {'all', 'train', 'test', 'original', 'original_transformed'} Select data passed to `eval_set` in `fit_params`. Available only if "estimator" is LightGBM or XGBoost. If "all", use all data in `X` and `y`. If "train", select train data from `X` and `y` using cv.split(). If "test", select test data from `X` and `y` using cv.split(). If "original", use raw `eval_set`. If "original_transformed", use `eval_set` transformed by fit_transform() of pipeline if `estimater` is pipeline. estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape (n_samples, n_features) The data to fit. Can be for example a list, or an array. y : array-like of shape (n_samples,) or (n_samples, n_outputs), \ default=None The target variable to try to predict in the case of supervised learning. groups : array-like of shape (n_samples,), default=None Group labels for the samples used while splitting the dataset into train/test set. Only used in conjunction with a "Group" :term:`cv` instance (e.g., :class:`GroupKFold`). scoring : str or callable, default=None A str (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)`` which should return only a single value. Similar to :func:`cross_validate` but only a single metric is permitted. If None, the estimator's default scorer (if available) is used. cv : int, cross-validation generator or an iterable, default=None Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 5-fold cross validation, - int, to specify the number of folds in a `(Stratified)KFold`, - :term:`CV splitter`, - An iterable yielding (train, test) splits as arrays of indices. For int/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` is used. In all other cases, :class:`KFold` is used. These splitters are instantiated with `shuffle=False` so the splits will be the same across calls. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. .. versionchanged:: 0.22 ``cv`` default value if None changed from 3-fold to 5-fold. n_jobs : int, default=None Number of jobs to run in parallel. Training the estimator and computing the score are parallelized over the cross-validation splits. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. verbose : int, default=0 The verbosity level. fit_params : dict, default=None Parameters to pass to the fit method of the estimator. pre_dispatch : int or str, default='2*n_jobs' Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A str, giving an expression as a function of n_jobs, as in '2*n_jobs' error_score : 'raise' or numeric, default=np.nan Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. .. versionadded:: 0.20 Returns ------- scores : ndarray of float of shape=(len(list(cv)),) Array of scores of the estimator for each run of the cross validation. """ # To ensure multimetric format is not supported scorer = check_scoring(estimator, scoring=scoring) cv_results = cross_validate_eval_set(eval_set_selection=eval_set_selection, estimator=estimator, X=X, y=y, groups=groups, scoring={'score': scorer}, cv=cv, n_jobs=n_jobs, verbose=verbose, fit_params=fit_params, pre_dispatch=pre_dispatch, error_score=error_score) return cv_results['test_score'] def validation_curve_eval_set(eval_set_selection, estimator, X, y, param_name, param_range, groups=None, cv=None, scoring=None, n_jobs=None, pre_dispatch="all", verbose=0, error_score=np.nan, fit_params=None): """Validation curve. Determine training and test scores for varying parameter values with `eval_set` argument in `fit_params` Parameters ---------- eval_set_selection : {'all', 'train', 'test', 'original', 'original_transformed'} Select data passed to `eval_set` in `fit_params`. Available only if "estimator" is LightGBM or XGBoost. If "all", use all data in `X` and `y`. If "train", select train data from `X` and `y` using cv.split(). If "test", select test data from `X` and `y` using cv.split(). If "original", use raw `eval_set`. If "original_transformed", use `eval_set` transformed by fit_transform() of pipeline if `estimater` is pipeline. estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. X : array-like of shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None Target relative to X for classification or regression; None for unsupervised learning. param_name : str Name of the parameter that will be varied. param_range : array-like of shape (n_values,) The values of the parameter that will be evaluated. groups : array-like of shape (n_samples,), default=None Group labels for the samples used while splitting the dataset into train/test set. Only used in conjunction with a "Group" :term:`cv` instance (e.g., :class:`GroupKFold`). cv : int, cross-validation generator or an iterable, default=None Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 5-fold cross validation, - int, to specify the number of folds in a `(Stratified)KFold`, - :term:`CV splitter`, - An iterable yielding (train, test) splits as arrays of indices. For int/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` is used. In all other cases, :class:`KFold` is used. These splitters are instantiated with `shuffle=False` so the splits will be the same across calls. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. .. versionchanged:: 0.22 ``cv`` default value if None changed from 3-fold to 5-fold. scoring : str or callable, default=None A str (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. n_jobs : int, default=None Number of jobs to run in parallel. Training the estimator and computing the score are parallelized over the combinations of each parameter value and each cross-validation split. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. pre_dispatch : int or str, default='all' Number of predispatched jobs for parallel execution (default is all). The option can reduce the allocated memory. The str can be an expression like '2*n_jobs'. verbose : int, default=0 Controls the verbosity: the higher, the more messages. fit_params : dict, default=None Parameters to pass to the fit method of the estimator. .. versionadded:: 0.24 error_score : 'raise' or numeric, default=np.nan Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. .. versionadded:: 0.20 Returns ------- train_scores : array of shape (n_ticks, n_cv_folds) Scores on training sets. test_scores : array of shape (n_ticks, n_cv_folds) Scores on test set. """ X, y, groups = indexable(X, y, groups) cv = check_cv(cv, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) # 最終学習器以外の前処理変換器作成 transformer = _make_transformer(eval_set_selection, estimator) parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose) results = parallel(delayed(_fit_and_score_eval_set)( eval_set_selection, transformer, clone(estimator), X, y, scorer, train, test, verbose, parameters={param_name: v}, fit_params=fit_params, return_train_score=True, error_score=error_score, print_message=f'Caluculating score. {param_name}={v}') # NOTE do not change order of iteration to allow one time cv splitters for train, test in cv.split(X, y, groups) for v in param_range) n_params = len(param_range) results = _aggregate_score_dicts(results) train_scores = results["train_scores"].reshape(-1, n_params).T test_scores = results["test_scores"].reshape(-1, n_params).T return train_scores, test_scores def learning_curve_eval_set(eval_set_selection, estimator, X, y, groups=None, train_sizes=np.linspace(0.1, 1.0, 5), cv=None, scoring=None, exploit_incremental_learning=False, n_jobs=None, pre_dispatch="all", verbose=0, shuffle=False, random_state=None, error_score=np.nan, return_times=False, fit_params=None): """Learning curve. Determines cross-validated training and test scores for different training set sizes with `eval_set` argument in `fit_params` Parameters ---------- eval_set_selection : {'all', 'train', 'test', 'original', 'original_transformed'} Select data passed to `eval_set` in `fit_params`. Available only if "estimator" is LightGBM or XGBoost. If "all", use all data in `X` and `y`. If "train", select train data from `X` and `y` using cv.split(). If "test", select test data from `X` and `y` using cv.split(). If "original", use raw `eval_set`. If "original_transformed", use `eval_set` transformed by fit_transform() of pipeline if `estimater` is pipeline. estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. X : array-like of shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape (n_samples,) or (n_samples, n_outputs) Target relative to X for classification or regression; None for unsupervised learning. groups : array-like of shape (n_samples,), default=None Group labels for the samples used while splitting the dataset into train/test set. Only used in conjunction with a "Group" :term:`cv` instance (e.g., :class:`GroupKFold`). train_sizes : array-like of shape (n_ticks,), \ default=np.linspace(0.1, 1.0, 5) Relative or absolute numbers of training examples that will be used to generate the learning curve. If the dtype is float, it is regarded as a fraction of the maximum size of the training set (that is determined by the selected validation method), i.e. it has to be within (0, 1]. Otherwise it is interpreted as absolute sizes of the training sets. Note that for classification the number of samples usually have to be big enough to contain at least one sample from each class. cv : int, cross-validation generator or an iterable, default=None Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 5-fold cross validation, - int, to specify the number of folds in a `(Stratified)KFold`, - :term:`CV splitter`, - An iterable yielding (train, test) splits as arrays of indices. For int/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` is used. In all other cases, :class:`KFold` is used. These splitters are instantiated with `shuffle=False` so the splits will be the same across calls. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. .. versionchanged:: 0.22 ``cv`` default value if None changed from 3-fold to 5-fold. scoring : str or callable, default=None A str (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. exploit_incremental_learning : bool, default=False If the estimator supports incremental learning, this will be used to speed up fitting for different training set sizes. n_jobs : int, default=None Number of jobs to run in parallel. Training the estimator and computing the score are parallelized over the different training and test sets. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. pre_dispatch : int or str, default='all' Number of predispatched jobs for parallel execution (default is all). The option can reduce the allocated memory. The str can be an expression like '2*n_jobs'. verbose : int, default=0 Controls the verbosity: the higher, the more messages. shuffle : bool, default=False Whether to shuffle training data before taking prefixes of it based on``train_sizes``. random_state : int, RandomState instance or None, default=None Used when ``shuffle`` is True. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. error_score : 'raise' or numeric, default=np.nan Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. .. versionadded:: 0.20 return_times : bool, default=False Whether to return the fit and score times. fit_params : dict, default=None Parameters to pass to the fit method of the estimator. .. versionadded:: 0.24 Returns ------- train_sizes_abs : array of shape (n_unique_ticks,) Numbers of training examples that has been used to generate the learning curve. Note that the number of ticks might be less than n_ticks because duplicate entries will be removed. train_scores : array of shape (n_ticks, n_cv_folds) Scores on training sets. test_scores : array of shape (n_ticks, n_cv_folds) Scores on test set. fit_times : array of shape (n_ticks, n_cv_folds) Times spent for fitting in seconds. Only present if ``return_times`` is True. score_times : array of shape (n_ticks, n_cv_folds) Times spent for scoring in seconds. Only present if ``return_times`` is True. """ if exploit_incremental_learning and not hasattr(estimator, "partial_fit"): raise ValueError("An estimator must support the partial_fit interface " "to exploit incremental learning") X, y, groups = indexable(X, y, groups) cv = check_cv(cv, y, classifier=is_classifier(estimator)) # Store it as list as we will be iterating over the list multiple times cv_iter = list(cv.split(X, y, groups)) scorer = check_scoring(estimator, scoring=scoring) n_max_training_samples = len(cv_iter[0][0]) # Because the lengths of folds can be significantly different, it is # not guaranteed that we use all of the available training data when we # use the first 'n_max_training_samples' samples. train_sizes_abs = _translate_train_sizes(train_sizes, n_max_training_samples) n_unique_ticks = train_sizes_abs.shape[0] if verbose > 0: print("[learning_curve] Training set sizes: " + str(train_sizes_abs)) # 最終学習器以外の前処理変換器作成 transformer = _make_transformer(eval_set_selection, estimator) parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose) if shuffle: rng = check_random_state(random_state) cv_iter = ((rng.permutation(train), test) for train, test in cv_iter) if exploit_incremental_learning: classes = np.unique(y) if is_classifier(estimator) else None out = parallel(delayed(_incremental_fit_estimator)( clone(estimator), X, y, classes, train, test, train_sizes_abs, scorer, verbose, return_times, error_score=error_score, fit_params=fit_params) for train, test in cv_iter ) out = np.asarray(out).transpose((2, 1, 0)) else: train_test_proportions = [] for train, test in cv_iter: for n_train_samples in train_sizes_abs: train_test_proportions.append((train[:n_train_samples], test)) results = parallel(delayed(_fit_and_score_eval_set)( eval_set_selection, transformer, clone(estimator), X, y, scorer, train, test, verbose, parameters=None, fit_params=fit_params, return_train_score=True, error_score=error_score, return_times=return_times) for train, test in train_test_proportions ) results = _aggregate_score_dicts(results) train_scores = results["train_scores"].reshape(-1, n_unique_ticks).T test_scores = results["test_scores"].reshape(-1, n_unique_ticks).T out = [train_scores, test_scores] if return_times: fit_times = results["fit_time"].reshape(-1, n_unique_ticks).T score_times = results["score_time"].reshape(-1, n_unique_ticks).T out.extend([fit_times, score_times]) ret = train_sizes_abs, out[0], out[1] if return_times: ret = ret + (out[2], out[3]) return ret class GridSearchCVEvalSet(GridSearchCV): """ Exhaustive search over specified parameter values for an estimator with `eval_set` argument in `fit_params`. """ def fit(self, eval_set_selection, X, y=None, groups=None, **fit_params): """Run fit with all sets of parameters. Parameters ---------- eval_set_selection : {'all', 'train', 'test', 'original', 'original_transformed'} Select data passed to `eval_set` in `fit_params`. Available only if "estimator" is LightGBM or XGBoost. If "all", use all data in `X` and `y`. If "train", select train data from `X` and `y` using cv.split(). If "test", select test data from `X` and `y` using cv.split(). If "original", use raw `eval_set`. If "original_transformed", use `eval_set` transformed by fit_transform() of pipeline if `estimater` is pipeline. X : array-like of shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape (n_samples, n_output) \ or (n_samples,), default=None Target relative to X for classification or regression; None for unsupervised learning. groups : array-like of shape (n_samples,), default=None Group labels for the samples used while splitting the dataset into train/test set. Only used in conjunction with a "Group" :term:`cv` instance (e.g., :class:`~sklearn.model_selection.GroupKFold`). **fit_params : dict of str -> object Parameters passed to the ``fit`` method of the estimator """ estimator = self.estimator refit_metric = "score" if callable(self.scoring): scorers = self.scoring elif self.scoring is None or isinstance(self.scoring, str): scorers = check_scoring(self.estimator, self.scoring) else: scorers = _check_multimetric_scoring(self.estimator, self.scoring) self._check_refit_for_multimetric(scorers) refit_metric = self.refit X, y, groups = indexable(X, y, groups) fit_params = _check_fit_params(X, fit_params) cv_orig = check_cv(self.cv, y, classifier=is_classifier(estimator)) n_splits = cv_orig.get_n_splits(X, y, groups) base_estimator = clone(self.estimator) # 最終学習器以外の前処理変換器作成 transformer = _make_transformer(eval_set_selection, estimator) parallel = Parallel(n_jobs=self.n_jobs, pre_dispatch=self.pre_dispatch) fit_and_score_kwargs = dict(scorer=scorers, fit_params=fit_params, return_train_score=self.return_train_score, return_n_test_samples=True, return_times=True, return_parameters=False, error_score=self.error_score, verbose=self.verbose) results = {} with parallel: all_candidate_params = [] all_out = [] all_more_results = defaultdict(list) def evaluate_candidates(candidate_params, cv=None, more_results=None): cv = cv or cv_orig candidate_params = list(candidate_params) n_candidates = len(candidate_params) if self.verbose > 0: print("Fitting {0} folds for each of {1} candidates," " totalling {2} fits".format( n_splits, n_candidates, n_candidates * n_splits)) out = parallel(delayed(_fit_and_score_eval_set)( eval_set_selection, transformer, clone(base_estimator), X, y, train=train, test=test, parameters=parameters, split_progress=( split_idx, n_splits), candidate_progress=( cand_idx, n_candidates), print_message=f'cand={cand_idx}/{n_candidates}, cv={split_idx}: {parameters}', **fit_and_score_kwargs) for (cand_idx, parameters), (split_idx, (train, test)) in product( enumerate(candidate_params), enumerate(cv.split(X, y, groups)))) if len(out) < 1: raise ValueError('No fits were performed. ' 'Was the CV iterator empty? ' 'Were there no candidates?') elif len(out) != n_candidates * n_splits: raise ValueError('cv.split and cv.get_n_splits returned ' 'inconsistent results. Expected {} ' 'splits, got {}' .format(n_splits, len(out) // n_candidates)) # For callable self.scoring, the return type is only know after # calling. If the return type is a dictionary, the error scores # can now be inserted with the correct key. The type checking # of out will be done in `_insert_error_scores`. if callable(self.scoring): _insert_error_scores(out, self.error_score) all_candidate_params.extend(candidate_params) all_out.extend(out) if more_results is not None: for key, value in more_results.items(): all_more_results[key].extend(value) nonlocal results results = self._format_results( all_candidate_params, n_splits, all_out, all_more_results) return results self._run_search(evaluate_candidates) # multimetric is determined here because in the case of a callable # self.scoring the return type is only known after calling first_test_score = all_out[0]['test_scores'] self.multimetric_ = isinstance(first_test_score, dict) # check refit_metric now for a callabe scorer that is multimetric if callable(self.scoring) and self.multimetric_: self._check_refit_for_multimetric(first_test_score) refit_metric = self.refit # For multi-metric evaluation, store the best_index_, best_params_ and # best_score_ iff refit is one of the scorer names # In single metric evaluation, refit_metric is "score" if self.refit or not self.multimetric_: # If callable, refit is expected to return the index of the best # parameter set. if callable(self.refit): self.best_index_ = self.refit(results) if not isinstance(self.best_index_, numbers.Integral): raise TypeError('best_index_ returned is not an integer') if (self.best_index_ < 0 or self.best_index_ >= len(results["params"])): raise IndexError('best_index_ index out of range') else: self.best_index_ = results["rank_test_%s" % refit_metric].argmin() self.best_score_ = results["mean_test_%s" % refit_metric][ self.best_index_] self.best_params_ = results["params"][self.best_index_] if self.refit: # we clone again after setting params in case some # of the params are estimators as well. self.best_estimator_ = clone(clone(base_estimator).set_params( **self.best_params_)) refit_start_time = time.time() if y is not None: self.best_estimator_.fit(X, y, **fit_params) else: self.best_estimator_.fit(X, **fit_params) refit_end_time = time.time() self.refit_time_ = refit_end_time - refit_start_time # Store the only scorer not as a dict for single metric evaluation self.scorer_ = scorers self.cv_results_ = results self.n_splits_ = n_splits return self class RandomizedSearchCVEvalSet(RandomizedSearchCV): """ Randomized search on hyper parameters with `eval_set` argument in `fit_params`. """ def fit(self, eval_set_selection, X, y=None, groups=None, **fit_params): """Run fit with all sets of parameters. Parameters ---------- eval_set_selection : {'all', 'train', 'test', 'original', 'original_transformed'} Select data passed to `eval_set` in `fit_params`. Available only if "estimator" is LightGBM or XGBoost. If "all", use all data in `X` and `y`. If "train", select train data from `X` and `y` using cv.split(). If "test", select test data from `X` and `y` using cv.split(). If "original", use raw `eval_set`. If "original_transformed", use `eval_set` transformed by fit_transform() of pipeline if `estimater` is pipeline. X : array-like of shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape (n_samples, n_output) \ or (n_samples,), default=None Target relative to X for classification or regression; None for unsupervised learning. groups : array-like of shape (n_samples,), default=None Group labels for the samples used while splitting the dataset into train/test set. Only used in conjunction with a "Group" :term:`cv` instance (e.g., :class:`~sklearn.model_selection.GroupKFold`). **fit_params : dict of str -> object Parameters passed to the ``fit`` method of the estimator """ estimator = self.estimator refit_metric = "score" if callable(self.scoring): scorers = self.scoring elif self.scoring is None or isinstance(self.scoring, str): scorers = check_scoring(self.estimator, self.scoring) else: scorers = _check_multimetric_scoring(self.estimator, self.scoring) self._check_refit_for_multimetric(scorers) refit_metric = self.refit X, y, groups = indexable(X, y, groups) fit_params = _check_fit_params(X, fit_params) cv_orig = check_cv(self.cv, y, classifier=is_classifier(estimator)) n_splits = cv_orig.get_n_splits(X, y, groups) base_estimator = clone(self.estimator) # 最終学習器以外の前処理変換器作成 transformer = _make_transformer(eval_set_selection, estimator) parallel = Parallel(n_jobs=self.n_jobs, pre_dispatch=self.pre_dispatch) fit_and_score_kwargs = dict(scorer=scorers, fit_params=fit_params, return_train_score=self.return_train_score, return_n_test_samples=True, return_times=True, return_parameters=False, error_score=self.error_score, verbose=self.verbose) results = {} with parallel: all_candidate_params = [] all_out = [] all_more_results = defaultdict(list) def evaluate_candidates(candidate_params, cv=None, more_results=None): cv = cv or cv_orig candidate_params = list(candidate_params) n_candidates = len(candidate_params) if self.verbose > 0: print("Fitting {0} folds for each of {1} candidates," " totalling {2} fits".format( n_splits, n_candidates, n_candidates * n_splits)) out = parallel(delayed(_fit_and_score_eval_set)( eval_set_selection, transformer, clone(base_estimator), X, y, train=train, test=test, parameters=parameters, split_progress=( split_idx, n_splits), candidate_progress=( cand_idx, n_candidates), print_message=f'cand={cand_idx}/{n_candidates}, cv={split_idx}: {parameters}', **fit_and_score_kwargs) for (cand_idx, parameters), (split_idx, (train, test)) in product( enumerate(candidate_params), enumerate(cv.split(X, y, groups)))) if len(out) < 1: raise ValueError('No fits were performed. ' 'Was the CV iterator empty? ' 'Were there no candidates?') elif len(out) != n_candidates * n_splits: raise ValueError('cv.split and cv.get_n_splits returned ' 'inconsistent results. Expected {} ' 'splits, got {}' .format(n_splits, len(out) // n_candidates)) # For callable self.scoring, the return type is only know after # calling. If the return type is a dictionary, the error scores # can now be inserted with the correct key. The type checking # of out will be done in `_insert_error_scores`. if callable(self.scoring): _insert_error_scores(out, self.error_score) all_candidate_params.extend(candidate_params) all_out.extend(out) if more_results is not None: for key, value in more_results.items(): all_more_results[key].extend(value) nonlocal results results = self._format_results( all_candidate_params, n_splits, all_out, all_more_results) return results self._run_search(evaluate_candidates) # multimetric is determined here because in the case of a callable # self.scoring the return type is only known after calling first_test_score = all_out[0]['test_scores'] self.multimetric_ = isinstance(first_test_score, dict) # check refit_metric now for a callabe scorer that is multimetric if callable(self.scoring) and self.multimetric_: self._check_refit_for_multimetric(first_test_score) refit_metric = self.refit # For multi-metric evaluation, store the best_index_, best_params_ and # best_score_ iff refit is one of the scorer names # In single metric evaluation, refit_metric is "score" if self.refit or not self.multimetric_: # If callable, refit is expected to return the index of the best # parameter set. if callable(self.refit): self.best_index_ = self.refit(results) if not isinstance(self.best_index_, numbers.Integral): raise TypeError('best_index_ returned is not an integer') if (self.best_index_ < 0 or self.best_index_ >= len(results["params"])): raise IndexError('best_index_ index out of range') else: self.best_index_ = results["rank_test_%s" % refit_metric].argmin() self.best_score_ = results["mean_test_%s" % refit_metric][ self.best_index_] self.best_params_ = results["params"][self.best_index_] if self.refit: # we clone again after setting params in case some # of the params are estimators as well. self.best_estimator_ = clone(clone(base_estimator).set_params( **self.best_params_)) refit_start_time = time.time() if y is not None: self.best_estimator_.fit(X, y, **fit_params) else: self.best_estimator_.fit(X, **fit_params) refit_end_time = time.time() self.refit_time_ = refit_end_time - refit_start_time # Store the only scorer not as a dict for single metric evaluation self.scorer_ = scorers self.cv_results_ = results self.n_splits_ = n_splits return self
84337
import copy from mock import patch from ruskit.failover import FastAddMachineManager from ruskit.distribute import RearrangeSlaveManager, NodeWrapper from test_base import TestCaseBase class DummyCluster(object): def __init__(self): self.nodes = [] def dummy_gen_distribution_for_move_masters(nodes, new_nodes): hosts = ['host1', 'host2', 'host3', 'host4'] masters = [ [NodeWrapper(i, 'm{}'.format(i), 0) for i in range(1, 4)], [NodeWrapper(i, 'm{}'.format(i), 1) for i in range(4, 9)], [NodeWrapper(i, 'm{}'.format(i), 2) for i in range(9, 11)], [], ] slaves = [ [NodeWrapper(None, 's1', 1)], [NodeWrapper(None, 's2', 2)], [NodeWrapper(None, 's3', 3)], [], ] frees = [[], [], [], [NodeWrapper(i, 'f{}'.format(i), 3) for i in range(1, 3)]] return { 'hosts': hosts, 'masters': masters, 'slaves': slaves, 'frees': frees, } class MoveSlavesMockData(object): hosts = ['host1', 'host2', 'host3', 'host4'] masters = [ [NodeWrapper(i, 'm{}'.format(i), 0) for i in range(1, 4)], [NodeWrapper(i, 'm{}'.format(i), 1) for i in range(4, 8)], [NodeWrapper(i, 'm{}'.format(i), 2) for i in range(8, 11)], [NodeWrapper(i, 'm{}'.format(i), 3) for i in range(11, 14)], ] m1 = masters[0][0] m2 = masters[0][1] m5 = masters[1][1] m7 = masters[1][3] m8 = masters[2][0] m9 = masters[2][1] m11 = masters[3][0] s1, s2, s3, s4, s5, s6, s7 = (NodeWrapper(None, 's{}'.format(i), 1) \ for i in range(1, 8)) s1.host_index = 0 s6.host_index = 2 s7.host_index = 2 slaves = [ [s1], [s2, s3, s4, s5], [s6, s7], [] ] s1.master, s2.master, s3.master, s4.master = m7, m1, m9, m11 s5.master, s6.master, s7.master = m2, m8, m5 m1.slaves.append(s2) m2.slaves.append(s5) m5.slaves.append(s7) m7.slaves.append(s1) m8.slaves.append(s6) m9.slaves.append(s3) m11.slaves.append(s4) frees = [ [NodeWrapper(None, 'f{}'.format(i), 0) for i in range(1, 5)], [NodeWrapper(None, 'f{}'.format(i), 1) for i in range(5, 8)], [NodeWrapper(None, 'f{}'.format(i), 2) for i in range(8, 12)], [NodeWrapper(None, 'f{}'.format(i), 3) for i in range(12, 16)], ] @classmethod def dummy_gen_distribution(cls, nodes, new_nodes): return { 'hosts': map(copy.copy, cls.hosts), 'masters': map(copy.copy, cls.masters), 'slaves': map(copy.copy, cls.slaves), 'frees': map(copy.copy, cls.frees), } class TestMoveNode(TestCaseBase): @patch('ruskit.failover.gen_distribution', dummy_gen_distribution_for_move_masters) def test_move_master(self): dummy_new_nodes = [] manager = FastAddMachineManager(DummyCluster(), dummy_new_nodes) result = manager.peek_result() plan = result['plan'] p1 = plan[0] p2 = plan[1] if p1['master'].tag != 'm8': p1, p2 = p2, p1 slaves = ('f1', 'f2') self.assertEqual(p1['master'].tag, 'm8') self.assertTrue(p1['slave'].tag in slaves) self.assertEqual(p2['master'].tag, 'm7') self.assertTrue(p2['slave'].tag in slaves) dis = manager.get_distribution() masters = dis['masters'] masters_num = list(set(map(len, masters))) self.assertTrue(len(masters_num) <= 2) if len(masters_num) == 2: self.assertTrue(abs(masters_num[0] - masters_num[1]) <= 1) @patch('ruskit.distribute.gen_distribution', MoveSlavesMockData.dummy_gen_distribution) def test_move_slave(self): dummy_new_nodes = [] manager = RearrangeSlaveManager(DummyCluster(), dummy_new_nodes) result = manager.gen_plan() add_plan = result['add_plan'] delete_plan = result['delete_plan'] # slaves_num == masters_num self.assertEqual(7 - len(delete_plan) + len(add_plan), 13) slaves_of_master = [1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0] for slave in delete_plan: slaves_of_master[slave.master.node-1] -= 1 for p in add_plan: slave = p['slave'] master = p['master'] slaves_of_master[master.node-1] += 1 # All masters should have exactly one slave self.assertTrue(all(map(lambda s: s == 1, slaves_of_master))) dis = MoveSlavesMockData.dummy_gen_distribution(None, None) masters_per_host = [len(m) for m in dis['masters']] slaves_per_host = [len(set(s) - set(delete_plan)) \ for s in dis['slaves']] new_slaves_per_host = [0 for _ in range(len(dis['hosts']))] for p in add_plan: new_slaves_per_host[p['slave'].host_index] += 1 nodes_per_host = map(sum, zip( masters_per_host, slaves_per_host, new_slaves_per_host)) # All hosts should contains almost the same number of nodes nodes_num = list(set(nodes_per_host)) self.assertTrue(len(nodes_num) <= 2) if (len(nodes_num) == 2): self.assertTrue(abs(nodes_num[0] - nodes_num[1]) <= 1)
84351
from .prs import PRS, SubStream_Container import random import torch import numpy as np from collections import deque class DelayBuffer(PRS): """ Delayed Buffer for new data samples that need to be learned in chunks. and used to made the decision later whether to enter the buffer or not. """ def reset(self): """reset the buffer. """ self.rsvr = dict() self.rsvr_available_idx = deque(range(self.rsvr_total_size)) self.substreams = SubStream_Container(self.rsvr_total_size) self.n = 0 np.random.seed(self.config['random_seed']) random.seed(self.config['random_seed']) torch.manual_seed(self.config['random_seed']) return
84380
from flask import Blueprint from flask import flash, session, redirect, render_template, request, \ url_for from flask_babel import _ from app import constants from app.decorators import require_role from app.exceptions.base import DuplicateResourceException from app.forms.examination import EducationForm from app.roles import Roles from app.service import examination_service blueprint = Blueprint('education', __name__, url_prefix='/education') REDIR_PAGES = {'view': 'examination.view_examination', 'add': 'examination.add', 'educations': 'education.view_educations', 'courses': 'course.view_courses' } DATE_FORMAT = constants.DATE_FORMAT @blueprint.route('/', methods=['GET']) @require_role(Roles.EXAMINATION_WRITE) def view_educations(): return render_template('education/view.htm') @blueprint.route('/add/', methods=['GET', 'POST']) @require_role(Roles.EXAMINATION_WRITE) def add_education(): r = request.args.get('redir', True) if r in REDIR_PAGES: session['origin'] = url_for(REDIR_PAGES[r]) elif r == 'edit' and 'examination_edit_id' in session: session['origin'] = '/examination/edit/{}'.format( session['examination_edit_id']) form = EducationForm(request.form) if form.validate_on_submit(): name = form.title.data try: examination_service.add_education(name) flash("'%s': " % name + _('Education successfully added.'), 'success') except DuplicateResourceException as e: flash("'%s': " % name + _('Already exists in the database'), 'danger') if 'origin' in session: redir = session['origin'] else: redir = url_for('examination.add') return redirect(redir) return render_template('education/edit.htm', form=form, new=True) @blueprint.route('/edit/<int:education_id>', methods=['GET', 'POST']) @require_role(Roles.EXAMINATION_WRITE) def edit_education(education_id): r = request.args.get('redir') if r in REDIR_PAGES: session['origin'] = url_for(REDIR_PAGES[r]) elif r == 'edit' and 'examination_edit_id' in session: session['origin'] = '/examination/edit/{}'.format( session['examination_edit_id']) education = examination_service.get_education_by_id(education_id) exam_count = examination_service. \ count_examinations_by_education(education_id) form = EducationForm(request.form) if form.validate_on_submit(): name = form.title.data try: examination_service.update_education(education_id, name) flash("'%s': " % name + _('Education successfully saved.'), 'success') except DuplicateResourceException as e: flash("%s: " % e, 'danger') if 'origin' in session: redir = session['origin'] else: redir = url_for('education.view_educations') return redirect(redir) else: form = EducationForm(title=education.name) return render_template('education/edit.htm', new=False, form=form, redir=r, exam_count=exam_count, education=education)
84392
import os import pytest from types import SimpleNamespace import git from mathlibtools.git_helpers import visit_ancestors @pytest.fixture def dummy_repo(tmp_path): r""" A -- B -- E -- I -- J -- L \ / / C --- F -- H \ / D ---- G --- K """ d = tmp_path / "repo" d.mkdir() repo = git.Repo.init(d) with repo.config_writer() as cw: cw.set_value("user", "name", "pytest") cw.set_value("user", "email", "<>") # workaround for https://github.com/gitpython-developers/GitPython/pull/1314 os.environ['USER'] = 'gitpython needs this to be here so it can ignore it' A = repo.index.commit("A") B = repo.index.commit("B", parent_commits=(A,)) C = repo.index.commit("C", parent_commits=(B,)) D = repo.index.commit("D", parent_commits=(C,)) E = repo.index.commit("E", parent_commits=(B,)) F = repo.index.commit("F", parent_commits=(C,)) G = repo.index.commit("G", parent_commits=(D,)) I = repo.index.commit("I", parent_commits=(E, F)) H = repo.index.commit("H", parent_commits=(F, G)) J = repo.index.commit("J", parent_commits=(I, H)) K = repo.index.commit("K", parent_commits=(G,)) L = repo.index.commit("L", parent_commits=(J,)) return repo @pytest.mark.parametrize(['match', 'exp_found', 'exp_visited'], [ ('L', 'L', ''), # finding the root prunes everything else ('BFG', 'GF', 'LJHIE'), # B is pruned ('K', '', 'LJHGDIFCEBA'), # no match, all iterated ]) def test_visit_ancestors(dummy_repo, match, exp_found, exp_visited): assert dummy_repo.head.commit.message == 'L' found = [] visited = [] for c, prune in visit_ancestors(dummy_repo.head.commit): if c.message in list(match): prune() found.append(c.message) else: visited.append(c.message) assert visited == list(exp_visited) assert found == list(exp_found)
84396
import os import sys import json import time from distutils.version import LooseVersion import importlib import pip from enum import Enum import logging import csv import subprocess try: main = pip.main except AttributeError: # module 'pip' has no attribute 'main' from pip._internal import main apikey = '' password = '' username = '' bkey = '' buy_trades = {} sell_trades = {} items = {} key_price = 0 bud_price = 0 escrow = None whitelist = [] currencies = {'bud':'Earbuds', 'ref':'Refined Metal', 'rec':'Reclaimed Metal', 'scrap':'Scrap Metal', 'key':'Mann Co. Supply Crate Key'} packages = ['steampy', 'requests'] declined_trades = None past_time = time.time() start_time = time.time() logging.basicConfig(filename='trade.log', level=logging.DEBUG, format='[%(asctime)s][%(levelname)s][%(name)s]: %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p') start_text = """ _____ _____ ____ _____ ____ _ ____ U _____ u ____ U ___ u _____ |_ " _| |" ___||___"\ |_ " _|U | _"\ u U /"\ u | _"\ \| ___"|/ U | __")u \/"_ \/|_ " _| | | U| |_ uU __) | | | \| |_) |/ \/ _ \/ /| | | | | _|" \| _ \/ | | | | | | /| |\ \| _|/ \/ __/ \ /| |\ | _ < / ___ \ U| |_| |\| |___ | |_) |.-,_| |_| | /| |\ u |_|U |_| |_____|u u |_|U |_| \_\ /_/ \_\ |____/ u|_____| |____/ \_)-\___/ u |_|U _// \\\_ )(\\\,- << // _// \\\_ // \\\_ \\\ >> |||_ << >> _|| \\\_ \\\ _// \\\_ (__) (__)(__)(_/(__)(__) (__) (__)(__) (__)(__) (__)(__)_) (__) (__) (__) (__) (__) (__) (__) Created by: Zwork101 Github: https://github.com/Zwork101 Steam: https://steamcommunity.com/id/ZWORK101 THIS VERSION IS NO LONGER UNDER DEVELOPMENT AND BUGS WILL NOT BE FIXED. IT IS HIGHLY RECOMMENDED TO SWITCH TO THE NEW VERSION. YOU CAN FIND THIS AT: https://github.com/mninc/tf2-trade-bot-2\n """ class TradeOfferStatus(Enum): INVALID = 1 ACTIVE = 2 ACCEPTED = 3 EXPIRED = 4 CANCELED = 6 INVALID_ITEMS = 8 WAIT_CONF = 9 WAIT_SFAC = 10 ESCROW = 11 class TradeManager: """ The manager for trades. This will be used to organize trades and keep everything from falling apart. Prams: client (steampy.client.SteamClient object) and conf (steampy.confirmation.ConfirmationExecutor) Public values: client and conf (see above) Public functions: accept, check_trades_content, get_new_trades, check_good_trades, check_bad_trades """ def __init__(self, client, conf): self._trades = [] self._pending_trades = [] self._try_confs = [] self._declined_trades = [] self.client = client self.conf = conf def decline(self, trade): if decline_trades: self.client.decline_trade_offer(trade.id) if trade.id not in self._declined_trades: self._declined_trades.append(trade.id) def accept(self, trade): """ The accept function handles accepting trades. This is important, because different errors could occur. Prams: (self), trade (Trade object) Output: None """ try: self.client.accept_trade_offer(trade.id) return True except BaseException as BE: if BE.__class__ == KeyError: print(f'ERROR: Issue confirming trade: {trade.id}, trying again') #self._trades.remove(trade) self._pending_trades.append(trade) logging.warning(f'TRADE ACCEPT ERROR: {type(BE).