task_type
stringclasses 1
value | dataset
stringclasses 1
value | input
stringlengths 11
389
| output
stringlengths 43
461
| situation
stringclasses 1
value | label
stringclasses 1
value | extra
stringclasses 1
value | instruction
stringclasses 1
value |
---|---|---|---|---|---|---|---|
generation
|
absa-quad
|
['Never have I had such dramatic delivery guys ( a lot of huffing and panting and muttering under breath b/c I live in a walkup ) who always seem disappointed with their tips .']
|
[['delivery guys', 'service general', 'negative', 'dramatic']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['The whole set up is truly unprofessional and I wish Cafe Noir would get some good staff , because despite the current one this is a great place .']
|
[['staff', 'service general', 'negative', 'good'], ['Cafe Noir', 'restaurant general', 'positive', 'great']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['I stumbled upon this great pizzeria as I explored my new neighborhood .']
|
[['pizzeria', 'restaurant general', 'positive', 'great']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Prices too high for this cramped and unappealing resturant .']
|
[['resturant', 'restaurant prices', 'negative', 'high'], ['resturant', 'ambience general', 'negative', 'cramped'], ['resturant', 'ambience general', 'negative', 'unappealing']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Everything is always cooked to perfection , the service is excellent , the decor cool and understated .']
|
[['NULL', 'food quality', 'positive', 'perfection'], ['service', 'service general', 'positive', 'excellent'], ['decor', 'ambience general', 'positive', 'cool'], ['decor', 'ambience general', 'positive', 'understated']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Everything about this restaurant was special .']
|
[['restaurant', 'restaurant general', 'positive', 'special']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Warm and friendly in the winter and terrific outdoor seating in the warmer months .']
|
[['NULL', 'ambience general', 'positive', 'Warm'], ['NULL', 'ambience general', 'positive', 'friendly'], ['outdoor seating', 'ambience general', 'positive', 'terrific']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
["I have been to Roth 's twice and both times were very disappointing ."]
|
[["Roth 's", 'restaurant general', 'negative', 'disappointing']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Best Pastrami I ever had and great portion without being ridiculous .']
|
[['Pastrami', 'food quality', 'positive', 'Best'], ['portion', 'food style_options', 'positive', 'great']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Service here was great , food was fantastic .']
|
[['Service', 'service general', 'positive', 'great'], ['food', 'food quality', 'positive', 'fantastic']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
["If celebrities make you sweat , then your in for a ride , but if your like most around these parts then you 'll just yawn and wonder whats with all the hype ."]
|
[['NULL', 'restaurant miscellaneous', 'negative', 'yawn']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['It may be a bit packed on weekends , but the vibe is good and it is the best French food you will find in the area .']
|
[['NULL', 'ambience general', 'neutral', 'packed'], ['vibe', 'ambience general', 'positive', 'good'], ['French food', 'food quality', 'positive', 'best']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['love the food .']
|
[['food', 'food quality', 'positive', 'love']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['The combination of super-fresh ingredients in the dishes are unusual but really delicious .']
|
[['ingredients', 'food quality', 'positive', 'super-fresh'], ['ingredients', 'food quality', 'positive', 'delicious']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Ive asked a cart attendant for a lotus leaf wrapped rice and she replied back rice and just walked away .']
|
[['cart attendant', 'service general', 'negative', 'walked away']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['I pray it stays open forever .']
|
[['NULL', 'restaurant general', 'positive', 'stays open forever']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Service was slow , but the people were friendly .']
|
[['Service', 'service general', 'negative', 'slow'], ['people', 'service general', 'positive', 'friendly']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Lucky Strike is a great casual place to just grab a bite to eat .']
|
[['Lucky Strike', 'restaurant general', 'positive', 'great casual']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
["The food is amazing ... especially if you get the Chef 's tasting menu and your favourite bottle ( or two ! ) of wine from an extensive selection of wines ."]
|
[['food', 'food quality', 'positive', 'amazing'], ['selection of wines', 'drinks style_options', 'positive', 'extensive'], ["Chef 's tasting menu", 'food quality', 'positive', 'favourite']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
["Baluchi 's has solid food and a nice decor at reasonable prices ."]
|
[['food', 'food quality', 'positive', 'solid'], ['decor', 'ambience general', 'positive', 'nice'], ["Baluchi 's", 'restaurant prices', 'positive', 'solid']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['As many other reviewers noticed , your order is often slow to arrive - this is particularly true in the evening but is not a problem during lunch time .']
|
[['NULL', 'service general', 'neutral', 'slow']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['The service was impeccable and unobtrusive -- the staff knows what they are there to do -- to know their menu , present your meal , and attend to your needs .']