__name__}: {BE}') return False def check_trades_content(self): """ This will check the current trades in self._pending_trades and decide if they are correct or not Then it will move the good trades to self._declined_trades and self._trades after acccepting/declining trade offers. Prams: (self) Output: None """ for trade in range(len(self._pending_trades)-1,-1,-1): trade = self._pending_trades[trade] sell_value = 0 buy_value = 0 extra_sell = [] extra_buy = [] if not trade.items_to_give: self._pending_trades.remove(trade) self._trades.append(trade) self.accept(trade) continue exit_trade = False for item in trade.items_to_give: if not exit_trade: if item not in sell_trades: if item in currencies.values(): extra_sell.append(item) else: print('[TRADE]: Unknown item we\'re giving, declining') self.decline(trade) self._pending_trades.remove(trade) logging.info("DECLINING TRADE WITH UN-KNOWN ITEM") exit_trade = True else: sell_value = add_values(float(sell_trades[item]), float(sell_value)) if exit_trade: continue for item in trade.items_to_receive: if item in buy_trades: buy_value = add_values(float(buy_trades[item]), float(buy_value)) elif item in currencies.values(): extra_buy.append(item) sell_curr = sort(extra_sell) buy_curr = sort(extra_buy) sell_value += calculate(sell_curr[0], sell_curr[1], sell_curr[2], sell_curr[3], sell_curr[4]) buy_value += calculate(buy_curr[0], buy_curr[1], buy_curr[2], buy_curr[3], buy_curr[4]) if sell_value <= buy_value: print(f'[TRADE]: Looks good! They gave us:\n{str(trade.items_to_receive)}') print(f'[TRADE]: We gave them:\n{str(trade.items_to_give)}') print('[TRADE]: Attempting to accept offer') try: logging.info(f"ATTEMPTING TRADE: {trade.id}\nSELL: {sell_value} BUY:{buy_value}\n{trade.trade}") self._trades.append(trade) self._pending_trades.remove(trade) self.accept(trade) except ConfirmationExpected: logging.warning(f'FAILED TO CONFIRM TRADE: {trade.id} (FIRST TRY)') self._try_confs.append(trade.id) else: print(f'[TRADE]: No good! They offered us:\n{str(trade.items_to_receive)}') print(f'[TRADE]: For our:\n{str(trade.items_to_give)}') print('[TRADE]: Declining offer') logging.info(f"DECLINING INVALID TRADE: {trade.id}\nSELL: {sell_value} BUY:{buy_value}\n{trade.trade}") self.decline(trade) self._pending_trades.remove(trade) def get_new_trades(self): """ Collects new trades, will compare them to current trades to ensure they are new. Accepts if the sender is whitelisted, delcines if the user is a scammer or escrow. If not, moved it to self._pending_trades (list) Prams: (self) Output: None """ new_trades = client.get_trade_offers()['response'] #logging.debug(new_trades) for new_trade in new_trades['trade_offers_received']: if (not new_trade['tradeofferid'] in [t.id for t in self._trades]) \ or (new_trade['tradeofferid'] in self._declined_trades): id64 = 76561197960265728 + new_trade['accountid_other'] trade = Trade(new_trade, id64) logging.info(f"FOUND NEW TRADE: {trade.id}") if str(id64) in whitelist: print(f"[WHITELIST]: Neat! The user sending this trade is whitelisted! Attempting confirmation (STEAM ID:{id64})") logging.info(f'TRADE WHITELISTED ATTEMPTING TRADE: {trade.id}') self.accept(trade) self._trades.append(trade) continue print(f'[TRADE]: Found trade (ID: {trade.id})') if self._check_partner(trade): if not accept_escrow and trade.escrow: print("[TRADE]: Trade is escrow, declining") logging.info(f'DECLINING ESCROW TRADE: {trade.trade}') self.decline(trade) else: self._pending_trades.append(trade) def _check_partner(self, trade): """ To check if the user is a scammer from backpack.tf and steamrep. This uses the backpack.tf API. The API will supply the steamrep stats for the user. If the user is a scammer, it will decline the trade and move it to self._declined_trades. Prams: (self), trade (Trade object) Output: None """ print("[TRADE]: Checking for trade bans on backpack.tf and steamrep.com") rJson = requests.get(f"https://backpack.tf/api/users/info/v1?", data={'key':bkey, 'steamids':trade.other_steamid}).json() logging.debug(str(rJson)) if "bans" in rJson['users'][trade.other_steamid].keys(): if "steamrep_caution" in rJson['users'][trade.other_steamid]['bans'] or \ "steamrep_scammer" in rJson['users'][trade.other_steamid]['bans']: print("[steamrep.com]: SCAMMER") print('[TRADE]: Ending trade...') logging.info(f"DECLINED SCAMMER (ID:{trade.other_steamid})") self.decline(trade) return False print('[steamrep.com]: User is not banned') if "all" in rJson['users'][trade.other_steamid]['bans']: print('[backpack.tf]: SCAMMER') print('[TRADE]: Ending trade...') logging.info(f"DECLINED SCAMMER (ID:{trade.other_steamid})") self.decline(trade) return False print('[backpack.tf]: User is clean') print("[backpack.tf/steamrep.com]: User is clean") return True def check_bad_trades(self): """ Looks at the current trades in self._trades and checks if the trade has become invalid (eg if the trade was cancled). It will remove it from trades and report what happened to the user Prams: (self) Output: None """ for trade_index in range(len(self._trades)-1, -1, -1): trade = self._trades[trade_index] status = trade.status() if status == TradeOfferStatus.INVALID.value: print(f'[ERROR]: Trade offer id {trade.id} seems to be invalid') self._trades.remove(trade) logging.warning(f'TRADE {trade.id} BECAME invalid') elif status == TradeOfferStatus.CANCELED.value: print(f'[TRADE]: Trade {trade.id} was canceled.') self._trades.remove(trade) logging.warning(f'TRADE {trade.id} BECAME canceled') elif status == TradeOfferStatus.EXPIRED.value: print(f'[TRADE]: Trade {trade.id} has expired... How did that happen?') self._trades.remove(trade) logging.warning(f'TRADE {trade.id} BECAME expired') elif status == TradeOfferStatus.INVALID_ITEMS.value: print(f'[TRADE]: Items attempting to trade became invalid. {trade.id}') self._trades.remove(trade) logging.warning(f'TRADE {trade.id} BECAME invalid_items') elif status == TradeOfferStatus.ESCROW.value and not accept_escrow: print('[ERROR]: Whoops, escrow trade was confirmed. Sorry about that') self._trades.remove(trade) logging.fatal(f'ACCEPTED ESCROW TRADE') def check_good_trades(self): """ This method does 2 things. The first thing it does is check to see if trades have been accepted. If they have, they will be removed from self._trades and will report that the trade was accepted. The second thing is to try and confirm trades that are having issues confirming. If it was confirmed, it will be removed from self._try_confs, and report to user it was confirmed. Prams: (self) Output: None """ for trade_index in range(len(self._trades) - 1, -1, -1): trade = self._trades[trade_index] status = trade.status() if status == TradeOfferStatus.ACCEPTED.value: print(f'[TRADE]: Accepted trade {trade.id}') self._trades.remove(trade) logging.info(f'TRADE {trade.id} WAS ACCEPTED') def confirm_check(self): if confirm_settings == 'all': logging.debug('ACCEPTING EVERYTHING') for confirmation in self.conf._get_confirmations(): self.conf._send_confirmation(confirmation) logging.info(f'SENT CONFIRMATION FOR CONF WITH ID OF {confirmation.id}') elif confirm_settings == 'trade': for tradeid in self._try_confs: try: self.conf.send_trade_allow_request(tradeid) print(f'[TRADE]: Accepted trade {tradeid}') logging.info(f'TRADE {tradeid} WAS ACCEPTED (after manual confirmation)') self._try_confs.remove(tradeid) except ConfirmationExpected: logging.debug(f'CONFIRMATION FAILED ON {tradeid}') class Trade: """ This is an object mainly to store data about a trade, and make it easy to access. It can also the currency in the trade and fetch the status of the trade. Prams: trade_json (dict), other_steamid (str) Public values: self.trade (dict), self.escrow (int), self.items_to_give (list), self.items_to_receive (list), self.id (int/str), self.other_steamid (str) Public functions: sort, status """ def __init__(self, trade_json:dict, other_steamid:int): self.trade = trade_json self.escrow = int(trade_json['escrow_end_date']) self.items_to_give = self._items_to_give() self.items_to_receive = self._items_to_receive() self.id = trade_json["tradeofferid"] self.other_steamid = str(other_steamid) def _items_to_receive(self): """ Adds all items to self.items_to_receive as their market name. Should only be used in initialization. Prams: (self) Output: item_names (list) """ item_names = [] for assetID in self.trade['items_to_receive']: item_names.append(self.trade['items_to_receive'][assetID]['market_name']) return item_names def _items_to_give(self): """ Adds all items to self.items_to_give as their market name. Should only be used in initialization. Prams: (self) Output: item_names (list) """ item_names = [] for assetID in self.trade['items_to_give']: item_names.append(self.trade['items_to_give'][assetID]['market_name']) return item_names def sort(self, typ): """ Counts the amount of a currency type there is in one side of the trade. "sort" is sort of misleading (see what I did there), it just counts how many scraps, recs, ref, keys and buds there are. Prams: (self), type (str) Output: curr (list) """ if typ == 'sell': return sort(self.items_to_receive) else: return sort(self.items_to_give) def status(self): """ Fetches the status of the trade from steam. This way we can get live data. Prams: (self) Output: trade_json['trade_offer_state'] (int/str) """ try: trade_json = client.get_trade_offer(self.id)['response']['offer'] except KeyError: #If key error, the trade doesn't exist anymore. If so, it's invalid trade_json = {'trade_offer_state':1} return trade_json['trade_offer_state'] def add_values(v1, v2): v1_rem, v2_rem = int(str(v1).split('.')[1]), int(str(v2).split('.')[1]) ref = int(v1) + int(v2) v1_rec, v2_rec = v1_rem // 33, v2_rem // 33 v1_rem, v2_rem = v1_rem - v1_rec * 33, v2_rem - v2_rec * 33 srp_added = v1_rem + v2_rem v1_rec += srp_added // 33 srp_added -= (srp_added // 33) * 33 rec_added = v1_rec + v2_rec ref += rec_added // 3 rec_added -= (rec_added // 3) * 3 return float(str(ref) + '.' + str(rec_added*33 + srp_added)) def sort(items:list): curr = [0,0,0,0,0] for item in items: if item == currencies['scrap']: curr[0] += 1 elif item == currencies['rec']: curr[1] += 1 elif item == currencies['ref']: curr[2] += 1 elif item == currencies['key']: curr[3] += 1 elif item == currencies['bud']: curr[4] += 1 return curr def check_for_updates(): with open('__version__', 'r') as file: curr_version = file.read() r = requests.get('https://raw.githubusercontent.com/Zwork101/tf2-trade-bot/master/__version__') new_version = r.text if LooseVersion(new_version) > LooseVersion(curr_version): print('[PROGRAM]: A new version is available, would you like to install?') yn = input('[y/n]: ') if yn[0].lower() == 'y': print('[Installer]: Starting installation...', end='') bot_update = requests.get('https://raw.githubusercontent.com/Zwork101/tf2-trade-bot/master/bot.py') with open('__version__', 'w') as file: file.write(new_version) print('.', end='') with open('bot.py', 'w') as file: file.write(bot_update.text) print('.') print('Update complete! Restart now.') input('press enter to close program...\n') os._exit(0) def calculate(scrapC, recC, refC, keyC, budC): #For each currency, add it using add_values function total_value = 0.0 for scrap in range(scrapC): total_value = add_values(total_value, .11) for rec in range(recC): total_value = add_values(total_value, .33) for ref in range(refC): total_value = add_values(total_value, 1.0) for key in range(keyC): total_value = add_values(total_value, float(key_price)) for bud in range(budC): total_value = add_values(total_value, float(bud_price)) return total_value def check_install(pkg, c, imp=''): try: importlib.import_module(pkg) print(f'[PROGRAM]: Required package is installed {c}/{len(packages)}') logging.debug(f"MODULE {pkg} IS INSTALLED") except: logging.info(f"MODULE {pkg} IS NOT INSTALLED") if imp: pkg = imp print('[PROGRAM]: A required package is not installed, installing...') main(['install', pkg]) print('[PROGRAM]: Installed package! Please restart this program to continue.') input('press enter to close program...\n') os._exit(0) # def check_trade(trade_obj, items_value, typ): # curr = trade_obj.sort(typ) # value = calculate(curr[0], curr[1], curr[2], curr[3], curr[4]) # if typ == 'sell': # b_curr = trade_obj.sort('buy') # items_value += calculate(b_curr[0], b_curr[1], b_curr[2], b_curr[3], b_curr[4]) # else: # s_curr = trade_obj.sort('sell') # items_value += calculate(s_curr[0], s_curr[1], s_curr[2], s_curr[3], s_curr[4]) # # logging.debug(f"TRADE {trade_obj.id} is a {typ} trade, and is worth {value}, with items being {items_value}") # if typ == 'sell': # if value >= items_value: # return True # else: # return False # else: # if value <= items_value: # return True # else: # return False def heartbeat(): global past_time print(f"[HEARTBEAT]: ~{90 - int(time.time() - past_time)} seconds until next heartbeat") if int(time.time() - past_time) >= 90: p = requests.post(f"https://backpack.tf/api/aux/heartbeat/v1?", data={"token": token, "automatic": "all"}) if p.status_code != 200: print(f'[HEARTBEAT]: Error when sending heartbeat: {p.json()["message"]}') logging.warning(f"ERROR SENDING HEARTBEAT: {p.json()['message']}") else: print("[HEARTBEAT]: Sent heartbeat to backpack.tf") logging.info("HEARTBEAT SENT") past_time = time.time() if __name__ == '__main__': print(start_text) for pkg in packages: check_install(pkg, packages.index(pkg)+1, '' if pkg!='backpackpy' else 'backpack.py') from steampy.client import SteamClient from steampy import confirmation from steampy.exceptions import InvalidCredentials, ConfirmationExpected #from backpackpy import listings import requests check_for_updates() try: with open('settings.json', 'r') as cfg: try: data = json.load(cfg) try: apikey, password, username, bkey, accept_escrow = data['apikey'],\ data['password'], data['username'], data['bkey'], data['accept_escrow'] token = requests.get(f"https://backpack.tf/api/aux/token/v1?key={bkey}").json()['token'] decline_trades = data.get('decline_trades', 1) confirm_settings = data.get('confirm_options', 'trades') except KeyError as k: logging.warning(f'SETTINGS FILE MISSING {k} VALUE') print(f'[settings.json]: Whoops! You are missing the {k} value') input('Press enter to close program...\n') os._exit(1) except json.JSONDecodeError: logging.warning('INVALID SETTINGS FILE') print('[PROGRAM]: Whoops! It would seem that you settings.json file is invalid!') input('press enter to close program...\n') os._exit(1) logging.debug("LOADED SETTINGS") except FileNotFoundError: logging.warning("SETTINGS NOT FOUND, CREATING") print('[PROGRAM]: File settings.json not found! Would you like to make one?') yn = input('[y/n]: ') if yn[0].lower() == 'y': apikey = input('[settings.json]: Enter your steam API key. (https://steamcommunity.com/dev/apikey)\n') password = input('[settings.json]: Enter your password. \n') username = input('[settings.json]: Enter your username. \n') bkey = input('[settings.json]: Enter your backpack.tf API key. (https://backpack.tf/api/register)\n') accept_escrow = input('[settings.json]: Accept escrow trades? (0 for no, 1 for yes)\n') print('[PROGRAM]: Writing data to file...') with open('settings.json', 'w') as file: json.dump({'apikey':apikey, 'password':password, 'username':username, 'bkey':bkey, "accept_escrow":accept_escrow}, file) print('[PROGRAM]: Wrote to file') else: print("[PROGRAM]: Can't run without user information.") input('Press enter to close program...\n') os._exit(1) client = SteamClient(apikey) conf = None print('[PROGRAM]: Obtaining bud and key values from backpack.tf...') rJson = requests.get(f'https://backpack.tf/api/IGetCurrencies/v1?key={bkey}').json()['response'] logging.debug(f"KEY VALUE RESPONSE: {rJson}") if rJson['success']: key_price = rJson['currencies']['keys']['price']['value'] bud_price = rJson['currencies']['earbuds']['price']['value'] print(f'[PROGRAM]: Obtained values! KEY <{key_price} ref>, BUD <{bud_price} keys>.') logging.debug("OBTAINED KEY AND BUD VALUES") else: logging.fatal("FAILED TO OBTAIN KEY AND BUG VALUES") print(f'[backpack.tf]: {rJson["message"]}') input('Press enter to close program...\n') os._exit(1) try: client.login(username, password, '<PASSWORD>') except json.decoder.JSONDecodeError: logging.warning("STEAMGUARD FILE INVALID") print('[steamguard.json]: Unable to read file.') input('Press enter to close program...\n') os._exit(1) except FileNotFoundError: logging.warning("UNABLE TO FIND STEAMGAURD FILE") print('[steamguard.json]: Unable to find file.') input('Press enter to close program...\n') os._exit(1) except InvalidCredentials: logging.info("CREDENTIALS INVALID") print('[PROGRAM]: Your username, password, ID and/or secrets are invalid.') input('Press enter to close program...\n') os._exit(1) else: conf = confirmation.ConfirmationExecutor( client.steam_guard['identity_secret'], client.steam_guard['steamid'], client._session) logging.info("CREATED CLIENT AND CONFIRMATION MANAGER") print(f'[PROGRAM]: Connected to steam! Logged in as {username}') try: with open('trade.csv', 'r') as file: reader = csv.DictReader(file) count = 1 fails = [] for row in reader: count += 1 try: if row['type'].strip()[0].lower() == 's': p = row['price'].split('.') p = [int(i) for i in p] price = calculate(p[0], p[1], p[2], p[3], p[4]) sell_trades[row['item_name'].strip().replace("$$", ",")] = price elif row['type'].strip()[0].lower() == 'b': p = row['price'].split('.') p = [int(i) for i in p] price = calculate(p[0], p[1], p[2], p[3], p[4]) buy_trades[row['item_name'].strip().replace("$$", ",")] = price except AttributeError: fails.append(count) logging.info(f'LOADED TRADE DATA: BUY: {buy_trades} SELL: {sell_trades}') except FileNotFoundError: logging.warning("TRADE FILE NOT FOUND") print('[trade.data]: Unable to find file.') input('Press enter to close program...\n') os._exit(1) print(f'[CSV]: Failed to load these lines: {fails}') print('[PROGRAM]: Finished loading trading data.') # yn = input("Would you like to sync to backpack.tf listings?\n[y/n]: ") # if yn[0].lower() == 'y': # steamid = client.steam_guard['steamid'] # steam_inv = requests.get(f'http://steamcommunity.com/inventory/{steamid}/440/2?l=english&count=5000').json() # bp_listings = requests.get("https://backpack.tf/api/classifieds/listings/v1?", data={'token':token}).json() # class_id = False # for classified in bp_listings["listings"]: # asset_id = classified['id'] # for item in steam_inv['assets']: # if item['assetid'] == classified['id']: # class_id = item['classid'] # if class_id: # for item in steam_inv['descriptions']: # if item['classid'] == class_id: # market_name = item['market_name'] # market_type = classified['intent'] # ref, keys = classified['currencies']['metal'], classified['currencies']['keys'] # sep = str(ref).split('.') # if len(sep) == 2: # price = calculate(int(sep[0])/11, 0, int(sep[0]), keys, 0) # else: # price = calculate(0, 0, int(ref), keys, 0) # if market_type: # sell_trades[market_name] = price # else: # buy_trades[market_name] = price # print(buy_trades) # print(sell_trades) # os._exit(0) try: with open('whitelist.data', 'r') as file: steam_ids = file.read() if steam_ids: for steam_id in steam_ids.split(','): whitelist.append(steam_id) print(f'[WHITELIST]: Whitelist created with the following ids: {whitelist}') logging.info(f"LOADED WHITELIST: {whitelist}") except FileNotFoundError: logging.debug("WHITELIST NOT FOUND") print('[PROGRAM]: Everything ready, starting trading.') print('[PROGRAM]: Press Ctrl+C to close at any time.') manager = TradeManager(client, conf) while True: if time.time() - start_time >= 3600: pass #subprocess.call(["python", os.path.join(sys.path[0], __file__)] + sys.argv[1:]) try: heartbeat() try: manager.get_new_trades() print('[TRADE-MANAGER] STEP 1 (get new trades) COMPLETE') logging.debug("(STEP 1 COMPLETE)") except json.decoder.JSONDecodeError: print("[PROGRAM]: Unexpected error, taking a break (10 seconds).") time.sleep(10) print('Starting again...') continue manager.check_trades_content() print('[TRADE-MANAGER]: STEP 2 (check new trades) COMPLETE') logging.debug("(STEP 2 COMPLETE)") manager.check_bad_trades() print('[TRADE-MANAGER]: STEP 3 (check for trades gone bad) COMPLETE') logging.debug("(STEP 3 COMPLETE)") manager.check_good_trades() print('[TRADE-MANAGER]: STEP 4 (check for successful trades) COMPLETE') logging.debug("(STEP 4 COMPLETE)") manager.confirm_check() print('[TRADE-MANAGER]: STEP 5 (check confirmations) COMPLETE') logging.debug("(STEP 5 COMPLETE)") print('[PROGRAM]: Cooling down... (10)') except InterruptedError: os._exit(0) except BaseException as BE: print(f'[ERROR]: {type(BE).__name__}: {BE}') logging.warning(f"UNEXPECTED ERROR: {type(BE).__name__}: {BE}") time.sleep(10)
84420
import unittest.mock from programy.clients.config import ClientConfigurationData from programy.clients.events.client import EventBotClient from programytest.clients.arguments import MockArgumentParser class MockEventBotClient(EventBotClient): def __init__(self, id, argument_parser=None): EventBotClient.__init__(self, id, argument_parser) def get_client_configuration(self): return ClientConfigurationData("events") def load_license_keys(self): pass class MockRunningEventBotClient(EventBotClient): def __init__(self, id, argument_parser=None): EventBotClient.__init__(self, id, argument_parser) self.prior = False self.ran = False self.post = False def get_client_configuration(self): return ClientConfigurationData("events") def load_license_keys(self): pass def prior_to_run_loop(self): self.prior = True def wait_and_answer(self): self.ran = True def post_run_loop(self): self.post = True class EventBotClientTests(unittest.TestCase): def test_init_raw(self): arguments = MockArgumentParser() with self.assertRaises(NotImplementedError): client = EventBotClient("testevents", arguments) def test_init_actual(self): arguments = MockArgumentParser() client = MockEventBotClient("testevents", arguments) self.assertIsNotNone(client) with self.assertRaises(NotImplementedError): client.wait_and_answer() def test_init_running(self): arguments = MockArgumentParser() client = MockRunningEventBotClient("testevents", arguments) self.assertIsNotNone(client) client.run() self.assertTrue(client.prior) self.assertTrue(client.ran) self.assertTrue(client.post)
84422
import torch from torch import nn as nn from basicsr.archs.arch_util import ResidualBlockNoBN, Upsample, make_layer from basicsr.utils.registry import ARCH_REGISTRY @ARCH_REGISTRY.register() class EDSR(nn.Module): """EDSR network structure. Paper: Enhanced Deep Residual Networks for Single Image Super-Resolution. Ref git repo: https://github.com/thstkdgus35/EDSR-PyTorch Args: num_in_ch (int): Channel number of inputs. num_out_ch (int): Channel number of outputs. num_feat (int): Channel number of intermediate features. Default: 64. num_block (int): Block number in the trunk network. Default: 16. upscale (int): Upsampling factor. Support 2^n and 3. Default: 4. res_scale (float): Used to scale the residual in residual block. Default: 1. img_range (float): Image range. Default: 255. rgb_mean (tuple[float]): Image mean in RGB orders. Default: (0.4488, 0.4371, 0.4040), calculated from DIV2K dataset. """ def __init__(self, num_in_ch, num_out_ch, num_feat=64, num_block=16, upscale=4, res_scale=1, img_range=255., rgb_mean=(0.4488, 0.4371, 0.4040)): super(EDSR, self).__init__() self.img_range = img_range self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) self.body = make_layer(ResidualBlockNoBN, num_block, num_feat=num_feat, res_scale=res_scale, pytorch_init=True) self.conv_after_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.upsample = Upsample(upscale, num_feat) self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) def forward(self, x): self.mean = self.mean.type_as(x) x = (x - self.mean) * self.img_range x = self.conv_first(x) res = self.conv_after_body(self.body(x)) res += x x = self.conv_last(self.upsample(res)) x = x / self.img_range + self.mean return x
84445
import os NORMALIZATION_COEF = 7 PLAYER_CIRCLE_SIZE = 12 / NORMALIZATION_COEF INTERVAL = 10 DIFF = 6 X_MIN = 0 X_MAX = 100 Y_MIN = 0 Y_MAX = 50 COL_WIDTH = 0.3 SCALE = 1.65 FONTSIZE = 6 X_CENTER = X_MAX / 2 - DIFF / 1.5 + 0.10 Y_CENTER = Y_MAX - DIFF / 1.5 - 0.35 BALL_COLOR = "#ff8c00" (COURT_WIDTH, COURT_LENGTH) = (50, 94) TEAM_ID2PROPS = { 1610612737: {"color": "#E13A3E", "abbreviation": "ATL"}, 1610612738: {"color": "#008348", "abbreviation": "BOS"}, 1610612751: {"color": "#061922", "abbreviation": "BKN"}, 1610612766: {"color": "#1D1160", "abbreviation": "CHA"}, 1610612741: {"color": "#CE1141", "abbreviation": "CHI"}, 1610612739: {"color": "#860038", "abbreviation": "CLE"}, 1610612742: {"color": "#007DC5", "abbreviation": "DAL"}, 1610612743: {"color": "#4D90CD", "abbreviation": "DEN"}, 1610612765: {"color": "#006BB6", "abbreviation": "DET"}, 1610612744: {"color": "#FDB927", "abbreviation": "GSW"}, 1610612745: {"color": "#CE1141", "abbreviation": "HOU"}, 1610612754: {"color": "#00275D", "abbreviation": "IND"}, 1610612746: {"color": "#ED174C", "abbreviation": "LAC"}, 1610612747: {"color": "#552582", "abbreviation": "LAL"}, 1610612763: {"color": "#0F586C", "abbreviation": "MEM"}, 1610612748: {"color": "#98002E", "abbreviation": "MIA"}, 1610612749: {"color": "#00471B", "abbreviation": "MIL"}, 1610612750: {"color": "#005083", "abbreviation": "MIN"}, 1610612740: {"color": "#002B5C", "abbreviation": "NOP"}, 1610612752: {"color": "#006BB6", "abbreviation": "NYK"}, 1610612760: {"color": "#007DC3", "abbreviation": "OKC"}, 1610612753: {"color": "#007DC5", "abbreviation": "ORL"}, 1610612755: {"color": "#006BB6", "abbreviation": "PHI"}, 1610612756: {"color": "#1D1160", "abbreviation": "PHX"}, 1610612757: {"color": "#E03A3E", "abbreviation": "POR"}, 1610612758: {"color": "#724C9F", "abbreviation": "SAC"}, 1610612759: {"color": "#BAC3C9", "abbreviation": "SAS"}, 1610612761: {"color": "#CE1141", "abbreviation": "TOR"}, 1610612762: {"color": "#00471B", "abbreviation": "UTA"}, 1610612764: {"color": "#002B5C", "abbreviation": "WAS"}, } EVENTS_DIR = os.environ["EVENTS_DIR"] TRACKING_DIR = os.environ["TRACKING_DIR"] GAMES_DIR = os.environ["GAMES_DIR"] DATA_DIR = os.environ["DATA_DIR"] EXPERIMENTS_DIR = os.environ["EXPERIMENTS_DIR"]
84447
from microbit import * import neopixel np = neopixel.NeoPixel(pin1 ,32) def np_rainbow(np, num, bright=32, offset = 0): rb = ((255,0,0), (255,127,0), (255,255,0), (0,255,0), (0,255,255),(0,0,255),(136,0,255), (255,0,0)) for i in range(num): t = 7*i/num t0 = int(t) r = round((rb[t0][0] + (t-t0)*(rb[t0+1][0]-rb[t0][0]))*bright)>>8 g = round((rb[t0][1] + (t-t0)*(rb[t0+1][1]-rb[t0][1]))*bright)>>8 b = round((rb[t0][2] + (t-t0)*(rb[t0+1][2]-rb[t0][2]))*bright)>>8 np[(i+offset)%num] = (r, g, b) np_rainbow(np, 32, bright=16, offset=0) np.show()
84470
from __future__ import annotations import ast from typing import ( TYPE_CHECKING, Any, Awaitable, Callable, List, Optional, Type, Union, cast, ) from ....utils.logging import LoggingDescriptor from ....utils.uri import Uri from ...common.language import language_id from ...common.text_document import TextDocument from ...common.types import Location, LocationLink, Position from ..utils.ast import ( HasTokens, Token, get_nodes_at_position, get_tokens_at_position, range_from_token, range_from_token_or_node, tokenize_variables, ) if TYPE_CHECKING: from ..protocol import RobotLanguageServerProtocol from .model_helper import ModelHelperMixin from .protocol_part import RobotLanguageServerProtocolPart _DefinitionMethod = Callable[ [ast.AST, TextDocument, Position], Awaitable[Union[Location, List[Location], List[LocationLink], None]], ] class RobotGotoProtocolPart(RobotLanguageServerProtocolPart, ModelHelperMixin): _logger = LoggingDescriptor() def __init__(self, parent: RobotLanguageServerProtocol) -> None: super().__init__(parent) parent.definition.collect.add(self.collect) parent.implementation.collect.add(self.collect) def _find_method(self, cls: Type[Any]) -> Optional[_DefinitionMethod]: if cls is ast.AST: return None method_name = "definition_" + cls.__name__ if hasattr(self, method_name): method = getattr(self, method_name) if callable(method): return cast(_DefinitionMethod, method) for base in cls.__bases__: method = self._find_method(base) if method: return cast(_DefinitionMethod, method) return None @language_id("robotframework") async def collect( self, sender: Any, document: TextDocument, position: Position ) -> Union[Location, List[Location], List[LocationLink], None]: result_nodes = await get_nodes_at_position(await self.parent.documents_cache.get_model(document), position) if not result_nodes: return None result_node = result_nodes[-1] if result_node is None: return None method = self._find_method(type(result_node)) if method is not None: result = await method(result_node, document, position) if result is not None: return result return await self._definition_default(result_nodes, document, position) async def _definition_default( self, nodes: List[ast.AST], document: TextDocument, position: Position ) -> Union[Location, List[Location], List[LocationLink], None]: from robot.api.parsing import Token as RobotToken namespace = await self.parent.documents_cache.get_namespace(document) if namespace is None: return None if not nodes: return None node = nodes[-1] if not isinstance(node, HasTokens): return None tokens = get_tokens_at_position(node, position) for token in tokens: try: for sub_token in filter( lambda s: s.type == RobotToken.VARIABLE, tokenize_variables(token, ignore_errors=True) ): range = range_from_token(sub_token) if position.is_in_range(range): variable = await namespace.find_variable(sub_token.value, nodes, position) if variable is not None and variable.source: return [ LocationLink( origin_selection_range=range_from_token_or_node(node, sub_token), target_uri=str(Uri.from_path(variable.source)), target_range=variable.range(), target_selection_range=range_from_token(variable.name_token) if variable.name_token else variable.range(), ) ] except BaseException: pass return None async def definition_KeywordCall( # noqa: N802 self, node: ast.AST, document: TextDocument, position: Position ) -> Union[Location, List[Location], List[LocationLink], None]: from robot.parsing.lexer.tokens import Token as RobotToken from robot.parsing.model.statements import KeywordCall namespace = await self.parent.documents_cache.get_namespace(document) if namespace is None: return None kw_node = cast(KeywordCall, node) result = await self.get_keyworddoc_and_token_from_position( kw_node.keyword, cast(Token, kw_node.get_token(RobotToken.KEYWORD)), [cast(Token, t) for t in kw_node.get_tokens(RobotToken.ARGUMENT)], namespace, position, ) if result is not None and result[0] is not None: source = result[0].source if source is not None: return [ LocationLink( origin_selection_range=range_from_token_or_node(node, result[1]), target_uri=str(Uri.from_path(source)), target_range=result[0].range, target_selection_range=result[0].range, ) ] return None async def definition_Fixture( # noqa: N802 self, node: ast.AST, document: TextDocument, position: Position ) -> Union[Location, List[Location], List[LocationLink], None]: from robot.parsing.lexer.tokens import Token as RobotToken from robot.parsing.model.statements import Fixture namespace = await self.parent.documents_cache.get_namespace(document) if namespace is None: return None fixture_node = cast(Fixture, node) result = await self.get_keyworddoc_and_token_from_position( fixture_node.name, cast(Token, fixture_node.get_token(RobotToken.NAME)), [cast(Token, t) for t in fixture_node.get_tokens(RobotToken.ARGUMENT)], namespace, position, ) if result is not None and result[0] is not None: source = result[0].source if source is not None: return [ LocationLink( origin_selection_range=range_from_token_or_node(node, result[1]), target_uri=str(Uri.from_path(source)), target_range=result[0].range, target_selection_range=result[0].range, ) ] return None async def _definition_Template_or_TestTemplate( # noqa: N802 self, node: ast.AST, document: TextDocument, position: Position ) -> Union[Location, List[Location], List[LocationLink], None]: from robot.parsing.lexer.tokens import Token as RobotToken from robot.parsing.model.statements import Template, TestTemplate node = cast(Union[Template, TestTemplate], node) if node.value: keyword_token = cast(RobotToken, node.get_token(RobotToken.NAME)) if keyword_token is None: return None if position.is_in_range(range_from_token(keyword_token)): namespace = await self.parent.documents_cache.get_namespace(document) if namespace is None: return None result = await namespace.find_keyword(node.value) if result is not None and result.source is not None: return [ LocationLink( origin_selection_range=range_from_token_or_node(node, keyword_token), target_uri=str(Uri.from_path(result.source)), target_range=result.range, target_selection_range=result.range, ) ] return None async def definition_TestTemplate( # noqa: N802 self, node: ast.AST, document: TextDocument, position: Position ) -> Union[Location, List[Location], List[LocationLink], None]: return await self._definition_Template_or_TestTemplate(node, document, position) async def definition_Template( # noqa: N802 self, node: ast.AST, document: TextDocument, position: Position ) -> Union[Location, List[Location], List[LocationLink], None]: return await self._definition_Template_or_TestTemplate(node, document, position) async def definition_LibraryImport( # noqa: N802 self, node: ast.AST, document: TextDocument, position: Position ) -> Union[Location, List[Location], List[LocationLink], None]: from robot.parsing.lexer.tokens import Token as RobotToken from robot.parsing.model.statements import LibraryImport library_node = cast(LibraryImport, node) if library_node.name: name_token = cast(RobotToken, library_node.get_token(RobotToken.NAME)) if name_token is None: return None if position.is_in_range(range_from_token(name_token)): namespace = await self.parent.documents_cache.get_namespace(document) if namespace is None: return None try: libdoc = await namespace.imports_manager.get_libdoc_for_library_import( library_node.name, library_node.args, str(document.uri.to_path().parent) ) python_source = libdoc.source_or_origin if python_source is not None: return [ LocationLink( origin_selection_range=range_from_token_or_node(library_node, name_token), target_uri=str(Uri.from_path(python_source)), target_range=libdoc.range, target_selection_range=libdoc.range, ) ] except BaseException: pass return None async def definition_ResourceImport( # noqa: N802 self, node: ast.AST, document: TextDocument, position: Position ) -> Union[Location, List[Location], List[LocationLink], None]: from robot.parsing.lexer.tokens import Token as RobotToken from robot.parsing.model.statements import ResourceImport resource_node = cast(ResourceImport, node) if resource_node.name: name_token = cast(RobotToken, resource_node.get_token(RobotToken.NAME)) if name_token is None: return None if position.is_in_range(range_from_token(name_token)): namespace = await self.parent.documents_cache.get_namespace(document) if namespace is None: return None try: libdoc = await namespace.imports_manager.get_libdoc_for_resource_import( resource_node.name, str(document.uri.to_path().parent) ) python_source = libdoc.source_or_origin if python_source is not None: return [ LocationLink( origin_selection_range=range_from_token_or_node(resource_node, name_token), target_uri=str(Uri.from_path(python_source)), target_range=libdoc.range, target_selection_range=libdoc.range, ) ] except BaseException: pass return None
84478
import tensorflow as tf def saturation(img): mean = tf.keras.backend.mean(img, axis=-1, keepdims = True) mul = tf.constant([1,1,1,3], tf.int32) mean = tf.tile(mean, mul) img = tf.math.subtract(img, mean) sat = tf.einsum('aijk,aijk->aij', img, img) sat = tf.math.scalar_mul((1.0/3.0),sat) sat = tf.math.add(sat, tf.math.scalar_mul(1e-7, tf.ones_like(sat))) sat = tf.math.sqrt(sat) return sat def get_exp(img,c): #cimg = tf.slice(img,[0,0,0,c],[img.get_shape()[0],img.get_shape()[1],img.get_shape()[2],1]) cimg = tf.squeeze(img,axis=-1) m = tf.math.scalar_mul(0.5, tf.ones_like(cimg)) cimg = tf.math.subtract(cimg,m) cimg = tf.math.multiply(cimg,cimg) cimg = tf.math.scalar_mul(-12.5,cimg) return cimg def exposure(img): rimg, gimg, bimg = tf.split(img, num_or_size_splits=3, axis=-1) rimg = get_exp(rimg,0) gimg = get_exp(gimg,1) bimg = get_exp(bimg,2) img = tf.math.add(rimg,gimg) img = tf.math.add(img,bimg) exp = tf.math.exp(img) return exp def contrast(img): mean = tf.keras.backend.mean(img, axis=-1, keepdims=True) lap_fil = [[0.0,-1.0,0.0],[-1.0,4.0,-1.0],[0.0,-1.0,0.0]] lap_fil = tf.expand_dims(lap_fil,-1) lap_fil = tf.expand_dims(lap_fil,-1) con = tf.nn.convolution(mean, lap_fil, padding='SAME') con = tf.math.abs(con) con = tf.squeeze(con,axis=-1) return con def exp_map(img,pc,ps,pe): con = contrast(img) sat = saturation(img) exp = exposure(img) if pc!=1 or pe!=1 or ps!=1: pc = tf.math.scalar_mul(pc, tf.ones_like(con)) ps = tf.math.scalar_mul(ps, tf.ones_like(con)) pe = tf.math.scalar_mul(pe, tf.ones_like(con)) con = tf.math.pow(con,pc) sat = tf.math.pow(sat,pe) exp = tf.math.pow(exp,ps) wt_map = tf.math.multiply(con,sat) wt_map = tf.math.multiply(wt_map,exp) return wt_map
84513
import os import numpy as np import torch import torch.nn.functional as F from tqdm import tqdm from test import test import torchvision class TrainLoop(object): def __init__(self, model, optimizer, source_loader, test_source_loader, target_loader, patience, l2, penalty_weight, penalty_anneal_epochs, checkpoint_path=None, checkpoint_epoch=None, cuda=True, logging=False): if checkpoint_path is None: # Save to current directory self.checkpoint_path = os.getcwd() else: self.checkpoint_path = checkpoint_path if not os.path.isdir(self.checkpoint_path): os.mkdir(self.checkpoint_path) self.save_epoch_fmt = os.path.join(self.checkpoint_path, 'IRM_{}ep.pt') self.cuda_mode = cuda self.model = model self.device = next(self.model.parameters()).device self.optimizer = optimizer self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=patience) self.source_loader = source_loader self.test_source_loader = test_source_loader self.target_loader = target_loader self.history = {'loss': [], 'accuracy_source':[], 'accuracy_target':[]} self.cur_epoch = 0 self.dummy = torch.tensor(1.).to(self.device).requires_grad_() self.l2 = l2 self.penalty_weight = penalty_weight self.penalty_anneal_epochs = penalty_anneal_epochs self.total_iter = 0 if checkpoint_epoch is not None: self.load_checkpoint(checkpoint_epoch) self.logging = logging if self.logging: from torch.utils.tensorboard import SummaryWriter self.writer = SummaryWriter() def train(self, n_epochs=1, save_every=1): while self.cur_epoch < n_epochs: print('Epoch {}/{}'.format(self.cur_epoch + 1, n_epochs)) cur_loss = 0 source_iter = tqdm(enumerate(self.source_loader)) for t, batch in source_iter: loss_it = self.train_step(batch) self.total_iter += 1 cur_loss += loss_it self.history['loss'].append(cur_loss/(t+1)) print('Current loss: {}.'.format(cur_loss/(t+1))) print('Current LR: {}'.format(self.optimizer.state_dict()['param_groups'][0]['lr'])) if self.logging: self.writer.add_scalar('train/task_loss', cur_loss_task, self.total_iter) self.writer.add_scalar('train/hypervolume_loss', cur_hypervolume, self.total_iter) self.writer.add_scalar('misc/LR', self.optimizer_task.param_groups[0]['lr'], self.total_iter) self.history['accuracy_source'].append(test(self.test_source_loader, self.model, self.device, source_target = 'source', epoch = self.cur_epoch, tb_writer = self.writer if self.logging else None)) self.history['accuracy_target'].append(test(self.target_loader, self.model, self.device, source_target = 'target', epoch = self.cur_epoch, tb_writer = self.writer if self.logging else None)) print('Valid. on SOURCE data - Current acc., best acc., and epoch: {:0.4f}, {:0.4f}, {}'.format(self.history['accuracy_source'][-1], np.max(self.history['accuracy_source']), 1+np.argmax(self.history['accuracy_source']))) print('Valid. on TARGET data - Current acc., best acc., and epoch: {:0.4f}, {:0.4f}, {}'.format(self.history['accuracy_target'][-1], np.max(self.history['accuracy_target']), 1+np.argmax(self.history['accuracy_target']))) if self.cur_epoch % save_every == 0 or self.history['accuracy_target'][-1] > np.max([-np.inf]+self.history['accuracy_target'][:-1]): self.checkpointing() self.cur_epoch += 1 self.scheduler.step() # saving final models print('Saving final model...') self.checkpointing() return 1. - np.max(self.history['accuracy_target']) def train_step(self, batch): self.model.train() loss_acc = 0 penalty = 0 for domain in range(3): x = batch[domain].to(self.device) y_task = batch[domain+3].to(self.device) out = self.model(x) loss_current = torch.nn.CrossEntropyLoss()(out*self.dummy, y_task) penalty += self.penalty(loss_current, self.dummy) loss_acc += loss_current weight_norm = torch.tensor(0.).to(self.device) for w in self.model.parameters(): weight_norm += w.norm().pow(2) loss = loss_acc / 3 #penalty = penalty / 3 loss += self.l2 * weight_norm penalty_weight = (self.penalty_weight if self.cur_epoch >= self.penalty_anneal_epochs else 1.0) loss += penalty_weight * penalty if penalty_weight > 1.0: # Rescale the entire loss to keep gradients in a reasonable range loss /= penalty_weight self.optimizer.zero_grad() loss.backward() self.optimizer.step() return loss.item() def checkpointing(self): # Checkpointing print('Checkpointing...') ckpt = {'model_state': self.model.state_dict(), 'history': self.history, 'cur_epoch': self.cur_epoch, 'optimizer_state': self.optimizer.state_dict(), 'scheduler_state': self.scheduler.state_dict()} torch.save(ckpt, self.save_epoch_fmt.format(self.cur_epoch)) def load_checkpoint(self, epoch): ckpt = self.save_epoch_fmt_task.format(epoch) if os.path.isfile(ckpt): ckpt = torch.load(ckpt) # Load model state self.model.load_state_dict(ckpt['model_state']) # Load optimizer state self.optimizer.load_state_dict(ckpt['optimizer_state']) # Load scheduler state self.scheduler.load_state_dict(ckpt['scheduler_state']) # Load history self.history = ckpt['history'] self.cur_epoch = ckpt['cur_epoch'] else: print('No checkpoint found at: {}'.format(ckpt)) def print_grad_norms(self, model): norm = 0.0 for params in list(filter(lambda p: p.grad is not None, model.parameters())): norm += params.grad.norm(2).item() print('Sum of grads norms: {}'.format(norm)) def penalty(self, loss, dummy): grad = torch.autograd.grad(loss, [dummy], create_graph=True)[0] return torch.sum(grad**2)
84554
import json import pytest from indy import ledger, error @pytest.mark.asyncio async def test_build_attrib_request_works_for_raw_value(): identifier = "Th7MpTaRZVRYnPiabds81Y" destination = "Th7MpTaRZVRYnPiabds81Y" raw = '{"endpoint":{"ha":"127.0.0.1:5555"}}' expected_response = { "identifier": identifier, "operation": { "type": "100", "dest": destination, "raw": raw } } response = json.loads(await ledger.build_attrib_request(identifier, destination, None, raw, None)) assert expected_response.items() <= response.items() @pytest.mark.asyncio async def test_build_attrib_request_works_for_hash_value(): identifier = "Th7MpTaRZVRYnPiabds81Y" destination = "Th7MpTaRZVRYnPiabds81Y" xhash = "83d907821df1c87db829e96569a11f6fc2e7880acba5e43d07ab786959e13bd3" expected_response = { "identifier": identifier, "operation": { "type": "100", "dest": destination, "hash": xhash } } response = json.loads(await ledger.build_attrib_request(identifier, destination, xhash, None, None)) assert expected_response.items() <= response.items() @pytest.mark.asyncio async def test_build_attrib_request_works_for_enc_value(): identifier = "Th7MpTaRZVRYnPiabds81Y" destination = "Th7MpTaRZVRYnPiabds81Y" enc = "aa3f41f619aa7e5e6b6d0de555e05331787f9bf9aa672b94b57ab65b9b66c3ea960b18a98e3834b1fc6cebf49f463b81fd6e3181" expected_response = { "identifier": identifier, "operation": { "type": "100", "dest": destination, "enc": enc } } response = json.loads(await ledger.build_attrib_request(identifier, destination, None, None, enc)) assert expected_response.items() <= response.items() @pytest.mark.asyncio async def test_build_attrib_request_works_for_missed_attribute(): identifier = "Th7MpTaRZVRYnPiabds81Y" destination = "Th7MpTaRZVRYnPiabds81Y" with pytest.raises(error.CommonInvalidStructure): await ledger.build_attrib_request(identifier, destination, None, None, None)
84559
import warnings from typing import Tuple, Callable, Any, List import numpy as np from nebullvm.base import QuantizationType from nebullvm.inference_learners.base import BaseInferenceLearner from nebullvm.measure import compute_relative_difference def check_precision( optimized_learner: BaseInferenceLearner, input_data: List[Tuple[Any, ...]], base_outputs_list: List[Tuple[Any, ...]], perf_loss_ths: float, metric_func: Callable = None, ys: List = None, aggregation_func: Callable = np.mean, ) -> bool: metric_func = metric_func or compute_relative_difference relative_differences = [] if ys is None: ys = [None] * len(input_data) for inputs, base_outputs, y in zip(input_data, base_outputs_list, ys): opt_outputs = optimized_learner(*inputs) relative_difference = max( metric_func(base_output, opt_output, y) for base_output, opt_output in zip(base_outputs, opt_outputs) ) relative_differences.append(relative_difference) relative_difference = aggregation_func(relative_differences) return relative_difference <= perf_loss_ths def check_quantization( quantization_type: QuantizationType, perf_loss_ths: float ): if quantization_type is None and perf_loss_ths is not None: raise ValueError( "When a quantization threshold is given it is necessary to " "specify the quantization algorithm too." ) if quantization_type is not None and perf_loss_ths is None: warnings.warn( "Got a valid quantization type without any given quantization " "threshold. The quantization step will be ignored." )
84560
import unittest import numpy as np from .bvgamma import * from flavio.physics.bdecays.formfactors.b_v import bsz_parameters from flavio.physics.eft import WilsonCoefficients from flavio.physics.bdecays.wilsoncoefficients import wctot_dict from flavio.parameters import default_parameters import flavio wc = WilsonCoefficients() par = default_parameters# class TestBVgamma(unittest.TestCase): def test_bksgamma(self): # just check if this works flavio.Observable["ACP(B0->K*gamma)"].prediction_central(par, wc) flavio.Observable["S_K*gamma"].prediction_central(par, wc) # numerical comparison to David's old Mathematica code self.assertAlmostEqual( flavio.Observable["BR(B0->K*gamma)"].prediction_central(par, wc)*1e5/3.91526, 1, places=1) self.assertAlmostEqual( flavio.Observable["BR(B+->K*gamma)"].prediction_central(par, wc)*1e5/4.11625, 1, places=1) def test_bksgamma(self): # just check if this works flavio.Observable["ACP(Bs->phigamma)"].prediction_central(par, wc) flavio.Observable["S_phigamma"].prediction_central(par, wc) flavio.Observable["BR(Bs->phigamma)"].prediction_central(par, wc) flavio.Observable["ADeltaGamma(Bs->phigamma)"].prediction_central(par, wc)
84565
from midca import goals, base from midca import midcatime from ._goalgen import tf_fire from ._goalgen import tf_3_scen from midca.domains.logistics import deliverstate from midca.domains.blocksworld import blockstate from midca.worldsim import stateread import copy,csv import random from midca.modules.monitors import Monitor class TFFire(base.BaseModule): ''' MIDCA module that generates goals to put out fires using Michael Maynord's TF-Trees. The behavior is as follows: if any fires exist, a single goal will be generated to put out a fire on some block that is currently burning. Otherwise no goal will be generated. ''' def __init__(self): self.tree = tf_fire.Tree() def fireGoalExists(self): graph = self.mem.get(self.mem.GOAL_GRAPH) for goal in graph.getAllGoals(): if goal['predicate'] == "onfire": return True return False def run(self, cycle, verbose = 2): world = self.mem.get(self.mem.STATES)[-1] blocks = blockstate.get_block_list(world) goal = self.tree.givegoal(blocks) if goal: inserted = self.mem.get(self.mem.GOAL_GRAPH).insert(goal) if verbose >= 2: print("TF-Tree goal generated:", goal, end=' ') if inserted: print() else: print(". This goal was already in the graph.")
84568
import unittest import mock from copy import copy from tests import BaseTest import logging # Units under test import cadquery from cadquery.freecad_impl import console_logging class TestLogging(BaseTest): def setUp(self): # save root logger's state root_logger = logging.getLogger() self._initial_level = root_logger.level self._initial_logging_handlers = copy(root_logger.handlers) def tearDown(self): # forcefully re-establish original log state root_logger = logging.getLogger() root_logger.level = self._initial_level root_logger.handlers = self._initial_logging_handlers # reset console_logging's global state cadquery.freecad_impl.console_logging._logging_handler = None @mock.patch('cadquery.freecad_impl.console_logging.FreeCAD') def testConsoleMessage(self, mock_freecad): console_logging.enable() log = logging.getLogger('test') log.info('foo') mock_freecad.Console.PrintMessage.assert_called_once_with('foo\n') mock_freecad.Console.PrintWarning.assert_not_called() mock_freecad.Console.PrintError.assert_not_called() @mock.patch('cadquery.freecad_impl.console_logging.FreeCAD') def testConsoleWarning(self, mock_freecad): console_logging.enable() log = logging.getLogger('test') log.warning('bar') mock_freecad.Console.PrintMessage.assert_not_called() mock_freecad.Console.PrintWarning.assert_called_once_with('bar\n') mock_freecad.Console.PrintError.assert_not_called() @mock.patch('cadquery.freecad_impl.console_logging.FreeCAD') def testConsoleError(self, mock_freecad): console_logging.enable() log = logging.getLogger('test') log.error('roo') mock_freecad.Console.PrintMessage.assert_not_called() mock_freecad.Console.PrintWarning.assert_not_called() mock_freecad.Console.PrintError.assert_called_once_with('roo\n') @mock.patch('cadquery.freecad_impl.console_logging.FreeCAD') def testConsoleDebugOffDefault(self, mock_freecad): console_logging.enable() log = logging.getLogger('test') log.debug('no show') mock_freecad.Console.PrintMessage.assert_not_called() mock_freecad.Console.PrintWarning.assert_not_called() mock_freecad.Console.PrintError.assert_not_called() @mock.patch('cadquery.freecad_impl.console_logging.FreeCAD') def testConsoleSetLevelDebug(self, mock_freecad): console_logging.enable(level=logging.DEBUG) log = logging.getLogger('test') log.debug('now showing') mock_freecad.Console.PrintMessage.assert_called_once_with('now showing\n') @mock.patch('cadquery.freecad_impl.console_logging.FreeCAD') def testConsoleSetLevelWarning(self, mock_freecad): console_logging.enable(level=logging.WARNING) log = logging.getLogger('test') log.info('no show') log.warning('be warned') mock_freecad.Console.PrintMessage.assert_not_called() mock_freecad.Console.PrintWarning.assert_called_once_with('be warned\n') @mock.patch('cadquery.freecad_impl.console_logging.FreeCAD') def testConsoleLogFormat(self, mock_freecad): console_logging.enable(format=">> %(message)s <<") log = logging.getLogger('test') log.info('behold brackets!') mock_freecad.Console.PrintMessage.assert_called_once_with('>> behold brackets! <<\n') @mock.patch('cadquery.freecad_impl.console_logging.FreeCAD') def testConsoleEnableDisable(self, mock_freecad): console_logging.enable() console_logging.disable() log = logging.getLogger('test') log.error('nope, disabled') mock_freecad.Console.PrintError.assert_not_called()
84616
from . import datahandler from .backtester import Backtest from .enums import Stock, Type, Direction __all__ = ['datahandler', 'Backtest', 'Stock', 'Type', 'Direction']
84617
expected_output = { "key_chains": { "bla": { "keys": { 1: { "accept_lifetime": { "end": "always valid", "is_valid": True, "start": "always valid", }, "key_string": "cisco123", "send_lifetime": { "end": "always valid", "is_valid": True, "start": "always valid", }, }, 2: { "accept_lifetime": { "end": "06:01:00 UTC Jan 1 2010", "is_valid": False, "start": "10:10:10 UTC Jan 1 2002", }, "key_string": "blabla", "send_lifetime": { "end": "06:01:00 UTC Jan 1 2010", "is_valid": False, "start": "10:10:10 UTC Jan 1 2002", }, }, }, }, "cisco": { "keys": { 1: { "accept_lifetime": { "end": "infinite", "is_valid": True, "start": "11:11:11 UTC Mar 1 2001", }, "key_string": "cisco123", "send_lifetime": { "end": "infinite", "is_valid": True, "start": "11:11:11 UTC Mar 1 2001", }, }, 2: { "accept_lifetime": { "end": "22:11:11 UTC Dec 20 2030", "is_valid": True, "start": "11:22:11 UTC Jan 1 2001", }, "key_string": "cisco234", "send_lifetime": { "end": "always valid", "is_valid": True, "start": "always valid", }, }, 3: { "accept_lifetime": { "end": "always valid", "is_valid": True, "start": "always valid", }, "key_string": "cisco", "send_lifetime": { "end": "always valid", "is_valid": True, "start": "always valid", }, }, }, }, }, }
84692
import argparse import os import json import sys def copyright_main(): parser = argparse.ArgumentParser( description="automatically set the copyright for you" ) parser.add_argument("-p", "--path", help="choose the path you want to add the copyright") parser.add_argument("-t", "--title", help="add the copyright title") parser.add_argument("-l", "--license", help="add the license name for the copyright") parser.add_argument("-y", "--year", help="add the year the production was made") parser.add_argument("-o", "--owner", help="add the owner of the production") parser.add_argument("--config", help="add the config file") parser.add_argument("-d", "--description", help="add description of the program") parser.add_argument("-c", "--cversion", help="add the version of the production") parser.add_argument("-u", "--update", help="add the latest time that you updated") parser.add_argument("-f", "--file", help="add the file name of the program") args = parser.parse_args() if args.config: try: with open(args.config, "r", encoding="utf-8") as f: content = f.read() info = json.loads(content) try: args.path = info["path"] args.title = info["title"] args.license = info["license"] args.year = info["year"] args.owner = info["owner"] except Exception as e: print("Argument not find!") sys.exit() try: args.description = info["description"] except Exception as e: pass try: args.cversion = info["cversion"] except Exception as e: pass try: args.update = info["update"] except Exception as e: pass try: args.file = info["file"] except Exception as e: pass except Exception as e: print("Config File not exists!") sys.exit() args_list = [args.year, args.license, args.owner, args.title] if not all(args_list): print("Error: lack of args!") sys.exit() data = '"""\n' data += "Copyright: Copyright (c) " + args.year + "\n" data += "License : " + args.license + "\n" data += "owner : " + args.owner + "\n" data += "title : " + args.title + "\n" if args.description: data += "description : " + args.description + "\n" if args.cversion: data += "version : " + args.cversion + "\n" if args.update: data += "time : " + args.update + "\n" if args.file: data += "file : " + args.file + "\n" data += '"""\n\n' for root, dirs, files in os.walk(args.path): for file in files: with open(root + "/" + file, "r+", encoding="utf-8") as f: old = f.read() f.seek(0) f.write(data) f.write(old) if __name__ == "__main__": copyright_main()
84695
import tinyapi from unittest import TestCase from getpass import getpass from nose.tools import raises import os DEFAULT_USERNAME = "tinyapi-test-account" USERNAME = os.environ.get("TINYAPI_TEST_USERNAME") or DEFAULT_USERNAME PASSWORD = os.environ.get("TINYAPI_TEST_PASSWORD") or getpass() class TestDraft(TestCase): def setUp(self): self.session = tinyapi.Session(USERNAME, PASSWORD) def test_basic(self): draft = self.session.create_draft() repr(draft) draft.subject = "testing" draft.body = "this is the body" draft.public_message = True message_id = draft.save().message_id fetched_draft = self.session.edit_draft(message_id) assert(fetched_draft.message_id == draft.message_id) assert(fetched_draft.subject == draft.subject) assert(fetched_draft.body == draft.body) assert(fetched_draft.public_message == draft.public_message) fetched_draft.delete() @raises(Exception) def test_bad_id(self): draft = self.session.edit_draft(1) draft.fetch() @raises(Exception) def test_unsaved_fetch(self): draft = self.session.create_draft() draft.fetch() @raises(Exception) def test_bad_public_value(self): draft = self.session.create_draft() draft.public_message = "a string"
84702
from __future__ import unicode_literals import io import json import os import re from collections import OrderedDict VALID_COUNTRY_CODE = re.compile(r"^\w{2,3}$") VALIDATION_DATA_DIR = os.path.join(os.path.dirname(__file__), "data") VALIDATION_DATA_PATH = os.path.join(VALIDATION_DATA_DIR, "%s.json") FIELD_MAPPING = { "A": "street_address", "C": "city", "D": "city_area", "N": "name", "O": "company_name", "S": "country_area", "X": "sorting_code", "Z": "postal_code", } KNOWN_FIELDS = set(FIELD_MAPPING.values()) | {"country_code"} def load_validation_data(country_code="all"): if not VALID_COUNTRY_CODE.match(country_code): raise ValueError("%r is not a valid country code" % (country_code,)) country_code = country_code.lower() try: # VALIDATION_DATA_PATH may have '%' symbols # for backwards compatability if VALIDATION_DATA_PATH is imported # by consumers of this package. path = VALIDATION_DATA_PATH % (country_code,) except TypeError: path = os.path.join(VALIDATION_DATA_DIR, "%s.json" % country_code) if not os.path.exists(path): raise ValueError("%r is not a valid country code" % (country_code,)) with io.open(path, encoding="utf-8") as data: return json.load(data) class ValidationRules(object): __slots__ = [ "country_code", "country_name", "address_format", "address_latin_format", "allowed_fields", "required_fields", "upper_fields", "country_area_type", "country_area_choices", "city_type", "city_choices", "city_area_type", "city_area_choices", "postal_code_type", "postal_code_matchers", "postal_code_examples", "postal_code_prefix", ] def __init__( self, country_code, country_name, address_format, address_latin_format, allowed_fields, required_fields, upper_fields, country_area_type, country_area_choices, city_type, city_choices, city_area_type, city_area_choices, postal_code_type, postal_code_matchers, postal_code_examples, postal_code_prefix, ): self.country_code = country_code self.country_name = country_name self.address_format = address_format self.address_latin_format = address_latin_format self.allowed_fields = allowed_fields self.required_fields = required_fields self.upper_fields = upper_fields self.country_area_type = country_area_type self.country_area_choices = country_area_choices self.city_type = city_type self.city_choices = city_choices self.city_area_type = city_area_type self.city_area_choices = city_area_choices self.postal_code_type = postal_code_type self.postal_code_matchers = postal_code_matchers self.postal_code_examples = postal_code_examples self.postal_code_prefix = postal_code_prefix def __repr__(self): return ( "ValidationRules(" "country_code=%r, " "country_name=%r, " "address_format=%r, " "address_latin_format=%r, " "allowed_fields=%r, " "required_fields=%r, " "upper_fields=%r, " "country_area_type=%r, " "country_area_choices=%r, " "city_type=%r, " "city_choices=%r, " "city_area_type=%r, " "city_area_choices=%r, " "postal_code_type=%r, " "postal_code_matchers=%r, " "postal_code_examples=%r, " "postal_code_prefix=%r)" % ( self.country_code, self.country_name, self.address_format, self.address_latin_format, self.allowed_fields, self.required_fields, self.upper_fields, self.country_area_type, self.country_area_choices, self.city_type, self.city_choices, self.city_area_type, self.city_area_choices, self.postal_code_type, self.postal_code_matchers, self.postal_code_examples, self.postal_code_prefix, ) ) def _make_choices(rules, translated=False): sub_keys = rules.get("sub_keys") if not sub_keys: return [] choices = [] sub_keys = sub_keys.split("~") sub_names = rules.get("sub_names") if sub_names: choices += [ (key, value) for key, value in zip(sub_keys, sub_names.split("~")) if value ] else: if not translated: choices += [(key, key) for key in sub_keys] if not translated: sub_lnames = rules.get("sub_lnames") if sub_lnames: choices += [ (key, value) for key, value in zip(sub_keys, sub_lnames.split("~")) if value ] sub_lfnames = rules.get("sub_lfnames") if sub_lfnames: choices += [ (key, value) for key, value in zip(sub_keys, sub_lfnames.split("~")) if value ] return choices def _compact_choices(choices): value_map = OrderedDict() for key, value in choices: if not key in value_map: value_map[key] = set() value_map[key].add(value) return [ (key, value) for key, values in value_map.items() for value in sorted(values) ] def _match_choices(value, choices): if value: value = value.strip().lower() for name, label in choices: if name.lower() == value: return name if label.lower() == value: return name def _load_country_data(country_code): database = load_validation_data("zz") country_data = database["ZZ"] if country_code: country_code = country_code.upper() if country_code.lower() == "zz": raise ValueError("%r is not a valid country code" % (country_code,)) database = load_validation_data(country_code.lower()) country_data.update(database[country_code]) return country_data, database def get_validation_rules(address): country_code = address.get("country_code", "").upper() country_data, database = _load_country_data(country_code) country_name = country_data.get("name", "") address_format = country_data["fmt"] address_latin_format = country_data.get("lfmt", address_format) format_fields = re.finditer(r"%([ACDNOSXZ])", address_format) allowed_fields = {FIELD_MAPPING[m.group(1)] for m in format_fields} required_fields = {FIELD_MAPPING[f] for f in country_data["require"]} upper_fields = {FIELD_MAPPING[f] for f in country_data["upper"]} languages = [None] if "languages" in country_data: languages = country_data["languages"].split("~") postal_code_matchers = [] if "postal_code" in allowed_fields: if "zip" in country_data: postal_code_matchers.append(re.compile("^" + country_data["zip"] + "$")) postal_code_examples = [] if "zipex" in country_data: postal_code_examples = country_data["zipex"].split(",") country_area_choices = [] city_choices = [] city_area_choices = [] country_area_type = country_data["state_name_type"] city_type = country_data["locality_name_type"] city_area_type = country_data["sublocality_name_type"] postal_code_type = country_data["zip_name_type"] postal_code_prefix = country_data.get("postprefix", "") # second level of data is for administrative areas country_area = None city = None city_area = None if country_code in database: if "sub_keys" in country_data: for language in languages: is_default_language = ( language is None or language == country_data["lang"] ) matched_country_area = None matched_city = None if is_default_language: localized_country_data = database[country_code] else: localized_country_data = database[ "%s--%s" % (country_code, language) ] localized_country_area_choices = _make_choices(localized_country_data) country_area_choices += localized_country_area_choices existing_choice = country_area is not None matched_country_area = country_area = _match_choices( address.get("country_area"), localized_country_area_choices ) if matched_country_area: # third level of data is for cities if is_default_language: country_area_data = database[ "%s/%s" % (country_code, country_area) ] else: country_area_data = database[ "%s/%s--%s" % (country_code, country_area, language) ] if not existing_choice: if "zip" in country_area_data: postal_code_matchers.append( re.compile("^" + country_area_data["zip"]) ) if "zipex" in country_area_data: postal_code_examples = country_area_data["zipex"].split(",") if "sub_keys" in country_area_data: localized_city_choices = _make_choices(country_area_data) city_choices += localized_city_choices existing_choice = city is not None matched_city = city = _match_choices( address.get("city"), localized_city_choices ) if matched_city: # fourth level of data is for dependent sublocalities if is_default_language: city_data = database[ "%s/%s/%s" % (country_code, country_area, city) ] else: city_data = database[ "%s/%s/%s--%s" % (country_code, country_area, city, language) ] if not existing_choice: if "zip" in city_data: postal_code_matchers.append( re.compile("^" + city_data["zip"]) ) if "zipex" in city_data: postal_code_examples = city_data["zipex"].split(",") if "sub_keys" in city_data: localized_city_area_choices = _make_choices(city_data) city_area_choices += localized_city_area_choices existing_choice = city_area is not None matched_city_area = city_area = _match_choices( address.get("city_area"), localized_city_area_choices ) if matched_city_area: if is_default_language: city_area_data = database[ "%s/%s/%s/%s" % (country_code, country_area, city, city_area) ] else: city_area_data = database[ "%s/%s/%s/%s--%s" % ( country_code, country_area, city, city_area, language, ) ] if not existing_choice: if "zip" in city_area_data: postal_code_matchers.append( re.compile("^" + city_area_data["zip"]) ) if "zipex" in city_area_data: postal_code_examples = city_area_data[ "zipex" ].split(",") country_area_choices = _compact_choices(country_area_choices) city_choices = _compact_choices(city_choices) city_area_choices = _compact_choices(city_area_choices) return ValidationRules( country_code, country_name, address_format, address_latin_format, allowed_fields, required_fields, upper_fields, country_area_type, country_area_choices, city_type, city_choices, city_area_type, city_area_choices, postal_code_type, postal_code_matchers, postal_code_examples, postal_code_prefix, ) class InvalidAddress(ValueError): def __init__(self, message, errors): super(InvalidAddress, self).__init__(message) self.errors = errors def _normalize_field(name, rules, data, choices, errors): value = data.get(name) if name in rules.upper_fields and value is not None: value = value.upper() data[name] = value if name not in rules.allowed_fields: data[name] = "" elif not value and name in rules.required_fields: errors[name] = "required" elif choices: if value or name in rules.required_fields: value = _match_choices(value, choices) if value is not None: data[name] = value else: errors[name] = "invalid" if not value: data[name] = "" def normalize_address(address): errors = {} try: rules = get_validation_rules(address) except ValueError: errors["country_code"] = "invalid" else: cleaned_data = address.copy() country_code = cleaned_data.get("country_code") if not country_code: errors["country_code"] = "required" else: cleaned_data["country_code"] = country_code.upper() _normalize_field( "country_area", rules, cleaned_data, rules.country_area_choices, errors ) _normalize_field("city", rules, cleaned_data, rules.city_choices, errors) _normalize_field( "city_area", rules, cleaned_data, rules.city_area_choices, errors ) _normalize_field("postal_code", rules, cleaned_data, [], errors) postal_code = cleaned_data.get("postal_code", "") if rules.postal_code_matchers and postal_code: for matcher in rules.postal_code_matchers: if not matcher.match(postal_code): errors["postal_code"] = "invalid" break _normalize_field("street_address", rules, cleaned_data, [], errors) _normalize_field("sorting_code", rules, cleaned_data, [], errors) if errors: raise InvalidAddress("Invalid address", errors) return cleaned_data def _format_address_line(line_format, address, rules): def _get_field(name): value = address.get(name, "") if name in rules.upper_fields: value = value.upper() return value replacements = { "%%%s" % code: _get_field(field_name) for code, field_name in FIELD_MAPPING.items() } fields = re.split("(%.)", line_format) fields = [replacements.get(f, f) for f in fields] return "".join(fields).strip() def get_field_order(address, latin=False): """ Returns expected order of address form fields as a list of lists. Example for PL: >>> get_field_order({'country_code': 'PL'}) [[u'name'], [u'company_name'], [u'street_address'], [u'postal_code', u'city']] """ rules = get_validation_rules(address) address_format = rules.address_latin_format if latin else rules.address_format address_lines = address_format.split("%n") replacements = { "%%%s" % code: field_name for code, field_name in FIELD_MAPPING.items() } all_lines = [] for line in address_lines: fields = re.split("(%.)", line) single_line = [replacements.get(field) for field in fields] single_line = list(filter(None, single_line)) all_lines.append(single_line) return all_lines def format_address(address, latin=False): rules = get_validation_rules(address) address_format = rules.address_latin_format if latin else rules.address_format address_line_formats = address_format.split("%n") address_lines = [ _format_address_line(lf, address, rules) for lf in address_line_formats ] address_lines.append(rules.country_name) address_lines = filter(None, address_lines) return "\n".join(address_lines) def latinize_address(address, normalized=False): if not normalized: address = normalize_address(address) cleaned_data = address.copy() country_code = address.get("country_code", "").upper() dummy_country_data, database = _load_country_data(country_code) if country_code: country_area = address["country_area"] if country_area: key = "%s/%s" % (country_code, country_area) country_area_data = database.get(key) if country_area_data: cleaned_data["country_area"] = country_area_data.get( "lname", country_area_data.get("name", country_area) ) city = address["city"] key = "%s/%s/%s" % (country_code, country_area, city) city_data = database.get(key) if city_data: cleaned_data["city"] = city_data.get( "lname", city_data.get("name", city) ) city_area = address["city_area"] key = "%s/%s/%s/%s" % (country_code, country_area, city, city_area) city_area_data = database.get(key) if city_area_data: cleaned_data["city_area"] = city_area_data.get( "lname", city_area_data.get("name", city_area) ) return cleaned_data
84709
from MDRSREID.Loss_Meter import Loss import torch.nn as nn import torch from MDRSREID.utils.meter import RecentAverageMeter as Meter class IDLoss(Loss): def __init__(self, cfg, tb_writer=None): super(IDLoss, self).__init__(cfg, tb_writer=tb_writer) self.criterion = nn.CrossEntropyLoss(reduction='none') # 'none' | 'mean' | 'sum'. self.part_fmt = '#{}' def __call__(self, item, pred, step=0, **kwargs): loss_list = [self.criterion(logits, item['label']).mean() for logits in pred['cls_feat_list']] # New version of pytorch allow stacking 0-dim tensors, but not concatenating. loss = torch.stack(loss_list).mean() # sum() # Meter: stores and computes the average of recent values self.store_calculate_loss(loss) # May calculate part loss separately self.may_calculate_part_loss(loss_list) # May record losses. self.may_record_loss(loss_list, step) # Scale by loss weight loss *= self.cfg.weight return {'loss': loss} def store_calculate_loss(self, loss): """ :param loss: torch.stack(loss_list).sum() :return: Meter: stores and computes the average of recent values. """ if self.cfg.name not in self.meter_dict: # Here use RecentAverageMeter as Meter self.meter_dict[self.cfg.name] = Meter(name=self.cfg.name) # Update the meter, store the current whole loss. self.meter_dict[self.cfg.name].update(loss.item()) def may_calculate_part_loss(self, loss_list): """ :param loss_list: each part loss :return: Meter: stores and computes the average of recent values. For each part loss, calculate the loss separately. """ if len(loss_list) > 1: # stores and computes each part average of recent values for i in range(len(loss_list)): # if there is not the meter of the part, create a new one. if self.part_fmt.format(i + 1) not in self.meter_dict: self.meter_dict[self.part_fmt.format(i + 1)] = Meter(name=self.part_fmt.format(i + 1)) # Update the meter, store the current part loss self.meter_dict[self.part_fmt.format(i + 1)].update(loss_list[i].item()) def may_record_loss(self, loss_list, step): """ :param loss_list: :param step: :return: Use TensorBoard to record the losses. """ if self.tb_writer is not None: self.tb_writer.add_scalars(main_tag=self.cfg.name, tag_scalar_dict={self.cfg.name: self.meter_dict[self.cfg.name].avg}, global_step=step ) # Record each part loss if len(loss_list) > 1: self.tb_writer.add_scalars(main_tag='Part ID Losses', tag_scalar_dict={self.part_fmt.format(i + 1): self.meter_dict[self.part_fmt.format(i + 1)].avg for i in range(len(loss_list))}, global_step=step )
84737
import torch import torch.nn as nn from ever import registry import ever as er from ever import module as erm class Deeplabv3pDecoder(nn.Module): """ This module is a reimplemented version in the following paper. <NAME>, <NAME>, <NAME>, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[J], """ def __init__(self, os4_feature_channels=256, os16_feature_channels=2048, aspp_channels=256, aspp_atrous=(6, 12, 18), reduction_dim=48, out_channels=256, num_3x3_convs=2, scale_factor=4.0, ): super(Deeplabv3pDecoder, self).__init__() self.scale_factor = scale_factor # 3x3 conv is better self.os4_transform = erm.ConvBlock(os4_feature_channels, reduction_dim, 3, 1, 1, bias=False) # 3x3 conv is better self.os16_transform = nn.Sequential( erm.AtrousSpatialPyramidPool(os16_feature_channels, aspp_channels, aspp_atrous), erm.ConvBlock(aspp_channels, aspp_channels, 3, 1, 1, bias=False) ) layers = [erm.SeparableConvBlock(aspp_channels + reduction_dim, out_channels, 3, 1, 1, bias=False)] for i in range(num_3x3_convs - 1): layers.append(erm.SeparableConvBlock(out_channels, out_channels, 3, 1, 1, bias=False)) self.upsample = nn.UpsamplingBilinear2d(scale_factor=scale_factor) self.stack_conv3x3 = nn.Sequential(*layers) def forward(self, feat_list): os4_feat, os16_feat = feat_list os4_feat = self.os4_transform(os4_feat) os16_feat = self.os16_transform(os16_feat) feat_upx = self.upsample(os16_feat) concat_feat = torch.cat([os4_feat, feat_upx], dim=1) out = self.stack_conv3x3(concat_feat) return out @registry.MODEL.register() class Deeplabv3pHead(er.ERModule): def __init__(self, config): super(Deeplabv3pHead, self).__init__(config) self.head = nn.Sequential( Deeplabv3pDecoder(**self.config.deeplabv3p_decoder), nn.Conv2d(self.config.deeplabv3p_decoder.out_channels, self.config.num_classes, 1), nn.UpsamplingBilinear2d(scale_factor=self.config.upsample_scale) ) def forward(self, x): x = self.head(x) return x def set_default_config(self): self.config.update(dict( deeplabv3p_decoder=dict( os4_feature_channels=256, os16_feature_channels=2048, aspp_channels=256, aspp_atrous=(6, 12, 18), reduction_dim=48, out_channels=256, num_3x3_convs=2, scale_factor=4.0, ), num_classes=3, upsample_scale=4.0 ))
84748
def extractLizonkanovelsWordpressCom(item): ''' Parser for 'lizonkanovels.wordpress.com' ''' vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None tagmap = [ ('bestial blade by priest', 'bestial blade', 'translated'), ('creatures of habit by meat in the shell', 'creatures of habit', 'translated'), ('seal cultivation for self-improvement by mo xiao xian', 'seal cultivation for self-improvement', 'translated'), ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
84777
from __future__ import print_function import os import argparse import torch import torch.backends.cudnn as cudnn import numpy as np from data import cfg_mnet, cfg_slim, cfg_rfb from layers.functions.prior_box import PriorBox from utils.nms.py_cpu_nms import py_cpu_nms import cv2 from thop import profile from thop import clever_format from models.retinaface import RetinaFace from models.net_slim import Slim from models.net_rfb import RFB from utils.box_utils import decode, decode_landm from utils.timer import Timer parser = argparse.ArgumentParser(description='Test') parser.add_argument('--network', default='mobile0.25', help='Backbone network mobile0.25 or slim or RFB') parser.add_argument('--long_side', default=320, help='when origin_size is false, long_side is scaled size(320 or 640 for long side)') args = parser.parse_args() if __name__ == '__main__': torch.set_grad_enabled(False) cfg = None net = None if args.network == "mobile0.25": cfg = cfg_mnet net = RetinaFace(cfg = cfg, phase = 'test') elif args.network == "slim": cfg = cfg_slim net = Slim(cfg = cfg, phase = 'test') elif args.network == "RFB": cfg = cfg_rfb net = RFB(cfg = cfg, phase = 'test') else: print("Don't support network!") exit(0) long_side = int(args.long_side) short_side = int(args.long_side/4*3) img = torch.randn(1, 3, long_side, short_side) flops, params = profile(net, inputs=(img, )) flops, params = clever_format([flops, params], "%.3f") print("param:", params, "flops:", flops)
84799
from beetl.task_datasets import BeetlSleepTutorial, BeetlSleepSource ds = BeetlSleepTutorial() path = ds.download() # Load all subject data X, y, info = ds.get_data() # Assume source group is subject 0-4, target group is subject 5-7, # and subject 8,9 are from target group for testing. X_source_train, y_source_train, info = ds.get_data(subjects=range(5)) X_target_train, y_target_train, info = ds.get_data(subjects=range(5, 8)) X_target_test, y_target_test, _ = ds.get_data(subjects=range(8, 10)) ################################ # For Sleep Source ds = BeetlSleepSource() path = ds.download() # Load all subject data X, y, info = ds.get_data()
84841
import demistomock as demisto # noqa: F401 from CommonServerPython import * # noqa: F401 COLORS = { '1 - New': '#00CD33', # (success green) '2 - In Progress': '#7995D4', # (royal blue) '3 - On Hold': '#FF9000', # (warning orange) '4 - Awaiting Caller': '#FF9000', # (warning orange) '5 - Awaiting Evidence': '#FF9000', # (warning orange) '6 - Resolved': '#89A5C1', # (polo) '7 - Closed': '#9AA0A3', # (natural grey) '8 - Canceled': '#FF1744' # (alert-red) } TEXT = { '1 - New': 'New', '2 - In Progress': 'In Progress', '3 - On Hold': 'On-Hold', '4 - Awaiting Caller': 'Awaiting Caller', '5 - Awaiting Evidence': 'Awaiting Evidence', '6 - Resolved': 'Resolved', '7 - Closed': 'Closed', '8 - Canceled': 'Canceled' } incident = demisto.incidents() service_now_state = (incident[0].get('CustomFields', {}).get('servicenowstate')) try: text_color = COLORS[service_now_state] text_content = TEXT[service_now_state] except Exception as e: demisto.debug(f'SnowIncidentStatus debug - state is: {service_now_state}\n{e}') text_color = '#000000' text_content = 'Pending Update' html = f"<div style='color:{text_color};text-align:center;'><h2>{text_content}</h2></div>" demisto.results({ 'ContentsFormat': formats['html'], 'Type': entryTypes['note'], 'Contents': html })
84885
import pytest from lightbus import Api, Event from lightbus.api import ApiRegistry from lightbus.exceptions import ( MisconfiguredApiOptions, InvalidApiEventConfiguration, InvalidApiRegistryEntry, UnknownApi, ) pytestmark = pytest.mark.unit @pytest.fixture() def SimpleApi(): class SimpleApi(Api): class Meta: name = "simple.api" return SimpleApi @pytest.fixture() def registry(): return ApiRegistry() def test_api_named_default(): # Apis can not start with the name 'default' with pytest.raises(MisconfiguredApiOptions): class BadApi(Api): class Meta: name = "default" def test_api_named_default_dot_something(): # Apis can not start with the name 'default' with pytest.raises(MisconfiguredApiOptions): class BadApi(Api): class Meta: name = "default.foo" def test_pass_string_as_event_params(): # Check we cannot accidentally pass a string to Event in the # case that we omit a ',' when specifying a parameters tuple with pytest.raises(InvalidApiEventConfiguration): Event(parameters=("foo")) def test_api_registry_add_ok(SimpleApi, registry): registry.add(SimpleApi()) assert "simple.api" in registry._apis def test_api_registry_add_class(SimpleApi, registry): with pytest.raises(InvalidApiRegistryEntry): registry.add(SimpleApi) def test_api_registry_get_ok(SimpleApi, registry): api = SimpleApi() registry.add(api) assert registry.get("simple.api") == api def test_api_registry_get_unknown(SimpleApi, registry): with pytest.raises(UnknownApi): registry.get("unknown.api") def test_api_registry_remove_ok(SimpleApi, registry): registry.add(SimpleApi()) registry.remove("simple.api") assert not registry._apis def test_api_registry_remove_unknown(SimpleApi, registry): with pytest.raises(UnknownApi): registry.remove("unknown.api") def test_api_registry_internal(registry): class InternalApi(Api): class Meta: name = "internal.api" internal = True api = InternalApi() registry.add(api) assert registry.internal() == [api] assert registry.public() == [] def test_api_registry_public(SimpleApi, registry): api = SimpleApi() registry.add(api) assert registry.public() == [api] assert registry.internal() == [] def test_api_registry_all(SimpleApi, registry): api = SimpleApi() registry.add(api) assert registry.all() == [api] def test_api_registry_names(SimpleApi, registry): api = SimpleApi() registry.add(api) assert registry.names() == ["simple.api"]
84908
import torch from torch import nn import torch.nn.functional as F from .utils import PI, rfft, irfft def ramp_filter(size): image_n = torch.cat([ torch.arange(1, size / 2 + 1, 2, dtype=torch.int), torch.arange(size / 2 - 1, 0, -2, dtype=torch.int), ]) image_filter = torch.zeros(size, dtype=torch.double) image_filter[0] = 0.25 image_filter[1::2] = -1 / (PI * image_n) ** 2 fourier_filter = torch.rfft(image_filter, 1, onesided=False) fourier_filter[:, 1] = fourier_filter[:, 0] return 2*fourier_filter class AbstractFilter(nn.Module): def forward(self, x): input_size = x.shape[2] projection_size_padded = \ max(64, int(2**(2*torch.tensor(input_size)).float().log2().ceil())) pad_width = projection_size_padded - input_size padded_tensor = F.pad(x, (0, 0, 0, pad_width)) fourier_filter = ramp_filter(padded_tensor.shape[2]).to(x.device) fourier_filter = self.create_filter(fourier_filter) fourier_filter = fourier_filter.unsqueeze(-2) projection = rfft(padded_tensor, axis=2)*fourier_filter return irfft(projection, axis=2)[:, :, :input_size, :].to(x.dtype) def create_filter(self, fourier_ramp): raise NotImplementedError class RampFilter(AbstractFilter): def create_filter(self, fourier_ramp): return fourier_ramp class HannFilter(AbstractFilter): def create_filter(self, fourier_ramp): n = torch.arange(0, fourier_ramp.shape[0]) hann = (0.5 - 0.5*(2.0*PI*n/(fourier_ramp.shape[0]-1)).cos()).to(fourier_ramp.device) return fourier_ramp*hann.roll(hann.shape[0]//2, 0).unsqueeze(-1) class LearnableFilter(AbstractFilter): def __init__(self, filter_size): super(LearnableFilter, self).__init__() self.filter = nn.Parameter(ramp_filter(filter_size)[..., 0].view(-1, 1)) def forward(self, x): fourier_filter = self.filter.unsqueeze(-1).repeat(1, 1, 2).to(x.device) projection = rfft(x, axis=2) * fourier_filter return irfft(projection, axis=2).to(x.dtype) def create_filter(self, fourier_ramp): raise NotImplementedError
84967