|
[['service', 'service general', 'positive', 'impeccable'], ['service', 'service general', 'positive', 'unobtrusive']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
["I have been to Rao 's probably 15 times the past 3 years and it keeps getting better ."]
|
[["Rao 's", 'restaurant general', 'positive', 'better']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['I will be out with friends and all of a sudden I am hungry and I only crave one thing ... their Pizza .']
|
[['Pizza', 'food quality', 'positive', 'crave']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['The atmosphere is nothing special , but it feels like a Sushi establishment in Tokyo .']
|
[['atmosphere', 'ambience general', 'positive', 'nothing special']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['IT WAS HORRIBLE .']
|
[['NULL', 'restaurant general', 'negative', 'HORRIBLE']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['But , they were too big for the bun .']
|
[['NULL', 'food style_options', 'negative', 'too big']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
["Thanks Bloom 's for a lovely trip ."]
|
[["Bloom 's", 'restaurant general', 'positive', 'Thanks'], ["Bloom 's", 'restaurant general', 'positive', 'lovely']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['I love it .']
|
[['NULL', 'restaurant general', 'positive', 'love']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Spreads and toppings are great - though a bit pricey .']
|
[['Spreads', 'food quality', 'positive', 'great'], ['toppings', 'food quality', 'positive', 'great'], ['Spreads', 'food prices', 'negative', 'pricey'], ['toppings', 'food prices', 'negative', 'pricey']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
["The food 's as good as ever ."]
|
[['food', 'food quality', 'positive', 'good']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Decor is charming .']
|
[['Decor', 'ambience general', 'positive', 'charming']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['The food was good .']
|
[['food', 'food quality', 'positive', 'good']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Delicate spices , onions , eggs and a kick-ass roti .']
|
[['spices', 'food quality', 'positive', 'Delicate'], ['onions', 'food quality', 'positive', 'Delicate'], ['eggs', 'food quality', 'positive', 'Delicate'], ['roti', 'food quality', 'positive', 'kick-ass']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
["The pesto pizza was excellent , thin-crust pizza with a nice amount of spicy Italian cheese that I 'd never heard of before ."]
|
[['pesto pizza', 'food quality', 'positive', 'excellent'], ['spicy Italian cheese', 'food quality', 'positive', 'nice']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Wonderful at holiday time .']
|
[['NULL', 'restaurant miscellaneous', 'positive', 'Wonderful']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['The food is great and they have a good selection of wines at reasonable prices .']
|
[['food', 'food quality', 'positive', 'great'], ['wines', 'drinks style_options', 'positive', 'good selection'], ['wines', 'drinks prices', 'positive', 'good selection']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Not one of our meals was edible - bland and/or made with weird rosemary or orange flavoring .']
|
[['meals', 'food quality', 'negative', 'edible'], ['rosemary or orange flavoring', 'food quality', 'negative', 'weird']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['I would defiantly come back here again as one of my top choices .']
|
[['NULL', 'restaurant general', 'positive', 'top choices']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['I have lived in Japan for 7 years and the taste of the food and the feel of the restaurant is like being back in Japan .']
|
[['food', 'food quality', 'positive', 'like being back in Japan'], ['feel', 'ambience general', 'positive', 'like being back in Japan']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['I found the food , service and value exceptional everytime I have been there .']
|
[['food', 'food quality', 'positive', 'exceptional'], ['service', 'service general', 'positive', 'exceptional'], ['value', 'restaurant prices', 'positive', 'exceptional']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['The rice was poor quality and was cooked so badly it was hard .']
|
[['rice', 'food quality', 'negative', 'poor quality'], ['rice', 'food quality', 'negative', 'cooked so badly'], ['rice', 'food quality', 'negative', 'hard']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['The food now is inconsistent .']
|
[['food', 'food quality', 'negative', 'inconsistent']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Cute and decorative .']
|
[['NULL', 'ambience general', 'positive', 'Cute'], ['NULL', 'ambience general', 'positive', 'decorative']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['This place is always very crowded and popular .']
|
[['place', 'restaurant miscellaneous', 'positive', 'crowded'], ['place', 'restaurant miscellaneous', 'positive', 'popular']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
["When you 're sitting in their main dining room ( which has a spectacular , hand-painted high ceiling ) you 'd never know there was a world outside ."]
|
[['main dining room', 'ambience general', 'positive', 'spectacular'], ['ceiling', 'ambience general', 'positive', 'spectacular'], ['ceiling', 'ambience general', 'positive', 'hand-painted high']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['sometimes i get bad food and bad service , sometimes i get good good and bad service .']