from rply.token import SourcePosition from hippy.sourceparser import SourceParser, LexerWrapper, ParseError, get_lexer from hippy.astcompiler import compile_ast from rpython.rlib.objectmodel import we_are_translated MODE_LITERAL = 0 MODE_EQUALSIGN = 1 MODE_PHPCODE = 2 class PHPLexerWrapper(LexerWrapper): def __init__(self, source, filename="", interp=None): self.lexer = get_lexer(we_are_translated()) self.source = source self.startlineno = 0 self.startindex = 0 self.mode = MODE_LITERAL self.filename = filename self.heredoc_term = None self.interp = interp def next(self): mode = self.mode if mode == MODE_PHPCODE: return self.next_phpcode() elif mode == MODE_LITERAL: return self.next_literal_mode() elif mode == MODE_EQUALSIGN: return self.next_equal_sign() else: assert 0 def next_literal_mode(self): # "literal" mode, i.e. outside "<?php ?>" tags: generates # one B_LITERAL_BLOCK until the next opening "<?php" tag self.mode = MODE_PHPCODE source = self.source index = self.startindex assert index >= 0 tagindex = source.find('<?', index) if tagindex == -1: tagindex = len(source) assert tagindex >= 0 startindex = self.startindex assert startindex >= 0 block_of_text = source[startindex:tagindex] # may be empty source_pos = SourcePosition(self.startindex, self.startlineno + 1, 0) tok = self.lexer.token_class('B_LITERAL_BLOCK', block_of_text, source_pos) self.startlineno += block_of_text.count('\n') if source[tagindex:tagindex+5].lower() == '<?php': pos = tagindex + 5 elif source[tagindex:tagindex+3] == '<?=': pos = tagindex + 3 self.mode = MODE_EQUALSIGN else: pos = tagindex + 2 self.lexer.input(self.source, pos, self.startlineno) return tok def next_equal_sign(self): self.mode = MODE_PHPCODE source_pos = SourcePosition(self.startindex, self.startlineno + 1, 0) return self.lexer.token_class("T_ECHO", "echo", source_pos) def next_phpcode(self): for tok in self.lexer.token(): # Lexer indexes lines from 0, humans from 1 tok.source_pos.lineno += 1 if tok is None: return None # end of file elif tok.name == 'H_NEW_LINE': continue # ignore these and continue elif tok.name == 'H_TABULATURE': continue # ignore these and continue elif tok.name == 'H_WHITESPACE': continue # ignore these and continue elif tok.name == 'T_COMMENT': # look for "?>" inside single-line comments too if not tok.getstr().startswith('/*'): i = tok.getstr().find('?>') if i >= 0: endpos = self.lexer.pos - len(tok.getstr()) + i + 2 return self.end_current_block(tok, endpos) continue elif tok.name == 'B_END_OF_CODE_BLOCK': return self.end_current_block(tok, self.lexer.pos) elif tok.name == 'T_HALT_COMPILER': return self.do_halt_compiler() else: return tok # a normal php token def end_current_block(self, tok, endpos): # a "?>" marker that ends the current block of code # generates a ";" token followed by a B_LITERAL_BLOCK lineno = tok.source_pos.lineno self.startlineno = lineno self.startindex = endpos + 1 self.mode = MODE_LITERAL if (self.startindex < len(self.source) and self.source[self.startindex] == '\n'): # self.startlineno += 1 # consume \n if immediately following self.startindex += 1 return self.lexer.token_class(";", ";", SourcePosition(endpos, lineno, 0)) def do_halt_compiler(self): for expecting in ['(', ')', ';']: token = self.next() if token is None or token.name != expecting: raise ParseError('"__halt_compiler" not followed by "();"', token.source_pos.lineno) # # hack: copies the end position to a constant if self.interp is not None: if self.interp.lookup_constant('__COMPILER_HALT_OFFSET__') is None: if self.mode == MODE_LITERAL: endpos = self.startindex else: endpos = self.lexer.pos + 1 w_end = self.interp.space.newint(endpos) self.interp.declare_new_constant('__COMPILER_HALT_OFFSET__', w_end) # return None DEBUG = False def compile_php(filename, source, space, interp=None): """Parse and compile a PHP file, starting in literal mode (i.e. dumping all input directly) until the first '<?' or '<?php'. Supports a mixture of blocks of code between the blocks of texts.""" phplexerwrapper = PHPLexerWrapper(source, filename, interp) if DEBUG: lst = [] while True: tok = phplexerwrapper.next() if tok is None: break else: lst.append(tok) print [x.__dict__ for x in lst] phplexerwrapper = iter(lst + [None]) parser = SourceParser(space, None, filename=filename) tokens = parser.parser.parse(phplexerwrapper, state=parser) bc = compile_ast(filename, source, tokens, space) return bc
84987
from sys import platform import unittest import checksieve class TestVariables(unittest.TestCase): def test_set(self): sieve = ''' require "variables"; set "honorific" "Mr"; ''' self.assertFalse(checksieve.parse_string(sieve, False)) def test_mod_length(self): sieve = ''' require "variables"; set :length "b" "${a}"; ''' self.assertFalse(checksieve.parse_string(sieve, False)) def test_wrong_tag(self): sieve = ''' require "variables"; set :mime "b" "c"; ''' self.assertTrue(checksieve.parse_string(sieve, True)) def test_set_wrong_arg(self): sieve = ''' require "variables"; set "a" "b" "c"; ''' self.assertTrue(checksieve.parse_string(sieve, True)) def test_too_many_args(self): sieve = ''' require "variables"; set "a" "b" "c" "d"; ''' self.assertTrue(checksieve.parse_string(sieve, True)) def test_test_string(self): sieve = ''' require "variables"; set "state" "${state} pending"; if string :matches " ${state} " "* pending *" { # the above test always succeeds stop; } ''' self.assertFalse(checksieve.parse_string(sieve, False)) def test_numeral_varname(self): sieve = ''' require "variables"; set "1" "${state} pending"; ''' self.assertFalse(checksieve.parse_string(sieve, False)) def test_bad_varname(self): sieve = ''' require "variables"; set "bad-variable" "no dashes allowed!"; ''' self.assertTrue(checksieve.parse_string(sieve, True)) if __name__ == '__main__': unittest.main()
85023
import unittest import pytest from django.test import override_settings from channels import DEFAULT_CHANNEL_LAYER from channels.exceptions import InvalidChannelLayerError from channels.layers import InMemoryChannelLayer, channel_layers, get_channel_layer class TestChannelLayerManager(unittest.TestCase): @override_settings( CHANNEL_LAYERS={"default": {"BACKEND": "channels.layers.InMemoryChannelLayer"}} ) def test_config_error(self): """ If channel layer doesn't specify TEST_CONFIG, `make_test_backend` should result into error. """ with self.assertRaises(InvalidChannelLayerError): channel_layers.make_test_backend(DEFAULT_CHANNEL_LAYER) @override_settings( CHANNEL_LAYERS={ "default": { "BACKEND": "channels.layers.InMemoryChannelLayer", "TEST_CONFIG": {"expiry": 100500}, } } ) def test_config_instance(self): """ If channel layer provides TEST_CONFIG, `make_test_backend` should return channel layer instance appropriate for testing. """ layer = channel_layers.make_test_backend(DEFAULT_CHANNEL_LAYER) self.assertEqual(layer.expiry, 100500) def test_override_settings(self): """ The channel layers cache is reset when the CHANNEL_LAYERS setting changes. """ with override_settings( CHANNEL_LAYERS={ "default": {"BACKEND": "channels.layers.InMemoryChannelLayer"} } ): self.assertEqual(channel_layers.backends, {}) get_channel_layer() self.assertNotEqual(channel_layers.backends, {}) self.assertEqual(channel_layers.backends, {}) # In-memory layer tests @pytest.mark.asyncio async def test_send_receive(): layer = InMemoryChannelLayer() message = {"type": "test.message"} await layer.send("test.channel", message) assert message == await layer.receive("test.channel")
85053
import math import numpy as np import tvm from tvm.tir import IterVar from .hw_abs_dag import construct_dag from itertools import permutations, product from functools import reduce from . import _ffi_api #################################################### # schedule parameter functions #################################################### def get_factor_lst(value): assert isinstance(value, int) ret = [] end = math.sqrt(value) for i in range(1, math.ceil(end)): if value % i == 0: ret.append(i) ret.append(value // i) if end - int(end) < 1e-10 and value % int(end) == 0: ret.append(int(end)) return ret def powerx_lst(x, left, right): ret = [] beg = 1 while beg < left: beg *= x while beg < right: ret.append(beg) beg = beg * x return ret def any_factor_split(value, number, allow_non_divisible="off"): assert allow_non_divisible in ["off", "power2", "continuous"] ret = [] assert isinstance(number, int) recursive_factor_split(value, [], number, ret, allow_non_divisible) return ret def recursive_factor_split(left, cur, number, ret, policy): if number == 1: ret.append(cur + [left]) return if policy == "power2": f_lst = get_factor_lst(left) f_lst.extend(powerx_lst(2, 1, left)) f_lst = list(set(f_lst)) elif policy == "continuous": f_lst = list(range(1, left + 1)) else: f_lst = get_factor_lst(left) f_lst = sorted(f_lst) for f in f_lst: recursive_factor_split(left // f, cur + [f], number - 1, ret, policy) def remap_factors(factor_lst): assert isinstance(factor_lst, (list, tuple)) assert len(factor_lst) > 0 sample = factor_lst[0] assert isinstance(sample, (list, tuple)) assert len(sample) > 0 dim = len(sample) - 1 number_count = {i: set() for i in range(dim + 1)} # check the factor list for v in factor_lst: assert isinstance(v, (list, tuple)) assert len(v) == dim + 1, dim for i, ele in enumerate(v): number_count[i].add(ele) num_factors = len(number_count[0]) for k, v in number_count.items(): assert len(v) == num_factors # remap the factor list sorted_factors = sorted(number_count[0]) factor_map = {x: i for i, x in enumerate(sorted_factors)} reverse_map = {i: x for i, x in enumerate(sorted_factors)} ret = list(map(lambda factors: [factor_map[x] for x in factors], factor_lst)) return ret, reverse_map, dim, num_factors - 1 def get_directions(dim): return list(product([-1, 0, 1], repeat=dim)) def get_partial_directions(dim): def worker(v): def set_value(i): d = [0 for _ in range(dim)] d[i] = v return d return set_value return list(map(worker(1), range(dim))) + list(map(worker(-1), range(dim))) def bi_product(repeat): return list(product([0, 1], repeat=repeat)) def softmax(x): e_x = np.exp(x - np.max(x)) return (e_x / (e_x.sum() + 1e-5)).tolist() #################################################### # schedule helper tools #################################################### def substitute_inputs(org_dag, op_map): """Infer ranges for expressions Parameters ---------- org_dag: ComputeDAG op_map: dict of {Operation: Operation} Returns ------- ComputeDAG """ n = _ffi_api.SubstituteInputs(org_dag, op_map) return n def reconstruct_dag_as_intrin(target_dag, main_op, hw_abs_dag, compute_key, shape_key): inputs = list(main_op.input_tensors) outputs = [main_op.output(0)] # TODO: consider elem op in dag construction input_names, output_names, nodes, read_graph, feed_graph = construct_dag( hw_abs_dag, compute_key, shape_key, inputs, outputs, [], outputs ) output_tensors = reduce(lambda x, y: x + y, [nodes[x] for x in output_names], []) output = output_tensors[0] replace_map = {main_op: output.op} result_dag = substitute_inputs(target_dag, replace_map) return (result_dag, (input_names, output_names, nodes, read_graph, feed_graph)) def can_inline(op, dag): """ op: tvm.te.Operation dag: ComputeDAG """ if op not in dag.feed_graph: return False if not isinstance(op, tvm.te.ComputeOp): return False if len(op.reduce_axis) > 0: return False return True def is_reduce_axis(iv: IterVar): return int(iv.iter_type) == IterVar.CommReduce def is_heavy_reduce_op(op): re_exts = [int(iv.dom.extent) for iv in getattr(op, "reduce_axis", [])] re_time = reduce(lambda a, b: a * b, re_exts, 1) return re_time >= 64 def is_vectorized(iv: IterVar): return int(iv.iter_type) == IterVar.Vectorized
85117
import pytest @pytest.fixture() def login(request): name = request.param print(f"== 账号是:{name} ==") return name data = ["pyy1", "polo"] ids = [f"login_test_name is:{name}" for name in data] # 添加 indirect=True 参数是为了把 login 当成一个函数去执行,而不是一个参数,并且将data当做参数传入函数 @pytest.mark.parametrize("login", data, ids=ids, indirect=True) def test_name(login): # def test_name(login) ,这里的login是获取fixture返回的值 print(f" 测试用例的登录账号是:{login} ") # 多个参数 # 如果需要传多个参数,需要通过字典去传 @pytest.fixture() def logins(request): param = request.param print(f"账号是:{param['username']},密码是:{param['pwd']}") return param data = [ {"username": "name1", "pwd": "<PASSWORD>"}, {"username": "name2", "pwd": "<PASSWORD>"}, ] @pytest.mark.parametrize("logins", data, indirect=True) def test_name_pwd(logins): print(f"账号是:{logins['username']},密码是:{logins['pwd']}") # 多个fixture @pytest.fixture(scope="module") def input_user(request): user = request.param print("登录账户:%s" % user) return user @pytest.fixture(scope="module") def input_psw(request): psw = request.param print("登录密码:%s" % psw) return psw data = [ ("name1", "pwd1"), ("name2", "<PASSWORD>") ] @pytest.mark.parametrize("input_user,input_psw", data, indirect=True) def test_more_fixture(input_user, input_psw): print("fixture返回的内容:", input_user, input_psw) # 多个fixture @pytest.fixture(scope="function") def input_user(request): user = request.param print("登录账户:%s" % user) return user @pytest.fixture(scope="function") def input_psw(request): psw = request.param print("登录密码:%s" % psw) return psw name = ["name1", "name2"] pwd = ["<PASSWORD>", "<PASSWORD>"] @pytest.mark.parametrize("input_user", name, indirect=True) @pytest.mark.parametrize("input_psw", pwd, indirect=True) def test_more_fixture(input_user, input_psw): print("fixture返回的内容:", input_user, input_psw)
85157
import pymongo import datetime import os import numpy as np import struct from array import array from pymongo import MongoClient from mspasspy.ccore.seismic import ( Seismogram, TimeReferenceType, TimeSeries, DoubleVector, ) def find_channel(collection): st = datetime.datetime(1990, 1, 1, 6) et = datetime.datetime(1990, 1, 4, 6) for cr in collection.find({"st": {"$gte": st}, "et": {"$lte": et}}): print(cr) # net channel station scheme def save_data(d): di = d.get_string("dir") dfile = d.get_string("dfile") fname = os.path.join(di, dfile) os.makedirs(os.path.dirname(fname), exist_ok=True) with open(fname, mode="a+b") as fh: foff = fh.seek(0, 2) float_array = array("d", d.data) d.put("nofbytes", float_array.itemsize * float_array.buffer_info()[1]) float_array.tofile(fh) di = os.path.dirname(os.path.realpath(fname)) dfile = os.path.basename(os.path.realpath(fname)) d.put("dir", di) d.put("dfile", dfile) d.put("foff", foff) def read_data(d): di = d.get_string("dir") dfile = d.get_string("dfile") foff = d.get("foff") fname = os.path.join(di, dfile) with open(fname, mode="rb") as fh: fh.seek(foff) float_array = array("d") float_array.frombytes(fh.read(d.get("nofbytes"))) d.data = DoubleVector(float_array) if __name__ == "__main__": s = TimeSeries() s.data = DoubleVector(np.random.rand(255)) s["dir"] = "./" s["dfile"] = "test_op" save_data(s) s2 = TimeSeries() for k in s: s2[k] = s[k] s2.data = DoubleVector([]) print(len(s2.data)) read_data(s2) print(len(s2.data)) assert all(a == b for a, b in zip(s.data, s2.data)) # client = MongoClient('localhost', 27017) # db = client.mspass # channels = db.channels # find_channel(channels)
85158
from .. import Provider as PhoneNumberProvider class Provider(PhoneNumberProvider): # Source: # https://en.wikipedia.org/wiki/Telephone_numbers_in_the_United_Kingdom # Fake phone numbers should be fake - this provider has been rewritten to # use numbers reserved for dramatic use by Ofcom. See the following: # https://en.wikipedia.org/wiki/Fictitious_telephone_number#United_Kingdom # This ensures no genuine numbers are generated at random. # # It's worth noting that the following examples include incorrect notation # of British phone numbers. +44(0)xxx is incorrect and the '(0)' should # be omitted. However, it's commonly written this way by Joe Public # and would better serve this project to be included, as it represents # more realistic data and is of benefit to those developing data cleansing # tools etc. All possible official fake numbers are covered below. cellphone_formats = ( '07700 900 ###', '07700 900###', '07700900###', '(07700) 900 ###', '(07700) 900###', '(07700)900###', '+447700 900 ###', '+447700 900###', '+447700900###', '+44(0)7700 900 ###', '+44(0)7700 900###', '+44(0)7700900###', ) formats = ( '0113 496 0###', '0113 4960###', '01134960###', '(0113) 496 0###', '(0113) 4960###', '(0113)4960###', '+44113 496 0###', '+44113 4960###', '+441134960###', '+44(0)113 496 0###', '+44(0)113 4960###', '+44(0)1134960###', '0114 496 0###', '0114 4960###', '01144960###', '(0114) 496 0###', '(0114) 4960###', '(0114)4960###', '+44114 496 0###', '+44114 4960###', '+441144960###', '+44(0)114 496 0###', '+44(0)114 4960###', '+44(0)1144960###', '0115 496 0###', '0115 4960###', '01154960###', '(0115) 496 0###', '(0115) 4960###', '(0115)4960###', '+44115 496 0###', '+44115 4960###', '+441154960###', '+44(0)115 496 0###', '+44(0)115 4960###', '+44(0)1154960###', '0116 496 0###', '0116 4960###', '01164960###', '(0116) 496 0###', '(0116) 4960###', '(0116)4960###', '+44116 496 0###', '+44116 4960###', '+441164960###', '+44(0)116 496 0###', '+44(0)116 4960###', '+44(0)1164960###', '0117 496 0###', '0117 4960###', '01174960###', '(0117) 496 0###', '(0117) 4960###', '(0117)4960###', '+44117 496 0###', '+44117 4960###', '+441174960###', '+44(0)117 496 0###', '+44(0)117 4960###', '+44(0)1174960###', '0118 496 0###', '0118 4960###', '01184960###', '(0118) 496 0###', '(0118) 4960###', '(0118)4960###', '+44118 496 0###', '+44118 4960###', '+441184960###', '+44(0)118 496 0###', '+44(0)118 4960###', '+44(0)1184960###', '0121 496 0###', '0121 4960###', '01214960###', '(0121) 496 0###', '(0121) 4960###', '(0121)4960###', '+44121 496 0###', '+44121 4960###', '+441214960###', '+44(0)121 496 0###', '+44(0)121 4960###', '+44(0)1214960###', '0131 496 0###', '0131 4960###', '01314960###', '(0131) 496 0###', '(0131) 4960###', '(0131)4960###', '+44131 496 0###', '+44131 4960###', '+441314960###', '+44(0)131 496 0###', '+44(0)131 4960###', '+44(0)1314960###', '0141 496 0###', '0141 4960###', '01414960###', '(0141) 496 0###', '(0141) 4960###', '(0141)4960###', '+44141 496 0###', '+44141 4960###', '+441414960###', '+44(0)141 496 0###', '+44(0)141 4960###', '+44(0)1414960###', '0151 496 0###', '0151 4960###', '01514960###', '(0151) 496 0###', '(0151) 4960###', '(0151)4960###', '+44151 496 0###', '+44151 4960###', '+441514960###', '+44(0)151 496 0###', '+44(0)151 4960###', '+44(0)1514960###', '0161 496 0###', '0161 4960###', '01614960###', '(0161) 496 0###', '(0161) 4960###', '(0161)4960###', '+44161 496 0###', '+44161 4960###', '+441614960###', '+44(0)161 496 0###', '+44(0)161 4960###', '+44(0)1614960###', '0191 498 0###', '0191 4960###', '01914960###', '(0191) 496 0###', '(0191) 4960###', '(0191)4960###', '+44191 496 0###', '+44191 4960###', '+441914960###', '+44(0)191 496 0###', '+44(0)191 4960###', '+44(0)1914960###', '020 7946 0###', '020 74960###', '02074960###', '(020) 7496 0###', '(020) 74960###', '(020)74960###', '+4420 7496 0###', '+4420 74960###', '+442074960###', '+44(0)20 7496 0###', '+44(0)20 74960###', '+44(0)2074960###', '028 9018 0###', '028 9018###', '0289018###', '(028) 9018 0###', '(028) 9018###', '(028)9018###', '+4428 9018 0###', '+4428 9018###', '+44289018###', '+44(0)28 9018 0###', '+44(0)28 9018###', '+44(0)289018###', '029 2018 0###', '029 2018###', '0292018###', '(029) 2018 0###', '(029) 2018###', '(029)2018###', '+4429 2018 0###', '+4429 2018###', '+44292018###', '+44(0)29 2018 0###', '+44(0)29 2018###', '+44(0)292018###', '01632 960 ###', '01632 960###', '01632960###', '(01632) 960 ###', '(01632) 960###', '(01632)960###', '+441632 960 ###', '+441632 960###', '+441632960###', '+44(0)1632 960 ###', '+44(0)1632 960###', '+44(0)1632960###', '0306 999 0###', '0306 9990###', '03069990###', '(0306) 999 0###', '(0306) 9990###', '(0306)9990###', '+44306 999 0###', '+44306 9990###', '+443069990###', '+44(0)306 999 0###', '+44(0)306 9990###', '+44(0)3069990###', '0808 157 0###', '0808 1570###', '08081570###', '(0808) 157 0###', '(0808) 1570###', '(0808)1570###', '+44808 157 0###', '+44808 1570###', '+448081570###', '+44(0)808 157 0###', '+44(0)808 1570###', '+44(0)8081570###', '0909 879 0###', '0909 8790###', '09098790###', '(0909) 879 0###', '(0909) 8790###', '(0909)8790###', '+44909 879 0###', '+44909 8790###', '+449098790###', '+44(0)909 879 0###', '+44(0)909 8790###', '+44(0)9098790###', ) def cellphone_number(self) -> str: pattern: str = self.random_element(self.cellphone_formats) return self.numerify(self.generator.parse(pattern))
85192
import torch from torch.distributions import Categorical from survae.distributions.conditional import ConditionalDistribution from survae.utils import sum_except_batch class ConditionalCategorical(ConditionalDistribution): """A Categorical distribution with conditional logits.""" def __init__(self, net): super(ConditionalCategorical, self).__init__() self.net = net def cond_dist(self, context): logits = self.net(context) return Categorical(logits=logits) def log_prob(self, x, context): dist = self.cond_dist(context) return sum_except_batch(dist.log_prob(x)) def sample(self, context): dist = self.cond_dist(context) return dist.sample() def sample_with_log_prob(self, context): dist = self.cond_dist(context) z = dist.sample() log_prob = dist.log_prob(z) log_prob = sum_except_batch(log_prob) return z, log_prob def logits(self, context): return self.cond_dist(context).logits def probs(self, context): return self.cond_dist(context).probs def mode(self, context): return self.cond_dist(context).logits.argmax(-1)
85238
from StringIO import StringIO import pandas as pd from harvest import Harvest from domain import Domain from .stream import init_plot from django.conf import settings ENABLE_STREAM_VIZ = settings.ENABLE_STREAM_VIZ class PlotsNotReadyException(Exception): pass class AcheDashboard(object): def __init__(self, crawl): self.crawl = crawl if self.crawl.crawler != "ache": raise ValueError("Crawl must be using the Ache crawler.") self.harvest = Harvest(crawl) self.domain = Domain(crawl) def get_harvest_plot(self): # TODO: Remove Pokemon exception catching try: script, div = self.harvest.create() except: return [None, None] return [script, div] def get_domain_plot(self): # TODO: Remove Pokemon exception catching try: script, div = self.domain.create() except Exception: return [None, None] return [script, div] def get_relevant_seeds(self): # Converts string to StringIO to allow pandas to read it as a file seeds = pd.read_csv(StringIO(self.domain.get_relevant_data()), delimiter='\t', header=None, names=['url', 'timestamp']) return seeds['url'].to_dict().values() def get_plots(self): harvest_plot = self.get_harvest_plot() domain_plot = self.get_domain_plot() if harvest_plot != [None, None]: return { 'scripts': [domain_plot[0], harvest_plot[0]], 'divs': [domain_plot[1], harvest_plot[1]], } else: return { 'scripts': None, 'divs': None, } class NutchDashboard(object): def __init__(self, crawl): self.crawl = crawl if self.crawl.crawler != "nutch": raise ValueError("Crawl must be using the Nutch crawler.") def get_plots(self): # TODO: For simultaneous crawl monitoring need to use unique crawl ids if ENABLE_STREAM_VIZ: script = init_plot(self.crawl.name) else: script = None return { 'scripts': [script], 'divs': [], }
85277
import numpy as np from typing import Tuple from typing import List from typing import Any import matplotlib.pyplot as plt import cv2 from GroundedScan.gym_minigrid.minigrid import DIR_TO_VEC # TODO faster def topo_sort(items, constraints): if not constraints: return items items = list(items) constraints = list(constraints) out = [] while len(items) > 0: roots = [ i for i in items if not any(c[1] == i for c in constraints) ] assert len(roots) > 0, (items, constraints) to_pop = roots[0] items.remove(to_pop) constraints = [c for c in constraints if c[0] != to_pop] out.append(to_pop) return out def random_weights(size: int) -> np.ndarray: return 2 * (np.random.random(size) - 0.5) def accept_weights(size: int) -> np.ndarray: return np.ones(size) def plan_step(position: Tuple[int, int], move_direction: int): """ :param position: current position of form (x-axis, y-axis) (i.e. column, row) :param move_direction: East is 0, south is 1, west is 2, north is 3. :return: next position of form (x-axis, y-axis) (i.e. column, row) """ assert 0 <= move_direction < 4 dir_vec = DIR_TO_VEC[move_direction] return position + dir_vec def one_hot(size: int, idx: int) -> np.ndarray: one_hot_vector = np.zeros(size, dtype=int) one_hot_vector[idx] = 1 return one_hot_vector def generate_possible_object_names(color: str, shape: str) -> List[str]: # TODO: does this still make sense when size is not small or large names = [shape, ' '.join([color, shape])] return names def save_counter(description, counter, file): file.write(description + ": \n") for key, occurrence_count in counter.items(): file.write(" {}: {}\n".format(key, occurrence_count)) def bar_plot(values: dict, title: str, save_path: str, errors={}, y_axis_label="Occurrence"): sorted_values = list(values.items()) sorted_values = [(y, x) for x, y in sorted_values] sorted_values.sort() values_per_label = [value[0] for value in sorted_values] if len(errors) > 0: sorted_errors = [errors[value[1]] for value in sorted_values] else: sorted_errors = None labels = [value[1] for value in sorted_values] assert len(labels) == len(values_per_label) y_pos = np.arange(len(labels)) plt.bar(y_pos, values_per_label, yerr=sorted_errors, align='center', alpha=0.5) plt.gcf().subplots_adjust(bottom=0.2, ) plt.xticks(y_pos, labels, rotation=90, fontsize="xx-small") plt.ylabel(y_axis_label) plt.title(title) plt.savefig(save_path) plt.close() def grouped_bar_plot(values: dict, group_one_key: Any, group_two_key: Any, title: str, save_path: str, errors_group_one={}, errors_group_two={}, y_axis_label="Occurence", sort_on_key=True): sorted_values = list(values.items()) if sort_on_key: sorted_values.sort() values_group_one = [value[1][group_one_key] for value in sorted_values] values_group_two = [value[1][group_two_key] for value in sorted_values] if len(errors_group_one) > 0: sorted_errors_group_one = [errors_group_one[value[0]] for value in sorted_values] sorted_errors_group_two = [errors_group_two[value[0]] for value in sorted_values] else: sorted_errors_group_one = None sorted_errors_group_two = None labels = [value[0] for value in sorted_values] assert len(labels) == len(values_group_one) assert len(labels) == len(values_group_two) y_pos = np.arange(len(labels)) fig, ax = plt.subplots() width = 0.35 p1 = ax.bar(y_pos, values_group_one, width, yerr=sorted_errors_group_one, align='center', alpha=0.5) p2 = ax.bar(y_pos + width, values_group_two, width, yerr=sorted_errors_group_two, align='center', alpha=0.5) plt.gcf().subplots_adjust(bottom=0.2, ) plt.xticks(y_pos, labels, rotation=90, fontsize="xx-small") plt.ylabel(y_axis_label) plt.title(title) ax.legend((p1[0], p2[0]), (group_one_key, group_two_key)) plt.savefig(save_path) plt.close() def numpy_array_to_image(numpy_array, image_name): plt.imsave(image_name, numpy_array) def image_to_numpy_array(image_path): im = cv2.imread(image_path) return np.flip(im, 2) # cv2 returns image in BGR order
85312
import bpy import os bl_info = { "name" : "plantFEM_export", # プラグイン名 "author" : "<NAME>", # 作者 "version" : (0,1), # プラグインのバージョン "blender" : (2, 80, 0), # プラグインが動作するBlenderのバージョン "location" : "File > Export > plantFEM_export", # Blender内部でのプラグインの位置づけ "description" : "File export for plantFEM.", # プラグインの説明 "warning" : "", "wiki_url" : "", # プラグインの説明が存在するWikiページのURL "tracker_url" : "", # Blender Developer OrgのスレッドURL "category" : "Import-Export" # プラグインのカテゴリ名 } def write_some_data(context, filepath, use_some_setting): print("running write_plantFEM_data...") #f = open(filepath, 'w', encoding='utf-8') num_wa = 0 #objs = [obj for obj in scene.objects if obj.name.startswith("Seed_")] #f.write(str(objs) ) sname = filepath #sname = sname+".f90" sf = open(str(sname), 'w') sf.write("program main\n") sf.write(" use SeedClass\n") sf.write(" implicit none\n") seedlist = [] # detect seed objects for i in range(len(bpy.context.editable_objects)): if str(bpy.context.editable_objects[i].data ).find('Mesh("') == -1: continue st = str(bpy.context.editable_objects[i].name ) st = st.replace("bpy_struct,", " ") st = st.replace('Mesh("', " ") st = st.replace('")>', " ") st = st.replace('<', " ") st = st.replace(' ', "") st = st.replace('_RNA_UI',"") st = st.replace('_RNA_UI',"") # import the object is Seed_ object to script if str(st).find("Seed_") >= 0 : sf.write("type(Seed_) :: seed"+str(i)+"\n") # detect seed objects for i in range(len(bpy.context.editable_objects)): #f.write( str(bpy.context.editable_objects[i].display_bounds_type )) #f.write("\n") if str(bpy.context.editable_objects[i].data ).find('Mesh("') == -1: continue #f.write("\n") #f.write( str(bpy.context.editable_objects[i].name )) #f.write("\n") st = str(bpy.context.editable_objects[i].name ) st = st.replace("bpy_struct,", " ") st = st.replace('Mesh("', " ") st = st.replace('")>', " ") st = st.replace('<', " ") st = st.replace(' ', "") st = st.replace('_RNA_UI',"") st = st.replace('_RNA_UI',"") #f.write(st) #f.write("\n") # import the object is Seed_ object to script if str(st).find("Seed_") >= 0 : sf.write("call seed"+str(i)+"%create(Name='seed"+str(i)+"'") seedlist.append("seed"+str(i)) st = str(bpy.context.editable_objects[i].data ) st = st.replace("bpy_struct,", " ") st = st.replace('Mesh("', " ") st = st.replace('")>', " ") st = st.replace('<', " ") st = st.replace(' ', "") st = st.replace('_RNA_UI',"") #f.write(st) #f.write("\n") if str(st).lower() == "sphere": sf.write(",MeshType='Sphere3D'") elif str(st).lower() == "cube": sf.write(",MeshType='Cube'") n=0 m=0 #f.write("\n") for mykey, myvalue in bpy.context.editable_objects[i].items(): n=n+1 m=1 #f.write(str(n-m)+"\n") n=0 m=0 for mykey, myvalue in bpy.context.editable_objects[i].items(): n=n+1 if n == 1: continue #f.write( str(mykey) + " " + str(myvalue) ) if str(mykey).lower() == "x_num" or str(mykey).lower() == "xnum" : sf.write(",x_num="+str(myvalue) ) if str(mykey).lower() == "y_num" or str(mykey).lower() == "ynum" : sf.write(",y_num="+str(myvalue)+"&\n" ) if str(mykey).lower() == "z_num" or str(mykey).lower() == "znum" : sf.write(",z_num="+str(myvalue)+"&\n" ) if str(mykey).lower() == "youngsmodulus" or str(mykey).lower() == "youngmodulus" : sf.write(",YoungsModulus="+str(myvalue)+"d0 &\n" ) if str(mykey).lower() == "poissonratio" or str(mykey).lower() == "poissonsratio" : sf.write(",PoissonRatio="+str(myvalue)+"d0 &\n") if str(mykey).lower() == "permiability" or str(mykey).lower() == "conductance" : sf.write(",Permiability=dble("+str( float(myvalue) )+") &\n" ) if str(mykey).lower() == "a_psi" or str(mykey).lower() == "apsi" : sf.write(",a_Psi="+str(myvalue)+"d0 &\n" ) if str(mykey).lower() == "a_p" or str(mykey).lower() == "ap" : sf.write(",a_P="+str(myvalue)+"d0 &\n" ) if str(mykey).lower() == "theta_eq" or str(mykey).lower() == "thetaeq" : sf.write(",theta_eq="+str(myvalue)+"d0 &\n" ) if str(mykey).lower() == "psi_eq" or str(mykey).lower() == "psieq" : sf.write(",Psi_eq="+str(myvalue)+"d0 &\n" ) if str(mykey).lower() == "a_e" or str(mykey).lower() == "ae" : sf.write(",a_E="+str(myvalue)+"d0 &\n" ) if str(mykey).lower() == "a_v" or str(mykey).lower() == "av" : sf.write(",a_v="+str(myvalue)+"d0 &\n" ) if str(mykey).lower() == "e_eq" or str(mykey).lower() == "eeq" : sf.write(",E_eq="+str(myvalue)+"d0 &\n" ) if str(mykey).lower() == "v_eq" or str(mykey).lower() == "veq" : sf.write(",v_eq="+str(myvalue)+"d0 &\n" ) #if str(mykey) == "WaterAbsorption" : # m=1 #elif str(mykey) == "waterabsorption" : # m=1 #elif str(mykey) == "Waterabsorption" : # m=1 #elif str(mykey) == "waterAbsorption" : # m=1 #else: #f.write("\n") #num_wa=num_wa+m #f.write( str(bpy.context.editable_objects[i].active_material )) #f.write("scale\n") for j in range(len(bpy.context.editable_objects[i].scale)): #f.write( str(bpy.context.editable_objects[i].scale[j]) ) #f.write("\n") if j == 0: sf.write(",x_len="+str( float(2.0)*float(bpy.context.editable_objects[i].scale[j]))+"d0&\n") if j == 1: sf.write(",y_len="+str( float(2.0)*float(bpy.context.editable_objects[i].scale[j]))+"d0&\n") if j == 2: sf.write(",z_len="+str( float(2.0)*float(bpy.context.editable_objects[i].scale[j]))+"d0)\n") sf.write("\n") #f.write("\n") #f.write("location\n") #f.write("\n") sf.write("call seed"+str(i)+"%move(") for j in range(len(bpy.context.editable_objects[i].location)): #f.write( str(bpy.context.editable_objects[i].location[j]) ) if j == 0: sf.write("x="+str( float(bpy.context.editable_objects[i].location[j]))+"d0&\n") if j == 1: sf.write(",y="+str( float(bpy.context.editable_objects[i].location[j]))+"d0&\n") if j == 2: sf.write(",z="+str( float(bpy.context.editable_objects[i].location[j]))+"d0)\n") sf.write("\n") #f.write("\n") #f.write("rotation\n") sf.write("call seed"+str(i)+"%rotate(") for j in range(len(bpy.context.editable_objects[i].delta_rotation_euler)): #f.write( str(bpy.context.editable_objects[i].delta_rotation_euler[j]) ) #f.write("\n") if j == 0: sf.write("x="+str( float(bpy.context.editable_objects[i].delta_rotation_euler[j]))+"d0&\n") if j == 1: sf.write(",y="+str( float(bpy.context.editable_objects[i].delta_rotation_euler[j]))+"d0&\n") if j == 2: sf.write(",z="+str( float(bpy.context.editable_objects[i].delta_rotation_euler[j]))+"d0)\n") sf.write("\n") #f.write("\n") sf.write("call seed"+str(i)+"%gmsh(Name='seed"+str(i)+"')") sf.write("\n") for i in range(len(bpy.context.editable_objects)): #f.write( str(bpy.context.editable_objects[i].display_bounds_type )) #f.write("\n") if str(bpy.context.editable_objects[i].data ).find('Mesh("') == -1: continue #f.write("\n") #f.write( str(bpy.context.editable_objects[i].name )) #f.write("\n") st = str(bpy.context.editable_objects[i].name ) st = st.replace("bpy_struct,", " ") st = st.replace('Mesh("', " ") st = st.replace('")>', " ") st = st.replace('<', " ") st = st.replace(' ', "") st = st.replace('_RNA_UI',"") st = st.replace('_RNA_UI',"") #f.write(st) #f.write("\n") # import the object is Seed_ object to script if str(st).find("BC_") >= 0 : # Boundary conditions >> for all seed objects for seed in seedlist: n=0 m=0 for mykey, myvalue in bpy.context.editable_objects[i].items(): n=n+1 if n == 1: continue m=0 if str(mykey).lower() == "disp_x" or str(mykey).lower() == "dispx" : m=1 if str(mykey).lower() == "disp_y" or str(mykey).lower() == "dispy" : m=2 if str(mykey).lower() == "disp_z" or str(mykey).lower() == "dispz" : m=3 if str(mykey).lower() == "watercontent" or str(mykey).lower() == "water_content" : m=4 if m==1: sf.write("call "+str(seed)+"%env(") sf.write("disp_x="+str(myvalue)+"d0" ) elif m==2: sf.write("call "+str(seed)+"%env(") sf.write("disp_y="+str(myvalue)+"d0" ) elif m==3: sf.write("call "+str(seed)+"%env(") sf.write("disp_z="+str(myvalue)+"d0" ) elif m==4: sf.write("call "+str(seed)+"%env(") sf.write("WaterContent="+str(myvalue)+"d0" ) else: continue x_max = float(bpy.context.editable_objects[i].scale[0]) \ + float(bpy.context.editable_objects[i].location[0]) x_min = -float(bpy.context.editable_objects[i].scale[0]) \ + float(bpy.context.editable_objects[i].location[0]) y_max = float(bpy.context.editable_objects[i].scale[1]) \ + float(bpy.context.editable_objects[i].location[1]) y_min = -float(bpy.context.editable_objects[i].scale[1]) \ + float(bpy.context.editable_objects[i].location[1]) z_max = float(bpy.context.editable_objects[i].scale[2]) \ + float(bpy.context.editable_objects[i].location[2]) z_min = -float(bpy.context.editable_objects[i].scale[2]) \ + float(bpy.context.editable_objects[i].location[2]) #f.write("scale\n") sf.write(",x_max="+str(x_max)+"d0 &\n" ) sf.write(",x_min="+str(x_min)+"d0 &\n" ) sf.write(",y_max="+str(y_max)+"d0 &\n" ) sf.write(",y_min="+str(y_min)+"d0 &\n" ) sf.write(",z_max="+str(z_max)+"d0 &\n" ) sf.write(",z_min="+str(z_min)+"d0" ) sf.write(")") sf.write("\n") for seed in seedlist: sf.write("\n" ) sf.write("call "+str(seed)+"%grow(" ) m=0 for mykey, myvalue in bpy.context.scene.world.items(): if str(mykey).lower() == "timestep" or str(mykey).lower() == "time_step" : sf.write("timestep="+str(int(myvalue) )+"&\n") m=1 if m==0: sf.write("timestep="+str(1)+"&\n") for mykey, myvalue in bpy.context.scene.world.items(): if str(mykey).lower() == "dt" or str(mykey).lower() == "d_t" : sf.write(",dt="+str(float(myvalue) )+"d0"+"&\n") for mykey, myvalue in bpy.context.scene.world.items(): if str(mykey).lower() == "display" or str(mykey).lower() == "export" : sf.write(",Display=."+str(myvalue)+".&\n") for mykey, myvalue in bpy.context.scene.world.items(): if str(mykey).lower() == "nr_tol" or str(mykey).lower() == "nrtol" : sf.write(",nr_tol="+str(float(myvalue))+"d0"+"&\n") for mykey, myvalue in bpy.context.scene.world.items(): if str(mykey).lower() == "interval" or str(mykey).lower() == "inter" : sf.write(",interval="+str(int(myvalue) )+"&\n") sf.write(")" ) sf.write("\n" ) #f.write("Hello World %s" % use_some_setting) #sf.write(str(bpy.context.scene.world.items() ) ) #f.write("EOF") #f.close() #f = open(filepath, 'r', encoding='utf-8') #f.close() sf.write("end program") sf.close() #create .f90 script return {'FINISHED'} # ExportHelper is a helper class, defines filename and # invoke() function which calls the file selector. from bpy_extras.io_utils import ExportHelper from bpy.props import StringProperty, BoolProperty, EnumProperty from bpy.types import Operator class ExportSomeData(Operator, ExportHelper): """This appears in the tooltip of the operator and in the generated docs""" bl_idname = "export_test.some_data" # important since its how bpy.ops.import_test.some_data is constructed bl_label = "Export plantFEM Data" # ExportHelper mixin class uses this filename_ext = ".f90" filter_glob: StringProperty( default="*.f90", options={'HIDDEN'}, maxlen=255, # Max internal buffer length, longer would be clamped. ) # List of operator properties, the attributes will be assigned # to the class instance from the operator settings before calling. use_setting: BoolProperty( name="Example Boolean", description="Example Tooltip", default=True, ) type: EnumProperty( name="Example Enum", description="Choose between two items", items=( ('OPT_A', "First Option", "Description one"), ('OPT_B', "Second Option", "Description two"), ), default='OPT_A', ) def execute(self, context): return write_some_data(context, self.filepath, self.use_setting) # Only needed if you want to add into a dynamic menu def menu_func_export(self, context): self.layout.operator(ExportSomeData.bl_idname, text="Export plantFEM objects and world") def register(): bpy.utils.register_class(ExportSomeData) bpy.types.TOPBAR_MT_file_export.append(menu_func_export) def unregister(): bpy.utils.unregister_class(ExportSomeData) bpy.types.TOPBAR_MT_file_export.remove(menu_func_export) if __name__ == "__main__": register() # test call bpy.ops.export_test.some_data('INVOKE_DEFAULT') #messagebox.askquestion("Run this simulation?", "Run this simulation?")
85322
from abc import ABC, abstractmethod import logging import selectors import multiprocessing from defusedxml import ElementTree as etree from FreeTAKServer.controllers.DatabaseControllers.DatabaseController import DatabaseController from FreeTAKServer.controllers.services.service_abstracts import ServerServiceInterface, ServiceBase from FreeTAKServer.controllers.serializers.protobuf_serializer import ProtobufSerializer from FreeTAKServer.controllers.serializers.xml_serializer import XmlSerializer from FreeTAKServer.controllers.XMLCoTController import XMLCoTController from FreeTAKServer.model.ClientInformation import ClientInformation from FreeTAKServer.model.SpecificCoT.SendDisconnect import SendDisconnect from FreeTAKServer.model.protobufModel.fig_pb2 import FederatedEvent from FreeTAKServer.model.federate import Federate class FederationServiceBase(ServerServiceInterface, ServiceBase): def __init__(self): self.federates: {str: Federate} self.logger: logging.Logger self.sel: selectors.select def _process_protobuff_to_object(self, protobuf_object: FederatedEvent): """ this method will convert the protobuf object to a FTS model object and xml string it will also add the remarks to indicate that the client or cot is comming from a federate Args: protobuf_object: Returns: """ model_object, fts_object = XMLCoTController().determine_model_object_type(protobuf_object.event.type) # pylint: disable=no-member; member does exist fts_object = fts_object() model_object = ProtobufSerializer().from_format_to_fts_object(protobuf_object, model_object()) xml_object = XmlSerializer().from_fts_object_to_format(model_object) fts_object.setModelObject(model_object) fts_object.setXmlString(etree.tostring(xml_object)) """xmlstring = event if xmlstring.find('detail') and xmlstring.find('detail'). xmlstring.find('detail').remove(xmlstring.find('detail').find('remarks')) xmlstring.find('detail').extend([child for child in xmlstring.find('detail')])""" return fts_object def _get_header_length(self, header): return int.from_bytes(header, 'big') def _generate_header(self, contentlength): return contentlength.to_bytes(4, byteorder="big") def check_dest_user(self, data): """ this method is responsible for validating that the federate has any of the intended recipients for the CoT Args: data: a CoT object Returns boolean: True if the federate has any dest client otherwise false """ def send_data_to_clients(self, data): from defusedxml import ElementTree as etree try: if self.federates: xmlstring = data.xmlString detail = etree.fromstring(xmlstring).find('detail') if detail: protobuf = ProtobufSerializer().from_fts_object_to_format(data.modelObject) try: protobuf.event.other = etree.tostring(detail) # pylint: disable=no-member; member does exist protobufstring = protobuf.SerializeToString() header = self._generate_header(len(protobufstring)) protobufstring = header + protobufstring print(protobufstring) except Exception as e: self.logger.warning("creating protobuf message failed " + str(e)) return None for client in self.federates.values(): client.conn.send(protobufstring) else: return None else: return None except Exception as e: import traceback trace = traceback.format_exc() self.logger.warning("sending data to federates failed " + str(e)) def send_connection_data(self, CoT: ClientInformation) -> None: try: if self.federates: proto_obj = FederatedEvent() proto_obj.contact.uid = str(CoT.modelObject.uid) # pylint: disable=no-member; member does exist proto_obj.contact.callsign = str(CoT.modelObject.detail.contact.callsign) # pylint: disable=no-member; member does exist proto_obj.contact.operation = 1 # pylint: disable=no-member; member does exist proto_str = proto_obj.SerializeToString() header = self._generate_header(len(proto_str)) for fed in self.federates.values(): fed.conn.send(header + proto_str) return None else: return None except Exception as e: self.logger.warning("exception throw sending new connection data to federates " + str(e)) return None def _send_connected_clients(self, connection): try: clients = self.db.query_user() except Exception as e: self.logger.warning("error thrown in getting clients from DataBase to send to federates " + str(e)) return None for client in clients: try: proto_obj = FederatedEvent() proto_obj.contact.uid = str(client.uid) # pylint: disable=no-member; member does exist proto_obj.contact.callsign = str(client.CoT.detail.contact.callsign) # pylint: disable=no-member; member does exist proto_obj.contact.operation = 1 # pylint: disable=no-member; member does exist proto_str = proto_obj.SerializeToString() header = self._generate_header(len(proto_str)) connection.send(header + proto_str) except Exception as e: self.logger.warning("error thrown sending federate data to newly connected federate " + str(e)) continue def disconnect_client(self, id: str) -> None: try: self.logger.info("disconnecting client") try: federate = self.federates[id] except Exception as e: self.logger.warning("federate array has no item with uid " + str(id) + " federates array is len " + str( len(self.federates))) return None try: federate.conn.close() self.sel.unregister(federate.conn) del (self.federates[federate.uid]) except Exception as e: self.logger.warning("exception thrown disconnecting client " + str(e)) try: self.db.remove_ActiveFederation(f'id == "{federate.uid}"') except Exception as e: self.logger.warning("exception thrown removing outgoing federation from DB " + str(e)) return None except Exception as e: self.logger.warning("exception thrown accessing client for disconnecting client " + str(e)) def send_disconnection_data(self, CoT: SendDisconnect) -> None: if self.federates: proto_obj = FederatedEvent() proto_obj.contact.uid = str(CoT.modelObject.detail.link.uid) # pylint: disable=no-member; member does exist proto_obj.contact.callsign = str(CoT.modelObject.detail.link.type) # pylint: disable=no-member; member does exist proto_obj.contact.operation = 4 # pylint: disable=no-member; member does exist proto_str = proto_obj.SerializeToString() header = self._generate_header(len(proto_str)) for fed in self.federates.values(): fed.conn.send(header + proto_str) return None else: return None def start(self, pipe): """this is an abstract start method, and should be implemented by any child classes. the following hinted vars should be implemented and create_context and main methods should be called.""" self.db: DatabaseController self.pipe: multiprocessing.Pipe
85398
import numpy as np from py_diff_stokes_flow.env.env_base import EnvBase from py_diff_stokes_flow.common.common import ndarray from py_diff_stokes_flow.core.py_diff_stokes_flow_core import ShapeComposition2d, StdIntArray2d class FluidicTwisterEnv3d(EnvBase): def __init__(self, seed, folder): np.random.seed(seed) cell_nums = (32, 32, 16) E = 100 nu = 0.499 vol_tol = 1e-2 edge_sample_num = 2 EnvBase.__init__(self, cell_nums, E, nu, vol_tol, edge_sample_num, folder) # Initialize the parametric shapes. self._parametric_shape_info = [ ('polar_bezier-6', 51)] # Initialize the node conditions. self._node_boundary_info = [] inlet_radius = 0.3 outlet_radius = 0.3 inlet_velocity = 1.0 outlet_velocity = 2.0 cx, cy, _ = self.cell_nums() assert cx == cy nx, ny, nz = self.node_nums() def get_bezier(radius): bezier = ShapeComposition2d() params = np.concatenate([ np.full(8, radius) * cx, ndarray([0.5 * cx, 0.5 * cy, 0]) ]) bezier.AddParametricShape('polar_bezier', params.size) cxy = StdIntArray2d((int(cx), int(cy))) bezier.Initialize(cxy, params, True) return bezier inlet_bezier = get_bezier(inlet_radius) outlet_bezier = get_bezier(outlet_radius) for i in range(nx): for j in range(ny): if inlet_bezier.signed_distance((i, j)) > 0: self._node_boundary_info.append(((i, j, 0, 0), 0)) self._node_boundary_info.append(((i, j, 0, 1), 0)) self._node_boundary_info.append(((i, j, 0, 2), inlet_velocity)) # Initialize the interface. self._interface_boundary_type = 'free-slip' # Compute the target velocity field (for rendering purposes only) desired_omega = 2 * outlet_velocity / (cx * outlet_radius) target_velocity_field = np.zeros((nx, ny, 3)) for i in range(nx): for j in range(ny): if outlet_bezier.signed_distance((i, j)) > 0: x, y = i / cx, j / cy # u = (-(j - ny / 2), (i - nx / 2), 0) * c. # ux_pos = (-j, i + 1, 0) * c. # uy_pos = (-j - 1, i, 0) * c. # curl = (i + 1) * c + (j + 1) * c - i * c - j * c. # = (i + j + 2 - i - j) * c = 2 * c. # c = outlet_vel / (num_cells[0] * outlet_radius). c = desired_omega / 2 target_velocity_field[i, j] = ndarray([ -(y - 0.5) * c, (x - 0.5) * c, 0 ]) # Other data members. self._inlet_radius = inlet_radius self._outlet_radius = outlet_radius self._inlet_velocity = inlet_velocity self._target_velocity_field = target_velocity_field self._inlet_bezier = inlet_bezier self._outlet_bezier = outlet_bezier self._desired_omega = desired_omega def _variables_to_shape_params(self, x): x = ndarray(x).copy().ravel() assert x.size == 32 cx, cy, _ = self._cell_nums assert cx == cy params = np.concatenate([ np.full(8, self._inlet_radius), x, np.full(8, self._outlet_radius), ndarray([0.5, 0.5, 0]), ]) params[:-1] *= cx # Jacobian. J = np.zeros((params.size, x.size)) for i in range(x.size): J[8 + i, i] = cx return ndarray(params).copy(), ndarray(J).copy() def _loss_and_grad_on_velocity_field(self, u): u_field = self.reshape_velocity_field(u) grad = np.zeros(u_field.shape) nx, ny, nz = self.node_nums() assert nx == ny loss = 0 cnt = 0 for i in range(nx): for j in range(ny): if self._outlet_bezier.signed_distance((i, j)) > 0: cnt += 1 uxy = u_field[i, j, nz - 1, :2] ux_pos = u_field[i + 1, j, nz - 1, :2] uy_pos = u_field[i, j + 1, nz - 1, :2] # Compute the curl. curl = ux_pos[1] - uy_pos[0] - uxy[1] + uxy[0] loss += (curl - self._desired_omega) ** 2 # ux_pos[1] grad[i + 1, j, nz - 1, 1] += 2 * (curl - self._desired_omega) grad[i, j + 1, nz - 1, 0] += -2 * (curl - self._desired_omega) grad[i, j, nz - 1, 1] += -2 * (curl - self._desired_omega) grad[i, j, nz - 1, 0] += 2 * (curl - self._desired_omega) loss /= cnt grad /= cnt return loss, ndarray(grad).ravel() def _color_velocity(self, u): return float(np.linalg.norm(u) / 2) def sample(self): return np.random.uniform(low=self.lower_bound(), high=self.upper_bound()) def lower_bound(self): return np.full(32, 0.1) def upper_bound(self): return np.full(32, 0.4)
85402
import time from azureml.core import ( Workspace, Datastore, Dataset, ComputeTarget, Environment, Experiment ) from azureml.pipeline.steps import PythonScriptStep from azureml.pipeline.core import Pipeline, PipelineData from azureml.data import OutputFileDatasetConfig from azureml.core.runconfig import RunConfiguration from azureml.core.authentication import InteractiveLoginAuthentication # import ngrok_utils # Run params dataset_name = "test-features" compute_target_name = "mev-compute" source_dir = "./src_train" script_name = "train.py" # Auth tenant_id = "<PASSWORD>" interactive_auth = InteractiveLoginAuthentication(tenant_id) # Fetch workspace ws = Workspace.from_config(auth=interactive_auth) # Initialize conda environment from config file env = Environment.from_conda_specification( name='env', file_path='./.azureml/env_train.yml' ) # Fetch compute compute_target = ComputeTarget(workspace=ws, name=compute_target_name) # # Start ngrok tunnel # host, port = ngrok_utils.start_tunnel("8000") # # # Pass pycharm debug host and port as environment variables # env.environment_variables = { # 'PYCHARM_DEBUG_PORT': port, # 'PYCHARM_DEBUG_HOST': host # } # # Setup run config run_config = RunConfiguration() run_config.target = compute_target run_config.environment = env run_config.docker.use_docker = True # Load dataset from default datastore datastore = Datastore.get_default(ws) # try: # dataset = Dataset.get_by_name(ws, dataset_name) # except: dataset_path = [(datastore, dataset_name)] dataset = Dataset.File.from_files(dataset_path).register(ws, dataset_name) # Define names/inputs/outputs dataset_input_name = 'features' dataset_input = dataset.as_named_input(dataset_input_name) output = OutputFileDatasetConfig( name='report', destination=(datastore, "report") ).as_upload(overwrite=True).register_on_complete('report') # Define pipeline pipeline_step = PythonScriptStep( script_name=script_name, source_directory=source_dir, arguments=[ "--input_name", dataset_input_name, "--output", output, ], inputs=[dataset_input], outputs=[output], compute_target=compute_target, runconfig=run_config, allow_reuse=False ) pipeline = Pipeline( workspace=ws, steps=[pipeline_step] ) experiment = Experiment(workspace=ws, name='automl') pipeline_run = experiment.submit(pipeline) # # Kill ngrok on run end # kill_status = ["Finished", "Failed"] # while pipeline_run.get_detailed_status()['status'] not in kill_status: # try: # time.sleep(10) # except KeyboardInterrupt: # pipeline_run.cancel() # # ngrok_utils.kill_all()
85415
import torch from torch import nn from .utils import EarlyStopping, appendabledict, \ calculate_multiclass_accuracy, calculate_multiclass_f1_score,\ append_suffix, compute_dict_average from copy import deepcopy import numpy as np from torch.utils.data import RandomSampler, BatchSampler from .categorization import summary_key_dict class LinearProbe(nn.Module): def __init__(self, input_dim, num_classes=255): super().__init__() self.model = nn.Linear(in_features=input_dim, out_features=num_classes) def forward(self, feature_vectors): return self.model(feature_vectors) class FullySupervisedLinearProbe(nn.Module): def __init__(self, encoder, num_classes=255): super().__init__() self.encoder = deepcopy(encoder) self.probe = LinearProbe(input_dim=self.encoder.hidden_size, num_classes=num_classes) def forward(self, x): feature_vec = self.encoder(x) return self.probe(feature_vec) class ProbeTrainer(): def __init__(self, encoder=None, method_name="my_method", wandb=None, patience=15, num_classes=256, fully_supervised=False, save_dir=".models", device=torch.device("cuda" if torch.cuda.is_available() else "cpu"), lr=5e-4, epochs=100, batch_size=64, representation_len=256): self.encoder = encoder self.wandb = wandb self.device = device self.fully_supervised = fully_supervised self.save_dir = save_dir self.num_classes = num_classes self.epochs = epochs self.lr = lr self.batch_size = batch_size self.patience = patience self.method = method_name self.feature_size = representation_len self.loss_fn = nn.CrossEntropyLoss() # bad convention, but these get set in "create_probes" self.probes = self.early_stoppers = self.optimizers = self.schedulers = None def create_probes(self, sample_label): if self.fully_supervised: assert self.encoder != None, "for fully supervised you must provide an encoder!" self.probes = {k: FullySupervisedLinearProbe(encoder=self.encoder, num_classes=self.num_classes).to(self.device) for k in sample_label.keys()} else: self.probes = {k: LinearProbe(input_dim=self.feature_size, num_classes=self.num_classes).to(self.device) for k in sample_label.keys()} self.early_stoppers = { k: EarlyStopping(patience=self.patience, verbose=False, name=k + "_probe", save_dir=self.save_dir) for k in sample_label.keys()} self.optimizers = {k: torch.optim.Adam(list(self.probes[k].parameters()), eps=1e-5, lr=self.lr) for k in sample_label.keys()} self.schedulers = { k: torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizers[k], patience=5, factor=0.2, verbose=True, mode='max', min_lr=1e-5) for k in sample_label.keys()} def generate_batch(self, episodes, episode_labels): total_steps = sum([len(e) for e in episodes]) assert total_steps > self.batch_size print('Total Steps: {}'.format(total_steps)) # Episode sampler # Sample `num_samples` episodes then batchify them with `self.batch_size` episodes per batch sampler = BatchSampler(RandomSampler(range(len(episodes)), replacement=True, num_samples=total_steps), self.batch_size, drop_last=True) for indices in sampler: episodes_batch = [episodes[x] for x in indices] episode_labels_batch = [episode_labels[x] for x in indices] xs, labels = [], appendabledict() for ep_ind, episode in enumerate(episodes_batch): # Get one sample from this episode t = np.random.randint(len(episode)) xs.append(episode[t]) labels.append_update(episode_labels_batch[ep_ind][t]) yield torch.stack(xs).float().to(self.device) / 255., labels def probe(self, batch, k): probe = self.probes[k] probe.to(self.device) if self.fully_supervised: # if method is supervised batch is a batch of frames and probe is a full encoder + linear or nonlinear probe preds = probe(batch) elif not self.encoder: # if encoder is None then inputs are vectors f = batch.detach() assert len(f.squeeze().shape) == 2, "if input is not a batch of vectors you must specify an encoder!" preds = probe(f) else: with torch.no_grad(): self.encoder.to(self.device) f = self.encoder(batch).detach() preds = probe(f) return preds def do_one_epoch(self, episodes, label_dicts): sample_label = label_dicts[0][0] epoch_loss, accuracy = {k + "_loss": [] for k in sample_label.keys() if not self.early_stoppers[k].early_stop}, \ {k + "_acc": [] for k in sample_label.keys() if not self.early_stoppers[k].early_stop} data_generator = self.generate_batch(episodes, label_dicts) for step, (x, labels_batch) in enumerate(data_generator): for k, label in labels_batch.items(): if self.early_stoppers[k].early_stop: continue optim = self.optimizers[k] optim.zero_grad() label = torch.tensor(label).long().to(self.device) preds = self.probe(x, k) loss = self.loss_fn(preds, label) epoch_loss[k + "_loss"].append(loss.detach().item()) preds = preds.cpu().detach().numpy() preds = np.argmax(preds, axis=1) label = label.cpu().detach().numpy() accuracy[k + "_acc"].append(calculate_multiclass_accuracy(preds, label)) if self.probes[k].training: loss.backward() optim.step() epoch_loss = {k: np.mean(loss) for k, loss in epoch_loss.items()} accuracy = {k: np.mean(acc) for k, acc in accuracy.items()} return epoch_loss, accuracy def do_test_epoch(self, episodes, label_dicts): sample_label = label_dicts[0][0] accuracy_dict, f1_score_dict = {}, {} pred_dict, all_label_dict = {k: [] for k in sample_label.keys()}, \ {k: [] for k in sample_label.keys()} # collect all predictions first data_generator = self.generate_batch(episodes, label_dicts) for step, (x, labels_batch) in enumerate(data_generator): for k, label in labels_batch.items(): label = torch.tensor(label).long().cpu() all_label_dict[k].append(label) preds = self.probe(x, k).detach().cpu() pred_dict[k].append(preds) for k in all_label_dict.keys(): preds, labels = torch.cat(pred_dict[k]).cpu().detach().numpy(),\ torch.cat(all_label_dict[k]).cpu().detach().numpy() preds = np.argmax(preds, axis=1) accuracy = calculate_multiclass_accuracy(preds, labels) f1score = calculate_multiclass_f1_score(preds, labels) accuracy_dict[k] = accuracy f1_score_dict[k] = f1score return accuracy_dict, f1_score_dict def train(self, tr_eps, val_eps, tr_labels, val_labels): # if not self.encoder: # assert len(tr_eps[0][0].squeeze().shape) == 2, "if input is a batch of vectors you must specify an encoder!" sample_label = tr_labels[0][0] self.create_probes(sample_label) e = 0 all_probes_stopped = np.all([early_stopper.early_stop for early_stopper in self.early_stoppers.values()]) while (not all_probes_stopped) and e < self.epochs: epoch_loss, accuracy = self.do_one_epoch(tr_eps, tr_labels) self.log_results(e, epoch_loss, accuracy) val_loss, val_accuracy = self.evaluate(val_eps, val_labels, epoch=e) # update all early stoppers for k in sample_label.keys(): if not self.early_stoppers[k].early_stop: self.early_stoppers[k](val_accuracy["val_" + k + "_acc"], self.probes[k]) for k, scheduler in self.schedulers.items(): if not self.early_stoppers[k].early_stop: scheduler.step(val_accuracy['val_' + k + '_acc']) e += 1 all_probes_stopped = np.all([early_stopper.early_stop for early_stopper in self.early_stoppers.values()]) print("All probes early stopped!") def evaluate(self, val_episodes, val_label_dicts, epoch=None): for k, probe in self.probes.items(): probe.eval() epoch_loss, accuracy = self.do_one_epoch(val_episodes, val_label_dicts) epoch_loss = {"val_" + k: v for k, v in epoch_loss.items()} accuracy = {"val_" + k: v for k, v in accuracy.items()} self.log_results(epoch, epoch_loss, accuracy) for k, probe in self.probes.items(): probe.train() return epoch_loss, accuracy def test(self, test_episodes, test_label_dicts, epoch=None): for k in self.early_stoppers.keys(): self.early_stoppers[k].early_stop = False for k, probe in self.probes.items(): probe.eval() acc_dict, f1_dict = self.do_test_epoch(test_episodes, test_label_dicts) acc_dict, f1_dict = postprocess_raw_metrics(acc_dict, f1_dict) print("""In our paper, we report F1 scores and accuracies averaged across each category. That is, we take a mean across all state variables in a category to get the average score for that category. Then we average all the category averages to get the final score that we report per game for each method. These scores are called \'across_categories_avg_acc\' and \'across_categories_avg_f1\' respectively We do this to prevent categories with large number of state variables dominating the mean F1 score. """) self.log_results("Test", acc_dict, f1_dict) return acc_dict, f1_dict def log_results(self, epoch_idx, *dictionaries): print("Epoch: {}".format(epoch_idx)) for dictionary in dictionaries: for k, v in dictionary.items(): print("\t {}: {:8.4f}".format(k, v)) print("\t --") def postprocess_raw_metrics(acc_dict, f1_dict): acc_overall_avg, f1_overall_avg = compute_dict_average(acc_dict), \ compute_dict_average(f1_dict) acc_category_avgs_dict, f1_category_avgs_dict = compute_category_avgs(acc_dict), \ compute_category_avgs(f1_dict) acc_avg_across_categories, f1_avg_across_categories = compute_dict_average(acc_category_avgs_dict), \ compute_dict_average(f1_category_avgs_dict) acc_dict.update(acc_category_avgs_dict) f1_dict.update(f1_category_avgs_dict) acc_dict["overall_avg"], f1_dict["overall_avg"] = acc_overall_avg, f1_overall_avg acc_dict["across_categories_avg"], f1_dict["across_categories_avg"] = [acc_avg_across_categories, f1_avg_across_categories] acc_dict = append_suffix(acc_dict, "_acc") f1_dict = append_suffix(f1_dict, "_f1") return acc_dict, f1_dict def compute_category_avgs(metric_dict): category_dict = {} for category_name, category_keys in summary_key_dict.items(): category_values = [v for k, v in metric_dict.items() if k in category_keys] if len(category_values) < 1: continue category_mean = np.mean(category_values) category_dict[category_name + "_avg"] = category_mean return category_dict
85441
import argparse import json import os from os import listdir from os.path import isfile import shutil from genson import SchemaBuilder from enum import Enum import copy import flatdict import pandas as pd import numpy as np from collections import OrderedDict from functools import reduce # forward compatibility for Python 3 import operator import sys from echr.utils.folders import make_build_folder from echr.utils.cli import TAB from echr.utils.logger import getlogger from rich.markdown import Markdown from rich.console import Console log = getlogger() __console = Console(record=True) DELIMITER = '.' type_priority = OrderedDict([ ('number', float), ('integer', int), ('string', str) ]) class COL_HINT(str, Enum): HOT_ONE = 'hot_one' POSITIONAL = 'positional' def format_structured_json(cases_list): res = [] representents = {} extractedapp = {} scl = {} decision_body = {} for name in cases_list: with open(name, 'r') as f: c = json.load(f) c['representedby'] = [r for r in c['representedby'] if r != 'N/A'] representents[c['appno']] = {'representedby': c['representedby']} extractedapp[c['appno']] = {'appnos': c['extractedappno']} decision_body[c['appno']] = { 'name': [e['name'] for e in c['decision_body']], 'role': {e['name']: e['role'] for e in c['decision_body'] if 'role' in e} } scl[c['appno']] = {'scl': c['scl']} c['respondent'] = c['respondent'].split(';') # c['applicability'] = c['applicability'].strip().split(';') c['appno'] = c['appno'].split(';')[0] c['decisiondate'] = c['decisiondate'].split(' ')[0] c['judgementdate'] = c['judgementdate'].split(' ')[0] c['introductiondate'] = c['introductiondate'].split(' ')[0] c['kpdate'] = c['kpdate'].split(' ')[0] c['separateopinion'] = True if c['separateopinion'] == 'TRUE' else False del c['representedby'] del c['extractedappno'] del c['decision_body'] del c['scl'] del c['documents'] del c['content'] del c['externalsources'] del c['kpthesaurus'] del c['__conclusion'] del c['__articles'] if not len(c['issue']): del c['issue'] else: c['issue'] = sorted(c['issue']) if not len(c['applicability']): del c['applicability'] res.append(c) return res, representents, extractedapp, scl, decision_body def get_by_path(root, items): return reduce(operator.getitem, items, root) def set_by_path(root, items, value): get_by_path(root, items[:-1])[items[-1]] = value def determine_schema(X): builder = SchemaBuilder() for x in X: builder.add_object(x) schema = builder return schema def get_flat_type_mapping(flat_schema): flat_type_mapping = {} for k in flat_schema.keys(): if k.endswith(DELIMITER + 'type'): key = k.replace('properties' + DELIMITER, '').replace(DELIMITER + 'type', '') flat_type_mapping[key] = flat_schema[k] return flat_type_mapping def get_flat_domain_mapping(X, flat_type_mapping): flat_domain_mapping = {} for x in X: flat = flatdict.FlatterDict(x, delimiter='.') for k in flat_type_mapping.keys(): v = flat.get(k) if v is not None: if k not in flat_domain_mapping: flat_domain_mapping[k] = set() type_ = flat_type_mapping[k] try: if type_ == 'array': flat_domain_mapping[k].update(get_by_path(x, k.split('.'))) else: flat_domain_mapping[k].add(get_by_path(x, k.split('.'))) except: if not flat_domain_mapping[k]: del flat_domain_mapping[k] for k in flat_domain_mapping: flat_domain_mapping[k] = list(flat_domain_mapping[k]) return flat_domain_mapping def flatten_dataset(X, flat_type_mapping, schema_hints=None): if schema_hints is None: schema_hints = {} flat_X = [] for x in X: flat = flatdict.FlatterDict(x, delimiter=DELIMITER) c_x = copy.deepcopy(x) for k in flat_type_mapping.keys(): col_type = schema_hints.get(k, {}).get('col_type') if col_type not in [None, COL_HINT.POSITIONAL]: continue v = flat.get(k) if v is not None: sort = schema_hints.get(k, {}).get('sort', False) if sort: type_ = flat_type_mapping[k] if type_ == 'array': item_types = flat_type_mapping.get(k + '.items') a = get_by_path(c_x, k.split('.')) if isinstance(item_types, list): try: a = sorted(a) except: print('# Warning: mix-type array with types: {}'.format(', '.join(item_types))) print('# Warning; no comparison operator provided. Try to assess the proper cast...') for t in type_priority: try: a = list(map(type_priority[t], a)) print('# Casting \'{}\' to {}'.format(k, t)) break except: log.error('Could not cast \'{}\' to {}'.format(k, t)) else: print('# Error: Could not find any way to sort {}'.format(k)) raise Exception('Could not find any way to sort {}'.format(k)) set_by_path(c_x, k.split('.'), sorted(a)) flat = flatdict.FlatterDict(c_x, delimiter=DELIMITER) flat_X.append(flat) return flat_X def hot_one_encoder_on_list(df, column): v = [x if isinstance(x, list) else [] for x in df[column].values] l = [len(x) for x in v] f, u = pd.factorize(np.concatenate(v)) n, m = len(v), u.size i = np.arange(n).repeat(l) dummies = pd.DataFrame( np.bincount(i * m + f, minlength=n * m).reshape(n, m), df.index, map(lambda x: str(column) + '=' + str(x), u) ) return df.drop(column, 1).join(dummies) def normalize(X, schema_hints=None): if schema_hints is None: schema_hints = {} def hot_one_encoder(df, columns): return pd.get_dummies(df, prefix_sep="=", columns=columns) schema = determine_schema(X) flat_schema = flatdict.FlatDict(schema.to_schema(), delimiter=DELIMITER) flat_type_mapping = get_flat_type_mapping(flat_schema) flat_domain_mapping = get_flat_domain_mapping(X, flat_type_mapping) flat_X = flatten_dataset(X, flat_type_mapping, schema_hints) columns_to_encode = [k for k, v in schema_hints.items() if v['col_type'] == COL_HINT.HOT_ONE] df = pd.DataFrame(flat_X) for c in df.columns: f = next((k for k in columns_to_encode if c.startswith(k)), None) if f: df = df.drop(c, 1) encoded = [] for c in columns_to_encode: type_ = flat_type_mapping[c] if type_ == 'array': if c == 'conclusion': articles = set() for x in X: for e in x[c]: if 'article' in e: articles.add(e['article']) articles = sorted(articles) df2 = [] for x in X: e = [] xart = {v['article']: v['type'] for v in x['conclusion'] if 'article' in v} for a in articles: v = 0 if a in xart: if xart[a] == 'violation': v = 1 else: v = -1 e.append(v) df2.append(e) df2 = pd.DataFrame(df2, columns=list(map(lambda x: 'ccl_article={}'.format(x), articles))) encoded.append(df2) else: df2 = pd.DataFrame(X)[[c]] e = hot_one_encoder_on_list(df2, c) encoded.append(e) else: df2 = pd.DataFrame(X)[c] e = hot_one_encoder(df2, [c]) encoded.append(e) df = pd.concat([df] + encoded, axis=1) return df, schema, flat_schema, flat_type_mapping, flat_domain_mapping def run(console, build, title, output_prefix='cases', force=False): __console = console global print print = __console.print print(Markdown("- **Step configuration**")) print(TAB + "> Prepare release folder structure") paths = ['unstructured', 'structured', 'raw'] for p in paths: make_build_folder(console, os.path.join(build, p), force, strict=False) print(Markdown("- **Normalize database**")) input_folder = os.path.join(build, 'raw', 'preprocessed_documents') cases_files = [os.path.join(input_folder, f) for f in listdir(input_folder) if isfile(os.path.join(input_folder, f)) and '.json' in f] print(TAB + "> Prepare unstructured cases [green][DONE]") # Unstructured with open(os.path.join(build, 'unstructured', 'cases.json'), 'w') as outfile: outfile.write('[\n') for i, f in enumerate(cases_files): with open(f) as json_file: data = json.load(json_file) json.dump(data, outfile, indent=4) if i != len(cases_files) - 1: outfile.write(',\n') outfile.write('\n]') # Structured print(TAB + "> Generate flat cases [green][DONE]") flat_cases , representatives, extractedapp, scl, decision_body = format_structured_json(cases_files) print(TAB + "> Flat cases size: {}MiB".format(sys.getsizeof(flat_cases) / 1000)) schema_hints = { 'article': { 'col_type': COL_HINT.HOT_ONE }, 'documentcollectionid': { 'col_type': COL_HINT.HOT_ONE }, 'applicability': { 'col_type': COL_HINT.HOT_ONE }, 'paragraphs': { 'col_type': COL_HINT.HOT_ONE }, 'conclusion': { 'col_type': COL_HINT.HOT_ONE, 'sub_element': 'flatten' } } output_path = os.path.join(build, 'structured') with open(os.path.join(output_path, 'flat_cases.json'), 'w') as outfile: json.dump(flat_cases, outfile, indent=4) with open(os.path.join(output_path, 'schema_hint.json'), 'w') as outfile: json.dump(schema_hints, outfile, indent=4) X = flat_cases df, schema, flat_schema, flat_type_mapping, flat_domain_mapping = normalize(X, schema_hints) df.to_json(os.path.join(output_path, '{}.json'.format(output_prefix)), orient='records') df.to_csv(os.path.join(output_path, '{}.csv'.format(output_prefix))) json_files = [ ('schema', schema.to_schema()), ('flat_schema', flat_schema.as_dict()), ('flat_type_mapping', flat_type_mapping), ('flat_domain_mapping', flat_domain_mapping) ] for f in json_files: with open(os.path.join(output_path, '{}_{}.json'.format(output_prefix, f[0])), 'w') as outfile: json.dump(f[1], outfile, indent=4) os.remove(os.path.join(output_path, 'flat_cases.json')) os.remove(os.path.join(output_path, 'cases_flat_schema.json')) os.remove(os.path.join(output_path, 'cases_flat_type_mapping.json')) print(TAB + '> Generate appnos matrice [green][DONE]') matrice_appnos = {} for k, v in extractedapp.items(): matrice_appnos[k] = {e:1 for e in v['appnos']} with open(os.path.join(output_path, 'matrice_appnos.json'), 'w') as outfile: json.dump(matrice_appnos, outfile, indent=4) print(TAB + '> Generate scl matrice [green][DONE]') matrice_scl = {} for k, v in scl.items(): matrice_scl[k] = {e: 1 for e in v['scl']} with open(os.path.join(output_path, 'matrice_scl.json'), 'w') as outfile: json.dump(matrice_scl, outfile, indent=4) print(TAB + '> Generate representatives matrice [green][DONE]') matrice_representedby = {} for k, v in representatives.items(): matrice_representedby[k] = {e: 1 for e in v['representedby']} with open(os.path.join(output_path, 'matrice_representatives.json'), 'w') as outfile: json.dump(matrice_representedby, outfile, indent=4) print(TAB + '> Generate decision body matrice [green][DONE]') matrice_decision_body = {} for k, v in decision_body.items(): matrice_decision_body[k] = {k:v for k,v in v['role'].items()} with open(os.path.join(output_path, 'matrice_decision_body.json'), 'w') as outfile: json.dump(matrice_decision_body, outfile, indent=4) print(TAB + '> Create archives [green][DONE]') # Raw shutil.make_archive(os.path.join(build, 'raw', 'judgments'), 'zip', os.path.join(build, 'raw', 'judgments')) # All from zipfile import ZipFile with ZipFile(os.path.join(build, 'all.zip'), 'w') as zipObj: # Iterate over all the files in directory folders = ['unstructured', 'raw', 'structured'] for f in folders: for folderName, _, filenames in os.walk(os.path.join(build, f)): for filename in filenames: if not filename.endswith('.zip'): filePath = os.path.join(folderName, filename) zipObj.write(filePath) def main(args): console = Console(record=True) run(console, build=args.build, title=args.title, force=args.f) def parse_args(parser): args = parser.parse_args() # Check path return args if __name__ == "__main__": parser = argparse.ArgumentParser(description='Normalize any databse of arbitrarily nested documents.') parser.add_argument('--build', type=str, default="./build/echr_database/") parser.add_argument('--title', type=str) parser.add_argument('--schema_hints', type=str) parser.add_argument('--output_prefix', type=str) parser.add_argument('-f', action='store_true') parser.add_argument('-u', action='store_true') args = parse_args(parser) main(args)
85491
class InternalError(Exception): pass class InvalidAccessError(Exception): pass class InvalidStateError(Exception): pass
85506
import os from testglobals import config import subprocess import re # Feature names generally follow the naming used by Linux's /proc/cpuinfo. SUPPORTED_CPU_FEATURES = { # These aren't comprehensive; they are only CPU features that we care about # x86: 'sse', 'sse2', 'sse3', 'ssse3', 'sse4_1', 'sse4_2', 'avx1', 'avx2', 'popcnt', 'bmi1', 'bmi2' } cpu_feature_cache = None def get_cpu_features(): if config.os in ['mingw32', 'linux'] and os.path.exists('/proc/cpuinfo'): f = open('/proc/cpuinfo').read() flags = re.search(r'flags\s*:\s*.*$', f, re.M) if flags is None: print('get_cpu_features: failed to find cpu features') return {} flags = set(flags.group(0).split()) if 'pni' in flags: flags.add('sse3') flags.remove('pni') return flags elif config.os == 'darwin': out = subprocess.check_output(['sysctl', 'hw']).decode('UTF-8') features = set() def check_feature(darwin_name, our_name=None): if re.search(r'hw\.optional.%s:\s*1' % darwin_name, out) is not None: features.add(darwin_name if our_name is None else our_name) for feature in SUPPORTED_CPU_FEATURES: check_feature(feature) # A few annoying cases check_feature('avx1_0', 'avx1') check_feature('avx2_0', 'avx2') return features else: # TODO: Add {Open,Free}BSD support print('get_cpu_features: Lacking support for your platform') return {} def have_cpu_feature(feature): """ A testsuite predicate for testing the availability of CPU features. """ assert feature in SUPPORTED_CPU_FEATURES if cpu_feature_cache is None: cpu_feature_cache = get_cpu_features() print('Found CPU features:', ' '.join(cpu_feature_cache)) # Sanity checking assert all(feat in SUPPORTED_CPU_FEATURES for feat in cpu_feature_cache) return feature in cpu_feature_cache if __name__ == '__main__': import sys config.os = sys.argv[1] print(get_cpu_features())
85519
import json import logging import random from typing import Any, Callable, Dict, List, Literal, Optional, Sequence, Tuple, Union, overload from urllib.parse import urlparse import requests from ens import ENS from ens.abis import ENS as ENS_ABI, RESOLVER as ENS_RESOLVER_ABI from ens.exceptions import InvalidName from ens.main import ENS_MAINNET_ADDR from ens.utils import ( address_to_reverse_domain, is_none_or_zero_address, normal_name_to_hash, normalize_name, ) from eth_typing import BlockNumber, HexStr from web3 import HTTPProvider, Web3 from web3._utils.abi import get_abi_output_types from web3._utils.contracts import find_matching_event_abi from web3._utils.filters import construct_event_filter_params from web3.datastructures import MutableAttributeDict from web3.exceptions import ( BadFunctionCallOutput, BadResponseFormat, BlockNotFound, TransactionNotFound, ) from web3.types import BlockIdentifier, FilterParams from rotkehlchen.chain.constants import DEFAULT_EVM_RPC_TIMEOUT from rotkehlchen.chain.ethereum.contracts import EthereumContract from rotkehlchen.chain.ethereum.graph import Graph from rotkehlchen.chain.ethereum.modules.eth2.constants import ETH2_DEPOSIT from rotkehlchen.chain.ethereum.types import EnsContractParams, string_to_ethereum_address from rotkehlchen.chain.ethereum.utils import multicall, multicall_2 from rotkehlchen.constants.ethereum import ERC20TOKEN_ABI, ETH_SCAN, UNIV1_LP_ABI from rotkehlchen.errors.misc import ( BlockchainQueryError, InputError, RemoteError, UnableToDecryptRemoteData, ) from rotkehlchen.errors.serialization import DeserializationError from rotkehlchen.externalapis.etherscan import Etherscan from rotkehlchen.fval import FVal from rotkehlchen.greenlets import GreenletManager from rotkehlchen.logging import RotkehlchenLogsAdapter from rotkehlchen.serialization.deserialize import ( deserialize_ethereum_address, deserialize_ethereum_transaction, deserialize_int_from_hex, ) from rotkehlchen.serialization.serialize import process_result from rotkehlchen.types import ( ChecksumEthAddress, EthereumTransaction, EVMTxHash, SupportedBlockchain, Timestamp, ) from rotkehlchen.user_messages import MessagesAggregator from rotkehlchen.utils.misc import from_wei, hex_or_bytes_to_str from rotkehlchen.utils.network import request_get_dict from .types import NodeName from .utils import ENS_RESOLVER_ABI_MULTICHAIN_ADDRESS logger = logging.getLogger(__name__) log = RotkehlchenLogsAdapter(logger) def _is_synchronized(current_block: int, latest_block: int) -> Tuple[bool, str]: """ Validate that the ethereum node is synchronized within 20 blocks of latest block Returns a tuple (results, message) - result: Boolean for confirmation of synchronized - message: A message containing information on what the status is. """ message = '' if current_block < (latest_block - 20): message = ( f'Found ethereum node but it is out of sync. {current_block} / ' f'{latest_block}. Will use etherscan.' ) log.warning(message) return False, message return True, message WEB3_LOGQUERY_BLOCK_RANGE = 250000 def _query_web3_get_logs( web3: Web3, filter_args: FilterParams, from_block: int, to_block: Union[int, Literal['latest']], contract_address: ChecksumEthAddress, event_name: str, argument_filters: Dict[str, Any], ) -> List[Dict[str, Any]]: until_block = web3.eth.block_number if to_block == 'latest' else to_block events: List[Dict[str, Any]] = [] start_block = from_block # we know that in most of its early life the Eth2 contract address returns a # a lot of results. So limit the query range to not hit the infura limits every time # supress https://lgtm.com/rules/1507386916281/ since it does not apply here infura_eth2_log_query = ( 'infura.io' in web3.manager.provider.endpoint_uri and # type: ignore # noqa: E501 lgtm [py/incomplete-url-substring-sanitization] contract_address == ETH2_DEPOSIT.address ) block_range = initial_block_range = WEB3_LOGQUERY_BLOCK_RANGE if infura_eth2_log_query: block_range = initial_block_range = 75000 while start_block <= until_block: filter_args['fromBlock'] = start_block end_block = min(start_block + block_range, until_block) filter_args['toBlock'] = end_block log.debug( 'Querying web3 node for contract event', contract_address=contract_address, event_name=event_name, argument_filters=argument_filters, from_block=filter_args['fromBlock'], to_block=filter_args['toBlock'], ) # As seen in https://github.com/rotki/rotki/issues/1787, the json RPC, if it # is infura can throw an error here which we can only parse by catching the exception try: new_events_web3: List[Dict[str, Any]] = [dict(x) for x in web3.eth.get_logs(filter_args)] # noqa: E501 except (ValueError, KeyError) as e: if isinstance(e, ValueError): try: decoded_error = json.loads(str(e).replace("'", '"')) except json.JSONDecodeError: # reraise the value error if the error is not json raise e from None msg = decoded_error.get('message', '') else: # temporary hack for key error seen from pokt msg = 'query returned more than 10000 results' # errors from: https://infura.io/docs/ethereum/json-rpc/eth-getLogs if msg in ('query returned more than 10000 results', 'query timeout exceeded'): block_range = block_range // 2 if block_range < 50: raise # stop retrying if block range gets too small # repeat the query with smaller block range continue # else, well we tried .. reraise the error raise e # Turn all HexBytes into hex strings for e_idx, event in enumerate(new_events_web3): new_events_web3[e_idx]['blockHash'] = event['blockHash'].hex() new_topics = [] for topic in event['topics']: new_topics.append(topic.hex()) new_events_web3[e_idx]['topics'] = new_topics new_events_web3[e_idx]['transactionHash'] = event['transactionHash'].hex() start_block = end_block + 1 events.extend(new_events_web3) # end of the loop, end of 1 query. Reset the block range to max block_range = initial_block_range return events def _prepare_ens_call_arguments(addr: ChecksumEthAddress) -> List[Any]: try: reversed_domain = address_to_reverse_domain(addr) except (TypeError, ValueError) as e: raise InputError(f'Address {addr} has incorrect format or type. {str(e)}') from e normalized_domain_name = normalize_name(reversed_domain) arguments = [normal_name_to_hash(normalized_domain_name)] return arguments def _encode_ens_contract(params: EnsContractParams) -> str: contract = EthereumContract(address=params.address, abi=params.abi, deployed_block=0) return contract.encode(method_name=params.method_name, arguments=params.arguments) def _decode_ens_contract(params: EnsContractParams, result_encoded: Any) -> ChecksumEthAddress: contract = EthereumContract(address=params.address, abi=params.abi, deployed_block=0) result = contract.decode( # pylint: disable=E1136 