|
[['food', 'food quality', 'negative', 'bad'], ['service', 'service general', 'negative', 'bad'], ['service', 'service general', 'negative', 'bad'], ['good', 'food quality', 'positive', 'good']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['There is a lot of variety even for people who eat vegetarian like me .']
|
[['NULL', 'food style_options', 'positive', 'a lot of variety']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['whoever the jazz duo was , they were on POINT .']
|
[['jazz duo', 'ambience general', 'positive', 'on POINT']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Most importantly , food is excellent .']
|
[['food', 'food quality', 'positive', 'excellent']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['I was pleasantly surprised to find this gem in Hoboken .']
|
[['NULL', 'restaurant general', 'positive', 'pleasantly surprised']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['noodles with shrimp and chicken and coconut juice is the MUST !']
|
[['noodles with shrimp and chicken and coconut juice', 'food quality', 'positive', 'MUST']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['However , I think this place is a good hang out spot .']
|
[['place', 'ambience general', 'positive', 'good']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['This is the perfect spot for meeting friends , having lunch , dinner , pre-theatre or after-theatre drinks !']
|
[['spot', 'restaurant miscellaneous', 'positive', 'perfect']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['It is expensive but well worth the money .']
|
[['NULL', 'restaurant prices', 'negative', 'expensive'], ['NULL', 'restaurant general', 'positive', 'well worth']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Cozy romantic atomosphere with only around 15 tables at most .']
|
[['atomosphere', 'ambience general', 'positive', 'Cozy romantic']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
["It 's a rather cramped and busy restaurant and it closes early ."]
|
[['restaurant', 'restaurant miscellaneous', 'negative', 'closes early'], ['restaurant', 'ambience general', 'negative', 'cramped'], ['restaurant', 'ambience general', 'negative', 'busy']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Wine list is extensive without being over-priced .']
|
[['Wine list', 'drinks style_options', 'positive', 'extensive without being over-priced'], ['Wine list', 'drinks prices', 'positive', 'extensive without being over-priced']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
["And even with it 's Pub atmosphere they were great to my kids too !"]
|
[['NULL', 'service general', 'positive', 'great']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['I have been doing all of the above at the Heartland Brewery for over 5 years now and I HAVE NEVER BEEN DISAPPOINTED !']
|
[['Heartland Brewery', 'restaurant general', 'positive', 'NEVER BEEN DISAPPOINTED']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Right off the L in Brooklyn this is a nice cozy place with good pizza .']
|
[['pizza', 'food quality', 'positive', 'good'], ['place', 'ambience general', 'positive', 'nice cozy']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['The food here does a great service to the name ( Cantonese that is ... ) .']
|
[['food', 'food quality', 'positive', 'great']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Myagi is one of my favorite restaurants in the City ; the place the negative reviews describe sound like they were somewhere else .']
|
[['Myagi', 'restaurant general', 'positive', 'favorite']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
["Wouldn 't recomend it for dinner !"]
|
[['NULL', 'restaurant general', 'negative', "Wouldn 't recomend"]]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['I ordered the smoked salmon and roe appetizer and it was off flavor .']
|
[['smoked salmon and roe appetizer', 'food quality', 'negative', 'off flavor']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['The food was average or above including some surprising tasty dishes .']
|
[['food', 'food quality', 'positive', 'average or above'], ['dishes', 'food quality', 'positive', 'tasty']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['And really large portions .']
|
[['portions', 'food style_options', 'positive', 'large']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Service , however , was excellent ... and I liked the setting/atmosphere a lot .']
|
[['Service', 'service general', 'positive', 'excellent'], ['setting/atmosphere', 'ambience general', 'positive', 'liked']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['I highly recommend it .']
|
[['NULL', 'restaurant general', 'positive', 'recommend']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['fine dining restaurant quality .']
|
[['dining', 'food quality', 'positive', 'fine']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Nice atmosphere , the service was very pleasant and the desert was good .']
|
[['atmosphere', 'ambience general', 'positive', 'Nice'], ['service', 'service general', 'positive', 'pleasant'], ['desert', 'food quality', 'positive', 'good']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['LOVE the atmosphere - felt like I was in Paris .']
|
[['atmosphere', 'ambience general', 'positive', 'LOVE']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['I would highly recommand requesting a table by the window .']
|
[['table by the window', 'location general', 'positive', 'recommand']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Planet Thailand has always been a hit with me , I go there usually for the sushi , which is great , the thai food is excellent too .']
|
[['sushi', 'food quality', 'positive', 'great'], ['thai food', 'food quality', 'positive', 'excellent'], ['Planet Thailand', 'restaurant general', 'positive', 'hit']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['The flavors robust and subtle .']