result=result_encoded, method_name=params.method_name, arguments=params.arguments, )[0] return string_to_ethereum_address(result) # TODO: Ideally all these should become configurable # Taking LINKPOOL out since it's just really too slow and seems to not # respond to the batched calls almost at all. Combined with web3.py retries # this makes the tokens balance queries super slow. OPEN_NODES = ( NodeName.MYCRYPTO, NodeName.BLOCKSCOUT, NodeName.AVADO_POOL, NodeName.ONEINCH, NodeName.MYETHERWALLET, # NodeName.LINKPOOL, NodeName.CLOUDFLARE_ETH, NodeName.ETHERSCAN, ) ETHEREUM_NODES_TO_CONNECT_AT_START = ( NodeName.OWN, NodeName.MYCRYPTO, NodeName.BLOCKSCOUT, NodeName.ONEINCH, NodeName.AVADO_POOL, NodeName.ONEINCH, NodeName.MYETHERWALLET, # NodeName.LINKPOOL, NodeName.CLOUDFLARE_ETH, ) OPEN_NODES_WEIGHT_MAP = { # Probability with which to select each node NodeName.ETHERSCAN: 0.3, NodeName.MYCRYPTO: 0.15, NodeName.BLOCKSCOUT: 0.1, NodeName.AVADO_POOL: 0.05, NodeName.ONEINCH: 0.15, NodeName.MYETHERWALLET: 0.15, # NodeName.LINKPOOL: 0.05, NodeName.CLOUDFLARE_ETH: 0.1, } class EthereumManager(): def __init__( self, ethrpc_endpoint: str, etherscan: Etherscan, msg_aggregator: MessagesAggregator, greenlet_manager: GreenletManager, connect_at_start: Sequence[NodeName], eth_rpc_timeout: int = DEFAULT_EVM_RPC_TIMEOUT, ) -> None: log.debug(f'Initializing Ethereum Manager with own rpc endpoint: {ethrpc_endpoint}') self.greenlet_manager = greenlet_manager self.web3_mapping: Dict[NodeName, Web3] = {} self.own_rpc_endpoint = ethrpc_endpoint self.etherscan = etherscan self.msg_aggregator = msg_aggregator self.eth_rpc_timeout = eth_rpc_timeout self.archive_connection = False self.queried_archive_connection = False for node in connect_at_start: self.greenlet_manager.spawn_and_track( after_seconds=None, task_name=f'Attempt connection to {str(node)} ethereum node', exception_is_error=True, method=self.attempt_connect, name=node, ethrpc_endpoint=node.endpoint(self.own_rpc_endpoint), mainnet_check=True, ) self.blocks_subgraph = Graph( 'https://api.thegraph.com/subgraphs/name/blocklytics/ethereum-blocks', ) # A cache for the erc20 contract info to not requery same one self.contract_info_cache: Dict[ChecksumEthAddress, Dict[str, Any]] = {} def connected_to_any_web3(self) -> bool: return ( NodeName.OWN in self.web3_mapping or NodeName.MYCRYPTO in self.web3_mapping or NodeName.BLOCKSCOUT in self.web3_mapping or NodeName.AVADO_POOL in self.web3_mapping ) def default_call_order(self, skip_etherscan: bool = False) -> List[NodeName]: """Default call order for ethereum nodes Own node always has preference. Then all other node types are randomly queried in sequence depending on a weighted probability. Some benchmarks on weighted probability based random selection when compared to simple random selection. Benchmark was on blockchain balance querying with 29 ethereum accounts and at the time 1010 different ethereum tokens. With weights: etherscan: 0.5, mycrypto: 0.25, blockscout: 0.2, avado: 0.05 ===> Runs: 66, 58, 60, 68, 58 seconds ---> Average: 62 seconds - Without weights ===> Runs: 66, 82, 72, 58, 72 seconds ---> Average: 70 seconds """ result = [] if NodeName.OWN in self.web3_mapping: result.append(NodeName.OWN) selection = list(OPEN_NODES) if skip_etherscan: selection.remove(NodeName.ETHERSCAN) ordered_list = [] while len(selection) != 0: weights = [] for entry in selection: weights.append(OPEN_NODES_WEIGHT_MAP[entry]) node = random.choices(selection, weights, k=1) ordered_list.append(node[0]) selection.remove(node[0]) return result + ordered_list def attempt_connect( self, name: NodeName, ethrpc_endpoint: str, mainnet_check: bool = True, ) -> Tuple[bool, str]: """Attempt to connect to a particular node type For our own node if the given rpc endpoint is not the same as the saved one the connection is re-attempted to the new one """ message = '' node_connected = self.web3_mapping.get(name, None) is not None own_node_already_connected = ( name == NodeName.OWN and self.own_rpc_endpoint == ethrpc_endpoint and node_connected ) if own_node_already_connected or (node_connected and name != NodeName.OWN): return True, 'Already connected to an ethereum node' try: parsed_eth_rpc_endpoint = urlparse(ethrpc_endpoint) if not parsed_eth_rpc_endpoint.scheme: ethrpc_endpoint = f"http://{ethrpc_endpoint}" provider = HTTPProvider( endpoint_uri=ethrpc_endpoint, request_kwargs={'timeout': self.eth_rpc_timeout}, ) ens = ENS(provider) web3 = Web3(provider, ens=ens) except requests.exceptions.RequestException: message = f'Failed to connect to ethereum node {name} at endpoint {ethrpc_endpoint}' log.warning(message) return False, message try: is_connected = web3.isConnected() except AssertionError: # Terrible, terrible hack but needed due to https://github.com/rotki/rotki/issues/1817 is_connected = False if is_connected: # Also make sure we are actually connected to the Ethereum mainnet synchronized = True msg = '' try: if mainnet_check: network_id = int(web3.net.version) if network_id != 1: message = ( f'Connected to ethereum node {name} at endpoint {ethrpc_endpoint} but ' f'it is not on the ethereum mainnet. The chain id ' f'the node is in is {network_id}.' ) log.warning(message) return False, message try: current_block = web3.eth.block_number # pylint: disable=no-member latest_block = self.query_eth_highest_block() except (requests.exceptions.RequestException, RemoteError) as e: msg = f'Could not query latest block due to {str(e)}' log.warning(msg) synchronized = False else: synchronized, msg = _is_synchronized(current_block, latest_block) except ValueError as e: message = ( f'Failed to connect to ethereum node {name} at endpoint ' f'{ethrpc_endpoint} due to {str(e)}' ) return False, message if not synchronized: self.msg_aggregator.add_warning( f'We could not verify that ethereum node {name} is ' 'synchronized with the ethereum mainnet. Balances and other queries ' 'may be incorrect.', ) log.info(f'Connected ethereum node {name} at {ethrpc_endpoint}') self.web3_mapping[name] = web3 return True, '' # else message = f'Failed to connect to ethereum node {name} at endpoint {ethrpc_endpoint}' log.warning(message) return False, message def set_rpc_endpoint(self, endpoint: str) -> Tuple[bool, str]: """ Attempts to set the RPC endpoint for the user's own ethereum node Returns a tuple (result, message) - result: Boolean for success or failure of changing the rpc endpoint - message: A message containing information on what happened. Can be populated both in case of success or failure""" if endpoint == '': self.web3_mapping.pop(NodeName.OWN, None) self.own_rpc_endpoint = '' return True, '' # else result, message = self.attempt_connect(name=NodeName.OWN, ethrpc_endpoint=endpoint) if result: log.info('Setting own node ETH RPC endpoint', endpoint=endpoint) self.own_rpc_endpoint = endpoint return result, message def query(self, method: Callable, call_order: Sequence[NodeName], **kwargs: Any) -> Any: """Queries ethereum related data by performing the provided method to all given nodes The first node in the call order that gets a succcesful response returns. If none get a result then a remote error is raised """ for node in call_order: web3 = self.web3_mapping.get(node, None) if web3 is None and node != NodeName.ETHERSCAN: continue try: result = method(web3, **kwargs) except ( RemoteError, requests.exceptions.RequestException, BlockchainQueryError, TransactionNotFound, BlockNotFound, BadResponseFormat, ValueError, # Yabir saw this happen with mew node for unavailable method at node. Since it's generic we should replace if web3 implements https://github.com/ethereum/web3.py/issues/2448 # noqa: E501 ) as e: log.warning(f'Failed to query {node} for {str(method)} due to {str(e)}') # Catch all possible errors here and just try next node call continue return result # no node in the call order list was succesfully queried raise RemoteError( f'Failed to query {str(method)} after trying the following ' f'nodes: {[str(x) for x in call_order]}. Check logs for details.', ) def _get_latest_block_number(self, web3: Optional[Web3]) -> int: if web3 is not None: return web3.eth.block_number # else return self.etherscan.get_latest_block_number() def get_latest_block_number(self, call_order: Optional[Sequence[NodeName]] = None) -> int: return self.query( method=self._get_latest_block_number, call_order=call_order if call_order is not None else self.default_call_order(), ) def get_historical_eth_balance( self, address: ChecksumEthAddress, block_number: int, ) -> Optional[FVal]: """Attempts to get a historical eth balance from the local own node only. If there is no node or the node can't query historical balance (not archive) then returns None""" web3 = self.web3_mapping.get(NodeName.OWN) if web3 is None: return None try: result = web3.eth.get_balance(address, block_identifier=block_number) except ( requests.exceptions.RequestException, BlockchainQueryError, KeyError, # saw this happen inside web3.py if resulting json contains unexpected key. Happened with mycrypto's node # noqa: E501 ): return None try: balance = from_wei(FVal(result)) except ValueError: return None return balance def have_archive(self, requery: bool = False) -> bool: """Checks to see if our own connected node is an archive node If requery is True it always queries the node. Otherwise it remembers last query. """ if self.queried_archive_connection and requery is False: return self.archive_connection balance = self.get_historical_eth_balance( address=string_to_ethereum_address('0x50532e4Be195D1dE0c2E6DfA46D9ec0a4Fee6861'), block_number=87042, ) self.archive_connection = balance is not None and balance == FVal('5.1063307') self.queried_archive_connection = True return self.archive_connection def query_eth_highest_block(self) -> BlockNumber: """ Attempts to query an external service for the block height Returns the highest blockNumber May Raise RemoteError if querying fails """ url = 'https://api.blockcypher.com/v1/eth/main' log.debug('Querying blockcypher for ETH highest block', url=url) eth_resp: Optional[Dict[str, str]] try: eth_resp = request_get_dict(url) except (RemoteError, UnableToDecryptRemoteData, requests.exceptions.RequestException): eth_resp = None block_number: Optional[int] if eth_resp and 'height' in eth_resp: block_number = int(eth_resp['height']) log.debug('ETH highest block result', block=block_number) else: block_number = self.etherscan.get_latest_block_number() log.debug('ETH highest block result', block=block_number) return BlockNumber(block_number) def get_eth_balance(self, account: ChecksumEthAddress) -> FVal: """Gets the balance of the given account in ETH May raise: - RemoteError if Etherscan is used and there is a problem querying it or parsing its response """ result = self.get_multieth_balance([account]) return result[account] def get_multieth_balance( self, accounts: List[ChecksumEthAddress], call_order: Optional[Sequence[NodeName]] = None, ) -> Dict[ChecksumEthAddress, FVal]: """Returns a dict with keys being accounts and balances in ETH May raise: - RemoteError if an external service such as Etherscan is queried and there is a problem with its query. """ balances: Dict[ChecksumEthAddress, FVal] = {} log.debug( 'Querying ethereum chain for ETH balance', eth_addresses=accounts, ) result = ETH_SCAN.call( ethereum=self, method_name='etherBalances', arguments=[accounts], call_order=call_order if call_order is not None else self.default_call_order(), ) balances = {} for idx, account in enumerate(accounts): balances[account] = from_wei(result[idx]) return balances def get_block_by_number( self, num: int, call_order: Optional[Sequence[NodeName]] = None, ) -> Dict[str, Any]: return self.query( method=self._get_block_by_number, call_order=call_order if call_order is not None else self.default_call_order(), num=num, ) def _get_block_by_number(self, web3: Optional[Web3], num: int) -> Dict[str, Any]: """Returns the block object corresponding to the given block number May raise: - RemoteError if an external service such as Etherscan is queried and there is a problem with its query. - BlockNotFound if number used to lookup the block can't be found. Raised by web3.eth.get_block(). """ if web3 is None: return self.etherscan.get_block_by_number(num) block_data: MutableAttributeDict = MutableAttributeDict(web3.eth.get_block(num)) # type: ignore # pylint: disable=no-member # noqa: E501 block_data['hash'] = hex_or_bytes_to_str(block_data['hash']) return dict(block_data) def get_code( self, account: ChecksumEthAddress, call_order: Optional[Sequence[NodeName]] = None, ) -> str: return self.query( method=self._get_code, call_order=call_order if call_order is not None else self.default_call_order(), account=account, ) def _get_code(self, web3: Optional[Web3], account: ChecksumEthAddress) -> str: """Gets the deployment bytecode at the given address May raise: - RemoteError if Etherscan is used and there is a problem querying it or parsing its response """ if web3 is None: return self.etherscan.get_code(account) return hex_or_bytes_to_str(web3.eth.getCode(account)) def ens_reverse_lookup(self, reversed_addresses: List[ChecksumEthAddress]) -> Dict[ChecksumEthAddress, Optional[str]]: # noqa: E501 """Performs a reverse ENS lookup on a list of addresses Because a multicall is used, no exceptions are raised. If any exceptions occur, they are logged and None is returned for that """ human_names: Dict[ChecksumEthAddress, Optional[str]] = {} # Querying resolvers' addresses resolver_params = [ EnsContractParams(address=addr, abi=ENS_ABI, method_name='resolver', arguments=_prepare_ens_call_arguments(addr)) # noqa: E501 for addr in reversed_addresses ] resolvers_output = multicall( ethereum=self, calls=[(ENS_MAINNET_ADDR, _encode_ens_contract(params=params)) for params in resolver_params], # noqa: E501 ) resolvers = [] # We need a new list for reversed_addresses because not all addresses have resolver filtered_reversed_addresses = [] # Processing resolvers query output for reversed_addr, params, resolver_output in zip(reversed_addresses, resolver_params, resolvers_output): # noqa: E501 decoded_resolver = _decode_ens_contract(params=params, result_encoded=resolver_output) if is_none_or_zero_address(decoded_resolver): human_names[reversed_addr] = None continue try: deserialized_resolver = deserialize_ethereum_address(decoded_resolver) except DeserializationError: log.error( f'Error deserializing address {decoded_resolver} while doing reverse ens lookup', # noqa: E501 ) human_names[reversed_addr] = None continue resolvers.append(deserialized_resolver) filtered_reversed_addresses.append(reversed_addr) # Querying human names human_names_params = [ EnsContractParams(address=resolver, abi=ENS_RESOLVER_ABI, method_name='name', arguments=_prepare_ens_call_arguments(addr)) # noqa: E501 for addr, resolver in zip(filtered_reversed_addresses, resolvers)] human_names_output = multicall( ethereum=self, calls=[(params.address, _encode_ens_contract(params=params)) for params in human_names_params], # noqa: E501 ) # Processing human names query output for addr, params, human_name_output in zip(filtered_reversed_addresses, human_names_params, human_names_output): # noqa: E501 human_names[addr] = _decode_ens_contract(params=params, result_encoded=human_name_output) # noqa: E501 return human_names @overload def ens_lookup( self, name: str, blockchain: Literal[SupportedBlockchain.ETHEREUM] = SupportedBlockchain.ETHEREUM, call_order: Optional[Sequence[NodeName]] = None, ) -> Optional[ChecksumEthAddress]: ... @overload def ens_lookup( self, name: str, blockchain: Literal[ SupportedBlockchain.BITCOIN, SupportedBlockchain.KUSAMA, SupportedBlockchain.POLKADOT, ], call_order: Optional[Sequence[NodeName]] = None, ) -> Optional[HexStr]: ... def ens_lookup( self, name: str, blockchain: SupportedBlockchain = SupportedBlockchain.ETHEREUM, call_order: Optional[Sequence[NodeName]] = None, ) -> Optional[Union[ChecksumEthAddress, HexStr]]: return self.query( method=self._ens_lookup, call_order=call_order if call_order is not None else self.default_call_order(), name=name, blockchain=blockchain, ) @overload def _ens_lookup( self, web3: Optional[Web3], name: str, blockchain: Literal[SupportedBlockchain.ETHEREUM], ) -> Optional[ChecksumEthAddress]: ... @overload def _ens_lookup( self, web3: Optional[Web3], name: str, blockchain: Literal[ SupportedBlockchain.BITCOIN, SupportedBlockchain.KUSAMA, SupportedBlockchain.POLKADOT, ], ) -> Optional[HexStr]: ... def _ens_lookup( self, web3: Optional[Web3], name: str, blockchain: SupportedBlockchain = SupportedBlockchain.ETHEREUM, ) -> Optional[Union[ChecksumEthAddress, HexStr]]: """Performs an ENS lookup and returns address if found else None TODO: currently web3.py 5.15.0 does not support multichain ENS domains (EIP-2304), therefore requesting a non-Ethereum address won't use the web3 ens library and will require to extend the library resolver ABI. An issue in their repo (#1839) reporting the lack of support has been created. This function will require refactoring once they include support for EIP-2304. https://github.com/ethereum/web3.py/issues/1839 May raise: - RemoteError if Etherscan is used and there is a problem querying it or parsing its response - InputError if the given name is not a valid ENS name """ try: normal_name = normalize_name(name) except InvalidName as e: raise InputError(str(e)) from e resolver_addr = self._call_contract( web3=web3, contract_address=ENS_MAINNET_ADDR, abi=ENS_ABI, method_name='resolver', arguments=[normal_name_to_hash(normal_name)], ) if is_none_or_zero_address(resolver_addr): return None ens_resolver_abi = ENS_RESOLVER_ABI.copy() arguments = [normal_name_to_hash(normal_name)] if blockchain != SupportedBlockchain.ETHEREUM: ens_resolver_abi.extend(ENS_RESOLVER_ABI_MULTICHAIN_ADDRESS) arguments.append(blockchain.ens_coin_type()) try: deserialized_resolver_addr = deserialize_ethereum_address(resolver_addr) except DeserializationError: log.error( f'Error deserializing address {resolver_addr} while doing' f'ens lookup', ) return None address = self._call_contract( web3=web3, contract_address=deserialized_resolver_addr, abi=ens_resolver_abi, method_name='addr', arguments=arguments, ) if is_none_or_zero_address(address): return None if blockchain != SupportedBlockchain.ETHEREUM: return HexStr(address.hex()) try: return deserialize_ethereum_address(address) except DeserializationError: log.error(f'Error deserializing address {address}') return None def _call_contract_etherscan( self, contract_address: ChecksumEthAddress, abi: List, method_name: str, arguments: Optional[List[Any]] = None, ) -> Any: """Performs an eth_call to an ethereum contract via etherscan May raise: - RemoteError if there is a problem with reaching etherscan or with the returned result """ web3 = Web3() contract = web3.eth.contract(address=contract_address, abi=abi) input_data = contract.encodeABI(method_name, args=arguments if arguments else []) result = self.etherscan.eth_call( to_address=contract_address, input_data=input_data, ) if result == '0x': raise BlockchainQueryError( f'Error doing call on contract {contract_address} for {method_name} ' f'with arguments: {str(arguments)} via etherscan. Returned 0x result', ) fn_abi = contract._find_matching_fn_abi( fn_identifier=method_name, args=arguments, ) output_types = get_abi_output_types(fn_abi) output_data = web3.codec.decode_abi(output_types, bytes.fromhex(result[2:])) if len(output_data) == 1: # due to https://github.com/PyCQA/pylint/issues/4114 return output_data[0] # pylint: disable=unsubscriptable-object return output_data def _get_transaction_receipt( self, web3: Optional[Web3], tx_hash: EVMTxHash, ) -> Dict[str, Any]: if web3 is None: tx_receipt = self.etherscan.get_transaction_receipt(tx_hash) try: # Turn hex numbers to int block_number = int(tx_receipt['blockNumber'], 16) tx_receipt['blockNumber'] = block_number tx_receipt['cumulativeGasUsed'] = int(tx_receipt['cumulativeGasUsed'], 16) tx_receipt['gasUsed'] = int(tx_receipt['gasUsed'], 16) tx_receipt['status'] = int(tx_receipt.get('status', '0x1'), 16) tx_index = int(tx_receipt['transactionIndex'], 16) tx_receipt['transactionIndex'] = tx_index for receipt_log in tx_receipt['logs']: receipt_log['blockNumber'] = block_number receipt_log['logIndex'] = deserialize_int_from_hex( symbol=receipt_log['logIndex'], location='etherscan tx receipt', ) receipt_log['transactionIndex'] = tx_index except (DeserializationError, ValueError, KeyError) as e: msg = str(e) if isinstance(e, KeyError): msg = f'missing key {msg}' log.error( f'Couldnt deserialize transaction receipt {tx_receipt} data from ' f'etherscan due to {msg}', ) raise RemoteError( f'Couldnt deserialize transaction receipt data from etherscan ' f'due to {msg}. Check logs for details', ) from e return tx_receipt # Can raise TransactionNotFound if the user's node is pruned and transaction is old tx_receipt = web3.eth.get_transaction_receipt(tx_hash) # type: ignore return process_result(tx_receipt) def get_transaction_receipt( self, tx_hash: EVMTxHash, call_order: Optional[Sequence[NodeName]] = None, ) -> Dict[str, Any]: return self.query( method=self._get_transaction_receipt, call_order=call_order if call_order is not None else self.default_call_order(), tx_hash=tx_hash, ) def _get_transaction_by_hash( self, web3: Optional[Web3], tx_hash: EVMTxHash, ) -> EthereumTransaction: if web3 is None: tx_data = self.etherscan.get_transaction_by_hash(tx_hash=tx_hash) else: tx_data = web3.eth.get_transaction(tx_hash) # type: ignore try: transaction = deserialize_ethereum_transaction(data=tx_data, internal=False, ethereum=self) # noqa: E501 except (DeserializationError, ValueError) as e: raise RemoteError( f'Couldnt deserialize ethereum transaction data from {tx_data}. Error: {str(e)}', ) from e return transaction def get_transaction_by_hash( self, tx_hash: EVMTxHash, call_order: Optional[Sequence[NodeName]] = None, ) -> EthereumTransaction: return self.query( method=self._get_transaction_by_hash, call_order=call_order if call_order is not None else self.default_call_order(), tx_hash=tx_hash, ) def call_contract( self, contract_address: ChecksumEthAddress, abi: List, method_name: str, arguments: Optional[List[Any]] = None, call_order: Optional[Sequence[NodeName]] = None, block_identifier: BlockIdentifier = 'latest', ) -> Any: return self.query( method=self._call_contract, call_order=call_order if call_order is not None else self.default_call_order(), contract_address=contract_address, abi=abi, method_name=method_name, arguments=arguments, block_identifier=block_identifier, ) def _call_contract( self, web3: Optional[Web3], contract_address: ChecksumEthAddress, abi: List, method_name: str, arguments: Optional[List[Any]] = None, block_identifier: BlockIdentifier = 'latest', ) -> Any: """Performs an eth_call to an ethereum contract May raise: - RemoteError if etherscan is used and there is a problem with reaching it or with the returned result - BlockchainQueryError if web3 is used and there is a VM execution error """ if web3 is None: return self._call_contract_etherscan( contract_address=contract_address, abi=abi, method_name=method_name, arguments=arguments, ) contract = web3.eth.contract(address=contract_address, abi=abi) try: method = getattr(contract.caller(block_identifier=block_identifier), method_name) result = method(*arguments if arguments else []) except (ValueError, BadFunctionCallOutput) as e: raise BlockchainQueryError( f'Error doing call on contract {contract_address}: {str(e)}', ) from e return result def get_logs( self, contract_address: ChecksumEthAddress, abi: List, event_name: str, argument_filters: Dict[str, Any], from_block: int, to_block: Union[int, Literal['latest']] = 'latest', call_order: Optional[Sequence[NodeName]] = None, ) -> List[Dict[str, Any]]: if call_order is None: # Default call order for logs call_order = (NodeName.OWN, NodeName.ETHERSCAN) return self.query( method=self._get_logs, call_order=call_order, contract_address=contract_address, abi=abi, event_name=event_name, argument_filters=argument_filters, from_block=from_block, to_block=to_block, ) def _get_logs( self, web3: Optional[Web3], contract_address: ChecksumEthAddress, abi: List, event_name: str, argument_filters: Dict[str, Any], from_block: int, to_block: Union[int, Literal['latest']] = 'latest', ) -> List[Dict[str, Any]]: """Queries logs of an ethereum contract May raise: - RemoteError if etherscan is used and there is a problem with reaching it or with the returned result """ event_abi = find_matching_event_abi(abi=abi, event_name=event_name) _, filter_args = construct_event_filter_params( event_abi=event_abi, abi_codec=Web3().codec, contract_address=contract_address, argument_filters=argument_filters, fromBlock=from_block, toBlock=to_block, ) if event_abi['anonymous']: # web3.py does not handle the anonymous events correctly and adds the first topic filter_args['topics'] = filter_args['topics'][1:] events: List[Dict[str, Any]] = [] start_block = from_block if web3 is not None: events = _query_web3_get_logs( web3=web3, filter_args=filter_args, from_block=from_block, to_block=to_block, contract_address=contract_address, event_name=event_name, argument_filters=argument_filters, ) else: # etherscan until_block = ( self.etherscan.get_latest_block_number() if to_block == 'latest' else to_block ) blocks_step = 300000 while start_block <= until_block: while True: # loop to continuously reduce block range if need b end_block = min(start_block + blocks_step, until_block) try: new_events = self.etherscan.get_logs( contract_address=contract_address, topics=filter_args['topics'], # type: ignore from_block=start_block, to_block=end_block, ) except RemoteError as e: if 'Please select a smaller result dataset' in str(e): blocks_step = blocks_step // 2 if blocks_step < 100: raise # stop trying # else try with the smaller step continue # else some other error raise break # we must have a result # Turn all Hex ints to ints for e_idx, event in enumerate(new_events): try: block_number = deserialize_int_from_hex( symbol=event['blockNumber'], location='etherscan log query', ) log_index = deserialize_int_from_hex( symbol=event['logIndex'], location='etherscan log query', ) # Try to see if the event is a duplicate that got returned # in the previous iteration for previous_event in reversed(events): if previous_event['blockNumber'] < block_number: break same_event = ( previous_event['logIndex'] == log_index and previous_event['transactionHash'] == event['transactionHash'] ) if same_event: events.pop() new_events[e_idx]['address'] = deserialize_ethereum_address( event['address'], ) new_events[e_idx]['blockNumber'] = block_number new_events[e_idx]['timeStamp'] = deserialize_int_from_hex( symbol=event['timeStamp'], location='etherscan log query', ) new_events[e_idx]['gasPrice'] = deserialize_int_from_hex( symbol=event['gasPrice'], location='etherscan log query', ) new_events[e_idx]['gasUsed'] = deserialize_int_from_hex( symbol=event['gasUsed'], location='etherscan log query', ) new_events[e_idx]['logIndex'] = log_index new_events[e_idx]['transactionIndex'] = deserialize_int_from_hex( symbol=event['transactionIndex'], location='etherscan log query', ) except DeserializationError as e: raise RemoteError( 'Couldnt decode an etherscan event due to {str(e)}}', ) from e # etherscan will only return 1000 events in one go. If more than 1000 # are returned such as when no filter args are provided then continue # the query from the last block if len(new_events) == 1000: start_block = new_events[-1]['blockNumber'] else: start_block = end_block + 1 events.extend(new_events) return events def get_event_timestamp(self, event: Dict[str, Any]) -> Timestamp: """Reads an event returned either by etherscan or web3 and gets its timestamp Etherscan events contain a timestamp. Normal web3 events don't so it needs to be queried from the block number WE could also add this to the get_logs() call but would add unnecessary rpc calls for get_block_by_number() for each log entry. Better have it lazy queried like this. TODO: Perhaps better approach would be a log event class for this """ if 'timeStamp' in event: # event from etherscan return Timestamp(event['timeStamp']) # event from web3 block_number = event['blockNumber'] block_data = self.get_block_by_number(block_number) return Timestamp(block_data['timestamp']) def _get_blocknumber_by_time_from_subgraph(self, ts: Timestamp) -> int: """Queries Ethereum Blocks Subgraph for closest block at or before given timestamp""" response = self.blocks_subgraph.query( f""" {{ blocks( first: 1, orderBy: timestamp, orderDirection: desc, where: {{timestamp_lte: "{ts}"}} ) {{ id number timestamp }} }} """, ) try: result = int(response['blocks'][0]['number']) except (IndexError, KeyError) as e: raise RemoteError( f'Got unexpected ethereum blocks subgraph response: {response}', ) from e else: return result def get_blocknumber_by_time(self, ts: Timestamp, etherscan: bool = True) -> int: """Searches for the blocknumber of a specific timestamp - Performs the etherscan api call by default first - If RemoteError raised or etherscan flag set to false -> queries blocks subgraph """ if etherscan: try: return self.etherscan.get_blocknumber_by_time(ts) except RemoteError: pass return self._get_blocknumber_by_time_from_subgraph(ts) def get_basic_contract_info(self, address: ChecksumEthAddress) -> Dict[str, Any]: """ Query a contract address and return basic information as: - Decimals - name - symbol if it is provided in the contract. This method may raise: - BadFunctionCallOutput: If there is an error calling a bad address """ cache = self.contract_info_cache.get(address) if cache is not None: return cache properties = ('decimals', 'symbol', 'name') info: Dict[str, Any] = {} contract = EthereumContract(address=address, abi=ERC20TOKEN_ABI, deployed_block=0) try: # Output contains call status and result output = multicall_2( ethereum=self, require_success=False, calls=[(address, contract.encode(method_name=prop)) for prop in properties], ) except RemoteError: # If something happens in the connection the output should have # the same length as the tuple of properties output = [(False, b'')] * len(properties) try: decoded = [ contract.decode(x[1], method_name)[0] # pylint: disable=E1136 if x[0] and len(x[1]) else None for (x, method_name) in zip(output, properties) ] except OverflowError as e: # This can happen when contract follows the ERC20 standard methods # but name and symbol return bytes instead of string. UNIV1 LP is in this case log.error( f'{address} failed to decode as ERC20 token. Trying UNIV1 LP token. {str(e)}', ) contract = EthereumContract(address=address, abi=UNIV1_LP_ABI, deployed_block=0) decoded = [ contract.decode(x[1], method_name)[0] # pylint: disable=E1136 if x[0] and len(x[1]) else None for (x, method_name) in zip(output, properties) ] log.debug(f'{address} was succesfuly decoded as ERC20 token') for prop, value in zip(properties, decoded): if isinstance(value, bytes): value = value.rstrip(b'\x00').decode() info[prop] = value self.contract_info_cache[address] = info return info
85532
import torch import torch.nn as nn from ....ops.pointnet2.pointnet2_batch import pointnet2_modules from ....ops.pointnet2.pointnet2_batch import pointnet2_modules as pointnet2_batch_modules from ....utils import common_utils class VoteModule(nn.Module): def __init__(self, model_cfg, voxel_size=None, point_cloud_range=None, num_bev_features=None, num_rawpoint_features=None, **kwargs): super().__init__() self.model_cfg = model_cfg self.num_points = model_cfg.NUM_POINTS self.in_channels = model_cfg.NUM_INPUT_FEATURES self.vote_xyz_range = model_cfg.VOTE_RANGE self.with_res_feat = model_cfg.WITH_RES_FEATURE self.aggre_mlps = model_cfg.AGGREGATION_MLPS self.aggre_radius = model_cfg.AGGREGATION_RADIUS self.aggre_samples = model_cfg.AGGREGATION_NSAMPLES # self.skip_channels = model_cfg.SKIP_CHANNELS # vote mlps mlp = model_cfg.MLPS mlp = [self.in_channels] + mlp vote_conv_list = list() for k in range(len(mlp) - 1): vote_conv_list.extend([ nn.Conv1d(mlp[k], mlp[k + 1], kernel_size=1, bias=True), nn.BatchNorm1d(mlp[k + 1]), nn.ReLU() ]) if self.with_res_feat: out_channel = 3 + self.in_channels else: out_channel = 3 vote_conv_list.extend([ nn.Conv1d(mlp[-1], out_channels=out_channel, kernel_size=1), ]) self.vote_mlp = nn.Sequential(*vote_conv_list) # aggregation self.vote_aggregation = pointnet2_batch_modules.PointnetSAModuleMSG_FPS(npoint=self.num_points, radii=self.aggre_radius, nsamples=self.aggre_samples, mlps=self.aggre_mlps, use_xyz=True) sa_channel_out = 0 for aggre_mlp in self.aggre_mlps: sa_channel_out += aggre_mlp[-1] self.conv_out = nn.Sequential( nn.Conv1d(sa_channel_out, self.model_cfg.AGGREGATION_OUT, kernel_size=1, bias=False), nn.BatchNorm1d(self.model_cfg.AGGREGATION_OUT), nn.ReLU()) # TODO: optional FP module for PointRCNN compatibility ''' self.FP_modules = nn.ModuleList() channel_out = self.model_cfg.AGGREGATION_OUT for k in range(self.model_cfg.FP_MLPS.__len__()): pre_channel = self.model_cfg.FP_MLPS[k + 1][-1] if k + 1 < len(self.model_cfg.FP_MLPS) else channel_out self.FP_modules.append( pointnet2_modules.PointnetFPModule( mlp=[pre_channel + self.skip_channel_list[k]] + self.model_cfg.FP_MLPS[k] ) ) ''' def extract_input(self, batch_dict): batch_size = batch_dict['batch_size'] xyz = batch_dict['point_coords'].view(batch_size, -1, 4)[..., 1:].contiguous() features = batch_dict['point_features'].view(batch_size, -1, batch_dict['point_features'].shape[-1]).contiguous() return xyz, features def forward(self, batch_dict): """ Args: batch_dict: batch_size: keypoints: (B, num_keypoints, 3) multi_scale_3d_features: { 'x_conv4': ... } points: optional (N, 1 + 3 + C) [bs_idx, x, y, z, ...] spatial_features: optional spatial_features_stride: optional Returns: point_features: (N, C) point_coords: (N, 4) """ batch_size = batch_dict['batch_size'] xyz, features = self.extract_input(batch_dict) features = features.permute(0, 2, 1).contiguous() if isinstance(self.num_points, list): self.num_points = self.num_points[0] seed_points = xyz[:, :self.num_points, :].contiguous() # (B, N, 3) seed_features = features[:, :, :self.num_points].contiguous() # (B, C, N) # generate vote points votes = self.vote_mlp(seed_features) # (B, 3+C, N) votes = votes.transpose(2, 1) seed_offset = votes[:, :, :3] limited_offset_list = [] for axis in range(len(self.vote_xyz_range)): limited_offset_list.append( seed_offset[..., axis].clamp(min=-self.vote_xyz_range[axis], max=self.vote_xyz_range[axis]) ) limited_offset = torch.stack(limited_offset_list, dim=-1) # (B, N, 3) vote_points = (seed_points + limited_offset).contiguous() # generate shifted features if self.with_res_feat: res_features = votes[:, :, 3:] vote_features = res_features + seed_features.transpose(2, 1).contiguous() else: vote_features = seed_features.transpose(2, 1).contiguous() # aggregation aggregated_points, aggregated_features = self.vote_aggregation(xyz=xyz, features=features, new_xyz=vote_points) aggregated_features = self.conv_out(aggregated_features) # FP forward # pack output ctr_batch_idx = torch.arange(batch_size, device=seed_offset.device).view(-1, 1).repeat(1, seed_offset.shape[1]).view(-1) batch_dict['ctr_offsets'] = torch.cat((ctr_batch_idx[:, None].float(), seed_offset.contiguous().view(-1, 3)), dim=1) batch_dict['centers'] = torch.cat((ctr_batch_idx[:, None].float(), aggregated_points.contiguous().view(-1, 3)), dim=1) batch_dict['centers_origin'] = torch.cat((ctr_batch_idx[:, None].float(), seed_points.contiguous().view(-1, 3)), dim=1) center_features = aggregated_features.permute(0, 2, 1).contiguous().view(-1, aggregated_features.shape[1]) batch_dict['centers_features'] = center_features batch_dict['ctr_batch_idx'] = ctr_batch_idx return batch_dict
85541
from keras.datasets import boston_housing from keras.models import Sequential from keras.layers import Activation, Dense from keras import optimizers (X_train, y_train), (X_test, y_test) = boston_housing.load_data() model = Sequential() # Keras model with two hidden layer with 10 neurons each model.add(Dense(10, input_shape = (13,))) # Input layer => input_shape should be explicitly designated model.add(Activation('sigmoid')) model.add(Dense(10)) # Hidden layer => only output dimension should be designated model.add(Activation('sigmoid')) model.add(Dense(10)) # Hidden layer => only output dimension should be designated model.add(Activation('sigmoid')) model.add(Dense(1)) # Output layer => output dimension = 1 since it is regression problem ''' This is equivalent to the above code block >> model.add(Dense(10, input_shape = (13,), activation = 'sigmoid')) >> model.add(Dense(10, activation = 'sigmoid')) >> model.add(Dense(10, activation = 'sigmoid')) >> model.add(Dense(1)) ''' sgd = optimizers.SGD(lr = 0.01) # stochastic gradient descent optimizer model.compile(optimizer = sgd, loss = 'mean_squared_error', metrics = ['mse']) # for regression problems, mean squared error (MSE) is often employed model.fit(X_train, y_train, batch_size = 50, epochs = 100, verbose = 1) results = model.evaluate(X_test, y_test) print('loss: ', results[0]) print('mse: ', results[1])
85549
from psutil import virtual_memory def mock_cluster(n_workers=1, threads_per_worker=1, diagnostics_port=8787, memory_limit=None, **dask_kwarg): return (n_workers, threads_per_worker, diagnostics_port, memory_limit) class MockClient(): def __init__(self, cluster): self.cluster = cluster def scheduler_info(self): return {'workers': {'worker 1': {'memory_limit': virtual_memory().total}}} def get_mock_client_cluster(): return MockClient, mock_cluster
85565
from django.conf.urls import * from . import views from django.urls import include, path urlpatterns = [ path('', views.index, name='variant_index'), path('view/<int:variant_id>/', views.view, name='variant_view'), ]
85568
import sys import os from collections import OrderedDict from ttfautohint._compat import ( ensure_binary, ensure_text, basestring, open, IntEnum, ) USER_OPTIONS = dict( in_file=None, in_buffer=None, out_file=None, control_file=None, control_buffer=None, reference_file=None, reference_buffer=None, reference_index=0, reference_name=None, hinting_range_min=8, hinting_range_max=50, hinting_limit=200, hint_composites=False, adjust_subglyphs=False, increase_x_height=14, x_height_snapping_exceptions="", windows_compatibility=False, default_script="latn", fallback_script="none", fallback_scaling=False, symbol=False, fallback_stem_width=0, ignore_restrictions=False, family_suffix=None, detailed_info=False, no_info=False, TTFA_info=False, dehint=False, epoch=None, debug=False, verbose=False, ) StemWidthMode = IntEnum("StemWidthMode", [ "NATURAL", # -1 "QUANTIZED", # 0 "STRONG", # 1 ], start=-1) STEM_WIDTH_MODE_OPTIONS = OrderedDict([ ("gray_stem_width_mode", StemWidthMode.QUANTIZED), ("gdi_cleartype_stem_width_mode", StemWidthMode.STRONG), ("dw_cleartype_stem_width_mode", StemWidthMode.QUANTIZED), ]) USER_OPTIONS.update(STEM_WIDTH_MODE_OPTIONS) # Deprecated; use stem width mode options STRONG_STEM_WIDTH_OPTIONS = dict( gdi_cleartype_strong_stem_width=True, gray_strong_stem_width=False, dw_cleartype_strong_stem_width=False, ) PRIVATE_OPTIONS = frozenset([ "in_buffer_len", "control_buffer_len", "reference_buffer_len", "out_buffer", "out_buffer_len", "error_string", "alloc_func", "free_func", "info_callback", "info_post_callback", "info_callback_data", "progress_callback", "progress_callback_data", "error_callback", "error_callback_data", ]) ALL_OPTIONS = frozenset(USER_OPTIONS) | PRIVATE_OPTIONS # used when the control file does not have a name on the filesystem CONTROL_NAME_FALLBACK = u"<control-instructions>" def validate_options(kwargs): opts = {k: kwargs.pop(k, USER_OPTIONS[k]) for k in USER_OPTIONS} if kwargs: raise TypeError( "unknown keyword argument%s: %s" % ( "s" if len(kwargs) > 1 else "", ", ".join(repr(k) for k in kwargs))) if opts["no_info"] and opts["detailed_info"]: raise ValueError("no_info and detailed_info are mutually exclusive") in_file, in_buffer = opts.pop("in_file"), opts.pop("in_buffer") if in_file is None and in_buffer is None: raise ValueError("No input file or buffer provided") elif in_file is not None and in_buffer is not None: raise ValueError("in_file and in_buffer are mutually exclusive") if in_file is not None: try: in_buffer = in_file.read() except AttributeError: with open(in_file, "rb") as f: in_buffer = f.read() if not isinstance(in_buffer, bytes): raise TypeError("in_buffer type must be bytes, not %s" % type(in_buffer).__name__) opts['in_buffer'] = in_buffer opts['in_buffer_len'] = len(in_buffer) control_file = opts.pop('control_file') control_buffer = opts.pop('control_buffer') if control_file is not None: if control_buffer is not None: raise ValueError( "control_file and control_buffer are mutually exclusive") try: control_buffer = control_file.read() except AttributeError: with open(control_file, "rt", encoding="utf-8") as f: control_buffer = f.read() opts["control_name"] = control_file else: try: opts["control_name"] = control_file.name except AttributeError: pass if control_buffer is not None: opts['control_buffer'] = ensure_binary(control_buffer, "utf-8") opts['control_buffer_len'] = len(control_buffer) if "control_name" in opts: opts["control_name"] = ensure_text( opts["control_name"], encoding=sys.getfilesystemencoding()) else: opts["control_name"] = CONTROL_NAME_FALLBACK reference_file = opts.pop('reference_file') reference_buffer = opts.pop('reference_buffer') if reference_file is not None: if reference_buffer is not None: raise ValueError( "reference_file and reference_buffer are mutually exclusive") try: reference_buffer = reference_file.read() except AttributeError: with open(reference_file, "rb") as f: reference_buffer = f.read() if opts["reference_name"] is None: opts["reference_name"] = reference_file else: if opts["reference_name"] is None: try: opts["reference_name"] = reference_file.name except AttributeError: pass if reference_buffer is not None: if not isinstance(reference_buffer, bytes): raise TypeError("reference_buffer type must be bytes, not %s" % type(reference_buffer).__name__) opts['reference_buffer'] = reference_buffer opts['reference_buffer_len'] = len(reference_buffer) if opts["reference_name"] is not None: opts["reference_name"] = ensure_binary( opts["reference_name"], encoding=sys.getfilesystemencoding()) for key in ('default_script', 'fallback_script', 'x_height_snapping_exceptions'): opts[key] = ensure_binary(opts[key]) if opts['epoch'] is not None: from ctypes import c_ulonglong opts['epoch'] = c_ulonglong(opts['epoch']) if opts["family_suffix"] is not None: opts["family_suffix"] = ensure_text(opts["family_suffix"]) for mode_option in STEM_WIDTH_MODE_OPTIONS: # raises ValueError if integer value is not a valid stem width mode opts[mode_option] = StemWidthMode(opts[mode_option]) return opts def format_varargs(**options): items = sorted((k, v) for k, v in options.items() if k in ALL_OPTIONS and v is not None) format_string = b", ".join(ensure_binary(k.replace("_", "-")) for k, v in items) values = tuple(v for k, v in items) return format_string, values def strong_stem_width(s): if len(s) > 3: import argparse raise argparse.ArgumentTypeError( "string can only contain up to 3 letters") valid = { "g": "gray_stem_width_mode", "G": "gdi_cleartype_stem_width_mode", "D": "dw_cleartype_stem_width_mode"} chars = set(s) invalid = chars - set(valid) if invalid: import argparse raise argparse.ArgumentTypeError( "invalid value: %s" % ", ".join( repr(v) for v in sorted(invalid))) result = {} for char, opt_name in valid.items(): is_strong = char in chars result[opt_name] = (StemWidthMode.STRONG if is_strong else StemWidthMode.QUANTIZED) return result def stem_width_mode(s): if len(s) != 3: import argparse raise argparse.ArgumentTypeError( "Stem width mode string must consist of exactly three letters") modes = {k[0].lower(): v for k, v in StemWidthMode.__members__.items()} result = {} for i, option in enumerate(STEM_WIDTH_MODE_OPTIONS): m = s[i] if m not in modes: import argparse letters = sorted(repr(k) for k in modes) raise argparse.ArgumentTypeError( "Stem width mode letter for %s must be %s, or %s" % (option, ", ".join(letters[:-1]), letters[-1])) result[option] = modes[m] return result def stdin_or_input_path_type(s): # the special argument "-" means sys.stdin if s == "-": try: if sys.stdin.isatty(): # ignore if interactive return None return open(sys.stdin.fileno(), mode="rb", closefd=False) except (AttributeError, IOError): # if stdout was redirected (e.g. inside pytest), fileno may raise # io.UnsupportedOperation return None return s def stdout_or_output_path_type(s): # the special argument "-" means sys.stdout if s == "-": try: if sys.stdout.isatty(): # ignore if interactive return None return open(sys.stdout.fileno(), mode="wb", closefd=False) except (AttributeError, IOError): # if stdout was redirected (e.g. inside pytest), fileno may raise # io.UnsupportedOperation return None return s def parse_args(args=None): """Parse command line arguments and return a dictionary of options for ttfautohint.ttfautohint function. `args` can be either None, a list of strings, or a single string, that is split into individual options with `shlex.split`. When `args` is None, the console's default sys.argv are used, and any SystemExit exceptions raised by argparse are propagated. If args is a string list or a string, it is assumed that the function was not called from a console script's `main` entry point, but from other client code, and thus the SystemExit exceptions are muted and a `None` value is returned. """ import argparse from ttfautohint import __version__, libttfautohint from ttfautohint.cli import USAGE, DESCRIPTION, EPILOG version_string = "ttfautohint-py %s (libttfautohint %s)" % ( __version__, libttfautohint.version_string) if args is None: capture_sys_exit = False else: capture_sys_exit = True if isinstance(args, basestring): import shlex args = shlex.split(args) parser = argparse.ArgumentParser( prog="ttfautohint", usage=USAGE, description=DESCRIPTION, epilog=EPILOG, formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.add_argument( "in_file", nargs="?", metavar="IN-FILE", default="-", type=stdin_or_input_path_type, help="input file (default: standard input)") parser.add_argument( "out_file", nargs="?", metavar="OUT-FILE", default="-", type=stdout_or_output_path_type, help="output file (default: standard output)") parser.add_argument( "--debug", action="store_true", help="print debugging information") stem_width_group = parser.add_mutually_exclusive_group(required=False) stem_width_group.add_argument( "-a", "--stem-width-mode", type=stem_width_mode, metavar="S", default=STEM_WIDTH_MODE_OPTIONS, help=("select stem width mode for grayscale, GDI ClearType, and DW " "ClearType, where S is a string of three letters with possible " "values 'n' for natural, 'q' for quantized, and 's' for strong " "(default: qsq)")) stem_width_group.add_argument( # deprecated "-w", "--strong-stem-width", type=strong_stem_width, metavar="S", help=argparse.SUPPRESS) parser.add_argument( "-c", "--composites", dest="hint_composites", action="store_true", help="hint glyph composites also") parser.add_argument( "-d", "--dehint", action="store_true", help="remove all hints") parser.add_argument( "-D", "--default-script", metavar="SCRIPT", default=USER_OPTIONS["default_script"], help="set default OpenType script (default: %(default)s)") parser.add_argument( "-f", "--fallback-script", metavar="SCRIPT", default=USER_OPTIONS["fallback_script"], help="set fallback script (default: %(default)s)") parser.add_argument( "-F", "--family-suffix", metavar="SUFFIX", help="append SUFFIX to the family name string(s) in the `name' table") parser.add_argument( "-G", "--hinting-limit", type=int, metavar="PPEM", default=USER_OPTIONS["hinting_limit"], help=("switch off hinting above this PPEM value (default: " "%(default)s); value 0 means no limit")) parser.add_argument( "-H", "--fallback-stem-width", type=int, metavar="UNITS", default=USER_OPTIONS["fallback_stem_width"], help=("set fallback stem width (default: %(default)s font units at " "2048 UPEM)")) parser.add_argument( "-i", "--ignore-restrictions", action="store_true", help="override font license restrictions") parser.add_argument( "-I", "--detailed-info", action="store_true", help=("add detailed ttfautohint info to the version string(s) in " "the `name' table")) parser.add_argument( "-l", "--hinting-range-min", type=int, metavar="PPEM", default=USER_OPTIONS["hinting_range_min"], help="the minimum PPEM value for hint sets (default: %(default)s)") parser.add_argument( "-m", "--control-file", metavar="FILE", help="get control instructions from FILE") parser.add_argument( "-n", "--no-info", action="store_true", help=("don't add ttfautohint info to the version string(s) in the " "`name' table")) parser.add_argument( "-p", "--adjust-subglyphs", action="store_true", help="handle subglyph adjustments in exotic fonts") parser.add_argument( "-r", "--hinting-range-max", type=int, metavar="PPEM", default=USER_OPTIONS["hinting_range_max"], help="the maximum PPEM value for hint sets (default: %(default)s)") parser.add_argument( "-R", "--reference", dest="reference_file", metavar="FILE", help="derive blue zones from reference font FILE") parser.add_argument( "-s", "--symbol", action="store_true", help="input is symbol font") parser.add_argument( "-S", "--fallback-scaling", action="store_true", help="use fallback scaling, not hinting") parser.add_argument( "-t", "--ttfa-table", action="store_true", dest="TTFA_info", help="add TTFA information table") parser.add_argument( "-T", "--ttfa-info", dest="show_TTFA_info", action="store_true", help="display TTFA table in IN-FILE and exit") parser.add_argument( "-v", "--verbose", action="store_true", help="show progress information") parser.add_argument( "-V", "--version", action="version", version=version_string, help="print version information and exit") parser.add_argument( "-W", "--windows-compatibility", action="store_true", help=("add blue zones for `usWinAscent' and `usWinDescent' to avoid " "clipping")) parser.add_argument( "-x", "--increase-x-height", type=int, metavar="PPEM", default=USER_OPTIONS["increase_x_height"], help=("increase x height for sizes in the range 6<=PPEM<=N; value " "0 switches off this feature (default: %(default)s)")) parser.add_argument( "-X", "--x-height-snapping-exceptions", metavar="STRING", default=USER_OPTIONS["x_height_snapping_exceptions"], help=('specify a comma-separated list of x-height snapping exceptions' ', for example "-9, 13-17, 19" (default: "%(default)s")')) parser.add_argument( "-Z", "--reference-index", type=int, metavar="NUMBER", default=USER_OPTIONS["reference_index"], help="face index of reference font (default: %(default)s)") try: options = vars(parser.parse_args(args)) except SystemExit: if capture_sys_exit: return None raise # if either input/output are interactive, print help and exit if (not capture_sys_exit and (options["in_file"] is None or options["out_file"] is None)): parser.print_help() parser.exit(1) # check SOURCE_DATE_EPOCH environment variable source_date_epoch = os.environ.get("SOURCE_DATE_EPOCH") if source_date_epoch: try: options["epoch"] = int(source_date_epoch) except ValueError: import warnings warnings.warn( UserWarning("invalid SOURCE_DATE_EPOCH: %r" % source_date_epoch)) if options.pop("show_TTFA_info"): # TODO use fonttools to dump TTFA table? raise NotImplementedError() stem_width_options = options.pop("stem_width_mode") strong_stem_width_options = options.pop("strong_stem_width") if strong_stem_width_options: import warnings warnings.warn( UserWarning("Option '-w' is deprecated! Use option '-a' instead")) stem_width_options = strong_stem_width_options options.update(stem_width_options) return options
85569
from datetime import datetime, timezone from .enums import StatisticTypeEnum def convert_timestamp_to_datetime(timestamp: float) -> datetime: """ Convert timestamp date format to datetime. Arguments: timestamp {float} -- Input timestamp. Returns: datetime -- Datetime formatted object which represents the same information as timestamp. """ return datetime.fromtimestamp(timestamp, timezone.utc) def get_enum_type(statistic_type: str) -> StatisticTypeEnum: """ Convert string object to enum. Arguments: statistic_type {str} -- Input string. Returns: StatisticTypeEnum -- Enum corresponding to statistic_type. """ return ( StatisticTypeEnum.ALERT if statistic_type.lower() == "alerts" else StatisticTypeEnum.REPORT )
85618
from braintree.exceptions.unexpected_error import UnexpectedError class ConnectionError(UnexpectedError): pass
85643
from abc import ABCMeta, abstractmethod import numpy as np import scipy as sp from sklearn import linear_model import sklearn.metrics.pairwise ############################### ## Random Explainer ############################### class RandomExplainer: def __init__(self): pass def reset(self): pass def explain_instance(self, instance_vector, label, classifier, num_features, dataset): nonzero = instance_vector.nonzero()[1] explanation = np.random.choice(nonzero, num_features) return [(x, 1) for x in explanation] def explain(self, train_vectors, train_labels, classifier, num_features, dataset): i = np.random.randint(0, train_vectors.shape[0]) explanation = self.explain_instance(train_vectors[i], None, None, num_features, dataset) return i, explanation ############################### ## Standalone Explainers ############################### def most_important_word(classifier, v, class_): # Returns the word w that moves P(Y) - P(Y|NOT w) the most for class Y. max_index = 0 max_change = -1 orig = classifier.predict_proba(v)[0][class_] for i in v.nonzero()[1]: val = v[0,i] v[0,i] = 0 pred = classifier.predict_proba(v)[0][class_] change = orig - pred if change > max_change: max_change = change max_index = i v[0,i] = val if max_change < 0: return -1 return max_index def explain_greedy(instance_vector, label, classifier, num_features, dataset=None): explanation = [] z = instance_vector.copy() while len(explanation) < num_features: i = most_important_word(classifier, z, label) if i == -1: break z[0,i] = 0 explanation.append(i) return [(x, 1) for x in explanation] def most_important_word_martens(predict_fn, v, class_): # Returns the word w that moves P(Y) - P(Y|NOT w) the most for class Y. max_index = 0 max_change = -1 orig = predict_fn(v)[0,class_] for i in v.nonzero()[1]: val = v[0,i] v[0,i] = 0 pred = predict_fn(v)[0,class_] change = orig - pred if change > max_change: max_change = change max_index = i v[0,i] = val if max_change < 0: return -1, max_change return max_index, max_change def explain_greedy_martens(instance_vector, label, predict_fn, num_features, dataset=None): if not hasattr(predict_fn, '__call__'): predict_fn = predict_fn.predict_proba explanation = [] z = instance_vector.copy() cur_score = predict_fn(instance_vector)[0, label] while len(explanation) < num_features: i, change = most_important_word_martens(predict_fn, z, label) cur_score -= change if i == -1: break explanation.append(i) if cur_score < .5: break z[0,i] = 0 return [(x, 1) for x in explanation] def data_labels_distances_mapping_text(x, classifier_fn, num_samples): distance_fn = lambda x : sklearn.metrics.pairwise.cosine_distances(x[0],x)[0] * 100 features = x.nonzero()[1] vals = np.array(x[x.nonzero()])[0] doc_size = len(sp.sparse.find(x)[2]) sample = np.random.randint(1, doc_size, num_samples - 1) data = np.zeros((num_samples, len(features))) inverse_data = np.zeros((num_samples, len(features))) data[0] = np.ones(doc_size) inverse_data[0] = vals features_range = range(len(features)) for i, s in enumerate(sample, start=1): active = np.random.choice(features_range, s, replace=False) data[i, active] = 1 for j in active: inverse_data[i, j] = 1 sparse_inverse = sp.sparse.lil_matrix((inverse_data.shape[0], x.shape[1])) sparse_inverse[:, features] = inverse_data sparse_inverse = sp.sparse.csr_matrix(sparse_inverse) mapping = features labels = classifier_fn(sparse_inverse) distances = distance_fn(sparse_inverse) return data, labels, distances, mapping # This is LIME class GeneralizedLocalExplainer: def __init__(self, kernel_fn, data_labels_distances_mapping_fn, num_samples=5000, lasso=True, mean=None, return_mean=False, return_mapped=False, lambda_=None, verbose=True, positive=False): # Transform_classifier, transform_explainer, # transform_explainer_to_classifier all take raw data in, whatever that is. # perturb(x, num_samples) returns data (perturbed data in f'(x) form), # inverse_data (perturbed data in x form) and mapping, where mapping is such # that mapping[i] = j, where j is an index for x form. # distance_fn takes raw data in. what we're calling raw data is just x self.lambda_ = lambda_ self.kernel_fn = kernel_fn self.data_labels_distances_mapping_fn = data_labels_distances_mapping_fn self.num_samples = num_samples self.lasso = lasso self.mean = mean self.return_mapped=return_mapped self.return_mean = return_mean self.verbose = verbose self.positive=positive; def reset(self): pass def data_labels_distances_mapping(self, raw_data, classifier_fn): data, labels, distances, mapping = self.data_labels_distances_mapping_fn(raw_data, classifier_fn, self.num_samples) return data, labels, distances, mapping def generate_lars_path(self, weighted_data, weighted_labels): X = weighted_data alphas, active, coefs = linear_model.lars_path(X, weighted_labels, method='lasso', verbose=False, positive=self.positive) return alphas, coefs def explain_instance_with_data(self, data, labels, distances, label, num_features): weights = self.kernel_fn(distances) weighted_data = data * weights[:, np.newaxis] if self.mean is None: mean = np.mean(labels[:, label]) else: mean = self.mean shifted_labels = labels[:, label] - mean if self.verbose: print 'mean', mean weighted_labels = shifted_labels * weights used_features = range(weighted_data.shape[1]) nonzero = used_features alpha = 1 if self.lambda_: classif = linear_model.Lasso(alpha=self.lambda_, fit_intercept=False, positive=self.positive) classif.fit(weighted_data, weighted_labels) used_features = classif.coef_.nonzero()[0] if used_features.shape[0] == 0: if self.return_mean: return [], mean else: return [] elif self.lasso: alphas, coefs = self.generate_lars_path(weighted_data, weighted_labels) for i in range(len(coefs.T) - 1, 0, -1): nonzero = coefs.T[i].nonzero()[0] if len(nonzero) <= num_features: chosen_coefs = coefs.T[i] alpha = alphas[i] break used_features = nonzero debiased_model = linear_model.Ridge(alpha=0, fit_intercept=False) debiased_model.fit(weighted_data[:, used_features], weighted_labels) if self.verbose: print 'Prediction_local', debiased_model.predict(data[0, used_features].reshape(1, -1)) + mean, 'Right:', labels[0, label] if self.return_mean: return sorted(zip(used_features, debiased_model.coef_), key=lambda x:np.abs(x[1]), reverse=True), mean else: return sorted(zip(used_features, debiased_model.coef_), key=lambda x:np.abs(x[1]), reverse=True) def explain_instance(self, raw_data, label, classifier_fn, num_features, dataset=None): if not hasattr(classifier_fn, '__call__'): classifier_fn = classifier_fn.predict_proba data, labels, distances, mapping = self.data_labels_distances_mapping(raw_data, classifier_fn) if self.return_mapped: if self.return_mean: exp, mean = self.explain_instance_with_data(data, labels, distances, label, num_features) else: exp = self.explain_instance_with_data(data, labels, distances, label, num_features) exp = [(mapping[x[0]], x[1]) for x in exp] if self.return_mean: return exp, mean else: return exp return self.explain_instance_with_data(data, labels, distances, label, num_features), mapping
85689
EXECUTE_MODE_AUTO = "auto" EXECUTE_MODE_ASYNC = "async" EXECUTE_MODE_SYNC = "sync" EXECUTE_MODE_OPTIONS = frozenset([ EXECUTE_MODE_AUTO, EXECUTE_MODE_ASYNC, EXECUTE_MODE_SYNC, ]) EXECUTE_CONTROL_OPTION_ASYNC = "async-execute" EXECUTE_CONTROL_OPTION_SYNC = "sync-execute" EXECUTE_CONTROL_OPTIONS = frozenset([ EXECUTE_CONTROL_OPTION_ASYNC, EXECUTE_CONTROL_OPTION_SYNC, ]) EXECUTE_RESPONSE_RAW = "raw" EXECUTE_RESPONSE_DOCUMENT = "document" EXECUTE_RESPONSE_OPTIONS = frozenset([ EXECUTE_RESPONSE_RAW, EXECUTE_RESPONSE_DOCUMENT, ]) EXECUTE_TRANSMISSION_MODE_VALUE = "value" EXECUTE_TRANSMISSION_MODE_REFERENCE = "reference" EXECUTE_TRANSMISSION_MODE_OPTIONS = frozenset([ EXECUTE_TRANSMISSION_MODE_VALUE, EXECUTE_TRANSMISSION_MODE_REFERENCE, ])
85714
from .common import get_tfvars_file, replace_tfvars, passwd_generator def configure_sonarqube_container(): """ Configure a containerized Sonar server. """ replace_tfvars("dockerizedSonarqube", "true", get_tfvars_file(), False) replace_tfvars('sonar_username', "admin", get_tfvars_file()) replace_tfvars('sonar_passwd', passwd_generator(), get_tfvars_file()) replace_tfvars('codequality_type', 'sonarqube', get_tfvars_file()) replace_tfvars('codeq', 1, get_tfvars_file())
85715
from typing import Optional, Dict import falcon class Request: def __init__(self, request: falcon.Request, request_number: int): self.cookies: Optional[Dict[str, str]] = request.cookies self.body: Optional[bytes] = request.bounded_stream.read() self.content_type: Optional[str] = request.content_type self.files: Optional[Dict[str, bytes]] = self._get_files(request) self.headers: Optional[Dict[str, str]] = request.headers self.query_params: Optional[Dict[str, str]] = request.params self.number = request_number @staticmethod def _get_files(request: falcon.Request) -> Optional[Dict[str, bytes]]: files = { param_name: param_value.file.read() for param_name, param_value in request.params.items() if hasattr(param_value, "file") } return files if files else None
85764
from bap.utils.bap_comment import parse, dumps, is_valid def test_parse(): assert parse('hello') is None assert parse('BAP: hello') == {'hello': []} assert parse('BAP: hello,world') == {'hello': [], 'world': []} assert parse('BAP: hello=cruel,world') == {'hello': ['cruel', 'world']} assert parse('BAP: hello="hello, world"') == {'hello': ['hello, world']} assert parse('BAP: hello=cruel,world goodbye=real,life') == { 'hello': ['cruel', 'world'], 'goodbye': ['real', 'life'] } assert parse('BAP: hello="f\'"') == {'hello': ["f'"]} def test_dumps(): assert 'BAP:' in dumps({'hello': []}) assert dumps({'hello': ['cruel', 'world'], 'nice': [], 'thing': []}) == \ 'BAP: nice,thing hello=cruel,world' assert dumps({'hello': ["world'"]}) == 'BAP: hello="world\'"' def test_is_valid(): assert is_valid('BAP: hello') assert is_valid('BAP: hello,world') assert not is_valid('some comment') def test_roundup(): comm = { 'x': [], 'y': [], 'z': [], 'a': ['1', '2', '3'], 'b': ['thing\''], 'c': ['many things'], 'd': ['strange \\ things'], } assert parse(dumps(parse(dumps(comm)))) == comm def test_quotation(): data = 'BAP: chars="{\\\"a\\\", \\\"b\\\", \\\"c\\\"}"' assert parse(data) == {'chars': ['{"a", "b", "c"}']} assert parse(data) == parse(dumps(parse(data))) def test_single_quote(): data = 'BAP: key="{can\\\'t do}"' assert parse(data) == {'key': ["{can\\'t do}"]}
85786
from spikex.defaults import spacy_version from spikex.pipes import SentX SENTS = [ "This is a bullet list that we want to be a unique sentence:\n" "\ta) the first bullet;\n" "\tb) the second bullet;\n" "\tc) a bullet with nested bullets:\n" "\t\t1) first nested bullet;" "\t\t2) second nested bullet." "\td) last bullet.\n", "Paragraph title ", "The title was misformatted with the text. ", "Now we try to split on abbreviations like Figs. 1 or Fig. 2. ", "They can create confusion, like No.42 or eg. Num. 42 or U.S.; ", "these are some cases, but there could it be more out there.", ] def test_splitta(nlp): sentx_pipe = SentX() if spacy_version < 3 else "sentx" nlp.add_pipe(sentx_pipe, before="parser") doc = nlp("".join(SENTS)) assert len([s for s in doc.sents]) == len(SENTS)
85839
from kafka import KafkaProducer producer = KafkaProducer(bootstrap_servers="127.0.0.1:9092") for _ in range(10000): producer.send("my_topic", b"message") # producer.flush()
85885
from poethepoet.envfile import parse_env_file import pytest valid_examples = [ ( """ # empty """, {}, ), ( """ # single word values WORD=something WORD_WITH_HASH=some#thing NUMBER=0 EMOJI=😃😃 DOUBLE_QUOTED_WORD="something" SINGLE_QUOTED_WORD='something' """, { "WORD": "something", "WORD_WITH_HASH": "some#thing", "NUMBER": "0", "EMOJI": "😃😃", "DOUBLE_QUOTED_WORD": "something", "SINGLE_QUOTED_WORD": "something", }, ), ( """ # multiword values WORD=some\\ thing # and trailing comments DOUBLE_QUOTED_WORD="some thing" SINGLE_QUOTED_WORD='some thing' """, { "WORD": r"some thing", "DOUBLE_QUOTED_WORD": "some thing", "SINGLE_QUOTED_WORD": "some thing", }, ), ( """ # values with line breaks WORD=some\\ thing DOUBLE_QUOTED_WORD="some thing" SINGLE_QUOTED_WORD='some thing' """, { "WORD": "some\nthing", "DOUBLE_QUOTED_WORD": "some\n thing", "SINGLE_QUOTED_WORD": "some\n thing", }, ), ( """ # without linebreak between vars FOO=BAR BAR=FOO """, {"FOO": "BAR", "BAR": "FOO"}, ), ( """ # with semicolons ; FOO=BAR;BAR=FOO ; ; BAZ="2;'2"#; \tQUX=3\t; """, {"FOO": "BAR", "BAR": "FOO", "BAZ": "2;'2#", "QUX": "3"}, ), ( r""" # with extra backslashes FOO=a\\\ b BAR='a\\\ b' BAZ="a\\\ b" """, {"FOO": r"a\ b", "BAR": r"a\\\ b", "BAZ": r"a\ b"}, ), ( # a value with many parts and some empty vars r"""FOO=a\\\ b'a\\\ b'"a\\\ b"#"#"'\'' ;'#;\t BAR= BAZ= # still empty QUX=""", {"FOO": r"a\ ba\\\ ba\ b##\ ;#", "BAR": "", "BAZ": "", "QUX": ""}, ), # export keyword is allowed ( """export answer=42 export \t question=undefined export\tdinner=chicken """, {"answer": "42", "question": "undefined", "dinner": "chicken"}, ), ] invalid_examples = [ "foo = bar", "foo =bar", "foo= bar", "foo\t=\tbar", "foo\t=bar", "foo=\tbar", "foo= 'bar", 'foo= "bar"', "foo", "foo;", "8oo=bar", "foo@=bar", '"foo@"=bar', "'foo@'=bar", r"foo\=bar", r"foo\==bar", r"export;foo=bar", r"export\nfoo=bar", ] @pytest.mark.parametrize("example", valid_examples) def test_parse_valid_env_files(example): assert parse_env_file(example[0]) == example[1] @pytest.mark.parametrize("example", invalid_examples) def test_parse_invalid_env_files(example): with pytest.raises(ValueError): parse_env_file(example)
85907
import unittest import logging from bsn_sdk_py.until.bsn_logger import log_info class TestLogger(unittest.TestCase): def setUp(self): FORMAT = "%(asctime)s %(thread)d %(message)s" logging.basicConfig(level=logging.INFO, format=FORMAT, datefmt="[%Y-%m-%d %H:%M:%S]") def test_log_info(self): log_info('1111111111') if __name__ == '__main__': unittest.main()
85936
import pandas as pd import numpy as np from .basecomparison import BaseTwoSorterComparison from .comparisontools import (do_score_labels, make_possible_match, make_best_match, make_hungarian_match, do_confusion_matrix, do_count_score, compute_performance) class GroundTruthComparison(BaseTwoSorterComparison): """ Compares a sorter to a ground truth. This class can: * compute a "match between gt_sorting and tested_sorting * compute optionally the score label (TP, FN, CL, FP) for each spike * count by unit of GT the total of each (TP, FN, CL, FP) into a Dataframe GroundTruthComparison.count * compute the confusion matrix .get_confusion_matrix() * compute some performance metric with several strategy based on the count score by unit * count well detected units * count false positive detected units * count redundant units * count overmerged units * summary all this Parameters ---------- gt_sorting: SortingExtractor The first sorting for the comparison tested_sorting: SortingExtractor The second sorting for the comparison gt_name: str The name of sorter 1 tested_name: : str The name of sorter 2 delta_time: float Number of ms to consider coincident spikes (default 0.4 ms) match_score: float Minimum agreement score to match units (default 0.5) chance_score: float Minimum agreement score to for a possible match (default 0.1) redundant_score: float Agreement score above which units are redundant (default 0.2) overmerged_score: float Agreement score above which units can be overmerged (default 0.2) well_detected_score: float Agreement score above which units are well detected (default 0.8) exhaustive_gt: bool (default True) Tell if the ground true is "exhaustive" or not. In other world if the GT have all possible units. It allows more performance measurement. For instance, MEArec simulated dataset have exhaustive_gt=True match_mode: 'hungarian', or 'best' What is match used for counting : 'hungarian' or 'best match'. n_jobs: int Number of cores to use in parallel. Uses all available if -1 compute_labels: bool If True, labels are computed at instantiation (default False) compute_misclassifications: bool If True, misclassifications are computed at instantiation (default False) verbose: bool If True, output is verbose Returns ------- sorting_comparison: SortingComparison The SortingComparison object """ def __init__(self, gt_sorting, tested_sorting, gt_name=None, tested_name=None, delta_time=0.4, sampling_frequency=None, match_score=0.5, well_detected_score=0.8, redundant_score=0.2, overmerged_score=0.2, chance_score=0.1, exhaustive_gt=False, n_jobs=-1, match_mode='hungarian', compute_labels=False, compute_misclassifications=False, verbose=False): if gt_name is None: gt_name = 'ground truth' if tested_name is None: tested_name = 'tested' BaseTwoSorterComparison.__init__(self, gt_sorting, tested_sorting, sorting1_name=gt_name, sorting2_name=tested_name, delta_time=delta_time, match_score=match_score, # sampling_frequency=sampling_frequency, chance_score=chance_score, n_jobs=n_jobs, verbose=verbose) self.exhaustive_gt = exhaustive_gt self._compute_misclassifications = compute_misclassifications self.redundant_score = redundant_score self.overmerged_score = overmerged_score self.well_detected_score = well_detected_score assert match_mode in ['hungarian', 'best'] self.match_mode = match_mode self._compute_labels = compute_labels self._do_count() self._labels_st1 = None self._labels_st2 = None if self._compute_labels: self._do_score_labels() # confusion matrix is compute on demand self._confusion_matrix = None def get_labels1(self, unit_id): if self._labels_st1 is None: self._do_score_labels() if unit_id in self.sorting1.get_unit_ids(): return self._labels_st1[unit_id] else: raise Exception("Unit_id is not a valid unit") def get_labels2(self, unit_id): if self._labels_st1 is None: self._do_score_labels() if unit_id in self.sorting2.get_unit_ids(): return self._labels_st2[unit_id] else: raise Exception("Unit_id is not a valid unit") def _do_matching(self): if self._verbose: print("Matching...") self.possible_match_12, self.possible_match_21 = make_possible_match(self.agreement_scores, self.chance_score) self.best_match_12, self.best_match_21 = make_best_match(self.agreement_scores, self.chance_score) self.hungarian_match_12, self.hungarian_match_21 = make_hungarian_match(self.agreement_scores, self.match_score) def _do_count(self): """ Do raw count into a dataframe. Internally use hungarian match or best match. """ if self.match_mode == 'hungarian': match_12 = self.hungarian_match_12 elif self.match_mode == 'best': match_12 = self.best_match_12 self.count_score = do_count_score(self.event_counts1, self.event_counts2, match_12, self.match_event_count) def _do_confusion_matrix(self): if self._verbose: print("Computing confusion matrix...") if self.match_mode == 'hungarian': match_12 = self.hungarian_match_12 elif self.match_mode == 'best': match_12 = self.best_match_12 self._confusion_matrix = do_confusion_matrix(self.event_counts1, self.event_counts2, match_12, self.match_event_count) def get_confusion_matrix(self): """ Computes the confusion matrix. Returns ------- confusion_matrix: pandas.DataFrame The confusion matrix """ if self._confusion_matrix is None: self._do_confusion_matrix() return self._confusion_matrix def _do_score_labels(self): assert self.match_mode == 'hungarian', \ 'Labels (TP, FP, FN) can be computed only with hungarian match' if self._verbose: print("Adding labels...") self._labels_st1, self._labels_st2 = do_score_labels(self.sorting1, self.sorting2, self.delta_frames, self.hungarian_match_12, self._compute_misclassifications) def get_performance(self, method='by_unit', output='pandas'): """ Get performance rate with several method: * 'raw_count' : just render the raw count table * 'by_unit' : render perf as rate unit by unit of the GT * 'pooled_with_average' : compute rate unit by unit and average Parameters ---------- method: str 'by_unit', or 'pooled_with_average' output: str 'pandas' or 'dict' Returns ------- perf: pandas dataframe/series (or dict) dataframe/series (based on 'output') with performance entries """ possibles = ('raw_count', 'by_unit', 'pooled_with_average') if method not in possibles: raise Exception("'method' can be " + ' or '.join(possibles)) if method == 'raw_count': perf = self.count_score elif method == 'by_unit': perf = compute_performance(self.count_score) elif method == 'pooled_with_average': perf = self.get_performance(method='by_unit').mean(axis=0) if output == 'dict' and isinstance(perf, pd.Series): perf = perf.to_dict() return perf def print_performance(self, method='pooled_with_average'): """ Print performance with the selected method """ template_txt_performance = _template_txt_performance if method == 'by_unit': perf = self.get_performance(method=method, output='pandas') perf = perf * 100 # ~ print(perf) d = {k: perf[k].tolist() for k in perf.columns} txt = template_txt_performance.format(method=method, **d) print(txt) elif method == 'pooled_with_average': perf = self.get_performance(method=method, output='pandas') perf = perf * 100 txt = template_txt_performance.format(method=method, **perf.to_dict()) print(txt) def print_summary(self, well_detected_score=None, redundant_score=None, overmerged_score=None): """ Print a global performance summary that depend on the context: * exhaustive= True/False * how many gt units (one or several) This summary mix several performance metrics. """ txt = _template_summary_part1 d = dict( num_gt=len(self.unit1_ids), num_tested=len(self.unit2_ids), num_well_detected=self.count_well_detected_units(well_detected_score), num_redundant=self.count_redundant_units(redundant_score), num_overmerged=self.count_overmerged_units(overmerged_score), ) if self.exhaustive_gt: txt = txt + _template_summary_part2 d['num_false_positive_units'] = self.count_false_positive_units() d['num_bad'] = self.count_bad_units() txt = txt.format(**d) print(txt) def get_well_detected_units(self, well_detected_score=None): """ Return units list of "well detected units" from tested_sorting. "well detected units" are defined as units in tested that are well matched to GT units. Parameters ---------- well_detected_score: float (default 0.8) The agreement score above which tested units are counted as "well detected". """ if well_detected_score is not None: self.well_detected_score = well_detected_score matched_units2 = self.hungarian_match_12 well_detected_ids = [] for u2 in self.unit2_ids: if u2 in list(matched_units2.values): u1 = self.hungarian_match_21[u2] score = self.agreement_scores.at[u1, u2] if score >= self.well_detected_score: well_detected_ids.append(u2) return well_detected_ids def count_well_detected_units(self, well_detected_score): """ Count how many well detected units. kwargs are the same as get_well_detected_units. """ return len(self.get_well_detected_units(well_detected_score=well_detected_score)) def get_false_positive_units(self, redundant_score=None): """ Return units list of "false positive units" from tested_sorting. "false positive units" are defined as units in tested that are not matched at all in GT units. Need exhaustive_gt=True Parameters ---------- redundant_score: float (default 0.2) The agreement score below which tested units are counted as "false positive"" (and not "redundant"). """ assert self.exhaustive_gt, 'false_positive_units list is valid only if exhaustive_gt=True' if redundant_score is not None: self.redundant_score = redundant_score matched_units2 = list(self.hungarian_match_12.values) false_positive_ids = [] for u2 in self.unit2_ids: if u2 not in matched_units2: if self.best_match_21[u2] == -1: false_positive_ids.append(u2) else: u1 = self.best_match_21[u2] score = self.agreement_scores.at[u1, u2] if score < self.redundant_score: false_positive_ids.append(u2) return false_positive_ids def count_false_positive_units(self, redundant_score=None): """ See get_false_positive_units(). """ return len(self.get_false_positive_units(redundant_score)) def get_redundant_units(self, redundant_score=None): """ Return "redundant units" "redundant units" are defined as units in tested that match a GT units with a big agreement score but it is not the best match. In other world units in GT that detected twice or more. Parameters ---------- redundant_score=None: float (default 0.2) The agreement score above which tested units are counted as "redundant" (and not "false positive" ). """ assert self.exhaustive_gt, 'redundant_units list is valid only if exhaustive_gt=True' if redundant_score is not None: self.redundant_score = redundant_score matched_units2 = list(self.hungarian_match_12.values) redundant_ids = [] for u2 in self.unit2_ids: if u2 not in matched_units2 and self.best_match_21[u2] != -1: u1 = self.best_match_21[u2] if u2 != self.best_match_12[u1]: score = self.agreement_scores.at[u1, u2] if score >= self.redundant_score: redundant_ids.append(u2) return redundant_ids def count_redundant_units(self, redundant_score=None): """ See get_redundant_units(). """ return len(self.get_redundant_units(redundant_score=redundant_score)) def get_overmerged_units(self, overmerged_score=None): """ Return "overmerged units" "overmerged units" are defined as units in tested that match more than one GT unit with an agreement score larger than overmerged_score. Parameters ---------- overmerged_score: float (default 0.4) Tested units with 2 or more agreement scores above 'overmerged_score' are counted as "overmerged". """ assert self.exhaustive_gt, 'overmerged_units list is valid only if exhaustive_gt=True' if overmerged_score is not None: self.overmerged_score = overmerged_score overmerged_ids = [] for u2 in self.unit2_ids: scores = self.agreement_scores.loc[:, u2] if len(np.where(scores > self.overmerged_score)[0]) > 1: overmerged_ids.append(u2) return overmerged_ids def count_overmerged_units(self, overmerged_score=None): """ See get_overmerged_units(). """ return len(self.get_overmerged_units(overmerged_score=overmerged_score)) def get_bad_units(self): """ Return units list of "bad units". "bad units" are defined as units in tested that are not in the best match list of GT units. So it is the union of "false positive units" + "redundant units". Need exhaustive_gt=True """ assert self.exhaustive_gt, 'bad_units list is valid only if exhaustive_gt=True' matched_units2 = list(self.hungarian_match_12.values) bad_ids = [] for u2 in self.unit2_ids: if u2 not in matched_units2: bad_ids.append(u2) return bad_ids def count_bad_units(self): """ See get_bad_units """ return len(self.get_bad_units()) # usefull also for gathercomparison _template_txt_performance = """PERFORMANCE ({method}) ----------- ACCURACY: {accuracy} RECALL: {recall} PRECISION: {precision} FALSE DISCOVERY RATE: {false_discovery_rate} MISS RATE: {miss_rate} """ _template_summary_part1 = """SUMMARY ------- GT num_units: {num_gt} TESTED num_units: {num_tested} num_well_detected: {num_well_detected} num_redundant: {num_redundant} num_overmerged: {num_overmerged} """ _template_summary_part2 = """num_false_positive_units {num_false_positive_units} num_bad: {num_bad} """ def compare_sorter_to_ground_truth(*args, **kwargs): return GroundTruthComparison(*args, **kwargs) compare_sorter_to_ground_truth.__doc__ = GroundTruthComparison.__doc__
85968
from Interprete.NodoAST import NodoArbol from Interprete.Tabla_de_simbolos import Tabla_de_simbolos from Interprete.Arbol import Arbol from Interprete.Valor.Valor import Valor from Interprete.Primitivos.TIPO import TIPO class BOOLEANO(NodoArbol): def __init__(self, data, line, column): super().__init__(line, column) self.data = data def execute(self, entorno:Tabla_de_simbolos, arbol:Arbol): value:Valor = Valor(TIPO.BOOLEAN, self.data) return value
85987
import os import traceback import networkx as nx from nasbench import api from nord.utils import pdownload NASBENCH_TFRECORD = './data/nasbench_only108.tfrecord' file_url = 'https://storage.googleapis.com/nasbench/nasbench_only108.tfrecord' INPUT = 'input' OUTPUT = 'output' CONV1X1 = 'conv1x1-bn-relu' CONV3X3 = 'conv3x3-bn-relu' MAXPOOL3X3 = 'maxpool3x3' class BenchmarkEvaluator(): """A class to evaluate a network on a benchmark NAS dataset. """ def get_available_ops(self) -> list: return [CONV1X1, CONV3X3, MAXPOOL3X3] def __init__(self): if not os.path.isfile(NASBENCH_TFRECORD): print('Downloading NASBench-101 Data.') pdownload(file_url, NASBENCH_TFRECORD) print('Downloaded') self.dataset = api.NASBench(NASBENCH_TFRECORD) self.checked_models = {} def __descriptor_to_spec(self, descriptor): matrix, ops = BenchmarkEvaluator.descriptor_to_matrix(descriptor) try: model_spec = api.ModelSpec( # Adjacency matrix of the module matrix=matrix, # Operations at the vertices of the module, matches order of matrix ops=ops) except Exception: print(matrix) print(ops) print(descriptor) input('PROLBEM') traceback.print_exc() return None return model_spec def has_been_evaluated(self, descriptor): model_spec = self.__descriptor_to_spec(descriptor) return model_spec in self.checked_models def descriptor_evaluate(self, descriptor, acc='validation_accuracy'): model_spec = self.__descriptor_to_spec(descriptor) data = 0, 0 try: hash_ = model_spec.hash_spec(self.dataset.config['available_ops']) if hash_ in self.checked_models: data = self.checked_models[hash_] else: data = self.dataset.query(model_spec) self.checked_models[hash_] = data except: traceback.print_exc() return 0, 0 return data[acc], data['training_time'] @staticmethod def descriptor_to_matrix(descriptor): graph = nx.DiGraph() for origin in descriptor.connections: for destination in descriptor.connections[origin]: graph.add_edge(origin, destination) node_lvls = {} first_node = min(list(descriptor.layers.keys())) last_node = max(list(descriptor.layers.keys())) nodes_no = len(list(descriptor.layers.keys())) for node in list(descriptor.layers.keys()): if node in (first_node, last_node): continue paths = nx.all_simple_paths(graph, source=node, target=last_node) lengths = [len(p) for p in paths] lengths.append(0) node_lvl = nodes_no - max(lengths) if node_lvl not in node_lvls: node_lvls[node_lvl] = [node] else: node_lvls[node_lvl].append(node) nodes_ordered = [] ops = [] first_lvl = -1 last_lvl = nodes_no + 1 try: node_lvls[first_lvl] = [first_node] node_lvls[last_lvl] = [last_node] for node_lvl in sorted(node_lvls): nodelist = node_lvls[node_lvl] nodes_ordered.extend(nodelist) for node in nodelist: ops.append(descriptor.layers[node][0]) matrix = nx.linalg.adjacency_matrix( graph, nodelist=nodes_ordered).todense().tolist() except Exception: print(nodes_ordered) print(descriptor) traceback.print_exc() return None return matrix, ops
86006
from urllib.parse import urlparse from arekit.processing.text.token import Token # TODO. Leave it here but provide the base (BaseTokens) type. # TODO. With the related API at BaseTokens. class Tokens: """ Tokens used to describe a non-word text units, such as punctuation, uknown words/chars, smiles, etc. """ _wrapper = "<[{}]>" COMMA = _wrapper.format(',') SEMICOLON = _wrapper.format(';') COLON = _wrapper.format(':') QUOTE = _wrapper.format('QUOTE') DASH = _wrapper.format('-') LONG_DASH = _wrapper.format('long_dash') DOT = _wrapper.format('.') TRIPLE_DOTS = _wrapper.format('…') EXC_SIGN = _wrapper.format('!') QUESTION_SIGN = _wrapper.format('?') OPEN_BRACKET = _wrapper.format('OPEN_BRACKET') CLOSED_BRACKET = _wrapper.format('CLOSED_BRACKET') NUMBER = _wrapper.format('NUMBER') NEW_LINE = _wrapper.format("NEW_LINE") UNKNOWN_CHAR = _wrapper.format('UNKNOWN_CHAR') UNKNOWN_WORD = _wrapper.format('UNKNOWN_WORD') URL = _wrapper.format("URL") __token_mapping = { ',': COMMA, '.': DOT, '…': TRIPLE_DOTS, ':': COLON, ';': SEMICOLON, '-': DASH, '—': LONG_DASH, '?': QUESTION_SIGN, '!': EXC_SIGN, '(': OPEN_BRACKET, ')': CLOSED_BRACKET, '{': OPEN_BRACKET, '}': CLOSED_BRACKET, '[': OPEN_BRACKET, ']': CLOSED_BRACKET, '\n': NEW_LINE, '«': QUOTE, '»': QUOTE, '"': QUOTE, } __supported_tokens = { COMMA, SEMICOLON, COLON, QUOTE, DASH, DOT, LONG_DASH, TRIPLE_DOTS, EXC_SIGN, QUESTION_SIGN, OPEN_BRACKET, CLOSED_BRACKET, NUMBER, URL, NEW_LINE, UNKNOWN_CHAR, UNKNOWN_WORD} @staticmethod def try_create(subterm): """ Trying create a token by given 'term' parameter subterm: unicode I.e. term ending, so means a part of original term """ assert(isinstance(subterm, str)) if subterm not in Tokens.__token_mapping: return None return Token(term=subterm, token_value=Tokens.__token_mapping[subterm]) @staticmethod def try_create_number(term): assert(isinstance(term, str)) if not term.isdigit(): return None return Token(term=term, token_value=Tokens.NUMBER) @staticmethod def try_create_url(term): assert(isinstance(term, str)) result = urlparse(term) is_correct = result.scheme and result.netloc and result.path if not is_correct: return None return Token(term=term, token_value=Tokens.URL) @staticmethod def is_token(term): assert(isinstance(term, str)) return term in Tokens.__supported_tokens @staticmethod def iter_chars_by_token(term): """ Iterate through charts that is related to term token: char """ assert(isinstance(term, str)) for char, token in Tokens.__token_mapping.items(): if term == token: yield char @staticmethod def iter_supported_tokens(): for token in Tokens.__supported_tokens: yield token