|
[['NULL', 'food quality', 'positive', 'robust'], ['NULL', 'food quality', 'positive', 'subtle']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Still , any quibbles about the bill were off-set by the pour-your-own measures of liquers which were courtesey of the house ...']
|
[['NULL', 'restaurant prices', 'neutral', 'quibbles'], ['measures of liquers', 'drinks style_options', 'positive', 'pour-your-own'], ['measures of liquers', 'drinks style_options', 'positive', 'courtesey']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['The food was mediocre at best but it was the horrible service that made me vow never to go back .']
|
[['food', 'food quality', 'negative', 'mediocre'], ['service', 'service general', 'negative', 'horrible']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Such a disappointment ...']
|
[['NULL', 'service general', 'negative', 'disappointment']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Our food was great too !']
|
[['food', 'food quality', 'positive', 'great']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Overall , not worth the money .']
|
[['NULL', 'restaurant prices', 'negative', 'not worth']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['This place is pricey , and yes , the food is worth it ; but the service makes you feel like you should be paying a quater of the price .']
|
[['place', 'restaurant prices', 'negative', 'pricey'], ['food', 'food quality', 'positive', 'worth'], ['service', 'service general', 'negative', 'paying a quater of the price']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['The mussels were fantastic and so was the dessert ... definitely going to be back very soon .']
|
[['mussels', 'food quality', 'positive', 'fantastic'], ['dessert', 'food quality', 'positive', 'fantastic'], ['NULL', 'restaurant general', 'positive', 'going to be back']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
["if you 're daring , try the balsamic vinegar over icecream , it 's wonderful !"]
|
[['balsamic vinegar over icecream', 'food quality', 'positive', 'try'], ['balsamic vinegar over icecream', 'food quality', 'positive', 'wonderful']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Overall , excellent restaurant !']
|
[['restaurant', 'restaurant general', 'positive', 'excellent']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['My wife and I ate here earlier this week and have not stopped ranting and raving about the food .']
|
[['food', 'food quality', 'positive', 'raving']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['A little crowded but they move that line really fast !']
|
[['NULL', 'service general', 'positive', 'fast'], ['NULL', 'restaurant miscellaneous', 'negative', 'crowded']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Go there once and oh yes ... you will go back ... you will ...']
|
[['NULL', 'restaurant general', 'positive', 'go back']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['it is not consistent .']
|
[['NULL', 'restaurant general', 'negative', 'not consistent']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
["The pizza was delivered cold and the cheese was n't even fully melted !"]
|
[['pizza', 'food quality', 'negative', 'cold'], ['cheese', 'food quality', 'negative', "was n't even fully melted"]]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['The staff has been nice , but they seemed really stressed and the unisex bathroom needs to be cleaned more often .']
|
[['staff', 'service general', 'positive', 'nice'], ['staff', 'service general', 'negative', 'stressed'], ['unisex bathroom', 'ambience general', 'negative', 'needs to be cleaned']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Unique apppetizers .']
|
[['apppetizers', 'food quality', 'positive', 'Unique']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['On a recent Sunday afternoon , a friend and I accidently found this great restaurant on our way to see the pulitzer prize winning play DOUBT .']
|
[['restaurant', 'restaurant general', 'positive', 'great']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
["The service is ok , some of the people did n't get what they asked for ."]
|
[['service', 'service general', 'neutral', 'ok']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['Simply some good tasting Chinese food at incredible prices ...']
|
[['Chinese food', 'food quality', 'positive', 'good tasting'], ['Chinese food', 'food prices', 'positive', 'good tasting']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
["I 've been to at Cafe Spice probably 5-8 times , it is probably still the best Indian restaurant around Union Square ."]
|
[['Cafe Spice', 'restaurant general', 'positive', 'best']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['La Rosa waltzes in , and I think they are doing it the best .']
|
[['La Rosa', 'food quality', 'positive', 'best']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['The design and atmosphere is just as good .']
|
[['design', 'ambience general', 'positive', 'good'], ['atmosphere', 'ambience general', 'positive', 'good']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
["Over the years the host , Vittorio , and his crew , have always treated me as family -- although with all the business this not-so-little gem does , it amazing he 's even able to remember a consistent but not-so-frequent visitor ."]
|
[['host', 'service general', 'positive', 'amazing'], ['crew', 'service general', 'positive', 'treated me as family']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['But the pizza is way to expensive .']
|
[['pizza', 'food prices', 'negative', 'expensive']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
||
generation
|
absa-quad
|
['While their kitchen food is delicious , their Sushi is out of this world .']
|
[['kitchen food', 'food quality', 'positive', 'delicious'], ['Sushi', 'food quality', 'positive', 'out of this world']]
|
none
|
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.