86011
import glob import os import time import cv2 import numpy as np class GetLoadouts(): def __init__(self): self.weapon_templates = self.generate_weapon_templates() def generate_weapon_templates(self): generated_weapon_templates = [] template_directory = os.path.abspath(os.path.join( __file__, "../../templates/weapon_templates")) all_templates = [image for image in glob.glob( template_directory+"/*_template.png")] for template in all_templates: weapon = ((template.split("\weapon_templates")) [1]).split("_template")[0][1:] generated_weapon_templates.append({ "weapon": weapon, "gray": cv2.imread(template, 0)[0:100, 0:139] }) return generated_weapon_templates def process_loadouts_frame(self, image): identified_weapon = None for template in self.weapon_templates: current_template = template["gray"] result = cv2.matchTemplate( image, current_template, cv2.TM_CCOEFF_NORMED) max_location = cv2.minMaxLoc(result)[1] if max_location > 0.75: identified_weapon = template["weapon"] return identified_weapon def identify_weapons(self, frame, side): all_identified_weapons = [] if side == "top": y_start = 380 y_end = 410 else: y_start = 380 # fix this y_end = 410 # fix this for agent_loadout in range(0, 5): resized_frame = frame[y_start:y_end, 1065:1204] identified_weapon = self.process_loadouts_frame(resized_frame) all_identified_weapons.append(identified_weapon) y_start = y_start + 38 y_end = y_end + 38 return all_identified_weapons def get_loadouts(self, frame): all_identified_weapons = {} main_frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) all_identified_weapons["top"] = self.identify_weapons( main_frame_gray, "top") return all_identified_weapons if __name__ == "__main__": get_all_loadouts = GetLoadouts() tab_images_directory = os.path.abspath( os.path.join(__file__, "../../test_images/Tab Images/")) for i in range(2, 10): start = time.time() image = cv2.imread('{}/{}.png'.format(tab_images_directory, i)) print("===================Image No. {}===================".format(i)) identified_weapons = get_all_loadouts.get_loadouts(image) print("Identified Weapons", identified_weapons) end = time.time() print("Time elapsed", end - start)
86016
import setuptools setuptools.setup( name="itanium_demangler", version="1.0", author="whitequark", author_email="<EMAIL>", description="Pure Python parser for mangled itanium symbols", long_description=open("README.md").read(), long_description_content_type="text/markdown", url="https://github.com/whitequark/python-itanium_demangler", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "Programming Language :: Python :: 2", "Operating System :: OS Independent", ], )
86066
class Listlike: def __init__(self): self.list = [1, 2, 3, 4, 5] def __getitem__(self, index): return self.list[index] def __len__(self): return len(self.list) >>> listlike = Listlike() >>> list(listlike) [1, 2, 3, 4, 5]
86080
import torch from torch.autograd import Variable from ptstat.core import RandomVariable, _to_v # TODO: Implement Uniform(a, b) constructor. class Uniform(RandomVariable): """ Uniform(0, 1) iid rv. """ def __init__(self, size, cuda=False): super(Uniform, self).__init__() assert len(size) == 2, str(size) self._cuda = cuda self._p_size = size def _size(self): return self._p_size def _log_pdf(self, x): return self._entropy() def _sample(self): # TODO: Use CUDA random_ when implemented. y = Variable(torch.FloatTensor(*self._p_size).uniform_()) if self._cuda: y = y.cuda() return y def _entropy(self): return _to_v(0, self._p_size[0], self._cuda)
86082
from ir_sim.world import obs_circle from math import pi, cos, sin import numpy as np from collections import namedtuple from ir_sim.util import collision_cir_cir, collision_cir_matrix, collision_cir_seg, reciprocal_vel_obs class env_obs_cir: def __init__(self, obs_cir_class=obs_circle, obs_model='static', obs_cir_num=1, dist_mode = 0, step_time=0.1, components=[], **kwargs): self.obs_cir_class = obs_cir_class self.obs_num = obs_cir_num self.dist_mode = dist_mode self.obs_cir_list = [] self.components = components self.obs_model = obs_model # 'static' 'dynamic' self.obs_square = kwargs.get('obs_square', [0, 0, 10, 10]) self.obs_interval = kwargs.get('obs_interval', 1) if self.obs_num > 0: if self.dist_mode == 0: assert 'obs_radius_list' and 'obs_state_list' in kwargs.keys() obs_radius_list = kwargs['obs_radius_list'] obs_state_list = kwargs['obs_state_list'] obs_goal_list = kwargs.get('obs_goal_list', [0]*self.obs_num) if len(obs_radius_list) < self.obs_num: temp_end = obs_radius_list[-1] obs_radius_list += [temp_end for i in range(self.obs_num - len(obs_radius_list))] else: obs_radius_list = kwargs.get('obs_radius_list', [0.2]) obs_state_list, obs_goal_list, obs_radius_list = self.obs_state_dis(obs_init_mode=self.dist_mode, radius=obs_radius_list[0], **kwargs) if self.obs_model == 'dynamic': self.rvo = reciprocal_vel_obs(vxmax = 1.5, vymax = 1.5, **kwargs) for i in range(self.obs_num): obs_cir = self.obs_cir_class(id=i, state=obs_state_list[i], radius=obs_radius_list[i], step_time=step_time, obs_model=obs_model, goal=obs_goal_list[i], **kwargs) self.obs_cir_list.append(obs_cir) def step_wander(self, **kwargs): ts = self.obs_total_states() rvo_vel_list = list(map(lambda agent_s: self.rvo.cal_vel(agent_s, nei_state_list=ts[1]), ts[0])) arrive_flag = False for i, obs_cir in enumerate(self.obs_cir_list): obs_cir.move_forward(rvo_vel_list[i], **kwargs) if obs_cir.arrive(): arrive_flag = True if arrive_flag: goal_list = self.random_goal(**kwargs) for i, obs_cir in enumerate(self.obs_cir_list): obs_cir.goal = goal_list[i] def obs_state_dis(self, obs_init_mode=1, radius=0.2, circular=[5, 5, 4], min_radius=0.2, max_radius=1, **kwargs): # init_mode: 1 single row # 2 random # 3 circular # square area: x_min, y_min, x_max, y_max # circular area: x, y, radius self.random_bear = kwargs.get('random_bear', False) random_radius = kwargs.get('random_radius', False) num = self.obs_num state_list, goal_list = [], [] if obs_init_mode == 1: # single row state_list = [np.array([ [i * self.obs_interval], [self.obs_square[1]]]) for i in range(int(self.obs_square[0]), int(self.obs_square[0])+num)] goal_list = [np.array([ [i * self.obs_interval], [self.obs_square[3]] ]) for i in range(int(self.obs_square[0]), int(self.obs_square[0])+num)] goal_list.reverse() elif obs_init_mode == 2: # random state_list, goal_list = self.random_start_goal(**kwargs) elif obs_init_mode == 3: # circular circle_point = np.array(circular) theta_step = 2*pi / num theta = 0 while theta < 2*pi: state = circle_point + np.array([ cos(theta) * circular[2], sin(theta) * circular[2], theta + pi- circular[2] ]) goal = circle_point[0:2] + np.array([cos(theta+pi), sin(theta+pi)]) * circular[2] theta = theta + theta_step state_list.append(state[:, np.newaxis]) goal_list.append(goal[:, np.newaxis]) if random_radius: radius_list = np.random.uniform(low = min_radius, high = max_radius, size = (num,)) else: radius_list = [radius for i in range(num)] return state_list, goal_list, radius_list def random_start_goal(self, **kwargs): num = self.obs_num random_list = [] goal_list = [] while len(random_list) < 2*num: new_point = np.random.uniform(low = self.obs_square[0:2], high = self.obs_square[2:4], size = (1, 2)).T if not self.check_collision(new_point, random_list, self.components, self.obs_interval): random_list.append(new_point) start_list = random_list[0 : num] goal_list = random_list[num : 2 * num] return start_list, goal_list def random_goal(self, **kwargs): num = self.obs_num random_list = [] while len(random_list) < num: new_point = np.random.uniform(low = self.obs_square[0:2], high = self.obs_square[2:4], size = (1, 2)).T if not self.check_collision(new_point, random_list, self.components, self.obs_interval): random_list.append(new_point) return random_list def check_collision(self, check_point, point_list, components, range): circle = namedtuple('circle', 'x y r') point = namedtuple('point', 'x y') self_circle = circle(check_point[0, 0], check_point[1, 0], range/2) # check collision with map if collision_cir_matrix(self_circle, components['map_matrix'], components['xy_reso'], components['offset']): return True # check collision with line obstacles for line in components['obs_lines'].obs_line_states: segment = [point(line[0], line[1]), point(line[2], line[3])] if collision_cir_seg(self_circle, segment): return True for point in point_list: if self.distance(check_point, point) < range: return True return False def distance(self, point1, point2): diff = point2[0:2] - point1[0:2] return np.linalg.norm(diff) def obs_total_states(self): agent_state_list = list(map(lambda a: np.squeeze( a.omni_state()), self.obs_cir_list)) nei_state_list = list(map(lambda a: np.squeeze( a.omni_obs_state()), self.obs_cir_list)) return agent_state_list, nei_state_list
86106
def remove_whilespace_nodes(node, unlink=False): """Removes all of the whitespace-only text decendants of a DOM node. When creating a DOM from an XML source, XML parsers are required to consider several conditions when deciding whether to include whitespace-only text nodes. This function ignores all of those conditions and removes all whitespace-only text decendants of the specified node. If the unlink flag is specified, the removed text nodes are unlinked so that their storage can be reclaimed. If the specified node is a whitespace-only text node then it is left unmodified.""" remove_list = [] for child in node.childNodes: if child.nodeType == dom.Node.TEXT_NODE and \ not child.data.strip(): remove_list.append(child) elif child.hasChildNodes(): remove_whilespace_nodes(child, unlink) for node in remove_list: node.parentNode.removeChild(node) if unlink: node.unlink()
86116
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('adverts', '0006_auto_20150303_0009'), ] operations = [ migrations.AlterField( model_name='adchannel', name='ad_formats', field=models.ManyToManyField( to='adverts.AdFormat', help_text='size and shape of ad' ), ), migrations.AlterField( model_name='advert', name='ad_channels', field=models.ManyToManyField( blank=True, to='adverts.AdChannel', help_text='Where to show the ad' ), ), ]
86135
from math import sqrt, atan import pytest from pytest import approx import ts2vg import numpy as np @pytest.fixture def empty_ts(): return [] @pytest.fixture def sample_ts(): return [3.0, 4.0, 2.0, 1.0] def test_basic(sample_ts): out_got = ts2vg.NaturalVG().build(sample_ts).edges out_truth = [ (0, 1), (1, 2), (1, 3), (2, 3), ] assert sorted(sorted(e) for e in out_got) == sorted(sorted(e) for e in out_truth) def test_left_to_right(sample_ts): out_got = ts2vg.NaturalVG(directed='left_to_right').build(sample_ts).edges out_truth = [ (0, 1), (1, 2), (1, 3), (2, 3), ] assert sorted(out_got) == sorted(out_truth) def test_left_to_right_distance(sample_ts): out_got = ts2vg.NaturalVG(directed='left_to_right', weighted='distance').build(sample_ts).edges out_truth = [ (0, 1, approx(sqrt(2.))), (1, 2, approx(sqrt(5.))), (1, 3, approx(sqrt(13.))), (2, 3, approx(sqrt(2.))), ] assert sorted(out_got) == sorted(out_truth) def test_left_to_right_sq_distance(sample_ts): out_got = ts2vg.NaturalVG(directed='left_to_right', weighted='sq_distance').build(sample_ts).edges out_truth = [ (0, 1, approx(2.)), (1, 2, approx(5.)), (1, 3, approx(13.)), (2, 3, approx(2.)), ] assert sorted(out_got) == sorted(out_truth) def test_left_to_right_v_distance(sample_ts): out_got = ts2vg.NaturalVG(directed='left_to_right', weighted='v_distance').build(sample_ts).edges out_truth = [ (0, 1, approx(1.)), (1, 2, approx(-2.)), (1, 3, approx(-3.)), (2, 3, approx(-1.)), ] assert sorted(out_got) == sorted(out_truth) def test_left_to_right_abs_v_distance(sample_ts): out_got = ts2vg.NaturalVG(directed='left_to_right', weighted='abs_v_distance').build(sample_ts).edges out_truth = [ (0, 1, approx(1.)), (1, 2, approx(2.)), (1, 3, approx(3.)), (2, 3, approx(1.)), ] assert sorted(out_got) == sorted(out_truth) def test_left_to_right_h_distance(sample_ts): out_got = ts2vg.NaturalVG(directed='left_to_right', weighted='h_distance').build(sample_ts).edges out_truth = [ (0, 1, approx(1.)), (1, 2, approx(1.)), (1, 3, approx(2.)), (2, 3, approx(1.)), ] assert sorted(out_got) == sorted(out_truth) def test_left_to_right_abs_h_distance(sample_ts): out_got = ts2vg.NaturalVG(directed='left_to_right', weighted='abs_h_distance').build(sample_ts).edges out_truth = [ (0, 1, approx(1.)), (1, 2, approx(1.)), (1, 3, approx(2.)), (2, 3, approx(1.)), ] assert sorted(out_got) == sorted(out_truth) def test_left_to_right_slope(sample_ts): out_got = ts2vg.NaturalVG(directed='left_to_right', weighted='slope').build(sample_ts).edges out_truth = [ (0, 1, approx(1.)), (1, 2, approx(-2.)), (1, 3, approx(-1.5)), (2, 3, approx(-1.)), ] assert sorted(out_got) == sorted(out_truth) def test_left_to_right_abs_slope(sample_ts): out_got = ts2vg.NaturalVG(directed='left_to_right', weighted='abs_slope').build(sample_ts).edges out_truth = [ (0, 1, approx(1.)), (1, 2, approx(2.)), (1, 3, approx(1.5)), (2, 3, approx(1.)), ] assert sorted(out_got) == sorted(out_truth) def test_left_to_right_angle(sample_ts): out_got = ts2vg.NaturalVG(directed='left_to_right', weighted='angle').build(sample_ts).edges out_truth = [ (0, 1, approx(atan(1.))), (1, 2, approx(atan(-2.))), (1, 3, approx(atan(-1.5))), (2, 3, approx(atan(-1.))), ] assert sorted(out_got) == sorted(out_truth) def test_left_to_right_abs_angle(sample_ts): out_got = ts2vg.NaturalVG(directed='left_to_right', weighted='abs_angle').build(sample_ts).edges out_truth = [ (0, 1, approx(atan(1.))), (1, 2, approx(atan(2.))), (1, 3, approx(atan(1.5))), (2, 3, approx(atan(1.))), ] assert sorted(out_got) == sorted(out_truth) def test_top_to_bottom(sample_ts): out_got = ts2vg.NaturalVG(directed='top_to_bottom').build(sample_ts).edges out_truth = [ (1, 0), (1, 2), (1, 3), (2, 3), ] assert sorted(out_got) == sorted(out_truth) def test_top_to_bottom_distance(sample_ts): out_got = ts2vg.NaturalVG(directed='top_to_bottom', weighted='distance').build(sample_ts).edges out_truth = [ (1, 0, approx(sqrt(2.))), (1, 2, approx(sqrt(5.))), (1, 3, approx(sqrt(13.))), (2, 3, approx(sqrt(2.))), ] assert sorted(out_got) == sorted(out_truth) def test_top_to_bottom_sq_distance(sample_ts): out_got = ts2vg.NaturalVG(directed='top_to_bottom', weighted='sq_distance').build(sample_ts).edges out_truth = [ (1, 0, approx(2.)), (1, 2, approx(5.)), (1, 3, approx(13.)), (2, 3, approx(2.)), ] assert sorted(out_got) == sorted(out_truth) def test_top_to_bottom_v_distance(sample_ts): out_got = ts2vg.NaturalVG(directed='top_to_bottom', weighted='v_distance').build(sample_ts).edges out_truth = [ (1, 0, approx(-1.)), (1, 2, approx(-2.)), (1, 3, approx(-3.)), (2, 3, approx(-1.)), ] assert sorted(out_got) == sorted(out_truth) def test_top_to_bottom_abs_v_distance(sample_ts): out_got = ts2vg.NaturalVG(directed='top_to_bottom', weighted='abs_v_distance').build(sample_ts).edges out_truth = [ (1, 0, approx(1.)), (1, 2, approx(2.)), (1, 3, approx(3.)), (2, 3, approx(1.)), ] assert sorted(out_got) == sorted(out_truth) def test_top_to_bottom_h_distance(sample_ts): out_got = ts2vg.NaturalVG(directed='top_to_bottom', weighted='h_distance').build(sample_ts).edges out_truth = [ (1, 0, approx(-1.)), (1, 2, approx(1.)), (1, 3, approx(2.)), (2, 3, approx(1.)), ] assert sorted(out_got) == sorted(out_truth) def test_top_to_bottom_abs_h_distance(sample_ts): out_got = ts2vg.NaturalVG(directed='top_to_bottom', weighted='abs_h_distance').build(sample_ts).edges out_truth = [ (1, 0, approx(1.)), (1, 2, approx(1.)), (1, 3, approx(2.)), (2, 3, approx(1.)), ] assert sorted(out_got) == sorted(out_truth) def test_top_to_bottom_slope(sample_ts): out_got = ts2vg.NaturalVG(directed='top_to_bottom', weighted='slope').build(sample_ts).edges out_truth = [ (1, 0, approx(1.)), (1, 2, approx(-2.)), (1, 3, approx(-1.5)), (2, 3, approx(-1.)), ] assert sorted(out_got) == sorted(out_truth) def test_top_to_bottom_abs_slope(sample_ts): out_got = ts2vg.NaturalVG(directed='top_to_bottom', weighted='abs_slope').build(sample_ts).edges out_truth = [ (1, 0, approx(1.)), (1, 2, approx(2.)), (1, 3, approx(1.5)), (2, 3, approx(1.)), ] assert sorted(out_got) == sorted(out_truth) def test_top_to_bottom_angle(sample_ts): out_got = ts2vg.NaturalVG(directed='top_to_bottom', weighted='angle').build(sample_ts).edges out_truth = [ (1, 0, approx(atan(1.))), (1, 2, approx(atan(-2.))), (1, 3, approx(atan(-1.5))), (2, 3, approx(atan(-1.))), ] assert sorted(out_got) == sorted(out_truth) def test_top_to_bottom_abs_angle(sample_ts): out_got = ts2vg.NaturalVG(directed='top_to_bottom', weighted='abs_angle').build(sample_ts).edges out_truth = [ (1, 0, approx(atan(1.))), (1, 2, approx(atan(2.))), (1, 3, approx(atan(1.5))), (2, 3, approx(atan(1.))), ] assert sorted(out_got) == sorted(out_truth) def test_adjacency_matrix(sample_ts): out_got = ts2vg.NaturalVG().build(sample_ts).adjacency_matrix(triangle='upper') out_truth = [ [0, 1, 0, 0], [0, 0, 1, 1], [0, 0, 0, 1], [0, 0, 0, 0], ] np.testing.assert_array_equal(out_got, out_truth) def test_degrees(sample_ts): out_got = ts2vg.NaturalVG().build(sample_ts).degrees out_truth = [1, 3, 2, 2] np.testing.assert_array_equal(out_got, out_truth) def test_not_built(): with pytest.raises(ts2vg.graph.base.NotBuiltError): ts2vg.NaturalVG().edges def test_empty_ts(empty_ts): out_got = ts2vg.NaturalVG().build(empty_ts).edges out_truth = [] assert out_got == out_truth def test_with_xs(sample_ts): xs = [0., 1., 2., 2.1] out_got = ts2vg.NaturalVG().build(sample_ts, xs=xs).edges out_truth = [ (0, 1), (1, 2), (2, 3), ] assert sorted(sorted(e) for e in out_got) == sorted(sorted(e) for e in out_truth) def test_with_incompatible_xs(sample_ts): xs = [0., 1., 2., 3., 4., 5., 6.] with pytest.raises(ValueError): ts2vg.NaturalVG().build(sample_ts, xs=xs) def test_with_non_monotonic_increasing_xs(sample_ts): xs = [0., 4., 2., 3.] with pytest.raises(ValueError): ts2vg.NaturalVG().build(sample_ts, xs=xs)
86160
from __future__ import absolute_import, division, print_function from six.moves import range def intify(a): return tuple([int(round(val)) for val in a]) def reference_map(sg, mi): from cctbx import sgtbx asu = sgtbx.reciprocal_space_asu(sg.type()) isym_ = [] mi_ = [] for hkl in mi: found = False for i_inv in range(sg.f_inv()): for i_smx in range(sg.n_smx()): rt_mx = sg(0, i_inv, i_smx) hkl_ = intify(hkl * rt_mx.r()) if asu.is_inside(hkl_): mi_.append(hkl_) if i_inv: isym_.append(- i_smx) else: isym_.append(i_smx) found = True break if found: continue else: assert(not sg.is_centric()) for i_inv in range(sg.f_inv()): for i_smx in range(sg.n_smx()): rt_mx = sg(0, i_inv, i_smx) _hkl = [-h for h in hkl] mhkl_ = intify(_hkl * rt_mx.r()) if asu.is_inside(mhkl_): mi_.append(mhkl_) isym_.append(- i_smx) found = True break return mi_, isym_ def tst_map_to_asu_isym(anomalous_flag): from cctbx import sgtbx from cctbx.miller import map_to_asu_isym from cctbx.array_family import flex mi = flex.miller_index() i = flex.int() import random nhkl = 1000 for j in range(nhkl): hkl = [random.randint(-10, 10) for j in range(3)] mi.append(hkl) i.append(0) spacegroup = sgtbx.space_group_symbols(195).hall() sg = sgtbx.space_group(spacegroup) mi_, isym_ = reference_map(sg, mi) map_to_asu_isym(sg.type(), anomalous_flag, mi, i) for j in range(nhkl): assert(i[j] == isym_[j]) if __name__ == '__main__': tst_map_to_asu_isym(True) tst_map_to_asu_isym(False) print('OK')
86170
import foo class testing(): def tester(self): return self.blah def tester2(): print "bleh"
86173
from random import * import subprocess import sys import warnings warnings.filterwarnings("ignore") nb_prob = 50 open_prob = 100 prob_end = 5 num_range = [0, 100] expr = "" operators = ["+","-","*","/", "%"] opened_p = 0 min_expr_len = 5 max_expr_len = 30 no_overflow = False error = False def append_number(): global expr if (len(expr) > 0 and expr[len(expr) - 1] in operators): expr += str(randint(num_range[0],num_range[1])) def append_ope(): global expr if (len(expr) > 0 and (expr[len(expr) - 1].isnumeric() or expr[len(expr) - 1] == ")")): expr += operators[randint(0,4)] def str_to_stdout(s): ex = subprocess.Popen(['echo', s],stdout=subprocess.PIPE) return ex.stdout while not error: while not no_overflow: while (len(expr) < min_expr_len or randint(0,100) > prob_end) and len(expr) < max_expr_len: if randint(0,100) < nb_prob: append_ope() expr += str(randint(num_range[0],num_range[1])) expr += operators[randint(0,4)] nb_prob = 50 if (opened_p > 0): open_prob = 25 else: open_prob = 100 else: if (randint(0,100) < open_prob): expr += "(" nb_prob = 100 opened_p += 1 if (opened_p > 0): open_prob = 0 else: open_prob = 100 else: append_number() opened_p += -1 expr += ")" if (opened_p > 0): open_prob = 25 else: open_prob = 100 append_number() while expr[len(expr) - 1].isnumeric() == "(": expr = expr[:-1] opened_p+= -1 while opened_p > 0: expr += ")" opened_p+= -1 expr = expr.replace("()","1") try: ex = subprocess.Popen('bc',stdin=str_to_stdout(expr),stdout=subprocess.PIPE, stderr=subprocess.PIPE) tmp_res, err = ex.communicate() tmp_res = int(tmp_res.decode('ascii').replace("\n","")) no_overflow = True if tmp_res > 1000000 or tmp_res < -1000000: raise Exception() except: expr = "" open_prob = 100 nb_prob = 50 no_overflow = False ex = subprocess.Popen(['./eval_expr',expr],stdout=subprocess.PIPE, stderr=subprocess.PIPE) result, err = ex.communicate() ex = subprocess.Popen('bc',stdin=str_to_stdout(expr),stdout=subprocess.PIPE, stderr=subprocess.PIPE) solution, err = ex.communicate() solution = int(solution.decode('ascii').replace("\n","")) print("With expr : \"" +expr + "\"\nGot : " + result.decode('ascii').replace("\n","") + "\nExpected : "+ str(solution)) if int(result) != solution: print("ERROR\n\n") error = True else: print("PASS\n\n") expr = "" open_prob = 100 nb_prob = 50 no_overflow = False
86224
class Cell: def __init__(self, c=' '): self.c = c self.highlight = {} def __mul__(self, n): return [Cell(self.c) for i in range(n)] def __str__(self): return self.c class Highlight: def __init__(self, line, highlight): self.line = line self.highlight = highlight self.start = 0 self.end = 0 def s(self): return (self.line, self.start, self.end, tuple(self.highlight.items())) def __eq__(self, h): return self.s() == h.s() def __hash__(self): return hash((self.line, self.start, self.end, tuple(self.highlight.items()))) class Screen: def __init__(self): self.x = 0 self.y = 0 self.resize(1, 1) self.highlight = {} self.changes = 0 def resize(self, w, h): self.w = w self.h = h # TODO: should resize clear? self.screen = [Cell() * w for i in range(h)] self.scroll_region = [0, self.h, 0, self.w] # clamp cursor self.x = min(self.x, w - 1) self.y = min(self.y, h - 1) def clear(self): self.resize(self.w, self.h) def scroll(self, dy): ya, yb = self.scroll_region[0:2] xa, xb = self.scroll_region[2:4] yi = (ya, yb) if dy < 0: yi = (yb, ya - 1) for y in range(yi[0], yi[1], int(dy / abs(dy))): if ya <= y + dy < yb: self.screen[y][xa:xb] = self.screen[y + dy][xa:xb] else: self.screen[y][xa:xb] = Cell() * (xb - xa) def redraw(self, updates): blacklist = [ 'mode_change', 'bell', 'mouse_on', 'highlight_set', 'update_fb', 'update_bg', 'update_sp', 'clear', ] changed = False for cmd in updates: if not cmd: continue name, args = cmd[0], cmd[1:] if name == 'cursor_goto': self.y, self.x = args[0] elif name == 'eol_clear': changed = True self.screen[self.y][self.x:] = Cell() * (self.w - self.x) elif name == 'put': changed = True for cs in args: for c in cs: cell = self.screen[self.y][self.x] cell.c = c cell.highlight = self.highlight self.x += 1 # TODO: line wrap is not specified, neither is wrapping off the end. semi-sane defaults. if self.x >= self.w: self.x = 0 self.y += 1 if self.y >= self.h: self.y = 0 elif name == 'resize': changed = True self.resize(*args[0]) elif name == 'highlight_set': self.highlight = args[0][0] elif name == 'set_scroll_region': self.scroll_region = args[0] elif name == 'scroll': changed = True self.scroll(args[0][0]) elif name in blacklist: pass # else: # print('unknown update cmd', name) if changed: self.changes += 1 def highlights(self): hlset = [] for y, line in enumerate(self.screen): cur = {} h = None for x, cell in enumerate(line): if h and cur and cell.highlight == cur: h.end = x + 1 else: cur = cell.highlight if cur: h = Highlight(y, cur) h.start = x h.end = x + 1 hlset.append(h) return hlset def p(self): print('-' * self.w) print(str(self)) print('-' * self.w) def __setitem__(self, xy, c): x, y = xy try: cell = self.screen[y][x] cell.c = c cell.highlight = self.highlight except IndexError: pass def __getitem__(self, y): if isinstance(y, tuple): return self.screen[y[1]][y[0]] return ''.join(str(c) for c in self.screen[y]) def __str__(self): return '\n'.join([self[y] for y in range(self.h)])
86265
from collections import namedtuple Param = namedtuple('Param', ['name', 'display_name', 'type', 'required', 'default', 'choices']) Param.__new__.__defaults__ = (None,) * len(Param._fields) _FORMATTERS = {} def formatter(name=None, params=[]): def deco_func(func): # 做注册工作 func_name = name if name else func.__name__ _FORMATTERS[func_name] = (params, func) return func return deco_func def format(value, formatter, params=None): if formatter not in _FORMATTERS: return value func = _FORMATTERS[formatter][1] # TODO,校验一下参数合法性 return func(value, **params) @formatter(name='prefix', params=[ Param(name="prefix", display_name='前缀', type='str', required=True) ]) def prefix_formatter(value, prefix): return f'{prefix}{str(value)}' @formatter(name='suffix', params=[ Param(name="suffix", display_name='后缀', type='str', required=True) ]) def suffix_formatter(value, suffix): return f'{str(value)}{suffix}' @formatter(name='bothfix', params=[ Param(name="prefix", display_name='前缀', type='str'), Param(name="suffix", display_name='后缀', type='str') ]) def bothfix_formatter(value, prefix='', suffix=''): result = value if prefix: result = prefix_formatter(result, prefix) if suffix: result = suffix_formatter(result, suffix) return result
86304
from chainer.links import BatchNormalization, GroupNormalization from chainermn.links import MultiNodeBatchNormalization from chainer.functions import softmax_cross_entropy from chainer.optimizers import Adam from chainer.iterators import MultiprocessIterator, SerialIterator from chainer.optimizer import WeightDecay from chainer import serializers from chainer import training from chainer.training import extensions from chainer.backends.cuda import get_device_from_id import chainermn from src.datasets.msd_bound import MSDBoundDataset from src.links.model.vaeseg import BoundaryStream, CPCPredictor, Decoder, Encoder, VAE, VD from src.training.updaters.vaeseg_updater import VAESegUpdater from src.training.extensions.vaeseg_evaluator import VAESegEvaluator from src.training.updaters.encdec_seg_updater import EncDecSegUpdater from src.training.extensions.encdec_seg_evaluator import EncDecSegEvaluator from src.training.updaters.boundseg_updater import BoundSegUpdater from src.training.extensions.boundseg_evaluator import BoundSegEvaluator from src.training.updaters.cpcseg_updater import CPCSegUpdater from src.training.extensions.cpcseg_evaluator import CPCSegEvaluator def _setup_communicator(config, gpu_start_id=0): if config['mn']: comm = chainermn.create_communicator('pure_nccl') is_master = (comm.rank == 0) device = comm.intra_rank + gpu_start_id else: comm = None is_master = True device = gpu_start_id return comm, is_master, device def _setup_datasets(config, comm, is_master): if is_master: if config['dataset_name'] == 'msd_bound': train_data = MSDBoundDataset(config, config['train_list_path']) validation_data = MSDBoundDataset(config, config['validation_list_path']) test_data = MSDBoundDataset(config, config['test_list_path']) validation_data.random_scale = False test_data.random_scale = False validation_data.shift_intensity = 0 test_data.shift_intensity = 0 validation_data.random_flip = False test_data.random_flip = False validation_data.nb_copies = 1 test_data.nb_copies = 1 validation_data.training = False test_data.training = False else: raise ValueError('Unknown dataset_name: {}'.format(config['dataset_name'])) print('Training dataset size: {}'.format(len(train_data))) print('Validation dataset size: {}'.format(len(validation_data))) print('Test dataset size: {}'.format(len(test_data))) else: train_data = None validation_data = None test_data = None # scatter dataset if comm is not None: train_data = chainermn.scatter_dataset(train_data, comm, shuffle=True) validation_data = chainermn.scatter_dataset(validation_data, comm, shuffle=True) test_data = chainermn.scatter_dataset(test_data, comm, shuffle=True) return train_data, validation_data, test_data def _setup_vae_segmentor(config, comm=None): in_channels = config['in_channels'] base_channels = config['base_channels'] out_channels = config['nb_labels'] nested_label = config['nested_label'] norm = eval(config['vaeseg_norm']) bn_first = config['vaeseg_bn_first'] ndim_latent = config['vaeseg_ndim_latent'] mode = config['vaeseg_skip_connect_mode'] input_shape = eval(config['crop_size']) if nested_label: out_channels = 2 * (out_channels - 1) encoder = Encoder( base_channels=base_channels, norm=norm, bn_first=bn_first, ndim_latent=ndim_latent, comm=comm ) embedder = VD( channels=8*base_channels, norm=norm, bn_first=bn_first, ndim_latent=ndim_latent, comm=comm ) decoder = Decoder( base_channels=base_channels, out_channels=out_channels, norm=norm, bn_first=bn_first, mode=mode, comm=comm ) vae = VAE( in_channels=in_channels, base_channels=base_channels, norm=norm, bn_first=bn_first, input_shape=input_shape, comm=comm ) return encoder, embedder, decoder, vae def _setup_vae_segmentor_only(config, comm=None): base_channels = config['base_channels'] out_channels = config['nb_labels'] nested_label = config['nested_label'] norm = eval(config['vaeseg_norm']) bn_first = config['vaeseg_bn_first'] ndim_latent = config['vaeseg_ndim_latent'] mode = config['vaeseg_skip_connect_mode'] if nested_label: out_channels = 2 * (out_channels - 1) encoder = Encoder( base_channels=base_channels, norm=norm, bn_first=bn_first, ndim_latent=ndim_latent, comm=comm ) decoder = Decoder( base_channels=base_channels, out_channels=out_channels, norm=norm, bn_first=bn_first, mode=mode, comm=comm ) return encoder, decoder def _setup_cpc_segmentor(config, comm=None): base_channels = config['base_channels'] out_channels = config['nb_labels'] nested_label = config['nested_label'] norm = eval(config['vaeseg_norm']) bn_first = config['vaeseg_bn_first'] ndim_latent = config['vaeseg_ndim_latent'] mode = config['vaeseg_skip_connect_mode'] input_shape = eval(config['crop_size']) grid_size = config['grid_size'] cpc_pattern = config['cpc_pattern'] if nested_label: out_channels = 2 * (out_channels - 1) encoder = Encoder( base_channels=base_channels, norm=norm, bn_first=bn_first, ndim_latent=ndim_latent, comm=comm ) decoder = Decoder( base_channels=base_channels, out_channels=out_channels, norm=norm, bn_first=bn_first, mode=mode, comm=comm ) cpcpred1 = CPCPredictor( base_channels=base_channels*8, norm=norm, bn_first=bn_first, grid_size=grid_size, input_shape=input_shape, upper=True, cpc_pattern=cpc_pattern, comm=comm ) return encoder, decoder, cpcpred1 def _setup_bound_segmentor(config, comm=None): base_channels = config['base_channels'] out_channels = config['nb_labels'] nested_label = config['nested_label'] norm = eval(config['vaeseg_norm']) bn_first = config['vaeseg_bn_first'] mode = config['vaeseg_skip_connect_mode'] ndim_latent = config['vaeseg_ndim_latent'] if nested_label: out_channels = 2 * (out_channels - 1) encoder = Encoder( base_channels=base_channels, norm=norm, bn_first=bn_first, ndim_latent=ndim_latent, comm=comm ) decoder = Decoder( base_channels=base_channels, out_channels=out_channels, norm=norm, bn_first=bn_first, mode=mode, comm=comm ) boundary = BoundaryStream( base_channels=base_channels, out_channels=out_channels, norm=norm, comm=comm ) return encoder, decoder, boundary def _setup_iterators(config, batch_size, train_data, validation_data, test_data): if isinstance(config['loaderjob'], int) and config['loaderjob'] > 1: train_iterator = MultiprocessIterator( train_data, batch_size, n_processes=config['loaderjob']) validation_iterator = MultiprocessIterator( validation_data, batch_size, n_processes=config['loaderjob'], repeat=False, shuffle=False) test_iterator = MultiprocessIterator( test_data, batch_size, n_processes=config['loaderjob'], repeat=False, shuffle=False) else: train_iterator = SerialIterator(train_data, batch_size) validation_iterator = SerialIterator( validation_data, batch_size, repeat=False, shuffle=False) test_iterator = SerialIterator( test_data, batch_size, repeat=False, shuffle=False) return train_iterator, validation_iterator, test_iterator # Optimizer def _setup_optimizer(config, model, comm): optimizer_name = config['optimizer'] lr = float(config['init_lr']) weight_decay = float(config['weight_decay']) if optimizer_name == 'Adam': optimizer = Adam(alpha=lr, weight_decay_rate=weight_decay) elif optimizer_name in \ ('SGD', 'MomentumSGD', 'CorrectedMomentumSGD', 'RMSprop'): optimizer = eval(optimizer_name)(lr=lr) if weight_decay > 0.: optimizer.add_hook(WeightDecay(weight_decay)) else: raise ValueError('Invalid optimizer: {}'.format(optimizer_name)) if comm is not None: optimizer = chainermn.create_multi_node_optimizer(optimizer, comm) optimizer.setup(model) return optimizer # Updater def _setup_updater(config, device, train_iterator, optimizers): updater_kwargs = dict() updater_kwargs['iterator'] = train_iterator updater_kwargs['optimizer'] = optimizers updater_kwargs['device'] = device if config['segmentor_name'] == 'vaeseg': return VAESegUpdater(config, **updater_kwargs) elif config['segmentor_name'] == 'encdec_seg': return EncDecSegUpdater(config, **updater_kwargs) elif config['segmentor_name'] == 'boundseg': return BoundSegUpdater(config, **updater_kwargs) elif config['segmentor_name'] == 'cpcseg': return CPCSegUpdater(config, **updater_kwargs) else: return training.StandardUpdater(**updater_kwargs) def _setup_extensions(config, trainer, optimizers, logging_counts, logging_attributes): if config['segmentor_name'] == 'vaeseg': trainer.extend(extensions.dump_graph('loss/total', out_name="segmentor.dot")) elif config['segmentor_name'] == 'encdec_seg': trainer.extend(extensions.dump_graph('loss/seg', out_name="segmentor.dot")) elif config['segmentor_name'] == 'boundseg': trainer.extend(extensions.dump_graph('loss/seg', out_name="segmentor.dot")) elif config['segmentor_name'] == 'cpcseg': trainer.extend(extensions.dump_graph('loss/total', out_name="segmentor.dot")) else: trainer.extend(extensions.dump_graph('main/loss', out_name="segmentor.dot")) # Report repo_trigger = (config['report_interval'], 'iteration') trainer.extend( extensions.LogReport( trigger=repo_trigger ) ) trainer.extend( extensions.PrintReport(logging_counts + logging_attributes), trigger=repo_trigger ) trainer.extend( extensions.ProgressBar() ) snap_trigger = (config['snapshot_interval'], 'epoch') trainer.extend( extensions.snapshot(filename='snapshot_epoch_{.updater.epoch}'), trigger=snap_trigger ) for k, v in optimizers.items(): trainer.extend( extensions.snapshot_object(v.target, k+'_epoch_{.updater.epoch}'), trigger=snap_trigger ) for attr in logging_attributes: trainer.extend( extensions.PlotReport([attr, 'validation/' + attr], 'epoch', file_name=attr.replace('/', '_') + '.png') ) # Trainer def setup_trainer(config, out, batch_size, epoch, gpu_start_id): comm, is_master, device = _setup_communicator(config, gpu_start_id) train_data, validation_data, test_data = _setup_datasets(config, comm, is_master) if config['segmentor_name'] == 'vaeseg': encoder, embedder, decoder, vae = _setup_vae_segmentor(config, comm) # load weights if config['init_encoder'] is not None: serializers.load_npz(config['init_encoder'], encoder) if config['init_embedder'] is not None: serializers.load_npz(config['init_embedder'], embedder) if config['init_decoder'] is not None: serializers.load_npz(config['init_decoder'], decoder) if config['init_vae'] is not None: serializers.load_npz(config['init_vae'], vae) if device is not None: get_device_from_id(device).use() encoder.to_gpu() embedder.to_gpu() decoder.to_gpu() vae.to_gpu() opt_enc = _setup_optimizer(config, encoder, comm) opt_emb = _setup_optimizer(config, embedder, comm) opt_dec = _setup_optimizer(config, decoder, comm) opt_vae = _setup_optimizer(config, vae, comm) optimizers = {'enc': opt_enc, 'emb': opt_emb, 'dec': opt_dec, 'vae': opt_vae} elif config['segmentor_name'] == 'cpcseg': encoder, decoder, cpcpred1 = _setup_cpc_segmentor(config, comm) # load weights if config['init_encoder'] is not None: serializers.load_npz(config['init_encoder'], encoder) if config['init_decoder'] is not None: serializers.load_npz(config['init_decoder'], decoder) if config['init_cpcpred'] is not None: serializers.load_npz(config['init_cpcpred'], cpcpred1) if device is not None: get_device_from_id(device).use() encoder.to_gpu() decoder.to_gpu() cpcpred1.to_gpu() opt_enc = _setup_optimizer(config, encoder, comm) opt_dec = _setup_optimizer(config, decoder, comm) opt_p1 = _setup_optimizer(config, cpcpred1, comm) optimizers = {'enc': opt_enc, 'dec': opt_dec, 'cpcpred1': opt_p1} elif config['segmentor_name'] == 'encdec_seg': encoder, decoder = _setup_vae_segmentor_only(config, comm) # load weights if config['init_encoder'] is not None: serializers.load_npz(config['init_encoder'], encoder) if config['init_decoder'] is not None: serializers.load_npz(config['init_decoder'], decoder) if device is not None: get_device_from_id(device).use() encoder.to_gpu() decoder.to_gpu() opt_enc = _setup_optimizer(config, encoder, comm) opt_dec = _setup_optimizer(config, decoder, comm) optimizers = {'enc': opt_enc, 'dec': opt_dec} elif config['segmentor_name'] == 'boundseg': encoder, decoder, boundary = _setup_bound_segmentor(config, comm) # load weights if config['init_encoder'] is not None: serializers.load_npz(config['init_encoder'], encoder) if config['init_decoder'] is not None: serializers.load_npz(config['init_decoder'], decoder) if device is not None: get_device_from_id(device).use() encoder.to_gpu() decoder.to_gpu() boundary.to_gpu() opt_enc = _setup_optimizer(config, encoder, comm) opt_dec = _setup_optimizer(config, decoder, comm) opt_bound = _setup_optimizer(config, boundary, comm) optimizers = {'enc': opt_enc, 'dec': opt_dec, 'bound': opt_bound} train_iterator, validation_iterator, test_iterator = \ _setup_iterators(config, batch_size, train_data, validation_data, test_data) logging_counts = ['epoch', 'iteration'] if config['segmentor_name'] == 'vaeseg': logging_attributes = \ ['loss/rec', 'loss/kl', 'loss/total', 'acc', 'mean_dc', 'val/mean_dc', 'test/mean_dc'] if config['print_each_dc']: for i in range(0, config['nb_labels']): logging_attributes.append('dc_{}'.format(i)) logging_attributes.append('val/dc_{}'.format(i)) logging_attributes.append('test/dc_{}'.format(i)) elif config['segmentor_name'] == 'cpcseg': logging_attributes = \ ['loss/total', 'acc', 'loss/cpc'] for i in range(0, config['nb_labels']): logging_attributes.append('dc_{}'.format(i)) logging_attributes.append('val/dc_{}'.format(i)) logging_attributes.append('test/dc_{}'.format(i)) elif config['segmentor_name'] == 'encdec_seg': logging_attributes = \ ['loss/seg', 'loss/total', 'acc'] if config['print_each_dc']: for i in range(0, config['nb_labels']): logging_attributes.append('dc_{}'.format(i)) logging_attributes.append('val/dc_{}'.format(i)) logging_attributes.append('test/dc_{}'.format(i)) elif config['segmentor_name'] == 'boundseg': logging_attributes = \ ['loss/seg', 'loss/total', 'acc', 'loss/bound', 'loss/bce'] if config['print_each_dc']: for i in range(0, config['nb_labels']): logging_attributes.append('dc_{}'.format(i)) logging_attributes.append('val/dc_{}'.format(i)) logging_attributes.append('test/dc_{}'.format(i)) else: logging_attributes = ['main/loss', 'main/acc'] for i in range(1, config['nb_labels']): logging_attributes.append('main/dc_{}'.format(i)) logging_attributes.append('val/main/dc_{}'.format(i)) logging_attributes.append('test/main/dc_{}'.format(i)) updater = _setup_updater(config, device, train_iterator, optimizers) trainer = training.Trainer(updater, (epoch, 'epoch'), out=out) if is_master: _setup_extensions(config, trainer, optimizers, logging_counts, logging_attributes) if config['segmentor_name'] == 'vaeseg': targets = {'enc': encoder, 'emb': embedder, 'dec': decoder, 'vae': vae} val_evaluator = VAESegEvaluator(config, validation_iterator, targets, device=device) test_evaluator = VAESegEvaluator(config, test_iterator, targets, device=device) elif config['segmentor_name'] == 'cpcseg': targets = {'enc': encoder, 'dec': decoder, 'cpcpred1': cpcpred1} val_evaluator = CPCSegEvaluator(config, validation_iterator, targets, device=device) test_evaluator = CPCSegEvaluator(config, test_iterator, targets, device=device) elif config['segmentor_name'] == 'encdec_seg': targets = {'enc': encoder, 'dec': decoder} val_evaluator = EncDecSegEvaluator(config, validation_iterator, targets, device=device) test_evaluator = EncDecSegEvaluator(config, test_iterator, targets, device=device) elif config['segmentor_name'] == 'boundseg': targets = {'enc': encoder, 'dec': decoder, 'bound': boundary} val_evaluator = BoundSegEvaluator(config, validation_iterator, targets, device=device) test_evaluator = BoundSegEvaluator(config, test_iterator, targets, device=device) val_evaluator.default_name = 'val' test_evaluator.default_name = 'test' if comm is not None: val_evaluator = chainermn.create_multi_node_evaluator(val_evaluator, comm) test_evaluator = chainermn.create_multi_node_evaluator(test_evaluator, comm) trainer.extend(val_evaluator, trigger=(config['eval_interval'], 'epoch')) trainer.extend(test_evaluator, trigger=(config['eval_interval'], 'epoch')) # Resume if config['resume'] is not None: serializers.load_npz(config['resume'], trainer) return trainer